WO1996028874A1 - Self-starting controllable ac motor - Google Patents

Self-starting controllable ac motor Download PDF

Info

Publication number
WO1996028874A1
WO1996028874A1 PCT/US1996/003116 US9603116W WO9628874A1 WO 1996028874 A1 WO1996028874 A1 WO 1996028874A1 US 9603116 W US9603116 W US 9603116W WO 9628874 A1 WO9628874 A1 WO 9628874A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
rotor
circuit
coils
controllable
Prior art date
Application number
PCT/US1996/003116
Other languages
French (fr)
Inventor
Charles J. Flynn
Original Assignee
Flynn Charles J
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Flynn Charles J filed Critical Flynn Charles J
Priority to AU53037/96A priority Critical patent/AU5303796A/en
Publication of WO1996028874A1 publication Critical patent/WO1996028874A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/42Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual single-phase induction motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/30Arrangements for controlling the direction of rotation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/04Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for rectification
    • H02K11/049Rectifiers associated with stationary parts, e.g. stator cores
    • H02K11/05Rectifiers associated with casings, enclosures or brackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Definitions

  • the present invention is directed to a highly efficient, relatively compact, relatively
  • the present motor is also relatively easily reversible, generates little or no heat in
  • the rotor has a simple rotor construction, does not require any shading coils and can have its
  • the present invention is directed to a relatively inexpensive, highly efficient motor
  • the motor includes
  • control electronic circuit which in turn is controlled by a sensor device.
  • a principal object of the present invention is to provide a motor operable on single
  • Another object is to provide a single phase alternating current motor that is self
  • Another object is to teach the construction of a single phase alternating current motor
  • Another object is to teach the construction of a motor that uses readily available
  • Another object is to provide a motor that can operate at a greater number of
  • Another object is to teach the construction and operation of a motor that operates
  • Another object is to teach the construction and operation of a motor that operates
  • Another object is to provide a circuit for an ac motor which is relatively simple
  • Another object is to pass current in a desired direction through one or more coils
  • Fig. 1 is a side elevational view of a motor constructed according to the teachings of
  • Fig. 2 is a side elevational view of the motor shown in Fig. 1;
  • Fig. 3 is a circuit diagram for the motor shown in Figs. 1 and 2;
  • Fig. 4 shows one shape for the permanent magnet portion of the rotor
  • Fig. 5 is a circuit diagram showing another form of control circuit for the subject
  • Fig. 6 shows a modified form of the rotor for use with the motor circuit of Fig. 5;
  • Fig. 7 is a simplified block diagram showing the main operating components of the
  • Fig. 8 is a graph showing an alternating current input voltage in association with
  • Fig. 9 is a schematic diagram of another preferred embodiment of the subject device.
  • Fig. 10 is circuit diagram showing yet another embodiment of the circuit for the
  • Fig. 1 1 shows an alternative embodiment of the circuit for the silicon controlled
  • Fig. 12 shows an alternate embodiment of the circuit for the silicon controlled rectifier
  • FIG. 13 and 14 show an alternate connection for the circuits of Figs. 9 and 10 using a
  • the motor 10 has a
  • circuit board 12 mounted on one side with diodes, resistors, capacitors and SCRs mounted on
  • the motor 10 has a rotor 14 with peripheral permanent magnet portions 15A and 15B
  • coils 26 such as bifilar coils mounted on the cross portion 28 of the
  • the timing magnet 16 extends to closely adjacent to the
  • the subject motor operates by opening and closing the switch or Hall Effect device
  • Fig. 3 shows the circuit for the subject motor including a standard bridge rectifier
  • circuit 30 formed by four diodes Dl, D2, D3 and D4 connected as shown.
  • the bridge circuit 30 formed by four diodes Dl, D2, D3 and D4 connected as shown.
  • bridge circuit The type of bridge circuit selected for the motor will depend upon factors such as
  • the circuit also includes resistors Rl and R2 which may be of conventional construction such as being l ⁇ watt resistors.
  • the resistors Rl and R2 supply gate biasing
  • stator core of the present device is a laminated iron member with leg portions 32 and 34 and
  • stator windings may be bifilar wound in order to reduce the number of electrical components
  • the two winding portions are laid down at the same time so that they both have the same
  • a bifilar winding has different characteristics than coils where one is located
  • the diodes D5 and D6 are back diodes and are included to
  • 0 and R4 are connected to the cathodes of the respective SCRl and SCR2 and are provided to
  • diodes D7 and D8 are included as blocking diodes and are
  • the circuit also includes a zener diode ZD1 that provides two functions including
  • a capacitor C2 is also
  • the Hall Effect device SI is provided and is connected as a by-pass around a portion of the Hall Effect device SI .
  • capacitor C2 prevents oscillation of the Hall Effect device due to electrical noise, and the low
  • the bridge circuit 30 converts the alternating current input to a pulsating dc which has
  • the pulsating dc varies between zero volts and the peak
  • L2 are respectively connected in series with SCRl and SCR2.
  • the circuits are in series with the zener diode ZD1.
  • the coil LI is referred to as the start winding
  • the start winding LI is connected to the anode of SCRl and the finish winding L2 is
  • cathode of the zener diode ZD1 and the anode of the zener diode ZD1 is connected to the
  • the windings LI and L2 are energized in opposite directions through the respective SCRs, if
  • stator is of the opposite magnetic polarity of what it would be when SCR2 is
  • the Hall Effect device SI is located on the circuit panel 12 and is positioned adjacent
  • the timing device 16 to the two pole permanent magnet timing device 16, see Figs. 1 and 2.
  • the timing device 16 to the two pole permanent magnet timing device 16, see Figs. 1 and 2.
  • the timing device 16 has a
  • peripheral permanent magnet ring portion formed by north and south pole portions 16A and
  • the number of poles on the rotor determines the number of poles on the member 16.
  • a two pole rotor for example, will have a two pole stator and a timing ring composed of two
  • portions including a north pole portion of 180° and a south pole portion also of 180°.
  • Hall Effect device S 1 has an open connector output 40 which conducts when the polarity of
  • SCRl a two pole synchronous motor such as the motor 10
  • SCRl will be conducting for 180° and
  • pulsating dc circuit is the time from zero crossing to zero crossing minus the firing angle.
  • novelties of the present circuit is that when the circuit is used with a synchronous motor (a
  • the motor locks to the input frequency and for all practical purposes the Hall Effect device could be removed or
  • control circuit 50 which is for a
  • the circuit 50 is connected across a single coil 52 and
  • the circuit includes a pair of oppositely polarized silicon controlled rectifiers (SCRs) 54 and
  • resistors 62 and 64 together through resistors 62 and 64.
  • the common connection 70 is connected to one side of the
  • connection 76 are connected to one side of the coil 52, the opposite side being connected to
  • the input power source 72 can be any type of input power source 72.
  • the input power source 72 can be any type of input power source 72.
  • alternating current input such as a 60 cycle input source from a wall plug or the like.
  • normally open switch (or sensor) 80 is connected into the circuit 50 between the common
  • rotor is not rotating or is rotating at less than synchronous speed. As the rotor rotates the
  • switch 80 will open and close on alternate half cycles of rotor rotation and will establish a synchronous speed for the rotor depending upon the frequency of the input voltage between
  • connection 74 and 78 The circuit shown in Fig. 5 is a quarter wave circuit.
  • the coil 52 can be mounted on the connecting core portion 28 of the stator 24 such as
  • the circuit 50 shown in Fig. 5 operates basically in
  • MOSFETS transistor devices, or MOSFETS.
  • SCRs could also be replaced by equivalent controlled
  • circuit elements including by MOSFETS or the like.
  • the subject motor operates as a synchronous motor except during starting
  • the Hall Effect device 22 located on the motor in the place indicated in Figs. 1 and 2
  • the motor In one position of the Hall Effect device 22, the motor can be
  • the motor can be made to operate in one direction and in a different position, the motor can be made to operate
  • switch means can be provided to switch between one or the other in order to change the
  • a motor breaking control means shown as switch 90 which is
  • the manual switch 90 manually the motor can be braked or brought to a stop.
  • the manual switch 90 can be
  • Fig. 7 is a block diagram of the electrical controls 100 for the subject motor.
  • o electrical controls include a power switching circuit 102 which is connected in series between
  • the motor field coil 104 an input alternating power current source and motor field coil 104.
  • the motor field coil 104 is an input alternating power current source and motor field coil 104.
  • stator 24 can be mounted on a stator such as the laminated stator 24 shown in Figs. 1 and 2.
  • power switching device 102 is controlled by an electronic control circuit 106 which in turn is
  • a sensor device such as the sensor 108 which may take the form of a Hall Effect
  • the circuit 106 controls the current flow through the
  • Fig. 8 shows an alternating current input voltage source in the top diagram and it
  • Fig. 9 is a circuit diagram of one form of the control circuit 106 and the associated
  • the circuit 112 includes a silicon controlled rectifier 1 16 that
  • 10 1 14 includes a silicon controlled rectifier 120 in parallel with another diode 122.
  • the SCRs 116 and 120 are connected to control circuits which include respective diodes 124
  • resistors 128 and 130 The opposite sides of the resistors 128 and 130 are
  • the transistor 134 is connected to the collector electrodes of respective transistors 132 and 134.
  • the transistor 134 is connected to the collector electrodes of respective transistors 132 and 134.
  • the transistors 132 and 134 are connected into a
  • the transistor 134 can be
  • rectifier circuits 112 or 114 will be turned on at a time and during alternate half cycles to
  • Fig. 9 is similar in some respects to the motor circuits shown in Fig. 3 except that it requires
  • the circuit of Fig. 10 is similar to the circuit of Fig. 9 but differs therefrom in that the
  • the gate electrodes of the SCRs 150 and 152 are connected respectively through
  • transistor 124 is responsive to light impinging thereon during alternate half cycles.
  • the circuit shown in Fig. 10 operates similarly to the circuit shown in Fig. 9 but represents a
  • Fig. 1 1 shows an alternate embodiment for the controlled rectifier circuits 1 12 and
  • circuit 112 can be replaced by a power MOSFET as shown in
  • Fig. 11 and the circuit 114 can similarly be replaced by a power MOSFET.
  • each circuit 114 can similarly be replaced by a power MOSFET.
  • Fig. 12 shows an alternate circuit for the SCRs 150 and 152 in circuit 10. In this case,
  • each of the SCRs is replaced by a power MOSFET connected as shown with an additional
  • the circuit in this case includes a zener diode 160 connected in
  • transistors 132, 134, 154 and 156 These resistors can be replaced by zener diodes such as
  • Such zener diodes may provide a somewhat more stable operating condition than
  • controllable synchronous motor which operates off of an alternating current input and fulfills

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

A self-starting controllable motor having a rotor mounted for rotation with a peripheral segmented portion formed of permanently magnetized material, a stator formed of laminated magnetized material having two legs surrounding the rotor, a portion of the stator connected between the two leg portions, at least one coil (L1, L2) mounted on the connecting portion of the stator and a circuit connected to said at least one coil for causing current flow through the coil in a manner to cause rotational movement of the rotor, the circuit including a bridge (30) having an input connected to an alternating current source of energy and an output on which direct current pulses appear, and controllable rectifiers (SCR1, SCR2) connected to the coil to cause current to flow in the coil to produce rotation of the rotor and a switch device (22) for controlling the controllable rectifiers in response to the position of the rotor.

Description

SELF STARTING CONTROLLABLE AC MOTOR
BACKGROUND OF THE INVENTION The present invention is directed to a highly efficient, relatively compact, relatively
inexpensive motor, that can operate at synchronous speeds depending upon the frequency of
5 the input. The present motor is also relatively easily reversible, generates little or no heat in
the rotor, has a simple rotor construction, does not require any shading coils and can have its
torque programmed both during running and starting.
DISCUSSION OF THE PRIOR ART
Applicant is the inventor of several previous motor constructions using permanent
o magnets as a portion thereof including those disclosed in the patents and patent applications
listed below:
1 ) Flynn et al U.S. Patent No. 5,304,881 , issued April 19, 1994 entitled MEANS
FOR PRODUCING ROTARY MOTION.
2) Flynn et al-Divisional U.S. Patent Application Serial No. 08/226,950, filed
5 April 13, 1994, entitled MEANS FOR PRODUCING ROTARY MOTION.
3) Flynn U.S. Patent No. 5.254,925. issued October 19, 1993, entitled
PERMANENT MAGNET CONTROL MEANS.
4) Flynn-Divisional U.S. Patent Application Serial No. 08/104,783, filed August
1 1, 1993, entitled PERMANENT MAGNET CONTROL MEANS.
5) Flynn U.S. Patent Application Serial No. 07/902,952, filed June 23, 1992,
entitled MAGNETIC MOTOR CONSTRUCTION.
Applicant's prior art constructions for the most part employ direct current energy and
control means and for this and other reasons the present construction represents a departure
from Applicant's prior art constructions.
SUMMARY OF THE INVENTION The present invention is directed to a relatively inexpensive, highly efficient motor
which can be controlled to rotate in either opposite direction of rotation. The motor includes
at least one motor field coil in series with switching means which are under control of a
control electronic circuit which in turn is controlled by a sensor device. Several different
5 embodiments of the subject motor are disclosed, and all of them have the same basic control
features and can be operated from an alternating current source, the frequency of the source
being used to control and determine the speed of rotation of the subject device.
OBJECTS OF THE INVENTION A principal object of the present invention is to provide a motor operable on single
o phase alternating current power that is highly efficient and can be made reversible, does not
produce heat in the rotor and is programmable during running as well as during starting.
Another object is to provide a single phase alternating current motor that is self
starting and operates at a synchronous speed based on the frequency of the input energy
source.
5 Another object is to teach the construction of a single phase alternating current motor
that does not require any shading coils.
Another object is to teach the construction of a motor that uses readily available
inexpensive parts and that can replace many existing motors in the market place.
Another object is to provide a motor that can operate at a greater number of
0 synchronous speeds.
Another object is to teach the construction and operation of a motor that operates
similar to a dc motor during start up and at a synchronous speed when running normally.
Another object is to teach the construction and operation of a motor that operates
efficiently under load and behaves as a dc motor when the motor speed is pulled down. Another object is to provide a circuit for an ac motor which is relatively simple
structurally and which uses one or more coils including bifilar coils which operate
independently in association with respective rectifier devices such as silicon controlled
rectifier devices.
Another object is to pass current in a desired direction through one or more coils
wound on a stator under control of respective controlled rectifier devices.
These and other objects and advantages of the present invention will become apparent
after considering the following detailed specification covering preferred embodiments thereof
in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a side elevational view of a motor constructed according to the teachings of
the present invention;
Fig. 2 is a side elevational view of the motor shown in Fig. 1;
Fig. 3 is a circuit diagram for the motor shown in Figs. 1 and 2;
Fig. 4 shows one shape for the permanent magnet portion of the rotor;
Fig. 5 is a circuit diagram showing another form of control circuit for the subject
synchronous motor;
Fig. 6 shows a modified form of the rotor for use with the motor circuit of Fig. 5;
Fig. 7 is a simplified block diagram showing the main operating components of the
circuitry for the subject device;
Fig. 8 is a graph showing an alternating current input voltage in association with
respective half cycle graphs of the alternating current input voltage on alternate half cycles;
Fig. 9 is a schematic diagram of another preferred embodiment of the subject device;
Fig. 10 is circuit diagram showing yet another embodiment of the circuit for the
subject device; Fig. 1 1 shows an alternative embodiment of the circuit for the silicon controlled
rectifiers shown in Fig. 9 using MOSFETS instead of SCRs;
Fig. 12 shows an alternate embodiment of the circuit for the silicon controlled rectifier
shown in Fig. 10 also using MOSFETS instead of SCRs; and
5 Figs. 13 and 14 show an alternate connection for the circuits of Figs. 9 and 10 using a
light emitting diode to control the turning on and turning off of the circuit.
BRIEF DESCRIPTIONS OF THE PREFERRED EMBODIMENTS
Referring to the drawings more particularly by reference numbers, number 10 in Figs.
1 and 2 refers to a motor constructed according to the present invention. The motor 10 has a
10 circuit board 12 mounted on one side with diodes, resistors, capacitors and SCRs mounted on
it. The motor 10 has a rotor 14 with peripheral permanent magnet portions 15A and 15B
constructed as will be described, a timing magnet 16, bearings 18, a motor shaft 20, a Hall
Effect or like switch device 22 mounted on the circuit board 12, a laminated iron core stator
member 24 and coils 26 such as bifilar coils mounted on the cross portion 28 of the
15 laminated stator core 24 as shown. The timing magnet 16 extends to closely adjacent to the
Hall Effect switch device 22. The circuit for the motor 10 shown in Figs. 1 and 2 is set forth
in Fig. 3 and defines a self starting controllable synchronous motor which operates
synchronously at the frequency of the alternating current input or at some submultiple
thereof. The subject motor operates by opening and closing the switch or Hall Effect device
20 22 in response to the position of the timing device 16.
Fig. 3 shows the circuit for the subject motor including a standard bridge rectifier
circuit 30 formed by four diodes Dl, D2, D3 and D4 connected as shown. The bridge circuit
30 can be composed of discrete components as shown or it can be a single four pin integrated
bridge circuit. The type of bridge circuit selected for the motor will depend upon factors such
25 as cost. The circuit also includes resistors Rl and R2 which may be of conventional construction such as being lλ watt resistors. The resistors Rl and R2 supply gate biasing
voltages to the gate elements of SCRs 1 and 2 connected into the circuit as shown. The
values selected for the resistors Rl and R2 will determine the firing angles of the SCRs. The
stator core of the present device is a laminated iron member with leg portions 32 and 34 and
5 connecting portion 28 on which are mounted coils 26; designated as coils LI and L2. The
stator windings may be bifilar wound in order to reduce the number of electrical components
required to switch the magnetic polarity of the stator, by half. A bifilar winding is one were
the two winding portions are laid down at the same time so that they both have the same
diameter. They also have the same magnetic characteristics. This is to be distinguished from
o two windings, one wound on top of the other where the outer coil has a larger diameter than
the inner coil. A bifilar winding has different characteristics than coils where one is located
on top of the other. The dots shown next to the windings LI and L2 in Fig. 3 indicate the
beginning ends of the respective coils LI and L2 as they are wound. Physically the coils are
next to each other on the spool or other device on which they are wound or mounted.
5 Associated with each of the windings LI and L2 is a respective diode D5 and D6 connected
in parallel therewith as shown. The diodes D5 and D6 are back diodes and are included to
cancel any electromotive force (EMF) induced from the coils LI and L2 or vice versa and
also are included to cancel the back EMF due to switching between the coils LI and L2. This
is done to assure that the SCRs will turn off in the absence of gate current. Other resistors R3
0 and R4 are connected to the cathodes of the respective SCRl and SCR2 and are provided to
return the respective SCR gates and the cathodes of the respective SCRs to non-conducting
condition as required. Other diodes D7 and D8 are included as blocking diodes and are
connected between the respective resistors Rl and R2 and the gates of the SCRl and SCR2.
The circuit also includes a zener diode ZD1 that provides two functions including
providing a regulated supply voltage for the Hall Effect switch SI and raises the potential of voltage on the cathodes of the SCRs to a value above the negative voltage supplied by the
bridge circuit 30 by an amount equal to the voltage value established by the zener diode.
This is done to assure turn off of the SCRs when turn off is required. A capacitor C2 is also
provided and is connected as a by-pass around a portion of the Hall Effect device SI . The
capacitor C2 prevents oscillation of the Hall Effect device due to electrical noise, and the low
current load coupled with the internal capacitance which the resistor Rl is presented to the
open collector output of the Hall Effect device SI.
The bridge circuit 30 converts the alternating current input to a pulsating dc which has
the same frequency as the input ac. The pulsating dc varies between zero volts and the peak
voltage applied to the inputs at the same frequency as the ac input. The coil portions LI and
L2 are respectively connected in series with SCRl and SCR2. The two coils LI and L2 and
the respective SCRl and SCR2 are wired into parallel circuits as shown, and the parallel
circuits are in series with the zener diode ZD1. The coil LI is referred to as the start winding
and the coil L2 is referred to as the finish winding. Both are connected to the positive output
of the bridge circuit 30. In this regard, it should be noted that the output of the bridge circuit
varies from zero volts to the peak input value of the input AC voltage, and therefore is not a
steady state positive voltage. This is important to recognize.
The start winding LI is connected to the anode of SCRl and the finish winding L2 is
connected to the anode of SCR2. The cathodes of both SCRl and SCR2 are connected to the
cathode of the zener diode ZD1 and the anode of the zener diode ZD1 is connected to the
negative output side of the bridge 30. Back diodes D5 and D6 are in parallel respectively
with the coils LI and L2 and are provided to cancel any back EMF due to switching. Since
the windings LI and L2 are energized in opposite directions through the respective SCRs, if
SCRl is triggered into conduction, the coil LI will provide an opposite magnetic polarity in
the stator than when the coil L2 is triggered into conduction by SCR2. If both SCRl and SCR2 were triggered into conduction at the same time, which can't
happen, the magnetic field in the stator would be zero. In the particular construction shown
only one of the SCRs is allowed to be conducting at any given time. If SCRl is conducting
then the stator is of the opposite magnetic polarity of what it would be when SCR2 is
5 conducting. To prevent both SCRl and SCR2 from conducting at the same time, SCR2 is
connected in such a manner that it is a slave to SCRl . The gate current to turn on SCR2 is
derived from a circuit path through LI, R2, and D8. Thus when SCRl is conducting, the
potential at the junction of LI and R2 will generally be somewhat higher than the voltage
drop across the diode D7, and if this is true then SCR2 can not be triggered into conducting
10 while SCRl is conducting. There are short periods of time however, when the output from
the bridge circuit 30 crosses zero volts and where the possibility exists that either SCRl or
SCR2 could go into the conducting condition. This is prevented from happening by making
the conduction angle slightly greater for SCR2 than for SCRl which means that SCRl will
go into a conducting condition earlier in the cycle than SCR2, and SCR2 therefore can not go
15 into a conducting condition unless SCRl is turned off by the Hall Effect device SI.
The Hall Effect device SI is located on the circuit panel 12 and is positioned adjacent
to the two pole permanent magnet timing device 16, see Figs. 1 and 2. The timing device 16
is mounted on the rotor shaft 20 and rotates with the rotor. The timing device 16 has a
peripheral permanent magnet ring portion formed by north and south pole portions 16A and
20 16B. The number of poles on the rotor determines the number of poles on the member 16.
A two pole rotor, for example, will have a two pole stator and a timing ring composed of two
portions including a north pole portion of 180° and a south pole portion also of 180°. The
Hall Effect device S 1 has an open connector output 40 which conducts when the polarity of
the magnetic timing device 16 adjacent thereto has a specific polarity. The open connector
25 output 40 of the Hall Effect device SI in combination with the resistor Rl and the diode D7 determines, by the angular position of the timer 16, whether SCRl will be in a conducting
condition or in a non conducting condition. Since SCR2 is a slave to SCRl, the state of
SCR2 will always be the opposite of the state of SCRl . Therefore, during a single rotation of
a two pole synchronous motor such as the motor 10, SCRl will be conducting for 180° and
SCR2 will be conducting for the remaining 180°. The Hall Effect device SI effectively
"channels" all of the pulses from the bridge circuit 30 to SCRl or SCR2 depending on the
angular position of the rotor 14 and the timer 16 until the rotor 14 reaches synchronous speed
and locks to the pulsating dc.
Both SCRl and SCR2 turn off every time a pulse from the bridge circuit 30 crosses
zero volts and remain off for a short interval after the zero crossing. The state of the Hall
Effect device S 1 , depending upon the angular position of the magnetic timing member 16,
determines which SCR is on and which is off. The shortest time that a SCR can conduct in a
pulsating dc circuit is the time from zero crossing to zero crossing minus the firing angle. For
a sixty cycle input applied to the input of the bridge circuit 30, this time will be about .008
seconds. If the firing angle is 10° the time prior to firing would be approximately .0005
second and the total conduction time would be .008 - .0005 or .0075 second. One of the
novelties of the present circuit is that when the circuit is used with a synchronous motor (a
motor that has an equal number of stator and rotor poles) the amount of time the gate circuit
is maintained during each cycle of pulsating dc does not exceed the time period of one cycle
of the pulsating dc. When the frequency of the Hall Effect device SI is equal to the
frequency at the input of the bridge circuit 30, the rotor will lock onto that frequency.
It is important to recognize that with the present motor during start up the motor is
similar to a dc motor except that pulsating dc power is applied rather than a steady state dc
power. When the speed of the motor in revolutions per second (RPS) is equal to the
frequency of the ac power applied to the input of the bridge circuit 30, the motor locks to the input frequency and for all practical purposes the Hall Effect device could be removed or
switched off because the motor now acts as a synchronous motor. If during synchronous
operation a load is applied that is sufficient for the rotor to lose its lock on condition then the
Hall Effect device SI will have a frequency that is less than the input frequency and the
motor will again behave as a dc motor and rotation will depend upon the Hall Effect device to
channel the incoming pulses to the proper stator coil LI or L2 until the rotor again reaches
synchronous speed.
Referring to Fig. 5 there is shown another form of control circuit 50 which is for a
quarter wave operation at 60 cycles. The circuit 50 is connected across a single coil 52 and
the circuit includes a pair of oppositely polarized silicon controlled rectifiers (SCRs) 54 and
56 connected as shown. The gate electrodes 58 and 60 of the SCRs 54 and 56 are connected
together through resistors 62 and 64. The common connection 66 between the resistors 62
and 64 is connected through another resistor 68 to one of the common connections 70
between the SCRs 54 and 56. The common connection 70 is connected to one side of the
input voltage source 72 by lead 74. The opposite sides of the SCRs 54 and 56 at common
connection 76 are connected to one side of the coil 52, the opposite side being connected to
the other side 78 of the input power source 72. The input power source 72 can be any
alternating current input such as a 60 cycle input source from a wall plug or the like. A
normally open switch (or sensor) 80 is connected into the circuit 50 between the common
side 66 of the resistors 62 and 64 and the common connection 76 on one side of the SCRs.
When the switch 80 is closed it places the resistor 68 across the SCRs 54 and 56 and in affect
establishes an ac voltage across the coil 52. This is the condition that is established when the
rotor is not rotating or is rotating at less than synchronous speed. As the rotor rotates the
switch 80 will open and close on alternate half cycles of rotor rotation and will establish a synchronous speed for the rotor depending upon the frequency of the input voltage between
connections 74 and 78. The circuit shown in Fig. 5 is a quarter wave circuit.
The coil 52 can be mounted on the connecting core portion 28 of the stator 24 such as
shown in Fig. 1 of the drawing. In this construction it is contemplated that the peripheral
permanent magnet portions of the rotor will be tapered from end to end around the
circumference thereof as shown in Fig. 6. The circuit 50 shown in Fig. 5 operates basically in
the same way as the circuit shown in Fig. 3 in that the rotor is self starting and works its way
up to synchronous speed where it locks on and remains rotating unless and until the speed is
drawn down under load or for some other reason and then returns to pulsating dc control to
build up the speed to synchronous speed.
It is apparent that many different circuits and circuit elements can be used in place of
circuits and circuit elements shown is Fig. 3. For example, the Hall Effect device could be
replaced by a traic. a reed switch, optical means responsive to the position of the rotor,
transistor devices, or MOSFETS. The SCRs could also be replaced by equivalent controlled
circuit elements including by MOSFETS or the like. By properly timing the timer element 16
on the shaft 20, it is also possible to reverse the direction of rotation of the rotor.
Furthermore, since the subject motor operates as a synchronous motor except during starting
and stopping, by selecting the desired frequency for the input alternating current source it is
possible to have the subject motor operate at different synchronous speeds. The synchronous
speed can also be controlled by selecting the number of poles for the subject motor.
The Hall Effect device 22 located on the motor in the place indicated in Figs. 1 and 2
can be mounted on swivel means to enable it to be moved backward and forward to change
the operation of the motor. In one position of the Hall Effect device 22, the motor can be
made to operate in one direction and in a different position, the motor can be made to operate
in the opposite direction of rotation. The two separate Hall Effect devices could also be mounted on the circuit plate 12
and switch means can be provided to switch between one or the other in order to change the
direction of rotation.
Also shown in Fig. 3 is a motor breaking control means shown as switch 90 which is
5 connected across the capacitors C2 associated with the Hall Effect device SI . By closing the
switch 90 manually the motor can be braked or brought to a stop. The manual switch 90 can
be replaced by a switch 90 A connected across the same capacitors C2 but controlled by
external means such as by means in another circuit.
Fig. 7 is a block diagram of the electrical controls 100 for the subject motor. The
o electrical controls include a power switching circuit 102 which is connected in series between
an input alternating power current source and motor field coil 104. The motor field coil 104
can be mounted on a stator such as the laminated stator 24 shown in Figs. 1 and 2. The
power switching device 102 is controlled by an electronic control circuit 106 which in turn is
controlled by a sensor device such as the sensor 108 which may take the form of a Hall Effect
5 switch, an optical device and so forth. The circuit 106 controls the current flow through the
coil 104 and the operation of the motor. Current flow through the coil 104 in one direction
occurs when the one side of the line voltage is in its positive half cycle and the opposite side
of the line is in its negative half cycle, and current flows through the coil 104 in the opposite
direction when the line voltage on the same one side of the input is negative and the opposite
side of the line is positive. The direction of current flow is controlled by rotor position as
determined by the sensor such as by the Hall Effect sensor described above and by the
number of cycles of current that are allowed to flow in a given direction based on the rotor
speed which is also determined by the operation of the sensor. Fig. 8 shows an alternating current input voltage source in the top diagram and it
shows the current flow through the coil in one direction during positive half cycles and
current flow through the coil in the opposite direction during the alternate half cycles.
Fig. 9 is a circuit diagram of one form of the control circuit 106 and the associated
5 sensor device. In Fig. 9 the alternating current input source 1 10 is connected across a diode
bridge circuit similar to the circuit 30 shown in Fig. 3. The stator coil 104 is connected
between the opposite sides of the input alternating current source 1 10 through controlled
rectifier circuits 1 12 and 1 14. The circuit 112 includes a silicon controlled rectifier 1 16 that
has its anode and cathode connected in parallel across a diode 118 and the controlled rectifier
10 1 14 includes a silicon controlled rectifier 120 in parallel with another diode 122. The gates of
the SCRs 116 and 120 are connected to control circuits which include respective diodes 124
and 126 and resistors 128 and 130. The opposite sides of the resistors 128 and 130 are
connected to the collector electrodes of respective transistors 132 and 134. The transistor 134
is a light sensitive transistor or phototransistor that responds to light impinging thereon from
15 a light emitting diode as will be described. The transistors 132 and 134 are connected into a
resistance circuit which biases the transistors into predetermined operating conditions which
enable the transistor 134 to conduct when light impinges thereon during alternate half cycles
of operation, and this enables the transistor 132 to conduct. The transistor 134 can be
substituted for by a Hall Effect device or a suitable MOSFET. Only one of the controlled
0 rectifier circuits 112 or 114 will be turned on at a time and during alternate half cycles to
control the conducting conditions of the transistors 132 and 134. The motor circuit shown in
Fig. 9 is similar in some respects to the motor circuits shown in Fig. 3 except that it requires
only one motor coil 104.
The circuit of Fig. 10 is similar to the circuit of Fig. 9 but differs therefrom in that the
5 coil 104A is connected across the alternating current source through a circuit which includes back-to-back silicon controlled rectifiers 150 and 152. Each of the SCRs 150 or 152
conducts during alternate half cycles of the input energy source and the one that is conducting
establishes the direction of current flow through the coil 104A. For example, when the SCR
150 conducts, current will flow through the coil 104A in one direction and when the SCR 152
5 conducts current will flow through the coil 104A in the opposite direction. In the circuit of
Fig. 10, the gate electrodes of the SCRs 150 and 152 are connected respectively through
diode resistor circuits to one side of respective transistors 154 and 156. The transistor 156,
like the transistor 124, is responsive to light impinging thereon during alternate half cycles.
The circuit shown in Fig. 10 operates similarly to the circuit shown in Fig. 9 but represents a
o different embodiment.
Fig. 1 1 shows an alternate embodiment for the controlled rectifier circuits 1 12 and
1 14 in Fig. 9. For example, the circuit 112 can be replaced by a power MOSFET as shown in
Fig. 11 and the circuit 114 can similarly be replaced by a power MOSFET. In this case, each
of the replacement circuits will require an additional diode and resistor connected as shown.
5 Fig. 12 shows an alternate circuit for the SCRs 150 and 152 in circuit 10. In this case,
each of the SCRs is replaced by a power MOSFET connected as shown with an additional
diode and resistor.
It is also contemplated to connect a light emitting diode in the circuit between one
side of the input power source 110 and one side of the bridge circuit 30.
In Figs. 13 and 14 a circuit is shown connected into the lead on one side of the input
alternating current source. The circuit in this case includes a zener diode 160 connected in
parallel with a light emitting diode 162 and a resistor 164, the light produced by the light
emitting diode 162 during alternate current voltage will be projected onto the phototransistor
134 (or 156) to produce the desired action required to cause conduction therein. It will become apparent that many other variations in circuit substitutions could be made in the
present device and as such as contemplated.
In Figs. 9 and 10 there are certain resistors that are showed connected across the
transistors 132, 134, 154 and 156. These resistors can be replaced by zener diodes such as
3.3 volt zener diodes connected with their anodes at the upper ends as shown of the respective
transistors. Such zener diodes may provide a somewhat more stable operating condition than
the resistors in certain applications.
Thus there has been shown and described several embodiments of a novel self starting
controllable synchronous motor which operates off of an alternating current input and fulfills
all of the objects and advantages sought therefor. It will be apparent, however, that many
changes, variations, modifications and other uses and applications for the subject device are
possible and all such changes, variations, modifications and other uses and applications
which do not depart from the spirit and scope of the invention are deemed to be covered by
the invention which is limited only by the claims which follows.

Claims

What is claimed is:
1. A self starting controllable synchronous motor comprising:
a rotor mounted for rotation about an axis thereof, said rotor having a segmented
peripheral portion formed of permanently magnetized material arranged so that the north pole
on one segment of the peripheral portion of said material is adjacent to the outer periphery of
the rotor and the south pole on another segment is adjacent to the outer periphery of the rotor,
a stator formed of a laminated magnetizable material having a first portion adjacent to
one side of the rotor, a second portion adjacent to the opposite side of the rotor and a portion
connecting the first and second portions,
a coil mounted on the connecting portion of the stator, and
a control circuit connected to said coil for energizing the coil to cause rotational
movement to take place in the rotor, the circuit means including a rectifier circuit having an
input connected to an alternating current source of energy and an output on which a pulsating
direct current appears, a pair of parallel connected circuits each including a respective
controllable rectifier device in series with the coil, each controllable rectifier having a control
gate, circuit means connected to the gates of each controllable rectifier for controlling the
conducting condition thereof, said last name circuit means including a switching device
operable open and closed to enable a selected one of controllable rectifiers only to be in a
conducting condition at a time.
The motor of claim 1 wherein the switching device includes a Hall Effect
switching device.
3. The motor of claim 1 wherein the controllable rectifiers are silicon controlled
rectifiers.
4. The motor of claim 1 wherein the controllable rectifiers are traics.
5. A self starting controllable synchronous motor comprising: - lo -
a rotor mounted for rotation about an axis thereof, said rotor having a segmented
peripheral portion formed of permanently magnetized material arranged so that the north pole
on one segment of the peripheral portion of said material is adjacent to the outer periphery of
the rotor and the south pole on another segment is adjacent to the outer periphery of the rotor,
a stator formed of a laminated magnetizable material having a first portion adjacent to
one side of the rotor, a second portion adjacent to the opposite side of the rotor and a portion
connecting the first and second portions,
a pair of coils mounted on the connecting portion of the stator, and
circuit means connected to said coils for energizing the coils to cause rotational
movement to take place in the rotor, the circuit means including a bridge circuit having an
input connected to an alternating current source of energy and an output on which a pulsating
direct current appears, a pair of parallel connected circuits each including a respective one of
the coils of the pairs of coils, a respective diode in parallel therewith and a controllable
rectifier in series therewith, each controllable rectifier having a gate, means connected to the
gate of each controllable rectifier for controlling conducting condition thereof, said means
including means to enable a selected one of the controllable rectifiers only to be in the
conducting condition at a time, said last name means including a switching device.
6. The motor of claim 5 wherein the means to enable a selected one of
controllable rectifiers to be in a conducting condition at a time includes a Hall Effect
switching device.
7. The motor of claim 5 wherein the pair of coils include coils that are bifilars
wound to minimize electromagnet induction therebetween.
8. The motor of claim 5 wherein the switching device that enables a selective one
of the controllable rectifiers only to be in a conducting condition at a time includes an optical system having a phototransistor and an associated light emitting diode mounted respectively
on the stator and on the rotor.
9. The motor of claim 5 wherein the switching device that enables a selected one
of the controllable rectifiers only to be in a conducting condition at a time includes an optical
interrupter device.
10. The motor of claim 5 wherein the switch means to enable a selected one of the
controllable rectifiers only to be in a conducting condition at a time includes a reed switch.
1 1 . The motor of claim 5 wherein the controllable rectifier devices are traics.
12. The motor of claim 5 wherein the controllable rectifier devices are MOSFETS.
13. An alternating current motor having a rotor rotatable about an axis and
including a peripheral portion formed of permanently magnetized material, the material on
one portion of the periphery of the rotor having a north magnetic pole adjacent to the outer
periphery thereof and the material on the other portion of the periphery of the rotor having a
south magnetic pole adjacent to an outer periphery thereof.
a stator core having spaced leg portions positioned respectively adjacent opposite
sides of the rotor, said stator core being instructed of a laminated magnetizable material and
having a portion connecting the leg portions,
first and second bifilar wound coils mounted on the connecting portion of the stator
core,
timing magnet mounted for rotation with the rotor adjacent one side thereof, said
timing magnet having a peripheral portion formed of permanently magnetized material, one
portion of which has a north magnet pole adjacent the periphery thereof and another portion
which has a south magnetic pole adjacent to the periphery thereof,
a circuit panel mounted on the motor adjacent one side of the stator core, said circuit
panel having circuit elements mounted thereon including a Hall Effect device positioned to - 1 o -
extend to closely adjacent to the timing magnet for responding to the polarity of the
peripheral portion thereof adjacent thereto, and
circuit means for energizing the motor including a bridge circuit having a pair of input
connections for connection across an alternating current energy source, a pair of output
connections on which a pulsating dc voltage occurs which has a frequency equal to twice the
frequency of the input energy source, the circuit means further including a first circuit
including the first coil of the bifilar coils in parallel with a first diode and the combination in
series with a controllable rectifier device, a second circuit including the second coil of the
bifilar coils in parallel with a second diode and the combination in series with a second
controllable rectifier device, and other circuit means including means for controlling the
gating of the controllable rectifier devices to enable only one of the controllable rectifier
devices to be in a conducting condition at a time, said last name means including respective
resistor and diode devices connected to the gates of the controllable rectifier devices, said
Hall Effect device controlling which of the controllable rectifier devices is in a conducting
condition.
14. The motor of claim 13 wherein the controllable rectifier devices include
silicon controlled rectifiers.
15. The motor of claim 13 wherein the controllable rectifier devices include traics.
16. The motor of claim 13 wherein the controllable rectifier devices include
transistors.
17. The motor of claim 13 wherein the controllable rectifier devices include
MOSFETS.
18. An alternating current motor comprising a rotor having a peripheral portion
formed in part of north and in part of south pole permanent magnet material adjacent to the
periphery thereof, means mounting the rotor for rotation about an axis thereof,
a stator having stator core formed of laminated magnetizable material having spaced
first and second leg portions positioned respectively adjacent opposite sides of the rotor, a
portion of the stator core bridging the leg portions and connected therebetween,
5 a pair of coils mounted on the connected portion of the stator core and oriented to
have their windings mounted in oppositely extending directions,
circuit means connected to the coils of said pair for energizing same including a diode
bridge circuit having an input connected to an alternating current source and an output where
pulsating dc appears, and
o means connecting the output of the bridge circuit to energize the coils of said pair in a
manner to cause the rotor to rotate, said last name means including a first circuit including
one of the pair of coils in parallel with a diode and the combination in series with a
controllable rectifier, a second circuit including the other of the pair of coils in parallel with a
second diode and the combination in series with another controllable rectifier, and means to
5 selectively gate the controllable rectifiers so that only one of the rectifiers is able to be in a
conducting condition at any one time, said last name means including switching means
responsive to predetermined positions of the rotor during rotation thereof.
19. The motor of claim 18 wherein said switching means responsive to
predetermined positions of rotor during rotation thereof include a member mounted for
0 rotation with the rotor and having a peripheral portion of permanently magnetized material
segmented into north and south poles adjacent different portions of the periphery thereof and
a Hall Effect device positioned adjacent to said rotatable member in position to respond to the
different segmented peripheral pole portions thereof.
20. The motor of claim 18 wherein said pair of coils are bifilar wound.
5
21 . An alternating current motor comprising a rotor having a peripheral portion
formed in part of north and in part of south pole permanent magnet material adjacent to the
periphery thereof. shaft means for mounting the rotor for rotation,
5 a stator having a stator core formed of laminated magnetizable material having spaced
first and second leg portions positioned respectively adjacent opposite sides of the rotor in
positions to magnetically interact therewith in certain positions of the rotor, a portion of the
stator core connected between the leg portions.
a pair of coils mounted on the connected portion of the stator core and oriented to
o have their windings in oppositely extending directions.
circuit means connected to the coils of said pair for energizing same including a diode
bridge circuit having an input connected to an alternating current source and an output where
pulsating dc appears in the form of positive going pulses with negative going spikes between
each pair of adjacent pulses, and
5 means connecting the output of the bridge circuit to energize the coils of said pair in a
manner to cause the rotor to rotate, said last name means including means for selectively
passing current from the output of the bridge circuit through the respective coils of said pair
of coils including means to limit current flow through the coils of said pair to one coil at a
time.
0 22. The motor of claim 21 wherein the means to pass current from the bridge
circuit through a respective one of said coils of said pair of coils includes a controllable
rectifier device connected in series respectively with each of the coils of the pair of coils, and
means to control the controllable rectifier devices.
23. The motor of claim 22 wherein one of the controllable rectifier devices is a
5 slave to the other and therefore can not conduct current when the other is conducting.
24. An alternating current motor comprising a stator having a pair of opposed leg
portions, a rotor positioned between the leg portions and mounted for rotation, a stator
portion connected between the leg portions, a motor field coil mounted on the connected
stator portion, circuit means including a switching device in series with the motor field coil
5 connected across a source of alternating input energy, and means to control the opening and
closing of the switch means including a control circuit and means for controlling the switch
means to cause current to flow through the motor field coil in opposite directions on alternate
half cycles of the alternating current input.
25. The motor of claim 24 wherein the switch means includes oppositely polarized
o controllable rectifiers device and means to reverse the connection thereof in series with the
motor field coil to cause current to flow through the motor field coil in opposite directions on
alternate half cycles of the alternating current input, said last name means including sensor
means for sensing the occurrence of alternate half cycles of the alternating current input to
reverse the polarity of the controlled rectifiers and the direction of current flow through the
5 motor field coil.
26. The motor of claim 25 wherein the means for reversing the the polarity of the
controlled rectifiers and the direction of current flow through the motor field coil includes a
phototransistor connected into the circuit of one of the controllable rectifier devices and a
photo emitting diode in optical communication with the phototransistors for producing output
light on alternate half cycles of alternating current input.
27. The motor of claim 1 wherein the switching device has an associated braking
switch which when operated causes the motor to brake.
PCT/US1996/003116 1995-03-16 1996-03-07 Self-starting controllable ac motor WO1996028874A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU53037/96A AU5303796A (en) 1995-03-16 1996-03-07 Self-starting controllable ac motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US40292795A 1995-03-16 1995-03-16
US08/402,927 1995-03-16

Publications (1)

Publication Number Publication Date
WO1996028874A1 true WO1996028874A1 (en) 1996-09-19

Family

ID=23593840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1996/003116 WO1996028874A1 (en) 1995-03-16 1996-03-07 Self-starting controllable ac motor

Country Status (2)

Country Link
AU (1) AU5303796A (en)
WO (1) WO1996028874A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1487085A1 (en) * 2003-06-13 2004-12-15 DUCATI ENERGIA S.p.A. Permanent magnet generator
CN110323907A (en) * 2019-01-31 2019-10-11 高宪立 Building block system stator disc, magneto and its method for control speed
EP3491723B1 (en) * 2016-07-28 2023-12-27 Pierburg Pump Technology GmbH An electrical device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3766456A (en) * 1970-06-04 1973-10-16 D Carow Rotating electrical machine
US4600864A (en) * 1984-02-01 1986-07-15 Sanyo Electric Co., Ltd. Easily restarted brushless DC motor
US4618806A (en) * 1985-02-11 1986-10-21 Rotron, Inc. Ironless, brushless DC motor with wave-winding
US4843296A (en) * 1986-06-23 1989-06-27 Kabushiki Kaisha Toshiba AC motor drive apparatus
US5053664A (en) * 1989-01-18 1991-10-01 Aisan Kogyo Kabushiki Kaisha Motor-driven fuel pump
US5107159A (en) * 1989-09-01 1992-04-21 Applied Motion Products, Inc. Brushless DC motor assembly with asymmetrical poles

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3766456A (en) * 1970-06-04 1973-10-16 D Carow Rotating electrical machine
US4600864A (en) * 1984-02-01 1986-07-15 Sanyo Electric Co., Ltd. Easily restarted brushless DC motor
US4618806A (en) * 1985-02-11 1986-10-21 Rotron, Inc. Ironless, brushless DC motor with wave-winding
US4843296A (en) * 1986-06-23 1989-06-27 Kabushiki Kaisha Toshiba AC motor drive apparatus
US5053664A (en) * 1989-01-18 1991-10-01 Aisan Kogyo Kabushiki Kaisha Motor-driven fuel pump
US5107159A (en) * 1989-09-01 1992-04-21 Applied Motion Products, Inc. Brushless DC motor assembly with asymmetrical poles

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1487085A1 (en) * 2003-06-13 2004-12-15 DUCATI ENERGIA S.p.A. Permanent magnet generator
US6943476B2 (en) 2003-06-13 2005-09-13 Ducati Energia S.P.A. Magneto generator for self-powered apparatuses
EP3491723B1 (en) * 2016-07-28 2023-12-27 Pierburg Pump Technology GmbH An electrical device
CN110323907A (en) * 2019-01-31 2019-10-11 高宪立 Building block system stator disc, magneto and its method for control speed
CN110323907B (en) * 2019-01-31 2020-08-21 高宪立 Building block type stator disc, permanent magnet motor and speed control method thereof

Also Published As

Publication number Publication date
AU5303796A (en) 1996-10-02

Similar Documents

Publication Publication Date Title
EP0851570B1 (en) A device for controlling a synchronous electric motor with a permanent magnet rotor
US5376866A (en) Motor controls, refrigeration systems and methods of motor operation and control
US5783916A (en) Apparatus and method for generating rotor position signals and controlling commutation in a variable reluctance electric motor
US5859519A (en) Single phase motor drive
US5125067A (en) Motor controls, refrigeration systems and methods of motor operation and control
US5513058A (en) DC link circuit for an electronically commutated motor
US4162435A (en) Method and apparatus for electronically commutating a direct current motor without position sensors
US4574225A (en) Apparatus for accommodating inductive flyback in pulsed motor windings
EP0847133A1 (en) A capacitively powered motor and constant speed control therefor
JPH0678583A (en) Electronic apparatus for starting of synchronous motor provided with permanent- magnet rotor
JPH0767381A (en) Drive controller and driving method for dc brushless motor
US11664750B2 (en) Multispeed alternating current motor
CA1197551A (en) Brushless direct current motor with magnetically operated commutating switch means
US4950960A (en) Electronically commutated motor having an increased flat top width in its back EMF waveform, a rotatable assembly therefor, and methods of their operation
US5710493A (en) Circuit and method for alternating current motor constructions
WO1996028874A1 (en) Self-starting controllable ac motor
KR100572164B1 (en) Commutation controller
CN204993125U (en) Motor element , integrated circuit who is used for motor drive , fan and pump
JP2002084725A (en) Motor and its control method
US4208623A (en) Chopping power supply for a bifilar stepping motor
US5486742A (en) Easily started DC motor apparatus
JP3230757B2 (en) Three-phase DC brushless motor
RU12633U1 (en) VENT MOTOR
JP4803115B2 (en) Single-phase DC brushless motor drive device
JPS61240868A (en) Controller of synchronous motor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AM AT AU BB BG BR BY CA CH CN CZ DE DK ES FI GB GE HU JP KE KG KP KR KZ LK LT LU LV MD MG MN MW MX NO NZ PL PT RO RU SD SE SI SK TJ TT UA US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA