WO1996025018A1 - Microphone device - Google Patents

Microphone device Download PDF

Info

Publication number
WO1996025018A1
WO1996025018A1 PCT/JP1996/000292 JP9600292W WO9625018A1 WO 1996025018 A1 WO1996025018 A1 WO 1996025018A1 JP 9600292 W JP9600292 W JP 9600292W WO 9625018 A1 WO9625018 A1 WO 9625018A1
Authority
WO
WIPO (PCT)
Prior art keywords
microphone
sound
directivity
elements
unidirectional
Prior art date
Application number
PCT/JP1996/000292
Other languages
French (fr)
Japanese (ja)
Inventor
Masashi Ohkubo
Toru Sasaki
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Publication of WO1996025018A1 publication Critical patent/WO1996025018A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • H04R1/406Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers microphones

Definitions

  • the present invention relates to a microphone device for improving directivity with respect to a sound source, and more particularly, to a car navigation system in which various command signals are input using voice.
  • Microphone device useful for voice input means of voice recognition devices used in systems, convenience stores, etc. “Pokoseki” 5-to o Background technology Generally, to collect sound emitted from a sound source Microphone devices used for various purposes are required to have various directivities depending on the purpose of use.
  • conventional microphone devices are either omnidirectional, which has a fixed sensitivity to sound sources located in any direction, or have directivity, which has a fixed sensitivity to sound sources located in a certain direction. Some have.
  • the sensitivity in the main axis direction of the microphone unit is set to 1 and the direction orthogonal to the main axis is set.
  • a unidirectional microphone device having a sensitivity of 0.5
  • a superdirective microphone device having a sensitivity of 0.5 or less in a direction orthogonal to the main axis of the microphone unit.
  • one end of a cylindrical acoustic tube having a perforated slit for perforation on its peripheral surface is attached to one end of a main axis in a direction directing in the axial direction of the acoustic tube.
  • a so-called shotgun-type microphone device which is a unidirectional microphone device with a microphone unit attached to it, and a secondary device in which two unidirectional microphone units are linearly arranged in the main axis direction.
  • a sound pressure gradient type microphone device is known.
  • the so-called shotgun microphone device described above mainly exhibits super-directivity in the high frequency range, whereas the secondary sound pressure gradient type microphone device mainly exhibits super-directivity in the low frequency range.
  • microphones used for voice input means of voice recognition systems used in force navigation systems and convenience stores, where various command signals are input using voice, are subject to voice recognition. Since it is used for the purpose of collecting only the voice of the person who becomes the target, sharp directivity is required in the midrange.
  • the conventionally used unidirectional microphone device is susceptible to noise from side directions other than the direction in which the main axis of the microphone unit is directed. Is not suitable. In other words, sounds other than the sound that should be collected are collected, so that accurate command signals cannot be obtained.
  • An object of the present invention is to solve the problems of conventional microphone devices and to provide a microphone device useful as a voice input unit of a voice recognition device.
  • Another object of the present invention is to realize a sharp directivity in a middle frequency range required for input means of a voice recognition device, to have high sensitivity to a voice input from the front, and to extremely reduce a noise component input from a side.
  • An object of the present invention is to provide a microphone mouth phone device that realizes less sound collection.
  • the microphone opening microphone device proposed to achieve the above-described object is arranged in a substantially single horizontal plane, is substantially equidistant from the sound source, and is substantially equal to the sound source. It comprises at least three directional microphone elements arranged at intervals and an adder for adding output signals from each microphone element.
  • each microphone element is arranged in a single plane parallel to the diaphragm of each microphone element.
  • a unidirectional microphone element is used for each microphone element.
  • the microphone device has at least three microphone elements, each microphone element being disposed at a predetermined distance in a direction orthogonal to the main axis of directivity, and a microphone element provided with each microphone element. And an adder for adding the output signal.
  • each microphone The mouthpiece elements are each composed of a unidirectional microphone element, and the sound collection surfaces face the same direction with respect to the sound source, and are arranged at substantially equal intervals.
  • the microphone device includes a single microphone element and at least three sound guide paths for guiding sounds having equal lengths and coming from the outside to the microphone element.
  • the openings at one end of each of the three sound guides are arranged so that the distances from the sound source are equal to each other and form a single horizontal plane. It is opposed to a microphone element.
  • the openings at one end of each of the three sound guide paths are arranged so as to form a plane substantially perpendicular to the single horizontal plane.
  • an omnidirectional microphone element is used as the microphone element.
  • the microphone element may be a unidirectional microphone element.
  • a sound guide section provided with three sound guide paths may be provided on the front surface of the microphone element in the sound collection plane direction.
  • FIG. 1 is a block diagram showing a configuration of a microphone device according to the present invention ⁇ >.
  • FIG. 2 is a plan view schematically showing the positional relationship between the microphone units and the directivities in the microphone device.
  • FIG. 3 is a perspective view showing an example in which the microphone device according to the present invention is applied to a voice input unit of a voice recognition device used in a force navigation system.
  • FIG. 4 is a characteristic diagram showing the directivity index frequency characteristics of the microphone device shown in FIG. 1 together with the directivity index frequency characteristics of the kauc and secondary sound pressure gradient microphone devices.
  • Fig. 5 is a characteristic diagram showing the directional frequency characteristics when the distance between the microphone units in the microphone device is set to 3 cm.
  • Fig. 6 is a graph showing the distance between the microphone units in the microphone device when the distance between the microphone units is 6 cm.
  • FIG. 7 is a characteristic diagram showing the directional frequency characteristics when the distance is set to 12 cm.
  • FIG. 7 is a characteristic diagram showing the directional frequency characteristics when the interval between the microphone units in the microphone device is set to 12 cm. .
  • FIG. 8 is a block diagram showing another configuration of the microphone device according to the present invention.
  • FIG. 9 is a characteristic diagram showing directivity frequency characteristics when the interval between each microphone unit in the microphone device shown in FIG. 8 is 6 cm.
  • FIG. 10 is a block diagram showing still another configuration of the microphone device according to the present invention.
  • FIG. 11 is a block diagram showing still another configuration of the microphone device according to the present invention.
  • FIG. 12 shows still another configuration of the microphone device according to the present invention.
  • FIG. 13 is a cross-sectional view of a principal part showing still another configuration of the microphone device according to the present invention.
  • the microphone device includes three microphone unit 1, 2, 3 and a combiner 4 for adding and combining the outputs from these microphone units 1 : 2, 3. And
  • each of the microphone units 1, 2, and 3 has a single directivity.
  • the microunits 1, 2, 3 are arranged at equal intervals D in a direction orthogonal to the main axis of the directivity direction.
  • the interval D between the microphone units 1, 2, and 3 is set, for example, in a range of about 3 cm to 12 cm.
  • the distance D between the microphone units 1, 2, and 3 is appropriately selected according to the size of the microphone unit used and the sound source to be collected, and is not limited to the above range.
  • the microphone units 1, 2, and 3 are arranged in parallel so that the main axes are located in a single horizontal plane.
  • the diaphragm of each microphone element constituting each microphone unit is arranged so as to be located in a single plane parallel to the plane of these diaphragms.
  • the signal synthesizer 4 is a so-called wired addition and summation that directly connects the signal lines to which the outputs of the microphone units 1, 2, and 3 are supplied. A generator is used.
  • the signal synthesizer 4 may be one that performs signal synthesis via an amplifier. Then, from the signal combiner 4, the outputs of the microphone units 1, 2, and 3 are combined and output.
  • the microphone device of the present embodiment is mounted on an automobile that receives a reference signal from a satellite, indicates a current position on a map displayed on a display screen, and guides a traveling direction. It is applied to the voice input means of the voice recognition device used in the used car navigation system.
  • the microphone device is provided with a long housing 51 having a substantially rectangular cross-sectional shape, and each of the microphone units 1, 2, and 3 is provided in the housing 51.
  • the microphone units 1, 2, and 3 are mounted so that the principal axes of directivity of the microphone units 1, 2, and 3 are parallel to each other, with the sound-collecting surface on which the diaphragms constituting each microphone element are located facing the front side.
  • the intervals D i, D 2 between the microphone units 1, 2, 3 are set to 55 mm.
  • the microphone units 1, 2, and 3 are arranged in parallel so that the principal axes of the directions are located in a single horizontal plane.
  • Each of the microphone units 1, 2, and 3 is It is mounted via a printed wiring board provided in the housing 51.
  • a combiner 4 is provided on the printed wiring board, and each of the microphone units 1, 2, and 3 is connected to the combiner 4 via a wiring pattern of the printed wiring board, and each output is connected to the combiner 4. 4 is added and synthesized.
  • each microphone unit 1, 2, 3 is arranged in the housing 51 such that the diaphragm of each microphone element is located in a single plane parallel to the plane of these diaphragms. That is, each micro The phone units 1, 2, and 3 are arranged in the housing 51 so that the positions in the front-back direction of the main shaft direction are matched.
  • each of the microphone units 1, 2, and 3 can reliably collect sound that enters only these microphone units 1, 2, and 3. it can.
  • a lead wire 53 for taking out the output from the synthesizer 4 to the outside is drawn out on one side surface of the housing 51.
  • This microphone device is configured to be applied to a voice input means of a voice recognition device used in a car navigation system mounted on a vehicle and used when installed in a vehicle. It is constructed so that the sound generated by the driver can be reliably collected and installed at a position where it will not interfere with driving.
  • the sunpiser is mounted on the rear side of the housing 51 so that it can be mounted on the surface of a sunshade for light shielding disposed above a driver's seat in an automobile or on a dashboard.
  • Mounting means such as a clip to be gripped and hook-and-loop fasteners are provided.
  • the microphone unit 1 since the microphone units 1, 2, and 3 are arranged in the housing 51 so that the positions in the front-back direction of the main shaft direction are matched, the microphone unit 1 does not protrude partly. It can be arranged along the surface of a mounting member such as a zigzag. According to Thus, even when the microphone device is placed in a car, the microphone device can be installed with sufficient danger avoidance without hindering the driving of the driver.
  • the microphone units 1, 2, and 3 are housed in the housing 51 whose back side is closed to form a microphone device, the incidence of sound from the back side is restricted. Not only a unidirectional microphone unit but also a bidirectional microphone unit may be used.
  • FIG. 4 shows the directivity index and frequency characteristic A of the microphone device of the present embodiment calculated based on the frequency characteristics of the omnidirectional microphone device, together with the above-described shotgun type microphone device.
  • the directional index frequency characteristic B and the directional index frequency characteristic C of the secondary sound pressure gradient microphone device are shown.
  • Directivity f 4n D 2 ( ⁇ ) ⁇
  • the microphone device of this embodiment and the shotgun type microphone device are: The directivity index in the low range, that is, the directivity is as sharp as a unidirectional microphone, but it exhibits sharp directivity in the midrange.
  • the secondary sound pressure gradient microphone device has a sharp directivity in the middle and low frequencies. Further, the microphone device of the present embodiment exhibits sharp directivity in a high frequency range as compared with the shotgun type microphone device and the secondary sound pressure gradient type microphone mouth phone device.
  • the microphone device of the present embodiment since the outputs of the respective microphone units 1, 2, and 3 are added and synthesized by the synthesizer 4, the sound waves input to the respective microphone units 1, 2, and 3 are added.
  • the corresponding output adds the in-phase component and cancels the out-of-phase component, and exhibits super-directivity at a frequency that depends on the interval D of each microphone unit 1: 2,3.
  • D 3 cm
  • D 6 cm
  • the principal axis direction is 0 beta
  • a frequency characteristics or directivity frequency characteristics for 4 0 ° direction and 9 0 ° direction relative to the main axis there is shown a frequency characteristics or directivity frequency characteristics for 4 0 ° direction and 9 0 ° direction relative to the main axis.
  • the microphone device according to the present invention is, for example, as shown in FIG. From the four microphone units 11 1, 1 2, 13, and 14 and the combiner 15 that adds and combines the outputs of the microphone unit 11, 1, 12, 13, and 14. It may be configured.
  • the microphone units 11, 12, 13, and 14 having unidirectionality are used.
  • the microphone units 11, 12, 13, 14 are arranged at equal intervals in the direction orthogonal to the main axis of the directivity direction, for example, at intervals of 6 cm.
  • the interval between these microphone units 11, 12, and 13 is appropriately selected according to the size of the microphone unit used and the sound source to be collected.
  • the microphone units 11, 12, and 13 are arranged in parallel so that the main axes are located in a single horizontal plane.
  • a directional frequency characteristic as shown in FIG. 9 is obtained, and by increasing the number of microphone units arranged side by side, the directivity in a high frequency range becomes sharp.
  • a plurality of unidirectional microphone units are juxtaposed at a predetermined distance from each other in the direction perpendicular to the main axis of the directivity, and the outputs of the respective microunits are added and combined by a combiner to produce an output signal.
  • a microphone-phone device having a sharp directivity in the mid-range, which is the main component of human speech.
  • the plurality of microphone units are arranged such that the diaphragms of the microphone elements constituting these microphone units are located in a single plane parallel to the plane of the diaphragms.
  • three or four microphone units 41, 42, 43 are located at the same distance R! You may make it arrange
  • the plurality of microphone units are arranged at equal intervals, but the intervals between the microphone units may be shifted within a range of about 1 to 1.2. That is, the deviation of the interval in the range of about 1 to 1.2 with respect to the wavelength of the human voice is within the error range for the directivity, and has no practical problem and hinders the object of the present invention. Not something.
  • a plurality of, for example, three microphone units 61, 62 and 63 are arranged vertically with respect to a horizontal plane P when viewed from the front in the arrangement direction. Even if there is a deviation of about 61, 62, or 63 in diameter, it is within an error range for the directivity, and there is no practical problem and does not hinder the object of the present invention.
  • the interval between each microphone unit is set as a voice input device of a voice recognition device used in a car navigation system. It is desirable to widen the range of directivity as compared with the case where it is used. This is because when using the personal convenience, the head movement of the user becomes large. When this microphone device is used in a car navigation system, the movement of the driver is restricted, so reducing the interval between the microphone units improves the sound collection characteristics while improving the directivity. This is advantageous.
  • This microphone device can be configured as shown in FIG.
  • three sound tubes 21, 22, and 23 are formed with an opening at one end side, and the openings are used as sound introduction ports 21 A, 22 A, and 23 A. It is composed of a director 20 connected at the output port on the other end side, and a microphone port 25 provided at the output port 2OA of the director 20. You.
  • Each sound tube 21, 22, 23 is positioned so that each sound inlet 21 A, 22 A, 23 A is located at a predetermined distance from each other in the direction perpendicular to the main axis of directivity. It is bent. Then, the director 20 mixes each sound wave incident from each of the sound wave inlets 21 A, 22 A, and 23 A at the connection portion 24 of each sound tube 21, 22, 23. Incident on the microphone unit 25. That is, each of the acoustic tubes 21, 22: 23 has a sound inlet 21 A, 22 A, and 23 A at a predetermined distance from each other in a direction perpendicular to the main axis of directivity. A sound passage portion for guiding each sound wave introduced from each sound wave introduction port 21A, 22A, 23A to the connection portion 24 is formed, and the connection portion 24 and the mixing portion for mixing each sound wave are formed. And ifes tfe "9.
  • each sound inlet 21 A, 22 A, 23 A waves are arranged so that they are located on almost the same line or on a single circle around the sound source.
  • the in-phase components are added by mixing each sound wave incident from each sound wave introduction port 21 A, 22 A, and 23 A in the director 20.
  • each of the sound wave introduction ports 21 A, 22 A, and 23 A exhibits super-directivity at a frequency dependent on the distance D between the ports.
  • a single microphone unit 25 can achieve sharp directionality in the sound range, and is highly sensitive to voice input from the front and has very little noise from the side.
  • an omnidirectional microphone unit it also has sensitivity to waves from the back side and has a directional figure of eight, but this microphone device is used in a car navigation system installed in an automobile.
  • the back side When used as a voice input means of a voice recognition device used in a computer system, the back side is substantially closed and almost no sound is incident from the back side, so that the object can be sufficiently achieved.
  • the impedance of the acoustic tubes 21, 22, and 23 is higher than that of the microphone unit 25. 22
  • the back of the microphone unit 25 to match the impedance of 2 and 23 It is desirable to adjust the impedance by closing the side.
  • the microphone unit 25 has the same characteristics as the microphone device shown in FIG. 1 described above. It can be.
  • acoustic tubes 21, 22, and 23 instead of the director 20 constituted by the acoustic tubes 21, 22, and 23 as described above, for example, as shown in a microphone device shown in FIG. 13, predetermined directions are perpendicular to the main axis of directivity.
  • Acoustic passages 31, 32, 33 that guide the sound waves introduced from the acoustic wave inlets 31 A, 32 A, 33 A at a distance D, respectively, and acoustic passages 31, 31 A waveguide unit 30 formed with a mixing unit 34 for mixing the respective sound waves guided through 32 and 33 is used, and a microphone unit 35 is added to the mixing unit 34 of the director 30. It may be installed.
  • the distance between the acoustic passages 31 1, 32 A, 33 A and the mixing section 34 from the acoustic passage sections 3 1, 3 2, 3 3 is made equal so that the The sound waves introduced from 1 A, 32 A, and 33 A maintain their phase relationship with each other, and the mixing section 34 cancels out the opposite-phase component to which the in-phase component has been added.
  • INDUSTRIAL APPLICABILITY In the microphone device according to the present invention, the output of at least three unidirectional microphone units arranged at a predetermined distance from each other in a direction perpendicular to the main axis of the directivity is synthesized.
  • the output signal is obtained by adding and combining at, so that sharp directivity is realized in the midrange, Since it is possible to perform collection with high sensitivity to the voice input and very little noise from the side, the voice input means of the voice recognition device used in the car navigation system mounted on the car, By using it as a voice input means for the convenience, it is possible to accurately and reliably collect the voice of the driver or the operator.

Abstract

A microphone device comprising at least three microphone elements arranged at prescribed intervals in a direction perpendicular to the axis of directivity, and a circuit for summing the output signals of the microphone elements. The microphone elements, which are unidirectional, are arranged at substantially regular intervals in such a manner that they all have planes of incidence toward a source of sound. This microphone device shows sharp directivity in middle range of frequency required by the input means of a voice recognizing device and high sensitivity against voice inputs from the front, while minimizing the level of noises from sides.

Description

明細書 発明の名称 マイク口ホン装置 技術分野 本発明は、 音源に対する指向性の向上を図ったマイ クロホン装置 に関し、 さらに詳しくは、 音声を利用して各種の指令信号の入力が 行われるカーナビゲーシヨンシステムやコンビユー夕等に用いられ る音声認識装置の音声入力手段に用いられて有用なマイ クロホン装 置 ίこ関" 5 -to o 背景技術 一般に、 音源から放射される音声の集音を行うために用いられる マイ クロホン装置は、 使用目的に応じて各種の指向性が要求されて いる。  TECHNICAL FIELD The present invention relates to a microphone device for improving directivity with respect to a sound source, and more particularly, to a car navigation system in which various command signals are input using voice. Microphone device useful for voice input means of voice recognition devices used in systems, convenience stores, etc. “Pokoseki” 5-to o Background technology Generally, to collect sound emitted from a sound source Microphone devices used for various purposes are required to have various directivities depending on the purpose of use.
そこで、 従来のマイクロホン装置には、 いずれの方向に位置する 音源に対しても一定の感度を有する無指向性のものや、 一定の方向 に位置する音源に対して一定の感度を有する指向性を有するものが ある。 指向性を有するマイ クロホン装置には、 マイ クロホンュニ ヅ 卜の指向性の主軸方向の感度を 1 と して、 主軸に対し直交する方向 の感度を 0 . 5 となす単一指向性マイ クロホン装置や、 マイクロホ ンユニッ トの主軸に対し直交する方向の感度を 0 . 5以下となす超 指向性マイ クロホン装置が提供されている。 Therefore, conventional microphone devices are either omnidirectional, which has a fixed sensitivity to sound sources located in any direction, or have directivity, which has a fixed sensitivity to sound sources located in a certain direction. Some have. For a microphone device having directivity, the sensitivity in the main axis direction of the microphone unit is set to 1 and the direction orthogonal to the main axis is set. There is provided a unidirectional microphone device having a sensitivity of 0.5, and a superdirective microphone device having a sensitivity of 0.5 or less in a direction orthogonal to the main axis of the microphone unit.
そして、 超指向性を有するマイ クロホン装置として、 周面に集音 用の透孔ゃス リ ッ トを穿設した円筒状をなす音響管の一端に、 音響 管の軸方向に指向方向の主軸を向けてマイクロホンユニッ トを取り 付けた単一指向型のマイクロホン装置であるいわゆるショ ッ トガン 型のマイ クロホン装置や、 2つの単一指向性のマイクロホンュニッ トを主軸方向に直線配列した 2次音圧傾斜型のマイクロホン装置が 知られている。  As a microphone device having super directivity, one end of a cylindrical acoustic tube having a perforated slit for perforation on its peripheral surface is attached to one end of a main axis in a direction directing in the axial direction of the acoustic tube. A so-called shotgun-type microphone device, which is a unidirectional microphone device with a microphone unit attached to it, and a secondary device in which two unidirectional microphone units are linearly arranged in the main axis direction. A sound pressure gradient type microphone device is known.
上述したいわゆるショ ッ トガン型のマイ クロホン装置は、 主と し て高音域で超指向性を呈するのに対し、 2次音圧傾斜型のマイ クロ ホン装置は、 主として低音域で超指向性を呈する。  The so-called shotgun microphone device described above mainly exhibits super-directivity in the high frequency range, whereas the secondary sound pressure gradient type microphone device mainly exhibits super-directivity in the low frequency range. Present.
ところで、 音声を利用して各種の指令信号の入力が行われる力一 ナビゲーシヨ ンシステムやコンビュ一夕等に用いられる音声認識装 置の音声入力手段に用いられるマイ クロホン装置は、 音声認識の対 象となる人の音声だけを専ら集音することを目的に用いられるもの であるので、 中音域で鋭い指向性が要求される。  By the way, microphones used for voice input means of voice recognition systems used in force navigation systems and convenience stores, where various command signals are input using voice, are subject to voice recognition. Since it is used for the purpose of collecting only the voice of the person who becomes the target, sharp directivity is required in the midrange.
ところで、 従来用いられている単一指向性のマイクロホン装置は、 マイ クロホンュニッ トの指向方向の主軸が向かう方向以外の側面方 向からのノイズが入りやすく、 音声認識装置の音声入力手段に用い るには不向きである。 すなわち、 本来集音されるべき音以外の音が 集音されるため、 正確な指令信号を得ることができなくなってしま ラ。  By the way, the conventionally used unidirectional microphone device is susceptible to noise from side directions other than the direction in which the main axis of the microphone unit is directed. Is not suitable. In other words, sounds other than the sound that should be collected are collected, so that accurate command signals cannot be obtained.
また、 ショ ッ トガン型のマイ クロホン装置や 2次音圧傾斜型のマ イク口ホン装置は、 音声認識装置の音声入力手段に要求される中音 域での鋭い指向性を満足することができないばかりか、 高価である という問題点を有する。 発明の開示 本発明の目的は、 従来のマイ クロホン装置が有する問題点を解決 し、 音声認識装置の音声入力手段に用いて有用なマイ クロホン装置 を提供することにある。 In addition, a shotgun type microphone device and a secondary sound pressure gradient type The earphone device has a problem that it is not only unable to satisfy the sharp directivity in the middle frequency range required for the voice input means of the voice recognition device, but is expensive. DISCLOSURE OF THE INVENTION An object of the present invention is to solve the problems of conventional microphone devices and to provide a microphone device useful as a voice input unit of a voice recognition device.
本発明の他の目的は、 音声認識装置の入力手段に要求される中音 域で鋭い指向性を実現し、 正面からの音声入力に対して高感度で、 側面から入力されるノィズ成分が極めて少ない集音を実現するマイ ク口ホン装置を提供することにある。  Another object of the present invention is to realize a sharp directivity in a middle frequency range required for input means of a voice recognition device, to have high sensitivity to a voice input from the front, and to extremely reduce a noise component input from a side. An object of the present invention is to provide a microphone mouth phone device that realizes less sound collection.
上述したような目的を達成するために提案される本発明に係るマ イ ク口ホン装置は、 略単一の水平面内に配され、 音源から互いに略 等距離で、 且つ音源を向いて略等間隔に配された少なく とも 3つの 指向性マイ クロホン素子と、 各マイ クロホン素子からの出力信号を 加算する加算器とを備えて構成される。  The microphone opening microphone device according to the present invention proposed to achieve the above-described object is arranged in a substantially single horizontal plane, is substantially equidistant from the sound source, and is substantially equal to the sound source. It comprises at least three directional microphone elements arranged at intervals and an adder for adding output signals from each microphone element.
ここで、 各マイ クロホン素子は、 各マイ クロホン素子の振動板と 平行な単一の平面内に配される。 また、 各マイ クロホン素子には、 単一指向性のマイ クロホン素子が用いられる。  Here, each microphone element is arranged in a single plane parallel to the diaphragm of each microphone element. A unidirectional microphone element is used for each microphone element.
また、 本発明に係るマイ クロホン装置は、 各マイ クロホン素子が 指向性の主軸と直交する方向に所定の距離を隔てて配されてなる少 なく とも 3つのマイ クロホン素子と、 各マイクロホン素子からの出 力信号を加算する加算器とを備えて構成される。 ここで、 各マイ ク 口ホン素子は、 各々単一指向性マイクロホン素子から構成されると ともに、 音源に対して集音面が同一方向を向き、 且つ略等間隔で配 される。 Further, the microphone device according to the present invention has at least three microphone elements, each microphone element being disposed at a predetermined distance in a direction orthogonal to the main axis of directivity, and a microphone element provided with each microphone element. And an adder for adding the output signal. Where each microphone The mouthpiece elements are each composed of a unidirectional microphone element, and the sound collection surfaces face the same direction with respect to the sound source, and are arranged at substantially equal intervals.
さらに、 本発明に係るマイ クロホン装置は、 単一のマイ クロホン 素子と、 互いに長さが等しく外部よ り到来した音を上記マイクロホ ン素子に導く少なく とも 3つの音導路とを備える。 そして、 3つの 音導路の各々の一端の開口部は、 音源からの距離を互いに等しく な し且つ単一の水平面を形成するように配列されているとともに、 各 々他端側の開口部はマイクロホン素子と対峙されてなる。 ここで、 3つの音導路の各々の一端の開口部は、 上記単一の水平面に対して 略垂直な平面を形成するように配されている。  Further, the microphone device according to the present invention includes a single microphone element and at least three sound guide paths for guiding sounds having equal lengths and coming from the outside to the microphone element. The openings at one end of each of the three sound guides are arranged so that the distances from the sound source are equal to each other and form a single horizontal plane. It is opposed to a microphone element. Here, the openings at one end of each of the three sound guide paths are arranged so as to form a plane substantially perpendicular to the single horizontal plane.
このマイ クロホン装置においては、 マイ クロホン素子に、 無指向 性のマイクロホン素子が用いられる。  In this microphone device, an omnidirectional microphone element is used as the microphone element.
また、 マイ クロホン素子は、 単一指向性のマイ クロホン素子を用 いてもよい。  Further, the microphone element may be a unidirectional microphone element.
さらに、 マイクロホン素子の集音面方向の前面に、 3つの音導路 が設けられた導音部を設けるようにしてもよい。  Further, a sound guide section provided with three sound guide paths may be provided on the front surface of the microphone element in the sound collection plane direction.
本発明のさらに他の目的及び本発明によって得られる利益は、 以 下において図面とともに説明される実施例の説明から一層明らかに されるであろう。 図面の簡単な説明 図 1は、 本発明に係るマイクロホン装置の構成を示すブロック図 でめ <∑>。 図 2は、 上記マイ クロホン装置における各マイクロホンユニッ ト の位置関係と各指向性を模式的に示す平面図である。 Still other objects of the present invention and advantages obtained by the present invention will become more apparent from the description of the embodiments described below with reference to the drawings. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a configuration of a microphone device according to the present invention <∑>. FIG. 2 is a plan view schematically showing the positional relationship between the microphone units and the directivities in the microphone device.
図 3は、 本発明に係るマイ クロホン装置を力一ナビゲーシヨ ンシ ステムに用いられるの音声認識装置の音声入力手段に適用した例を 示す斜視図である。  FIG. 3 is a perspective view showing an example in which the microphone device according to the present invention is applied to a voice input unit of a voice recognition device used in a force navigation system.
図 4は、 図 1 に示すマイクロホン装置の指向性指数周波数特性を ガンマイ ク及び 2次音圧傾斜型マイ クロホン装置の各指向性指数周 波数特性とともに示す特性図である。  FIG. 4 is a characteristic diagram showing the directivity index frequency characteristics of the microphone device shown in FIG. 1 together with the directivity index frequency characteristics of the Gummic and secondary sound pressure gradient microphone devices.
図 5は、 上記マイ クロホン装置における各マイクロホンユニッ ト の間隔を 3 c mとした場合の指向性周波数特性を示す特性図である, 図 6は、 上記マイクロホン装置における各マイクロホンュニッ ト の間隔を 6 c mとした場合の指向性周波数特性を示す特性図である, 図 7は、 上記マイ クロホン装置における各マイ クロホンユニッ ト の間隔を 1 2 c mとした場合の指向性周波数特性を示す特性図であ る。  Fig. 5 is a characteristic diagram showing the directional frequency characteristics when the distance between the microphone units in the microphone device is set to 3 cm. Fig. 6 is a graph showing the distance between the microphone units in the microphone device when the distance between the microphone units is 6 cm. FIG. 7 is a characteristic diagram showing the directional frequency characteristics when the distance is set to 12 cm. FIG. 7 is a characteristic diagram showing the directional frequency characteristics when the interval between the microphone units in the microphone device is set to 12 cm. .
図 8は、 本発明に係るマイ クロホン装置の他の構成を示すブロ ッ ク図である。  FIG. 8 is a block diagram showing another configuration of the microphone device according to the present invention.
図 9は、 図 8に示したマイ クロホン装置における各マイ クロホン ュニッ トの間隔を 6 c mとした場合の指向性周波数特性を示す特性 図である。  FIG. 9 is a characteristic diagram showing directivity frequency characteristics when the interval between each microphone unit in the microphone device shown in FIG. 8 is 6 cm.
図 1 0は、 本発明に係るマイ クロホン装置のさらに他の構成を示 すブロ ック図である。  FIG. 10 is a block diagram showing still another configuration of the microphone device according to the present invention.
図 1 1は、 本発明に係るマイ クロホン装置のさらに他の構成を示 すブロ ック図である。  FIG. 11 is a block diagram showing still another configuration of the microphone device according to the present invention.
図 1 2は、 本発明に係るマイ クロホン装置のさらに他の構成を示 す斜視図である。 FIG. 12 shows still another configuration of the microphone device according to the present invention. FIG.
図 1 3は、 本発明に係るマイ クロホン装置のさらに他の構成を示 す要部横断面図である。 発明を実施するための最良の形態 以下、 本発明に係るマイ ク口ホン装置の具体的な実施例を図面を 参照して説明する。  FIG. 13 is a cross-sectional view of a principal part showing still another configuration of the microphone device according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, specific embodiments of a microphone phone device according to the present invention will be described with reference to the drawings.
本発明に係るマイ クロホン装置は、 図 1 に示すように、 3個のマ イク口ホンユニッ ト 1 , 2 , 3 と、 これらマイクロホンユニッ ト 1 : 2 , 3からの出力を加算合成する合成器 4 とを備える。 As shown in FIG. 1, the microphone device according to the present invention includes three microphone unit 1, 2, 3 and a combiner 4 for adding and combining the outputs from these microphone units 1 : 2, 3. And
各マイ クロホンユニッ ト 1, 2, 3には、 図 2に示すように、 単 一指向性を呈するものが用いられる。 ここで、 各マイ クロホンュニ ッ ト 1, 2 , 3は、 指向方向の主軸に直交する方向に等間隔 Dに配 設される。 ここで、 各マイ クロホンユニッ ト 1, 2 , 3の間隔 Dは、 例えば 3 c m〜 1 2 c m程度の範囲に設定される。 この各マイ クロ ホンユニッ ト 1 , 2, 3間の間隔 Dは、 用いるマイ クロホンュニッ トの大きさや、 集音する音源に合わせて適宜選択されるものであ り 上述の範囲に限定されるものではない。 また、 各マイクロホンュニ ッ ト 1 , 2, 3は、 主軸が単一の水平面内に位置するように並列し て配置される。 さらに、 各マイクロホンユニッ トを構成する各マイ クロホン素子の振動板がこれら振動板の平面と平行な単一の平面内 に位置するようにして配置される。  As shown in Fig. 2, each of the microphone units 1, 2, and 3 has a single directivity. Here, the microunits 1, 2, 3 are arranged at equal intervals D in a direction orthogonal to the main axis of the directivity direction. Here, the interval D between the microphone units 1, 2, and 3 is set, for example, in a range of about 3 cm to 12 cm. The distance D between the microphone units 1, 2, and 3 is appropriately selected according to the size of the microphone unit used and the sound source to be collected, and is not limited to the above range. . The microphone units 1, 2, and 3 are arranged in parallel so that the main axes are located in a single horizontal plane. Furthermore, the diaphragm of each microphone element constituting each microphone unit is arranged so as to be located in a single plane parallel to the plane of these diaphragms.
信号合成器 4は、 各マイ クロホンユニッ ト 1 , 2, 3の出力が供 給される各信号線を直接接続してなるいわゆるワイヤー ドの加算合 成器が使用されている。 この信号合成器 4は、 増幅器を介して信号 合成を行うようなものであってももよい。 そして、 信号合成器 4か らは、 各マイクロホンユニッ ト 1 , 2, 3の出力が合成されて出力 される。 The signal synthesizer 4 is a so-called wired addition and summation that directly connects the signal lines to which the outputs of the microphone units 1, 2, and 3 are supplied. A generator is used. The signal synthesizer 4 may be one that performs signal synthesis via an amplifier. Then, from the signal combiner 4, the outputs of the microphone units 1, 2, and 3 are combined and output.
ところで、 本実施例のマイクロホン装置は、 衛星からの基準信号 を受信して、 表示画面上に表示される地図上に現在位置を指示する とともに、 走行方向を案内するようにした自動車に搭載されて用い られるカーナビゲーシヨンシステムに用いられるの音声認識装置の 音声入力手段に適用されるものである。 このマイクロホン装置は、 具体的に、 図 3に示すように、 断面形状を略矩形状となす長尺なハ ウジング 5 1 を備え、 各マイ クロホンユニッ ト 1, 2, 3は、 この ハウジング 5 1の前面側に各マイクロホン素子を構成する各振動板 が位置する集音面側を臨ませ、 各マイ クロホンユニッ ト 1, 2, 3 の指向性の主軸が平行となるように取り付けられている。 このとき、 各マイクロホンユニッ ト 1, 2 , 3の間隔 D i , D 2は、 5 5 m mに 設定されている。 また、 各マイ クロホンユニッ ト 1, 2 , 3は、 指 向性の主軸が単一の水平面内に位置するように並列して配置される なお、 各マイクロホンュニヅ 卜 1 , 2, 3は、 ハウジング 5 1 内 に配設されたプリ ン ト配線基板を介して取り付けられている。 この プリン ト配線基板には合成器 4が配設され、 各マイクロホンュニヅ ト 1, 2 , 3はプリ ン ト配線基板の配線パターンを介して合成器 4 に結線され、 各出力が合成器 4によって加算合成される。 By the way, the microphone device of the present embodiment is mounted on an automobile that receives a reference signal from a satellite, indicates a current position on a map displayed on a display screen, and guides a traveling direction. It is applied to the voice input means of the voice recognition device used in the used car navigation system. Specifically, as shown in FIG. 3, the microphone device is provided with a long housing 51 having a substantially rectangular cross-sectional shape, and each of the microphone units 1, 2, and 3 is provided in the housing 51. The microphone units 1, 2, and 3 are mounted so that the principal axes of directivity of the microphone units 1, 2, and 3 are parallel to each other, with the sound-collecting surface on which the diaphragms constituting each microphone element are located facing the front side. At this time, the intervals D i, D 2 between the microphone units 1, 2, 3 are set to 55 mm. The microphone units 1, 2, and 3 are arranged in parallel so that the principal axes of the directions are located in a single horizontal plane. Each of the microphone units 1, 2, and 3 is It is mounted via a printed wiring board provided in the housing 51. A combiner 4 is provided on the printed wiring board, and each of the microphone units 1, 2, and 3 is connected to the combiner 4 via a wiring pattern of the printed wiring board, and each output is connected to the combiner 4. 4 is added and synthesized.
さらに、 各マイ クロホンユニッ ト 1 , 2, 3は、 各マイ クロホン 素子の振動板がこれら振動板の平面と平行な単一の平面内に位置す るようにしてハウジング 5 1 に配置される。 すなわち、 各マイクロ ホンユニッ ト 1, 2, 3は、 主軸方向の前後方向の位置を一致させ てハウジング 5 1 内に配置されている。 Further, each microphone unit 1, 2, 3 is arranged in the housing 51 such that the diaphragm of each microphone element is located in a single plane parallel to the plane of these diaphragms. That is, each micro The phone units 1, 2, and 3 are arranged in the housing 51 so that the positions in the front-back direction of the main shaft direction are matched.
そして、 各マイ クロホンユニッ ト 1, 2 , 3の集音面側が臨むハ ウジング 5 1の前面側には、 多数の小孔を穿設した薄い金属板若し くは布製の前面板 5 2が取り付けられている。 この前面板 5 2は、 ハウジング 5 1の前面側に入射される音響が反射して各マイクロホ ンユニッ ト 1 , 2, 3に入射しないように吸音を行うものである。 このような前面板 5 2を設けることによ り、 各マイクロホンュニッ ト 1, 2, 3は、 これらマイクロホンユニッ ト 1 , 2, 3にのみ入 射される音響を確実に集音することができる。  On the front side of the housing 51 facing the sound-collecting surface of each of the microphone units 1, 2, and 3, a thin metal plate or a cloth front plate 52 with many small holes is attached. Have been. The front plate 52 absorbs sound so that sound incident on the front side of the housing 51 is reflected and does not enter each of the microphone units 1, 2 and 3. By providing such a front plate 52, each of the microphone units 1, 2, and 3 can reliably collect sound that enters only these microphone units 1, 2, and 3. it can.
また、 ハウジング 5 1の一側面には、 合成器 4からの出力を外部 に取り出す引き出し線 5 3が引き出されている。  A lead wire 53 for taking out the output from the synthesizer 4 to the outside is drawn out on one side surface of the housing 51.
このマイ クロホン装置は、 自動車に搭載されて用いられるカーナ ピゲーシヨンシステムに用いられるの音声認識装置の音声入力手段 に適用するように構成されたものであって、 自動車内に配置したと き、 運転手の発生音を確実に集音し、 且つ運転の障害にならない位 置に取り付け得る位置に構成される。 図 3に示す実施例では、 図示 はしないが、 自動車内の運転席上方に配置される遮光用のサンパイ ザの表面やダッシュボー ド等に取り付け得るように、 ハウジング 5 1の背面側にサンパイザを把持するク リ ップゃ面ファスナー等の取 り付け手段が設けられている。  This microphone device is configured to be applied to a voice input means of a voice recognition device used in a car navigation system mounted on a vehicle and used when installed in a vehicle. It is constructed so that the sound generated by the driver can be reliably collected and installed at a position where it will not interfere with driving. In the embodiment shown in FIG. 3, although not shown, the sunpiser is mounted on the rear side of the housing 51 so that it can be mounted on the surface of a sunshade for light shielding disposed above a driver's seat in an automobile or on a dashboard. Mounting means such as a clip to be gripped and hook-and-loop fasteners are provided.
そして、 本実施例のマイクロホン装置は、 各マイ クロホンュニッ ト 1 , 2, 3が主軸方向の前後方向の位置を一致させてハウジング 5 1 内に配置されているので、 一部を突出させることなくサンパイ ザ等の取り付け部材の面に沿って配置することができる。 したがつ て、 このマイ クロホン装置は、 自動車内に配置した場合であっても, 運転者の運転に阻害を与えることなく十分に危険を回避して設置す ることができる。 In the microphone device of the present embodiment, since the microphone units 1, 2, and 3 are arranged in the housing 51 so that the positions in the front-back direction of the main shaft direction are matched, the microphone unit 1 does not protrude partly. It can be arranged along the surface of a mounting member such as a zigzag. According to Thus, even when the microphone device is placed in a car, the microphone device can be installed with sufficient danger avoidance without hindering the driving of the driver.
ここで、 各マイ クロホンユニッ ト 1, 2 , 3を、 背面側を閉塞し たハウジング 5 1 に収納してマイクロホン装置を構成する場合には、 背面側からの音の入射が規制されてなるので、 単指向性のマイ クロ ホンュニッ トのみならず、 双指向性のマイクロホンュニッ トを用い てもよい。  Here, when the microphone units 1, 2, and 3 are housed in the housing 51 whose back side is closed to form a microphone device, the incidence of sound from the back side is restricted. Not only a unidirectional microphone unit but also a bidirectional microphone unit may be used.
ところで、 前述した図 1及び図 2に示すように各マイ クロホンュ ニッ ト 1, 2 , 3を配置したマイクロホン装置について、 マイ クロ ホン装置の指向性を数値的に把握する評価量の一つである指向性指 数を計算したところ図 4に示すような指向性指数周波数特性 Aが得 られた。 なお、 図 4には、 無指向性のマイクロホン装置の周波数特 性を基準として算出した本実施例のマイ クロホン装置の指向性指数 周波数特性 Aとともに、 前述したショ ッ トガン型のマイ クロホン装 置の指向性指数周波数特性 B と 2次音圧傾斜型マイクロホン装置の 指向性指数周波数特性 Cを示してある。  By the way, as shown in Figs. 1 and 2 above, this is one of the evaluation quantities for numerically grasping the directivity of the microphone unit in which the microphone units 1, 2, and 3 are arranged. When the directivity index was calculated, the directivity index frequency characteristic A as shown in Fig. 4 was obtained. In addition, FIG. 4 shows the directivity index and frequency characteristic A of the microphone device of the present embodiment calculated based on the frequency characteristics of the omnidirectional microphone device, together with the above-described shotgun type microphone device. The directional index frequency characteristic B and the directional index frequency characteristic C of the secondary sound pressure gradient microphone device are shown.
ここで、 全ての方向から等しい確率で入射し、 その位相が全く不 規則であるような音に対する指向性マイ クロホンのエネルギーレス ポンスと、 その正面感度が等しい無指向性マイ クロホンのエネルギ 一レスポンスの比を指向効率と呼び、 指向効率は次の式 ( 1 ) で定 義される。 指向効率 = f4nD2 (Ω) άΩ Here, the energy response of a directional microphone to a sound that is incident from all directions with equal probability and whose phase is completely irregular, and the energy-response of an omnidirectional microphone having the same frontal sensitivity are The ratio is called directivity, and the directivity is defined by the following equation (1). Directivity = f 4n D 2 (Ω) άΩ
4π J ο 1)  4π J ο 1)
なお、 D ( θ ) は角度 Ωにおける入射波に対する出力電圧と Ω = 0 のそれに対する比を表し、 また、 d Ωは角度 Ωの方向の微小立体角 を表す。 D (θ) represents the ratio of the output voltage to the incident wave at an angle Ω and that of Ω = 0, and d Ω represents the small solid angle in the direction of the angle Ω.
も し、 指向性が基準面に対して対称ならば、 指向効率は、 次の式 ( 2 ) で与えられる。  If the directivity is symmetric with respect to the reference plane, the directivity is given by the following equation (2).
指向効率 =+J D2(9)sin0d0 - · · (2) Directivity = + JD 2 (9) sin0d0-
そして、 指向性指数は、 次の式 ( 3 ) And the directivity index is given by the following equation (3)
指向効率 = 1 0 l o g 1D (指向効率) ( 3 ) Directivity = 10 log 1D (Directivity) (3)
又は、 次の式 ( 4 )  Or the following equation (4)
Mo Mo
指向効率 =10 1 og! (4) Directivity = 10 1 og! (4)
M d  M d
で定義される。 なお、 M。 は自由音場 (平面波) での正面感度であ り、 また、 Mdiifは拡散音場感度を表す。 ここで、 単一指向性マイクロホンの指向性指数は一 4 . 7 8 d B であるから、 図 4から明らかなように、 この実施例のマイ クロホン 装置とショ ッ トガン型のマイ クロホン装置は、 低域の指向性指数す なわち指向性の鋭さが単一指向性マイクロホンと同程度であるが、 中域で鋭い指向性を呈するものとなっている。 これに対して、 2次 音圧傾斜型マイ クロホン装置では中低域で鋭い指向性を呈するもの となっている。 そして、 本実施例のマイクロホン装置は、 高域にお いてショ ッ トガン型のマイクロホン装置及び 2次音圧傾斜型マイ ク 口ホン装置に比し鋭い指向性を呈するものとなっている。 Is defined by In addition, M. Is the front sensitivity in a free sound field (plane wave), and M diif is the diffuse sound field sensitivity. Here, since the directivity index of the unidirectional microphone is 1.478 dB, as is clear from FIG. 4, the microphone device of this embodiment and the shotgun type microphone device are: The directivity index in the low range, that is, the directivity is as sharp as a unidirectional microphone, but it exhibits sharp directivity in the midrange. On the other hand, the secondary sound pressure gradient microphone device has a sharp directivity in the middle and low frequencies. Further, the microphone device of the present embodiment exhibits sharp directivity in a high frequency range as compared with the shotgun type microphone device and the secondary sound pressure gradient type microphone mouth phone device.
このように、 本実施例のマイ クロホン装置では、 各マイ クロホン ユニッ ト 1, 2, 3の出力を合成器 4で加算合成するので、 各マイ クロホンユニッ ト 1, 2, 3に入力された音波に対応する出力は同 相成分が加算され逆相成分が相殺され、 各マイクロホンュニッ ト 1 : 2, 3の間隔 Dに依存する周波数で超指向性を呈することになる。 本実施例のマイ クロホン装置おいて、 前述した図 2に示す各マイ クロホンユニッ ト 1 , 2 , 3の間隔 Dを変えたところ、 D = 3 c m とした場合には図 5に示すような周波数特性を呈し、 また、 D = 6 c mとした場合には図 6に示すような周波数特性を呈し、 さらに、 D = 1 2 c mと した場合には図 7に示すような周波数特性を呈し、 D = 4〜 8 c mとすることにより正面からの音声入力に対して高感 度で側面からのノィズが極めて少ない収集を行う ことができる。  As described above, in the microphone device of the present embodiment, since the outputs of the respective microphone units 1, 2, and 3 are added and synthesized by the synthesizer 4, the sound waves input to the respective microphone units 1, 2, and 3 are added. The corresponding output adds the in-phase component and cancels the out-of-phase component, and exhibits super-directivity at a frequency that depends on the interval D of each microphone unit 1: 2,3. In the microphone device of this embodiment, when the distance D between the microphone units 1, 2, and 3 shown in FIG. 2 described above was changed, when D = 3 cm, the frequency characteristics as shown in FIG. In addition, when D = 6 cm, the frequency characteristic as shown in Fig. 6 is exhibited. When D = 12 cm, the frequency characteristic as shown in Fig. 7 is exhibited. By setting the length to 4 to 8 cm, it is possible to perform collection with high sensitivity to the voice input from the front and very little noise from the side.
ここで、 前述した図 5ないし図 7には主軸方向を 0 β と し、 主軸 に対して 4 0 ° 方向及び 9 0 ° 方向に対する周波数特性すなわち指 向性周波数特性を示してある。 Here, in FIGS. 5 to 7 described above the principal axis direction is 0 beta, there is shown a frequency characteristics or directivity frequency characteristics for 4 0 ° direction and 9 0 ° direction relative to the main axis.
また、 本発明に係るマイクロホン装置は、 例えば図 8に示すよう に、 4個のマイクロホンユニッ ト 1 1 , 1 2, 1 3, 1 4 と、 各マ イク口ホンユニッ ト 1 1, 1 2, 1 3, 1 4の出力を加算合成する 合成器 1 5とから構成するようにしてもよい。 In addition, the microphone device according to the present invention is, for example, as shown in FIG. From the four microphone units 11 1, 1 2, 13, and 14 and the combiner 15 that adds and combines the outputs of the microphone unit 11, 1, 12, 13, and 14. It may be configured.
この例の場合においても、 各マイクロホンユニッ ト 1 1 , 1 2, 1 3, 1 4には、 単一指向性を呈するものが用いられる。 ここで、 各マイ クロホンユニッ ト 1 1 , 1 2, 1 3, 1 4は、 指向方向の主 軸に直交する方向に等間隔に、 例えば 6 c m間隔で配設される。 こ れら各マイクロホンユニッ ト 1 1, 1 2, 1 3間の間隔は、 用いる マイ クロホンユニッ トの大きさや、 集音する音源に合わせて適宜選 択されるものである。 また、 各マイ クロホンユニッ ト 1 1 , 1 2, 1 3は、 主軸が単一の水平面内に位置するように並列して配置され る。  Also in this example, the microphone units 11, 12, 13, and 14 having unidirectionality are used. Here, the microphone units 11, 12, 13, 14 are arranged at equal intervals in the direction orthogonal to the main axis of the directivity direction, for example, at intervals of 6 cm. The interval between these microphone units 11, 12, and 13 is appropriately selected according to the size of the microphone unit used and the sound source to be collected. The microphone units 11, 12, and 13 are arranged in parallel so that the main axes are located in a single horizontal plane.
このような構成のマイクロホン装置では、 図 9に示すような指向 性周波数特性が得られ、 並設するマイクロホンユニッ トを増加する ことによ り、 高域での指向性が鋭いものになる。  In the microphone device having such a configuration, a directional frequency characteristic as shown in FIG. 9 is obtained, and by increasing the number of microphone units arranged side by side, the directivity in a high frequency range becomes sharp.
従って、 指向性の主軸と直角方向に互いに所定の距離を隔てて複 数個の単一指向性マイ クロホンユニッ トを並設して、 各マイクロホ ンュニッ トの出力を合成器で加算合成して出力信号を得ることによ り、 人の話し声の主たる成分である中音域での指向性が鋭いマイ ク 口ホン装置を実現することができる。  Therefore, a plurality of unidirectional microphone units are juxtaposed at a predetermined distance from each other in the direction perpendicular to the main axis of the directivity, and the outputs of the respective microunits are added and combined by a combiner to produce an output signal. As a result, it is possible to realize a microphone-phone device having a sharp directivity in the mid-range, which is the main component of human speech.
ところで、 上述した各実施例では、 複数の各マイ クロホンュニッ トは、 これらマイ クロホンユニッ トを構成する各マイクロホン素子 の振動板がこれら振動板の平面と平行な単一の平面内に位置するよ うにして配置されているが、 図 1 0に示すように、 音源 Sに対し 3 個又は 4個のマイ クロホンユニッ ト 4 1 , 4 2, 4 3が等距離 R !に 位置するような円周上に配置するようにしてもよい。 この場合にも、 各マイクロホンユニッ ト 4 1, 4 2, 4 3の各間隔 D 3 , D 4は等し くされる。 By the way, in each of the above-described embodiments, the plurality of microphone units are arranged such that the diaphragms of the microphone elements constituting these microphone units are located in a single plane parallel to the plane of the diaphragms. As shown in Fig. 10, three or four microphone units 41, 42, 43 are located at the same distance R! You may make it arrange | position on the circumference which is located. Also in this case, the intervals D 3 , D 4 of the respective microphone units 41, 42, 43 are equalized.
また、 上述した各実施例では、 複数の各マイ クロホンユニッ トは、 等間隔で配置されているが、 各マイクロホンユニッ トの間隔は、 1 〜 1 . 2程度の範囲で間隔をずらせてもよい。 すなわち、 人の音声 の波長に対して 1〜 1 . 2程度の範囲で間隔のずれは、 指向性に対 し誤差の範囲であって、 実用上の問題はなく、 本発明の目的を阻害 するものではない。  Further, in each of the above-described embodiments, the plurality of microphone units are arranged at equal intervals, but the intervals between the microphone units may be shifted within a range of about 1 to 1.2. That is, the deviation of the interval in the range of about 1 to 1.2 with respect to the wavelength of the human voice is within the error range for the directivity, and has no practical problem and hinders the object of the present invention. Not something.
さらに、 複数の、 例えば 3個のマイ クロホンユニッ ト 6 1, 6 2 , 6 3は、 図 1 1 に示すように、 配列方向の正面から見て、 水平な面 Pに対し上下方向にマイ クロホンユニッ ト 6 1, 6 2, 6 3の径分 程度のずれがあっても、 指向性に対し誤差の範囲であって、 実用上 の問題はなく、 本発明の目的を阻害するものではない。  Further, as shown in FIG. 11, a plurality of, for example, three microphone units 61, 62 and 63 are arranged vertically with respect to a horizontal plane P when viewed from the front in the arrangement direction. Even if there is a deviation of about 61, 62, or 63 in diameter, it is within an error range for the directivity, and there is no practical problem and does not hinder the object of the present invention.
なお、 本発明に係るマイ クロホン装置をパーソナルコンビユー夕 の音声入力手段に用いるような場合には、 各マイ クロホンュニッ 卜 の間隔をカーナビゲーシヨ ンシステムに用いられるの音声認識装置 の音声入力手段に用いる場合に比し大き く指向性に範囲を広げるこ とが望ましい。 これは、 パーソナルコンビユー夕を使用する場合に は、 使用者の頭の移動が大き くなるためである。 このマイ クロホン 装置をカーナビゲ一シヨンシステムに用いる場合には、 運転者の移 動が制約されるため、 各マイクロホンユニッ トの間隔を小さくする ことが、 指向性の向上を図りながら集音特性を向上するため有利と なる。  In the case where the microphone device according to the present invention is used as a voice input device of a personal convenience, the interval between each microphone unit is set as a voice input device of a voice recognition device used in a car navigation system. It is desirable to widen the range of directivity as compared with the case where it is used. This is because when using the personal convenience, the head movement of the user becomes large. When this microphone device is used in a car navigation system, the movement of the driver is restricted, so reducing the interval between the microphone units improves the sound collection characteristics while improving the directivity. This is advantageous.
ここで、 指向性の主軸と直角方向に互いに所定の距離を隔てて並設 した複数個のマイクロホンュニッ 卜の出力を合成器で加算合成して 出力信号を得る代わりに、 指向性の主軸と直角方向に互いに所定の 距離を隔てた位置で音波を導波器に取り込んで混合してマイクロホ ンュニ ヅ 卜に入力するようにして、 1個のマイクロホンュニ ヅ トか ら出力信号を得るようにすることもできる。 Here, they are juxtaposed at a predetermined distance from each other in a direction perpendicular to the main axis of directivity. Instead of obtaining the output signal by adding and combining the outputs of the plurality of microphone units obtained by the combiner with a combiner, sound waves are introduced into the waveguide at a position separated from each other by a predetermined distance in a direction perpendicular to the main axis of directivity. By mixing and inputting the signals to the microphone unit, an output signal can be obtained from one microphone unit.
このマイクロホン装置として、 図 1 2に示すように構成すること ができる。 このマイ クロホン装置は、 一端側に開口部を形成し、 こ の開口部を音波導入口 2 1 A, 2 2 A, 2 3 Aとした 3本の音響管 2 1, 2 2 , 2 3を他端側の開口部側である出射口部分で連結して なる導波器 2 0 と、 この導波器 2 0の出射口 2 O Aに設けられたマ イク口ホンュニッ ト 2 5 とから構成される。  This microphone device can be configured as shown in FIG. In this microphone device, three sound tubes 21, 22, and 23 are formed with an opening at one end side, and the openings are used as sound introduction ports 21 A, 22 A, and 23 A. It is composed of a director 20 connected at the output port on the other end side, and a microphone port 25 provided at the output port 2OA of the director 20. You.
各音響管 2 1 , 2 2 , 2 3は、 指向性の主軸と直角方向に互いに 所定の距離を隔てた位置に各音波導入口 2 1 A, 2 2 A, 2 3 Aが 位置するように折曲形成されている。 そして、 導波器 2 0は、 各音 波導入口 2 1 A, 2 2 A, 2 3 Aから入射された各音波を各音響管 2 1, 2 2, 2 3の連結部 2 4で混合してマイクロホンユニッ ト 2 5に入射するようになっている。 すなわち、 各音響管 2 1, 2 2 : 2 3は、 指向性の主軸と直角方向に互いに所定の距離を隔てた位置 に各音波導入口 2 1 A, 2 2 A, 2 3 Aを有し、 各音波導入口 2 1 A, 2 2 A, 2 3 Aから導入される各音波を連結部 2 4に導く音響 通路部を形成し、 上記連結部 2 4が各音波を混合する混合部と して ifes tfe "9 る。  Each sound tube 21, 22, 23 is positioned so that each sound inlet 21 A, 22 A, 23 A is located at a predetermined distance from each other in the direction perpendicular to the main axis of directivity. It is bent. Then, the director 20 mixes each sound wave incident from each of the sound wave inlets 21 A, 22 A, and 23 A at the connection portion 24 of each sound tube 21, 22, 23. Incident on the microphone unit 25. That is, each of the acoustic tubes 21, 22: 23 has a sound inlet 21 A, 22 A, and 23 A at a predetermined distance from each other in a direction perpendicular to the main axis of directivity. A sound passage portion for guiding each sound wave introduced from each sound wave introduction port 21A, 22A, 23A to the connection portion 24 is formed, and the connection portion 24 and the mixing portion for mixing each sound wave are formed. And ifes tfe "9.
ここで、 導波器 2 0の各音波導入口 2 1 A, 2 2 A, 2 3 Aは、 音源からの距離を互いに等しくなし、 且つ単一の水平面を形成する ように配列されている。 すなわち、 各音波導入口 2 1 A, 2 2 A, 2 3 A波、 略同一線上に位置し、 あるいは単一に音源を中心にした 円周上に位置するように配列される。 Here, the respective sound wave introduction ports 21 A, 22 A, and 23 A of the director 20 are arranged so that the distances from the sound source are not equal to each other and form a single horizontal plane. That is, each sound inlet 21 A, 22 A, 23 A waves are arranged so that they are located on almost the same line or on a single circle around the sound source.
このように構成されたマイ クロホン装置では、 導波器 2 0におい て各音波導入口 2 1 A, 2 2 A, 2 3 Aから入射された各音波を混 合することにより同相成分が加算され、 また逆相成分が相殺される ので、 各音波導入口 2 1 A, 2 2 A, 2 3 Aの間隔 Dに依存する周 波数で超指向性を呈することになり、 これによ り、 中音域で鋭い指 向性を実現し、 正面からの音声入力に対して高感度で側面からのノ ィズが極めて少ない収集を 1個のマイ クロホンュ ニ ヅ ト 2 5で行う ことができる。  In the microphone device configured as described above, the in-phase components are added by mixing each sound wave incident from each sound wave introduction port 21 A, 22 A, and 23 A in the director 20. In addition, since the anti-phase components cancel each other out, each of the sound wave introduction ports 21 A, 22 A, and 23 A exhibits super-directivity at a frequency dependent on the distance D between the ports. A single microphone unit 25 can achieve sharp directionality in the sound range, and is highly sensitive to voice input from the front and has very little noise from the side.
上述したマイ クロホン装置に用いるマイ クロホンュ ニ ヅ 卜 2 5は、 導波管 2 0の端部に取り付けられて、 分岐された音響管 2 1 , 2 23 2 3から入射される音を集音するものであるので、 各音波導入口 2 1 A, 2 2 A, 2 3 Aが向かう方向以外の例えば側方からの音の入 射が規制されてなるので、 無指向性のものを用いることができる。 無指向性のマイ クロホンユニッ トを用いた場合には、 背面側からの 波にも感度を示し指向特性が 8の字状となるが、 このマイ クロホン 装置を自動車に搭載されて用いられるカーナビゲーシヨ ンシステム に用いられるの音声認識装置の音声入力手段に用いるような場合に は、 実質的に背面側が閉塞され背面側からの音の入射がほとんどな いので、 十分に目的を達成し得る。 My Kurohonyu two Uz Bok 2 5 used in the above-described microphones device, mounted on the end of the waveguide 2 0, collects sounds incident from the acoustic pipe 2 1, 2 2 3 2 3 which are branched Therefore, it is necessary to use a non-directional sound source because the sound input from the side other than the direction to which each sound wave introduction port 21A, 22A, and 23A is directed, for example, is restricted. Can be. When an omnidirectional microphone unit is used, it also has sensitivity to waves from the back side and has a directional figure of eight, but this microphone device is used in a car navigation system installed in an automobile. When used as a voice input means of a voice recognition device used in a computer system, the back side is substantially closed and almost no sound is incident from the back side, so that the object can be sufficiently achieved.
なお、 無指向性のマイクロホンュニッ ト 2 5を用いた場合には、 音響管 2 1, 2 2 , 2 3のイ ンビーダンスがマイ クロホンユニッ ト 2 5のそれに比し高いため、 音響管 2 1, 2 2, 2 3のイ ンビーダ ンスとのマッチングを図るため、 マイ クロホンュニッ ト 2 5の背面 側を閉塞してイ ンピーダンスの調整を行うことが望ましい。 When the omnidirectional microphone unit 25 is used, the impedance of the acoustic tubes 21, 22, and 23 is higher than that of the microphone unit 25. 22 The back of the microphone unit 25 to match the impedance of 2 and 23 It is desirable to adjust the impedance by closing the side.
また、 マイクロホンュニッ ト 2 5に単一指向性のものを用いた場 合には、 背面側から到来する音の集音がなくなるので、 前述した図 1に示すマイクロホン装置と同様の特性を有するものとすることが できる。  Also, when a unidirectional microphone unit 25 is used, the sound coming from the rear side is not collected, so that the microphone unit 25 has the same characteristics as the microphone device shown in FIG. 1 described above. It can be.
また、 上述の如き音響管 2 1 , 2 2, 2 3で構成した導波器 2 0 に代えて、 例えば図 1 3に示すマイクロホン装置のように、 指向性 の主軸と直角方向に互いに所定の距離 Dを隔てた位置にそれぞれ音 波導入口 3 1 A, 3 2 A, 3 3 Aから導入された各音波を導く音響 通路部 3 1 , 3 2, 3 3 と、 各音響通路部 3 1, 3 2 , 3 3を介し て導かれた各音波を混合する混合部 3 4を形成した導波器 3 0を用 い、 この導波器 3 0の混合部 3 4にマイ クロホンュニヅ ト 3 5を設 置するようにしてもよい。  Also, instead of the director 20 constituted by the acoustic tubes 21, 22, and 23 as described above, for example, as shown in a microphone device shown in FIG. 13, predetermined directions are perpendicular to the main axis of directivity. Acoustic passages 31, 32, 33 that guide the sound waves introduced from the acoustic wave inlets 31 A, 32 A, 33 A at a distance D, respectively, and acoustic passages 31, 31 A waveguide unit 30 formed with a mixing unit 34 for mixing the respective sound waves guided through 32 and 33 is used, and a microphone unit 35 is added to the mixing unit 34 of the director 30. It may be installed.
なお、 音波導入口 3 1 A, 3 2 A, 3 3 Aから混合部 3 4までの 各音響通路部 3 1, 3 2 , 3 3の距離を等しくするこ とによ り、 音 波導入口 3 1 A, 3 2 A , 3 3 Aから導入された各音波は、 互いの 位相関係が維持され、 上記混合部 3 4によ り同相成分が加算されま た逆相成分が相殺される。 産業上の利用可能性 本発明に係るマイクロホン装置では、 指向性の主軸と直角方向に 互いに所定の距離を隔てて配設された少なく とも 3個の単一指向性 マイ クロホンュニッ 卜の出力を合成器で加算合成して出力信号を得 るようにしたことによ り、 中音域で鋭い指向性を実現し、 正面から の音声入力に対して高感度で側面からのノィズが極めて少ない収集 を行うことができるので、 自動車に搭載されて用いられるカーナビ ゲ一シヨ ンシステムに用いられるの音声認識装置の音声入力手段や、 コンビユー夕の音声入力手段に用いることによ り、 運転手や操作者 の話し声を正確且つ確実に集音することを実現することができる。 The distance between the acoustic passages 31 1, 32 A, 33 A and the mixing section 34 from the acoustic passage sections 3 1, 3 2, 3 3 is made equal so that the The sound waves introduced from 1 A, 32 A, and 33 A maintain their phase relationship with each other, and the mixing section 34 cancels out the opposite-phase component to which the in-phase component has been added. INDUSTRIAL APPLICABILITY In the microphone device according to the present invention, the output of at least three unidirectional microphone units arranged at a predetermined distance from each other in a direction perpendicular to the main axis of the directivity is synthesized. The output signal is obtained by adding and combining at, so that sharp directivity is realized in the midrange, Since it is possible to perform collection with high sensitivity to the voice input and very little noise from the side, the voice input means of the voice recognition device used in the car navigation system mounted on the car, By using it as a voice input means for the convenience, it is possible to accurately and reliably collect the voice of the driver or the operator.

Claims

請求の範囲 The scope of the claims
1 . 略単一の水平面内に配され、 音源から互いに略等距離で、 且つ 音源を向いて略等間隔に配された少なく とも 3つの指向性マイクロ ホン素子と、 1. At least three directional microphone elements arranged in a substantially single horizontal plane, at substantially equal distances from the sound source and at substantially equal intervals toward the sound source;
上記各マイ クロホン素子からの出力信号を加算する加算手段と を備えてなることを特徴とするマイクロホン装置。  And an adding means for adding output signals from the microphone elements.
2 . 上記各マイ クロホン素子は、 各マイクロホン素子の振動板と平 行な単一の平面内に配されてなることを特徴とする請求の範囲第 1 項記載のマイク口ホン装置。  2. The microphone mouth phone device according to claim 1, wherein said microphone elements are arranged in a single plane parallel to a diaphragm of each microphone element.
3 . 上記各マイ クロホン素子は、 各々単一指向性マイ クロホン素子 であることを特徴とする請求の範囲第 1項記載のマイ クロホン装置 < 3. The microphone device according to claim 1, wherein each of the microphone elements is a unidirectional microphone element.
4 . 各マイ クロホン素子が指向性の主軸と直交する方向に所定の距 離を隔てて配されてなる少なく とも 3つのマイ クロホン素子と、 4. At least three microphone elements, each microphone element being arranged at a predetermined distance in a direction orthogonal to the main axis of directivity,
上記各マイクロホン素子からの出力信号を加算する加算手段と を備えていることを特徴とするマイ クロホン装置。  And a summing means for summing the output signals from the microphone elements.
5 . 上記各マイ クロホン素子は、 各々単一指向性マイ クロホン素子 であることを特徴とする請求の範囲第 4項記載のマイ クロホン装置 < 5. The microphone device according to claim 4, wherein each of the microphone elements is a unidirectional microphone element.
6 . 上記各マイ クロホン素子は、 各々単一指向性マイ クロホン素子 から構成されるとともに、 音源に対して集音面が同一方向を向き、 且つ略等間隔で配されていることを特徴とする請求の範囲第 4項記 載のマイク口ホン装置。 6. Each of the above microphone elements is constituted by a unidirectional microphone element, and the sound collecting surfaces are oriented in the same direction with respect to the sound source, and are arranged at substantially equal intervals. A microphone mouth phone device according to claim 4.
7 . 単一のマイ ク口ホン素子と、  7. A single microphone element
互いに長さが等しく外部よ り到来した音を上記マイ クロホン素子 に導く少なく とも 3つの音導路とを備え、 Sounds of equal length and arriving from outside With at least three sound guideways leading to
上記 3つの音導路の各々の一端の開口部は、 音源からの距離を互 いに等しくなし且つ単一の水平面を形成するように配列されている とともに、 各々他端側の開口部は上記マイクロホン素子と対峙され てなることを特徴とするマイクロホン装置。  The openings at one end of each of the three sound guides are arranged so that the distances from the sound source are equal to each other and form a single horizontal plane. A microphone device characterized by being opposed to a microphone element.
8 . 上記 3つの音導路の各々の一端の開口部は、 上記単一の水平面 に対して略垂直な平面を形成するように配されていることを特徴と する請求の範囲第 7項記載のマイ クロホン装置。  8. The method according to claim 7, wherein the opening at one end of each of the three sound guides is arranged to form a plane substantially perpendicular to the single horizontal plane. Microphone device.
9 . 上記マイクロホン素子は、 無指向性のマイクロホン素子から構 成されていることを特徴とする請求の範囲第 7項記載のマイクロホ ン装置。  9. The microphone device according to claim 7, wherein the microphone element is formed of an omnidirectional microphone element.
1 0 . 上記マイクロホン素子は、 単一指向性のマイ クロホン素子か ら構成されていることを特徴とする請求の範囲第 7項記載のマイ ク 口ホン装置。  10. The microphone earphone device according to claim 7, wherein the microphone element is constituted by a unidirectional microphone element.
1 1 . さらに、 上記マイ クロホン素子の集音面方向前面に設けられ て、 上記 3つの音導路が設けられた導音手段を備えていることを特 徴とする請求の範囲第 7項記載のマイ クロホン装置。  11. The sound pickup device according to claim 7, further comprising a sound guide provided on a front surface of the microphone element in a sound collection surface direction and provided with the three sound guide paths. Microphone device.
PCT/JP1996/000292 1995-02-10 1996-02-09 Microphone device WO1996025018A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7/23123 1995-02-10
JP2312395 1995-02-10

Publications (1)

Publication Number Publication Date
WO1996025018A1 true WO1996025018A1 (en) 1996-08-15

Family

ID=12101741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/000292 WO1996025018A1 (en) 1995-02-10 1996-02-09 Microphone device

Country Status (1)

Country Link
WO (1) WO1996025018A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100746003B1 (en) * 2005-09-20 2007-08-06 삼성전자주식회사 Apparatus for converting analogue signals of array microphone to digital signal and computer system including the same
CN112218194A (en) * 2019-07-11 2021-01-12 雅马哈株式会社 Sound pickup device and vehicle-mounted karaoke device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51131932U (en) * 1975-04-17 1976-10-23
JPS53110121U (en) * 1977-02-09 1978-09-02
JPS57212897A (en) * 1981-06-15 1982-12-27 Western Electric Co Acoustic device
JPS6134799Y2 (en) * 1979-08-20 1986-10-09
JPH03113998A (en) * 1989-09-27 1991-05-15 Matsushita Electric Ind Co Ltd Array microphone

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51131932U (en) * 1975-04-17 1976-10-23
JPS53110121U (en) * 1977-02-09 1978-09-02
JPS6134799Y2 (en) * 1979-08-20 1986-10-09
JPS57212897A (en) * 1981-06-15 1982-12-27 Western Electric Co Acoustic device
JPH03113998A (en) * 1989-09-27 1991-05-15 Matsushita Electric Ind Co Ltd Array microphone

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100746003B1 (en) * 2005-09-20 2007-08-06 삼성전자주식회사 Apparatus for converting analogue signals of array microphone to digital signal and computer system including the same
CN112218194A (en) * 2019-07-11 2021-01-12 雅马哈株式会社 Sound pickup device and vehicle-mounted karaoke device

Similar Documents

Publication Publication Date Title
US8472639B2 (en) Microphone arrangement having more than one pressure gradient transducer
US5862240A (en) Microphone device
USRE48233E1 (en) Passive directional acoustic radiating
US5969838A (en) System for attenuation of noise
US8036412B2 (en) Microphone system having pressure-gradient capsules
Teutsch et al. First-and second-order adaptive differential microphone arrays
EP0398595B1 (en) Image derived directional microphones
US7710826B2 (en) Method and apparatus for measuring sound source distance using microphone array
US20090190775A1 (en) Microphone arrangement comprising pressure gradient transducers
CA2522896A1 (en) Method and apparatus for sound transduction with minimal interference from background noise and minimal local acoustic radiation
US20090190776A1 (en) Synthesizing a microphone signal
CN102177731B (en) Acoustic apparatus
WO2001043494A1 (en) Optical acoustoelectric transducer
US20090252364A1 (en) Voice signal transmitting/receiving apparatus
Bitzer et al. Multimicrophone noise reduction techniques for hands-free speech recognition-a comparative study
Huang et al. Kronecker product beamforming with multiple differential microphone arrays
US6305732B1 (en) Dashboard with integrated directional microphone
WO1996025018A1 (en) Microphone device
KR100431232B1 (en) Microphone Device
CN111630875B (en) Vehicle-mounted audio device
US20030174852A1 (en) Directional microphone arrangement and method for signal processing in a directional microphone arrangement
US6788791B2 (en) Delay network microphones with harmonic nesting
JPH02222400A (en) Microphone device
JPS6134799Y2 (en)
CN112218194B (en) Sound pickup device and vehicle-mounted karaoke device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96190095.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

ENP Entry into the national phase

Ref document number: 1996 704756

Country of ref document: US

Date of ref document: 19960925

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019960705649

Country of ref document: KR