WO1996015317A1 - Processus de delignification a l'aide d'une phase gazeuse contenant du dioxyde de chlore - Google Patents

Processus de delignification a l'aide d'une phase gazeuse contenant du dioxyde de chlore Download PDF

Info

Publication number
WO1996015317A1
WO1996015317A1 PCT/US1995/013582 US9513582W WO9615317A1 WO 1996015317 A1 WO1996015317 A1 WO 1996015317A1 US 9513582 W US9513582 W US 9513582W WO 9615317 A1 WO9615317 A1 WO 9615317A1
Authority
WO
WIPO (PCT)
Prior art keywords
chlorine dioxide
pulp
cellulosic material
gas phase
contacting
Prior art date
Application number
PCT/US1995/013582
Other languages
English (en)
Inventor
Sudhir K. Mendiratta
David W. Cawlfield
Original Assignee
Olin Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olin Corporation filed Critical Olin Corporation
Priority to AU40067/95A priority Critical patent/AU4006795A/en
Publication of WO1996015317A1 publication Critical patent/WO1996015317A1/fr

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/10Bleaching ; Apparatus therefor
    • D21C9/12Bleaching ; Apparatus therefor with halogens or halogen-containing compounds
    • D21C9/14Bleaching ; Apparatus therefor with halogens or halogen-containing compounds with ClO2 or chlorites

Definitions

  • the present invention is directed to a specific process for gas phase delignification of cellulosic material with chlorine dioxide.
  • the present invention is directed to a process for gas phase delignification of cellulosic material whereby the cellulosic material is contacted with a gas stream containing a limited quantity of chlorine dioxide so that substantially all of the chlorine dioxide in the gas stream will react with the cellulosic material and the effluent gas stream from the contacting zone will be substantially free of chlorine dioxide.
  • Chlorine dioxide has found wide use as a disinfectant in water treatment/purification, as a bleaching agent in pulp and paper production, and a number of other uses because of its high oxidizing power.
  • Gas phase bleaching with chlorine dioxide has been proposed over the years in various patents and publications as a method of reducing the bleaching time while cutting chemical costs. Gas phase bleaching is carried out on higher consistency pulp using mixtures of chlorine dioxide and steam and/or inert gases such as air or nitrogen.
  • U.S. Patent No. 3,725,193, issued April 3, 1973 to DeMontigny et al. describes a process for bleaching high consistency pulps, which includes preheating the pulp by direct steaming. A gaseous mixture of chlorine dioxide diluted with steam or a nonreactive gas to a partial pressure of chlorine dioxide of not more than 100 mm of Hg is then passed through the pulp. The contact period is in the order of a fraction of a second. The bleached pulp was then held in a retention vessel for 30 minutes. Unreacted chlorine dioxide was removed from a bleaching tower by aeration. The final pH of the bleached pulp was 5.2.
  • U.S. Patent No. 3,655,505 which issued to Yorston et al. on April 11, 1972, teaches a two- stage process for bleaching an unbleached chemical cellulosic pulp in which the first stage comprises fluffing a pulp that has been adjusted in moisture content to a consistency of from about 20% to 60%, contacting the pulp with gaseous chlorine dioxide diluted with a nonreactive gas at a temperature of between 15° and 100°C for a period of 20 seconds to 60 minutes, the pulp then being washed with water; and finally in the second stage adjusting the pulp moisture content to 5% and contacting the pulp with a peroxygen compound having a peroxygen content of from 0.025-1.5% by weight based on the weight of the dry pulp at a temperature up to 100°C for a period of from . to 5 hours.
  • One aspect of the present invention is directed to a process for delignifying high consistency cellulosic material having a kappa number greater than about 5 characterized by contacting said cellulosic material with a gas phase containing chlorine dioxide for a sufficient amount of time to at least partially delignify said cellulosic material, wherein substantially all of said chlorine dioxide in said gas phase reacts with said cellulosic material during said contacting time; and then separating the spent gas phase from said delignified cellulosic material, wherein said separated spent gas phase is substantially free of chlorine dioxide.
  • Another aspect of the present invention is directed to a process for delignifying high consistency cellulosic material having a kappa number greater than about 5 characterized by contacting said cellulosic material with a gas phase containing chlorine dioxide for a sufficient amount of time to at least partially delignify said cellulosic material, wherein the delignification efficiency as defined by the equation:
  • the gas phase containing chlorine dioxide used in the present invention may be made by any conventional process for generating chlorine dioxide.
  • chlorine dioxide generator systems There are a number of chlorine dioxide generator systems available in the marketplace. Most of the very large scale generators utilize an alkali metal chlorate salt, a reducing agent, and a strong acid. If sodium chloride is employed as a reducing agent or if hydrogen chloride is employed as the acid, then a mixture of chlorine and chlorine dioxide is produced.
  • chlorine dioxide may be generated by reacting a mineral acid such as sulfuric acid or phosphoric acid in the presence of selected catalysts. See U.S. Patent Nos. 4,362,707 (Hardee et al.); 4,381,290 (Hardee et al.); and 4,501,824 (Hardee et al.).
  • chlorine dioxide may be generated electrochemically from an aqueous feedstock solution of an alkali metal chlorate and a mineral acid. See U.S. Patent Nos. 4,426,263 (Hardee et al.) and 4,767,510 (Lipsztajn) . To avoid the formation of some or all of the above-noted byproducts, it is preferred to use chloric acid instead of all or part of the alkali metal chlorate salt precursor for chlorine dioxide generating systems.
  • a chloric acid solution to produce chlorine dioxide.
  • a chloric acid solution to produce chlorine dioxide.
  • This process uses chloric acid as a chemical precursor.
  • the gas containing chlorine dioxide is generated by a process that is capable of producing relatively chlorine-free chlorine dioxide under subatmospheric pressures.
  • the chlorine dioxide containing gaseous mixture can be transported to the contacting devices by a vacuum system, or any other device capable of creating the necessary pressure differential between the chlorine dioxide generator and the contacting device to allow gaseous flow at a reasonable rate.
  • a reasonable gas flow rate is defined such that a continuously flowing pulp can be delignified to the desired kappa number while consuming substantially all (i.e., more than 95% by moles) of the chlorine dioxide in the gas.
  • the chlorine dioxide-containing gas added to the mixing zone or delignification contacting zone is preferably added with a diluent to keep the feed partial pressure of chlorine dioxide below about 100 mm Hg. This is preferably accomplished by main ⁇ taining a total gas phase pressure of about 100 to 300 mm Hg in the feed and using water vapor as a diluent, while the partial pressure of chlorine dioxide is held at about 5 to 50 mm Hg in the feed. This allows a substantial safety factor while allowing the chlorine dioxide concentration to rise when water vapor condenses on cool pulp. Specifically, once inside the pulp interstices the local partial pressures of chlorine dioxide may be much higher because of the condensation of the water vapor.
  • any high consistency cellulosic material may be used in the process of this invention.
  • the term "high consistency” means consistencies of at least 15. Preferably consistencies of from about 20-50 are employed.
  • the preferred cellulosic material is wood pulp.
  • Low consistency pulp can be dewatered to make high consistency pulp that is suitable for purposes of this invention. That pulp can be dewatered by any device capable of increasing pulp consistency to 20 to 50. Examples of such devices are presses, filters, centrifuges and the like.
  • the amount of chlorine dioxide fed may be calculated based on a well-known parameter called the kappa factor.
  • This factor represents the ratio of oxidant added to the oxidizable lignin components in the pulp.
  • kappa factors are limited to 0.01 to 0.15, more preferably between 0.01. to 0.10. At higher kappa factors, we have found that much greater residence time is required to completely consume the chlorine dioxide.
  • the kappa number of the pulp, a measure of the lignin content can preferably range from about 10 to about 200 entering the chlorine dioxide treatment process.
  • the kappa number may be calculated by TAPPI Test Method T-236 "Kappa Number of Pulp" Tappi Press, Atlanta, Georgia (1994) .
  • TAPPI Test Method T-236 "Kappa Number of Pulp” Tappi Press, Atlanta, Georgia (1994) .
  • the ratio of kappa number to kappa factor (K n /K f ) is related to the kinetics or rate of reaction of chlorine dioxide to the wood pulp. The higher this ratio is, the faster is the reaction.
  • this ratio should be at least about 50:1, more preferably, at least about 100:1.
  • the novel delignification process of the present invention may use any conventional gas phase bleaching or delignification apparatus, as well as any suitable mixers and the like.
  • Suitable gas tight mixing equipment includes, for example, agitated mixers, static mixers, ribbon blenders, steam chests, high consistency shear mixers, MC pumps, MC mixers, high velocity pipe lines, blowers, static beds, and the like.
  • the high consistency pulp is preferably fluffed before or simultaneously with chlorine dioxide gas contacting to allow thorough mixing of the pulp fibers and liquid with the gas. Also, fluffed pulp suppresses unwanted chlorine dioxide auto-decomposition.
  • Delignifi ⁇ cation of pulp may be affected in the initial stage of a multi-stage bleaching process, as well as in any "D" stage, for example, in the third stage for both kraft and sulfite pulps, as well as in the fifth stage for kraft pulps.
  • the initial deligni ⁇ fication step of unbleached pulp may be carried out in any suitable mixing equipment in which thorough admixing of the unbleached pulp and the chlorine dioxide gas can be accomplished.
  • the series of processes that collectively react and/or remove color bodies from cellulosic material are known generically as bleaching.
  • delignification steps The first steps of a bleaching process following chemical pulping of wood remove the majority of oxidizable species in the pulp are normally referred to as delignification steps, while the later stages are often referred to as brightening steps. It is the delignification steps to which this invention applies. Where the term bleaching is used in connection with this invention, it is in the generic sense for which delignification is a more specific term.
  • Flow of chlorine dioxide between the mixing zones can be either cocurrent or counter-current with the pulp.
  • Counter-current flow provides greater concentrations of chlorine dioxide in the pulp that has already been partially delignified and serves to reduce the total residence time required for complete reaction of chlorine dioxide with the pulp.
  • the mixing or contacting zone is made of a fluffer, a blower, a contactor, or a moving bed or combinations thereof.
  • a fluffer is a device which separates the matted pulp into small clumps of fibers and ultimately to individual cellulosic fibers. If only the fluffer is used, it also becomes a device where the chlorine dioxide and pulp is reacted.
  • a blower is a device used to transport pulp to a contactor. If only the fluffer and blower combination is used, the reaction of the chlorine dioxide and pulp can occur in both devices.
  • a contactor is a device where pulp and gaseous chlorine dioxide mixture react. It can be used alone or with a fluffer or blower or both.
  • a moving bed is a type of contactor that provides a longer residence time for the gas phase so that slower lignin reactions occur. The moving bed may be used 96/15317 PCIYUS95/13582
  • the exhaust gas stream leaving the process contains less than about 5% of the chlorine dioxide fed to the mixing zone. Accordingly, the term "substantially free of chlorine dioxide", as applied to the gas phase leaving the contacting zone, means that the gas phase contains less than 5% of the chlorine dioxide fed into that zone.
  • This exhaust gas may be absorbed in a scrubber to remove any residual chlorine dioxide before releasing it to the atmosphere or using it in other parts of the mill. Where the chlorine dioxide feed gas contains oxygen, this oxygen will be uneffected by the delignifi- ation step and may be advantageously used in later alkaline extraction steps used by the bleaching sequence. In this latter case, no scrubbing of spent gas phase is needed because any small amounts of residual chlorine dioxide will be fully absorbed in alkaline pulp slurry.
  • the conditions inside the contactor are, therefore, preferably at a pressure below one atmosphere, and at least slightly below those of the source of the chlorine dioxide-containing gas.
  • the temperatures of the pulp entering the contactor are preferably below about 180°F, more preferably less than about 120°F. These relatively low temperatures of the pulp versus the usual 180°F temperature of chlorine dioxide generator act to condense a greater fraction of water vapor in the chlorine dioxide and, therefore, increase the partial pressure of chlorine dioxide initially contacting the pulp.
  • the mixing compartment, where chlorine dioxide contact the pulp is needed to optimize the uniformity of bleaching.
  • the residence time of pulp in the process and the kinetics of reaction with the lignin components of the pulp determines the quantity of chlorine dioxide that can be absorbed from a given concentration of chlorine dioxide gas. In a well mixed contactor, the concentration of chlorine dioxide in the contactor can be assumed to be approximately equal to the concentration in the gas leaving the contractor.
  • a contactor may preferably contain at least two and preferably between 3 and 5 mixing compartments in series so that chlorine dioxide not reacted in the first mixing compartment can react in later mixing compartment.
  • the total residence time of pulp in all of these mixing compartments in a contacting or mixing zone is preferably between 5 seconds and 60 minutes and, more preferably, between 10 seconds and 10 minutes.
  • the delignified chemical pulp preferably has a kappa number in the range of from about 1 to about 10 and more preferably from about 1 to about 5.
  • this is preferably greater than about 50 and less than about 90.
  • the extracted pulp may be subsequently further delignified, for example, using the process of the invention or any known bleaching stage to achieve the final brightness desired.
  • delignification of the pulp is carried out under acidic conditions.
  • the pH of the pulp is adjusted so that the final pH of the delignified pulp is in the range of from about 1 to about 6.
  • An extraction stage (E) is then carried out with, for example, caustic soda to solubilize the higher molecular weight oxidized lignins, to hydrolyze organic chlorides to salts, and the like.
  • the extraction is conducted at temperatures of 40-90°C, and a residence time of about 60 minutes where the final pH is 9.5 or higher.
  • the extrac ⁇ tion stage may include the addition of oxygen, a peroxide such as hydrogen peroxide, or hypochlorite for enhanced performance.
  • the extracted pulp is filtered and washed to remove water soluble lignins and low molecular weight organic chlorides, among others.
  • cellulosic material such as soft wood kraft pulp of 30.7 kappa number
  • cellulosic material such as soft wood kraft pulp of 30.7 kappa number
  • the temperature of the pulp was at about 80°F.
  • the chlorine dioxide was generated by the methods described in U.S. Patent
  • the temperature of the generator was at 180°F, and the operating pressure of the gener ⁇ ator was 215 mm Hg.
  • the gaseous mixture temperature was 150°F.
  • the chlorine dioxide generation rate was measured by potassium iodide titration techniques.
  • the chlorine concentration of the gaseous stream was measured to be ⁇ 3% of the total chlorine dioxide present in the gaseous stream.
  • the pressure of the pulp was reduced to subatmospheric conditions to about 215 mm Hg absolute prior to contacting with the gaseous chlorine dioxide and oxygen enriched mixture also at subatmospheric pressure.
  • the gaseous mixture containing chlorine dioxide was applied.
  • the unreacted gases were collected in series of scrubbers containing potassium iodide solution to collected any unreacted chlorine dioxide gas.
  • the amount of chlorine dioxide to be added was predetermined. After 0.95 g of chlorine dioxide had been applied, the chlorine dioxide supply was cut off. The pulp and gaseous chlorine dioxide were contacted for 28 seconds.
  • the potassium iodide scrubber solution was analyzed and contained 0.08 g of chlorine dioxide. About 92% of the applied chlorine dioxide reacted with the pulp. (The pulp was optionally washed in some experiments.) The reacted pulp was then extracted at about 11% consistency by adding sodium hydroxide, oxygen (optional) , and/or hydrogen peroxide (optional) to the pulp; and maintaining the mixture at 90°C for about 1-2 hours. After the extraction, the pulp was washed and its kappa number was measured to be 7.17 indicted the delignification efficiency of about 77%. The wash water was collected and its AOX (absorbable organic halides) content was measured to be 0.36 kg per 1,000 kg of dried pulp.
  • AOX absorbable organic halides
  • cellulosic material such as soft wood kraft pulp of 30.7 kappa number
  • the temperature of the pulp was at about 80°F.
  • the chlorine dioxide was generated by ,the methods described in U.S. Patent No. 5,342,601.
  • the temperature of the generator was at 182°F, and the operating pressure of the genera- tor was 203 mm Hg.
  • the gaseous mixture temperature was 154°F.
  • the chlorine dioxide generation rate was measured by potassium iodide titration techniques.
  • the chlorine concentration of the gaseous stream was measured to be ⁇ 3% of the total chlorine dioxide present in the gaseous stream.
  • the pressure of the pulp was reduced to subatmospheric conditions to about 203 mm Hg absolute prior to contacting with the gaseous chlorine dioxide and oxygen enriched mixture also at subatmospheric pressure.
  • the gaseous mixture containing chlorine dioxide was applied.
  • the unreacted gases were collected in series of scrubbers containing potassium iodide solution to collected any unreacted chlorine dioxide gas.
  • the amount of chlorine dioxide to be added was predetermined. After 0.84 g of chlorine dioxide had been applied the chlorine dioxide supply was cut off.
  • the pulp and gaseous chlorine dioxide were contacted for 23 seconds.
  • the potassium iodide scrubber solution was analyzed and contained 0.0 g of chlorine dioxide. About 100% of the applied chlorine dioxide reacted with the pulp.
  • the reacted pulp was then extracted at about 11% consistency by adding sodium hydroxide, oxygen (optional) , and/or hydrogen peroxide (optional) to the pulp; and maintaining the mixture at 90°C for about 1-2 hours. After the extraction, the pulp was washed and its kappa number was measured to be 8.1 indicating the delignification efficiency of about 74%. The wash water was collected, and its AOX (absorbable organic halides) content was measured to be 0.29 kg per 1,000 kg of dried pulp.
  • cellulosic material such as soft wood kraft pulp of 30.6 kappa number
  • the temperature of the pulp was at about 80°F.
  • the chlorine dioxide was generated by the methods described in U.S. Patent No. 5,342,601.
  • the temperature of the generator was at 186°F, and the operating pressure of the genera- tor was 228 mm Hg.
  • the gaseous mixture temperature was 155°F.
  • the chlorine dioxide generation rate was measured by potassium iodide titration techniques.
  • the chlorine concentration of the gaseous stream was measured to be ⁇ 3% of the total chlorine dioxide present in the gaseous stream.
  • the pressure of the pulp was reduced to subatmospheric conditions to about 228 mm Hg absolute prior to contacting with the gaseous chlorine dioxide and oxygen enriched mixture also at subatmospheric pressure.
  • the gaseous mixture containing chlorine dioxide was applied.
  • the unreacted gases were collected in series of scrubbers containing potassium iodide solution to collected any unreacted chlorine dioxide gas.
  • the amount of chlorine dioxide to be added was predetermined. After 1.1 g of chlorine dioxide had been applied, the chlorine dioxide supply was cut off.
  • the pulp and gaseous chlorine dioxide were contacted for about 30 seconds.
  • the potassium iodide scrubber solution was analyzed and contained 0.043 g of chlorine dioxide. About 95% of the applied chlorine dioxide reacted with the pulp.
  • the reacted pulp was then extracted at about 11% consistency by adding sodium hydroxide, oxygen (optional) , and/or hydrogen peroxide (optional) to the pulp; and maintaining the mixture at 90°C for about 1-2 hours. After the extraction, the pulp was washed and its kappa number was measured to be 9.1 indicating the delignification efficiency of about 70%. The wash water was collected, and its AOX (absorbable organic halides) content was measured to be 0.38 kg per 1,000 kg of dried pulp.
  • cellulosic material such as soft wood kraft pulp of 25.6 kappa number
  • the temperature of the pulp was at about 80°F.
  • the chlorine dioxide was generated by the methods described in U.S. Patent No. 5,342,601.
  • the temperature of the generator was at 186°F, and the operating pressure of the genera ⁇ tor was 152 mm Hg.
  • the gaseous mixture temperature was 142°F.
  • the chlorine dioxide generation rate was measured by potassium iodide titration techniques.
  • the chlorine concentration of the gaseous stream was measured to be ⁇ 3% of the total chlorine dioxide present in the gaseous stream.
  • the pressure of the pulp was reduced to subatmospheric conditions to about 152 mm Hg absolute prior to contacting with the gaseous chlorine dioxide and oxygen enriched mixture also at subatmospheric pressure.
  • the gaseous mixture containing chlorine dioxide was applied.
  • the unreacted gases were collected in series of scrubbers containing potassium iodide solution to collected any unreacted chlorine dioxide gas.
  • the amount of chlorine dioxide to be added was predetermined. After 0.63 g of chlorine dioxide had been applied, the chlorine dioxide supply was cut off.
  • the pulp and gaseous chlorine dioxide were contacted for about 17 seconds.
  • the potassium iodide scrubber solution was analyzed and contained 0.02 g of chlorine dioxide. About 97% of the applied chlorine dioxide reacted with the pulp.
  • the pulp was optionally washed in some experiments.
  • the reacted pulp was then extracted at about 11% consistency by adding sodium hydroxide, oxygen (optional) , and/or hydrogen peroxide (optional) to the pulp; and maintaining the mixture at 90°C for about 1-2 hours.
  • the pulp was washed and its kappa number was measured to be 5.8 indicating the delignification efficiency of about 77%.
  • the wash water was collected, and its AOX (absorbable organic halides) content was measured to be 0.15 kg per 1,000 kg of dried pulp.
  • cellulosic material such as soft wood kraft pulp of 25.6 kappa number
  • the temperature of the pulp was at about 80°F.
  • the chlorine dioxide was generated by the methods described in U.S. Patent No. 5,342,601.
  • the temperature of the generator was at 183°F, and the operating pressure of the genera ⁇ tor was 228 mm Hg.
  • the gaseous mixture temperature was 129°F.
  • the chlorine dioxide generation rate was measured by potassium iodide titration techniques.
  • the chlorine concentration of the gaseous stream was measured to be ⁇ 3% of the total chlorine dioxide present in the gaseous stream.
  • the pressure of the pulp was reduced to subatmospheric conditions to about 228 mm Hg absolute prior to contacting with the gaseous chlorine dioxide and oxygen enriched mixture also at subatmospheric pressure.
  • the gaseous mixture containing chlorine dioxide was applied.
  • the unreacted gases were collected in series of scrubbers containing potassium iodide solution to collected any unreacted chlorine dioxide gas.
  • the amount of chlorine dioxide to be added was predetermined. After 0.68 g of chlorine dioxide had been applied, the chlorine dioxide supply was cut off.
  • the pulp and gaseous chlorine dioxide were contacted for 18 seconds.
  • the potassium iodide scrubber solution was analyzed and contained 0.029 g of chlorine dioxide. About 97% of the applied chlorine dioxide reacted with the pulp.
  • the reacted pulp was then extracted at about 11% consistency by adding sodium hydroxide, oxygen (optional) , and/or hydrogen peroxide (optional) to the pulp; and maintaining the mixture at 90°C for about 1-2 hours. After the extraction, the pulp was washed and its kappa number was measured to be 5.3 indicating the delignification efficiency of about 79%. The wash water was collected, and its AOX (absorbable organic halides) content was measured to be 0.26 kg per 1,000 kg of dried pulp.
  • AOX absorbable organic halides

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Paper (AREA)

Abstract

Un procédé, qui permet la délignification d'un matériau cellulosique à haute consistance présentant un indice Kappa supérieur à 5, consisite à mettre ce matériau cellulosique en contact avec une phase gazeuse contenant du dioxyde de chlore pendant une durée suffisante pour délignifier au moins partiellement ce matériau. Pratiquement tout le dioxyde de chlore de cette phase gazeuse réagit avec ce matériau cellulosique pendant la durée du contact. Le procédé consiste ensuite à séparer ce matériau cellulosique délignifié et cette phase gazeuse épuisée qui est pratiquement dépourvue de dioxyde de chlore.
PCT/US1995/013582 1994-11-10 1995-10-23 Processus de delignification a l'aide d'une phase gazeuse contenant du dioxyde de chlore WO1996015317A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU40067/95A AU4006795A (en) 1994-11-10 1995-10-23 Process for gas phase chlorine dioxide delignification

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US33689494A 1994-11-10 1994-11-10
US336,894 1994-11-10

Publications (1)

Publication Number Publication Date
WO1996015317A1 true WO1996015317A1 (fr) 1996-05-23

Family

ID=23318149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1995/013582 WO1996015317A1 (fr) 1994-11-10 1995-10-23 Processus de delignification a l'aide d'une phase gazeuse contenant du dioxyde de chlore

Country Status (3)

Country Link
AU (1) AU4006795A (fr)
WO (1) WO1996015317A1 (fr)
ZA (1) ZA959569B (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0906987A1 (fr) * 1997-10-03 1999-04-07 Elf Atochem S.A. Procédé de blanchiment de pâtes à papier chimiques
US6849653B2 (en) 2001-09-19 2005-02-01 Pharmacia Corporation Substituted pyrazolyl benzenesulfamide compounds for the treatment of inflammation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3630828A (en) * 1968-05-13 1971-12-28 Pulp Paper Res Inst Bleaching of a low-density, substantially uncompacted, porous fluffed cellulosic pulp
US4128454A (en) * 1977-12-07 1978-12-05 Ingersoll-Rand Co. System and method for gas phase pulp bleaching

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3630828A (en) * 1968-05-13 1971-12-28 Pulp Paper Res Inst Bleaching of a low-density, substantially uncompacted, porous fluffed cellulosic pulp
US4128454A (en) * 1977-12-07 1978-12-05 Ingersoll-Rand Co. System and method for gas phase pulp bleaching

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0906987A1 (fr) * 1997-10-03 1999-04-07 Elf Atochem S.A. Procédé de blanchiment de pâtes à papier chimiques
FR2769327A1 (fr) * 1997-10-03 1999-04-09 Atochem Elf Sa Procede de blanchiment de pates a papier chimiques
US6849653B2 (en) 2001-09-19 2005-02-01 Pharmacia Corporation Substituted pyrazolyl benzenesulfamide compounds for the treatment of inflammation

Also Published As

Publication number Publication date
AU4006795A (en) 1996-06-06
ZA959569B (en) 1996-05-28

Similar Documents

Publication Publication Date Title
US4459174A (en) Process for the delignification and bleaching of chemical and semi-chemical cellulosic pulps
JPS6350465B2 (fr)
US4897156A (en) Process for activating cellulose pulp with NO and/or NO2 and oxygen in the presence of nitric acid and then delignifying bleaching the activated cellulose pulp
EP0588704B1 (fr) Récupération de gaz riche en oxygène provenant de procédés de blanchiment avec ozone
US4602982A (en) Process for delignifying bleaching lignin-containing cellulose pulp by activating the pulp with NO2 and O2 gas in the presence of water, sodium nitrate and nitric acid
Kuwabara et al. Impact on the filtrate from bleached pulp treated with peroxymonosulfuric acid for effective removal of hexenuronic acid
EP0651832B1 (fr) Procede de delignification de pate de bois en phase gazeuse
JPS6350464B2 (fr)
AU656658B2 (en) Gas phase delignification of lignocellulosic material
WO1996015317A1 (fr) Processus de delignification a l'aide d'une phase gazeuse contenant du dioxyde de chlore
US5645687A (en) Process for manufacturing bleached pulp with reduced chloride production
US4008120A (en) Process of delignification and bleaching a lignocellulose product
CA2247532A1 (fr) Methode de blanchiment d'une pate a papier a l'aide d'ozone et de dioxyde de chlore
US6210527B1 (en) Pulp bleaching method wherein an ozone bleaching waste stream is scrubbed to form an oxygen containing stream
US4409066A (en) Bleaching procedure using chlorine dioxide and chlorine solutions
JP2001192991A (ja) アルカリパルプの漂白方法
AU605913B2 (en) A method in the activation of lignocellulosic material with a gas containing nitrogen dioxide
US4299653A (en) Method of bleaching pulp with an aqueous solution of chlorine dioxide and chlorine followed by a chlorine solution
US4325783A (en) Bleaching procedure using chlorine dioxide and chlorine solutions
JP3237681B2 (ja) 二酸化チオ尿素の製造法および同製造法による二酸化チオ尿素を用いた製紙用パルプの漂白方法
NZ245711A (en) Process for delignification of lignocellulosic material giving rise to low adsorbable organic halides comprising treatment with chlorine dioxide followed by a direct alkaline extraction, with no intermediate washing step
Shaharuzzaman Effect of mixing on peroxymonosulfate generation
Weinstock et al. In: Proceedings of the 1995 TAPPI Pulping conference; 1995 October 1-5; Chicago, IL. Atlanta, GA: TAPPI PRESS: 153-156. Book 1.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AU BB BG BR BY CA CN CZ EE FI GE HU IS JP KE KG KP KR KZ LK LR LT LV MD MG MK MN MW MX NO NZ PL RO RU SD SG SI SK TJ TM TT UA UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase