WO1996026883A1 - Boom storing and extending device for crane - Google Patents

Boom storing and extending device for crane Download PDF

Info

Publication number
WO1996026883A1
WO1996026883A1 PCT/JP1995/000335 JP9500335W WO9626883A1 WO 1996026883 A1 WO1996026883 A1 WO 1996026883A1 JP 9500335 W JP9500335 W JP 9500335W WO 9626883 A1 WO9626883 A1 WO 9626883A1
Authority
WO
WIPO (PCT)
Prior art keywords
boom
length
posture
angle
rope
Prior art date
Application number
PCT/JP1995/000335
Other languages
French (fr)
Japanese (ja)
Inventor
Kazunori Kuromoto
Original Assignee
Komatsu Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP5318415A priority Critical patent/JPH07172775A/en
Application filed by Komatsu Ltd. filed Critical Komatsu Ltd.
Priority to PCT/JP1995/000335 priority patent/WO1996026883A1/en
Priority to EP95910728A priority patent/EP0812797A4/en
Publication of WO1996026883A1 publication Critical patent/WO1996026883A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/62Constructional features or details
    • B66C23/82Luffing gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/20Control systems or devices for non-electric drives

Definitions

  • the present invention relates to a crane boom storage / deployment device that stores a crane's boom so that the posture of the crane changes from a working posture to a running posture, or deploys the boom from a running posture to a working posture.
  • the boom 4 In a mobile crane, for example, a rough terrain crane, as shown in Fig. 1, the boom 4 is in the running posture B as shown by the arrow C1 with the shortest prone state, and the hook 7 is an upper rotating body. It is necessary to retract the boom 4 so that the hook 7 does not swing, and then run the hook, by hooking the engaging member 10 such as a link or a wire ring provided on the repo frame 3.
  • the engaging member 10 such as a link or a wire ring provided on the repo frame 3.
  • the hook 7 may collide with the car body and damage the car body, or the hoisting rope 6 may be over-tensioned. It is fully anticipated that it will be in a dangerous state, such as breaking the hook 10 and jumping 10- A similar problem occurs not only in the storing operation but also in the expanding operation in which the boom 4 is deployed from the running posture to the working posture.
  • An object of the present invention is to enable two operations for boom driving and winch driving to be performed easily and accurately without skill, thereby improving safety during a boom storing operation or a deploying operation.
  • the boom driving device changes the boom up / down angle
  • the posture of the boom is changed from the working posture to the traveling posture, and the boom is stored, or the boom posture is traveled.
  • the crane boom storage / deployment device that deploys the boom by changing from the attitude to the working attitude
  • Setting means for setting in advance the correspondence between the boom undulation angle and the rope length, from when the posture of the boom changes from the working posture to the running posture;
  • Boom undulation angle detection means for detecting the current boom undulation angle
  • Rope length detecting means for detecting the current rope length
  • the boom angle and the rope length are set in the setting means based on the current boom angle detected by the boom angle detection means and the current rope length detected by the rope length detection means.
  • the correspondence between the boom undulation angle 61 and the rope length s from when the posture of the boom 4 changes from the working posture A (see Fig. 1) to the traveling posture B is preset.
  • the boom angle detection means 14 detects the current boom angle 0, and the rope length detection means 18 (see Figure 1) uses the current rope length. S is detected:
  • the boom undulation angle and the rope length are calculated as described above.
  • the boom driving device 13 and the winch driving device 17 are driven and controlled so that the set boom angle and the rope length sp are set.
  • FIG. 1 is a side view of a crane applied to an embodiment of a crane boom storage and deployment device according to the present invention.
  • Fig. 2 is a graph showing the relationship between the boom undulation angle and the rope length during the boom storage operation of the crane of the embodiment as a target trajectory.
  • FIG. 3 is a block diagram showing the configuration of the control device of the embodiment.
  • FIG. 4 is a block diagram showing another configuration of the control device of the embodiment.
  • FIG. 5 is a block diagram showing still another configuration of the control device according to the embodiment.
  • FIG. 6 is a graph used to explain an operation performed by the control device shown in FIG.
  • FIG. 7 (a) is a circuit diagram showing a configuration of a boom drive unit of the embodiment
  • FIG. 7 (b) is a circuit diagram showing a configuration of a winch drive unit of the embodiment.
  • FIG. 1 is a side view of the external appearance of a crane 1 applied to the embodiment, and assumes a crane traveling by a wheel-type lower mechanism 2 as shown in FIG.
  • an upper revolving unit 3 which is a revolving frame is disposed so as to be freely rotatable, and a boom 4 moves up and down as shown by arrows C1 and C2 on the upper revolving unit 3.
  • the boom 4 is rotatably supported by a boom rotation pin 4a.
  • the up-and-down angle 0 of the boom 4 is controlled by a variable resistance attached to the rotation pin 4a.
  • the boom drive unit 13 that drives the boom 4 will be described later (refer to FIG. 7 (a)).
  • the hoisting rope is provided with a hook 7 at its tip.
  • the force is provided so that the hook 7 can be raised and lowered through a plurality of guide sheaves including a guide sheave 5 provided on the top of the boom 4.
  • the distance between the tip 4b of the boom 4 and the center 7a of the hook 7 below it is defined as the rope length s.
  • the rope length s is determined by detecting the rotation of the guide sheave 5, It is detected by a predetermined rope length sensor 18 such as a rotary encoder that applies force.
  • the configuration of the winch drive unit 17 that raises and lowers the hoisting lobe 6 will be described later (see FIG. 7 (b)).
  • the boom 4 is set to the shortest state, and at the same time, the hook 7 is moved to a position where the boom 4 can be sufficiently raised and engaged with the wire ring 10.
  • the boom drive unit 13 drives the boom 4 so that the hoisting angle 0 of the boom 4 is reduced so that the hook 7 is engaged with the wire ring 10 with a constant tension.
  • the hoisting angle 0 is changed so as to become gradually smaller, and the hoisting rope 6 is wound up by the winch driving unit 17 to change the rope length s so that the rope length s becomes gradually smaller.Thus, the posture of the boom 4 is shown by an arrow C1. Move boom 4 from working position A to running position B as follows:
  • FIG. 3 is a block diagram showing a configuration of the control device 11 for performing the storing operation.
  • the control device 11 controls the boom undulation angle manually and controls the rope length automatically. :
  • the electric lever 12 is provided in the cockpit to manually change the boom undulation angle 0, and is constituted by an operation lever 12a operated by an operator, a variable resistance and the like, and the operation lever 12a And a speed command output unit 12b that outputs a voltage proportional to the manipulated variable of the boom up / down angle speed command 0 ⁇ R to the boom drive unit 13: shown in “0 ⁇ R” above.
  • a speed command output unit 12b that outputs a voltage proportional to the manipulated variable of the boom up / down angle speed command 0 ⁇ R to the boom drive unit 13: shown in “0 ⁇ R” above.
  • the boom drive unit 13 sets the undulation angle at the speed 0R indicated by the input speed command 0'R. Drive boom 4 so that 0 changes
  • the speed command is applied to an EPC (Electrical Pro portional Control) valve driver 22, and the driver 22 outputs a current E proportional to the input speed command to the EPC valve 23.
  • the £ ⁇ valve 23 generates a pilot pressure PT, which is a secondary pressure proportional to the input current E, and acts on the pilot port 24 a or 24 b of the flow control valve 24 to generate a pressure PT.
  • the valve position of the flow control valve 24 is changed according to:
  • the flow control valve 24 is supplied with pressure oil discharged from the hydraulic pump 21, and pressurized oil having a flow rate corresponding to the above valve position is supplied from the flow control valve 24. Supplied to hydraulic cylinder 25 for boom 4 drive:
  • the undulation angle 0 of the boom 4 is changed with the speed 0. R according to the speed command.
  • the sequential undulation angle 0 of the boom 4 due to the driving of the boom 4 is detected by the undulation angle sensor 14
  • the correspondence D between the boom undulation angle 0 and the lobe length 1 from the working posture A to the running posture B is stored and stored in the storage unit 15, as shown in FIG. D is 0, which means that if the s changes along this locus D, the hook 7 can be stored accurately with the hook 7 engaged with the wire ring 10 with a constant tension.
  • This is the target locus of s.
  • the target trajectory D can be obtained in advance by experiments, simulations, etc. using actual equipment.
  • the rope length sR output from the storage unit 15 is added to the subtraction unit 16 as a target value of the winch drive control system, while the current rope length s is detected by the rope length sensor 18, and the detected value is s is fed back to the calculation unit 16 as a feedback amount:
  • the winch drive unit 17 has the same configuration as the boom drive unit 13 described above. As shown in FIG.
  • the deviation command A s R is applied to the EPC valve driver 22 and the driver 2 2—outputs a current E proportional to the input deviation command to the EPC valve 2 3 —:
  • the EPC valve 2 3 ′ generates a pilot pressure PT proportional to the input current E, and this is applied to the flow control valve 26 Acts on the pilot port 26a or 26b to change the valve position of the flow control valve 26 according to the pressure PT.
  • the discharge pressure oil from the hydraulic pump 21 is supplied to the flow control valve 26.
  • the pressure oil having a flow rate corresponding to the valve position is supplied from the flow control valve 26 to the winch drive hydraulic motor 27:
  • the rope length s is changed so that the deviation A s R becomes zero, and the winch drive control system need not be a feedback control system, but an open-loop control system.
  • the arrangement of the lobe length sensor 18 can be omitted.
  • FIG. 4 is a block diagram showing another example of the configuration of the control device that performs the storage operation.
  • This control device 1 1 ′ contrary to the one in FIG. 3, controls the rope length manually and controls the undulation angle automatically:
  • the electric lever 19 is a winch drive lever having the same configuration as the electric lever 12.
  • the operation amount of the operation lever 19 a from the speed command output unit 19 b is operated. Is output to winch drive unit 17 as winch speed command s ⁇ R
  • the winch driving unit 17 drives the winch so that the rope length s changes with the speed sR indicated by the input speed command s Successive rope length s is detected by rope length sensor 18
  • the undulation angle output from the storage unit 15 is added to the subtraction unit 16 as a target value of the boom drive control system, while the current undulation angle 0 is detected by the undulation angle sensor 14.
  • the value 0 is fed back to the subtraction unit 16 as a feedback value and a click amount.
  • the subtractor 16 outputs a deviation between the target value 0 R2 and the feedback amount 0, and this deviation ⁇ 0 ⁇ ⁇ is added to the boom driving unit 17. Therefore, the undulation angle ⁇ becomes the deviation ⁇ 0 ⁇ ⁇ is changed to be zero
  • FIG. 5 is a block diagram showing still another example of the configuration of the control device that performs the above-mentioned storing operation:
  • This control device 1 1 automatically controls both the boom undulation angle and the rope length.
  • a boom up / down angular speed command 0 ′ R proportional to the operation amount of the operation lever 1 2 a is output.
  • the boom 4 is driven so that the elevation angle 0 changes according to the command issued.
  • the sequential elevation angle 0 of the boom 4 that changes with the driving of the boom 4 is detected by the elevation angle sensor 14. , Added to the arithmetic unit 20
  • the speed command output section 19 b of the electric lever 19 for driving the winch outputs a winch speed command s ⁇ R proportional to the operation amount of the operation lever 19 a: winch
  • the driving unit 17 drives the winch so that the rope length s changes according to the input command.- The sequential rope length s that changes with the driving of the winch is detected by the rope length sensor 18. , Added to the arithmetic unit 20:
  • the arithmetic unit 20 calculates the deviation ⁇ 0 between the undulation angle 0 detected by the undulation angle sensor 14 and the target undulation angle 0p on the target trajectory D, and calculates the rope length detected by the rope length sensor 18. Calculates the deviation A s between s and the target rope length sp on the target trajectory D, and outputs this
  • the current undulation angle 0 and the current rope length s are expressed as coordinate positions Q ⁇ , s) in the ⁇ -s coordinate system.
  • the coordinate position P (p, s) on the trajectory D that minimizes the distance to the coordinate position of is obtained:
  • L be the vector from the coordinate position Q to the coordinate position P.
  • the direction of the vector L is positive and negative polarities, and the scalar amount of the vector L is the absolute value.
  • the target hoisting angle 0 p on the target locus D and the hoisting angle 0 detected by the hoisting angle sensor 14 are The deviation ⁇ 0 and the deviation s between the target rope length on the target trajectory D and the rope length s detected by the rope length sensor 18 can be obtained respectively.-The deviation ⁇ 0, A output from the arithmetic unit 20 can be obtained.
  • s is added to the above speed command 0 • R and s'R, respectively, and added Command 0 ⁇ ⁇ ⁇ ⁇ 0, s' R + A s are added to the boom drive unit 13 and winch drive unit 17, respectively.
  • the boom drive unit 13 drives the boom 4 so that the displacement becomes zero
  • the winch drive unit 17 drives the winch so that the displacement As becomes zero.
  • the undulation angle 0 and the rope length s change along the target trajectory D, and the storing operation can be performed automatically and accurately:
  • control in the case of performing the storing operation has been described.
  • present invention can be similarly applied to the control in the case of performing the unfolding operation.
  • the same method for boom drive and winch drive is provided.
  • Time 2 The operation can be performed easily and accurately without skill, and as a result, the safety of the crane during boom storage operation or deployment operation is dramatically improved.
  • the present invention not only to a crane but also to a device that needs to store and deploy a working machine, the safety of the device can be significantly improved.

Abstract

A device for improving safety during operations of storing or extending a boom of a crane. A corresponding relationship between a boom hoisting angle (υ) and a length of rope (s) is beforehand set when an attitude of a boom (4 ) shifts from a working attitude (A) to a working attitude (B). Means (14) for detecting a boom hoisting angle detects a current boom hoisting angle (υ), and means (18) for detecting a current length of rope detects a length of rope (s). On the basis of the current boom hoisting angle detected b y the boom hoisting angle detecting means (14), and the current length of rope (s) detected by the rope length detecting means (18), a boom drive device and a winch drive device are drivingly controlled so that a boom hoisting angle and a length of rope equal the set boom hoisting angle (υp) and a length of rope (sp), respectively.

Description

明 細 書 クレーンのブーム格納 ·展開装置 技術分野  Description Crane boom storage / deployment device Technical field
本発明は、 クレーンのブームの姿勢が作業姿勢から走行姿勢になるように当該 ブームを格納し、 あるいは走行姿勢から作業姿勢になるように当該ブームを展開 するクレーンのブーム格納 '展開装置に関する: 背景技術  The present invention relates to a crane boom storage / deployment device that stores a crane's boom so that the posture of the crane changes from a working posture to a running posture, or deploys the boom from a running posture to a working posture. Technology
移動式クレーン、 たとえばラフテレンクレーンにあっては、 図 1に示すように ブーム 4を最短の伏態のまま矢印 C 1に示すように走行姿勢 Bにさせるとともに、 フック 7を上部旋回体であるレポフレーム 3に設けられたリンクまたはワイヤ環 のような係合部材 1 0に引っかけることで、 ブーム 4をフック 7が振れ回らない ように格納してから、 走行させる必要がある。  In a mobile crane, for example, a rough terrain crane, as shown in Fig. 1, the boom 4 is in the running posture B as shown by the arrow C1 with the shortest prone state, and the hook 7 is an upper rotating body. It is necessary to retract the boom 4 so that the hook 7 does not swing, and then run the hook, by hooking the engaging member 10 such as a link or a wire ring provided on the repo frame 3.
こうした格納伏態を手動操作によって作り出すことは、 容易なことではない すなわち、 格納作業にあたり、 まず、 ブーム 4が最短にされるとともに十分に 起こされ、 ワイヤ環 1 0に係合され得る位置へフック 7が垂れ下げられる そし て、 ワイヤ環 1 0にフック 7を引っかけ、 その状態から巻上げロープ 6の張力を 一定に維持しつつ、 ブーム 4を伏せながらウィンチでワイヤ 6を引き上げる、 と いった操作を手動で行う,  It is not easy to create such a stowed state by manual operation. That is, in the stowage operation, first, the boom 4 is minimized and fully raised, and the boom 4 is hooked to a position where it can be engaged with the wire ring 10. The hook 7 is hooked onto the wire loop 10, and from that state, the wire 6 is pulled up with a winch while the boom 4 is lowered while keeping the tension of the hoisting rope 6 constant. Do it manually,
このように格納作業を行うには、 オペレータに、 ブーム伏せとウィンチ上げの 精度の高い同時 2操作が要求される このため、 操作に熟練を要し、 たとえ熟練 したオペレータであっても操作を誤り、 危険な状態に陥るといった問題が発生す る:  Performing the storage operation in this way requires the operator to perform two simultaneous operations with high accuracy such as boom down and winch raising.This requires skill in the operation, and even a skilled operator can make mistakes. The following problems may occur:
すなわち、 上記同時 2操作を誤ると、 フック 7は車体に衝突してしまい車体を 損傷させることもあろうし、 あるいは巻上げロープ 6に張力がかかりすぎてしま ぃフック 7が係合されているワイヤ環 1 0がちぎれフック 7が飛び上がる等、 危 険な状態になることが十分予想される- なお、 格納作業ばかりでなく、 ブーム 4を走行姿勢から作業姿勢に展開する展 開作業の際にも、 同様の問題が招来する。 That is, if the above two simultaneous operations are mistaken, the hook 7 may collide with the car body and damage the car body, or the hoisting rope 6 may be over-tensioned. It is fully anticipated that it will be in a dangerous state, such as breaking the hook 10 and jumping 10- A similar problem occurs not only in the storing operation but also in the expanding operation in which the boom 4 is deployed from the running posture to the working posture.
以上のように、 従来は、 ブーム格納作業中または展開作業中における安全性に 問題があった。 発明の開示  As described above, conventionally, there was a problem in safety during boom storage or deployment. Disclosure of the invention
本発明は、 ブーム駆動とウィンチ駆動のための同時 2操作を熟練を要すること なく容易かつ精度よく行えるようにし、 もってブーム格納作業中または展開作業 中における安全性を向上させることを目的とするものである  An object of the present invention is to enable two operations for boom driving and winch driving to be performed easily and accurately without skill, thereby improving safety during a boom storing operation or a deploying operation. Is
そこで、 この発明の主たる発明では、 巻上げロープ先端に配設されたフックを 上部旋回体に設けられた係合部材に係合させながら、 ブーム駆動装置によってブ ームの起伏角を変化させるとともに、 ウィンチ駆動装置によってブーム先端から フックまでの巻上げロープのロープ長を変化させることにより、 前記ブームの姿 勢を作業姿勢から走行姿勢に変化させて当該ブームを格納し、 あるいは前記ブー ムの姿勢を走行姿勢から作業姿勢に変化させて当該ブームを展開するクレーンの ブーム格納 ·展開装置において、  Therefore, in the main invention of the present invention, while the hook provided at the tip of the hoisting rope is engaged with the engaging member provided on the upper rotating body, the boom driving device changes the boom up / down angle, By changing the length of the hoisting rope from the end of the boom to the hook by the winch driving device, the posture of the boom is changed from the working posture to the traveling posture, and the boom is stored, or the boom posture is traveled. In the crane boom storage / deployment device that deploys the boom by changing from the attitude to the working attitude,
前記ブームの姿勢が作業姿勢から走行姿勢に至るまでの、 ブーム起伏角とロー プ長との対応関係を予め設定する設定手段と、  Setting means for setting in advance the correspondence between the boom undulation angle and the rope length, from when the posture of the boom changes from the working posture to the running posture;
現在のブーム起伏角を検出するブーム起伏角検出手段と、  Boom undulation angle detection means for detecting the current boom undulation angle,
現在のロープ長を検出するロープ長検出手段と、  Rope length detecting means for detecting the current rope length,
前記ブーム起伏角検出手段で検出される現在のブーム起伏角と前記ロープ長検 出手段で検出される現在のロープ長とに基づいて、 ブーム起伏角およびロープ長. が前記設定手段に設定されているブーム起伏角およびロープ長となるように、 前 記ブーム駆動装置および前記ウィンチ駆動装置を駆動制御する制御手段と  The boom angle and the rope length are set in the setting means based on the current boom angle detected by the boom angle detection means and the current rope length detected by the rope length detection means. Control means for controlling the driving of the boom drive device and the winch drive device so that the boom angle and the rope length are equal to each other.
を具えている  With
かかる構成によれば、 図 6に示すように、 ブーム 4の姿勢が作業姿勢 A (図 1 参照) から走行姿勢 Bに至るまでの、 ブーム起伏角 61とロープ長 sとの対応関係 が予め設定される: ブーム起伏角検出手段 1 4 (図 1参照) では、 現在のブーム 起伏角 0が検出され、 ロープ長検出手段 1 8 (図 1参照) では、 現在のロープ長 Sが検出される: According to such a configuration, as shown in Fig. 6, the correspondence between the boom undulation angle 61 and the rope length s from when the posture of the boom 4 changes from the working posture A (see Fig. 1) to the traveling posture B is preset. The boom angle detection means 14 (see Figure 1) detects the current boom angle 0, and the rope length detection means 18 (see Figure 1) uses the current rope length. S is detected:
そこで、 ブーム起伏角検出手段 1 4で検出される現在のブーム起伏角 0とロー プ長検出手段 1 8で検出される現在のロープ長 sとに基づいて、 ブーム起伏角お よびロープ長が上記設定されているブーム起伏角 およびロープ長 s pとなるよ うに、 ブーム駆動装置 1 3およびウィンチ駆動装置 1 7 (図 5参照) が駆動制御 される。 図面の簡単な説明  Therefore, based on the current boom undulation angle 0 detected by the boom undulation angle detection means 14 and the current rope length s detected by the rope length detection means 18, the boom undulation angle and the rope length are calculated as described above. The boom driving device 13 and the winch driving device 17 (see FIG. 5) are driven and controlled so that the set boom angle and the rope length sp are set. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明に係るクレーンのブーム格納■展開装置の実施例に適用されるク レーンの側面図である  FIG. 1 is a side view of a crane applied to an embodiment of a crane boom storage and deployment device according to the present invention.
図 2は実施例のクレーンのブーム格納作業中のブーム起伏角とロープ長の対応 関係を目標軌跡として示すグラフである  Fig. 2 is a graph showing the relationship between the boom undulation angle and the rope length during the boom storage operation of the crane of the embodiment as a target trajectory.
図 3は実施例の制御装置の構成を示すプロック図である  FIG. 3 is a block diagram showing the configuration of the control device of the embodiment.
図 4は実施例の制御装置の他の構成を示すプロック図である  FIG. 4 is a block diagram showing another configuration of the control device of the embodiment.
図 5は実施例の制御装置のさらに他の構成を示すプロック図である- 図 6は図 5に示す制御装置で行われる演算を説明するために用いたグラフであ る。  FIG. 5 is a block diagram showing still another configuration of the control device according to the embodiment. FIG. 6 is a graph used to explain an operation performed by the control device shown in FIG.
図 7 ( a ) は実施例のブーム駆動部の構成を示す回路図であり、 図 7 ( b ) は 実施例のウィンチ駆動部の構成を示す回路図である 発明を実施するための最良の態様  FIG. 7 (a) is a circuit diagram showing a configuration of a boom drive unit of the embodiment, and FIG. 7 (b) is a circuit diagram showing a configuration of a winch drive unit of the embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照して本発明に係るクレーンのブーム格納 ·展開装置の実施例 について説明する:  Hereinafter, an embodiment of a crane boom storage and deployment device according to the present invention will be described with reference to the drawings:
図 1は、 実施例に適用されるクレーン 1の外観の側面図であり、 同図に示すよ うにホイール式の下部機構 2によって走行するクレーンを想定している  FIG. 1 is a side view of the external appearance of a crane 1 applied to the embodiment, and assumes a crane traveling by a wheel-type lower mechanism 2 as shown in FIG.
下部機構 2の上部には、 レボフレームである上部旋回体 3が旋回自在に配設さ れており、 この上部旋回体 3には、 ブーム 4が矢印 C 1ないし C2に示すように上 下動され得るように、 当該ブーム 4がブーム回動ピン 4 aによって回動自在に軸 支されている- ブーム 4の起伏角 0は、 上記回動ピン 4 aに付設された可変抵抗 、 ロータリエンコーダ等、 所定の起伏角センサ 1 4によって検出される- なお、 ブーム 4を駆動するブーム駆動部 1 3の構成については後述する (図 7 ( a ) 参 照) : さて、 ブーム 4には、 先端にフック 7が配設された巻上げロープ 6力 ブーム 4の頂部に設けられたガイ ドシーブ 5を含む複数のガイ ドシーブを介して 、 フック 7の巻上げ下げ自在に配設されている ここで、 ブーム 4の先端位置 4 bとその下方にあるフック 7の中心位置 7 aとの距離をロープ長 sと定義する ロープ長 sは、 ガイ ドシーブ 5の回転を検出することによってロープ長 sを出 力するロータリエンコーダ等、 所定のロープ長センサ 1 8によって検出される なお、 巻上げローブ 6の巻上げ下げを行うウィンチ駆動部 1 7の構成については 後述する (図 7 ( b ) 参照) On the upper part of the lower mechanism 2, an upper revolving unit 3 which is a revolving frame is disposed so as to be freely rotatable, and a boom 4 moves up and down as shown by arrows C1 and C2 on the upper revolving unit 3. The boom 4 is rotatably supported by a boom rotation pin 4a. The up-and-down angle 0 of the boom 4 is controlled by a variable resistance attached to the rotation pin 4a. The boom drive unit 13 that drives the boom 4 will be described later (refer to FIG. 7 (a)). The hoisting rope is provided with a hook 7 at its tip.The force is provided so that the hook 7 can be raised and lowered through a plurality of guide sheaves including a guide sheave 5 provided on the top of the boom 4. The distance between the tip 4b of the boom 4 and the center 7a of the hook 7 below it is defined as the rope length s.The rope length s is determined by detecting the rotation of the guide sheave 5, It is detected by a predetermined rope length sensor 18 such as a rotary encoder that applies force. The configuration of the winch drive unit 17 that raises and lowers the hoisting lobe 6 will be described later (see FIG. 7 (b)).
ここで、 ブーム 4の格納作業を行うには、 前述したように、 まず、 ブーム 4が 最短の状態にされるとともに、 十分に起こされ、 ワイヤ環 1 0に係合され得る位 置へフック 7が垂れ下げられる そして、 ワイヤ環 1 0にフック 7が一定の張力 をもって係合された状態がそのまま維持されるように、 ブーム駆動部 1 3により ブーム 4を駆動してブーム 4の起伏角 0が次第に小さくなるよう起伏角 0を変化 させるとともに、 ウィンチ駆動部 1 7により巻上げロープ 6を巻上げてロープ長 sが次第に小さくなるようロープ長 sを変化させる こうして、 ブーム 4の姿勢 を矢印 C 1に示すように作業姿勢 Aから走行姿勢 Bに変化させてブーム 4を格納す る:  Here, in order to store the boom 4, as described above, first, the boom 4 is set to the shortest state, and at the same time, the hook 7 is moved to a position where the boom 4 can be sufficiently raised and engaged with the wire ring 10. The boom drive unit 13 drives the boom 4 so that the hoisting angle 0 of the boom 4 is reduced so that the hook 7 is engaged with the wire ring 10 with a constant tension. The hoisting angle 0 is changed so as to become gradually smaller, and the hoisting rope 6 is wound up by the winch driving unit 17 to change the rope length s so that the rope length s becomes gradually smaller.Thus, the posture of the boom 4 is shown by an arrow C1. Move boom 4 from working position A to running position B as follows:
図 3は、 上記格納作業を行う制御装置 1 1の構成を示すブロック図である この制御装置 1 1は、 ブーム起伏角の制御を手動で行い、 ロープ長の制御を自 動で行うものである:  FIG. 3 is a block diagram showing a configuration of the control device 11 for performing the storing operation. The control device 11 controls the boom undulation angle manually and controls the rope length automatically. :
電気レバー 1 2は、 ブーム起伏角 0を手動によって変化させるために、 操縦席 に設けられており、 オペレータにより操作される操作レバ一 1 2 aと、 可変抵抗 等によって構成され操作レバー 1 2 aの操作量に比例した電圧をブーム起伏角速 度指令 0 · Rとしてブーム駆動部 1 3に出力する速度指令出力部 1 2 bとから成つ ている: なお、 上記 「0 · R」 に示される 「 ·」 は、 以後 「 1階微分」 を表すもの と定義する:  The electric lever 12 is provided in the cockpit to manually change the boom undulation angle 0, and is constituted by an operation lever 12a operated by an operator, a variable resistance and the like, and the operation lever 12a And a speed command output unit 12b that outputs a voltage proportional to the manipulated variable of the boom up / down angle speed command 0 · R to the boom drive unit 13: shown in “0 · R” above. Is defined hereafter as representing the first derivative:
ブーム駆動部 1 3は、 入力された速度指令 0 ' Rに示される速度 0 · Rで起伏角 0が変化するように、 ブーム 4を駆動する The boom drive unit 13 sets the undulation angle at the speed 0R indicated by the input speed command 0'R. Drive boom 4 so that 0 changes
すなわち、 図 7 (a) に示すように、 速度指令は、 EPC (Electrical Pro portional Control) 弁ドライバ 22に加えられ、 該ドライバ 22は入力速度指 令に比例した電流 Eを EPC弁 23に出力する: £ 〇弁23は、 入力電流 Eに 比例した 2次圧であるパイロッ ト圧 PTを発生し、 これを流量制御弁 24のパイ ロッ トポ一ト 24 aまたは 24bに作用させて、 圧 PTに応じて流量制御弁 24 の弁位置を変化させる: 流量制御弁 24には油圧ポンプ 21からの吐出圧油が供 給されており、 上記弁位置に応じた流量の圧油が流量制御弁 24からブーム 4駆 動用の油圧シリンダ 25に供給される:  That is, as shown in FIG. 7 (a), the speed command is applied to an EPC (Electrical Pro portional Control) valve driver 22, and the driver 22 outputs a current E proportional to the input speed command to the EPC valve 23. The £ 〇 valve 23 generates a pilot pressure PT, which is a secondary pressure proportional to the input current E, and acts on the pilot port 24 a or 24 b of the flow control valve 24 to generate a pressure PT. The valve position of the flow control valve 24 is changed according to: The flow control valve 24 is supplied with pressure oil discharged from the hydraulic pump 21, and pressurized oil having a flow rate corresponding to the above valve position is supplied from the flow control valve 24. Supplied to hydraulic cylinder 25 for boom 4 drive:
以上のようにして、 ブーム 4の起伏角 0は、 速度指令通りの速度 0 . Rをもって 変化される。 ブーム 4の駆動に伴う当該ブーム 4の逐次の起伏角 0は、 起伏角セ ンサ 14によって検出されている  As described above, the undulation angle 0 of the boom 4 is changed with the speed 0. R according to the speed command. The sequential undulation angle 0 of the boom 4 due to the driving of the boom 4 is detected by the undulation angle sensor 14
一方、 記憶部 15には、 図 2に示すように、 作業姿勢 Aから走行姿勢 Bに至る までの、 ブーム起伏角 0とローブ長 1の対応関係 Dが記憶、 格納されている こ の対応関係 Dは、 この軌跡 Dに沿って 0、 sが変化したならばワイヤ環 10にフ ック 7が一定の張力をもつて係合された状態のままで格納が精度よく行われると いう 0、 sの目標軌跡である。 目標軌跡 Dは、 実機による実験、 シミュレーショ ン等によって予め求めておくことができる  On the other hand, as shown in FIG. 2, the correspondence D between the boom undulation angle 0 and the lobe length 1 from the working posture A to the running posture B is stored and stored in the storage unit 15, as shown in FIG. D is 0, which means that if the s changes along this locus D, the hook 7 can be stored accurately with the hook 7 engaged with the wire ring 10 with a constant tension. This is the target locus of s. The target trajectory D can be obtained in advance by experiments, simulations, etc. using actual equipment.
そこで、 上記起伏角センサ 14で検出された起伏角 Θに対応するロープ長 s Rが 、 上記記憶部 15の記憶内容から読み出される:  Then, the rope length s R corresponding to the undulation angle Θ detected by the undulation angle sensor 14 is read from the storage content of the storage unit 15:
すなわち、 図 2に示すように、 現在の起伏角が 01であるものとすると、 矢印に 示すように、 起伏角 01に対応する目標軌跡 D上の点 P1が求められ、 この点 P1に 示されるロープ長 sRlが求められ、 記憶部 15から出力される:  That is, as shown in FIG. 2, assuming that the current undulation angle is 01, a point P1 on the target trajectory D corresponding to the undulation angle 01 is obtained as shown by an arrow, and is shown at this point P1. The rope length sRl is determined and output from storage 15:
記憶部 15から出力されたロープ長 sRは、 ウィンチ駆動制御系の目標値として 減算部 16に加えられる 一方、 現在のロープ長 sはロープ長センサ 18によつ て検出されており、 この検出値 sがフィードバック量として减算部 16にフィ一 ドバックされる:  The rope length sR output from the storage unit 15 is added to the subtraction unit 16 as a target value of the winch drive control system, while the current rope length s is detected by the rope length sensor 18, and the detected value is s is fed back to the calculation unit 16 as a feedback amount:
この結果、 減算部 16からは、 目標値 sRとフィードバック量 sとの偏差 AsR が出力され、 この偏差 AsRがウィンチ駆動部 17に加えられる: ウィンチ駆動部 1 7は上述したブーム駆動部 1 3と同様な構成であり、 図 7 ( b ) に示すように、 偏差指令 A s Rは、 E P C弁ドライバ 2 2 に加えられ、 該ド ライバ 2 2 —は入力偏差指令に比例した電流 Eを E P C弁 2 3 —に出力する: E P C弁 2 3 ' は、 入力電流 Eに比例したパイロッ ト圧 P Tを発生し、 これを流量 制御弁 2 6のパイロッ トポート 2 6 aまたは 2 6 bに作用させて、 圧 P Tに応じ て流量制御弁 2 6の弁位置を変化させる 流量制御弁 2 6には油圧ポンプ 2 1か らの吐出圧油が供給されており、 上記弁位置に応じた流量の圧油が流量制御弁 2 6からウィンチ駆動用の油圧モータ 2 7に供給される: As a result, the difference AsR between the target value sR and the feedback amount s is output from the subtraction unit 16, and this difference AsR is added to the winch driving unit 17: The winch drive unit 17 has the same configuration as the boom drive unit 13 described above. As shown in FIG. 7 (b), the deviation command A s R is applied to the EPC valve driver 22 and the driver 2 2—outputs a current E proportional to the input deviation command to the EPC valve 2 3 —: The EPC valve 2 3 ′ generates a pilot pressure PT proportional to the input current E, and this is applied to the flow control valve 26 Acts on the pilot port 26a or 26b to change the valve position of the flow control valve 26 according to the pressure PT.The discharge pressure oil from the hydraulic pump 21 is supplied to the flow control valve 26. The pressure oil having a flow rate corresponding to the valve position is supplied from the flow control valve 26 to the winch drive hydraulic motor 27:
以上のようにして、 ロープ長 sは、 偏差 A s Rが零になるように変化される な お、 ウィンチ駆動制御系としてはフィー ドバック制御系でなくてもよく、 ォ一プ ンループ制钿系で構成してもよい この場合は、 ローブ長センサ 1 8の配設を省 略することができる  As described above, the rope length s is changed so that the deviation A s R becomes zero, and the winch drive control system need not be a feedback control system, but an open-loop control system. In this case, the arrangement of the lobe length sensor 18 can be omitted.
以上の制御がすすめられると、 起伏角 0、 ロープ長 sは、 目標軌跡 Dに沿って 変化し、 格納作業を精度よく行うことができる この場合、 オペレータとしては 、 ブーム 4駆動用の操作レバー 1 2 aの操作にのみに専念していればよいので、 熟練を要することなく容易に操作することができる  When the above control is promoted, the undulation angle 0 and the rope length s change along the target trajectory D, and the storing operation can be performed accurately. In this case, the operator needs to operate the operating lever 1 for driving the boom 4. 2 Since it is only necessary to concentrate on the operation of a, it can be easily operated without skill
さて、 図 4は、 上記格納作業を行う制御装置の他の構成例を示すブロック図で ある  FIG. 4 is a block diagram showing another example of the configuration of the control device that performs the storage operation.
この制御装置 1 1 'は、 図 3のものとは反対に、 ロープ長の制御を手動で行い 、 起伏角の制御を自動で行うものである:  This control device 1 1 ′, contrary to the one in FIG. 3, controls the rope length manually and controls the undulation angle automatically:
電気レバー 1 9は、 電気レバー 1 2と同様の構成のウィンチ駆動用のレバーで あり、 操作レバー 1 9 aが操作されると、 速度指令出力部 1 9 bから操作レバー 1 9 aの操作量に比例した電圧がウィンチ速度指令 s · Rとしてウィンチ駆動部 1 7に対して出力される  The electric lever 19 is a winch drive lever having the same configuration as the electric lever 12. When the operation lever 19 a is operated, the operation amount of the operation lever 19 a from the speed command output unit 19 b is operated. Is output to winch drive unit 17 as winch speed command s · R
ウィンチ駆動部 1 7は、 入力された速度指令 s · Rに示される速度 s · Rでロー プ長 sが変化するように、 ウィンチを駆動する ウィンチの駆動に伴いロープ長 sが変化するが、 逐次のロープ長 sは、 ロープ長センサ 1 8によって検出されて いる  The winch driving unit 17 drives the winch so that the rope length s changes with the speed sR indicated by the input speed command s Successive rope length s is detected by rope length sensor 18
そこで、 上記ロープ長センサ 1 8で検出されたロープ長 sに対応する起伏角 0 Rが、 上記記憶部 1 5の記憶内容から読み出される Therefore, the undulation angle 0 corresponding to the rope length s detected by the rope length sensor 18 is 0. R is read from the storage content of the storage unit 15
すなわち、 図 2に示すように、 現在のロープ長が s 2であるものとすると、 矢印 に示すように、 ローブ長 s 2に対応する目標軌跡 D上の点 P2が求められ、 この点 P2に示される起伏角 0 R2が求められ、 記憶部 1 5から出力される一  That is, as shown in FIG. 2, assuming that the current rope length is s2, a point P2 on the target trajectory D corresponding to the lobe length s2 is obtained as shown by an arrow, and this point P2 The undulation angle 0 R2 shown is obtained, and the output from the storage unit 15 is obtained.
記憶部 1 5から出力された起伏角 は、 ブーム駆動制御系の目標値として減 算部 1 6 に加えられる 一方、 現在の起伏角 0は起伏角センサ 1 4によって検 出されており、 この検出値 0がフィ一ドノ、'ック量として減算部 1 6 にフィード バックされる。  The undulation angle output from the storage unit 15 is added to the subtraction unit 16 as a target value of the boom drive control system, while the current undulation angle 0 is detected by the undulation angle sensor 14. The value 0 is fed back to the subtraction unit 16 as a feedback value and a click amount.
この結果、 減算部 1 6 —からは、 目標値 0 R2とフィードバック量 0との偏差厶 が出力され、 この偏差 Δ 0 Κがブーム駆動部 1 7に加えられる このため、 起 伏角 Θは、 偏差 Δ 0 ΙΪが零になるように変化される  As a result, the subtractor 16 outputs a deviation between the target value 0 R2 and the feedback amount 0, and this deviation Δ 0 加 え is added to the boom driving unit 17. Therefore, the undulation angle Θ becomes the deviation Δ 0 変 化 is changed to be zero
なお、 ブーム駆動制御系としてはフィードバック制御系でなくてもよく、 才一プ ンループ制御系で構成してもよい ; この場合は、 起伏角センサ 1 4の配設を省略 することができる c Incidentally, it may not be a feedback control system as a boom drive control system may be configured with Saiichi flop Nrupu control system; in this case, it is possible to omit the provision of the hoisting angle sensor 1 4 c
以上の制御がすすめられると、 起伏角 0、 ロープ長 sは、 目標軌跡 Dに沿って 変化し、 格納作業を精度よく行うことができる. この場合、 オペレータとしては 、 ウィンチ駆動用の操作レバー 1 9 aの操作にのみ専念するだけでよいので、 熟 練を要することなく容易に操作することができる—  When the above control is promoted, the undulation angle 0 and the rope length s change along the target trajectory D, and the storing operation can be performed accurately. In this case, the operator is required to operate the operating lever 1 for the winch drive. 9 It is easy to operate without skill, because you only need to concentrate on the operation of a.
さて、 図 5は、 上記格納作業を行う制御装置のさらに他の構成例を示すブロッ ク図である:  Now, FIG. 5 is a block diagram showing still another example of the configuration of the control device that performs the above-mentioned storing operation:
この制御装置 1 1 — は、 ブーム起伏角の制御、 ロープ長の制御をともに自動 で行うものである  This control device 1 1 — automatically controls both the boom undulation angle and the rope length.
ブーム駆動用の電気レバー 1 2の速度指令出力部 1 2 bからは、 操作レバー 1 2 aの操作量に比例したブーム起伏角速度指令 0 ' Rが出力される: ブーム駆動部 1 3は、 入力される指令に応じて起伏角 0が変化するように、 ブーム 4を駆動す る: ブーム 4の駆動に伴い変化する当該ブーム 4の逐次の起伏角 0は、 起伏角セ ンサ 1 4によって検出され、 演算部 2 0に加えられる  From the speed command output unit 1 2 b of the electric lever 12 for boom drive, a boom up / down angular speed command 0 ′ R proportional to the operation amount of the operation lever 1 2 a is output. The boom 4 is driven so that the elevation angle 0 changes according to the command issued. The sequential elevation angle 0 of the boom 4 that changes with the driving of the boom 4 is detected by the elevation angle sensor 14. , Added to the arithmetic unit 20
一方、 ウィンチ駆動用の電気レバー 1 9の速度指令出力部 1 9 bからは、 操作 レバー 1 9 aの操作量に比例したウィンチ速度指令 s · Rが出力される: ウィンチ 駆動部 1 7は、 入力される指令に応じてロープ長 sが変化するように、 ウィンチ を駆動する- ウィンチの駆動に伴い変化する逐次のロープ長 sは、 ロープ長セン サ 1 8によって検出され、 演算部 20に加えられる: On the other hand, the speed command output section 19 b of the electric lever 19 for driving the winch outputs a winch speed command s · R proportional to the operation amount of the operation lever 19 a: winch The driving unit 17 drives the winch so that the rope length s changes according to the input command.- The sequential rope length s that changes with the driving of the winch is detected by the rope length sensor 18. , Added to the arithmetic unit 20:
そこで、 演算部 20は、 上記起伏角センサ 14で検出される起伏角 0と目標軌 跡 D上の目標起伏角 0pとのずれ Δ0を演算するとともに、 ロープ長センサ 1 8で 検出されるロープ長 sと目標軌跡 D上の目標ロープ長 spとのずれ A sを演算し、 これを出力する  Therefore, the arithmetic unit 20 calculates the deviation Δ0 between the undulation angle 0 detected by the undulation angle sensor 14 and the target undulation angle 0p on the target trajectory D, and calculates the rope length detected by the rope length sensor 18. Calculates the deviation A s between s and the target rope length sp on the target trajectory D, and outputs this
すなわち、 図 6に示すように、 現在の起伏角 0、 現在のロープ長 sが、 Θ - s 座標系の座標位置 Q θ、 s) として表される そこで、 この座標位置 Qと目標 軌跡 D上の座標位置との距離が最小となるような、 軌跡 D上の座標位置 P ( p, s ) が求められる: このとき、 座標位置 Qから座標位置 Pに向かうベク トルを L とする この結果、 ベク トル Lの方向をプラス、 マイナスの極性とし、 ベク トル Lのスカラ量を絶対値とする、 目標軌跡 D上の目標起伏角 0 pと起伏角センサ 1 4で検出される起伏角 0とのずれ Δ0、 および目標軌跡 D上の目標ロープ長 と ロープ長センサ 1 8で検出されるロープ長 sとのずれ厶 sをそれぞれ求めること ができる- 演算部 20から出力される上記ずれ△0、 A sは、 それぞれ、 上記速度指令 0 • R、 s ' Rに加算されて、 加算された指令 0 · ί^Δ0、 s ' R+A sがブーム駆 動部 1 3、 ウィンチ駆動部 1 7にそれぞれ加えられる—  That is, as shown in Fig. 6, the current undulation angle 0 and the current rope length s are expressed as coordinate positions Qθ, s) in the Θ-s coordinate system. The coordinate position P (p, s) on the trajectory D that minimizes the distance to the coordinate position of is obtained: At this time, let L be the vector from the coordinate position Q to the coordinate position P. The direction of the vector L is positive and negative polarities, and the scalar amount of the vector L is the absolute value.The target hoisting angle 0 p on the target locus D and the hoisting angle 0 detected by the hoisting angle sensor 14 are The deviation Δ0 and the deviation s between the target rope length on the target trajectory D and the rope length s detected by the rope length sensor 18 can be obtained respectively.-The deviation △ 0, A output from the arithmetic unit 20 can be obtained. s is added to the above speed command 0 • R and s'R, respectively, and added Command 0 · ί ^ Δ0, s' R + A s are added to the boom drive unit 13 and winch drive unit 17, respectively.
このため、 ブーム駆動部 1 3では、 上記ずれ が零になるようにブーム 4が 駆動され、 ウィンチ駆動部 1 7では、 上記ずれ Asが零になるようにウィンチが 駆動される  For this reason, the boom drive unit 13 drives the boom 4 so that the displacement becomes zero, and the winch drive unit 17 drives the winch so that the displacement As becomes zero.
この結果、 起伏角 0、 ロープ長 sは、 目標軌跡 Dに沿って変化し、 格納作業を 自動的に精度よく行うことができる:  As a result, the undulation angle 0 and the rope length s change along the target trajectory D, and the storing operation can be performed automatically and accurately:
なお、 上述した実施例では、 格納作業を行う場合の制御について説明したが、 展開作業を行う場合の制御にも同様に適用することができる 産業上の利用可能性  In the above-described embodiment, the control in the case of performing the storing operation has been described. However, the present invention can be similarly applied to the control in the case of performing the unfolding operation.
以上説明したように、 本発明によれば、 ブーム駆動とウィンチ駆動のための同 時 2操作を熟練を要することなく、 容易かつ精度よく行うことができる この結 果、 クレーンのブーム格納作業中または展開作業中における安全性が飛躍的に向 上する。 また、 クレーンばかりでなく、 作業機を格納、 展開する必要がある装置 に、 本発明を応用することで、 その装置の安全性を飛躍的に向上させることがで さる。 As described above, according to the present invention, the same method for boom drive and winch drive is provided. Time 2 The operation can be performed easily and accurately without skill, and as a result, the safety of the crane during boom storage operation or deployment operation is dramatically improved. In addition, by applying the present invention not only to a crane but also to a device that needs to store and deploy a working machine, the safety of the device can be significantly improved.

Claims

請求の範囲 The scope of the claims
1 . 巻上げロープ先端に配設されたフックを上部旋回体に設けられた係合部 材に係合させながら、 ブーム駆動装置によってブームの起伏角を変化させるとと もに、 ウィンチ駆動装置によってブーム先端からフックまでの巻上げロープの口 一プ長を変化させることにより、 前記ブームの姿勢を作業姿勢から走行姿勢に変 化させて当該ブームを格納し、 あるいは前記ブームの姿勢を走行姿勢から作業姿 勢に変化させて当該ブームを展開するクレーンのブーム格納 ·展開装置において 前記ブームの姿勢が作業姿勢から走行姿勢に至るまでの、 ブーム起伏角とロー プ長との対応関係を予め設定する設定手段と、 1. While the hook provided at the end of the hoisting rope is engaged with the engaging member provided on the upper rotating body, the boom drive unit changes the boom undulation angle, and the winch drive unit activates the boom. By changing the length of the hoisting rope from the tip to the hook, the posture of the boom is changed from the working posture to the running posture and the boom is stored, or the posture of the boom is moved from the running posture to the working posture. Setting means for setting in advance the correspondence between the boom undulation angle and the rope length from when the posture of the boom changes from the working posture to the traveling posture in the boom storage / deployment device of the crane that deploys the boom by changing the boom position When,
現在のブーム起伏角を検出するブーム起伏角検出手段と、  Boom undulation angle detection means for detecting the current boom undulation angle,
現在のロープ長を検出するロープ長検出手段と、  Rope length detecting means for detecting the current rope length,
前記ブーム起伏角検出手段で検出される現在のブーム起伏角と前記ロープ長検 出手段で検出される現在のロープ長とに基づいて、 ブーム起伏角およびロープ長 が前記設定手段に設定されているブーム起伏角およびロープ長となるように、 前 記ブーム駆動装置および前記ウィンチ駆動装置を駆動制御する制御手段と を具えたクレーンのブーム格納 ·展開装置:  The boom angle and the rope length are set in the setting means based on the current boom angle detected by the boom angle detection means and the current rope length detected by the rope length detection means. A crane boom storage / deployment device comprising: the boom drive device and control means for driving and controlling the winch drive device so that the boom angle and the rope length are obtained.
2 . 巻上げロープ先端に配設されたフックを上部旋回体に設けられた係合部 材に係合させながら、 ブーム駆動装置によってブームの起伏角を変化させるとと もに、 ウィンチ駆動装置によってブーム先端からフックまでの巻上げロープの口 一プ長を変化させることにより、 前記ブームの姿勢を作業姿勢から走行姿勢に変 化させて当該ブームを格納し、 あるいは前記ブームの姿勢を走行姿勢から作業姿 勢に変化させて当該ブームを展開するクレーンのブーム格納 .展開装置において 前記ブームの姿勢が作業姿勢から走行姿勢に至るまでの、 ブーム起伏角と口— プ長との対応関係を予め設定する設定手段と、  2. While the hook provided at the end of the hoisting rope is engaged with the engaging member provided on the upper swing body, the boom drive device changes the boom undulation angle, and the winch drive device drives the boom. By changing the length of the hoisting rope from the tip to the hook, the posture of the boom is changed from the working posture to the running posture and the boom is stored, or the posture of the boom is moved from the running posture to the working posture. A boom storage for a crane that deploys the boom by changing the boom position. In the deployment device, a setting for setting in advance the correspondence between the boom undulation angle and the port length from when the posture of the boom changes from the working posture to the traveling posture. Means,
現在のブーム起伏角を検出するブーム起伏角検出手段と、  Boom undulation angle detection means for detecting the current boom undulation angle,
前記ブーム駆動装置を手動によって駆動制御し、 該手動制御に伴い変化するブ ーム起伏角を前記ブーム起伏角検出手段によって検出し、 該ブーム起伏角検出値 に対応するロープ長を前記設定手段の設定内容から読みだして、 該読み出された 設定ロープ長が得られるように前記ウィンチ駆動装置を自動制御する制御手段と を具えたクレーンのブーム格納 ·展開装置: The boom drive device is manually driven and controlled, and the boom changing with the manual control is performed. The boom hoisting angle is detected by the boom hoisting angle detecting means, and the rope length corresponding to the boom hoisting angle detection value is read out from the setting contents of the setting means so that the read set rope length is obtained. And a control means for automatically controlling the winch driving device.
3 . 現在の口一プ長を検出する口一プ長検出手段をさらに具えており、 前記制御手段は、 前記設定手段から読み出された設定ロープ長と前記ロープ長 検出手段の口一プ長検出値との差が零になるように、 前記ウィンチ駆動装置を制 御するものである、  3. The apparatus further comprises a mouth-length detecting means for detecting a current mouth-length, wherein the control means comprises a setting rope length read from the setting means and a mouth-length of the rope length detecting means. The winch drive device is controlled so that the difference from the detected value becomes zero.
請求の範囲第 2項記載のクレーンのブーム格納 ·展開装置  A crane boom storage and deployment device according to claim 2.
4 . 巻上げ口一プ先端に配設されたフックを上部旋回体に設けられた係合部 材に係合させながら、 ブーム駆動装置によってブームの起伏角を変化させるとと もに、 ウィンチ駆動装置によってブーム先端からフックまでの巻上げロープの口 一プ長を変化させることにより、 前記ブームの姿勢を作業姿勢から走行姿勢に変 化させて当該ブームを格納し、 あるいは前記ブームの姿勢を走行姿勢から作業姿 勢に変化させて当該ブームを展開するクレーンのブーム格納■展開装置において 前記ブームの姿勢が作業姿勢から走行姿勢に至るまでの、 ブーム起伏角とロー プ長との対応関係を予め設定する設定手段と、  4. While the hook provided at the end of the hoisting opening is engaged with the engaging member provided on the upper rotating body, the boom drive unit changes the boom undulation angle and the winch drive unit. By changing the length of the hoisting rope from the boom tip to the hook, the boom position is changed from the working position to the running position and the boom is stored, or the boom position is changed from the running position. In the boom storage / deployment device of the crane that deploys the boom by changing to the working posture, the correspondence between the boom undulation angle and the rope length is set in advance from the posture of the boom to the traveling posture. Setting means;
現在の口一プ長を検出する口一ブ長検出手段と、  A mouthpiece length detecting means for detecting a current mouthpiece length,
前記ウィンチ駆動装置を手動によつて駆動制御し、 該手動制御に伴い変化する ロープ長を前記口一プ長検出手段によって検出し、 該ロープ長検出値に対応する ブーム起伏角を前記設定手段の設定内容から読みだして、 該読み出された設定ブ ーム起伏角が得られるように、 前記ブーム駆動装置を自動制御する制御手段と を具えたクレーンのブーム格納 ·展開装置:  The winch drive device is manually driven and controlled, and the rope length that changes with the manual control is detected by the mouth-length detecting device, and the boom undulation angle corresponding to the detected rope length value is set by the setting device. A crane boom storage / deployment device comprising: control means for automatically controlling the boom driving device so as to obtain the set boom undulation angle read out from the setting contents.
5 . 現在のブーム起伏角を検出するブーム起伏角検出手段をさらに具えてお 、  5. Equipped with a boom undulation angle detection means for detecting the current boom undulation angle,
前記制御手段は、 前記設定手段から読み出された設定ブーム起伏角と前記ブー ム起伏角検出手段のブーム起伏角検出値との差が零になるように、 前記ブーム駆 動装置を制御するものである、 請求の範囲第 4項記載のクレーンのブーム格納 ·展開装置」The control means controls the boom driving device such that a difference between a set boom undulation angle read from the setting means and a boom undulation angle detection value of the boom undulation angle detection means becomes zero. Is, The crane boom storage and deployment device according to claim 4 "
6 . 巻上げ口一プ先端に配設されたフックを上部旋回体に設けられた係合部 材に係合させながら、 ブーム駆動装置によってブームの起伏角を変化させるとと もに、 ウィンチ駆動装置によってブーム先端からフックまでの巻上げローブの口 —プ長を変化させることにより、 前記ブームの姿勢を作業姿勢から走行姿勢に変 化させて当該ブームを格納し、 あるいは前記ブームの姿勢を走行姿勢から作業姿 勢に変化させて当該ブームを展開するクレーンのブーム格納 ·展開装置において 前記ブームの姿勢が作業姿勢から走行姿勢に至るまでの、 ブーム起伏角と口— プ長との対応関係を予め設定する設定手段と、 6. While the hook provided at the end of the hoisting opening is engaged with the engaging member provided on the upper rotating body, the boom drive device changes the boom undulation angle and the winch drive device. The boom posture is changed from the working posture to the traveling posture by changing the mouth-length of the hoisting lobe from the boom tip to the hook, and the boom is stored, or the boom posture is moved from the traveling posture. In the boom storage and deployment device of the crane that deploys the boom by changing to the working posture, the correspondence between the boom undulation angle and the port length is set in advance from the working posture to the running posture. Setting means for
現在のブーム起伏角を検出するブーム起伏角検出手段と、  Boom undulation angle detection means for detecting the current boom undulation angle,
現在の口一プ長を検出するロープ長検出手段と、  Rope length detecting means for detecting the current mouth length,
前記ブーム駆動装置および前記ウィンチ駆動装置を手動によつて駆動制御し、 該手動制御に伴い変化するブーム起伏角およびロープ長を前記ブーム起伏角検出 手段および前記ロープ長検出手段によってそれぞれ検出し、 該ブーム起伏角検出 値と前記設定手段の設定ブ―ム起伏角とのずれおよび前記口一プ長検出値と前記 設定手段の設定ロープ長とのずれをそれぞれ演算し、  The boom driving device and the winch driving device are manually driven and controlled, and the boom undulation angle and the rope length that change with the manual control are detected by the boom undulation angle detecting means and the rope length detecting means, respectively. Calculating the deviation between the detected boom angle and the boom angle set by the setting means and the deviation between the detected mouth length and the set rope length by the setting means, respectively;
該演算されたブーム起伏角のずれおよびロープ長のずれがそれぞれ零になるよ うに、 前記ブーム駆動装置およびウィンチ駆動装置を自動制御する制御手段と を具えたクレーンのブーム格納 ·展開装置  A crane boom storage / deployment device comprising: control means for automatically controlling the boom drive device and the winch drive device so that the calculated displacement of the boom angle and the displacement of the rope length become zero.
7 . 前記設定手段には、 ブーム起伏角とロープ長との対応関係が、 ブーム起 伏角を一方の座標軸としロープ長を他方の座標軸とする 2次元座標系上の軌跡と して設定されており、  7. In the setting means, the correspondence between the boom angle and the rope length is set as a locus on a two-dimensional coordinate system where the boom angle is one coordinate axis and the rope length is the other coordinate axis. ,
前記制御手段は、  The control means includes:
前記ブーム起伏角検出値およびロープ長検出値が示す前記 2次元座標系上の座 標位置と前記軌跡上の座標位置との距離が最小となるように、 前記軌跡上の座標 位置を求め、 該求めた軌跡上座標位置に示されるブーム起伏角と前記ブーム起伏 角検出値とのずれおよび前記求めた軌跡上座標位置に示されるロープ長と前記口 ープ長検出値とのずれをそれぞれ演算するものである、 請求の範囲第 6項記載のクレーンのブーム格納 .展開装置 The coordinate position on the locus is determined so that the distance between the coordinate position on the two-dimensional coordinate system indicated by the boom hoist angle detection value and the rope length detection value and the coordinate position on the locus is minimized. The deviation between the calculated boom angle and the detected value of the boom angle shown at the coordinate position on the trajectory and the deviation between the rope length and the detected value of the mouth length indicated at the coordinate position on the trajectory are calculated. Is a thing, A crane boom storage device according to claim 6.
PCT/JP1995/000335 1993-12-17 1995-03-02 Boom storing and extending device for crane WO1996026883A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP5318415A JPH07172775A (en) 1993-12-17 1993-12-17 Boom storage and expansion device of crane
PCT/JP1995/000335 WO1996026883A1 (en) 1993-12-17 1995-03-02 Boom storing and extending device for crane
EP95910728A EP0812797A4 (en) 1993-12-17 1995-03-02 Boom storing and extending device for crane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP5318415A JPH07172775A (en) 1993-12-17 1993-12-17 Boom storage and expansion device of crane
PCT/JP1995/000335 WO1996026883A1 (en) 1993-12-17 1995-03-02 Boom storing and extending device for crane

Publications (1)

Publication Number Publication Date
WO1996026883A1 true WO1996026883A1 (en) 1996-09-06

Family

ID=18098902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/000335 WO1996026883A1 (en) 1993-12-17 1995-03-02 Boom storing and extending device for crane

Country Status (4)

Country Link
EP (1) EP0812797A4 (en)
JP (1) JPH07172775A (en)
TW (1) TW329793U (en)
WO (1) WO1996026883A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0921093A2 (en) * 1997-12-05 1999-06-09 Grove U.S. LLC Luffing angle measurement system
CN111943060A (en) * 2020-08-17 2020-11-17 交通运输部公路科学研究所 Modular mechanical arm, hoisting system and posture adjusting method
CN114007977A (en) * 2019-07-30 2022-02-01 株式会社多田野 Controller, boom device, and crane vehicle
CN117446670A (en) * 2023-12-25 2024-01-26 泰安市特种设备检验研究院 Automatic control method and system for tower crane based on man-machine co-fusion

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4447107B2 (en) * 2000-03-28 2010-04-07 株式会社タダノ In-vehicle crane boom control device
JP2005255359A (en) * 2004-03-12 2005-09-22 Toyota Motor Corp Filament winding device
CN102040160B (en) * 2010-08-30 2012-10-10 湖南中联重科专用车有限责任公司 Method for controlling movement locus of hook of crane
CN107572378B (en) * 2017-08-15 2019-03-29 阜新力夫特液压有限公司 A kind of controllable coaxial dual-speed two-way hydraulic motor drive system
JP7031385B2 (en) 2018-03-09 2022-03-08 株式会社タダノ crane
JP2022080589A (en) * 2020-11-18 2022-05-30 株式会社タダノ Controller, boom device and crane vehicle
JP2022080588A (en) 2020-11-18 2022-05-30 株式会社タダノ Controller, boom device and crane vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5517751Y2 (en) * 1975-04-23 1980-04-24
JPS5643892U (en) * 1979-09-11 1981-04-21
JPS63166590U (en) * 1986-06-03 1988-10-31

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5517751Y2 (en) * 1975-04-23 1980-04-24
JPS5643892U (en) * 1979-09-11 1981-04-21
JPS63166590U (en) * 1986-06-03 1988-10-31

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0812797A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0921093A2 (en) * 1997-12-05 1999-06-09 Grove U.S. LLC Luffing angle measurement system
EP0921093A3 (en) * 1997-12-05 1999-06-16 Grove U.S. LLC Luffing angle measurement system
US6473715B1 (en) 1997-12-05 2002-10-29 Grove U.S. L.L.C. Luffing angle measurement system
CN114007977A (en) * 2019-07-30 2022-02-01 株式会社多田野 Controller, boom device, and crane vehicle
CN114007977B (en) * 2019-07-30 2024-02-27 株式会社多田野 Controller, boom device, and crane
CN111943060A (en) * 2020-08-17 2020-11-17 交通运输部公路科学研究所 Modular mechanical arm, hoisting system and posture adjusting method
CN111943060B (en) * 2020-08-17 2022-03-18 交通运输部公路科学研究所 Posture adjusting method
CN117446670A (en) * 2023-12-25 2024-01-26 泰安市特种设备检验研究院 Automatic control method and system for tower crane based on man-machine co-fusion
CN117446670B (en) * 2023-12-25 2024-04-26 泰安市特种设备检验研究院 Automatic control method and system for tower crane based on man-machine co-fusion

Also Published As

Publication number Publication date
JPH07172775A (en) 1995-07-11
EP0812797A1 (en) 1997-12-17
EP0812797A4 (en) 2000-03-15
TW329793U (en) 1998-04-11

Similar Documents

Publication Publication Date Title
WO1996026883A1 (en) Boom storing and extending device for crane
WO1995018060A1 (en) Control device for a crane
EP4219381A1 (en) Crane
EP1314681B1 (en) Method for operating a crane
US11434112B2 (en) Crane
JPH04235895A (en) Control device for lifting long cargo by crane vertically from ground
EP2939529B1 (en) A method and a system for controlling the crane of a forest machine
JP2005263470A (en) Winch speed control device, and winch speed control method
JP6540724B2 (en) Turning control device
JP4163879B2 (en) Crane hook horizontal movement control device
JP2953264B2 (en) Crane drive
EP3925919B1 (en) Lifting control device and mobile crane
US11866913B2 (en) Construction machine
WO2021246240A1 (en) Control device for crane
US20240133159A1 (en) Slope work vehicle
JPH10218561A (en) Craned-load moving speed control device and craned-load moving speed control method
JP2003081578A (en) Crane hook horizontal movement control device
JPH07215680A (en) Lifted load locus controller for crane
JP2003081577A (en) Crane hook horizontal movement control device
JP2001261285A (en) Operation device for crane
JPH06115880A (en) Level luffing control device for crane
JPH09156874A (en) Hydraulic control device for crane
AU2021441551A1 (en) Slope work vehicle
JPH11130396A (en) Controller for work vehicle for both crane and high lift work
JPH1059683A (en) Crane hook position control method and its device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95197746.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 1997 894776

Country of ref document: US

Date of ref document: 19970827

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1995910728

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1995910728

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1995910728

Country of ref document: EP