WO1996019063A1 - Procede pour equilibrer les voies d'un amplificateur de type 'linc' - Google Patents

Procede pour equilibrer les voies d'un amplificateur de type 'linc' Download PDF

Info

Publication number
WO1996019063A1
WO1996019063A1 PCT/FR1995/001512 FR9501512W WO9619063A1 WO 1996019063 A1 WO1996019063 A1 WO 1996019063A1 FR 9501512 W FR9501512 W FR 9501512W WO 9619063 A1 WO9619063 A1 WO 9619063A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
components
signal
modulation
signals
Prior art date
Application number
PCT/FR1995/001512
Other languages
English (en)
Inventor
Jean-Paul Bernoux
Jacques Palicot
Jacques Veillard
Original Assignee
France Telecom (Etablissement Autonome De Droit Public)
Telediffusion De France - Tdf Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by France Telecom (Etablissement Autonome De Droit Public), Telediffusion De France - Tdf Sa filed Critical France Telecom (Etablissement Autonome De Droit Public)
Priority to EP95940325A priority Critical patent/EP0797884A1/fr
Publication of WO1996019063A1 publication Critical patent/WO1996019063A1/fr

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0294Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using vector summing of two or more constant amplitude phase-modulated signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/366Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator
    • H04L27/367Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator using predistortion
    • H04L27/368Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator using predistortion adaptive predistortion

Definitions

  • the invention relates to radio transmissions and more particularly relates to transmission devices.
  • the invention is applicable in particular to telephone transmissions or the broadcasting of digital signals, in particular television signals, using MAQ (quadrature amplitude modulation) or OFDM (multiplex by orthogonal frequency division) modulation.
  • MAQ quadrature amplitude modulation
  • OFDM orthogonal frequency division
  • the invention also applies to the processing of any analog signal that can be digitized.
  • TOP traveling wave tube
  • x and y are two components respectively in phase and in quadrature representative of the symbols to be emitted and w is the frequency of the carrier.
  • phase ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
  • the signals S1 and S2 with constant envelope can be amplified separately by non-linear amplifiers and then combined.
  • the subject of the invention is a method for correcting the imbalance between the two amplification channels of an "LINC" type amplifier, that is to say with linear amplification produced with non-linear components, said amplifier comprising decomposition means for calculating from at least one input time signal two digital modulation signals each consisting of two components and associated respectively with said two amplifier channels, means for generating two components in phase and in quadrature of a carrier, modulation means providing for each channel a modulated signal representing in analog form the sum of two signals respectively resulting from the amplitude modulation of said two components of the carrier by respectively the two components of one of said modulation signals, amplification devices receiving after possible frequency transposition lesd its modulated signals, means for summing the output signals of said amplification devices, said method being characterized in that it consists in carrying out on at least one
  • Adaptive filtering can be applied to the modulated digital signal that is present just before the digital-to-analog conversion. This solution has the advantage of simplicity but is only applicable if the frequency of the carrier is not too high for the available technology of filters and digital-analog converters.
  • adaptive filtering will advantageously be applied to the two components of the modulation signal of at least one channel.
  • the method is characterized in that said input signal consisting of two components respectively in phase and in quadrature, said reference values are those of said components in phase and in quadrature of the input signal and in that said corresponding measurement values are obtained by attenuation of the output signal of the summing and demodulation means by means of the two components of said carrier, said attenuation being dimensioned so as to divide the amplitude of the signal output of the summation means by an approximate value of the gains of the amplification devices.
  • Adaptive filtering can be applied to each channel. Furthermore, if we want to avoid any risk instability, provision will also be made for the adaptations of the filterings applied on the two channels to be carried out alternately.
  • the adaptive filtering is applied on a single channel and a second adaptive filtering of the two components of the modulation signal of the other channel is carried out, said second adaptive filtering being provided to minimize the error between the two components of the signal of modulation of said other channel and of the measurement values obtained by attenuation of the output signal of the amplification device of said other channel and demodulation by means of the two components of said carrier, said attenuation being dimensioned so as to divide the amplitude of the signal output of the amplification device of said other channel by an approximate value of the gain of the amplification device of said other channel.
  • any problem of instability can be avoided if the adaptation of the filtering to be applied on one channel and the adaptation of the second filtering applied on the other channel are carried out alternately.
  • FIG. 1 shows an overall diagram of a LINC amplifier to which the method according to the invention can be applied.
  • - Figures 2 to 4 show several alternative embodiments implementing the method according to the invention.
  • FIG. 1 represents by way of nonlimiting example the structure of a LINC amplifier in the case of an MAQ modulation.
  • the input signal consists of two signals x, y obtained from corresponding symbols after appropriate shaping filtering (NYQUIST filters).
  • the signals x, y, assumed in digital form, are processed by decomposition means 1, for example produced by means of a signal processor, to supply the four components II, Ql, 12, Q2 of the two modulation signals, according to the formulas mentioned above.
  • decomposition means 1 for example produced by means of a signal processor
  • these modulation signals are applied to modulation means MI, M2 which on the other hand receive the two components in phase MI and in quadrature MQ from a carrier.
  • the phase II or 12 component is mixed with the MI phase component of the carrier, while the quadrature component Q1 or Q2 is mixed with the quadrature component MQ.
  • the signals thus obtained are added to provide the digital signals SN1, SN2 which correspond, after digital-analog conversion Cl, C2, to the modulated signals SI, S2.
  • the signals SI and S2 are amplified respectively by amplification devices A1, A2 whose outputs, respectively G1.S1 and G2.S2, are summed by a power coupler 3 for provide the output signal S.
  • FIG. 2 represents a first possibility of implementing the method according to the invention.
  • a programmable filter H is inserted between the modulation means M2 and the digital-analog converter C2 of the second channel.
  • the filter H is for example a finite impulse response filter whose coefficients are supplied by a calculation system 4, produced for example by means of a signal processor.
  • the system 4 receives the digital signals SN1, SN2 respectively from the modulation means Ml, M2 as well as a measurement signal S'1 + S'2 representative of the output signal S and obtained from the latter by attenuation A3, RF frequency transposition and analog-digital conversion.
  • the system 4 is programmed to implement an algorithm for minimizing the error e between the measurement signal S'1 + S'2 and the sum of the signals SN1 and SN2.
  • the algorithm will for example be an LMS least squares algorithm.
  • the attenuator A3 should be dimensioned so as to divide the amplitude of the output signal S by the average of the gains Gl and G2 of the amplifiers Al and A2. As these gains are not always known exactly, we will have to settle for an approximate value. Experience shows, however, that an imprecision on the attenuation, for example of the order of 10%, does not significantly harm the correction of the imbalance. Although the diagram in Figure 2 shows that the attenuation only applies on the analog output signal, one could also realize the attenuation partly during the sampling of the analog signal by means of an asymmetric coupler and partly during the digital processing before comparison with the reference signal.
  • Delay means R are inserted between the modulation means M1 and the digital-analog converter Cl of the first channel.
  • the circuit R is dimensioned so as to introduce a delay DT equal to that caused by the filter H.
  • the signal obtained by the sum of the signals SN1 and SN2 is delayed before being compared to the measurement signal S'1 + S'2.
  • the delays to be applied DT 'and DT “correspond respectively to the delays introduced into the digital and analog parts included between the outputs of the modulators Ml and M2 and the output of the analog-digital converter C3.
  • the delay DT ' can be determined exactly as a function of the different cycle times of the operations carried out and the number of stages of the filter H. If the delay DT "is not negligible, provision may advantageously be made for it to be adjustable and controlled automatically by the calculation system, for example by means of an algorithm based on a correlation calculation.
  • a programmable filter H2 is inserted between the filtering means 2 and the modulation means M2 of the second channel.
  • the filter H2 operates on the two components in phase 12 and in quadrature Q2 of the modulation signal of the second channel.
  • the coefficients of the filter H2 are supplied by a calculation system 5 programmed to minimize the errors el, eQ between on the one hand the digital input signals x, y and on the other hand corresponding measurement signals x ', y' obtained from the output signal S.
  • the signals x 1 and y 1 result from an attenuation A3 of the signal S followed by a frequency transposition RF, an analog-digital conversion C3 and a demodulation DM1, DM2 using the MI phase and MQ quadrature components of the carrier.
  • the attenuation A3 should here be dimensioned to divide the amplitude of the output signal S by the gain Gl of the amplifier Al.
  • delay means Ri are provided arranged between the filter 2 and the modulator Ml of the first channel so as to introduce a delay DT1 equal to that caused by the filter H2.
  • the signals x and y each undergo the delays DT2 and DT3 before comparison with the homologous measurement signals x 'and y' so as to compensate for the delays due respectively to the digital and analog parts placed between the input signals x, y and the outputs x 'and y' of the demodulators DM1 and DM2.
  • the calculation system 5 will for example be programmed to implement a LMS2 least squares algorithm for complex signals.
  • the adaptive filtering H2 of the second channel is carried out in the same way as above.
  • another programmable filter Hl is used placed between filter 2 and the modulator Ml, the coefficients of which are calculated so as to minimize the errors dl, dQ between on the one hand the components II and Ql of the signal modulation of the first channel and on the other hand of the corresponding measurement signals I 'and Q' obtained by attenuation A4, frequency transposition RF, analog-digital conversion and demodulation DM3, DM4 of the output signal G1.S1 of the amplifier A1 of the first channel.
  • the second channel can use a least squares algorithm for complex signals and implemented by a signal processor 6.
  • a signal processor 6 we will also provide means DT4, DT5 to delay the signals II and Ql before comparing them to their counterpart I 'and Q'.
  • the calculation systems 5 and 6 can use a single signal processor executing in a multiplexed manner the algorithms LMS2 applied respectively to the two channels. For reasons of stability, it will be preferable to carry out the adaptations of the filtering of the two channels in an alternative manner.
  • the filters H, Hl, H2 have been presented as separate programmable filters, such as those which are available on the market. However, these filters could be integrated into calculation systems 4, 5 insofar as their performance is compatible with the precision and speed of processing required by the application.
  • the size of the programmable filters will take into account the desired quality of the correction. It can be noted that an oversizing of these filters does not necessarily require an increase in the power of the calculation systems, taking into account the fact that the updating of the coefficients is carried out infrequently.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

Afin de corriger le déséquilibre des deux voies d'un amplificateur 'LINC', le procédé consiste à effectuer sur une voie au moins une prédistorsion par filtrage adaptatif (H2). Le filtrage est prévu pour minimiser l'erreur entre les signaux d'entrée (x, y) et des valeurs de mesure correspondantes (x', y') obtenues à partir du signal de sortie (S) de l'amplificateur. Application notamment aux modulations MAQ et OFDM.

Description

PROCÉDÉ POUR ÉQUILIBRER LES VOIES D'UN AMPLIFICATEUR DE
TYPE "LINC".
L'invention se situe dans le domaine des transmissions hertziennes et concerne plus particulièrement les dispositifs d'émission. L'invention est applicable notamment aux transmissions téléphoniques ou à la diffusion de signaux numériques en particulier de télévision utilisant la modulation MAQ (modulation d'amplitude en quadrature) ou OFDM (multiplex par division de fréquences orthogonales). L'invention s'applique également au traitement de tout signal analogique pouvant être numérisé.
Pour ces types de modulation et, plus généralement pour tout signal n'ayant pas une enveloppe constante, se pose le problème de la linéarité de l'amplification. En effet, les amplificateurs de puissance, tels que les amplificateurs à tube à ondes progressives (TOP) sont généralement non linéaires dans leur zone de meilleur rendement.
Une solution connue pour remédier à cet inconvénient consiste à réaliser une amplification linéaire au moyen de composants non linéaires. Les amplificateurs mettant en oeuvre cette technique sont connus sous la dénomination d'amplificateurs "LINC". Une description de tels amplificateurs est donnée par exemple dans l'article "Linear Amplification with Nonlinear Components" par D.C. COX, publié dans la revue IEEE Transactions On Communication, Décembre 1974, pages 1942 à 1945. Le principe de l'amplification LINC est basé sur la décomposition du signal à émettre en deux composantes à enveloppe constante. Ainsi, dans le cas d'une modulation MAQ, le signal temporel à émettre est de la forme :
S0(t) = x(t).cos( t) + y(t).sin(wt)
où x et y sont deux composantes respectivement en phase et en quadrature représentatives des symboles à émettre et w est la fréquence de la porteuse.
En posant :
Figure imgf000004_0001
on en déduit :
S0(t) = a(t).cos[wt - φ(t)]
avec :
cos [φ(t)] = x(t)/a(t) sin [φ(t)] = y(t)/a(t)
En posant :
V > Max [a(t)],
on peut définir une phase ψ telle que :
sin [ψ(t)] ≈ a(t)/V. On peut alors définir deux signaux Si et S2 à enveloppe constante :
Sl(t) = V/2 sin [wt - φ(t) + ψ(t)]
S2(t) = -V/2 sin [wt - φ(t) - ψ(t)]
On a alors :
S0(t) = Sl(t) + S2(t) .
Ainsi, les signaux SI et S2 à enveloppe constante peuvent être amplifiés séparément par des amplificateurs non linéaires et ensuite combinés.
En pratique, les composantes x et y à émettre sont décomposées en quatre composantes II, Ql, 12, Q2 selon les équations :
Il(t) - [x(t) - C(t) . y(t)]
Ql(t) - [C(t) . x(t) + y(t)]
12 (t) - *β [x(t) + C(t) . y(t)]
Q2(t) m. [-C(t) . x(t) + y(t)]
avec :
C(t) = [(V* (t) - a»(t))/a» (t) p
On a alors :
Sl(t) = Il(t) . cos(wt) + Ql(t) . sin(wt) S2(t) = 12 (t) . cos(wt) + Q2(t) . sin(wt) Ainsi, les deux couples II, Ql et 12, Q2 définissent chacun un signal de modulation à deux composantes en phase et en quadrature. Chaque couple définit aussi une voie de l'amplificateur.
Bien entendu, une telle décomposition peut être effectuée pour un signal quelconque de la forme S0(t) = a(t) . cos[wt - φ(t)].
Le procédé rappelé ci-dessus permet donc en principe d'utiliser pour chaque voie une amplification non linéaire. Ceci présuppose toutefois que les deux voies sont parfaitement équilibrées. Or, en pratique, on se trouve toujours confronté à un déséquilibre des voies dû essentiellement à des différences entre les caractéristiques des amplificateurs de puissance utilisés : déséquilibre en gain, en phase et en courbe de réponse (ondulations) .
Dans le cas par exemple d'une modulation MAQ, ces déséquilibres entraînent à la réception des interférences intersymboles et des dispersions des signaux démodulés. De plus, la dégradation est d'autant plus importante que l'ordre de la modulation MAQ est élevé : MAQ16 et surtout MAQ6 .
Pour résoudre ce problème, on pourrait prévoir au niveau des récepteurs des dispositifs de correction tels que boucles à verrouillage de phase et égaliseurs. II est cependant préférable de chercher à compenser le déséquilibre des voies au niveau de l'émetteur. Dans ce but, l'invention a pour objet un procédé pour corriger le déséquilibre entre les deux voies d'amplification d'un amplificateur de type "LINC", c'est-à-dire à amplification linéaire réalisée avec des composants non linéaires, ledit amplificateur comportant des moyens de décomposition pour calculer à partir d'au moins un signal temporel d'entrée deux signaux numériques de modulation constitués chacun de deux composantes et associés respectivement auxdites deux voies de l'amplificateur, des moyens pour générer deux composantes en phase et en quadrature d'une porteuse, des moyens de modulation fournissant pour chaque voie un signal modulé représentant sous forme analogique la somme de deux signaux résultant respectivement de la modulation en amplitude desdites deux composantes de la porteuse par respectivement les deux composantes d'un desdits signaux de modulation, des dispositifs d'amplification recevant après une éventuelle transposition de fréquence lesdits signaux modulés, des moyens de sommation des signaux de sortie desdits dispositifs d'amplification, ledit procédé étant caractérisé en ce qu'il consiste à effectuer sur au moins une desdites voies une prédistorsion par filtrage adaptatif d'un signal numérique présent sur ladite voie, ledit filtrage adaptatif étant prévu pour minimiser l'erreur entre une ou plusieurs valeurs de référence représentatives de l'amplitude du ou des signaux d'entrée et respectivement une ou plusieurs valeurs de mesure correspondantes obtenues à partir du signal de sortie des moyens de sommation. Le procédé présente en outre l'avantage d'adapter en permanence la correction malgré les évolutions du déséquilibre dans le temps.
Le filtrage adaptatif peut s'appliquer sur le signal numérique modulé qui est présent juste avant la conversion numérique-analogique. Cette solution présente l'avantage de la simplicité mais n'est applicable que si la fréquence de la porteuse n'est pas trop élevée pour la technologie disponible des filtres et des convertisseurs numériques-analogiques.
Aussi, le filtrage adaptatif sera avantageusement appliqué sur les deux composantes du signal de modulation d'au moins une voie.
Selon un mode de réalisation particulier adapté aux modulations MAQ et OFDM, le procédé est caractérisé en ce que ledit signal d'entrée étant constitué de deux composantes respectivement en phase et en quadrature, lesdites valeurs de référence sont celles desdites composantes en phase et en quadrature du signal d'entrée et en ce que lesdites valeurs de mesure correspondantes sont obtenues par atténuation du signal de sortie des moyens de sommation et démodulation au moyen des deux composantes de ladite porteuse, ladite atténuation étant dimensionnée de façon à diviser l'amplitude du signal de sortie des moyens de sommation par une valeur approchée des gains des dispositifs d'amplification .
Le filtrage adaptatif pourra être appliqué sur chacune des voies. Par ailleurs, si on veut éviter tout risque d'instabilité, on prévoira en outre que les adaptations des filtrages appliqués sur les deux voies soient effectuées alternativement.
En variante, le filtrage adaptatif est appliqué sur une seule voie et on effectue un second filtrage adaptatif des deux composantes du signal de modulation de l'autre voie, ledit second filtrage adaptatif étant prévu pour minimiser l'erreur entre les deux composantes du signal de modulation de ladite autre voie et des valeurs de mesure obtenues par atténuation du signal de sortie du dispositif d'amplification de ladite autre voie et démodulation au moyen des deux composantes de ladite porteuse, ladite atténuation étant dimensionnée de façon à diviser l'amplitude du signal de sortie du dispositif d'amplification de ladite autre voie par une valeur approchée du gain du dispositif d'amplification de ladite autre voie.
Comme précédemment, tout problème d'instabilité pourra être évité si l'adaptation du filtrage à appliquer sur une voie et l'adaptation du second filtrage appliqué sur l'autre voie sont effectuées alternativement.
D'autres aspects et avantages de l'invention apparaîtront dans la suite de la description en référence aux figures.
- La figure 1 représente un schéma d'ensemble d'un amplificateur LINC auquel peut s'appliquer le procédé selon l'invention. - Les figures 2 à 4 représentent plusieurs variantes de réalisation mettant en oeuvre le procédé selon l'invention.
La figure 1 représente à titre d'exemple non limitatif la structure d'un amplificateur LINC dans le cas d'une modulation MAQ. Le signal d'entrée est constitué de deux signaux x, y obtenus à partir de symboles correspondants après un filtrage de mise en forme approprié (filtres de NYQUIST) . Les signaux x, y, supposés sous forme numérique, sont traités par des moyens de décomposition 1, par exemple réalisés au moyen d'un processeur de signaux, pour fournir les quatre composantes II, Ql, 12, Q2 des deux signaux de modulation, conformément aux formules mentionnées précédemment. Après un filtrage passe-bas 2 qui est optionnel, ces signaux de modulation sont appliqués à des moyens de modulation Ml, M2 qui reçoivent d'autre part les deux composantes en phase MI et en quadrature MQ d'une porteuse. Pour chaque signal de modulation, la composante en phase II ou 12 est mélangée avec la composante en phase MI de la porteuse, tandis que la composante en quadrature Ql ou Q2 est mélangée avec la composante en quadrature MQ. Pour chaque voie, les signaux ainsi obtenus sont additionnés pour fournir les signaux numériques SN1, SN2 qui correspondent, après conversion numérique-analogique Cl, C2, aux signaux modulés SI, S2. Après une éventuelle transposition Dl, D2 de fréquence RF, les signaux SI et S2 sont amplifiés respectivement par des dispositifs d'amplification Al, A2 dont les sorties, respectivement G1.S1 et G2.S2, sont sommées par un coupleur de puissance 3 pour fournir le signal de sortie S. La figure 2 représente une première possibilité de mise en oeuvre du procédé selon l'invention. Sur la figure 2 , on retrouve avec les mêmes références les différents éléments constitutifs de l'amplificateur LINC de la figure 1. Un filtre programmable H est inséré entre les moyens de modulation M2 et le convertisseur numérique- analogique C2 de la seconde voie. Le filtre H est par exemple un filtre à réponse impulsionnelle finie dont les coefficients sont fournis par un système de calcul 4, réalisé par exemple au moyen d'un processeur de signaux. Le système 4 reçoit les signaux numériques SN1, SN2 issus respectivement des moyens de modulation Ml, M2 ainsi qu'un signal de mesure S'1 + S'2 représentatif du signal de sortie S et obtenu à partir de ce dernier par atténuation A3, transposition de fréquence RF et conversion analogique-numérique. Le système 4 est programmé pour mettre en oeuvre un algorithme de minimisation de l'erreur e entre le signal de mesure S'1 + S'2 et la somme des signaux SN1 et SN2. L'algorithme sera par exemple un algorithme des moindres carrés LMS.
Idéalement, l'atténuateur A3 devrait être dimensionné de façon à diviser l'amplitude du signal de sortie S par la moyenne des gains Gl et G2 des amplificateurs Al et A2. Comme ces gains ne sont pas toujours connus exactement, il faudra se contenter d'une valeur approchée. L'expérience montre cependant qu'une imprécision sur l'atténuation, par exemple de l'ordre de 10%, ne nuit pas de façon significative à la correction du déséquilibre. Bien que le schéma de la figure 2 montre que l'atténuation s'applique uniquement sur le signal analogique de sortie, on pourrait aussi réaliser l'atténuation en partie lors du prélèvement du signal analogique au moyen d'un coupleur asymétrique et en partie au cours du traitement numérique avant comparaison avec le signal de référence.
Des moyens de retard R sont insérés entre les moyens de modulation Ml et le convertisseur numérique-analogique Cl de la première voie. Le circuit R est dimensionné de façon à introduire un retard DT égal à celui occasionné par le filtre H. De même, le signal obtenu par la somme des signaux SN1 et SN2 est retardé avant d'être comparé au signal de mesure S'1 + S'2. Les retards à appliquer DT' et DT" correspondent respectivement aux retards introduits dans les parties numériques et analogiques comprises entre les sorties des modulateurs Ml et M2 et la sortie du convertisseur analogique-numérique C3. Comme tous les éléments numériques du montage sont synchrones, le retard DT' peut être déterminé exactement en fonction des différents temps de cycle des opérations effectuées et du nombre d'étages du filtre H. Si le retard DT" n'est pas négligeable, on pourra prévoir avantageusement qu'il soit ajustable et commandé automatiquement par le système de calcul, par exemple au moyen d'un algorithme basé sur un calcul de corrélation.
Dans la réalisation représentée à la figure 3, un filtre programmable H2 est inséré entre les moyens de filtrage 2 et les moyens de modulation M2 de la seconde voie. Dans ce cas, le filtre H2 opère sur les deux composantes en phase 12 et en quadrature Q2 du signal de modulation de la seconde voie. Comme précédemment, les coefficients du filtre H2 sont fournis par un système de calcul 5 programmé pour minimiser les erreurs el, eQ entre d'une part les signaux numériques d'entrée x, y et d'autre part des signaux de mesure correspondants x', y' obtenus à partir du signal de sortie S. Plus précisément, les signaux x1 et y1 résultent d'une atténuation A3 du signal S suivie d'une transposition de fréquence RF, d'une conversion analogique-numérique C3 et d'une démodulation DM1, DM2 au moyen des composantes en phase MI et en quadrature MQ de la porteuse. L'atténuation A3 devrait ici être dimensionnée pour diviser l'amplitude du signal de sortie S par le gain Gl de l'amplificateur Al.
Comme dans le cas de la réalisation précédente, on prévoit des moyens de retard Ri disposés entre le filtre 2 et le modulateur Ml de la première voie de façon à introduire un retard DT1 égal à celui provoqué par la filtre H2. De même, les signaux x et y subissent chacun les retards DT2 et DT3 avant comparaison avec les signaux de mesure homologues x' et y' de façon à compenser les retards dus respectivement aux parties numériques et analogiques placées entre les signaux d'entrée x, y et les sorties x' et y' des démodulateurs DM1 et DM2.
Le système de calcul 5 sera par exemple programmé pour mettre en oeuvre un algorithme des moindres carrés LMS2 pour signaux complexes.
En variante, on pourra remplacer le circuit à retard RI de la première voie par un second filtre programmable symétrique du précédent et recevant ses coefficients du système de calcul 5. L'algorithme prendra alors en compte également les composantes II et Ql de la première voie. Pour assurer la stabilité, les calculs et les mises à jour des coefficients des filtres des deux voies seront avantageusement effectués alternativement.
Dans le troisième exemple de réalisation représenté à la figure 4, le filtrage adaptatif H2 de la seconde voie est réalisé de la même façon que précédemment. Pour la première voie, on utilise par contre un autre filtre programmable Hl placé entre le filtre 2 et le modulateur Ml, dont les coefficients sont calculés de façon à minimiser les erreurs dl, dQ entre d'une part les composantes II et Ql du signal de modulation de la première voie et d'autre part des signaux de mesure correspondants I' et Q' obtenus par atténuation A4, transposition de fréquence RF, conversion analogique- numérique et démodulation DM3, DM4 du signal de sortie G1.S1 de l'amplificateur Al de la première voie.
Comme pour la première voie, la seconde voie pourra utiliser un algorithme des moindres carrés pour signaux complexes et mis en oeuvre par un processeur de signal 6. On prévoira également des moyens DT4, DT5 pour retarder les signaux II et Ql avant de les comparer à leur homologue I' et Q'.
En ce qui concerne la réalisation pratique des filtrages décrits à la figure 4, il convient de noter que les systèmes de calcul 5 et 6 peuvent utiliser un processeur de signaux unique exécutant de façon multiplexée les algorithmes LMS2 appliqués respectivement aux deux voies. Pour des raisons de stabilité, il sera préférable d'effectuer les adaptations des filtrages des deux voies de façon alternative.
L'expérience montre qu'une prédistorsion adaptative appliquée sur une seule des voies peut suffire pour corriger les écarts entre les gains Gl, G2 et entre les phases des amplificateurs Al, A2.
S'il est par contre nécessaire de compenser aussi les différences entre les courbes de réponse des amplificateurs (ondulations) , il conviendra alors d'appliquer aussi une prédistorsion sur l'autre voie soit de façon symétrique, soit conformément à la figure 4.
Il est à noter que dans les réalisations qui viennent d'être décrites, les filtres H, Hl, H2 ont été présentés comme des filtres programmables séparés, tels que ceux qui sont disponibles sur le marché. Toutefois, ces filtres pourraient être intégrés aux systèmes de calcul 4, 5 dans la mesure où leurs performances sont compatibles avec la précision et la vitesse de traitement exigées par l'application.
Le dimensionneraent des filtres programmables tiendra compte de la qualité désirée de la correction. On peut noter qu'un surdimensionnement de ces filtres n'exige pas nécessairement une augmentation de puissance des systèmes de calcul, compte tenu du fait que la mise à jour des coefficients est effectuée peu fréquemment.

Claims

REVENDICATIONS
1. Procédé pour corriger le déséquilibre entre les deux voies d'amplification d'un amplificateur de type "LINC", c'est-à-dire à amplification linéaire réalisée avec des composants non linéaires, ledit amplificateur comportant des moyens de décomposition (1) pour calculer à partir d'au moins un signal temporel d'entrée (x, y) deux signaux numériques de modulation constitués chacun de deux composantes (II, Ql, 12, Q2) et associés respectivement auxdites deux voies de l'amplificateur, des moyens pour générer deux composantes en phase (MI) et en quadrature (MQ) d'une porteuse, des moyens de modulation (Ml, M2) fournissant pour chaque voie un signal modulé (SI, S2) représentant sous forme analogique la somme de deux signaux résultant respectivement de la modulation en amplitude desdites deux composantes (MI, MQ) de la porteuse par respectivement les deux composantes d'un desdits signaux de modulation, des dispositifs d'amplification (Al, A2) recevant après une éventuelle transposition de fréquence (Dl, D2) lesdits signaux modulés (SI, S2) , des moyens de sommation (3) des signaux de sortie (G1.S1, G2.S2) desdits dispositifs d'amplification (Al, A2) , ledit procédé étant caractérisé en ce qu'il consiste à effectuer sur au moins une desdites voies une prédistorsion par filtrage adaptatif (H, H2) d'un signal numérique (SN2, 12, Q2) présent sur ladite voie, ledit filtrage adaptatif (H, H2) étant prévu pour minimiser l'erreur entre une ou plusieurs valeurs de référence (SN1 + SN2, x, y) représentatives de l'amplitude du ou des signaux d'entrée (x, y) et respectivement une ou plusieurs valeurs de mesure correspondantes (S'l+S'2, x1, y') obtenues à partir du signal de sortie (S) des moyens de sommation (3) .
2. Procédé selon la revendication 1, caractérisé en ce que ledit filtrage adaptatif (H2) est appliqué sur les deux composantes (12, Q2) du signal de modulation d'au moins une voie.
3. Procédé selon la revendication 2, caractérisé en ce que ledit signal d'entrée étant constitué de deux composantes respectivement en phase (x) et en quadrature (y) , lesdites valeurs de référence sont celles desdites composantes en phase (x) et en quadrature (y) du signal d'entrée et en ce que lesdites valeurs de mesure correspondantes (x1, y1) sont obtenues par atténuation du signal de sortie (S) des moyens de sommation (3) et démodulation (DM1, DM2) au moyen des deux composantes (MI, MQ) de ladite porteuse, ladite atténuation (A3) étant dimensionnée de façon à diviser l'amplitude du signal de sortie (S) des moyens de sommation (3) par une valeur approchée des gains (Gl, G2) des dispositifs d'amplification (Al, A2) .
4. Procédé selon la revendication 3, caractérisé en ce que ledit filtrage adaptatif (H2) est appliqué sur chacune desdites voies.
5. Procédé selon la revendication 4, caractérisé en ce que les adaptations des filtrages appliqués sur les deux voies sont effectuées alternativement.
6. Procédé selon la revendication 3, caractérisé en ce que ledit filtrage adaptatif (H2) est appliqué sur une seule voie et en ce qu'on effectue un second filtrage adaptatif (Hl) des deux composantes (II, Ql) du signal de modulation de l'autre voie, ledit second filtrage adaptatif (Hl) étant prévu pour minimiser l'erreur entre les deux composantes (II, Ql) du signal de modulation de ladite autre voie et des valeurs de mesure obtenues par atténuation (A4) du signal de sortie (G1.S1) du dispositif d'amplification (Al) de ladite autre voie et démodulation (DM3, DM4) au moyen des deux composantes (MI, MQ) de ladite porteuse, ladite atténuation (A4) étant dimensionnée de façon à diviser l'amplitude du signal de sortie (G1.S1) du dispositif d'amplification (Al) de ladite autre voie par une valeur approchée du gain (Gl) du dispositif d'amplification (Al) de ladite autre voie.
7. Procédé selon la revendication 6, caractérisé en ce que l'adaptation du filtrage appliquée sur une voie et l'adaptation du second filtrage appliquée sur l'autre voie sont effectuées alternativement.
8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que le ou lesdits filtrages adaptatifs (H, Hl, H2) utilisent un algorithme des moindres carrés.
PCT/FR1995/001512 1994-12-15 1995-11-17 Procede pour equilibrer les voies d'un amplificateur de type 'linc' WO1996019063A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP95940325A EP0797884A1 (fr) 1994-12-15 1995-11-17 Procede pour equilibrer les voies d'un amplificateur de type "linc"

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR94/15361 1994-12-15
FR9415361A FR2728416B1 (fr) 1994-12-15 1994-12-15 Procede pour equilibrer les voies d'un amplificateur de type "linc"

Publications (1)

Publication Number Publication Date
WO1996019063A1 true WO1996019063A1 (fr) 1996-06-20

Family

ID=9470020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1995/001512 WO1996019063A1 (fr) 1994-12-15 1995-11-17 Procede pour equilibrer les voies d'un amplificateur de type 'linc'

Country Status (3)

Country Link
EP (1) EP0797884A1 (fr)
FR (1) FR2728416B1 (fr)
WO (1) WO1996019063A1 (fr)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6288606B1 (en) 1998-11-10 2001-09-11 Nokia Mobile Phones Ltd. Linear power amplifier arrangement and method for its operation
US7647030B2 (en) 2004-10-22 2010-01-12 Parkervision, Inc. Multiple input single output (MISO) amplifier with circuit branch output tracking
EP2222044A1 (fr) 2009-02-19 2010-08-25 Research In Motion Limited Dispositif de communication mobile sans fil doté d'une amplification de puissance de phase séparée en phase (I) et en quadrature (Q) et de pré-distorsion d'amplificateur de puissance et de compensation d'équilibre IQ
US8223885B2 (en) 2009-02-19 2012-07-17 Research In Motion Limited Mobile wireless communications device with separate In-phase (I) and Quadrature (Q) phase power amplification and power amplifier pre-distortion and IQ balance compensation
US8884694B2 (en) 2007-06-28 2014-11-11 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification
US8913691B2 (en) 2006-08-24 2014-12-16 Parkervision, Inc. Controlling output power of multiple-input single-output (MISO) device
US9094085B2 (en) 2005-10-24 2015-07-28 Parkervision, Inc. Control of MISO node
US9106316B2 (en) 2005-10-24 2015-08-11 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification
US9106500B2 (en) 2006-04-24 2015-08-11 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including embodiments for error correction
US9166528B2 (en) 2004-10-22 2015-10-20 Parkervision, Inc. RF power transmission, modulation, and amplification embodiments
US9419692B2 (en) 2005-10-24 2016-08-16 Parkervision, Inc. Antenna control
US9608677B2 (en) 2005-10-24 2017-03-28 Parker Vision, Inc Systems and methods of RF power transmission, modulation, and amplification
US9614484B2 (en) 2005-10-24 2017-04-04 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including control functions to transition an output of a MISO device
US10278131B2 (en) 2013-09-17 2019-04-30 Parkervision, Inc. Method, apparatus and system for rendering an information bearing function of time

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005151543A (ja) * 2003-10-20 2005-06-09 Matsushita Electric Ind Co Ltd 増幅回路

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BATEMAN A: "THE COMBINED ANALOGUE LOCKED LOOP UNIVERSAL MODULATOR (CALLUM)", FROM PIONEERS TO THE 21ST. CENTURY, DENVER, MAY 10 - 13, 1992, vol. 1, 10 May 1992 (1992-05-10), INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, pages 759 - 763 *
CASADEVALL & VALDOVINOS: "Performance analysis of QAM modulations applied to the LINC transmitter", IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, vol. 42, no. 4, NEW YORK US, pages 399 - 406 *
COX: "Linear amplification with nonlinear components", IEEE TRANSACTIONS ON COMMUNICATIONS, NEW YORK US, pages 1942 - 1945 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6288606B1 (en) 1998-11-10 2001-09-11 Nokia Mobile Phones Ltd. Linear power amplifier arrangement and method for its operation
US7945224B2 (en) 2004-10-22 2011-05-17 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including waveform distortion compensation embodiments
US8913974B2 (en) 2004-10-22 2014-12-16 Parkervision, Inc. RF power transmission, modulation, and amplification, including direct cartesian 2-branch embodiments
US7647030B2 (en) 2004-10-22 2010-01-12 Parkervision, Inc. Multiple input single output (MISO) amplifier with circuit branch output tracking
US9143088B2 (en) 2004-10-22 2015-09-22 Parkervision, Inc. Control modules
US9197163B2 (en) 2004-10-22 2015-11-24 Parkvision, Inc. Systems, and methods of RF power transmission, modulation, and amplification, including embodiments for output stage protection
US9166528B2 (en) 2004-10-22 2015-10-20 Parkervision, Inc. RF power transmission, modulation, and amplification embodiments
US9768733B2 (en) 2004-10-22 2017-09-19 Parker Vision, Inc. Multiple input single output device with vector signal and bias signal inputs
US9197164B2 (en) 2004-10-22 2015-11-24 Parkervision, Inc. RF power transmission, modulation, and amplification, including direct cartesian 2-branch embodiments
US9419692B2 (en) 2005-10-24 2016-08-16 Parkervision, Inc. Antenna control
US9608677B2 (en) 2005-10-24 2017-03-28 Parker Vision, Inc Systems and methods of RF power transmission, modulation, and amplification
US9614484B2 (en) 2005-10-24 2017-04-04 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including control functions to transition an output of a MISO device
US9705540B2 (en) 2005-10-24 2017-07-11 Parker Vision, Inc. Control of MISO node
US9094085B2 (en) 2005-10-24 2015-07-28 Parkervision, Inc. Control of MISO node
US9106316B2 (en) 2005-10-24 2015-08-11 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification
US9106500B2 (en) 2006-04-24 2015-08-11 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including embodiments for error correction
US8913691B2 (en) 2006-08-24 2014-12-16 Parkervision, Inc. Controlling output power of multiple-input single-output (MISO) device
US8884694B2 (en) 2007-06-28 2014-11-11 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification
US8750417B2 (en) 2009-02-19 2014-06-10 Blackberry Limited Mobile wireless communications device with separate in-phase (I) and quadrature (Q) phase power amplification and power amplifier pre-distortion and IQ balance compensation
CN101895490B (zh) * 2009-02-19 2013-12-04 黑莓有限公司 具有分离的同相和正交相位功率放大的移动无线通信设备和方法
US8526535B2 (en) 2009-02-19 2013-09-03 Blackberry Limited Mobile wireless communications device with separate in-phase (I) and quadrature (Q) phase power amplification and power amplifier pre-distortion and IQ balance compensation
EP2485448A1 (fr) * 2009-02-19 2012-08-08 Research In Motion Limited Dispositif de communication mobile sans fil doté d'une amplification de puissance de phase séparée en phase (I) et en quadrature (Q) et de pré-distorsion d'amplificateur de puissance et de compensation d'équilibre IQ
US8223885B2 (en) 2009-02-19 2012-07-17 Research In Motion Limited Mobile wireless communications device with separate In-phase (I) and Quadrature (Q) phase power amplification and power amplifier pre-distortion and IQ balance compensation
CN101895490A (zh) * 2009-02-19 2010-11-24 捷讯研究有限公司 具有分离的同相和正交相位功率放大的移动无线通信设备
EP2222044A1 (fr) 2009-02-19 2010-08-25 Research In Motion Limited Dispositif de communication mobile sans fil doté d'une amplification de puissance de phase séparée en phase (I) et en quadrature (Q) et de pré-distorsion d'amplificateur de puissance et de compensation d'équilibre IQ
US10278131B2 (en) 2013-09-17 2019-04-30 Parkervision, Inc. Method, apparatus and system for rendering an information bearing function of time

Also Published As

Publication number Publication date
FR2728416B1 (fr) 1997-01-24
FR2728416A1 (fr) 1996-06-21
EP0797884A1 (fr) 1997-10-01

Similar Documents

Publication Publication Date Title
WO1996019063A1 (fr) Procede pour equilibrer les voies d'un amplificateur de type 'linc'
FR3046709B1 (fr) Recepteur rf a poursuite de frequence
EP0421533B1 (fr) Dispositif de prédistorsion pour système de transmission numérique
EP0941588B1 (fr) Procede et dispositif de radiodiffusion mixte analogique et numerique d'emission radiophonique diffusee par un meme emetteur
FR2746563A1 (fr) Procede pour corriger des non-linearites d'un amplificateur, et emetteur radio mettant en oeuvre un tel procede
EP1269707B1 (fr) Dispositif de production d'un signal radiofrequence module en phase et en amplitude
EP0616434A1 (fr) Récepteur numérique à fréquence intermédiaire et procédé de filtrage en bande de base mis en oeuvre dans ce récepteur
EP0380167A1 (fr) "Circuit de prédistorsion adaptative"
EP0632624A1 (fr) Système de transmission numérique à prédistorsion
EP0709959A1 (fr) Correction d'un décalage de fréquence
EP0798902A1 (fr) Estimateur et récupérateur de phase robuste pour signaux numériques affectés notamment de gigue de phase
WO1984004640A1 (fr) Procede de demodulation non-coherente d'un signal module lineairement a energie par symbole constante et demodulateur pour la mise en oeuvre dudit procede
EP1655882A1 (fr) Dispositif de fourniture d'un signal d'erreur pour une boucle de correction de cadence d'un démodulateur numérique
EP0705513A1 (fr) Procede et dispositif de demodulation de signal numerique
FR2837338A1 (fr) Circuit de demodulation de porteuses en quadrature a haute efficacite
FR2666182A1 (fr) Demodulateur hyperfrequence pour liaisons hertziennes numeriques utilisant une modulation de type maq.
EP1032169B1 (fr) Système pour l'estimation du gain complexe d'un canal de transmission
EP1183777B1 (fr) Filtre passe-bande a reduction de la frequence porteuse
EP2312765A1 (fr) Module de réception de plusieurs signaux de satellite
EP0116990B1 (fr) Dispositif d'égalisation d'amplitude autoadaptatif pour faisceaux hertziens numériques
EP2469236B1 (fr) Dispositif de neutrodynage actif.
EP2504963B1 (fr) Systeme et procede d'emission reception d'un signal numerique sur voie radio
EP0928062B1 (fr) Procédé de correction de linéarité et correcteur de linéarité pour amplificateur de puissance et amplificateur equipé d'un tel correcteur
FR2652470A1 (fr) Procede et dispositif de limitation des remontees de lobes secondaires dans une installation d'emission de puissance pour monoporteuse numerique a deux ou quatre etats de phase.
EP0070236B1 (fr) Dispositif de compensation de phase d'écho et son application aux annuleurs d'écho

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995940325

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1995940325

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1995940325

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1995940325

Country of ref document: EP