WO1997001185A1 - Method and apparatus for film formation - Google Patents

Method and apparatus for film formation Download PDF

Info

Publication number
WO1997001185A1
WO1997001185A1 PCT/JP1996/001690 JP9601690W WO9701185A1 WO 1997001185 A1 WO1997001185 A1 WO 1997001185A1 JP 9601690 W JP9601690 W JP 9601690W WO 9701185 A1 WO9701185 A1 WO 9701185A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
thin film
film forming
hole
irradiating
Prior art date
Application number
PCT/JP1996/001690
Other languages
French (fr)
Japanese (ja)
Inventor
Yuji Kubo
Shinji Tokumaru
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Publication of WO1997001185A1 publication Critical patent/WO1997001185A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/046Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates

Definitions

  • the present invention relates to a film forming method and a film forming apparatus. More specifically, the present invention relates to a sputtering method and a sputtering apparatus for forming wiring and the like of a semiconductor device, and more particularly, to a thin film having a good coating property for holes such as contact holes and through holes. The present invention relates to a sputtering method and a sputtering apparatus that can be formed.
  • the sputtering method shown in FIG. 1 has been mainly used as the embedding technique. According to this method, particles sputtered from the target 5 are emitted toward the substrate 6 with a certain angular distribution (for example, on the cosine side). As a result, it is difficult to form the thin film 4 on the bottom of the hole 1 having a high aspect ratio because the ratio of particles deposited on the bottom of the hole 1 is small and the particles are easily deposited on the opening of the hole 1. It is.
  • the ratio of the thickness of the thin film composed of particles deposited on the bottom of the hole to the thickness of the thin film composed of particles deposited on the outside of the hole hereinafter referred to as the “top”) (bottom-force barrier) is increased.
  • the collimated film is formed by combining a collimated plate 14 having microscopic holes arranged in a honeycomb shape with a substrate 6 and a target 5, for example. By inserting the particles between them, only the particles that have passed through these fine holes (that is, particles having a velocity component close to the perpendicular to the substrate 6) are deposited on the substrate 6, thereby forming the particles on the substrate 6. Improved bottom coverage of the thin film 4.
  • An object of the present invention is to provide a film forming technique for forming a film on a substrate having holes having a large aspect ratio by sputtering, in which a decrease in throughput is small and a bottom force, a barrier, a barrier property and electric characteristics are large.
  • An object of the present invention is to provide a film forming method and a film forming apparatus capable of forming a buried wiring.
  • the film forming method of the present invention is a film forming method in which a thin film is formed on a substrate having holes formed thereon by a sputtering method, wherein the thin film is formed in accordance with an aspect ratio of the holes with respect to a perpendicular to the substrate.
  • the substrate is irradiated with ions at an angle ⁇ .
  • the film forming method of the present invention is a film forming method for forming a thin film on a substrate on which holes are formed by a sputtering method
  • Irradiation angle (0 ° a ⁇ t an — '(1 / aspect ratio) + 10 °) with respect to the perpendicularity of the substrate according to the aspect ratio of the hole and 30 eV or more 500
  • the thin film is formed while irradiating the substrate with gas ions with the irradiation energy of eV, and during the formation of the thin film, the sputter particles adhering to the side wall of the hole are subjected to the gas erosion. Then, the sputtered particles are re-sputtered.
  • the film forming apparatus includes: a vacuum chamber in which a substrate in which holes are formed and a target are arranged so as to face each other; a unit configured to rotate the substrate about a perpendicular line of the substrate as a central axis; Means for irradiating the substrate with an ion beam at an angle ⁇ corresponding to an aspect ratio (depth / diameter) of the hole with respect to a perpendicular to the substrate.
  • the film forming apparatus of the present invention is a film forming apparatus for forming a thin film on a substrate on which holes are formed by a sputtering method
  • Means for applying a predetermined bias voltage to the substrate
  • Means for generating an electric or magnetic field parallel to the film-forming surface of the substrate
  • This ion irradiation angle ⁇ should be in the range of 0 ° ⁇ a ⁇ tan — '(1 / aspect ratio) + 10 ° with respect to the normal to the substrate.
  • the energy of the ions must be in a range that causes re-sputtering and does not damage the thin film, and the range is 30 eV or more and 500 eV or less.
  • the film forming method and the film forming apparatus of the present invention are characterized in that the film is formed while irradiating the thin film growing on the side wall of the hole with ions. Irradiation angles and respattering occur where ions collide with a wide area of the side wall of the hole and re-spatter particles deposited on the side wall of the hole.
  • the ion irradiation conditions By setting the ion irradiation conditions to an energy that does not cause damage, the particles that have once adhered to the side wall of the hole are re-sparked and re-adhered to the bottom of the hole. This improves bottom coverage without significantly reducing productivity.
  • the side wall of the hole can be uniformly irradiated with ions, and the thickness of the thin film deposited in the hole can be made uniform.
  • FIG. 1 is a diagram for explaining a conventional sputtering method.
  • FIG. 2 is a diagram for explaining a conventional collimator 'sputtering method.
  • FIG. 3 is a schematic diagram for explaining the basic principle of the film forming method of the present invention.
  • FIG. 4 is a view for explaining a first embodiment of the film forming method and the film forming apparatus of the present invention.
  • FIG. 5 is a view showing a shape of a mask for describing a first embodiment of a film forming method and a film forming apparatus of the present invention.
  • FIG. 6 is a view for explaining a second embodiment of the film forming method and the film forming apparatus of the present invention.
  • FIG. 7 is a diagram showing a configuration example of the trapping electrode shown in FIG.
  • FIG. 8 is a view for explaining a third embodiment of the film forming method and the film forming apparatus of the present invention.
  • FIG. 9 is a view for explaining a third embodiment of the film forming method and the film forming apparatus of the present invention.
  • FIG. 10 is a view for explaining a third embodiment of the film forming method and the film forming apparatus of the present invention.
  • the sputtered particles 3 that have once adhered to the side wall of the hole 1 are resputtered by the collision of the ions 2 and adhere again to the bottom of the hole 1.
  • the thickness of the thin film 4 formed at the bottom of the hole 1 increases.
  • the film forming apparatus includes a vacuum chamber 7, first and second electrodes 8, 8 provided in the vacuum chamber 7 to face each other, and a second electrode of the first electrode 8. 8 and target 5 provided on the two opposing to the surface, provided on the outside of the vacuum chamber 7, the first and second electrode 8, the first and second for supplying a DC voltage, respectively 8 DC voltage sources 2 1, 2 1 are provided.
  • Hole 1 (not shown) Force ⁇ formed substrate 6 is tilted at an angle to target 5 and perpendicular to substrate 6 on the surface of second electrode 82 facing the first electrode, It is provided so that it can rotate as a central axis.
  • the second DC voltage source 2 1 2 is to the second electrode 8 can be supplied a direct current voltage of one 3 0 V to one 5 0 0 V.
  • sputtering is performed by using the target 5 as a cathode to generate plasma near the target 5.
  • the target 5 as a cathode to generate plasma near the target 5.
  • the A r gas as and a discharge gas with a T i target as target 5
  • a substantially energy of the same voltage component as the voltage applied to the second electrode 2 8 to the perpendicular of the substrate 6 Ar ion in the plasma collides with the substrate 6 from an oblique direction only at an angle.
  • the angle ⁇ is 0 ° ⁇ tan— 1 (1Z 10 °), preferably ta ⁇ ′′ ′ (1 aspect ratio) -1 10 ° ⁇ ⁇ ta ⁇ ′′ ′ (1 / aspect ratio) +5. Should be within the range. In particular, the effect is significant when the aspect ratio is 4 or less.
  • a comparative experiment was performed with the case. Note that the distance between the substrate 6 and the target 5 when the substrate 6 is inclined is 65 mm, and the substrate 6 and the target 5 when the substrate 6 is inclined by an angle of 15 °. The distance between them was 50 mm. In each case, the substrate 6 was rotated. However, in this comparative experiment, instead of forming a thin film inside the hole 1 formed in the substrate 6, instead of forming a thin film on the substrate 6, as shown in FIG. Simulate embedding of the thin film 4 using a mask 13 having holes 1 2
  • the mask 13 was removed from the substrate 6 and the mask 13 of the substrate 6 was not attached.
  • the thickness of the thin film 4 formed on the portion (top portion) and the hole 12 (bottom portion) of the mask 13 of the substrate 6 is measured with a surface roughness meter to measure the force barrier.
  • a silicon wafer was used as the substrate 6, and a glass plate having a thickness of 2 mm and a hole 12 having a diameter of lmm was used as the mask 13.
  • the aspect ratio of the hole 12 is “2”.
  • the thin film 4 is formed by depositing a Ti thin film so that the thickness at the top becomes 0.3 m, and then applying a TiN so that the thickness at the top becomes 3 ⁇ m. This was done by depositing a thin film on the Ti film. Deposition of T i thin film, for all samples, using the A r as a discharge gas, pressure 4 XI 0 3 To rr, was carried out under the condition that the target voltage 380 V and target current 2 A.
  • the performance comparison was performed by comparing the bottom coverage of the TiN thin film.
  • Table 1 shows an example of performance comparison.
  • the bottom coverage is about 8% regardless of whether or not the bias voltage is applied.
  • the value is almost the same as in the case where is formed (see monthly semiconductor world, 1994, 12, p. 190).
  • the bottom 'coverage was almost the same as when the substrate 6 was not tilted.
  • the bottom 'coverage was almost twice as large as when the substrate 6 was not tilted. Even when a 1 mm thick stainless steel plate having a hole 12 with a diameter of 0.5 mm is used as the mask 13 (the aspect ratio of the hole 12 is "2"). The same results as in Table 1 were obtained.
  • a 1.5- ⁇ m thick silica film (hereinafter, referred to as “1 ⁇ m”) formed by doping with boron (B) and phosphorus (P) was formed.
  • a thin film was formed on a silicon 'wafer, called a “BPSG film”) in the same manner as in the first experiment, and the cross section of the hole was observed by SEM (scanning electron microscope).
  • the thin film is formed by depositing a Ti thin film so that the thickness at the top becomes 0.1 ⁇ m, and then forming a Ti thin film so that the thickness at the top becomes 0.7 ⁇ m. N thin film This was done by depositing on a Ti thin film.
  • the comparison was made with the shape of the thin film 4 embedded in the hole 1 having an aspect ratio of 1.5.
  • the bottom coverage of the thin film formed in this experiment was improved to about twice, and the film thickness did not become extremely small near the opening of the hole.
  • the film formation rate was 480 angstroms / min in ordinary sputtering, but was 450 angstroms Z, and the decrease in productivity was small.
  • the film forming apparatus of the present embodiment includes a vacuum chamber 7, first and second electrodes 8, 8 2 provided opposite to each other in the vacuum chamber 7, and a second electrode 8 of the first electrode 8.
  • a target 5 provided on the surface facing the electrode 82, provided on the outside of the vacuum chamber 7, the first and second electrode 8, the first and second for supplying respectively a DC voltage to 82 2 DC voltage sources 2 1, 2 1 2 .
  • the substrate 6 in which the hole 1 (not shown) is formed is placed on the surface of the second electrode 82 facing the first electrode, parallel to the target 5 and centered on the perpendicular of the substrate 6. It is provided so that it can rotate.
  • Second DC Voltage source 2 1 2 to the second electrode 8 - 3 0 V ⁇ - 5 is capable supplying 0 0 V DC voltage.
  • the target 5 is used as a force source to generate plasma near the target 5 and perform sputtering.
  • a pair of auxiliary electrodes 9 provided across the substrate 6, 9 2, provided on the outer vacuum chamber 7, a pair of auxiliary electrodes 9, a DC voltage between 9 2 And a third DC voltage source 21 for supplying the DC voltage.
  • Third DC voltage source 2 1 from the pair auxiliary electrodes 9, 9 by a predetermined DC voltage is applied to the 2, parallel to the electric field and the deposition surface of the substrate 6 occurs.
  • the ions collide with the substrate 6 from an oblique direction at an angle ⁇ with respect to the normal to the substrate 6.
  • the substrate 6 is set in parallel with the target 5 in the film forming apparatus of the present embodiment, the substrate 6 may be set to be inclined at a predetermined angle with respect to the target 5.
  • the substrate 6 is rotated, but as shown in FIG. 7, a predetermined number of auxiliary electrodes 9 are arranged around the substrate 6, and half of the auxiliary electrodes 9 are used. If the polarity of the auxiliary electrode 9 is controlled so as to sequentially change in the circumferential direction of the substrate 6 so as to be a negative potential, the substrate 6 does not need to be rotated.
  • ions can be formed only at an angle with respect to the perpendicular to the substrate 6. It can collide with the substrate 6 from an oblique direction.
  • the film forming apparatus shown in FIG. 6 an experiment of embedding into the substrate 6 having the holes 1 having an aspect ratio of 1.5 was performed, and the cross section of the holes 1 was observed by SEM.
  • the thin film is formed by depositing a Ti thin film so that the thickness at the top becomes 0.1 m, and then forming a Ti N thin film so that the thickness at the top becomes 0.7 ⁇ m. This was done by depositing on a Ti thin film. Deposition of T i thin film, for all samples, using the A r as a discharge gas, pressure 4 X 1 0- 1 3 T orr , that other one rodents G Voltage 3 8 0 V and data one g e t preparative current 2 A Performed under conditions.
  • the bottom of the thin film formed in this experiment The diameter was improved about twice, and the film thickness did not become extremely small near the opening of the hole.
  • the film forming apparatus of the present embodiment includes a vacuum chamber 7, an electrode 8 provided in the vacuum chamber 7, and a target 5 provided on a surface of the electrode 8 facing the substrate 6.
  • a DC voltage source 21 provided outside the vacuum chamber 7 for supplying a DC voltage to the electrode 8; and a radiation angle of the ion can be set to an arbitrary angle with respect to a perpendicular line of the substrate 6 and acceleration of the ion.
  • An assist ion gun 10 capable of setting the speed to 30 V to 500 V is provided.
  • the substrate 6 in which the hole 1 (not shown) is formed is provided so as to be parallel to the target 5 and rotatable about a perpendicular line of the substrate 6 as a center axis.
  • sputtering is performed by using the target 5 as a force source to generate plasma near the target 5.
  • a sputtering ion gun 11 is provided in the vacuum chamber 7 as shown in FIG. 9 to collect the ion beam emitted from the sputtering ion gun 11.
  • Sputtering may be performed on the target 5.
  • the installation position and the installation angle of the sputtering ion gun 11 with respect to the target 5 are adjusted so that the flux of the particles sputtered from the target 5 increases in the direction perpendicular to the substrate 6.
  • sputtering is performed using, for example, a Ti target as a target 5 and Ar + ions are emitted from the assist ion gun 10.
  • Ar ⁇ ions generated in the assisting ion gun 10 are emitted with the energy of the voltage applied to the acceleration electrode, and maintain almost the same energy. Collision is made obliquely to the perpendicular direction of the substrate 6 by the inclination angle of the assisting ion gun 10. The same phenomenon occurs when nitrogen ions are used to deposit the TiN film.
  • a thin film was formed on the BPSG film and inside the hole using the film forming apparatus. The thin film is formed by depositing a Ti thin film so that the thickness at the top becomes 0.02 ⁇ m, and then forming a TiN so that the thickness at the top becomes 0.3 ⁇ m. This was done by depositing a thin film on the Ti film.
  • the deposition of the Ti thin film was performed using a sputter ion gun 11 at an acceleration voltage of 1 000 V and a current density of 5.1 mA / cm 2 under a pressure of 1.4 x 10 Torr for all samples.
  • the Ti target was sputtered with Ar + ions.
  • the incident angle of the sputtered particles with respect to the perpendicular to the substrate 6 was constant for all samples.
  • the substrate 6 was irradiated with N 2 (N) + ions having an accelerating voltage of 300 V and a current density of 0.17 mAZcm 2 by the assisting ion gun 10, and the perpendicular of the substrate 6.
  • the irradiation angle of the assist ion was varied depending on the sample.
  • the bottom coverage was measured by observing the cross section of the hole by SEM, and the bottom coverage was compared for each TiN thin film deposition condition. Table 2 shows the comparison results. Table 2. Comparison results (Ion 'assist conditions and bottom coverage)
  • the bottom cover Redge is almost the same as without ion assist. This seems to be due to the fact that the ions do not collide with the side wall of the hole and do not resputter atoms attached to the side wall.
  • the ions are irradiated obliquely, the bottom force coverage is improved, and when the irradiation angle is 40 ° and the irradiation energy is 300 eV, the bottom 'coverage is not ion'. More than doubled.
  • the sputter ion gun 11 and the target 5 were provided so that the sputtered particles were incident at a large angle with respect to the perpendicular to the substrate 6, so that the thin film force was applied to the bottom of the hole having a high aspect ratio. Not formed. However, if the arrangement of the sputtering ion gun 11 and the target 5 is adjusted so that the flux of the sputtered particles is maximized in a direction close to the perpendicular to the substrate 6, the thin film can be embedded in the holes having a high aspect ratio. Even in that case, the bottom and the coverage are improved as well as the effect of this experiment.
  • the assist ion gun 10 is provided on the XYZ tilt table 31, and the assist ion gun 10 is moved horizontally by the control device 32 for the XYZ tilt table 31.
  • the ion beam applied to the substrate 6 may be scanned by controlling the angle of the ion gun 10 for use.
  • the substrate 6 is inclined or a pair of auxiliary electrodes 9 with the substrate 6 interposed therebetween, as shown by the broken line in FIG. ,
  • 9 2 pair of auxiliary electrodes 9 a suitable voltage provided, and or applied between 9 2, may adjust the irradiation angle of the ion beam.
  • the irradiation angle of the ion beam may be adjusted by using both the inclination of the substrate 6 and the installation of the pair of auxiliary electrodes 9, 9 2.
  • a pair of auxiliary electrodes 9! instead of generating an electric field in a direction parallel to the film-forming surface of the substrate 6 using the first and the second , a permanent magnet or an electromagnet may be used to generate a magnetic field in a direction parallel to the film-forming surface of the substrate 6.
  • the present invention does not use a method of selecting and depositing only particles having a velocity component close to the direction perpendicular to the substrate, so that the side near the opening of the hole is not used. There is no portion where the film thickness becomes extremely thin on the wall, and ions are irradiated to the side wall of the hole, so that the thin film is densified and the barrier properties and the electrical characteristics can be expected to be improved. Therefore, the present invention eliminates the problems associated with the embedding of the thin film material according to the prior art, has a small decrease in throughput, and has a great effect in obtaining a wiring having a large bottom coverage, a high barrier property, and a large electric characteristic. can get.

Abstract

A thin film is formed by sputtering on a substrate having holes while gas ions are emitted to the substrate at an angle α (0° < α ≤ tan-1 (1/aspect ratio) + 10°), depending on the aspect ratio of the hole, with respect to the perpendicular of the substrate at 30 to 500 eV. In this way, the gas ions are caused to impinge against the sputtered particles adhering to the side wall portion of the hole during the formation of the thin film so that the particles on the side wall may be sputtered again.

Description

明 細 書 成膜方法および成膜装置 技術分野  Description Film forming method and film forming equipment
本発明は、 成膜方法および成膜装置に関する。 より具体的には、 本発明は、 半 導体装置の配線などを形成するためのスパッ夕リング方法およびスパッタリング 装置に関し、 特に、 コンタクト ·ホールやスルー ·ホールなどの孔に対する被膜 性が良好な薄膜を形成することができるスパッタリング方法およびスパッタリン グ装置に関する。  The present invention relates to a film forming method and a film forming apparatus. More specifically, the present invention relates to a sputtering method and a sputtering apparatus for forming wiring and the like of a semiconductor device, and more particularly, to a thin film having a good coating property for holes such as contact holes and through holes. The present invention relates to a sputtering method and a sputtering apparatus that can be formed.
背景技術 Background art
近年、 U L S I (Ul tra LSI) などの半導体装置の高集積化が進むに連れて部品 サィズの微細化も進み、 製造プロセスにおける問題点も多くなつてきている。 た とえば、 コンタクト 'ホール、 スルー ·ホールおよびビア ·ホールなどの孔への 酉己線材料 (T iや T i Wなどからなるコンタク ト層ゃ T i Nなどからなるバリヤ 層) の埋め込み技術において、 部品サイズの微細化によって孔の開口径がより一 層小さくなるために孔のァスぺクト比 (たとえば、 円筒状の孔では深さ z径) が 大きくなることに起因する問題点が生じてきている。  In recent years, as semiconductor devices such as ULSI (Ultra LSI) have become more highly integrated, component sizes have become finer, and problems in the manufacturing process have been increasing. For example, technology for embedding a wire material (a contact layer made of Ti, TiW, etc., a barrier layer made of TiN, etc.) into holes such as contact holes, through holes, and via holes In the above, there is a problem caused by an increase in the aspect ratio of the hole (for example, the depth z diameter of a cylindrical hole) because the opening diameter of the hole is further reduced by miniaturization of the component size. Is happening.
従来、 上記埋め込み技術としては、 図 1に示すスパッタリング法が主に用いら れている。 この方法によると、 ターゲッ ト 5からスパッタされた粒子は、 ある角 度分布 (たとえば、 余弦側) をもって基板 6に向けて放射される。 その結果、 孔 1の底部に堆積する粒子の割合が小さくかつ粒子は孔 1の開口部に堆積し易いの で、 ァスぺクト比が大きい孔 1の底部に薄膜 4を形成することが困難である。 孔の外部 (以下、 「トップ部」 と称する。 ) に堆積する粒子からなる薄膜の厚 さに対する孔の底部に堆積する粒子からなる薄膜の厚さの割合 (ボトム ·力バレ ッジ) を大きくするためには、 放射方向が基板の垂線に近いスパッタ粒子だけを 選択的に基板に堆積させる 「コリメーシヨン 'スパッタリング」 が有効であるこ とが知られている。 コリメーンヨン 'スパッタリングは、 図 2に示すように、 た とえばハニカム状に微細孔が並んだコリメ一夕 1 4を基板 6とターゲッ 卜 5との 間に挿入することにより、 これらの微細孔を通過した粒子 (すなわち、 基板 6の 垂線に近い速度成分をもつ粒子) のみを基板 6に堆積させるものであり、 これに より、 基板 6上に形成された薄膜 4のボトム ·カバレッジを改善する。 Conventionally, the sputtering method shown in FIG. 1 has been mainly used as the embedding technique. According to this method, particles sputtered from the target 5 are emitted toward the substrate 6 with a certain angular distribution (for example, on the cosine side). As a result, it is difficult to form the thin film 4 on the bottom of the hole 1 having a high aspect ratio because the ratio of particles deposited on the bottom of the hole 1 is small and the particles are easily deposited on the opening of the hole 1. It is. The ratio of the thickness of the thin film composed of particles deposited on the bottom of the hole to the thickness of the thin film composed of particles deposited on the outside of the hole (hereinafter referred to as the “top”) (bottom-force barrier) is increased. In order to achieve this, it is known that “collimation 'sputtering”, in which only sputtered particles whose emission direction is close to the perpendicular of the substrate, is selectively deposited on the substrate, is effective. As shown in Fig. 2, the collimated film is formed by combining a collimated plate 14 having microscopic holes arranged in a honeycomb shape with a substrate 6 and a target 5, for example. By inserting the particles between them, only the particles that have passed through these fine holes (that is, particles having a velocity component close to the perpendicular to the substrate 6) are deposited on the substrate 6, thereby forming the particles on the substrate 6. Improved bottom coverage of the thin film 4.
しかしながら、 上記コリメーシヨン ·スパッ夕リングにおいては、 以下に示す ような問題がある。  However, the collimation / spring method has the following problems.
( 1 ) スパックされた多くの粒子がコリメータに捕捉されるため、 スループッ 卜の低下が避けられない。  (1) Since a large number of particles that have been packed are trapped by the collimator, a reduction in throughput is inevitable.
( 2 ) コリメータの微細孔内にも粒子が付着して微細孔の目詰まり力生じるた め、 コリメータを頻繁に清掃する必要がある。  (2) Frequent cleaning of the collimator is necessary because particles adhere to the pores of the collimator and cause clogging of the pores.
( 3 ) コリメータから剥離するダストが基板に付着する。  (3) Dust that separates from the collimator adheres to the substrate.
これらの問題を解決するためにコリメータに工夫を凝らした例も知られている が (たとえば、 日本国特許出願番号 6— 1 3 6 5 2 7 ) 、 基板の垂線に近い速度 成分をもつ粒子以外の粒子を遮断するという原理は同じであり、 コリメータに粒 子が付着するという点に対する根本的な解決策にはなっていない。  Although it is known to devise a collimator to solve these problems (for example, Japanese Patent Application No. 6-1365652), other than particles having a velocity component close to the perpendicular to the substrate The principle of blocking particles is the same, and it is not a fundamental solution to the fact that particles adhere to the collimator.
また、 スパッタ粒子が基板の垂線方向 (すなわち、 孔の側壁にほぼ平行な速度 成分をもつことで生じる陰影効果 (H. J. Leamy: Current Topi cs in Material Science 16 (1980) 309参照) による弊害もある。 たとえば、 コリメータを用い て T i N膜を形成すると、 孔の開口部付近の側壁部に膜厚が極端に薄くなる部分 力生じ、 そこを起点として膜が剥離してしまうことがある (半導体 ·集積回路技 術シンポジウム講演論文集 4 6 t h , p . 9 2〜9 7, 1 9 9 4参照) 。 また、 孔の側壁部に形成される薄膜は柱状になりやすいために、 バリァ性の低下や配線 の高抵抗化を招くという問題が生じる可能性もある。  There is also a negative effect due to the shadow effect (see HJ Leamy: Current Topics in Material Science 16 (1980) 309) caused by the sputtered particles having a velocity component that is substantially parallel to the side wall of the hole. For example, when a TiN film is formed using a collimator, a partial force with an extremely small film thickness is generated on the side wall near the opening of the hole, and the film may be peeled off from the partial force. Proceedings of the Integrated Circuit Technology Symposium 46th, p. 92-97, 1994.) Also, the thin film formed on the side wall of the hole tends to be columnar, and the barrier property is reduced. Also, there is a possibility that a problem may occur that the resistance of the wiring is increased.
発明の開示 Disclosure of the invention
本発明の目的は、 ァスぺクト比の大きい孔を有する基板にスパッタリングによ り膜を形成する成膜技術において、 スループッ 卜の低下が小さくかつボトム ·力 バレツジ, バリャ性および電気特性が大きい埋め込み配線を形成し得る成膜方法 および成膜装置を提供することにある。  An object of the present invention is to provide a film forming technique for forming a film on a substrate having holes having a large aspect ratio by sputtering, in which a decrease in throughput is small and a bottom force, a barrier, a barrier property and electric characteristics are large. An object of the present invention is to provide a film forming method and a film forming apparatus capable of forming a buried wiring.
本発明の成膜方法は、 孔が形成された基板上にスパッタリング法により薄膜を 形成する成膜方法であって、 前記基板の垂線に対して孔のァスぺクト比に応じた 角度 αでイオンを前記基板に照射する。 The film forming method of the present invention is a film forming method in which a thin film is formed on a substrate having holes formed thereon by a sputtering method, wherein the thin film is formed in accordance with an aspect ratio of the holes with respect to a perpendicular to the substrate. The substrate is irradiated with ions at an angle α.
また、 本発明の成膜方法は、 孔カ《形成されている基板上にスパッタリング法で 薄膜を形成するための成膜方法であつて、  Further, the film forming method of the present invention is a film forming method for forming a thin film on a substrate on which holes are formed by a sputtering method,
前記基板の垂線に対して前記孔のアスペクト比に応じた照射角度び (0° く a ≤ t an— ' (1/ァスぺク ト比) + 1 0° ) と 3 0 eV以上 5 00 e Vの照射ェ ネルギ一とでもって、 ガス ·イオンを前記基板に照射しながら前記薄膜を形成し、 前記薄膜の形成中に、 前記孔の側壁部に付着したスパッタ粒子に前記ガス ·ィ ォンを衝突させて、 前記スパッタ粒子を再スパッタさせる。  Irradiation angle (0 ° a ≤ t an — '(1 / aspect ratio) + 10 °) with respect to the perpendicularity of the substrate according to the aspect ratio of the hole and 30 eV or more 500 The thin film is formed while irradiating the substrate with gas ions with the irradiation energy of eV, and during the formation of the thin film, the sputter particles adhering to the side wall of the hole are subjected to the gas erosion. Then, the sputtered particles are re-sputtered.
本発明の成膜装置は、 孔が形成された基板とタ一ゲッ トとが互いに対向するよ うに配置された真空槽と、 前記基板の垂線を中心軸として前記基板を回転させる 手段と、 前記基板の垂線に対して孔のァスぺクト比 (深さ/径) に応じた角度 α でイオンビームを前記基板に照射する手段とを具備する。  The film forming apparatus according to the present invention includes: a vacuum chamber in which a substrate in which holes are formed and a target are arranged so as to face each other; a unit configured to rotate the substrate about a perpendicular line of the substrate as a central axis; Means for irradiating the substrate with an ion beam at an angle α corresponding to an aspect ratio (depth / diameter) of the hole with respect to a perpendicular to the substrate.
また、 本発明の成膜装置は、 孔カ形成されている基板上にスパッタリング法で 薄膜を形成するための成膜装置であつて、  Further, the film forming apparatus of the present invention is a film forming apparatus for forming a thin film on a substrate on which holes are formed by a sputtering method,
前記基板に所定のバイアス電圧を印加する手段と、  Means for applying a predetermined bias voltage to the substrate;
前記基板の垂線に対してアスペクト比に応じた照射角度な (0° <α≤ t a n— 1 (1/ァスぺクト比) + 1 0° ) でかつ 3 0 eV以上 5 0 0 eVの照射 エネルギーでガス ·イオンを前記基板に照射する手段と、 Irradiation at an irradiation angle (0 ° <α ≤ tan- 1 (1 / aspect ratio) + 10 °) with respect to the perpendicular line of the substrate and 30 eV or more and 500 eV Means for irradiating the substrate with gas ions with energy;
前記基板の成膜面に平行な電場または磁場を生じさせる手段と、  Means for generating an electric or magnetic field parallel to the film-forming surface of the substrate,
前記基板の垂線を中心軸として前記基板を回転させる手段と、  Means for rotating the substrate about a perpendicular to the substrate as a central axis,
を具備し、 With
前記孔の側壁部全体に均一に前記ガス ·イオンを照射して、 前記薄膜の形成中 に、 前記孔の側壁部に付着したスパッタ粒子を再スパックさせる。  Irradiating the gas ions uniformly on the entire side wall of the hole to re-spark sputtered particles attached to the side wall of the hole during the formation of the thin film.
ここで、 イオンの照射角度 αは、 孔の側壁部にイオンが衝突しかつ孔の側壁部 力、ら再スパッタされた粒子が孔の底部に向かうように、 設定することが必要であ る。 このイオン照射角度 αは、 基板の垂線に対して 0° <a≤ t a n— ' ( 1 /ァ スぺク ト比) + 1 0° の範囲とするとよい。 また、 イオンのエネルギーは、 再ス パッタを起こしかつ薄膜にダメ一ジを与えないような範囲にすることが必要であ り、 その範囲は 3 0 eV以上 5 0 0 eV以下である。 本発明の成膜方法および成膜装置は、 孔の側壁部に成長しつつある薄膜にィォ ンを照射しながら成膜を行うことを特徴とする。 孔の側壁部の広い領域にイオン が衝突しかつ孔の側壁部に堆積した粒子の再スパッ夕が起こるような照射角度お よび再スパッ夕は起きるが成膜速度の大幅な低下や薄膜へのダメ一ジを招かない エネルギーにイオン照射条件を設定することにより、 孔の側壁部に一旦付着した 粒子が再スパックされ、 孔の底部に再付着する。 これにより、 生産性が大きく低 下することなく、 ボトム 'カバレッジが向上する。 また、 基板を回転させること により、 孔の側壁部にイオンを均一に照射して、 孔内に堆積した薄膜の膜厚を均 一にすることができる。 Here, it is necessary to set the ion irradiation angle α so that the ions collide with the side wall of the hole and the re-sputtered particles are directed to the bottom of the hole. This ion irradiation angle α should be in the range of 0 ° <a ≤ tan — '(1 / aspect ratio) + 10 ° with respect to the normal to the substrate. The energy of the ions must be in a range that causes re-sputtering and does not damage the thin film, and the range is 30 eV or more and 500 eV or less. The film forming method and the film forming apparatus of the present invention are characterized in that the film is formed while irradiating the thin film growing on the side wall of the hole with ions. Irradiation angles and respattering occur where ions collide with a wide area of the side wall of the hole and re-spatter particles deposited on the side wall of the hole. By setting the ion irradiation conditions to an energy that does not cause damage, the particles that have once adhered to the side wall of the hole are re-sparked and re-adhered to the bottom of the hole. This improves bottom coverage without significantly reducing productivity. In addition, by rotating the substrate, the side wall of the hole can be uniformly irradiated with ions, and the thickness of the thin film deposited in the hole can be made uniform.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1は、 従来のスパッタリング法を説明するための図である。  FIG. 1 is a diagram for explaining a conventional sputtering method.
図 2は、 従来のコリメータ 'スパッタリング法を説明するための図である。 図 3は、 本発明の成膜方法の基本的原理を説明するための模式図である。 図 4は、 本発明の成膜方法および成膜装置の第 1の実施態様を説明するための 図である。  FIG. 2 is a diagram for explaining a conventional collimator 'sputtering method. FIG. 3 is a schematic diagram for explaining the basic principle of the film forming method of the present invention. FIG. 4 is a view for explaining a first embodiment of the film forming method and the film forming apparatus of the present invention.
図 5は、 本発明の成膜方法および成膜装置の第 1の実施態様を説明するための マスクの形状を示す図である。  FIG. 5 is a view showing a shape of a mask for describing a first embodiment of a film forming method and a film forming apparatus of the present invention.
図 6は、 本発明の成膜方法および成膜装置の第 2の実施態様を説明するための 図である。  FIG. 6 is a view for explaining a second embodiment of the film forming method and the film forming apparatus of the present invention.
図 7は、 図 6に示した捕助電極の一構成例を示す図である。  FIG. 7 is a diagram showing a configuration example of the trapping electrode shown in FIG.
図 8は、 本発明の成膜方法および成膜装置の第 3の実施態様を説明するための 図である。  FIG. 8 is a view for explaining a third embodiment of the film forming method and the film forming apparatus of the present invention.
図 9は、 本発明の成膜方法および成膜装置の第 3の実施態様を説明するための 図である。  FIG. 9 is a view for explaining a third embodiment of the film forming method and the film forming apparatus of the present invention.
図 1 0は、 本発明の成膜方法および成膜装置の第 3の実施態様を説明するため の図である。  FIG. 10 is a view for explaining a third embodiment of the film forming method and the film forming apparatus of the present invention.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 添付の図面に示された好適実施態様を参照して、 本発明について詳しく 説明する。 まず、 本発明の成膜方法の基本的原理について、 図 3を参照して説明する。 孔 1が形成された基板 6の表面全面にスパッタ粒子 3を堆積させて薄膜 4を形 成する際に、 孔 1の側壁部に付着したスパッタ粒子 3に衝突するように、 基板 6 の垂線に対して孔 1のァスぺクト比 (深さ/径) に応じた角度ひでイオン 2を基 板 6に照射する。 このとき、 孔 1の側壁部に一旦付着したスパッタ粒子 3は、 ィ オン 2の衝突により再スパッタされて、 孔 1の底部に再付着する。 その結果、 孔 1の底部に形成される薄膜 4の厚さが大きくなる。 Hereinafter, the present invention will be described in detail with reference to preferred embodiments shown in the accompanying drawings. First, the basic principle of the film forming method of the present invention will be described with reference to FIG. When depositing sputtered particles 3 over the entire surface of substrate 6 in which hole 1 was formed to form thin film 4, the sputtered particles 3 were perpendicular to substrate 6 so as to collide with sputtered particles 3 attached to the side wall of hole 1. On the other hand, the substrate 2 is irradiated with the ions 2 at an angle corresponding to the aspect ratio (depth / diameter) of the hole 1. At this time, the sputtered particles 3 that have once adhered to the side wall of the hole 1 are resputtered by the collision of the ions 2 and adhere again to the bottom of the hole 1. As a result, the thickness of the thin film 4 formed at the bottom of the hole 1 increases.
次に、 本発明の成膜方法および成膜装置の第 1の実施態様について、 図 4を参 照して説明する。  Next, a first embodiment of the film forming method and the film forming apparatus of the present invention will be described with reference to FIG.
本実施態様の成膜装置は、 真空槽 7と、 真空槽 7内に互いに対向して設けられ た第 1および第 2の電極 8 , , 8 と、 第 1の電極 8 , の第 2の電極 8 2 に対向 する面上に設けられたターゲット 5と、 真空槽 7外に設けられた、 第 1および第 2の電極 8 , , 8 に直流電圧をそれぞれ供給するための第 1および第 2の直流 電圧源 2 1 , , 2 1 とを具備する。 孔 1 (不図示) 力《形成された基板 6は、 第 2の電極 8 2 の第 1の電極, に対向する面上に、 ターゲット 5に対して角度 だ け傾けられかつ基板 6の垂線を中心軸として回転し得るように、 設けられている。 第 2の直流電圧源 2 1 2 は、 第 2の電極 8 に一 3 0 V〜一 5 0 0 Vの直流電圧 を供給することができるものである。 この成膜装置では、 ターゲッ ト 5をカソー ドとしてターゲッ ト 5の近傍にプラズマを発生させて、 スパッタリングを行う。 たとえば、 ターゲッ ト 5として T iターゲットを用いかつ放電ガスとして A r ガスを用いた場合、 第 2の電極 8 2 に印加された電圧とほぼ同じ電圧分のエネル ギーをもって、 基板 6の垂線に対して角度ひだけ斜め方向から、 プラズマ中の A r— ィォンが基板 6に衝突する。 The film forming apparatus according to the present embodiment includes a vacuum chamber 7, first and second electrodes 8, 8 provided in the vacuum chamber 7 to face each other, and a second electrode of the first electrode 8. 8 and target 5 provided on the two opposing to the surface, provided on the outside of the vacuum chamber 7, the first and second electrode 8, the first and second for supplying a DC voltage, respectively 8 DC voltage sources 2 1, 2 1 are provided. Hole 1 (not shown) Force << formed substrate 6 is tilted at an angle to target 5 and perpendicular to substrate 6 on the surface of second electrode 82 facing the first electrode, It is provided so that it can rotate as a central axis. The second DC voltage source 2 1 2 is to the second electrode 8 can be supplied a direct current voltage of one 3 0 V to one 5 0 0 V. In this film forming apparatus, sputtering is performed by using the target 5 as a cathode to generate plasma near the target 5. For example, when using the A r gas as and a discharge gas with a T i target as target 5, with a substantially energy of the same voltage component as the voltage applied to the second electrode 2 8, to the perpendicular of the substrate 6 Ar ion in the plasma collides with the substrate 6 from an oblique direction only at an angle.
A r + イオンが上記のようにして基板 6に衝突することにより、 孔 1の側壁部 に一旦付着したスパッタ粒子が再スパッタされて、 孔 1の底部に再付着する。 そ の結果、 孔 1の底部に形成される薄膜の厚さが大きくなる。 さらに、 基板 6を回 転させることで、 孔 1の側壁部全体に A r + イオンが均一に照射され、 孔 1内に 形成される薄膜の厚さを均一にすることができる。 When the Ar + ions collide with the substrate 6 as described above, the sputtered particles that once adhered to the side wall of the hole 1 are re-sputtered and adhere again to the bottom of the hole 1. As a result, the thickness of the thin film formed at the bottom of the hole 1 increases. Further, by rotating the substrate 6, Ar + ions are uniformly irradiated on the entire side wall of the hole 1, and the thickness of the thin film formed in the hole 1 can be made uniform.
このとき、 角度 αは、 基板 6の垂線に対して 0 ° < α≤ t a n— 1 ( 1 Zァスぺ クト比) + 1 0° の範囲、 好ましくは t a η"' (1 アスぺクト比) 一 1 0° ≤ α≤ t a η"' (1/ァスぺクト比) + 5。 の範囲とするとよい。 特に、 ァスぺク ト比が 4以下の場合に、 効果が大きい。 At this time, the angle α is 0 ° <α≤tan— 1 (1Z 10 °), preferably ta η ″ ′ (1 aspect ratio) -1 10 ° ≤ α≤ ta η ″ ′ (1 / aspect ratio) +5. Should be within the range. In particular, the effect is significant when the aspect ratio is 4 or less.
なお、 T i N膜を形成するために放電ガスとして窒素ガスを用いた場合につい ても、 同様である。  The same applies to the case where nitrogen gas is used as the discharge gas for forming the TiN film.
本実施態様の成膜装置を用いて、 ターゲット 5の裏面に磁石を配置した DCマ グネトロン ·スパッタ装置を構成し、 基板 6を傾斜させない場合と基板 6を角度 ひ = 1 5° だけ傾斜させた場合とでの比較実験を行った。 なお、 基板 6を傾斜さ せた場合の基板 6とタ一ゲッ ト 5との間の距離を 65 mmとし、 基板 6を角度 =1 5° だけ傾斜させた場合の基板 6とタ一ゲット 5との間の距離を 50mmと した。 また、 いずれの場合も、 基板 6は回転させた。 ただし、 本比較実験では、 実験を簡便なものとしかつ正確にカバレツジカ求められるように、 基板 6に形成 された孔 1の内部に薄膜を形成する代わりに、 図 5に示すように、 基板 6上に置 かれた、 孔 1 2を有するマスク 1 3を用いて、 薄膜 4の模擬的な埋め込みを行つ 7¾-o  Using the film forming apparatus of the present embodiment, a DC magnetron sputtering apparatus having a magnet disposed on the back surface of the target 5 was configured, and the substrate 6 was not tilted and the substrate 6 was tilted by an angle H = 15 °. A comparative experiment was performed with the case. Note that the distance between the substrate 6 and the target 5 when the substrate 6 is inclined is 65 mm, and the substrate 6 and the target 5 when the substrate 6 is inclined by an angle of 15 °. The distance between them was 50 mm. In each case, the substrate 6 was rotated. However, in this comparative experiment, instead of forming a thin film inside the hole 1 formed in the substrate 6, instead of forming a thin film on the substrate 6, as shown in FIG. Simulate embedding of the thin film 4 using a mask 13 having holes 1 2
第 1の実験として、 孔 1 2が形成されたマスク 1 3が置かれた基板 6上に薄膜 4を形成したのち、 マスク 1 3を基板 6から外して、 基板 6のマスク 1 3を付け なかった部分 (トップ部) および基板 6のマスク 1 3の孔 1 2の部分 (ボトム 部) にそれぞれ形成された薄膜 4の厚さを表面粗さ計で測定することにより、 力 バレッジの測定を行った。  In the first experiment, after forming the thin film 4 on the substrate 6 on which the mask 13 with the holes 12 formed was placed, the mask 13 was removed from the substrate 6 and the mask 13 of the substrate 6 was not attached. The thickness of the thin film 4 formed on the portion (top portion) and the hole 12 (bottom portion) of the mask 13 of the substrate 6 is measured with a surface roughness meter to measure the force barrier. Was.
ここで、 シリコン ·ウェハを基板 6として用いるとともに、 直径 lmmの孔 1 2が形成された厚さ 2 mmのガラス板をマスク 1 3として用いた。 この場合、 孔 1 2のアスペクト比は" 2" となる。 また、 薄膜 4の形成は、 トップ部での厚さ 力く 0. 3 mとなるように T i薄膜を堆積したのちに、 トップ部での厚さが 3〃 mとなるように T i N薄膜を T i薄膜の上に堆積することにより、 行った。 T i 薄膜の堆積は、 すべての試料について、 放電ガスとして A rを用い、 圧力 4 X I 0 3 To r r, ターゲッ ト電圧 380 Vおよびターゲッ ト電流 2 Aという条件で 行った。 また、 T i N薄膜の堆積は、 放電ガスとして A rと N2 との混合ガス (流量比 1 : 1) を用い、 圧力 4 X 1 (T3To r r, 夕一ゲット電圧 500 Vお よびタ一ゲット電流 3 Aという条件で、 角度ひおよび基板 6 ίこ印加するバイアス 電圧を試料ごとに変化させて、 行った。 Here, a silicon wafer was used as the substrate 6, and a glass plate having a thickness of 2 mm and a hole 12 having a diameter of lmm was used as the mask 13. In this case, the aspect ratio of the hole 12 is “2”. The thin film 4 is formed by depositing a Ti thin film so that the thickness at the top becomes 0.3 m, and then applying a TiN so that the thickness at the top becomes 3 μm. This was done by depositing a thin film on the Ti film. Deposition of T i thin film, for all samples, using the A r as a discharge gas, pressure 4 XI 0 3 To rr, was carried out under the condition that the target voltage 380 V and target current 2 A. Further, the deposition of the T i N thin film, a mixed gas of A r and N 2 as the discharge gas (flow ratio of 1: 1) using a pressure 4 X 1 (T 3 To rr , evening per target voltage 500 V The test was performed under the conditions of a target current of 3 A and a bias voltage applied to the sample and the substrate for 6 mm.
性能比較は、 T i N薄膜のボトム ·カバレッジを比較して行った。 性能比較の 一例を表 1に示す。 表 1. 性能比較  The performance comparison was performed by comparing the bottom coverage of the TiN thin film. Table 1 shows an example of performance comparison. Table 1. Performance comparison
Figure imgf000009_0001
Figure imgf000009_0001
基板 6を傾斜させない場合 (すなわち、 角度 α=0° の場合)、バイアス電圧 の印加の有無にかかわらず、 ボトム 'カバレツジは 8 %前後であり、 実際に微細 なホールに通常のスパッタ法で膜を形成した場合とほぼ同じ値である (月刊 semiconductor world , 1994, 12, p.190参照) 。 基板 6を傾斜させるがバイァ ス電圧を印加しない場合には、 ボトム 'カバレッジは基板 6を傾斜させない場合 とほぼ同じ値になった。 基板 6を傾斜させるとともにバイアス電圧を印加した場 合は、 ボトム 'カバレッジは基板 6を傾斜させない場合のほぼ 2倍の値になつた。 直径 0. 5 mmの孔 1 2が形成された厚さ 1 mmのステンレス板をマスク 1 3 として用いた場合にも (孔 1 2のァスぺク ト比は" 2" となる。 ) 、 表 1と同様 の結果が得られた。  When the substrate 6 is not tilted (that is, when the angle α is 0 °), the bottom coverage is about 8% regardless of whether or not the bias voltage is applied. The value is almost the same as in the case where is formed (see monthly semiconductor world, 1994, 12, p. 190). When the substrate 6 was tilted but no bias voltage was applied, the bottom 'coverage was almost the same as when the substrate 6 was not tilted. When the substrate 6 was tilted and a bias voltage was applied, the bottom 'coverage was almost twice as large as when the substrate 6 was not tilted. Even when a 1 mm thick stainless steel plate having a hole 12 with a diameter of 0.5 mm is used as the mask 13 (the aspect ratio of the hole 12 is "2"). The same results as in Table 1 were obtained.
次に、 第 2の実験として、 ボロン (B) およびリン (P) がドープされるとと もに直径 1〃mの孔力く形成された厚さ 1. 5〃mのシリカ膜 (以下、 『BPSG 膜』 という。 ) をシリコン 'ウェハ上に形成したものについて上記第 1の実験と 同様にして薄膜を形成し、 孔の断面を SEM (走査型電子顕微鏡) により観察し た。 なお、 薄膜の形成は、 トップ部での厚さが 0. 1〃mとなるように T i薄膜 を堆積したのちに、 トップ部での厚さが 0. 7〃mとなるように T i N薄膜を T i薄膜の上に堆積することにより、 行った。 そして、 孔の内部に形成された薄 膜の形状を、 通常のスパッタ法および上記した実験でボトム 'カバレッジ力く最も 大きい成膜条件 (角度 = 1 5 ° およびバイアス電圧 =ー 2 0 0 V) でァスぺク ト比 1 . 5の孔 1に埋め込まれた薄膜 4の形状と比較した。 その結果、 本実験で 形成した薄膜のボトム 'カバレッジは 2倍程度に改善されており、 孔の開口部付 近で膜厚が極端に小さくなることもなかった。 また、 成膜速度は、 通常のスパッ タリングでは 4 8 0オングストローム/分であるのに対して、 4 5 0オングスト ローム Z分であり、 生産性の低下も小さかった。 Next, as a second experiment, a 1.5-μm thick silica film (hereinafter, referred to as “1 μm”) formed by doping with boron (B) and phosphorus (P) was formed. A thin film was formed on a silicon 'wafer, called a “BPSG film”) in the same manner as in the first experiment, and the cross section of the hole was observed by SEM (scanning electron microscope). The thin film is formed by depositing a Ti thin film so that the thickness at the top becomes 0.1 μm, and then forming a Ti thin film so that the thickness at the top becomes 0.7 μm. N thin film This was done by depositing on a Ti thin film. Then, the shape of the thin film formed inside the hole was determined by using the normal sputtering method and the above-mentioned experiment to form the bottom film with the highest coverage (the angle = 15 ° and the bias voltage = -200 V). The comparison was made with the shape of the thin film 4 embedded in the hole 1 having an aspect ratio of 1.5. As a result, the bottom coverage of the thin film formed in this experiment was improved to about twice, and the film thickness did not become extremely small near the opening of the hole. The film formation rate was 480 angstroms / min in ordinary sputtering, but was 450 angstroms Z, and the decrease in productivity was small.
次に、 第 3の実験として、 トップ部での厚さが 0 . 7〃mとなるように T i薄 膜のみを堆積した場合について、 上記第 2の実験と同様の実験を行った。 上記第 1の実験で示した T i薄膜の成膜条件の場合と、 この成膜条件で基板を 1 5 ° 傾 斜させるとともに一 1 0 0 Vのバイアス電圧を印加した場合とを比較した。 その 結果、 後者の場合は、 ボトム 'カバレッジは前者の場合に比べて 2倍程度大きく なっており、 また、 成膜速度は、 通常のスパッタリングでは 1 0 2 0オングスト ローム/分であるのに対して、 8 8 0オングストロームノ分であり、 生産性の低 下も小さかった。 さらに、 後者の場合は、 S E Mによる観察から、 孔の側壁部に 堆積された薄膜の緻密化が起こっていることが明らかになった。 これらのことは、 本発明が薄膜の材料の種類によらずボトム ·カバレッジの向上に有効であること を示唆しており、 さらに、 本発明によれば薄膜の緻密化によるバリア性の改善お よび配線としての低抵抗化も可能であることを示唆している。  Next, as a third experiment, the same experiment as the above-mentioned second experiment was performed for a case where only a Ti thin film was deposited so that the thickness at the top portion was 0.7 μm. A comparison was made between the case of the Ti thin film forming conditions shown in the first experiment and the case of tilting the substrate by 15 ° and applying a bias voltage of 100 V under these film forming conditions. As a result, in the latter case, the bottom 'coverage is about twice as large as that in the former case, and the film forming rate is 120 Å / min for ordinary sputtering. 880 angstroms, and the decrease in productivity was small. Further, in the latter case, observation by SEM revealed that the thin film deposited on the side wall of the hole was densified. These facts suggest that the present invention is effective for improving the bottom coverage regardless of the type of the material of the thin film. Further, according to the present invention, the improvement of the barrier property by densification of the thin film and This suggests that it is possible to reduce the resistance of the wiring.
次に、 本発明の成膜方法および成膜装置の第 2の実施態様について、 図 6を参 照して説明する。  Next, a second embodiment of the film forming method and the film forming apparatus of the present invention will be described with reference to FIG.
本実施態様の成膜装置は、 真空槽 7と、 真空槽 7内に互いに対向して設けられ た第 1および第 2の電極 8 , , 8 2 と、 第 1の電極 8 , の第 2の電極 8 2 に対向 する面上に設けられたターゲット 5と、 真空槽 7外に設けられた、 第 1および第 2の電極 8 , , 8 2 に直流電圧をそれぞれ供給するための第 1および第 2の直流 電圧源 2 1 , , 2 1 2 とを具備する。 孔 1 (不図示) が形成された基板 6は、 第 2の電極 8 2 の第 1の電極, に対向する面上に、 ターゲット 5に対して平行にか つ基板 6の垂線を中心軸として回転し得るように、 設けられている。 第 2の直流 電圧源 2 1 2 は、 第 2の電極 8 に— 3 0 V〜― 5 0 0 Vの直流電圧を供給する ことができるものである。 この成膜装置では、 ターゲッ ト 5を力ソードとしてタ —ゲット 5の近傍にプラズマを発生させて、 スパッタリングを ί亍ぅ。 The film forming apparatus of the present embodiment includes a vacuum chamber 7, first and second electrodes 8, 8 2 provided opposite to each other in the vacuum chamber 7, and a second electrode 8 of the first electrode 8. a target 5 provided on the surface facing the electrode 82, provided on the outside of the vacuum chamber 7, the first and second electrode 8, the first and second for supplying respectively a DC voltage to 82 2 DC voltage sources 2 1, 2 1 2 . The substrate 6 in which the hole 1 (not shown) is formed is placed on the surface of the second electrode 82 facing the first electrode, parallel to the target 5 and centered on the perpendicular of the substrate 6. It is provided so that it can rotate. Second DC Voltage source 2 1 2 to the second electrode 8 - 3 0 V~- 5 is capable supplying 0 0 V DC voltage. In this film forming apparatus, the target 5 is used as a force source to generate plasma near the target 5 and perform sputtering.
本実施態様の成膜装置は、 基板 6を挟んで設けられた一対の補助電極 9 , , 9 2 と、 真空槽 7外に設けられた、 一対の補助電極 9 , , 9 2 間に直流電圧を供 給するための第 3の直流電圧源 2 1 とをさらに具備する。 第 3の直流電圧源 2 1 から一対の補助電極 9 , , 9 2 に所定の直流電圧が印加されることにより、 基板 6の成膜面と平行な電場が生じる。 これにより、 イオンは、 基板 6の垂線に 対して角度 αだけ斜め方向から基板 6に衝突する。 Film-forming apparatus of this embodiment, a pair of auxiliary electrodes 9 provided across the substrate 6, 9 2, provided on the outer vacuum chamber 7, a pair of auxiliary electrodes 9, a DC voltage between 9 2 And a third DC voltage source 21 for supplying the DC voltage. Third DC voltage source 2 1 from the pair auxiliary electrodes 9, 9 by a predetermined DC voltage is applied to the 2, parallel to the electric field and the deposition surface of the substrate 6 occurs. As a result, the ions collide with the substrate 6 from an oblique direction at an angle α with respect to the normal to the substrate 6.
なお、 本実施態様の成膜装置では基板 6はタ一ゲッ ト 5に対して平行に設置さ れたが、 ターゲッ ト 5に対して所定の角度だけ傾斜させて設置されてもよい。 ま た、 本実施態様の成膜装置では基板 6を回転させたが、 図 7に示すように、 所定 の数の捕助電極 9を基板 6の周囲に配置し、 半数の捕助電極 9が負電位になるよ うに基板 6の円周方向について補助電極 9の極性が順次変ィヒするように制御すれ ば、 基板 6を回転させる必要はなくなる。 さらに、 一対の補助電極 9 , , 9 2 の 代わりに磁石または電磁石を用いて基板 6の成膜面と平行な磁場を発生させるこ とによっても、 イオンを基板 6の垂線に対して角度なだけ斜め方向から基板 6に 衝突させることができる。 Although the substrate 6 is set in parallel with the target 5 in the film forming apparatus of the present embodiment, the substrate 6 may be set to be inclined at a predetermined angle with respect to the target 5. In addition, in the film forming apparatus of the present embodiment, the substrate 6 is rotated, but as shown in FIG. 7, a predetermined number of auxiliary electrodes 9 are arranged around the substrate 6, and half of the auxiliary electrodes 9 are used. If the polarity of the auxiliary electrode 9 is controlled so as to sequentially change in the circumferential direction of the substrate 6 so as to be a negative potential, the substrate 6 does not need to be rotated. Further, by using a magnet or an electromagnet instead of the pair of auxiliary electrodes 9, 9 2 to generate a magnetic field parallel to the film-forming surface of the substrate 6, ions can be formed only at an angle with respect to the perpendicular to the substrate 6. It can collide with the substrate 6 from an oblique direction.
図 6に示した成膜装置を用いて、 アスペクト比が 1 . 5の孔 1が形成された基 板 6への埋め込み実験を行い、 孔 1の断面を S E Mより観察した。 薄膜の形成は、 トップ部での厚さが 0 . 1 mとなるように T i薄膜を堆積したのちに、 トップ 部での厚さが 0 . 7〃mとなるように T i N薄膜を T i薄膜の上に堆積すること により、 行った。 T i薄膜の堆積は、 すべての試料について、 放電ガスとして A rを用い、 圧力 4 X 1 0— 1 3 T o r r, タ一ゲッ ト電圧 3 8 0 Vおよびタ一ゲ ッ ト電流 2 Aという条件で行った。 また、 T i N薄膜の堆積は、 すべての試料に ついて、 放電ガスとして A rと N 2 との混合ガス (流量比 1 : 1 ) を用い、 圧力 4 X 1 0— 1 3 T o r r, ターゲッ ト電圧 5 0 0 V, ターゲット電流 3 A, 基板 6 に印加するバイアス電圧一 2 0 0 Vおよび一対の補助電極 9に印加する電圧 5 0 Vという条件で、 行った。 その結果、 本実験で形成した薄膜のボトム 'カバレツ ジは 2倍程度に改善されており、 孔の開口部付近で膜厚が極端に小さくなること もなかった。 Using the film forming apparatus shown in FIG. 6, an experiment of embedding into the substrate 6 having the holes 1 having an aspect ratio of 1.5 was performed, and the cross section of the holes 1 was observed by SEM. The thin film is formed by depositing a Ti thin film so that the thickness at the top becomes 0.1 m, and then forming a Ti N thin film so that the thickness at the top becomes 0.7 μm. This was done by depositing on a Ti thin film. Deposition of T i thin film, for all samples, using the A r as a discharge gas, pressure 4 X 1 0- 1 3 T orr , that other one rodents G Voltage 3 8 0 V and data one g e t preparative current 2 A Performed under conditions. Further, the deposition of the T i N thin film with the all samples, a gas mixture of A r and N 2 as the discharge gas (flow ratio of 1: 1) using a pressure 4 X 1 0- 1 3 T orr , target And the bias voltage applied to the substrate 6 was 200 V, and the voltage applied to the pair of auxiliary electrodes 9 was 50 V. As a result, the bottom of the thin film formed in this experiment The diameter was improved about twice, and the film thickness did not become extremely small near the opening of the hole.
次に、 本発明の成膜方法および成膜装置の第 3の実施態様について、 図 8〜図 1 0を参照して説明する。  Next, a third embodiment of the film forming method and the film forming apparatus of the present invention will be described with reference to FIGS.
本実施態様の成膜装置は、 図 8に示すように、 真空槽 7と、 真空槽 7内に設け られた電極 8と、 電極 8の基板 6に対向する面上に設けられたターゲット 5と、 真空槽 7外に設けられた、 電極 8に直流電圧を供給するための直流電圧源 2 1と、 ィォンの放射角度を基板 6の垂線に対して任意の角度に設定できかつィォンの加 速速度を 3 0 V〜 5 0 0 Vに設定できるアシスト用イオンガン 1 0とを具備する。 孔 1 (不図示) が形成された基板 6は、 ターゲット 5に対して平行にかつ基板 6 の垂線を中心軸として回転し得るように、 設けられている。  As shown in FIG. 8, the film forming apparatus of the present embodiment includes a vacuum chamber 7, an electrode 8 provided in the vacuum chamber 7, and a target 5 provided on a surface of the electrode 8 facing the substrate 6. A DC voltage source 21 provided outside the vacuum chamber 7 for supplying a DC voltage to the electrode 8; and a radiation angle of the ion can be set to an arbitrary angle with respect to a perpendicular line of the substrate 6 and acceleration of the ion. An assist ion gun 10 capable of setting the speed to 30 V to 500 V is provided. The substrate 6 in which the hole 1 (not shown) is formed is provided so as to be parallel to the target 5 and rotatable about a perpendicular line of the substrate 6 as a center axis.
図 8に示した成膜装置では、 タ一ゲッ ト 5を力ソードとしてターゲット 5の近 傍にプラズマを発生させて、 スパッタリングを行う。 ただし、 電極 8と直流電圧 源 2 1との代わりに、 図 9に示すように、 スパッタ用イオンガン 1 1を真空槽 7 内に設けて、 スパッタ用イオンガン 1 1から発射されるイオンビームをタ一ゲッ ト 5に当ててスパッタリングを行ってもよい。 なお、 この場合には、 スパッタ用 イオンガン 1 1のタ一ゲット 5に対する設置位置および設置角度は、 ターゲッ ト 5からスパッタされた粒子のフラックスが基板 6の垂線方向で大きくなるように 調整される。  In the film forming apparatus shown in FIG. 8, sputtering is performed by using the target 5 as a force source to generate plasma near the target 5. However, instead of the electrode 8 and the DC voltage source 21, a sputtering ion gun 11 is provided in the vacuum chamber 7 as shown in FIG. 9 to collect the ion beam emitted from the sputtering ion gun 11. Sputtering may be performed on the target 5. In this case, the installation position and the installation angle of the sputtering ion gun 11 with respect to the target 5 are adjusted so that the flux of the particles sputtered from the target 5 increases in the direction perpendicular to the substrate 6.
図 8に示した成膜装置または図 9に示した成膜装置において、 ターゲッ ト 5と してたとえば T iターゲットを用いてスパッタリングするとともにアシスト用ィ オンガン 1 0から A r + イオンを発射させて、 薄膜を基板 6の成膜面に堆積させ る場合、 アシスト用イオンガン 1 0内で生成された A r^ イオンが加速用電極に 印加された電圧分のエネルギーをもって発射され、 ほぼ同じエネルギーを保った まま基板 6の垂線方向に対してアシスト用イオンガン 1 0の傾斜角度だけ斜めに 衝突する。 T i N膜を堆積するために窒素イオンを用いたときにも、 同じ現象が feしる。 In the film forming apparatus shown in FIG. 8 or the film forming apparatus shown in FIG. 9, sputtering is performed using, for example, a Ti target as a target 5 and Ar + ions are emitted from the assist ion gun 10. However, when depositing a thin film on the deposition surface of the substrate 6, Ar ^ ions generated in the assisting ion gun 10 are emitted with the energy of the voltage applied to the acceleration electrode, and maintain almost the same energy. Collision is made obliquely to the perpendicular direction of the substrate 6 by the inclination angle of the assisting ion gun 10. The same phenomenon occurs when nitrogen ions are used to deposit the TiN film.
また、 図 8に示した成膜装置および図 9に示した成膜装置のいずれにおいても、 スパッタ粒子のフラックスを基板 6の垂線方向で大きくする以下の方法などを併 用することにより、 さらに大きなボトム ·カバレツジの改善が図れる。 In both the film forming apparatus shown in FIG. 8 and the film forming apparatus shown in FIG. 9, the following method for increasing the flux of sputtered particles in the direction perpendicular to the substrate 6 is also used. By using this, it is possible to improve the larger bottom coverage.
(1) 基板 6とターゲッ ト 5との間の距離を長くする方法 (NIKKEI MICRO- DEVIC ES, 1994年, 10月, p.58参照)  (1) How to increase the distance between substrate 6 and target 5 (see NIKKEI MICRO-DEVIC ES, October 1994, October, p.58)
(2) コリメータを前面に一体化したタ一ゲッ トを用いる方法 (JP-A-6-136527 参照:)  (2) Method using a target with a collimator integrated on the front (see JP-A-6-136527)
直径が 2 tzmの孔が形成された膜厚が 1〃mの BPSG膜 (ァスぺクト比 = 0. 5) を基板 6上に形成したのち、 基板 6を回転させながら、 図 9に示した成 膜装置を用いて B P S G膜上および孔の内部に薄膜を形成した。 薄膜の形成は、 トップ部での厚さが 0. 02〃mとなるように T i薄膜を堆積したのちに、 トツ プ部での厚さが 0· 3〃mとなるように T i N薄膜を T i薄膜の上に堆積するこ とにより、 行った。 T i薄膜の堆積は、 すべての試料について、 1. 4 X 1 0 To r rの圧力の下で、 スパッタ用イオンガン 1 1を用いて加速電圧 1 000 V および電流密度 5. 1 mA/cm2 の Ar+ イオンで T iターゲッ トをスパッタ リングした。 基板 6の垂線に対するスパッタ粒子の入射角度は、 すべての試料で 一定とした。 ただし、 T i N薄膜の堆積時には、 加速電圧 300 Vおよび電流密 度 0. 1 7mAZcm2 の N2 (N) + イオンをアシスト用イオンガン 1 0によ り基板 6に照射し、 基板 6の垂線に対するアシスト ·イオンの照射角度を試料に よって変化させた。 ボトム ·カバレッジは孔の断面を SEM観察することによつ て測定し、 T i N薄膜の成膜条件ごとのボトム ·カバレツジを比較した。 比較結 果を表 2に示す。 表 2. 比較結果 (イオン ' アシスト条件とボトム · カバレッジ)After forming a BPSG film with a thickness of 1 μm (an aspect ratio = 0.5) on which a hole with a diameter of 2 tzm was formed on the substrate 6, while rotating the substrate 6, the results are shown in Fig. 9. A thin film was formed on the BPSG film and inside the hole using the film forming apparatus. The thin film is formed by depositing a Ti thin film so that the thickness at the top becomes 0.02〃m, and then forming a TiN so that the thickness at the top becomes 0.3〃m. This was done by depositing a thin film on the Ti film. The deposition of the Ti thin film was performed using a sputter ion gun 11 at an acceleration voltage of 1 000 V and a current density of 5.1 mA / cm 2 under a pressure of 1.4 x 10 Torr for all samples. The Ti target was sputtered with Ar + ions. The incident angle of the sputtered particles with respect to the perpendicular to the substrate 6 was constant for all samples. However, when depositing the TiN thin film, the substrate 6 was irradiated with N 2 (N) + ions having an accelerating voltage of 300 V and a current density of 0.17 mAZcm 2 by the assisting ion gun 10, and the perpendicular of the substrate 6. The irradiation angle of the assist ion was varied depending on the sample. The bottom coverage was measured by observing the cross section of the hole by SEM, and the bottom coverage was compared for each TiN thin film deposition condition. Table 2 shows the comparison results. Table 2. Comparison results (Ion 'assist conditions and bottom coverage)
Figure imgf000013_0001
Figure imgf000013_0001
イオンの照射角度が 0° でイオンの加速電圧が 300 Vの場合、 ボトム ·カバ レツジはイオン 'アシストを行わない場合とほぼ同じである。 これは、 イオンが 孔の側壁部に衝突しないために、 側壁部に付着した原子の再スパッ夕が起こらな いことによるものと思われる。 一方、 イオンを斜めから照射すると、 ボトム .力 バレッジは向上して、 照射角度が 4 0 ° で照射エネルギーが 3 0 0 e Vの場合に は、 ボトム 'カバレッジはイオン 'アシストを行わない場合の 2倍以上に向上し た。 When the ion irradiation angle is 0 ° and the ion acceleration voltage is 300 V, the bottom cover Redge is almost the same as without ion assist. This seems to be due to the fact that the ions do not collide with the side wall of the hole and do not resputter atoms attached to the side wall. On the other hand, when the ions are irradiated obliquely, the bottom force coverage is improved, and when the irradiation angle is 40 ° and the irradiation energy is 300 eV, the bottom 'coverage is not ion'. More than doubled.
この実験では、 基板 6の垂線に対して大きな角度でスパッタ粒子が入射するよ うにスパッタ用イオンガン 1 1およびターゲット 5が設けられているので、 高ァ スぺクト比の孔の底部には薄膜力形成されない。 しかしながら、 スパッタ粒子の フラックスが基板 6の垂線に近い方向で最大になるようにスパッタ用ィォンガン 1 1およびターゲット 5の配置を調整すれば、 高ァスぺクト比の孔に薄膜を埋め 込むことができ、 その場合でも、 本実験の効果と同様に、 ボトム,カバレッジが 向上する。  In this experiment, the sputter ion gun 11 and the target 5 were provided so that the sputtered particles were incident at a large angle with respect to the perpendicular to the substrate 6, so that the thin film force was applied to the bottom of the hole having a high aspect ratio. Not formed. However, if the arrangement of the sputtering ion gun 11 and the target 5 is adjusted so that the flux of the sputtered particles is maximized in a direction close to the perpendicular to the substrate 6, the thin film can be embedded in the holes having a high aspect ratio. Even in that case, the bottom and the coverage are improved as well as the effect of this experiment.
図 8に示した成膜装置において、 アシスト用イオンガン 1 0から発射されるィ オンビームの径が小さい場合には、 基板 6の成膜面内でのイオン照射量の均一性 を高めるために、 図 1 0に示すように、 アシスト用イオンガン 1 0を X Y Z傾斜 台 3 1上に設けるとともに、 X Y Z傾斜台 3 1用の制御装置 3 2によってアシス ト用イオンガン 1 0を平 ί亍移動させたり、 アシスト用イオンガン 1 0の角度を制 御したりすることにより、 基板 6に照射されるイオンビームを走査してもよい。 また、 アシスト用イオンガン 1 0を適当な角度に調整することができない場合 には、 図 1 0に破線で示すように、 基板 6を傾斜させたり、 または、 基板 6を挟 んで一対の補助電極 9 , , 9 2 を設けて適当な電圧を一対の補助電極 9 , , 9 2 間に印加したりして、 イオンビームの照射角度を調整してもよい。 なお、 基板 6 の傾斜と一対の補助電極 9 , , 9 2 の設置とを併用して、 イオンビームの照射角 度を調整してもよい。 なお、 一対の補助電極 9! , 9 2 を用いて基板 6の成膜面 と平行方向へ電場を発生する代わりに、 永久磁石または電磁石を用いて基板 6の 成膜面と平行方向へ磁場を発生させてもよい。 In the film forming apparatus shown in FIG. 8, when the diameter of the ion beam emitted from the assisting ion gun 10 is small, in order to improve the uniformity of the ion irradiation amount on the film forming surface of the substrate 6, FIG. As shown in FIG. 10, the assist ion gun 10 is provided on the XYZ tilt table 31, and the assist ion gun 10 is moved horizontally by the control device 32 for the XYZ tilt table 31. The ion beam applied to the substrate 6 may be scanned by controlling the angle of the ion gun 10 for use. If the assist ion gun 10 cannot be adjusted to an appropriate angle, the substrate 6 is inclined or a pair of auxiliary electrodes 9 with the substrate 6 interposed therebetween, as shown by the broken line in FIG. ,, 9 2 pair of auxiliary electrodes 9 a suitable voltage provided, and or applied between 9 2, may adjust the irradiation angle of the ion beam. The irradiation angle of the ion beam may be adjusted by using both the inclination of the substrate 6 and the installation of the pair of auxiliary electrodes 9, 9 2. Note that a pair of auxiliary electrodes 9! Instead of generating an electric field in a direction parallel to the film-forming surface of the substrate 6 using the first and the second , a permanent magnet or an electromagnet may be used to generate a magnetic field in a direction parallel to the film-forming surface of the substrate 6.
上記した説明から明らかなように、 本発明は、 基板の垂線方向に近い速度成分 をもつ粒子だけを選択して堆積させる方法を用いないので、 孔の開口部付近の側 壁部で膜厚が極端に薄くなる部分が生じることがなく、 さらに、 イオンが孔の側 壁部に照射されるので、 薄膜が緻密化され、 バリア性並びに電気特性の向上も期 待できる。 したがって、 本発明により、 従来技術による薄膜材料の埋め込みに伴 う問題点が解消され、 スループッ トの低下が小さく、 ボトム 'カバレッジ, バリ ァ性並びに電気特性が大きい配線を得る上で、 大きな効果が得られる。 As is clear from the above description, the present invention does not use a method of selecting and depositing only particles having a velocity component close to the direction perpendicular to the substrate, so that the side near the opening of the hole is not used. There is no portion where the film thickness becomes extremely thin on the wall, and ions are irradiated to the side wall of the hole, so that the thin film is densified and the barrier properties and the electrical characteristics can be expected to be improved. Therefore, the present invention eliminates the problems associated with the embedding of the thin film material according to the prior art, has a small decrease in throughput, and has a great effect in obtaining a wiring having a large bottom coverage, a high barrier property, and a large electric characteristic. can get.

Claims

請 求 の 範 囲 The scope of the claims
1. 孔が形成されている基板上にスパッタリング法で薄膜を形成するための成 膜方法であって、 1. A film forming method for forming a thin film on a substrate having holes by a sputtering method,
5 前記基板の垂線に対して前記孔のアスペクト比に応じた照射角度 (0° く a ≤ t an— 1 (1/ァスぺクト比) + 1 0° ) と 3 0 eV以上 5 00 e Vの照射ェ ネルギ一とでもって、 ガス ·イオンを前記基板に照射しながら前記薄膜を形成し、 前記薄膜の形成中に、 前記孔の側壁部に付着したスパッタ粒子に前記ガス ·ィ オンを衝突させて、 前記スパッタ粒子を再スパックさせる前記方法。 5 With respect to the perpendicular to the substrate, the irradiation angle (0 ° a ≤ t an — 1 (1 / aspect ratio) + 10 °) according to the aspect ratio of the hole and 30 eV or more 50,000 e The thin film is formed while irradiating the substrate with gas ions with V irradiation energy, and the gas ions are applied to sputtered particles attached to the side wall of the hole during the formation of the thin film. The method of impinging and re-spacing the sputtered particles.
10.  Ten.
2. 孔が形成されている基板上にスパッタリング法で薄膜を形成するための成 膜装置であって、 2. A film forming apparatus for forming a thin film on a substrate having holes formed by a sputtering method,
前記基板の垂線と鉛直軸とのなす角度が前記孔のァスぺクト比に応じた照射角 度 a (0° く ≤ t an— ' (1ノァスぺクト比) + 1 0° ) となるように前記基 板を傾斜させる手段と、  The angle between the vertical line of the substrate and the vertical axis is the irradiation angle a (0 ° ≤ t an — '(1 nos ratio) + 10 °) according to the aspect ratio of the hole. Means for inclining the substrate as described above,
15 前記基板に所定のバイアス電圧を印加して、 30 e V以上 5 00 e Vの照射ェ ネルギ一でガス ·イオンを前記基板に照射する手段と、 15 means for applying a predetermined bias voltage to the substrate, and irradiating the substrate with gas ions by an irradiation energy of 30 eV or more and 500 eV;
前記基板の垂線を中心軸として前記基板を回転させる手段と、  Means for rotating the substrate about a perpendicular to the substrate as a central axis,
を具備し、  With
前記孔の側壁部全体に均一に前記ガス ·イオンを照射して、 前記薄膜の形成中 20 に、 前記孔の側壁部に付着したスパッタ粒子を再スパッ夕させる前記装置。  The apparatus for uniformly irradiating the gas ions on the entire side wall of the hole to resputter sputtered particles adhered to the side wall of the hole during the formation of the thin film.
3. 孔カ形成されている基板上にスパッタリング法で薄膜を形成するための成 膜装置であって、  3. A film forming apparatus for forming a thin film on a substrate having holes formed by a sputtering method,
前記基板に所定のバイアス電圧を印加する手段と、  Means for applying a predetermined bias voltage to the substrate;
前記基板の垂線に対してアスペクト比に応じた照射角度 (0° く α≤  Irradiation angle (0 ° <α≤
25 t a n— 1 (1/ァスぺク ト比) + 1 0° ) でかつ 30 e V以上 5 00 e Vの照射 エネルギーでガス ·イオンを前記基板に照射する手段と、 Means for irradiating the substrate with gas ions at an irradiation energy of 25 tan— 1 (1 / aspect ratio) + 10 °) and 30 eV or more and 500 eV;
前記基板の成膜面に平行な電場または磁場を生じさせる手段と、  Means for generating an electric or magnetic field parallel to the film forming surface of the substrate,
前記基板の垂線を中心軸として前記基板を回転させる手段と、  Means for rotating the substrate about a perpendicular to the substrate as a central axis,
を具備し、 前記孔の側壁部全体に均一に前記ガス ·イオンを照射して、 前記薄膜の形成中 に、 前記孔の側壁部に付着したスパッタ粒子を再スパックさせる前記装置。 With The apparatus for uniformly irradiating the entire side wall portion of the hole with the gas ions to re-pack the sputtered particles attached to the side wall portion of the hole during the formation of the thin film.
4. 請求項 3記載の成膜装置であって、  4. The film forming apparatus according to claim 3, wherein
前記照射する手段は、 前記基板の垂線に対してァスぺクト比に応じた照射角度 (0° < ≤ t an— 1 (1Zァスぺクト比) + 1 0。 ) になるように前記基板 を傾斜させる手段を含む前記装置。 The irradiating means may have an irradiation angle (0 ° <≤tan- 1 (1Z aspect ratio) +10.) According to an aspect ratio with respect to a perpendicular to the substrate. Said apparatus comprising means for tilting the substrate.
5. 孔が形成されている基板上にスパッタリング法で薄膜を形成するための成 膜装置であって、  5. A film forming apparatus for forming a thin film on a substrate having holes formed by a sputtering method,
前記基板の垂線に対して前記孔のアスペクト比に応じた照射角度 α (0° く ≤ t an— ' (1/ァスぺクト比) + 1 0° ) でかつ 3 0 eV以上 5 0 0 e Vの照 射エネルギーでガス ·イオンを前記基板に照射する手段と、  Irradiation angle α (0 ° ≤ tan— '(1 / aspect ratio) + 10 °) with respect to the perpendicular line of the substrate according to the aspect ratio of the hole and 30 eV or more and 500 ° means for irradiating the substrate with gas ions at an irradiation energy of eV,
前記基板の垂線を中心軸として前記基板を回転させる手段と、  Means for rotating the substrate about a perpendicular to the substrate as a central axis,
を具備し、 With
前記孔の側壁部全体に均一に前記ガス ·イオンを照射して、 前記薄膜の形成中 に、 前記孔の側壁部に付着したスパッタ粒子を再スパッ夕させる前記装置。  The apparatus for uniformly irradiating the entire surface of the hole with the gas ions to resputter sputtered particles attached to the side wall of the hole during the formation of the thin film.
6. 請求項 5記載の成膜装置であって、  6. The film forming apparatus according to claim 5, wherein
前記照射する手段が、 前記基板の垂線に対してァスぺクト比に応じた照射角度 a (0° al t an 1 (1 アスぺクト比) + 10° ) になるように前記基板 を傾斜させる手段および前記基板の成膜面に平行な電場または磁場を生じさせる 手段の少なくとも 、ずれか一方を含む前記装置。 The irradiating means tilts the substrate so that an irradiation angle a (0 ° altan 1 (1 aspect ratio) + 10 °) corresponding to an aspect ratio with respect to a perpendicular line of the substrate is obtained. The apparatus comprising at least one of: a means for generating a magnetic field and a means for generating an electric field or a magnetic field parallel to a film forming surface of the substrate.
7. 請求項 5記載の成膜装置であって、  7. The film forming apparatus according to claim 5, wherein
前記照射する手段が、 前記照射角度 を保ったままで前記ガス ·イオンを前記 基板の成膜面上を走査させる手段を含む前記装置。  The apparatus, wherein the irradiating unit includes a unit configured to scan the gas / ion on the film forming surface of the substrate while maintaining the irradiation angle.
8. 請求項 6記載の成膜装置であって、  8. The film forming apparatus according to claim 6, wherein
前記照射する手段が、 前記照射角度 を保ったままで前記ガス · イオンを前記 基板の成膜面上を走査させる手段を含む前記装置。  The apparatus, wherein the irradiating unit includes a unit configured to scan the film surface of the substrate with the gas ions while maintaining the irradiation angle.
9. 請求項 5記載の成膜装置であって、  9. The film forming apparatus according to claim 5, wherein
前記照射する手段が、 前記照射角度 を変化させながら前記ガス ·イオンを前 記基板に照射させる手段を含む前記装置。 The apparatus, wherein the irradiating means includes means for irradiating the substrate with the gas ions while changing the irradiation angle.
10. 請求項 6記載の成膜装置であって、 10. The film forming apparatus according to claim 6, wherein
前記照射する手段が、 前記照射角度 αを変化させながら前記ガス ·イオンを前 記基板に照射させる手段を含む前記装置。  The apparatus, wherein the irradiating means includes a means for irradiating the substrate with the gas ions while changing the irradiation angle α.
PCT/JP1996/001690 1995-06-21 1996-06-19 Method and apparatus for film formation WO1997001185A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP17938595 1995-06-21
JP7/179385 1995-06-21
JP5388696A JPH0969498A (en) 1995-06-21 1996-02-16 Film forming method and device
JP8/53886 1996-02-16

Publications (1)

Publication Number Publication Date
WO1997001185A1 true WO1997001185A1 (en) 1997-01-09

Family

ID=26394612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/001690 WO1997001185A1 (en) 1995-06-21 1996-06-19 Method and apparatus for film formation

Country Status (2)

Country Link
JP (1) JPH0969498A (en)
WO (1) WO1997001185A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4880495B2 (en) * 2007-02-23 2012-02-22 株式会社アルバック Deposition equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162862A (en) * 1986-12-26 1988-07-06 Hitachi Ltd Sputtering device
JPH05275371A (en) * 1992-03-26 1993-10-22 Fujitsu Ltd Method for forming wiring of semiconductor device
JPH06314744A (en) * 1993-04-28 1994-11-08 Fujitsu Ltd Manufacture of semiconductor device
JPH0722348A (en) * 1993-06-29 1995-01-24 Nec Yamaguchi Ltd Semiconductor manufacturing device
JPH0855822A (en) * 1994-08-10 1996-02-27 Ricoh Co Ltd Method and equipment for manufacturing semiconductor device
JPH08153797A (en) * 1994-09-22 1996-06-11 Sony Corp Wiring structure for semiconductor device and forming method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162862A (en) * 1986-12-26 1988-07-06 Hitachi Ltd Sputtering device
JPH05275371A (en) * 1992-03-26 1993-10-22 Fujitsu Ltd Method for forming wiring of semiconductor device
JPH06314744A (en) * 1993-04-28 1994-11-08 Fujitsu Ltd Manufacture of semiconductor device
JPH0722348A (en) * 1993-06-29 1995-01-24 Nec Yamaguchi Ltd Semiconductor manufacturing device
JPH0855822A (en) * 1994-08-10 1996-02-27 Ricoh Co Ltd Method and equipment for manufacturing semiconductor device
JPH08153797A (en) * 1994-09-22 1996-06-11 Sony Corp Wiring structure for semiconductor device and forming method therefor

Also Published As

Publication number Publication date
JPH0969498A (en) 1997-03-11

Similar Documents

Publication Publication Date Title
US5525158A (en) Thin film deposition apparatus
US5114556A (en) Deposition apparatus and method for enhancing step coverage and planarization on semiconductor wafers
US4756810A (en) Deposition and planarizing methods and apparatus
US6562200B2 (en) Thin-film formation system and thin-film formation process
JP2015529744A (en) Film deposition assisted by angle selective etching
JPH06220627A (en) Film forming device
JP4344019B2 (en) Ionized sputtering method
US6241857B1 (en) Method of depositing film and sputtering apparatus
JP3535224B2 (en) Method of depositing a film on a substrate by sputtering
US5919345A (en) Uniform film thickness deposition of sputtered materials
JP4164154B2 (en) Ionization sputtering equipment
WO1997001185A1 (en) Method and apparatus for film formation
JPS63162862A (en) Sputtering device
JPH0578831A (en) Formation of thin film and device therefor
JP3025743B2 (en) Hard carbon film forming equipment
JPH0878333A (en) Plasma apparatus for formation of film
JPH0499173A (en) Sputtering system
JP3949205B2 (en) Metal wiring sputtering equipment with magnetron cathode
JP2020122211A (en) Sputtering apparatus and sputtering method
JP4396885B2 (en) Magnetron sputtering equipment
JP3544907B2 (en) Magnetron sputtering equipment
JP3517153B2 (en) Plasma ion metal deposition equipment
JPH0855822A (en) Method and equipment for manufacturing semiconductor device
JPH0794412A (en) Thin film forming device
JPS63247367A (en) Ion beam sputtering device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase