WO1996036516A1 - Hydraulic motor vehicle braking system with brake slip control - Google Patents

Hydraulic motor vehicle braking system with brake slip control Download PDF

Info

Publication number
WO1996036516A1
WO1996036516A1 PCT/EP1996/002026 EP9602026W WO9636516A1 WO 1996036516 A1 WO1996036516 A1 WO 1996036516A1 EP 9602026 W EP9602026 W EP 9602026W WO 9636516 A1 WO9636516 A1 WO 9636516A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
pressure
pump
motor vehicle
modulation valve
Prior art date
Application number
PCT/EP1996/002026
Other languages
German (de)
French (fr)
Inventor
Erhard Beck
Hajo Pickel
Original Assignee
Itt Automotive Europe Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Itt Automotive Europe Gmbh filed Critical Itt Automotive Europe Gmbh
Publication of WO1996036516A1 publication Critical patent/WO1996036516A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/26Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force characterised by producing differential braking between front and rear wheels
    • B60T8/266Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force characterised by producing differential braking between front and rear wheels using valves or actuators with external control means
    • B60T8/268Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force characterised by producing differential braking between front and rear wheels using valves or actuators with external control means using the valves of an ABS, ASR or ESP system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/26Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force characterised by producing differential braking between front and rear wheels
    • B60T8/266Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force characterised by producing differential braking between front and rear wheels using valves or actuators with external control means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/343Systems characterised by their lay-out
    • B60T8/344Hydraulic systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/404Control of the pump unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/42Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition having expanding chambers for controlling pressure, i.e. closed systems
    • B60T8/4275Pump-back systems

Definitions

  • the invention relates to a hydraulic motor vehicle brake system with brake slip control according to the preamble of claim 1.
  • the invention proposes that in a pressure build-up phase in at least one of the wheel brakes the pump is exposed to the wheel brake pressure.
  • the pump thus takes over an essential function for brake pressure control and replaces both the function of the conventionally used outlet solenoid valves and the need for pressure medium absorption in a pressure medium accumulator by a suitable operating mode.
  • FIG. 1 shows a first hydraulic circuit for a brake slip control system with a diagonal brake circuit division
  • FIG. 2 shows another alternative form of hydraulic circuit for a motor vehicle brake system with brake slip control
  • FIG. 3 shows a hydraulic circuit arrangement of a hydraulic motor vehicle brake system with brake slip control with front axle and rear axle brake circuit division.
  • FIG. 1 symbolically shows a brake circuit for a hydraulic motor vehicle brake system with brake slip control with a diagonal arrangement of the wheel brakes VR, HL.
  • the brake pressure transmitter 2 is connected via a pressure modulation valve 3, which is open in the electromagnetically non-energized basic position, to a front wheel brake VR, on which a line tion branch 7 of the brake circuit leads to the suction side of a pump 1.
  • a secondary connection 10 to the line branch 7 leads downstream to a pressure modulation valve 4 inserted into the line branch 7 to the rear wheel brake HL.
  • this 2/2-way valve is also used in the basic position as an electromagnetically non-energized, open pressure modulation valve 4, so that the diagonal wheel brakes VR, HL both in the brake release position and in the normal brake position and for the purpose of building up the wheel slip-regulated pressure a brake slip control from the direction of the brake pressure sensor 2 can be supplied with pressure medium.
  • the pressure medium path leading from the brake pressure transmitter 2 to the first pressure modulation valve 3 and to the front wheel VR also connects to the pressure side of the pump 1, so that during a pump run during brake pressure control (pressure reduction, pressure build-up) that of the wheel brakes VR, HL drained pressure medium can flow in the direction of the brake pressure transmitter 2 and, if necessary, in turn to the wheel brakes VR, HL.
  • this device is not an essential part of the invention, but is used in practice
  • parallel to the two pressure modulation valves 3, 4 shown in the illustration there are check valves 8, 9 opening in the direction of brake release, which are only used if the pressure modulation is not switched back ns valves 3, 4 in their initial position enable safe release of the wheel brakes VR, HL.
  • the mode of operation of the proposed brake system is discussed below.
  • the valve switching positions of the pressure modulation valves 3, 4 shown in the illustration initially allow unimpeded pressure build-up on the front right and left rear wheel brakes VR, HL, the brake pressure also propagating to the pump 1.
  • the pump 1 is therefore below the respective pressure level, preferably proportional to the force of the foot, which is fed in by the brake pressure transmitter 2 and which is present on both sides of the pump 1 both at the suction valve 15 and at the pressure valve 16.
  • the pressure modulation valve 3 switches to its locked position electromagnetically excited, whereby the shark pressure level in the front wheel brake inevitably propagates via the line branch 7 to the rear wheel brake HL.
  • the proposed hydraulic circuit is particularly particularly suitable for a vehicle with a high static axle load on the front wheels and a small axle load on the rear wheels.
  • the pressure modulation valve 4 located in the line branch 7 is switched into the blocking position for further pressure reduction in the rear wheel brake HL, while the front wheel brake VR can continue to build up pressure unhindered due to the predominant load on the front axle.
  • the pump 1 is started when the pressure modulation valve 4 is blocked, which pumps the excess pressure medium into the brake pressure transmitter 2 or, if the brake output increases, to the front wheel brake VR.
  • the proposed diagonal brake circuit division thus has the advantage, when the front axle load of the vehicle predominates, that the wheel brake pressure in the rear wheel can be regulated independently of the wheel brake pressure on the front axle on the rear axle, which is at risk of overbraking. This results in a higher braking Performance of the motor vehicle, since the wheel brake pressure in the front wheels VR does not have to be reduced when the pressure in the rear wheel brakes is reduced. If a pressure reduction in the front wheel brake VR by closing the pressure modulation valve 3 and starting the pump 1 is nevertheless necessary, the prior assumption of a predominant front axle load is the inevitable propagation and relaxation of the holding pressure from the front wheel brake via the line branch 7 to the rear wheel brake HL to the extent that high cornering forces are guaranteed on the rear wheels of the largely relieved wheel axle.
  • Another advantage of the proposed hydraulic circuit results from its suitability for electronically controlled brake force distribution, so that the use of conventional hydraulic brake force distributors on the rear axle can be dispensed with.
  • FIG. 2 shows an arrangement of the further pressure modulation valve 4 in the secondary connection 10 of the line branch 7.
  • this leads to a decoupling of the pressure control curve between the front wheel brake VR and the diagonally opposite rear wheel brake HL with the advantage that the pressure on the rear wheel brake HL can be maintained if a pressure reduction during a brake slip control is required on the front wheel brake VR.
  • this embodiment (FIG. 1) is preferably suitable for motor vehicles with a predominantly front axle load distribution.
  • FIG. 1 shows an arrangement of the further pressure modulation valve 4 in the secondary connection 10 of the line branch 7.
  • the circuit proposed in FIG. 2 means that the pressure holding phase on the rear wheel brake HL is independent of the respective control process front wheel brake VR inevitably achieves a higher braking power if the proposed circuit concept is used in vehicles with a predominantly rear axle load distribution.
  • the hydraulic circuit according to FIG. 2 with the pressure modulation valve 4 arranged in the auxiliary connection 10 inevitably also leads to a lowering of the pressure at the front diagonal wheel brake VR when the brake pressure is reduced at the rear wheel brake HL, which is however the case when the proposed hydraulic circuit according to FIG. 2 is used is not of great relevance for vehicles with predominantly rear axle load distribution.
  • the functional scheme known from FIG. 1 partially applies, according to which the pressure maintenance phase on the front and / or on the rear wheel brake VR, HL in each case by closing the pressure modulation valves 3, 4 is initiated and the holding pressure in the front wheel brake VR acts on the stationary pump 1, while the holding pressure on the rear wheel brake HL is isolated from the pump 1 by the action of the further pressure modulation valve 4 located in the blocking position.
  • the pressure reduction phase at the front wheel brake VR begins when the pressure modulation valve 3 is closed when the pump 1 is started up, which pumps the excess pressure medium back in the direction of the brake pressure transmitter 2, as a result of which the pedal on the brake pressure transmitter 2 is reset while the volume is being taken up in the working chamber.
  • the hydraulic circuit according to FIG. 3 shows a hydraulic dual-circuit brake system with rear axle and front axle brake circuit division, so that the front right and left wheel brakes VR, VL of a motor vehicle are connected to one brake circuit, while the two rear wheel brakes HR, HL des Motor vehicle are connected.
  • an open pressure modulation valve 3 which is not electromagnetically energized in the basic position.
  • a line branch closes between the right front wheel brake VR and this pressure modulation valve 3 7, into which an open further pressure modulation valve 4, which is not electromagnetically excited in the basic position, is also integrated.
  • the line branch 7 leads to the pump 1.
  • a secondary connection 10 which leads to the left front wheel brake VL and likewise has an open pressure modulation valve 5 which is not energized electromagnetically in the basic position. Furthermore, for safety reasons, between the pressure modulation valve 5 and the left front wheel brake VL there is the connection of a bypass line 11, into which a check valve 12 opening downstream in the direction of the brake pressure transmitter 2 is inserted and the bypass line 11 into the one for the front wheel connection and the brake pressure transmitter 2 leading pump pressure line opens.
  • the pump 1 is followed by a damping chamber 13 and an orifice 14 on the pressure side.
  • the pressure modulation valve 4 arranged in the line branch 7 additionally enables a hydraulic separation of the two front wheel brakes in the brake pressure control when either a pressure build-up or a shark pressure level is desired only in the front right wheel brake VR shown as an example or a pressure reduction in the left front wheel brake shown as an example VL should take place.
  • the brake circuit connecting the wheel brakes HR, HL of the rear wheels to the brake pressure transmitter 2 has only a single pressure modulation valve 6 inserted between the brake pressure transmitter 2 and the two wheel brakes HR, HL, so that both are open in the basic position Rear wheels can be regulated together.
  • the suction line leading to the pump 1 is located between the pressure modulation valve 6 and the two wheel brakes HR, HL of the rear wheels, which means that the electromagnetically controlled one
  • Pressure modulation valve 6 ensures pressure relief and return of pressure media from the two rear wheel brakes HR, HL with the insertion of the pump 1 in the direction of the brake pressure transmitter 2. To reduce noise, there is also a damping chamber 13 downstream of the pressure side of the pump and an orifice 14, as in the front axle brake circuit.
  • the proposed arrangement of the two Brake circuits, the valve arrangement in the rear axle brake circuit is suitable for electronic brake force distribution, so that the arrangement of known, conventional hydraulic brake force distributors can be dispensed with.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Regulating Braking Force (AREA)

Abstract

The invention relates to a hydraulic motor vehicle braking system with brake slip control, with a braking pressure generator (2) which is hydraulically connected to several wheel brakes (VR, VL, HR, HL) via pressure modulation valves (3, 4, 5, 6) with at least one pump (1), the suction side of which is connected to the wheel brakes (VR, VL, HR, HL) and the delivery side is connected to a pressure medium path leading from the braking pressure generator (2) to the pressure modulation valves (3, 4, 5, 6), in which the suction side of the pump (1) is exposed to the wheel brake pressure during a pressure build-up phase in at least one of the wheel brakes (VR, VL, HR, HL).

Description

Hydraulische Kraftfahrzeugbremsanlage mit Bremsschlupfrege¬ lungHydraulic motor vehicle brake system with brake slip control
Die Erfindung betrifft eine hydraulische Kraftfahrzeugbrems¬ anlage mit Bremsschlupfregelung nach dem Oberbegriff des Pa¬ tentanspruchs 1.The invention relates to a hydraulic motor vehicle brake system with brake slip control according to the preamble of claim 1.
Aus der DE 43 26 040 AI ist bereits eine hydraulische Kraft¬ fahrzeugbremsanlage mit Bremsschlupfregelung bekannt gewor¬ den, die an den Hinterrädern sowohl als Druckmodulationsven¬ tile wirksame Einlaß- und Auslaßventile aufweist als auch zur Volumenaufnahme während einer Druckabbauphase (Antiblockier- regelung) stromabwärts zu den Auslaßventilen mit Druckmittel¬ speichern versehen ist. In Diagonalbremskreisaufteilung benö¬ tigt die hiermit beschriebene Bremsanlage zur Regelung des Bremsdrucks in allen vier Radbremsen insgesamt sechs Elektro¬ magnetventile, die sowohl an die Regelphilosophie als auch an die bauliche Gestaltung der Bremsanlage erhebliche Anforde¬ rungen stellen und die auch im Hinblick auf die Notwendigkeit von saugseitig der Pumpe vorgeschalteten Druckmittelspeicher Nachteile mit sich bringen.From DE 43 26 040 AI a hydraulic motor vehicle brake system with brake slip control has already become known, which has effective inlet and outlet valves on the rear wheels both as pressure modulation valves and also for volume absorption during a pressure reduction phase (anti-lock control) downstream the outlet valves are provided with pressure medium stores. In diagonal brake circuit division, the brake system described herewith requires a total of six solenoid valves for regulating the brake pressure in all four wheel brakes, which place considerable demands both on the control philosophy and on the structural design of the brake system and also with regard to the need for There are disadvantages to the pressure medium accumulator upstream of the pump.
Daher ist es die Aufgabe der Erfindung, eine hydraulische Kraftfahrzeugbremsanlage mit Bremsschlupfregelung der Ein¬ gangs genannten Art derart zu verändern, daß mit relativ ge¬ ringem konstruktiven Aufwand eine an die Einsatzbedürfnisse der Bremsanlage angepaßte, vereinfachte, funktionssichere sowie regelungstechnisch gut beherrschbare hydraulische Schaltung zustande kommt.It is therefore the object of the invention to change a hydraulic motor vehicle brake system with brake slip control of the type mentioned at the outset in such a way that, with relatively little design effort, a simplified, functionally reliable, adapted to the application requirements of the brake system as well as hydraulic control that is easy to control.
Diese Aufgabe wird erfindungsgemäß für eine Kraftfahrzeug¬ bremsanlage der angegebenen Art mit den kennzeichnenden Merk¬ malen des Patentanspruchs 1 gelöst. Hierzu schlägt die Erfin¬ dung vor, daß in einer Druckaufbauphase in wenigstens einer der Radbremsen die Pumpe dem Radbremsdruck ausgesetzt ist. Damit übernimmt die Pumpe eine für die Bremsdruckregelung wesentliche Funktion und ersetzt durch eine geeignete Be¬ triebsweise sowohl die Funktion der herkömmlich verwendeten Auslaßmagnetventile als auch die Notwendigkeit zur Druckmit¬ telaufnahme in einem Druckmittelspeicher.This object is achieved according to the invention for a motor vehicle brake system of the type specified with the characterizing features of patent claim 1. For this purpose, the invention proposes that in a pressure build-up phase in at least one of the wheel brakes the pump is exposed to the wheel brake pressure. The pump thus takes over an essential function for brake pressure control and replaces both the function of the conventionally used outlet solenoid valves and the need for pressure medium absorption in a pressure medium accumulator by a suitable operating mode.
Weitere Merkmale und zweckmäßige Ausgestaltungsvarianten der Erfindung gehen aus den Unteransprüchen hervor, die anhand mehrerer Zeichnungen nachfolgend erläutert werden.Further features and expedient embodiment variants of the invention emerge from the subclaims, which are explained below using several drawings.
Es zeigt:It shows:
Figur 1 eine erste hydraulische Schaltung für eine Brems- schlupfregelanlage mit einer Diagonal- Bremskreisaufteilung,FIG. 1 shows a first hydraulic circuit for a brake slip control system with a diagonal brake circuit division,
Figur 2 eine zu Figur 1 weitere alternative Form einer hy¬ draulischen Schaltung für eine Kraftfahrzeugbremsanlage mit Bremsschlupfregelung,2 shows another alternative form of hydraulic circuit for a motor vehicle brake system with brake slip control, FIG.
Figur 3 eine hydraulische Schaltungsanordnung einer hydrau¬ lischen Kraftfahrzeugbremsanlage mit Bremsschlupfregelung mit Vorderachs- und Hinterachsbremskreisaufteilung.FIG. 3 shows a hydraulic circuit arrangement of a hydraulic motor vehicle brake system with brake slip control with front axle and rear axle brake circuit division.
Die Figur 1 zeigt symbolisch einen Bremskreis für eine hy¬ draulische Kraftfahrzeugbremsanlage mit Bremsschlupfregelung mit Diagonalanordnung der Radbremsen VR, HL. Der Bremsdruck¬ geber 2 steht über ein in der elektromagnetisch nicht erreg¬ ten Grundstellung offen geschaltetes Druckmodulationsventil 3 mit einer Vorderradbremse VR in Verbindung, an der eine Lei- tungsabzweigung 7 des Bremskreises zur Saugseite einer Pumpe 1 führt. Ein Nebenanschluß 10 an die Leitungsabzweigung 7 führt stromabwärts zu einem in die Leitungsabzweigung 7 ein¬ gesetzten Druckmodulationsventil 4 zur hinteren Radbremse HL. In die Leitungsabzweigung 7 ist dieses 2/2- Wegeventil gleichfalls in der Grundstellung als elektromagnetisch nicht erregtes, offenes Druckmodulationsventil 4 eingesetzt, sodaß die diagonalen Radbremsen VR, HL sowohl in der Bremslösestel¬ lung als auch in der Normalbremsstellung und zum Zwecke des radschlupfgeregelten Druckaufbaus während einer Bremsschlupf¬ regelung aus Richtung des Bremsdruckgebers 2 mit Druckmittel versorgt werden können. An die Druckseite der Pumpe 1 schließt sich gleichfalls der vom Bremsdruckgeber 2 zum er¬ sten Druckmodulationsventil 3 und zur Vorderradbremse VR füh¬ renden Druckmittelpfad an, sodaß bei einem Pumpenlauf wäh¬ rend einer Bremsdruckregelung (Druckabbau, Druckaufbau) das von den Radbremsen VR, HL abgelassene Druckmittel in Richtung des Bremsdruckgebers 2 und bei Bedarf widerum zu den Radbrem¬ sen VR, HL strömen kann. In der Druckabbauphase einer Brems¬ druckregelung wird infolge des einen oder anderen gesperrten Druckmodulationsventil 3, 4 überschüssiges Druckmittel von einer der" Radbremsen VR, HL ausschließlich in die Arbeits¬ kammern des Bremsdruckgebers 2 strömen und ein die Volumen¬ aufnahme in den Arbeitskammern vergrößernde Rückstellbewegung der Arbeitskolben bewirken. Aus dem abbildungsgemäßen Hydrau¬ likschaltplan geht ferner eine Geräuschdämpfungseinrichtung hervor, die im wesentlichen aus einer druckseitig der Pumpe 1 nachgeschalteten Geräuschdämpfungskammer 13 und einer Blende 14 besteht. Diese Einrichtung ist jedoch kein zwingendes Be¬ standteil der Erfindung, sondern wird in der Praxis aus Kom¬ fortgründen bei entsprechendem Kundenwunsch gewählt. Parallel zu den beiden abbildungsgemäßen Druckmodulationsventilen 3, 4 befinden sich in Bremslöserichtung öffnende Rückschlagventile 8, 9, die ausschließlich im Falle eines nicht zurückschaltens der Druckmodulationsventile 3, 4 in ihre Ausgangsstellung ein sicheres Lösen der Radbremsen VR, HL ermöglichen. Nachfolgend wird auf die Funktionsweise der vorgeschlagenen Bremsanlage eingegangen. Die abbildungsgemäßen Ventilschalts¬ tellungen der Druckmodulationsventile 3, 4 ermöglichen zu¬ nächst einen ungehinderten Druckaufbau an der vorderen rech¬ ten und der linken hinteren Radbremse VR, HL, wobei sich der Bremsdruck gleichfalls bis zur Pumpe 1 fortpflanzt. Die Pumpe 1 steht somit unter dem jeweiligen, vorzugsweise fußkraft- proportional vom Bremsdruckgeber 2 eingespeisten Druckniveau, das zu beiden Seiten der Pumpe 1 sowohl am Saugventil 15 als auch am Druckventil 16 ansteht. Zur Realisierung einer Druck¬ haltephase am Vorderrad VR schaltet das Druckmodulationsven¬ til 3 elektromagnetisch erregt in seine Sperrstellung, womit sich das Haitedruckniveau in der Vorderradbremse zwangsläufig über die Leitungsabzweigung 7 zur Hinterradbremse HL fort¬ pflanzt. Dies hat zur Folge, daß gegenüber der Vorderradbrem¬ se VR an der Hinterradbremse HL keine höhere Bremsleistung erzielbar ist, weshalb die vorgeschlagene Hydraulikschaltung vorzugsweise für ein Fahrzeug mit großer statischer Achsbela¬ stung auf den Vorderrädern und kleiner Achsbelastung auf den Hinterrädern besonders gut geeignet ist. Bei Fahrzeugen die¬ ser Art besteht nämlich die Gefahr der Überbremsung der weit¬ gehend schon statisch entlasteten Hinterachse, sodaß bei Be¬ darf zur weiteren Druckabsenkung in der hinteren Radbremse HL das in der Leitungsabzweigung 7 befindliche Druckmodulations¬ ventil 4 in die Sperrstellung geschaltet wird, während an der vorderen Radbremse VR infolge der überwiegenden Last auf der Vorderachse ungehindert weiter Druck aufgebaut werden kann. Zur Druckabsenkung in der hinteren Radbremse HL wird bei ge¬ sperrtem Druckmodulationsventil 4 die Pumpe 1 in Betrieb ge¬ setzt, die das überschüssige Druckmittel in den Bremsdruck¬ geber 2 bzw. bei zulässiger Bremsleistungssteigerung zur Vor¬ derradbremse VR fördert. Die vorgeschlagene Diagonalbrems- kreisaufteilung hat somit bei überwiegender Vorderachsbela¬ stung des Fahrzeugs den Vorteil, daß an der hinsichtlich ei¬ ner Überbremsung gefährdeten Hinterachse der Radbremsdruck im Hinterrad unabhängig vom Radbremsdruck an der Vorderachse geregelt werden kann. Damit ergibt sich eine höhere Brems- leistung des Kraftfahrzeugs, da der Radbremsdruck in den Vor¬ derrädern VR bei Druckabsenkung in den hintern Radbremsen nicht mit abgesenkt werden muß. Sofern dennoch ein Druckabbau in der vorderen Radbremεe VR duch Schließen des Druckmodula¬ tionsventils 3 und Anlauf der Pumpe 1 notwendig ist, so ist bei vorangegangener Annahme einer vorwiegenden Vorderachs¬ belastung die zwangsläufige Fortpflanzung und Entspannung des Haltedrucks aus der Vorderradbremse über die Leitungsabzwei¬ gung 7 zur hinteren Radbremse HL insoweit von Vorteil, da hohe Seitenführungskräfte an den Hinterrädern der weitgehend entlasteten Radachse gewährleistet sind.FIG. 1 symbolically shows a brake circuit for a hydraulic motor vehicle brake system with brake slip control with a diagonal arrangement of the wheel brakes VR, HL. The brake pressure transmitter 2 is connected via a pressure modulation valve 3, which is open in the electromagnetically non-energized basic position, to a front wheel brake VR, on which a line tion branch 7 of the brake circuit leads to the suction side of a pump 1. A secondary connection 10 to the line branch 7 leads downstream to a pressure modulation valve 4 inserted into the line branch 7 to the rear wheel brake HL. In the line branch 7, this 2/2-way valve is also used in the basic position as an electromagnetically non-energized, open pressure modulation valve 4, so that the diagonal wheel brakes VR, HL both in the brake release position and in the normal brake position and for the purpose of building up the wheel slip-regulated pressure a brake slip control from the direction of the brake pressure sensor 2 can be supplied with pressure medium. The pressure medium path leading from the brake pressure transmitter 2 to the first pressure modulation valve 3 and to the front wheel VR also connects to the pressure side of the pump 1, so that during a pump run during brake pressure control (pressure reduction, pressure build-up) that of the wheel brakes VR, HL drained pressure medium can flow in the direction of the brake pressure transmitter 2 and, if necessary, in turn to the wheel brakes VR, HL. In the pressure reduction phase of a brake pressure control, as a result of one or the other blocked pressure modulation valve 3, 4, excess pressure medium from one of the " wheel brakes VR, HL flows exclusively into the working chambers of the brake pressure transmitter 2 and a reset movement of the volume increase in the working chambers increases The hydraulic circuit diagram shown also shows a noise damping device which essentially consists of a noise damping chamber 13 connected downstream of the pump 1 and an orifice 14. However, this device is not an essential part of the invention, but is used in practice For reasons of comfort, if the customer wishes to do so, parallel to the two pressure modulation valves 3, 4 shown in the illustration, there are check valves 8, 9 opening in the direction of brake release, which are only used if the pressure modulation is not switched back ns valves 3, 4 in their initial position enable safe release of the wheel brakes VR, HL. The mode of operation of the proposed brake system is discussed below. The valve switching positions of the pressure modulation valves 3, 4 shown in the illustration initially allow unimpeded pressure build-up on the front right and left rear wheel brakes VR, HL, the brake pressure also propagating to the pump 1. The pump 1 is therefore below the respective pressure level, preferably proportional to the force of the foot, which is fed in by the brake pressure transmitter 2 and which is present on both sides of the pump 1 both at the suction valve 15 and at the pressure valve 16. In order to implement a pressure holding phase on the front wheel VR, the pressure modulation valve 3 switches to its locked position electromagnetically excited, whereby the shark pressure level in the front wheel brake inevitably propagates via the line branch 7 to the rear wheel brake HL. The consequence of this is that, compared to the front wheel brake VR, no higher braking power can be achieved at the rear wheel brake HL, which is why the proposed hydraulic circuit is particularly particularly suitable for a vehicle with a high static axle load on the front wheels and a small axle load on the rear wheels. In vehicles of this type there is namely the risk of overbraking the largely already statically relieved rear axle, so that, if necessary, the pressure modulation valve 4 located in the line branch 7 is switched into the blocking position for further pressure reduction in the rear wheel brake HL, while the front wheel brake VR can continue to build up pressure unhindered due to the predominant load on the front axle. To reduce the pressure in the rear wheel brake HL, the pump 1 is started when the pressure modulation valve 4 is blocked, which pumps the excess pressure medium into the brake pressure transmitter 2 or, if the brake output increases, to the front wheel brake VR. The proposed diagonal brake circuit division thus has the advantage, when the front axle load of the vehicle predominates, that the wheel brake pressure in the rear wheel can be regulated independently of the wheel brake pressure on the front axle on the rear axle, which is at risk of overbraking. This results in a higher braking Performance of the motor vehicle, since the wheel brake pressure in the front wheels VR does not have to be reduced when the pressure in the rear wheel brakes is reduced. If a pressure reduction in the front wheel brake VR by closing the pressure modulation valve 3 and starting the pump 1 is nevertheless necessary, the prior assumption of a predominant front axle load is the inevitable propagation and relaxation of the holding pressure from the front wheel brake via the line branch 7 to the rear wheel brake HL to the extent that high cornering forces are guaranteed on the rear wheels of the largely relieved wheel axle.
Ein weiterer Vorteil der vorgeschlagenen Hydraulikschaltung ergibt sich durch die Eignung zur elektronisch geregelten Bremskraftverteilung, sodaß der Einsatz konventioneller hy¬ draulischer Bremskraftverteiler an der Hinterachse entfallen kann.Another advantage of the proposed hydraulic circuit results from its suitability for electronically controlled brake force distribution, so that the use of conventional hydraulic brake force distributors on the rear axle can be dispensed with.
Die Figur 2 zeigt abweichend von der vorangegangenen Figur 1 eine Anordnung des weiteren Druckmodulationsventils 4 im Ne¬ benanschluß 10 der Leitungsabzweigung 7. Dies führt in be¬ stimmten Situationen zu einer Entkopplung des Druckregelver¬ laufs zwischen der vorderen Radbremse VR und der diagonal gegenüberliegenden hinteren Radbremse HL mit dem Vorteil, daß der Druck an der hinteren Radbremse HL gehalten werden kann, wenn an der vorderen Radbremse VR ein Druckabbau während ei¬ ner Bremsschlupfregelung erforderlich ist. Dies ist entspre¬ chend der vorangegangenen Beschreibung zu Figur 1 bei einem Druckmodulationsventil 4 innerhalb der Leitungsabzweigung 7 nicht möglich, weshalb diese Ausführungsform (Figur 1) vor¬ zugsweise für Kraftfahrzeuge mit einer überwiegenden Vorder¬ achslastverteilung geeignet ist. Soweit nicht auf die weite¬ ren Einzelheiten der hydraulischen Schaltung nach Figur 2 hiermit eingegangen wird, so entsprechen diese den zu Figur 1 beschriebenen Merkmalen. Durch die in Figur 2 vorgeschlagene Schaltung ist durch die Unabhängigkeit der Druckhaltephase an der hinteren Radbremse HL vom jeweiligen Regelvorgang an der vorderen Radbremse VR zwangsläufig eine höhere Bremsleistung erzielbar, wenn vorgeschlagene Schaltungskonzept bei Fahr¬ zeugen mit überwiegender Hinterachslastverteilung verwendet wird. Die Hydraulikschaltung nach Figur 2 mit im Neben¬ anschluß 10 angeordnete Druckmodulationsventil 4 führt bei einer bremsschlupfgeregelten Bremsdruckabsenkung an der hin¬ teren Radbremse HL zwangsläufig auch zu einer Druckabsenkung an der vorderen diagonalen Radbremse VR, was jedoch bei An¬ wendung der vorgeschlagenen Hydraulikschaltung nach Figur 2 für Fahrzeuge mit überwiegender Hinterachslastverteilung nicht von großer Relevanz ist.In contrast to the previous FIG. 1, FIG. 2 shows an arrangement of the further pressure modulation valve 4 in the secondary connection 10 of the line branch 7. In certain situations, this leads to a decoupling of the pressure control curve between the front wheel brake VR and the diagonally opposite rear wheel brake HL with the advantage that the pressure on the rear wheel brake HL can be maintained if a pressure reduction during a brake slip control is required on the front wheel brake VR. According to the preceding description of FIG. 1, this is not possible with a pressure modulation valve 4 within the line branch 7, which is why this embodiment (FIG. 1) is preferably suitable for motor vehicles with a predominantly front axle load distribution. Insofar as the further details of the hydraulic circuit according to FIG. 2 are not dealt with here, they correspond to the features described for FIG. 1. The circuit proposed in FIG. 2 means that the pressure holding phase on the rear wheel brake HL is independent of the respective control process front wheel brake VR inevitably achieves a higher braking power if the proposed circuit concept is used in vehicles with a predominantly rear axle load distribution. The hydraulic circuit according to FIG. 2 with the pressure modulation valve 4 arranged in the auxiliary connection 10 inevitably also leads to a lowering of the pressure at the front diagonal wheel brake VR when the brake pressure is reduced at the rear wheel brake HL, which is however the case when the proposed hydraulic circuit according to FIG. 2 is used is not of great relevance for vehicles with predominantly rear axle load distribution.
Bezüglich der Funktionsweise der hydraulischen Schaltung nach Figur 2 während einer Bremsschlupfregelung, gilt teilweise das aus Figur 1 bekannte Funktionsschema, wonach die Druck¬ haltephase an der vorderen und/ oder an der hinteren Radbrem¬ se VR, HL jeweils durch schließen der Druckmodulationsventile 3, 4 eingeleitet wird und der Haltedruck in der vorderen Rad¬ bremse VR auf die stillstehende Pumpe 1 wirkt, während der Haltedruck an der hinteren Radbremse HL von der Pumpe 1 durch die Wirkung des in Sperrstellung befindlichen weiteren Druck¬ modulationsventils 4 isoliert ist. Die Druckabbauphase an der vorderen Radbremse VR beginnt bei geschlossenem Druckmodula¬ tionsventil 3 mit der Inbetriebnahme der Pumpe 1, die das überschüssige Druckmittel in Richtung des Bremsdruckgebers 2 zurückfördert, wodurch das Pedal am Bremsdruckgeber 2 bei gleichzeitiger Volumenaufnahme in der Arbeitskammer zurück¬ gestellt wird. Gleiches Prinzip gilt bei einer Druckabsenkung an der hinteren Radbremse HL, jedoch mit dem Unterschied, daß zunächst das in der Haitedruckphase befindliche Druckmodula¬ tionsventil 4 von seiner Sperrstellung in seine Offenstellung umschaltet, womit die Druckmittelzulauf zur aktivierten Pumpe 1 gewährleistet ist. Zum Druckaufbau in Radbremsen VR, HL befinden sich die Druckmodulationsventile 3, 4 wieder in der abbildungsgemäßen offenen Schaltstellung, während die Pumpe 1 im Stillstand verharrt. Die bisher beschriebenen Hydraulikschaltungen nach Figur 1 und 2 stellen jeweils eine Bremskreisdiagonale für ein Kraft¬ fahrzeug dar. Analog dazu gestaltet sich die in der Regel als Zweikreis- Bremsanlage ausgeführte zweite Bremskreisdiagona¬ le, sodaß hierzu nicht detailiert eingegangen werden muß.With regard to the functioning of the hydraulic circuit according to FIG. 2 during a brake slip control, the functional scheme known from FIG. 1 partially applies, according to which the pressure maintenance phase on the front and / or on the rear wheel brake VR, HL in each case by closing the pressure modulation valves 3, 4 is initiated and the holding pressure in the front wheel brake VR acts on the stationary pump 1, while the holding pressure on the rear wheel brake HL is isolated from the pump 1 by the action of the further pressure modulation valve 4 located in the blocking position. The pressure reduction phase at the front wheel brake VR begins when the pressure modulation valve 3 is closed when the pump 1 is started up, which pumps the excess pressure medium back in the direction of the brake pressure transmitter 2, as a result of which the pedal on the brake pressure transmitter 2 is reset while the volume is being taken up in the working chamber. The same principle applies to a pressure reduction on the rear wheel brake HL, with the difference that the pressure modulation valve 4, which is in the shark pressure phase, initially switches from its blocking position to its open position, thus ensuring the pressure medium supply to the activated pump 1. To build up pressure in wheel brakes VR, HL, the pressure modulation valves 3, 4 are again in the open switching position shown in the illustration, while the pump 1 remains at a standstill. The hydraulic circuits according to FIGS. 1 and 2 described so far each represent a brake circuit diagonal for a motor vehicle. Analogously to this, the second brake circuit diagonals, which are generally designed as a two-circuit brake system, are designed, so that there is no need to go into this in detail.
Die Hydraulikschaltung nach Figur 3 zeigt eine hydraulische Zweikreisbremsanlage mit Hinterachs- und Vorderachsbrems- kreisaufteilung, sodaß sich an dem einen Bremskreis die vor¬ dere rechte und linke Radbremse VR, VL eines Kraftfahrzeugs anschließt, während am zweiten Bremskreis die beiden hinteren Radbremsen HR, HL des Kraftfahrzeugs angeschlossen sind. Zwi¬ schen dem Bremsdruckgeber 2 und dem Druckmittelpfad zur rech¬ ten vorderen Radbremse VR befindet sich ein in der Grundstel¬ lung elektromagnetisch nicht erregtes, offenes Druckmodula¬ tionsventil 3. Zwischen der rechten vorderen Radbremse VR und diesem Druckmodulationsventil 3 schließt sich eine Leitungs¬ abzweigung 7 an, in die gleichfalls ein in der Grundstellung elektromagnetisch nicht erregtes, offenes weiteres Druckmodu¬ lationsventil 4 integriert ist. Die Leitungsabzweigung 7 führt zur Pumpe 1. Zwischen der Pumpe 1 und dem Druckmodula¬ tionsventil 4 befindet sich ein Nebenanschluß 10, der zur linken vorderen Radbremse VL führt und gleichfalls ein in der Grundstellung elektromagnetisch nicht erregtes, offenes Druckmodulationsventil 5 aufweist. Ferner befindet sich aus Sicherheitsgründen zwischen dem Druckmodulationsventil 5 und der linken vorderen Radbremse VL der Anschluß einer Bypass- leitung 11, in die ein stromabwärts in Richtung des Brems¬ druckgebers 2 öffnendes Rückschlagventil 12 eingesetzt ist und dessen Bypassleitung 11 in die zum Vorderradanschluß und zum Bremsdruckgeber 2 führenden Pumpendruckleitung einmündet. Wie bei allen vorangegangenen Ausführungsbeispielen ist der Pumpe 1 druckseitig eine Dämpfungskammer 13 und eine Blende 14 nachgeschaltet. In der beschriebenen abbildungsgemäßen Schaltstellung der Druckmodulationsventile 3, 4, 5 besteht somit sowohl in der Bremslosestellung als auch in der schlupffreien BremsenbetriebsStellung eine ungehinderte hy- draulische Verbindung zu den vorderen Radbremsen VR, VL. In diesem Zustand ist gleichfalls während einer Bremsschlupf¬ regelung ein erneuter Bremsdruckaufbau in den vorderen Rad¬ bremsen VR, VL gewährleistet. Die vorgeschlagene Anordnung der Druckmodulationsventile 3, 4, 5 ermöglicht eine radindi¬ viduelle Bremsdruckregelung, sodaß zur Einstellung eines kon¬ stanten Radbremsdrucks (Haltedrucks) an der rechten vorderen Radbremse VR das Druckmodulationsventil 3 elektromagnetisch in Sperrstellung geschaltet wird und bei Bedarf der Halte¬ druck an der linken vorderen Radbremse VL durch Umschalten des Druckmodulationsventils 5 in seine Sperrstellung ermög¬ licht wird. Während der Haitedruckphase ist die Pumpe 1 stillgesetzt. Das in die Leitungsabzweigung 7 angeordnete Druckmodulationsventil 4 ermöglicht hierbei zusätzlich eine hydraulische Trennung der beiden vorderen Radbremsen in der Bremsdruckregelung, wenn entweder nur in der beispielhaft gezeigten vorderen rechten Radbremse VR ein Druckaufbau oder ein Haitedruckniveau gewünscht ist oder eine Druckabsenkung in der beispielhaft gezeigten linken vorderen Radbremse VL erfolgen soll.The hydraulic circuit according to FIG. 3 shows a hydraulic dual-circuit brake system with rear axle and front axle brake circuit division, so that the front right and left wheel brakes VR, VL of a motor vehicle are connected to one brake circuit, while the two rear wheel brakes HR, HL des Motor vehicle are connected. Between the brake pressure transmitter 2 and the pressure medium path to the right front wheel brake VR there is an open pressure modulation valve 3 which is not electromagnetically energized in the basic position. A line branch closes between the right front wheel brake VR and this pressure modulation valve 3 7, into which an open further pressure modulation valve 4, which is not electromagnetically excited in the basic position, is also integrated. The line branch 7 leads to the pump 1. Between the pump 1 and the pressure modulation valve 4 there is a secondary connection 10 which leads to the left front wheel brake VL and likewise has an open pressure modulation valve 5 which is not energized electromagnetically in the basic position. Furthermore, for safety reasons, between the pressure modulation valve 5 and the left front wheel brake VL there is the connection of a bypass line 11, into which a check valve 12 opening downstream in the direction of the brake pressure transmitter 2 is inserted and the bypass line 11 into the one for the front wheel connection and the brake pressure transmitter 2 leading pump pressure line opens. As in all the previous exemplary embodiments, the pump 1 is followed by a damping chamber 13 and an orifice 14 on the pressure side. In the switching position of the pressure modulation valves 3, 4, 5 described in the illustration, there is therefore an unhindered hydraulic position both in the non-braking position and in the non-slip brake operating position. drastic connection to the front wheel brakes VR, VL. In this state, a renewed build-up of brake pressure in the front wheel brakes VR, VL is also ensured during a brake slip control. The proposed arrangement of the pressure modulation valves 3, 4, 5 enables a wheel-individual brake pressure control, so that to set a constant wheel brake pressure (holding pressure) on the right front wheel brake VR, the pressure modulation valve 3 is switched electromagnetically into the blocking position and, if necessary, the holding pressure is switched on the left front wheel brake VL is made possible by switching the pressure modulation valve 5 into its blocking position. Pump 1 is stopped during the shark pressure phase. The pressure modulation valve 4 arranged in the line branch 7 additionally enables a hydraulic separation of the two front wheel brakes in the brake pressure control when either a pressure build-up or a shark pressure level is desired only in the front right wheel brake VR shown as an example or a pressure reduction in the left front wheel brake shown as an example VL should take place.
Der die Radbremsen HR, HL der Hinterräder mit dem Bremsdruck¬ geber 2 verbindende Bremskreis weist ausschließlich ein ein¬ ziges zwischen dem Bremsdruckgeber 2 und den beiden Radbrem¬ sen HR, HL eingesetztes, in der Grundstellung offen geschal¬ tetes Druckmodulationsventil 6 auf, sodaß beide Hinterräder gemeinsam geregelt werden. Zwischen dem Druckmodulationsven¬ til 6 und den beiden Radbremsen HR, HL der Hinterräder befin¬ det sich die zur Pumpe 1 führende Saugleitung, womit bei elektromagnetisch angesteuertemThe brake circuit connecting the wheel brakes HR, HL of the rear wheels to the brake pressure transmitter 2 has only a single pressure modulation valve 6 inserted between the brake pressure transmitter 2 and the two wheel brakes HR, HL, so that both are open in the basic position Rear wheels can be regulated together. The suction line leading to the pump 1 is located between the pressure modulation valve 6 and the two wheel brakes HR, HL of the rear wheels, which means that the electromagnetically controlled one
Druckmodulationsventil 6 eine Druckentlastung und Rückför¬ derung von Druckmitteln aus den beiden hinteren Radbremsen HR, HL mit dem Einsetzen der Pumpe 1 in Richtung des Brems¬ druckgebers 2 gewährleistet ist. Zur Geräuschreduzierung be¬ findet sich gleichfalls wie im Vorderachsbremskreis eine der Druckseite der Pumpe nachgeschaltete Dämpfungskammer 13 sowie eine Blende 14. Durch die vorgeschlagene Anordnung der beiden Bremskreise eignet sich die Ventilanordnung im Hinterachs- bremskreis zur elektronischen Bremskraftverteilung, sodaß auf die Anordnung bekannter, konventioneller hydraulischer Brems- kraftverteiler verzichtet werden kann.Pressure modulation valve 6 ensures pressure relief and return of pressure media from the two rear wheel brakes HR, HL with the insertion of the pump 1 in the direction of the brake pressure transmitter 2. To reduce noise, there is also a damping chamber 13 downstream of the pressure side of the pump and an orifice 14, as in the front axle brake circuit. The proposed arrangement of the two Brake circuits, the valve arrangement in the rear axle brake circuit is suitable for electronic brake force distribution, so that the arrangement of known, conventional hydraulic brake force distributors can be dispensed with.
Aus den vorangegangenen Ausführungsbeispielen zeigt sich, daß die beschriebenen Diagonalbremskreisanlagen nach Figur 1 und 2 pro Bremskreis mit lediglich zwei Druckmodulationsventilen 3, 4auskommen, während sich die Ventilanzahl bei einer Zwei- kreisbremsanlagen nach Figur 3 auf insgesamt 4 Druckmodula¬ tionsventile 3, 4, 5, 6 reduziert. It can be seen from the preceding exemplary embodiments that the diagonal brake circuit systems described in FIGS. 1 and 2 only need two pressure modulation valves 3, 4 per brake circuit, while the number of valves in a two-circuit brake system according to FIG. 3 is a total of 4 pressure modulation valves 3, 4, 5, 6 reduced.
Bezugszeichenliste:Reference symbol list:
1 Pumpe1 pump
2 Bremsdruckgeber2 brake pressure sensors
3, 4, 5,6 Druckmodulationsventile3, 4, 5.6 pressure modulation valves
7 Leitungsabzweigung7 line branch
8 Rückschlagventil8 check valve
9 Rückschlagventil9 check valve
10 Nebenanschluß10 extension line
11 Bypassleitung11 bypass line
12 Rückschlagventil12 check valve
13 Dämpfungskammer13 damping chamber
14 Blende14 aperture
15 Saugventil15 suction valve
16 Druckventil 16 pressure valve

Claims

Patentansprüche claims
1. Hydraulische Kraftfahrzeugbremsanlage mit Bremsschlupf¬ regelung, mit einem Bremsdruckgeber, der über Druckmodu¬ lationsventile mit mehreren Radbremsen hydraulisch ver¬ bunden ist, mit wenigstens einer Pumpe, die mit ihrer Saugseite mit den Radbremsen und mit ihrer Druckseite mit einem vom Bremsdruckgeber zu den Druckmodulations¬ ventilen führenden Druckmittelpfad in Verbindung steht, dadurch gekennzeichnet, daß in einer Druckaufbauphase in wenigstens einer der Radbremsen (VR, VL, HR, HL) die Saugseite der Pumpe (1) dem Radbremsdruck ausgesetzt ist (Figur 1-3) .1. Hydraulic motor vehicle brake system with brake slip control, with a brake pressure transmitter, which is hydraulically connected via pressure modulation valves to several wheel brakes, with at least one pump, with its suction side with the wheel brakes and with its pressure side with one from the brake pressure transmitter to the pressure modulations ¬ valve leading pressure medium path in connection, characterized in that in a pressure build-up phase in at least one of the wheel brakes (VR, VL, HR, HL) the suction side of the pump (1) is exposed to the wheel brake pressure (Figure 1-3).
2. Hydraulische Kraftfahrzeugbremsanla"ge nach Anspruch 1, dadurch gekennzeichnet, daß in einer Druckabbauphase überschüssiges Druckmittel von wenigstens einer der Rad¬ bremsen (VR, VL, HR, HL) durch Druckmittelförderung der Pumpe (1) zum Bremsdruckgeber (2) gelangt2. Hydraulic motor vehicle brake system " ge according to claim 1, characterized in that excess pressure medium from at least one of the Rad¬ brakes (VR, VL, HR, HL) passes through pressure medium delivery of the pump (1) to the brake pressure transmitter (2) in a pressure reduction phase
(Figur 1-3) .(Figure 1-3).
3. Hydraulische Kraftfahrzeugbremsanlage nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß zwecks Druckhalte¬ phase in wenigstens einer der Radbremsen (VR, VL, HR, HL) das ihr zugehörige, normalerweise in der Grundstel¬ lung auf ungehinderten Durchlaß geschaltete Druckmodula¬ tionsventil (3, 4, 5, 6) gesperrt ist (Figur 1-3).3. Hydraulic motor vehicle brake system according to claim 1 or 2, characterized in that for the purpose of Druckhalt¬ phase in at least one of the wheel brakes (VR, VL, HR, HL) the associated pressure modulation valve normally switched to the unrestricted passage in the basic position ( 3, 4, 5, 6) is locked (Figure 1-3).
4. Hydraulische Kraftfahrzeugbremsanlage nach Anspruch 1, dadurch gekennzeichnet, daß am Bremsdruckgeber (2) ein Bremskreis mit Diagonalaufteilung der Radbremsen (VR, HL) angeschlossen ist, wozu zwischen dem in der Grund¬ stellung auf Durchlaß geschalteten Druckmodulationsven¬ til (3) und der vorderen Radbremse (VR) der Bremskreis zur hinteren Radbremse (HL) eine Leitungsabzweigung (7) aufweist, in die eine in der Grundstellung auf Durchlaß geschaltetes weiteres Druckmodulationsventil (4) einge¬ setzt ist, das in der Grundstellung die vordere und hin¬ tere diagonalen Radbremsen (VR, HL) mit der Saugseite der Pumpe (1) verbindet (Figur 1).4. Hydraulic motor vehicle brake system according to claim 1, characterized in that on the brake pressure sensor (2) Brake circuit with diagonal division of the wheel brakes (VR, HL) is connected, for which purpose a line branch (7) between the pressure modulation valve (3) switched in the basic position to passage and the front wheel brake (VR) of the brake circuit to the rear wheel brake (HL). In which a further pressure modulation valve (4) switched to the passage position is inserted, which in the basic position connects the front and rear diagonal wheel brakes (VR, HL) to the suction side of the pump (1) (FIG. 1 ).
5. Hydraulische Kraftfahrzeugbremsanlage nach Anspruch 4, dadurch gekennzeichnet, daß parallel zum weiteren Druck¬ modulationsventil (4) ein in Richtung des ersten Druck¬ modulationsventils (3) öffnendes Rückschlagventil (8) vorgesehen ist, und daß parallel zum ersten Druckmodula¬ tionsventil (3) ein in Richtung des Bremsdruckgebers (2) öffnendes Rückschlagventil (9) angeordnet ist (Figur 1).5. Hydraulic motor vehicle brake system according to claim 4, characterized in that in parallel to the further Druck¬ modulation valve (4) in the direction of the first Druck¬ modulation valve (3) opening check valve (8) is provided, and that parallel to the first pressure modulation valve (3 ) a check valve (9) opening in the direction of the brake pressure sensor (2) is arranged (FIG. 1).
6. Hydraulische Kraftfahrzeugbremse nach Anspruch 1, dadurch gekennzeichnet, daß an Bremsdruckgeber (2) ein Bremskreis mit Diagonalaufteilung der Radbremsen (VR, HL) vorgesehen ist, wozu zwischen dem in der Grundstel¬ lung auf Durchlaß geschalteten Druckmodulationsventil (3) und der vorderen Radbremse (VR) der Bremskreis zur hinteren Radbremse (HL) eine Leitungsabzweigung (7) auf¬ weist, die eine permanente hydraulische Verbindung zur Saugseite der Pumpe (1) herstellt, wobei ein weiteres Druckmodulationsventil (4) in seiner Grundstellung in einem Nebenanschluß (10) an die Leitungsabzweigung (7) angeschlossen ist und die hintere Radbremse (HL) mit der Saugseite der Pumpe (1) verbindet (Figur 2).6. Hydraulic motor vehicle brake according to claim 1, characterized in that a brake circuit with diagonal division of the wheel brakes (VR, HL) is provided on the brake pressure transmitter (2), for which purpose between the pressure modulation valve (3) switched to passage in the basic position and the front wheel brake (VR) the brake circuit to the rear wheel brake (HL) has a line branch (7) which establishes a permanent hydraulic connection to the suction side of the pump (1), with a further pressure modulation valve (4) in its basic position in a secondary connection (10) is connected to the line branch (7) and connects the rear wheel brake (HL) to the suction side of the pump (1) (Figure 2).
7. Hydraulische Kraftfahrzeugbremse nach Anspruch 1, da¬ durch gekennzeichnet, daß am Bremsdruckgeber (2) ein Bremskreis mit zwei Vorderradbremsen (VR, VL) an¬ geschlossen ist, wozu zwischen dem in der Grundstellung auf Durchlaß geschalteten Druckmodulationsventil (3) und der ersten vorderen Radbremse (VR) der Bremskreis der zweiten vorderen Radbremse (VL) eine Leitungsabzweigung (7) aufweist, in die eine in der Grundstellung auf Durchlaß geschaltetes weiteres Druckmodulationsventil7. Hydraulic motor vehicle brake according to claim 1, characterized in that a brake circuit with two front wheel brakes (VR, VL) is connected to the brake pressure transmitter (2), for which purpose between the in the basic position pressure modulation valve (3) connected to the passage and the first front wheel brake (VR), the brake circuit of the second front wheel brake (VL) has a line branch (7) into which a further pressure modulation valve is switched to passage in the basic position
(4) eingesetzt ist, das die erste Vorderradbremse (VR, VL) mit der Saugseite der Pumpe (1) verbindet, und daß ein weiteres Druckmodulationsventil (5) in einem Neben¬ anschluß (10) an die Leitungsabzweigung (7) die zweite vordere Radbremse (VL) mit der Saugseite der Pumpe (1) verbindet (Figur 3).(4) is used, which connects the first front wheel brake (VR, VL) to the suction side of the pump (1), and that a further pressure modulation valve (5) in a secondary connection (10) to the line branch (7) connects the second front one Wheel brake (VL) connects to the suction side of the pump (1) (Figure 3).
8. Hydraulische Kraftfahrzeugbremsanlage nach Anspruch 7, dadurch gekennzeichnet, daß zwischen dem im Neben¬ anschluß (10) gelegenen weiteren Druckmodulationsventil8. Hydraulic motor vehicle brake system according to claim 7, characterized in that between the in the secondary connection (10) located further pressure modulation valve
(5) und der zweiten vorderen Radbremse (VL) eine Bypass- leitung (11) mit einem in Richtung des Bremsdruckgebers (2) öffnenden Rückschlagventil (12) angeschlossen ist, die stromabwärts zur Pumpe (1) an den Bremskreis ange¬ schlossen ist (Figur 3).(5) and the second front wheel brake (VL) a bypass line (11) with a check valve (12) opening in the direction of the brake pressure sensor (2) is connected, which is connected to the brake circuit downstream of the pump (1) ( Figure 3).
9. Hydraulische Kraftfahrzeugbremsanlagen nach Anspruch 7, dadurch gekennzeichnet, daß am Bremsdruckgeber (2) ein weiterer Bremskreis mit zwei Hinterradbremsen (HR, HL) angeschlossen ist, wobei zwischen dem Bremsdruckgeber (2) und den beiden hinteren Radbremsen (HR, HL) in den Bremskreis ein in der Grundstellung geöffnetes Druckmo¬ dulationsventil (6) angeordnet ist, an dem stromabwärts unmittelbar die Pumpe (6) angeschlossen ist (Figur 3). 9. Hydraulic motor vehicle brake systems according to claim 7, characterized in that a further brake circuit with two rear wheel brakes (HR, HL) is connected to the brake pressure sensor (2), wherein between the brake pressure sensor (2) and the two rear wheel brakes (HR, HL) in the Brake circuit a pressure modulation valve (6) which is open in the basic position and to which the pump (6) is directly connected downstream (FIG. 3) is arranged.
PCT/EP1996/002026 1995-05-20 1996-05-11 Hydraulic motor vehicle braking system with brake slip control WO1996036516A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19518627.3 1995-05-20
DE1995118627 DE19518627A1 (en) 1995-05-20 1995-05-20 Hydraulic motor vehicle brake system with brake slip control

Publications (1)

Publication Number Publication Date
WO1996036516A1 true WO1996036516A1 (en) 1996-11-21

Family

ID=7762480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/002026 WO1996036516A1 (en) 1995-05-20 1996-05-11 Hydraulic motor vehicle braking system with brake slip control

Country Status (2)

Country Link
DE (1) DE19518627A1 (en)
WO (1) WO1996036516A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111152773A (en) * 2018-11-07 2020-05-15 大陆汽车系统公司 Electronic brake boosting on a secondary braking system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012223091A1 (en) * 2012-12-13 2014-06-18 Robert Bosch Gmbh Slip-controlled hydraulic vehicle brake assembly for motor vehicle, has hydraulic pump including suction side connected between separation valve and wheel valve, and wheel brake, which is directly connected to pressure side of pump

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3631442A1 (en) * 1986-09-16 1988-03-17 Kugelfischer G Schaefer & Co Antilock brake system
GB2265425A (en) * 1992-03-25 1993-09-29 Bosch Gmbh Robert Braking systems
WO1993025417A1 (en) * 1992-06-06 1993-12-23 Robert Bosch Gmbh Antilock system
JPH06171487A (en) * 1992-12-08 1994-06-21 Aisin Seiki Co Ltd Fluid pressure adjuster for antiskid system
JPH06298064A (en) * 1993-04-19 1994-10-25 Aisin Seiki Co Ltd Antiskid control device
WO1995021080A1 (en) * 1994-02-04 1995-08-10 Robert Bosch Gmbh Hydraulic braking system for a motor vehicle, especially a passenger vehicle, with anti-lock system
WO1995021079A1 (en) * 1994-02-04 1995-08-10 Robert Bosch Gmbh Hydraulic braking system for a motor vehicle, especially a passenger vehicle, with anti-lock system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3541742A1 (en) * 1985-11-26 1987-05-27 Bosch Gmbh Robert Antilock brake system
JPH0656014A (en) * 1992-08-07 1994-03-01 Nisshinbo Ind Inc Anti-skid control method
DE4422518A1 (en) * 1994-02-04 1995-08-10 Bosch Gmbh Robert Hydraulic brake system for a motor vehicle, in particular a passenger car, with an anti-lock device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3631442A1 (en) * 1986-09-16 1988-03-17 Kugelfischer G Schaefer & Co Antilock brake system
GB2265425A (en) * 1992-03-25 1993-09-29 Bosch Gmbh Robert Braking systems
WO1993025417A1 (en) * 1992-06-06 1993-12-23 Robert Bosch Gmbh Antilock system
JPH06171487A (en) * 1992-12-08 1994-06-21 Aisin Seiki Co Ltd Fluid pressure adjuster for antiskid system
US5441336A (en) * 1992-12-08 1995-08-15 Aisin Seiki Kabushiki Kaisha Fluid pressure regulating device for anti-skid control device
JPH06298064A (en) * 1993-04-19 1994-10-25 Aisin Seiki Co Ltd Antiskid control device
WO1995021080A1 (en) * 1994-02-04 1995-08-10 Robert Bosch Gmbh Hydraulic braking system for a motor vehicle, especially a passenger vehicle, with anti-lock system
WO1995021079A1 (en) * 1994-02-04 1995-08-10 Robert Bosch Gmbh Hydraulic braking system for a motor vehicle, especially a passenger vehicle, with anti-lock system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 94, no. 010 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111152773A (en) * 2018-11-07 2020-05-15 大陆汽车系统公司 Electronic brake boosting on a secondary braking system

Also Published As

Publication number Publication date
DE19518627A1 (en) 1996-11-21

Similar Documents

Publication Publication Date Title
DE3624344C2 (en) Hydraulic brake system for motor vehicles
EP0605463A1 (en) Hydraulic braking system with differential lock, especially for motor vehicles.
DE19526957C2 (en) Hydraulic braking system for a motor vehicle
WO1992003317A1 (en) Anti-lock braking system for motor vehicles
DE3620561C2 (en) Hydraulic brake system for motor vehicles
EP0639128B1 (en) Hydraulic brake with drive slip control
DE68923798T2 (en) ADAPTABLE BRAKE SYSTEM WITH A HYDRAULIC AMPLIFIER AND A RETURN SYSTEM.
EP1993889B1 (en) Motorcycle brake system
DE10053993B4 (en) Hydraulic brake system and method for brake pressure generation and control for vehicle brake system
DE3426456C2 (en) Brake system with slip control
DE4022481A1 (en) Hydraulic installation for heavy vehicle - has magnetic valve blocking or opening by=pass to regulate rear wheel braking effort according to load
EP0558507B1 (en) Hydraulic brake system with anti-blocking control
WO1996036516A1 (en) Hydraulic motor vehicle braking system with brake slip control
EP0842071B1 (en) Hydraulic motor vehicle braking system with abs
EP0842072B1 (en) Hydraulic motor vehicle braking system with wheel slip control
WO2007131960A1 (en) Motorcycle braking system
WO1993011009A1 (en) Dual-circuit hydraulic braking system with slip control for motor vehicles
WO1997029934A1 (en) Electronically controlled motor vehicle braking force distributor
DE19953001A1 (en) Hydraulic motor vehicle braking system with wheel slip regulation and brake pressure transmitter connected hydraulically with at least one pair of wheel brakes also pressure modulation
DE4025859A1 (en) Hydraulic vehicle braking system with ABS and ASR protection - has brake line branched to wheel brake cylinders emanating from pedal operated brake cylinder with pressure medium reservoir
DE19635589B4 (en) Hydraulic brake system for a land vehicle
DE19635604C2 (en) Anti-lock motor vehicle braking system
DE19635590B4 (en) Hydraulic brake system for a land vehicle
WO1996010506A1 (en) Hydraulic braking system with vehicle-stability regulating system
WO1998009858A1 (en) Hydraulic braking system for an off-road vehicle

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase