WO1996027678A1 - Process for hydroxylating long-chain alkanes, fatty acids and other alkyl compounds - Google Patents

Process for hydroxylating long-chain alkanes, fatty acids and other alkyl compounds Download PDF

Info

Publication number
WO1996027678A1
WO1996027678A1 PCT/DE1996/000410 DE9600410W WO9627678A1 WO 1996027678 A1 WO1996027678 A1 WO 1996027678A1 DE 9600410 W DE9600410 W DE 9600410W WO 9627678 A1 WO9627678 A1 WO 9627678A1
Authority
WO
WIPO (PCT)
Prior art keywords
long
fatty acids
alkyl compounds
reductase
cytochrome
Prior art date
Application number
PCT/DE1996/000410
Other languages
German (de)
French (fr)
Inventor
Thomas Zimmer
Kristina Kaminski
Wolf-Hagen Schunck
Eva KÄRGEL
Ulrich Scheller
Stephan Mauersberger
Original Assignee
Max-Delbrück-Centrum für Molekulare Medizin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Max-Delbrück-Centrum für Molekulare Medizin filed Critical Max-Delbrück-Centrum für Molekulare Medizin
Publication of WO1996027678A1 publication Critical patent/WO1996027678A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0036Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on NADH or NADPH (1.6)
    • C12N9/0038Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on NADH or NADPH (1.6) with a heme protein as acceptor (1.6.2)
    • C12N9/0042NADPH-cytochrome P450 reductase (1.6.2.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0077Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14) with a reduced iron-sulfur protein as one donor (1.14.15)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids

Definitions

  • the invention relates to a process for the hydroxylation of long-chain alkanes and alkyl compounds, in particular fatty acids. It also relates to a vector for implementing this method.
  • the field of application of the invention is biotechnology, in particular the extraction of fatty acid oxidation products such as hydroxy fatty acids and long-chain dicarboxylic acids.
  • Monooxygenases of the cytochrome P450 type are common in organisms on the entire phylogenetic scale. They catalyze NAD (P) H- and 0_-dependent reactions in various biosynthetic and catabolic pathways.
  • NAD NAD
  • the primary sequences of more than 220 different P450 forms are currently known. These are combined into a superfamily based on characteristic sequence features (review by Nelson et al., DNA Cell Biol. 12 [1993] 1).
  • yeasts such as the alkane-utilizing species Candida maltosa (Vogel et al., Eur. J. Cell Biol. 57 [1992] 285) and in higher eukaryotes, the majority of the P450 forms are localized in the endoplasmic reticulum. The electron transfer required in the reaction cycle takes place via a membrane-based NADPH cytochrome P450 reductase. P450 and reductase components together form the active monooxygenase system.
  • Various strategies have been described in scientific publications and in the patent literature for the functional heterologous expression of such two-component systems (Murakami et al., DNA 5 [1986] 1; Urban et al., Biochem. Soc. Trans.
  • the CYP52 family is the most extensive P450 family in microorganisms.
  • 8 different alkane-inducible P450 forms have already been identified for the yeast C. maltosa, which differ significantly in their substrate specificity from various alkyl compounds (Schunck et al., DD-WP 271 339; Schunck et al., DD-WP 292 022) .
  • the associated reductase component was also cloned from this organism.
  • the object of the invention is achieved by monooxygenase systems which consist of cytochrome P450 and NADPH-cytochrome P450 reductase, which are expressed simultaneously in Saccharomyces.
  • the long-chain alkanes, fatty acids or alkyl compounds are brought into cultivation solutions from such genetically modified Saccharomyces, the expressed enzymes causing a regioselective hydroxylation. After the reaction, the hydroxylation products are separated off.
  • a preferred yeast species for the invention is Saccharomyces cerevisiae
  • a preferred enzyme system are cytochrome P450 forms of the CYP 52 family and Candida maltosa NADPH cytochrome P450 reductase.
  • the process is carried out at low temperature (30-40 ° C), the hydroxylation is usually largely complete after one hour. First of all, regioselective monohydroxylation occurs, predominantly at the terminal or subterminal carbon atom. The point of entry of the OH group is determined by the P450 form used and by the reaction time.
  • the monohydroxylated product is further hydroxylated during further cultivation.
  • hydroxy compounds hydroxycarboxylic acids or dicarboxylic acids are obtained.
  • ⁇ , ⁇ * -dicarboxylic acid is obtained from an alkane.
  • the respective turnover is checked by means of thin layer chromatography, the reaction is preferably terminated with acids, for example with dilute sulfuric acid, as soon as the desired product is formed in sufficient quantity.
  • the essence of the invention is the vector according to claim 7. It is based on the YEp ⁇ l vector and contains reductase cDNA between the restriction sites Sall and BamHI. A second
  • Expression cassette consisting of the GALIO promoter, the coding sequence of cytochrome P450 and the ADH1 terminator, is ligated into the restriction site Nrul of this vector. Starting materials and the structure of the vector are shown in Figure 1.
  • the process according to the invention is distinguished by high hydroxylation rates.
  • lauric acid is hydroxylated about 20 times faster than in the single expression of natural P450 forms, in which only a molar ratio of P450: reductase of approx. 32: 1 is given due to the low expression of the endogenous reductase (see Table 2).
  • CGGGATCCAAGGGAGAGCGTCGAC-3 'amplified, digested by means of restrictionases Kpn I and BamH I and ligated into the restriction sites Kpn I and BamH I of the vector pUCBM21 (Boehringer Mannheim).
  • the resulting vector is used to amplify the ADH1 terminator fragment which is primed from the vector pAAH5 (Ammerer, Meth. Enzym. in the BamH I / EcöR I location.
  • the Sal I site must finally be destroyed by digestion with EcöR V, treatment with T4 DNA polymerase and religation.
  • the restriction sites Sal I and BamH I the cDNAs of P450Cml and P450Cm2 are integrated between the GALIO promoter and the ADH1 terminator.
  • the microsomes obtained after P450 and reductase co-expression can increase the lauric acid hydroxylase activity by up to 20 times and increase the n- Hexadecane hydroxylase activity can be measured.
  • the increase in the reaction rate can be attributed to an optimized molar P450: reductase ratio, which is 1: 3 for coexpression, but only 32: 1 (YEp51Cml) or 14: 1 (YEp51Cm2) for single expression.
  • Fig. 1 Construction of plasmids for the simultaneous expression of cytochrome P450 forms and the NADPH cytochrome P450 reductase.
  • Each of the complete P450 expression cassettes can be cleaved from the vector pUCBM21-P450 using the restriction sites Asc I and Not I and ligated into the vector YEp ⁇ lR.
  • the specified restriction sites are: A - Asc I, B - BamH I, N - Not I, S- Sal I.
  • Fig.2 Thin-layer chro atographic analysis of the product pattern in the biotransformation of lauric acid using intact yeast cells.
  • the plasmids used to transform Saccharomyces cerevisiae and the reaction times are: YEp51 - 20 min (lanes 1 and 2), YEp51Cm2-R - 20 min (lanes 3 and 4), YEp51Cm2-R - 1.5 h (lanes 5 and 6 ).
  • the product analysis can be carried out separately according to cell pellet (lanes 1, 3 and 5) and supernatant (lanes 2, 4 and 6).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

A microbial hydroxylation process is disclosed for selectively oxidising regions of long-chain alkanes, fatty acids and other alkyl compounds. The process should be easy to carry out and produce good yields of oxidation products, in particular hydroxylated fatty acids and long-chain dicarboxylic acids. The object of the invention is to modify yeast by genetic engineering so that when it is cultivated it expresses the required enzymes. The disclosed process is characterised in that the long-chain alkanes, fatty acids and other alkyl compounds are treated with monooxygenase systems that consist of cytochrom P450 and NADPOH cytochrom P450 reductase, and the hydroxylation products are then separated. The monooxygenase systems are produced in the reaction mixture by simultaneous expression of their components in yeast, preferably saccharomyces cerevisiae. The invention relates essentially to a vector for modifying saccharomyces by genetic engineering. On the basis of the structure Yep 51, the vector contains reductase cDNA between the restriction sites Sa1K and BamHI and a second expression cassette bound in the restriction site NruI. The expression cassette consists of the GAL10 promoter, the sequence that codes for cytochrom P450 and the ADH1 terminator.

Description

Verfahren zur Hydroxylierung von langkettigen Alkanen, Fettsäuren und anderen AlkylverbindungenProcess for the hydroxylation of long chain alkanes, fatty acids and other alkyl compounds
Beschreibungdescription
Die Erfindung betrifft ein Verfahren zur Hydroxylierung von langkettigen Alkanen und Alkylverbindungen, insbesondere von Fettsäuren. Sie betrifft ferner einen Vektor zur Realisierung dieses Verfahrens. Anwendungsgebiet der Erfindung ist die Biotechnologie, insbesondere die Gewinnung von Fettsaure-Oxidationsprodukten wie Hydroxy-Fettsäuren und langkettigen Dicarbonsäuren.The invention relates to a process for the hydroxylation of long-chain alkanes and alkyl compounds, in particular fatty acids. It also relates to a vector for implementing this method. The field of application of the invention is biotechnology, in particular the extraction of fatty acid oxidation products such as hydroxy fatty acids and long-chain dicarboxylic acids.
Monooxygenasen vom Cytochrom P450-Typ sind in Organismen der gesamten phylogenetischen Skala verbreitet. Sie katalysieren NAD(P)H- und 0_-abhängige Reaktionen in verschiedenen biosynthetischen und katabolen Stoffwechselwegen. Zur Zeit sind die Primärseguenzen von mehr als 220 verschiedenen P450-Formen bekannt. Diese werden aufgrund charakteristischer Sequenzmerkmale zu einer Superfamilie zusammengefaßt (Obersicht bei Nelson et al., DNA Cell Biol. 12 [1993] 1).Monooxygenases of the cytochrome P450 type are common in organisms on the entire phylogenetic scale. They catalyze NAD (P) H- and 0_-dependent reactions in various biosynthetic and catabolic pathways. The primary sequences of more than 220 different P450 forms are currently known. These are combined into a superfamily based on characteristic sequence features (review by Nelson et al., DNA Cell Biol. 12 [1993] 1).
In Hefen, wie beispielsweise der alkanverwertenden Species Candida maltosa (Vogel et al., Eur. J. Cell Biol. 57 [1992] 285) und in höheren Eukaryoten ist die Mehrzahl der P450-Formen im Endoplasmatischen Retikulum lokalisiert. Der im Reaktionszyklus erforderliche Elektronentransfer erfolgt über eine ebenfalls membranständige NADPH- Cytochrom P450-Reduktase. P450- und Reduktase-Komponente bilden zusammen das aktive Monooxygenasesystem. Zur funktioneilen heterologen Expression derartiger Zwei- Komponenten-Systeme sind in wissenschaftlichen Publikationen und in der Patentliteratur verschiedene Strategien beschrieben worden (Murakami et al., DNA 5 [1986] 1; Urban et al., Biochem. Soc. Trans. 21 [1993] 1028; Pompon et al., FR-PS-2 679 249) Die enorme Vielfalt der P450-Formen verbunden mit einer jeweils individuellen Chemoselektivität bildet ein großes Potential für zukünftige Anwendungen bei der Synthese von Feinchemikalien. Dabei ist die von einigen P450-Formen erreichte hohe Regio- und Stereoselektivität der Substrathydroxylierung von besonderem Interesse, da vergleichbare Spezifitäten mit Methoden der organischen Chemie kaum bzw. nur mit hohem Synthese- und Präparationsaufwand zu erreichen sind.In yeasts, such as the alkane-utilizing species Candida maltosa (Vogel et al., Eur. J. Cell Biol. 57 [1992] 285) and in higher eukaryotes, the majority of the P450 forms are localized in the endoplasmic reticulum. The electron transfer required in the reaction cycle takes place via a membrane-based NADPH cytochrome P450 reductase. P450 and reductase components together form the active monooxygenase system. Various strategies have been described in scientific publications and in the patent literature for the functional heterologous expression of such two-component systems (Murakami et al., DNA 5 [1986] 1; Urban et al., Biochem. Soc. Trans. 21 [1993] 1028; Pompon et al., FR-PS-2,679,249) The enormous variety of P450 forms combined with individual chemoselectivity forms great potential for future applications in the synthesis of fine chemicals. The high regio- and stereoselectivity of substrate hydroxylation achieved by some P450 forms is of particular interest, since comparable specificities can hardly be achieved with methods of organic chemistry or only with great effort in synthesis and preparation.
Ein Beispiel dafür stellt die regioselektive Oxygenierung langkettiger Alkane, Fettsäuren und anderer Alkylverbindungen dar. Während bei der chemischen Oxidation bekannterweise der Angriff an tertiären und sekundären C-Atomen stark bevorzugt abläuft und zu einem Gemisch von Oxidationsprodukten führt, sind einige P450- Formen in der Lage, mit nahezu absoluter Selektivität eineAn example of this is the regioselective oxygenation of long-chain alkanes, fatty acids and other alkyl compounds. While chemical oxidation is known to attack tertiary and secondary carbon atoms with great preference and leading to a mixture of oxidation products, some P450 forms are capable , with almost absolute selectivity
Hydroxylierung von Fettsäuren in ω-Position, d.h. am primären C-Atom, zu katalysieren. P450-Formen mit dieser Spezifität kommen vor allem in alkanverwertenden Hefen wie C. maltosa und C. tropicaliε vor und gehören zur Familie CYP52 innerhalb der P450-Superfamilie (Übersicht bei Müller et al., In Frontier in Biotranεformation 4. K. Ruckpaul, H. Rein, eds., Akademieverlag, Berlin [1991] 87).Hydroxylation of fatty acids in the ω position, i.e. on the primary carbon atom. P450 forms with this specificity occur primarily in alkane-utilizing yeasts such as C. maltosa and C. tropicaliε and belong to the CYP52 family within the P450 superfamily (review by Müller et al., In Frontier in Biotranεformation 4. K. Ruckpaul, H . Rein, eds., Akademieverlag, Berlin [1991] 87).
Nach bisherigen Kenntnissen ist die Familie CYP52 die umfangreichste P450-Familie bei Mikroorganismen. So wurden für die Hefe C. maltosa bereits 8 verschiedene alkaninduzierbare P450-Formen identifiziert, die sich in ihrer Substratspezifität gegenüber verschiedenen Alkylverbindungen signifikant unterscheiden (Schunck et al., DD-WP 271 339; Schunck et al., DD-WP 292 022). Kürzlich gelang auch die Klonierung der zugehörigen Reduktase-Komponente aus diesem Organismus.To date, the CYP52 family is the most extensive P450 family in microorganisms. For example, 8 different alkane-inducible P450 forms have already been identified for the yeast C. maltosa, which differ significantly in their substrate specificity from various alkyl compounds (Schunck et al., DD-WP 271 339; Schunck et al., DD-WP 292 022) . Recently, the associated reductase component was also cloned from this organism.
Bisherige Versuche, die besondere Chemoselektivität von P450-Formen der CYP52-Familie zur Produktion von Alkan- und Fettsaure-Oxidationsprodukten insbesondere von Dicarbonsäuren zu nutzen, beruhen auf ihrer indirekten Nutzung in genetisch (Übersicht bei J. Schindler et al., Forum Mikrobiol. 5 [1990] 274) bzw. auch gentechnisch (Picataggio et al., Bio/Technology 10 [1992] 894) veränderten Candi da-Stämmen.Previous attempts, the particular chemoselectivity of P450 forms of the CYP52 family for the production of alkane and fatty acid oxidation products in particular The use of dicarboxylic acids is based on their indirect use in genetically modified (overview by J. Schindler et al., Forum Mikrobiol. 5 [1990] 274) and also genetically modified (Picataggio et al., Bio / Technology 10 [1992] 894) Candi da tribes.
Das Problem einer direkten Nutzung, nämlich hochaktive P450-Systeme zur regioselektiven Hydroxylierung von Fettsäuren und anderen Alkylverbindungen durch heterologe Expression in einem geeigneten Mikroorganismus zu etablieren, ist dagegen weitgehend ungelöst.The problem of direct use, namely to establish highly active P450 systems for the regioselective hydroxylation of fatty acids and other alkyl compounds by heterologous expression in a suitable microorganism, is largely unsolved.
Die Erfindung hat das Ziel, ein mikrobielles Hydroxylie- rungsverfahren zur regioselektiven Oxidation von langkettigen Alkanen, Fettsäuren und anderen Alkylverbindungen zur Verfügung zu stellen. Es soll in einfacher Verfahrensführung in guten Ausbeuten zu den Oxidationsprodukten, insbesondere Hydroxy-fettsäuren und langkettigen Dicarbonsäuren, führen. Der Erfindung liegt die Aufgabe zugrunde, Hefen gentechnisch so zu verändern, daß sie bei Kultivierung die notwendigen Enzyme exprimieren.The aim of the invention is to provide a microbial hydroxylation process for the regioselective oxidation of long-chain alkanes, fatty acids and other alkyl compounds. It is said to lead to the oxidation products, in particular hydroxy fatty acids and long-chain dicarboxylic acids, in good yields in a simple process. The object of the invention is to genetically modify yeasts so that they express the necessary enzymes when cultivated.
Die Aufgabe der Erfindung wird durch Monooxygenase-Systeme gelöst, die aus Cytochrom P450 und NADPH-Cytochrom P450 Reduktase bestehen, welche in Saccharomyces gleichzeitig expri iert werden. Die langkettigen Alkane, Fettsäuren bzw. Alkylverbindungen werden in Kultivierungslösungen von derart gentechnisch veränderten Saccharomyces gebracht, wobei die exprimierten Enzyme eine regioselektive Hydroxylierung bewirken. Nach der Umsetzung werden die Hydroxylierungsprodukte abgetrennt. Eine für die Erfindung bevorzugte Hefe-Spezies ist Saccharomyces cerevisiae, ein bevorzugtes Enzymsystem sind Cytochrom P450-Formen der CYP 52-Familie und Candida maltosa NADPH-Cytochrom P450- Reduktase. Die langkettigen Alkylverbindungen, insbesondere die Fettsäuren, werden erfindungsgemäß in Kulturen intakter Zellen (Zellsuspensionen) behandelt.Zur Hydroxylierung von Alkanen müssen dagegen Zellhomogenate der Hefekulturen hergestellt werden, weil die Alkane von den Zellen nicht aufgenommen werden können.The object of the invention is achieved by monooxygenase systems which consist of cytochrome P450 and NADPH-cytochrome P450 reductase, which are expressed simultaneously in Saccharomyces. The long-chain alkanes, fatty acids or alkyl compounds are brought into cultivation solutions from such genetically modified Saccharomyces, the expressed enzymes causing a regioselective hydroxylation. After the reaction, the hydroxylation products are separated off. A preferred yeast species for the invention is Saccharomyces cerevisiae, a preferred enzyme system are cytochrome P450 forms of the CYP 52 family and Candida maltosa NADPH cytochrome P450 reductase. The long-chain alkyl compounds, especially the fatty acids, are treated according to the invention in cultures of intact cells (cell suspensions). In contrast, for the hydroxylation of alkanes, cell homogenates of the yeast cultures have to be prepared because the cells cannot absorb the alkanes.
Die zu hydroxylierenden Stoffe werden den Zellkulturen in organischen Lösungsmitteln, bevorzugt in alkoholischer Lösung zugesetzt. In Falle von Fettsäuren können auch deren Salze in wäßriger Lösung zugesetzt werden.The substances to be hydroxylated are added to the cell cultures in organic solvents, preferably in alcoholic solution. In the case of fatty acids, their salts can also be added in aqueous solution.
Das Verfahren wird bei niedriger Temperatur (30-40 °C) durchgeführt, die Hydroxylierung ist im Regelfalle nach einer Stunde weitgehend abgeschlossen. Zunächst tritt in allen Fällen eine regioselektive Monohydroxylierung, überwiegend am terminalen oder subterminalen C-Atom, ein. Der Eintrittsort der OH-Gruppe wird von der eingesetzten P450-Form und von der Reaktionsdauer bestimmt.The process is carried out at low temperature (30-40 ° C), the hydroxylation is usually largely complete after one hour. First of all, regioselective monohydroxylation occurs, predominantly at the terminal or subterminal carbon atom. The point of entry of the OH group is determined by the P450 form used and by the reaction time.
Das monohydroxylierte Produkt wird bei weiterer Kultivierung weiter hydroxyliert. So werden je nach Verfahrensführung Hydroxyverbindungen, Hydroxycarbonsäuren oder Dicarbonsäuren erhalten. Bei maximaler Oxidation erhält man beispielsweise aus einem Alkan eine ω,ω*-Dicarbonsäure. Die Prüfung des jeweiligen Umsatzes wird mittels Dünnschichtchromatographie vorgenommen, ein Abbruch der Reaktion erfolgt bevorzugt mit Säuren, beispielsweise mit verdünnter Schwefelsäure, sobald das gewünschte Produkt in ausreichender Menge gebildet ist.The monohydroxylated product is further hydroxylated during further cultivation. Depending on the procedure, hydroxy compounds, hydroxycarboxylic acids or dicarboxylic acids are obtained. At maximum oxidation, for example, an ω, ω * -dicarboxylic acid is obtained from an alkane. The respective turnover is checked by means of thin layer chromatography, the reaction is preferably terminated with acids, for example with dilute sulfuric acid, as soon as the desired product is formed in sufficient quantity.
Kernpunkt der Erfindung ist der Vektor gemäß Anspruch 7. Er ist auf der Basis des YEpδl-Vektors aufgebaut und enthält Reduktase cDNA zwischen den Restriktionsorten Sall und BamHI. Eine zweiteThe essence of the invention is the vector according to claim 7. It is based on the YEpδl vector and contains reductase cDNA between the restriction sites Sall and BamHI. A second
Expressionskassette, bestehend aus dem GALIO-Promotor, der kodierenden Sequenz von Cytochrom P450 und dem ADH1- Terminator, ist in den Restriktionsort Nrul dieses Vektors einligiert. Ausgangsmaterialien und der Aufbau des Vektors sind in Abbildung 1 dargestellt.Expression cassette, consisting of the GALIO promoter, the coding sequence of cytochrome P450 and the ADH1 terminator, is ligated into the restriction site Nrul of this vector. Starting materials and the structure of the vector are shown in Figure 1.
Eine für die Durchführung der Erfindung wichtige Besonderheit des Vektors besteht darin, daß beide einligierten Gene unter der Kontrolle des gleichen Promotors stehen. Gegen die Erwartung werden P450 und Reduktase bei der Expression in einem Verhältnis von ungefähr 1:3 gebildet ("Überexpression"), ein Verhältnis, was bei der Hydroxylierung überraschenderweise zur optimalen Ausbeute führt.An important feature of the vector for the implementation of the invention is that both ligated genes are under the control of the same promoter. Contrary to expectations, P450 and reductase are formed in the expression in a ratio of approximately 1: 3 ("overexpression"), a ratio which surprisingly leads to the optimal yield in the hydroxylation.
Das erfindungsgemäße Verfahren zeichnet sich durch hohe Hydroxy-lierungsraten aus. So wird Laurinsäure um ca. das 20fache schneller hydroxyliert als bei der Einzelexpression von natürlichen P450-Formen, bei denen infolge der geringen Expression der endogenen Reduktase nur ein molares Verhältnis P450:Reduktase von ca 32:1 gegeben ist (vgl. Tabelle 2). The process according to the invention is distinguished by high hydroxylation rates. For example, lauric acid is hydroxylated about 20 times faster than in the single expression of natural P450 forms, in which only a molar ratio of P450: reductase of approx. 32: 1 is given due to the low expression of the endogenous reductase (see Table 2).
1. Verwendete DNA-Sequenzen1. DNA sequences used
Für die heterologe Koexpression von P450-Formen undFor the heterologous coexpression of P450 forms and
Reduktase werden folgende cDNAs benutzt:The following cDNAs are used for reductase:
CYP52A3 - P450Cml (Schunck et al., Biochem. Biophys. Res.CYP52A3 - P450Cml (Schunck et al., Biochem. Biophys. Res.
Commun. 161 [1989] 843)Commun. 161 [1989] 843)
CYP52A4 - P450Cm2 (Schunck et al., Eur. J. Cell Biol. 55CYP52A4 - P450Cm2 (Schunck et al., Eur. J. Cell Biol. 55
[1991][1991]
336; modifiziert nach Zimmer and Schunck, Yeast 11 [1995]336; modified from Zimmer and Schunck, Yeast 11 [1995]
33)33)
CPR - NADPH-Cytochr. P450-Reduktase aus Candida maltosaCPR - NADPH cytochrome. P450 reductase from Candida maltosa
(Kärgel et al. , 1993 - EMBL accession number X76226)(Kärgel et al., 1993 - EMBL accession number X76226)
2. Konstruktion eines geeigneten Vektors zur heterologen Koexpression von Cytochrom P450 und Reduktase2. Construction of a suitable vector for heterologous coexpression of cytochrome P450 and reductase
Die verwendeten Vektoren und wesentliche Schritte zur Konstruktion des Koexpressionsvektors sind in Abbildung 1 dargestellt.The vectors used and essential steps for the construction of the co-expression vector are shown in Figure 1.
In einem ersten Schritt werden in den Ausgangsvektor YEp51 (Broach et al., In Experimental Manipulation of Gene Expression. M. Inoye, ed., Academic Press, NY, [1983], pp. 83-117), in welchen die cDNA der NADPH-Cytochrom P450- Reduktase unter Nutzung der Restriktionsorte Sal I und BamR I integriert ist, ein Linker bestehend aus den beiden OligonucleotidenIn a first step, the starting vector YEp51 (Broach et al., In Experimental Manipulation of Gene Expression. M. Inoye, ed., Academic Press, NY, [1983], pp. 83-117), in which the cDNA of NADPH cytochrome P450 reductase is integrated using the restriction sites Sal I and BamR I, a linker consisting of the two oligonucleotides
5'-CGAGGCGCGCCTCGAGCGGCCGCTCG-3' und5'-CGAGGCGCGCCTCGAGCGGCCGCTCG-3 'and
3'-GCTCCGCGCGGAGCTCGCCGGCGAGC-5' in den Nru I-Ort einligiert. Diese Modifikation ist für den Einbau zweier unikaler Restriktionsorte zur Integration einer zweiten Expressionskassette notwendig (Asc I und Not I). Zur Konstruktion dieser zweiten Expressionseinheit bestehend aus dem GALIO-Promotor, der P450-Sequenz und dem ADHl-Terminator werden zunächst PCR-Reaktionen durchgeführt, um den GALIO-Promotor und den ADH1- Terminator zu erhalten. Der GALIO-Promotor wird dabei aus dem Vektor YEpδl mit den beiden Primern 5'- GGGGTACCGGCGCGCCTTACGACGTAGGATC-3' und 5'-3'-GCTCCGCGCGGAGCTCGCCGGCGAGC-5 'ligated into the Nru I site. This modification is necessary for the installation of two unique restriction sites to integrate a second expression cassette (Asc I and Not I). To construct this second expression unit consisting of the GALIO promoter, the P450 sequence and the ADHL terminator, PCR reactions are first carried out in order to obtain the GALIO promoter and the ADH1 terminator. The GALIO promoter is made from the vector YEpδl with the two primers 5'- GGGGTACCGGCGCGCCTTACGACGTAGGATC-3 'and 5'-
CGGGATCCAAGGGAGAGCGTCGAC-3' amplifiziert, mittels Restriktasen Kpn I und BamH I verdaut und in die Restriktionsorte Kpn I und BamH I des Vektors pUCBM21 (Boehringer Mannheim) einligiert. Der resultierende Vektor wird genutzt, um das ADH1-Terminatorfragment, welches mittels Primer 5'-CGCGGATCCGCTTTGGACTTCTTCGCC-3' und 5'- CGGAATTCGCGGCCGCCCGTGTGGAAGAACGATTAC-3' aus dem Vektor pAAH5 (Ammerer, Meth. Enzym. 101 [1983] 192) amplifiziert wird, in den BamH I / EcöR I - Ort einzusetzen. In dem neu entstandenen Vektor muß schließlich der Sal I - Ort mittels Verdau mit EcöR V, Behandlung mit T4 DNA Polymerase und Religation zerstört werden. Nun werden unter Nutzung der Restriktionsorte Sal I und BamH I die cDNAs von P450Cml bzw. P450Cm2 zwischen den GALIO-Promotor und den ADH1-Terminator integriert.CGGGATCCAAGGGAGAGCGTCGAC-3 'amplified, digested by means of restrictionases Kpn I and BamH I and ligated into the restriction sites Kpn I and BamH I of the vector pUCBM21 (Boehringer Mannheim). The resulting vector is used to amplify the ADH1 terminator fragment which is primed from the vector pAAH5 (Ammerer, Meth. Enzym. in the BamH I / EcöR I location. In the newly created vector, the Sal I site must finally be destroyed by digestion with EcöR V, treatment with T4 DNA polymerase and religation. Now, using the restriction sites Sal I and BamH I, the cDNAs of P450Cml and P450Cm2 are integrated between the GALIO promoter and the ADH1 terminator.
Als letzter Schritt erfolgt die Umklonierung der jeweiligen P450-Expressionseinheit in den Vektor YEp51R unter Nutzung der Restriktionsorte Asc I und Not I.As the last step, the respective P450 expression unit is recloned into the vector YEp51R using the restriction sites Asc I and Not I.
3. Transformation von Saccharomyces cerevisiae,3. transformation of Saccharomyces cerevisiae,
Kultivierung und ExpressionCultivation and expression
Mit den für die heterologe Koexpression konstruierten Plasmiden wird der Stamm Saccharomyces cerevisiae GRF18With the plasmids constructed for heterologous coexpression, the strain Saccharomyces cerevisiae GRF18
(α, his 3-11, his 3-15, leu 2-3, leu 2-112, canr) nach der Methode von Keszenman-Pereyra und Hieda (Curr. Genet. 13 [1988] 21) transformiert. Die erhaltenen Transfor anten werden in 500ml-Schüttelkolben in Hefe-Minimalmedium (1,34% YNB- yeast nitrogen base) mit Zusätzen von lmg/1 FeCl3, 100mg/l Histidin und 2% Raffinose bei einer(α, his 3-11, his 3-15, leu 2-3, leu 2-112, can r ) by the method of Keszenman-Pereyra and Hieda (Curr. Genet. 13 [1988] 21). The transformants obtained are in 500 ml shaking flasks in yeast minimal medium (1.34% YNB- yeast nitrogen base) with additions of 1 mg / 1 FeCl3, 100 mg / l histidine and 2% raffinose in a
Schüttelfrequenz von 240 rpm und einer Temperatur von 28 - 30 "C kultiviert. Nach Erreichen einer Zellzahl von 0,5 bis 1,0 x 108 Zellen pro ml erfolgt durch die Zugabe von 2% Galactose die Induktion des GAL10-Promotors und somit die simultane Expression von P450 und Reduktase. Eine Erniedrigung der Schüttelfrequenz und somit eine Verringerung des Sauerstoff-Gehaltes der Kultur wirkt sich positiv sowohl auf den P450 als auch auf den Reduktase- Gehalt aus. Unter optimierten Kultivierungsbedingungen (semianaerobes Wachstum bei einer Schüttelfrequenz von ca. 60 bis 80 rpm) können für beide Komponenten des P450- Monooxygenase-Systems die in Tabelle 1 dargestellten Expressionsraten erreicht werden (Werte in Klammern) . Das angegebene Kultivierungsregime kann auch dahingehend modifiziert werden, daß als kostengünstigere Kohlenstoffquelle Glucose verwendet wird (siehe Scheller et al., J. Biol. Chem. 269 [1994] 12779). Allerdings ist hierbei eine Induktion mit Galactose erst nach vollständigem Glucose-Verbrauch effektiv.Shaking frequency of 240 rpm and a temperature of 28-30 "C. After reaching a cell count of 0.5 to 1.0 x 10 8 cells per ml, the addition of 2% galactose induces the GAL10 promoter and thus the simultaneous expression of P450 and reductase Lowering the shaking frequency and thus reducing the oxygen content of the culture has a positive effect on both the P450 and the reductase content. Under optimized cultivation conditions (semi-anaerobic growth at a shaking frequency of approx. 60 to 80 rpm), the expression rates shown in Table 1 can be achieved for both components of the P450 monooxygenase system (values in brackets). The indicated cultivation regime can also be modified in such a way that glucose is used as the cheaper carbon source (see Scheller et al., J. Biol. Chem. 269 [1994] 12779). However, induction with galactose is only effective after complete glucose consumption.
4. Bestimmung der Hydroxylaseaktivität der mikrosomalen Membranfraktionen4. Determination of the hydroxylase activity of the microsomal membrane fractions
Zwecks Anreicherung von P450 und NADPH-Cytochrom P450 Reduktase in der mikrosomalen Membranfraktion wird zunächst die gewonnene Zeil-Biomasse abzentrifugiert und daraus die mikrosomale Membranfraktion durch mechanischen Zellaufschluß im Homogenisator (Dyno-Mühle) , differentielle Zentrifugation und anschließende Kalziumchloridfällung gewonnen. Der spezifische mikrosomale P450- bzw. Reduktase-Gehalt für die verschiedenen S. cerevisiae-Transformanten beträgt 260 - 760 pmol/mg Protein und ist in Tabelle 2 dargestellt. Die katalytische Aktivität bei der Hydroxylierung von radioaktiv-markierter Laurinsäure (C12:0) und n-Hexadekan durch ikrosomales P450Cml und P450Cm2 wird in einem Kaliumphosphat-Puffersystem (200 mM, pH 7.4) bestimmt, welches jeweils 1 μmol des entsprechenden Substrates, 0.2 - 0.5 nmol mikrosomales P450 pro ml Reaktionsansatz und die Komponenten eines NADPH-regenerierenden Systems (MgCl2, KC1, Glucose-6-phosphat und Glucose-6-phosphat- Dehydrogenase) beinhaltet. Die Enzymreaktion wird durch Zugabe von NADPH gestartet und je nach gewünschter Produktmenge/Produktprofil nach 5-30 minütiger Inkubation bei 30°C durch Zugabe von verdünnter Schwefelsäure gestoppt. Der Nachweis der durch Chloroform/Methanol- Extraktion gewonnenen und durch anschließende Dünnschicht-Chromatographie getrennten Produkte kann durch computergestützte Auswertung der Dünnschicht-Radiogramme in einem TLC-Linear-Analyzer-System erfolgen. Gegenüber den mikrosomalen Membranfraktionen aus Transformanten, in denen P450Cml und P450Cm2 heterolog ohne den Redoxpartner Reduktase exprimiert wird, kann in den nach P450- und Reduktase-Koexpression gewonnenen Mikrosomen eine bis zu 20fache Steigerung der Laurinsäurehydroxylase-Aktivität und eine bis zu lOfache Erhöhung der n-Hexadekanhydroxylase-Aktivität gemessen werden. Wie aus Tabelle 2 ersichtlich, ist die Erhöhung der Reaktionsgeschwindigkeit auf ein optimiertes molares P450:Reduktase-Verhältnis zurückzuführen, welches bei Koexpression 1:3, bei Einzelexpression jedoch nur 32:1 (YEp51Cml) bzw. 14:1 (YEp51Cm2) beträgt.For the enrichment of P450 and NADPH cytochrome P450 reductase in the microsomal membrane fraction, the cell biomass obtained is first centrifuged off and the microsomal membrane fraction is obtained therefrom by mechanical cell disruption in the homogenizer (Dyno-Mühle), differential centrifugation and subsequent calcium chloride precipitation. The specific microsomal P450 or reductase content for the various S. cerevisiae transformants is 260-760 pmol / mg protein and is shown in Table 2. The catalytic activity in the hydroxylation of radioactively labeled lauric acid (C12: 0) and n-hexadecane by icrosomal P450Cml and P450Cm2 is determined in a potassium phosphate buffer system (200 mM, pH 7.4), each of which has 1 μmol of the corresponding substrate, 0.2 - 0.5 nmol microsomal P450 per ml reaction mixture and the components of a NADPH-regenerating system (MgCl2, KC1, glucose-6-phosphate and glucose-6-phosphate dehydrogenase). The enzyme reaction is through Addition of NADPH started and, depending on the desired product quantity / product profile, stopped after 5-30 minutes of incubation at 30 ° C. by adding dilute sulfuric acid. The detection of the products obtained by chloroform / methanol extraction and separated by subsequent thin-layer chromatography can be carried out by computer-assisted evaluation of the thin-layer radiograms in a TLC linear analyzer system. Compared to the microsomal membrane fractions from transformants in which P450Cml and P450Cm2 are heterologously expressed without the redox partner reductase, the microsomes obtained after P450 and reductase co-expression can increase the lauric acid hydroxylase activity by up to 20 times and increase the n- Hexadecane hydroxylase activity can be measured. As can be seen from Table 2, the increase in the reaction rate can be attributed to an optimized molar P450: reductase ratio, which is 1: 3 for coexpression, but only 32: 1 (YEp51Cml) or 14: 1 (YEp51Cm2) for single expression.
5. Biotransformation von Fettsäuren mittels intakter Hefezellen5. Biotransformation of fatty acids using intact yeast cells
Zu einem ml einer induzierten Zellkultur (S. cerevisiae transformiert mit Plas id YEp51Cm2-R) , deren P450-GehaltTo a ml of an induced cell culture (S. cerevisiae transformed with Plas id YEp51Cm2-R), its P450 content
0,4 nmol beträgt, werden 200 nmol [l-14C]Laurinsäure (16,7 BMq/mmol) zugesetzt. Nach einer Inkubation von 20 min bzw. 1,5 h bei 30 °C (unter Schütteln) erfolgt mittels Zentrifugation (3000xg für 5 min) die Trennung von Zellpellet und wässrigem Überstand. Anschließend erfolgt die Extraktion von Pellet und Überstand wie bei Sanglard und Loper (Gene 76 [1989] 121) beschrieben sowie die Analyse der gebildeten Produkte mittels Dünnschicht- Chromatografie (siehe Abbildung 2). Die eingesetzte Gesamtmenge an Radioaktivität verteilt sich nach 20 min wie folgt: 35 % Hydroxy-Laurinsäure, 15% Dodekandisäure und 50 % Laurinsäure. 80% der gebildeten Produkte können im Überstand und 83% des verbliebenen Ausgangssubstrates im Zellpellet nachgewiesen werden.0.4 nmol, 200 nmol be added [l- 14C] lauric acid (16.7 BMQ / mmol). After an incubation of 20 min or 1.5 h at 30 ° C. (with shaking), the cell pellet and the aqueous supernatant are separated by centrifugation (3000 × g for 5 min). The pellet and supernatant are then extracted as described in Sanglard and Loper (Gene 76 [1989] 121) and the analysis of the products formed by means of thin layer chromatography (see Figure 2). The total amount of radioactivity used after 20 min is distributed as follows: 35% hydroxy lauric acid, 15% dodecanedioic acid and 50% lauric acid. 80% of the products formed can be detected in the supernatant and 83% of the remaining starting substrate in the cell pellet.
Nach einer Reaktionszeit von 1,5 h wird ein vollständigerAfter a reaction time of 1.5 h, a complete
Umsatz der Laurinsäure erreicht. Als hauptsächlichesSales of lauric acid reached. As the main one
Reaktionsprodukt tritt die Dodekandisäure auf.Reaction product occurs the dodecanedioic acid.
Bei der Verwendung eines KontrollStammes (Sacharomyces cerevisiae GRF18 transformiert mit Ausgangsplasmid YEp51) können keine Reaktionsumsätze beobachtet werden. No reaction conversions can be observed when using a control strain (Sacharomyces cerevisiae GRF18 transformed with starting plasmid YEp51).
LegendenLegends
Abb. 1. Konstruktion von Plasmiden zur simultanen Expression von Cytochrom P450-Formen und der NADPH- Cytochrom P450-Reduktase. Jede der vollständigen P450- Expressionskassetten kann unter Nutzung der Restriktionsorte Asc I und Not I aus dem Vektor pUCBM21- P450 herausgespalten und in den Vektor YEpδlR einligiert werden. Die angegebenen Restriktionsorte sind: A - Asc I, B - BamH I, N - Not I, S- Sal I.Fig. 1. Construction of plasmids for the simultaneous expression of cytochrome P450 forms and the NADPH cytochrome P450 reductase. Each of the complete P450 expression cassettes can be cleaved from the vector pUCBM21-P450 using the restriction sites Asc I and Not I and ligated into the vector YEpδlR. The specified restriction sites are: A - Asc I, B - BamH I, N - Not I, S- Sal I.
Abb.2. Dünnschicht-chro atografische Analyse des Produktmusters bei der Biotransformation von Laurinsäure mittels intakter Hefezellen. Die zur Transformation von Saccharomyces cerevisiae eingesetzten Plasmide sowie die Reaktionszeiten sind: YEp51 - 20 min (Spuren 1 und 2), YEp51Cm2-R - 20 min (Spuren 3 und 4), YEp51Cm2-R - 1,5 h (Spuren 5 und 6) . Die Produktanalyse kann getrennt nach Zellpellet (Spuren 1, 3 und 5) und Überstand (Spuren 2, 4 und 6) erfolgen. A - [1-14C]Laurinsäure; B - [1-Fig.2. Thin-layer chro atographic analysis of the product pattern in the biotransformation of lauric acid using intact yeast cells. The plasmids used to transform Saccharomyces cerevisiae and the reaction times are: YEp51 - 20 min (lanes 1 and 2), YEp51Cm2-R - 20 min (lanes 3 and 4), YEp51Cm2-R - 1.5 h (lanes 5 and 6 ). The product analysis can be carried out separately according to cell pellet (lanes 1, 3 and 5) and supernatant (lanes 2, 4 and 6). A - [1- 14 C] lauric acid; B - [1-
1 C]Dodekandisäure; C - [l-14C]Hydroxy-Laurinsäure. 1 C] dodecanedioic acid; C - [l- 14 C] hydroxy-lauric acid.
ERSATZBLÄTT(REGEL26) SPARE BLADE (RULE 26)

Claims

Patentansprüche claims
1. Verfahren zur Hydroxylierung von langkettigen Alkanen, Fettsäuren und anderen Alkylverbindungen, dadurch gekennzeichnet, daß die langkettigen Alkane, Fettsäuren oder anderen Alkylverbindungen mit Monooxygenase- Systemen, bestehend aus Cytochrom P450 und NADPH-Cytochrom P450-Reduktase, behandelt und die Hydroxylierungsprodukte abgetrennt werden.1. A process for the hydroxylation of long-chain alkanes, fatty acids and other alkyl compounds, characterized in that the long-chain alkanes, fatty acids or other alkyl compounds are treated with monooxygenase systems consisting of cytochrome P450 and NADPH-cytochrome P450 reductase, and the hydroxylation products are separated off.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Monooxygenase-System Cytochrom P450-Formen der CYP52-Familie und Candida maltosa NADPH-Cytochrom P450-Reduktase eingesetzt werden.2. The method according to claim 1, characterized in that cytochrome P450 forms of the CYP52 family and Candida maltosa NADPH cytochrome P450 reductase are used as the monooxygenase system.
3. Verfahren nach Anspruch 1 und 2, dadurch gekennzeichnet, daß die Monooxygenase-Systeme in der Reaktionsmischung durch gleichzeitige Expression ihrer Bestandteile in Hefen, vorzugsweise in Saccharomyces cerevisiae, hergestellt werden.3. The method according to claim 1 and 2, characterized in that the monooxygenase systems in the reaction mixture by simultaneous expression of their components in yeasts, preferably in Saccharomyces cerevisiae, are prepared.
4. Verfahren nach Anspruch 1-3, dadurch gekennzeichnet, daß die langkettigen Alkane in Zellhomogenaten von Saccharomyces umgesetzt werden.4. The method according to claim 1-3, characterized in that the long-chain alkanes are implemented in cell homogenates of Saccharomyces.
5. Verfahren nach Anspruch 1-3, dadurch gekennzeichnet, daß die langkettigen Alkylverbindungen in Zellsuspensionen von Saccharomyces umgesetzt werden. 5. The method according to claim 1-3, characterized in that the long-chain alkyl compounds are implemented in cell suspensions of Saccharomyces.
6. Verfahren nach Anspruch 1-5, dadurch gekennzeichnet, daß die langkettigen Alkane, Fettsäuren oder anderen Alkylverbindungen den Zellhomogenaten bzw. -Suspensionen in organischer, vorzugsweise alkoholischer Lösung zugesetzt werden.6. The method according to claim 1-5, characterized in that the long-chain alkanes, fatty acids or other alkyl compounds are added to the cell homogenates or suspensions in organic, preferably alcoholic solution.
7. Vektor zur gentechnischen Veränderung von Saccharomyces, aufbauend auf dem Grundgerüst Yep 51 und gekennzeichnet durch7. Vector for the genetic modification of Saccharomyces, based on the basic structure Yep 51 and characterized by
- Reduktase cDNA zwischen den Restriktionsorten Sall und BamHI- Reductase cDNA between the restriction sites Sall and BamHI
- und eine 2. Expressionskassette, einligiert in den Restrik-tionsort Nrul und bestehend aus dem GALIO- Promotor, der kodierenden Sequenz von Cytochrom P450 und dem ADH1-Terminator. - And a 2nd expression cassette, ligated into the restriction site Nrul and consisting of the GALIO promoter, the coding sequence of cytochrome P450 and the ADH1 terminator.
PCT/DE1996/000410 1995-03-03 1996-03-01 Process for hydroxylating long-chain alkanes, fatty acids and other alkyl compounds WO1996027678A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19507546A DE19507546C2 (en) 1995-03-03 1995-03-03 Process for the regioselective hydroxylation of long-chain alkanes, fatty acids and other alkyl compounds
DE19507546.3 1995-03-03

Publications (1)

Publication Number Publication Date
WO1996027678A1 true WO1996027678A1 (en) 1996-09-12

Family

ID=7755609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1996/000410 WO1996027678A1 (en) 1995-03-03 1996-03-01 Process for hydroxylating long-chain alkanes, fatty acids and other alkyl compounds

Country Status (2)

Country Link
DE (1) DE19507546C2 (en)
WO (1) WO1996027678A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000065061A2 (en) * 1999-04-24 2000-11-02 Max-Delbrück-Centrum für Molekulare Medizin Nucleic acid sequences from candida yeasts which code cytochrome b5 polypeptides
EP1326984B1 (en) * 2000-10-16 2012-03-28 Basf Se Cytochrome p450 monooxygenases consisting of thermophilic bacteria

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1273663A3 (en) * 1997-07-21 2004-02-04 E.I. Dupont De Nemours And Company Transformed yeast strains and their use fore the production of monoterminal and diterminal aliphatic carboxylates
AU8498298A (en) * 1997-07-21 1999-02-10 E.I. Du Pont De Nemours And Company Transformed yeast strains and their use for the production of monoterminal and diterminal aliphatic carboxylates
DE19932811A1 (en) * 1998-07-10 2000-01-20 Univ Dresden Tech Recombinant haploid or diploid Yarrowia lipolytica for functional heterologous expression of cytochrome P450 systems
MY126592A (en) * 1999-07-27 2006-10-31 Basf Ag Novel cytochrome p450 monooxygenases and their use for the oxidation of organic compounds

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994001564A1 (en) * 1992-07-03 1994-01-20 Orsan Yeast strain for the co-expression of a plant cytochrome p450 mono-oxygenase activity and an endogenous or heterologous nadph-cytochrome p450-reductase, and use thereof in bioconversion

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD292022A5 (en) * 1990-02-16 1991-07-18 Adw Zi F. Molekularbiologie,De METHOD OF OBTAINING THE STRUCTURE OF A FATTY ACID AND N-ALKANE HYDROXYLATIVE CYTOCHROM P-450
WO1991014781A1 (en) * 1990-03-19 1991-10-03 Henkel Research Corporation METHOD FOR INCREASING THE OMEGA-HYDROXYLASE ACTIVITY IN $i(CANDIDA TROPICALIS)

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994001564A1 (en) * 1992-07-03 1994-01-20 Orsan Yeast strain for the co-expression of a plant cytochrome p450 mono-oxygenase activity and an endogenous or heterologous nadph-cytochrome p450-reductase, and use thereof in bioconversion

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MICHAIL A. ALTERMAN ET AL.: "Fatty Acid Discrimination and Omega-Hydroxylation by Cytochrome P450 4A1 and a Cytochrome P4504A1/NADPH-P450 Reductase Fusion Protein", ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, vol. 320, no. 2, July 1995 (1995-07-01), XP002060065 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000065061A2 (en) * 1999-04-24 2000-11-02 Max-Delbrück-Centrum für Molekulare Medizin Nucleic acid sequences from candida yeasts which code cytochrome b5 polypeptides
WO2000065061A3 (en) * 1999-04-24 2001-03-15 Max Delbrueck Centrum Nucleic acid sequences from candida yeasts which code cytochrome b5 polypeptides
EP1326984B1 (en) * 2000-10-16 2012-03-28 Basf Se Cytochrome p450 monooxygenases consisting of thermophilic bacteria

Also Published As

Publication number Publication date
DE19507546A1 (en) 1996-09-12
DE19507546C2 (en) 2001-05-03

Similar Documents

Publication Publication Date Title
EP2609207B1 (en) Whole-cell biotransformation of fatty acids to obtain fatty aldehydes shortened by one carbon atom
EP1196545B1 (en) Electron donor system for enzymes and its use for the biochemical conversion of substrates
EP2410047B1 (en) Oxidoreductase and its use for the reduction of secodione derivatives
EP3274465B1 (en) Biocatalytic preparation of l-fucose
DE19507546C2 (en) Process for the regioselective hydroxylation of long-chain alkanes, fatty acids and other alkyl compounds
WO2007014544A2 (en) Stereoselective synthesis of chiral diols
JP2963711B2 (en) Methods for biochemical oxidation of steroids and genetically engineered cells used therefor
EP2791332A1 (en) Fungal strains with genetic modification relating to a carboxylic acid transporter
CA2293737A1 (en) Transformed yeast strains and their use for the production of monoterminal and diterminal aliphatic carboxylates
EP0469523A2 (en) Cloning and overexpression of glucose-6-phosphate dehydrogenase of Leuconostoc dextranicus
EP1273663A2 (en) Transformed yeast strains and their use fore the production of monoterminal and diterminal aliphatic carboxylates
EP0879287A2 (en) Preparation of l-ascorbic acid
WO2000003008A2 (en) Recombinant haploid or diploid yarrowia lipolytica cells for the functional heterologous expression of cytochrome p450 systems
DE60120379T2 (en) Muskmelon hydroperoxide lyase (Cucumis Melo) and uses thereof
EP1625215B1 (en) Method for producing a hydroxylation catalyst and the use thereof
EP1549744A1 (en) Method and microorganism for the production of d-mannitol
EP0307730B1 (en) Expression of mutarotase
EP3404107A1 (en) Method for the fermentative de novo synthesis of resin acids
EP1829974A1 (en) Method for producing (S)-2-butanol and 2-butanone from racemic 2-butanol employing an alcohol dehydrogenase
Buathong Production of 1, 12-dodecanedioic acid by recombinant microbial cytochrome P450 in pichia pastoris and saccharomyces cerevisiae
WO2014191205A1 (en) Yeast strain and method for producing lycopene
DE10234126A1 (en) Process for the biotransformation of carotenoids
DE10019864A1 (en) Nucleic acid sequences from alkane metabolizing Candida yeast, encoding cytochrome b5 and used for the oxidation of long chain alkyl compounds and for the production of long chain dicarbonic acids

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase