WO1996011274A1 - Chimeric papillomavirus-like particles - Google Patents
Chimeric papillomavirus-like particles Download PDFInfo
- Publication number
- WO1996011274A1 WO1996011274A1 PCT/US1995/012914 US9512914W WO9611274A1 WO 1996011274 A1 WO1996011274 A1 WO 1996011274A1 US 9512914 W US9512914 W US 9512914W WO 9611274 A1 WO9611274 A1 WO 9611274A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- papillomavirus
- particle
- product
- fusion
- hpv16e7
- Prior art date
Links
- 239000002245 particle Substances 0.000 title claims abstract description 121
- 230000004927 fusion Effects 0.000 claims abstract description 98
- 241001631646 Papillomaviridae Species 0.000 claims abstract description 66
- 238000000034 method Methods 0.000 claims abstract description 20
- 229960005486 vaccine Drugs 0.000 claims abstract description 7
- 108090000623 proteins and genes Proteins 0.000 claims description 69
- 102000004169 proteins and genes Human genes 0.000 claims description 57
- 210000004027 cell Anatomy 0.000 claims description 55
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 30
- 108020004414 DNA Proteins 0.000 claims description 27
- 150000001413 amino acids Chemical class 0.000 claims description 19
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 19
- 241000701806 Human papillomavirus Species 0.000 claims description 13
- 239000013598 vector Substances 0.000 claims description 13
- 241000238631 Hexapoda Species 0.000 claims description 12
- 102000053602 DNA Human genes 0.000 claims description 11
- 241000341655 Human papillomavirus type 16 Species 0.000 claims description 10
- 238000000746 purification Methods 0.000 claims description 9
- 108700031455 Bovine papillomavirus L2 Proteins 0.000 claims description 6
- 241000701822 Bovine papillomavirus Species 0.000 claims description 4
- 241000388186 Deltapapillomavirus 4 Species 0.000 claims description 4
- 238000001042 affinity chromatography Methods 0.000 claims description 4
- 101100209954 Human papillomavirus type 16 L1 gene Proteins 0.000 claims description 3
- 230000021633 leukocyte mediated immunity Effects 0.000 claims description 3
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims description 2
- 230000030741 antigen processing and presentation Effects 0.000 claims description 2
- 210000004962 mammalian cell Anatomy 0.000 claims description 2
- 238000012545 processing Methods 0.000 claims description 2
- 210000005253 yeast cell Anatomy 0.000 claims description 2
- 108700005307 Human papillomavirus HPV L1 Proteins 0.000 claims 1
- 241000701447 unidentified baculovirus Species 0.000 description 21
- 241000283973 Oryctolagus cuniculus Species 0.000 description 20
- 230000006698 induction Effects 0.000 description 19
- 230000003472 neutralizing effect Effects 0.000 description 19
- 230000000692 anti-sense effect Effects 0.000 description 17
- 239000012634 fragment Substances 0.000 description 16
- 241000701646 Kappapapillomavirus 2 Species 0.000 description 14
- 206010028980 Neoplasm Diseases 0.000 description 13
- 230000036039 immunity Effects 0.000 description 12
- 208000015181 infectious disease Diseases 0.000 description 12
- 238000010348 incorporation Methods 0.000 description 11
- 108020004707 nucleic acids Proteins 0.000 description 11
- 102000039446 nucleic acids Human genes 0.000 description 11
- 150000007523 nucleic acids Chemical class 0.000 description 11
- 239000002299 complementary DNA Substances 0.000 description 10
- 241000700605 Viruses Species 0.000 description 9
- 210000002966 serum Anatomy 0.000 description 9
- 238000003556 assay Methods 0.000 description 8
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 8
- 230000003053 immunization Effects 0.000 description 8
- 239000002953 phosphate buffered saline Substances 0.000 description 8
- 208000009608 Papillomavirus Infections Diseases 0.000 description 7
- 239000000427 antigen Substances 0.000 description 7
- 102000036639 antigens Human genes 0.000 description 7
- 108091007433 antigens Proteins 0.000 description 7
- 102000037865 fusion proteins Human genes 0.000 description 7
- 108020001507 fusion proteins Proteins 0.000 description 7
- 230000003902 lesion Effects 0.000 description 7
- 208000003154 papilloma Diseases 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 238000000749 co-immunoprecipitation Methods 0.000 description 6
- 238000001514 detection method Methods 0.000 description 6
- 230000000069 prophylactic effect Effects 0.000 description 6
- 238000004062 sedimentation Methods 0.000 description 6
- 238000001338 self-assembly Methods 0.000 description 6
- 101000767631 Human papillomavirus type 16 Protein E7 Proteins 0.000 description 5
- 241000699670 Mus sp. Species 0.000 description 5
- 125000003275 alpha amino acid group Chemical group 0.000 description 5
- 201000011510 cancer Diseases 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 5
- 239000013604 expression vector Substances 0.000 description 5
- 230000001225 therapeutic effect Effects 0.000 description 5
- 210000002845 virion Anatomy 0.000 description 5
- 238000001262 western blot Methods 0.000 description 5
- 206010008342 Cervix carcinoma Diseases 0.000 description 4
- 101100049401 Human papillomavirus type 16 L2 gene Proteins 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- 241000125945 Protoparvovirus Species 0.000 description 4
- 230000024932 T cell mediated immunity Effects 0.000 description 4
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 4
- 125000000539 amino acid group Chemical group 0.000 description 4
- 238000010171 animal model Methods 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 201000010881 cervical cancer Diseases 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 230000004727 humoral immunity Effects 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 230000002458 infectious effect Effects 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000006386 neutralization reaction Methods 0.000 description 4
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 4
- 238000006467 substitution reaction Methods 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 108700026244 Open Reading Frames Proteins 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- 210000000234 capsid Anatomy 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 229940088598 enzyme Drugs 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000009257 reactivity Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 108091008146 restriction endonucleases Proteins 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- 239000003053 toxin Substances 0.000 description 3
- 231100000765 toxin Toxicity 0.000 description 3
- 108700012359 toxins Proteins 0.000 description 3
- 238000004627 transmission electron microscopy Methods 0.000 description 3
- 230000003612 virological effect Effects 0.000 description 3
- HZLHRDBTVSZCBS-UVJJDBRNSA-N 4-[(e)-(4-aminophenyl)-(4-imino-3-methylcyclohexa-2,5-dien-1-ylidene)methyl]-2-methylaniline;hydrochloride Chemical compound Cl.C1=CC(=N)C(C)=C\C1=C(C=1C=C(C)C(N)=CC=1)/C1=CC=C(N)C=C1 HZLHRDBTVSZCBS-UVJJDBRNSA-N 0.000 description 2
- 108090000565 Capsid Proteins Proteins 0.000 description 2
- 101710132601 Capsid protein Proteins 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 108010067225 Cell Adhesion Molecules Proteins 0.000 description 2
- 102000016289 Cell Adhesion Molecules Human genes 0.000 description 2
- 102100023321 Ceruloplasmin Human genes 0.000 description 2
- 108020004705 Codon Proteins 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 101001065501 Escherichia phage MS2 Lysis protein Proteins 0.000 description 2
- 101710121996 Hexon protein p72 Proteins 0.000 description 2
- 108010088652 Histocompatibility Antigens Class I Proteins 0.000 description 2
- 102000008949 Histocompatibility Antigens Class I Human genes 0.000 description 2
- 241000725303 Human immunodeficiency virus Species 0.000 description 2
- 241000713772 Human immunodeficiency virus 1 Species 0.000 description 2
- 101710125418 Major capsid protein Proteins 0.000 description 2
- 108091034117 Oligonucleotide Proteins 0.000 description 2
- 108010033276 Peptide Fragments Proteins 0.000 description 2
- 102000007079 Peptide Fragments Human genes 0.000 description 2
- 101000884281 Rattus norvegicus Signal transducer CD24 Proteins 0.000 description 2
- 230000006052 T cell proliferation Effects 0.000 description 2
- COQLPRJCUIATTQ-UHFFFAOYSA-N Uranyl acetate Chemical compound O.O.O=[U]=O.CC(O)=O.CC(O)=O COQLPRJCUIATTQ-UHFFFAOYSA-N 0.000 description 2
- 108010000134 Vascular Cell Adhesion Molecule-1 Proteins 0.000 description 2
- HMNZFMSWFCAGGW-XPWSMXQVSA-N [3-[hydroxy(2-hydroxyethoxy)phosphoryl]oxy-2-[(e)-octadec-9-enoyl]oxypropyl] (e)-octadec-9-enoate Chemical compound CCCCCCCC\C=C\CCCCCCCC(=O)OCC(COP(O)(=O)OCCO)OC(=O)CCCCCCC\C=C\CCCCCCCC HMNZFMSWFCAGGW-XPWSMXQVSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005352 clarification Methods 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 208000002672 hepatitis B Diseases 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 238000002649 immunization Methods 0.000 description 2
- 231100000518 lethal Toxicity 0.000 description 2
- 230000001665 lethal effect Effects 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 230000003211 malignant effect Effects 0.000 description 2
- 229960002566 papillomavirus vaccine Drugs 0.000 description 2
- 239000013612 plasmid Substances 0.000 description 2
- 229920001184 polypeptide Polymers 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 229940021993 prophylactic vaccine Drugs 0.000 description 2
- 238000013207 serial dilution Methods 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000010254 subcutaneous injection Methods 0.000 description 2
- 239000007929 subcutaneous injection Substances 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 229940021747 therapeutic vaccine Drugs 0.000 description 2
- 230000005748 tumor development Effects 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 241000701814 Bovine papillomavirus type 2 Species 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 241000606153 Chlamydia trachomatis Species 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 102000036364 Cullin Ring E3 Ligases Human genes 0.000 description 1
- 241000450599 DNA viruses Species 0.000 description 1
- 241000701809 Deltapapillomavirus 1 Species 0.000 description 1
- 101150013359 E7 gene Proteins 0.000 description 1
- 102000002322 Egg Proteins Human genes 0.000 description 1
- 108010000912 Egg Proteins Proteins 0.000 description 1
- 101710121417 Envelope glycoprotein Proteins 0.000 description 1
- 206010061978 Genital lesion Diseases 0.000 description 1
- 241000700721 Hepatitis B virus Species 0.000 description 1
- 208000009889 Herpes Simplex Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101001128634 Homo sapiens NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 2, mitochondrial Proteins 0.000 description 1
- 101000914514 Homo sapiens T-cell-specific surface glycoprotein CD28 Proteins 0.000 description 1
- 241000700588 Human alphaherpesvirus 1 Species 0.000 description 1
- 241000701828 Human papillomavirus type 11 Species 0.000 description 1
- 241000709701 Human poliovirus 1 Species 0.000 description 1
- 241000430519 Human rhinovirus sp. Species 0.000 description 1
- 101150075239 L1 gene Proteins 0.000 description 1
- 101150027802 L2 gene Proteins 0.000 description 1
- 101710157639 Minor capsid protein Proteins 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 241000711466 Murine hepatitis virus Species 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- 102100032194 NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 2, mitochondrial Human genes 0.000 description 1
- 241000588652 Neisseria gonorrhoeae Species 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 101710182846 Polyhedrin Proteins 0.000 description 1
- 101710132637 Protein C2 Proteins 0.000 description 1
- 101710132697 Protein L2 Proteins 0.000 description 1
- 101710136297 Protein VP2 Proteins 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- 102100021696 Syncytin-1 Human genes 0.000 description 1
- 230000005867 T cell response Effects 0.000 description 1
- 102100027213 T-cell-specific surface glycoprotein CD28 Human genes 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 101710195626 Transcriptional activator protein Proteins 0.000 description 1
- 101800001690 Transmembrane protein gp41 Proteins 0.000 description 1
- 241000589884 Treponema pallidum Species 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- JXBCJUPBVRELNY-UHFFFAOYSA-N [7-(diethylamino)phenothiazin-3-ylidene]-diethylazanium Chemical compound C1=CC(N(CC)CC)=CC2=[S+]C3=CC(N(CC)CC)=CC=C3N=C21 JXBCJUPBVRELNY-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000007969 cellular immunity Effects 0.000 description 1
- 208000019065 cervical carcinoma Diseases 0.000 description 1
- 229940038705 chlamydia trachomatis Drugs 0.000 description 1
- 238000001553 co-assembly Methods 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- -1 for example Proteins 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 210000002443 helper t lymphocyte Anatomy 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 238000009169 immunotherapy Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000012678 infectious agent Substances 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 102000006240 membrane receptors Human genes 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 231100000590 oncogenic Toxicity 0.000 description 1
- 230000002246 oncogenic effect Effects 0.000 description 1
- 102000027450 oncoproteins Human genes 0.000 description 1
- 108091008819 oncoproteins Proteins 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000002708 random mutagenesis Methods 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 229940031626 subunit vaccine Drugs 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 231100000588 tumorigenic Toxicity 0.000 description 1
- 230000000381 tumorigenic effect Effects 0.000 description 1
- 238000002255 vaccination Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N7/00—Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/12—Keratolytics, e.g. wart or anti-corn preparations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/20—Antivirals for DNA viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2227/00—Animals characterised by species
- A01K2227/10—Mammal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/525—Virus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/525—Virus
- A61K2039/5258—Virus-like particles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/14011—Baculoviridae
- C12N2710/14111—Nucleopolyhedrovirus, e.g. autographa californica nucleopolyhedrovirus
- C12N2710/14141—Use of virus, viral particle or viral elements as a vector
- C12N2710/14143—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/20011—Papillomaviridae
- C12N2710/20022—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/20011—Papillomaviridae
- C12N2710/20023—Virus like particles [VLP]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/20011—Papillomaviridae
- C12N2710/20034—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/30—Vector systems comprising sequences for excision in presence of a recombinase, e.g. loxP or FRT
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/788—Of specified organic or carbon-based composition
- Y10S977/802—Virus-based particle
- Y10S977/803—Containing biological material in its interior
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/902—Specified use of nanostructure
- Y10S977/904—Specified use of nanostructure for medical, immunological, body treatment, or diagnosis
- Y10S977/918—Immunological
Definitions
- the present invention relates to chi eric papillomavirus-like particles and related synthetic DNA molecules, host cells, methods and vaccines. BACKGROUND OF THE INVENTION
- Papillomaviruses infect the epithelia of humans and a wide variety of animals, where they generally induce benign proliferation at the site of infection. However, in some cases the lesions induced by certain papillomaviruses undergo malignant progression. There is a strong association between malignant progression of human genital lesions and certain human papillomavirus (HPV) types, such as HPV16. Infection by one of these types is considered the most significant risk factor in the development of cervical cancer, one of the most common cancers of women worldwide (zur Hausen, H., Science 254:1167 (1991); Schiffman, M.H., J. Natl. Cancer Inst. 84:394 (1992)).
- HPV human papillomavirus
- cervical carcinomas contain and express HPV early genes, such as E6 and E7, and these genes have been shown to have potent transforming and immortalizing activity in cultured cells (Werness, B.A., unger, K. & Howley, P.M. (1991) Advances in Oncology, eds. DeVita V.T., Hellman, S. & Rosenberg, S.A. (Lipponcott, Philadelphia) pp.3- 18).
- Papillomaviruses are non-enveloped double-stranded DNA viruses about 55 nm in diameter with an approximately 8 kb genome in the nucleohistone core (Baker, et al., Biophys J 60:1445 (1991)).
- the capsids are composed of two virally-encoded proteins, L1 and L2, that migrate on SDS-PA6E gels at approximately 55 kDa and 75 kDa, respectively (Mose Larson et al., J. Virol. 61:3596 (1987)).
- L1 which is the major capsid protein, is arranged in 72 pentameters which associate with T-7 icosahedral symmetry. The function and position within the virion of L2 are unclear (Baker, et al., Biophys J 60:1445 (1991)).
- the L1 protein has the capacity to self-assemble so that large amounts of virus-like particles (VLPs) may be generated by expression of the LI protein from a number of species of papillomavirus in a variety of recombina ⁇ t expression systems (Hagensee et al., J Virol 67:315 (1993); Kirnbauer et al., Proc Natl Acad Sci USA 89:12180 (1992); Kirnbauer et al., J Virol 67:6929 (1993); Rose et al., J Virol 67:1936 (1993)).
- L2 is incorporated into VLPs when co-expressed with L1 (L1/L2 VLPs) in cells.
- Neutralizing antibodies generated against VLPs also recognize conformationally dependent epitopes.
- infectious BPV1 which can be readily obtained from bovine lesions, and a quantitative in vitro BPV1 infectivity assay (Dvoretzky et al., Virology 103:369 (1980)
- workers showed VLPs from bovine papillomavirus induced high levels of neutralizing antibodies (Kirnbauer et al., Proc Natl Acad Sci USA 89:12180 (1992)).
- the neutralizing antibodies were directed against conformationally dependent epitopes, in that denaturation of the particles prior to immunization abolished the ability of the preparation to induce neutralizing activity ⁇ id.).
- the L1 of the assembly-competent clone is thus considered to be the wild-type gene, and the prototype L1 of the assembly-defective clone a mutant.
- HPV16 VLPs of the wild-type LI protein as antigens, an ELISA was developed that detected serum antibodies in patients infected with HPV16 (Kirnbauer et al., J. Natl. Cancer Inst. 86:494 (1994)). In contrast, neither denatured HPV 16 particles nor preparations of the prototype L1 protein could detect these antibodies ⁇ jd.).
- VLPs composed of capsid proteins are attractive candidates for prophylactic vaccines to prevent papillomavirus infection. However, it is unlikely that these VLP vaccines would have therapeutic effects against established papillomavirus infections.
- the capsid proteins unlike E6 and E7, are not detectably expressed in progressed lesions or in infected basal epithelial cells, which are the presumed targets in immune regression of papillomas.
- the parvovirus chimeras protected mice from experimental challenge with the corresponding virus.
- foreign sequences have been inserted in proteins integral to the capsid structure and have been limited to less than 20 amino acids.
- a recent study (Miyamura et al., Proc. Natl. Acad. Sci. USA 91:8507 (1994)) has demonstrated that the entire 147 aa hen egg white lysozyme protein can be incorporated into B19 parvovirus particles when fused to the parvovirus L1 minor capsid protein.
- the lysozyme remained biologically active and elicited an immune response when injected into rabbits.
- hepatitis B virus surface antigen particles which are lipid membrane structures
- yeast Ty virus-like particles containing a portion of HIV-1 V3 loop
- L2 as a viral fusion partner for purposes of generating chimeric VLPs had viruses that are unrelated to papillomaviruses and thus cannot predict the results of chimeric particle studies involving papillomaviruses. Indeed, in the papillomavirus study by Kirnbauer et al., J Virol 67:6929 (1993), supra, it was demonstrated that a single nonconserved amino acid change in LI is responsible for efficient self-assembly of L1 into VLPs and the presentation of conformational epitopes, which seem to be required for induction and detection of clinically relevant immune reactivity.
- chimeric papillomavirus-like particles may function as platforms for mutthralent antigen presentation. Or they may serve for delivery into cells of proteins for processing into peptides and subsequent presentation of these peptides within the context of MHC molecules to elicit a cell-mediated immune response.
- the chimeric particles represent a cost effective way to generate an effective papillomavirus vaccine with a broad spectrum of utility.
- the chimeric papillomavirus-like particles may be applied to VLP and/or fusion partner purification. Or, the particles may operate to deliver into cells intact and active proteins, for example, enzymes, or toxins or drugs.
- a papillomavirus-like particle characterized as having conformational epitopes, comprising a papillomavirus LI product and a papillomavirus L2 fusion product.
- the papillomavirus L2 fusion product may be characterized as being a human papillomavirus L2 fusion product or a bovine papillomavirus L2 fusion product.
- the human papillomavirus L2 fusion product may be characterized as being a HPV16 L2 fusion product and the bovine papillomavirus L2 fusion product may be characterized as being a BPV1 L2 fusion product.
- the papillomavirus L2 fusion product may comprise a fusion partner characterized as being a peptide or a full-length protein, or may comprise fusion partners that include peptides or full-length proteins or combinations thereof linked in tandem.
- the fusion partner may be a papillomavirus E6 or E7 product.
- the papillomavirus L2 fusion product may be characterized as being fused at its 5' or 3'e ⁇ d to a fusion partner.
- the papillomavirus L2 fusion product may be characterized as having a fusion partner inserted between L2 amino acids.
- the papillomavirus L1 product may be characterized as being a human papillomavirus LI product or a bovine papillomavirus LI product.
- the human papillomavirus LI product may be characterized as being a HPV 16 L1 product and the bovine papillomavirus LI product may be characterized as being a BPV1 L1 product.
- the papillomavirus-like particle may consist essentially of HPV16L1 and HPV16L2 HPV16E7 (full-length), where HPV16E7 is fused to the 3'end of HPV16L2, BPVL1 and BPVL2-HPV16E7 (full-length), where HPV16E7 is fused to the 3' ⁇ nd of BPVL2, or BPVL1 and BPVL2-HPV16E7 (amino acids 1-30), where HPV16E7 is fused to BPVL2 between L2 amino acids 274 and 275.
- one or more synthetic DNA molecule or molecules characterized as singly or doubly encoding a papillomavirus LI product and a papillomavirus L2 fusion product where the molecule or molecules direct expression in a transformed host cell of a papillomavirus-like particle, characterized as having conformational epitopes, comprising the papillomavirus L1 product and the papillomavirus L2 fusion product.
- the transformed host cell may be an insect host cell (such as Sf9 insect host cell) and the DNA molecule or molecules may further comprise an insect cell vector (such as a baculovirus vector), or the transformed host cell may be a mammalian host cell and the DNA molecule or molecules may further comprise a mammalian cell vector
- the transformed host cell may be a yaast host cell and the DNA molecule or molecules may further comprise a yeast cell vector.
- a host cell transformed with the DNA molecule or molecules of above there is provided.
- a method for using the DNA molecule or molecules of above comprising the steps of: providing conditions for the molecule or molecules of above to direct the above expression; and recovering the papillomavirus-like particle from the above transformed host cell.
- a method for producing a papillomavirus- like particle characterized as having conformational epitopes, comprising a papillomavirus L1 product and a papillomavirus L2 fusion product, which method comprises the step of providing conditions for the DNA molecule or molecules of above to direct the above expression in the above transformed host cell of the papillomavirus-like particle.
- the invention also provides a method of purification of the papillomavirus-like particle of above comprising the step of exposing the papillomavirus-like particle to an affinity chromatography column, comprising antibodies that bind to a fusion partner of the papillomavirus L2 fusion product of the papillomavirus-like particle, resulting in the purification of the particle.
- the invention further provides a method of purification of a fusion partner of the papillomavirus L2 fusion product of the papillomavirus-like particle of above comprising the step of isolating the papillomavirus-like particle of above resulting in the purification of the fusion partner.
- the invention additionally provides a method of delivery into a cell of a fusion partner of the papillomavirus L2 fusion product of the papillomavirus-like particle of above comprising the step of administering the papillomavirus- like particle of above to the cell resulting in the delivery into the cell of the fusion partner.
- the invention moreover provides a vaccine comprising the papillomavirus-like particle of above.
- This invention arises from the result that a papillomavirus L2 fusion product can become incorporated into a papillomavirus L1 product-based papillomavirus-like particle that presents conformational epitopes. This result was unexpected.
- a papillomavirus L2 fusion product is meant to include a chain of ammo acids in which part of the chain comes from a L2 protein sequence and part of the chain comes from another protein sequence (or other protein sequences).
- L2 fusion products are produced by splicing (in frame) an open reading frame for one protein (or a numb of proteins) next to or into an open reading frame for L2.
- Protein engineering is used to determine the structure of the L2 fusion product. In a routine exercise f protein engineers, they generate variants of the natural protein L2. The changes they make can be educated guesse based on detailed knowledge of the structure of L2; alternatively, changes can be made on a purely random basi Or a combination of structural information with random mutagenesis and selection can have dramatic results.
- L2 amino acids between which to insert a fusion peptide or protein can b made on this basis.
- the existence of a region where amino acid sequence and length vary between papillomaviruse suggests that this region represents a structure that is nonessential for the integrity of L2 and/or its incorporatio into particles.
- the observed ability to insert a fusion peptide or protein within L2 implies that such a region exist
- Determination of a structure for the L2 fusion product is performed on the basis of the ability of the L fusion product to become incorporated into a papillomavirus L1 product-based papillomavirus-like particle that present conformational epitopes.
- Preferred means of determining a structure include assays that measure the efficiency and/or authenticit of incorporation of an L2 fusion product into a papillomavirus L1 product-based papillomavirus-like particle.
- L1/L2 VLPs The efficiency and/or authenticity of formation of L1/L2 VLPs is related to the presentation o conformational epitopes ⁇ supra).
- the chimeric L2 will thus become incorporated into L1 -based VLPs with an efficiency and/or authenticit similar to that of incorporation of wild-type L2.
- Other preferred means of determining a structure for the L2 fusion product include assays that measur the induction andfor detection of neutralizing antibodies.
- the induction andfor detection of neutralizing antibodies is related to the presentation of conformation epitopes, because neutralizing antibodies are directed against conformationally dependent epitopes ⁇ supra).
- the incorporation of the chimeric L2 will thus not inhibit the induction andfor detection of neutralizin antibodies by chimeric papillomavirus-like particles as compared to L1 or L1/L2 VLPs.
- a chimeric L2 fusion product is capable of becoming incorporated into papillomavirus L1 product-based papillomavirus-like particle that presents conformational epitopes, whether identifie by the above means or any other means known in the art.
- L2 and its fusion partner is meant to include a full-length L2 protein (and L protein) and a full-length fusion partner protein, and their peptide fragments, whether 5' fragments, 3' fragment or internal fragments, having at least about 20 amino acid residues, advantageously at least about 10 amino aci residues, and preferably at least about 5 amino acid residues.
- Type, subgroup and strain variations of L2 (and L1 and human allelic and species variations of the fusion partner protein, are expressly contemplated as falling withi the scope of the invention.
- the invention also includes conservative variants of the full-length L2 protein (and L protein) and the full-length fusion partner protein, and their peptide fragments, where conservative amino acids ar substituted for amino acid residues of wild-type L2 (and LI) and the fusion partner protein.
- the invention also includes DNA coding for the same amino acid residues as does the DNA of the L2 (and L1) and fusion partner gene.
- the chimeric papillomavirus-like particle itself is envisioned as incorporating any L2 fusion product with any LI product from any papillomavirus, whether the genomes are closely related, or are distantly related, so long as incorporation into particles occurs.
- a L2 fusion product for example, related to any of BPV-1, BPV-2, BPV4, CRPV, DPV, EEPV, HPV-1, HPV-5, HPV-6, HPV-8, HPV-11, HPV-16, HPV-18, HPV-31 or HPV-33, can be incorporated into particles with any LI product, for example, from any of the above virus, or any type, subgroup or strain variation of papillomavirus.
- VLPs present conformationally dependent epitopes required for the induction of high tiler neutralizing serum antibodies
- VLP chimeras containing L2 fusion products can operate prophylactically as optimized subunit vaccines for the stimulation of humoral immunity to prevent papillomavirus infection and thereby preclude the development of papillomavirus associated cancers and other papillomavirus associated pathologies.
- VLPs Because it is unlikely VLPs will prove effective as therapeutic vaccines to induce regression of existing papillomavirus proliferative lesions, as discussed above, chimeric VLPs can function to address this long-felt and heretofore unsatisfied need to develop a therapeutic vaccine.
- Chimeric VLPs are expected to bind specific cell surface receptors, get internalized and be released into the cytoplasm, and thus be more likely to promote the presentation of peptides in conjunction with class I MHC molecules for display to cytotoxic T cells for the generation of cell-mediated immunity. This is in contrast to uncomplexed proteins that would not be expected to specifically enter cells, or to promote the presentation of peptides in the context of Class I MHC molecules to elicit a cytotoxic T cell response (being more likely, if at all, to promote the presentation of peptides to be linked to Class II MHC molecules and displayed to helper T cells).
- the fusion partner may be selected from the list consisting of those fusion partners that would provide a method for expanding the potential targets of a VLP-based vaccine, for example, E6 or E7 peptide or full-length E6 or E7, other papillomavirus peptides or proteins, or peptides or proteins of other STD or infectious agents, e.g., Herpes simplex, HIV, Chlamydia trachomatis, Neisseria gonorrhoeae, and Treponema pallidum.
- the L2 fusion product is not limited to a single fusion partner per L2 molecule, and may include additional fusion partners, for example, additional peptides or full-length proteins or combinations thereof derived from the same or different proteins linked in tandem. Also, more than one L2 fusion product may be co-assembled into a single VLP.
- a L2 fusion product or chimeric VLP containing a viral target epitope may also be engineered to contain a binding domain of a co-stimulatory protein or an accessory receptor or ligand involved in immune reactivity, e.g., B7 (which interacts with CD28 on T cells), an intercellular adhesion molecule (ICAM), a lymphocyte functional antigen (LFA), a vascular cell adhesion molecule (VCAM-1), and a heat stable antigen (HSA).
- a co-stimulatory protein or an accessory receptor or ligand involved in immune reactivity e.g., B7 (which interacts with CD28 on T cells), an intercellular adhesion molecule (ICAM), a lymphocyte functional antigen (LFA), a vascular cell adhesion molecule (VCAM-1), and a heat stable antigen (HSA).
- B7 intercellular adhesion molecule
- LFA lymphocyte functional antigen
- VCAM-1 vascular cell adhesion molecule
- HSA
- chimeric papillomavirus-like particles as vaccines in the prevention and/or treatment of disease will vary according to the specific compositions formulated, the mode of application, the particular situs and the organism being treated. Dosages for a given host can be determined using conventional considerations, e.g., by means of an appropriate, conventional vaccination protocol. Alternatively, chimeric VLPs can used in a method of purification of VLPs. VLPs are useful per se as prophylactic vaccines and in immunodiagnostics ⁇ supra). Briefly, antibodies to the fusion partner are generated using standard immunological techniques, an affinity chromatography column is constructed using the antibodies, and the VLPs are subsequently purified in an affinity chromatography step.
- chimeric VLPs can be used in a method of purification of a fusion partner.
- VLPs containing a L2-E7 fusion product may be useful as a means of obtaining correctly folded E7. It has been reported that a greater percentage of cervical cancer patients are seropositive for conformationally correct E7 than for denatured E7, as isolated from bacteria (Viscidi et al., Int. J. Cancer 55:780 (1993)). The in vitro transcription-translation system used to generate E7 in this report is laborious and expensive, and uses radio-labeled E7. It would be advantageous to purify chimeric E7 VLPs and use the material in an E7 ELISA.
- BPV-based particles could be used.
- Monitoring E7 seroreactivity, which correlates with cancer as opposed to premalignant disease, has been proposed to be useful to follow the course of disease in cervical cancer patients and to screen for reoccurrences ⁇ id.).
- chimeric VLPs can be used in a method of delivery of an intact and active protein into cells.
- This protein may be, for example, an enzyme, or a toxin or a drug.
- the chimeric VLPs are administered to the cells, either in vitro, in vivo, in situ, or ex vivo, and the protein is subsequently delivered into the cell where it functions for its intended purpose, for example, as an enzyme, or a toxin or a drug.
- BPV L1/L2-E7 virus-like particles were found to induce neutralizing antibodies as effectively as BPV L1/L2 particles.
- Chimeric particles were observed to elicit humoral immunity specific for fusion partner epitopes in that rabbits immunized with L2-E7 chimeric particles generated antibodies directed against E7. Having succeeded at generating chimeric papillomavirus-like particles opens the door to fusing virtually any protein or peptide to an L2 product for incorporation into chimeric papillomavirus-like particles.
- chimeric VLPs by generating L2-E7 fusion proteins and expressing these proteins along with L1 via recombinant baculoviruses in insect cells.
- BPV L2 was fused at its 3' end to HPV16 E7.
- HPV16 L2 was fused at its 3' end to HPV16 E7.
- the first 30 codons of HPV16 E7 were inserted between codons 274 and 275 of BPV L2.
- BPV L1 -containing chimeric VLPs were capable of inducing neutralizing antisera. Titers were comparable to those obtained using BPV L1/L2 VLPs. Equivalent neutralizing titers of 30,000 were obtained for both BPVL1/L2 VLPs and BPVL1/L2-HPV16E7 (full-length) chimeric VLPs.
- chimeric recombinant baculoviruses can be generated.
- Genes for the chimeras may be obtained from genomic sources or cDNAs, by direct synthesis, or by any combination thereof.
- L2 and its fusion partner genes can be amplified by recombinant PCR techniques, for example, with oligos containing restriction enzyme sites and complementarities that facilitate fusion and cloning into expression, transfer andfor cloning vectors, e.g., plas ids.
- Fused genes can be cloned into a baculovirus expression vector.
- Another baculovirus expression vector containing LI can be generated.
- the fused genes can be cloned into a baculovirus double expression vector that already contains L1.
- Example 2 sets forth a typical procedure for selection of recombinant baculoviruses.
- CsCI-purified (or equivalent) recombinant plasmid can be cotransfected with baculovirus DNA into Sf9 insect cells by using Lipofectin (or equivalent).
- the recombinant baculoviruses can then be plaque-purified (for example) using conventional baculovirus vector and insect cell culture procedures.
- chimeric VLPs can be produced by infecting Sf9 cells with two recombinant baculoviruses, one encoding a L1 product and the other encoding the L2 fusion product. Locating the genes on different vectors facilitates manipulation of the amount of L1 product and L2 fusion product produced. This approach permits one to change the ratio of L2 fusion product to L1 product in a VLP.
- L2 is the minor component as compared to L1, we can achieve greater incorporation of L2 fusion product into VLPs using two single expression vectors.
- chimeric particles can be purified by banding in cesium chloride (or equivalent).
- Sf9 insect cells can be infected, for example, at a multiplicity of infection of 10 with recombinant baculoviruses. After 72 hours (or so), cells can be harvested and sonicated in a phosphate-buffered saline (or equivalent) for 60 sec
- the h sates can be subjected to centrif ugation, for example, at -lO- l l 0,000 x g for 2.5 h through a 40% (wtfvol) sucrosefPBS cushion (SW-28 rotor).
- the resuspended pellets can be centrifuged to equilibrium, for example, at 141,000 x g for 20 h at room temperature in a 1040% (wtfwt) CsClfPBS gradient.
- the visible band can be harvested, centrifuged to equilibrium again by using the identical conditions, dialyzed extensively against PBS, and stored at 4°C (for example).
- co-sedimentation of chimeric complexes can be established, for example, by analytical gradient centrifugation.
- a 12 to 45% sucrose step gradient can be allowed to linearize overnight at 4°C, dial ⁇ zed samples can be layered on top, and the gradient can be centrifuged at 41,000 rpm (288,000 x g) for 2 h in a SW41 rotor.
- Fractions can be harvested and analyzed for co-sedimentation, for example, by Western blotting or co-immunoprecipitation.
- co-sedimentation can be established, for example, by co-immunoprecipitation.
- antisera can be produced. This can be done to conduct a BPV1 neutralization assay (or equivalent) as is described in Dvoretsky et al.. Virology 103:369 (1980).
- antisera can be produced as follows. Rabbits can be immunized by subcutaneous injection of 330 /I of CsCI gradient-purified particles in PBS at a concentration of 1 mg/ml. Rabbits can then be boosted with the same amount of particles two weeks and four weeks after the primary injection.
- a BPV1 neutralization assay (or equivalent) can be performed to test whether BPV chimeric particles present conformational epitopes.
- Foci can then be stained with 0.5% ethylene blue/0.25% carbol fuchsin in methanol.
- Neutralizing titers can be obtained for chimeric VLPs and control BPVL1-L2 VLPs. Equivalent neutralizing titers will indicate proper folding of the chimeric particles effective to present conformational epitopes.
- chimeric particles can be assayed, for example, by transmission electron microscopy.
- purified particles can be adsorbed to carbon-coated grids, stained with 1 % uranyl acetate, and examined with a Philips electron microscope model EM 400T at x36,000 magnification.
- Efficiency of incorporation and morphology of chimeric particles and L1 or L1/L2 VLPs can be compared and contrasted. Indistinguishable efficiency of incorporation and morphology will indicate proper self-assembly of the chimeric particles.
- chimeric particles can be assayed, for example, for induction of humoral immunity specific for fusion partner epitopes.
- E.g., rabbits can be inoculated with chimeric VLPs.
- the sera can be analyzed for antibodies, for example, by subjecting a sample of the fusion partner antigen to SDS-PAGE and then Western blotting. Immune and preimmun ⁇ (control) sera can be applied at an appropriate dilution. Detection of the fusion partner band in the Western blot by serum from the immune rabbit indicates the induction of antibodies specific for fusion partner epitopes.
- chimeric particles can be assayed, for example, for induction of cell-mediated immunity specific for fusion peptides, for instance, by injecting chimeric VLPs into mice, and measuring antigen- specific T cell proliferation.
- chimeric particles can be assayed, for example, for induction of prophylactic immunity against challenge infection, for instance, by immunizing rabbits with chimeric CRPV VLPs end ⁇ onchimeric CRPV VLPs (control), and subsequently challenging with infectious CRPV, to demonstrate that L2 fusions do not abrogate prophylactic immunity; or by immunizing experimental animals with chimeric VLPs containing an STD agent, subsequently challenging with the STD agent, and measuring increased survival against lethal challenge or decreased infection following sub-lethal challenge.
- chimeric particles can be assayed, for example, for induction of therapeutic immunity against pre-existing papillomas, for instance, by immunizing rabbits (that have pre-existing papillo as) using chimeric CRPV VLPs and nonchimeric CRPV VLPs (control), and measuring regression of the pre-existing papillomas.
- chimeric particles can be assayed, for example, for immu ⁇ otherapy and i munoprevention of tumors.
- HPV16L2-HPV16E7 contained the full-length HPV16E7 fused to the C-terminus (aa 473) of HPV16L2.
- BPVL2- HPV16E7 contained the full-length HPV16E7 fused to the C-terminus of BPVL2 (aa 469).
- BPVL2 HPV16E7 (aa 1-30) contained the first 30 amino acids of HPV16E7 fused to the middle of BPVL2 between amino acids 274 and 275.
- L2-E7 chimeric genes were generated via recombinant PCR techniques (Higuchi, R. (1990) in PCR Protocols;
- the L2 and E7 genes were then fused m a second primer extension reaction using only the outside (L2 5', and E7 3') oligos.
- the "internal" primers encoded the first 30 aa of HPV16E7.
- the fused genes were then cloned into the baculovirus double expression vector pSynwtVI-, (which already contained L1 cloned under the polyhedrin promoter (Kirnbauer et al., Virol. 67:6929 (1993)) immediately downstream of the pSyn promoter.
- the BPVL2-HPV16E7 chimeras were cloned as 5' Bglll to 3'Bglll fragments.
- the HPV16L2-HPV16E7 chimera was cloned as a 5' Sstll to 3' Sstll fragment.
- the primers used for BPVL2-HPV16E7 (full-length) were: BPVL2 sense,
- BPVL2-HPV16E7 (aa 1-30) were as follows: BPVL2, sense: same as above.
- ATCTTCCGTGGGC3' (SEQ ID N0:5).
- AAACCCACTGTATGAAGCAGAACC3' (SEQ ID N0:6).
- HPV16L2-HPV16E7 chimeras were as follows: HPV16L2, sense, 5'GCGGTCCGCGGAATATGCGACACAAACG ⁇ CTGCAAAACGCACAAAACGT3'(SEQ ID N0:8), and antisense,
- Sf9 insect cells were infected at a multiplicity of infection of 10 with recombinant baculoviruses.
- the harvested cells were sonicated in phosphate-buffered saline (PBS) for 60 sec. After low-speed clarification, the lysates were subjected to centrifugation at 110,000 x g for 2.5 h through a 40% (wtfvol) sucrosefPBS cushion
- EXAMPLE 6 Production of antisera Rabbits were immunized by subcutaneous injection of 330 ul of CsCI gradient-purified particles in PBS at a concentration of 1 mgfml. Rabbits were boosted with the same amount of particles two weeks and four weeks after the primary injection.
- BPV1 neutralization assay A focus-forming assay was performed as described (Kirnbauer et al., Proc. Natl. Acad. Sci. USA 89:12180 (1992)). Briefly, serial dilutions of rabbit sera obtained 3 weeks after the second booster injection were incubated with ss 500 focus-forming units of BPV1 virus for 30 min, the virus was adsorbed to C 127 cells for 1 h, and the cells were cultured for 3 weeks (Dvoretzky et al., Virology 103:369 (1980)). The foci were stained with 0.5% methyle ⁇ e blue/0.25% carbol fuchsin in methanoL
- purified particles were adsorbed to carbon-coated grids, stained with 1% uranyl acetate, and examined with a Philips electron microscope model EM 400T at x36,000 magnification.
- Particles containing the L2-E7 fusion protein were found to be indistinguishable from L1 or L1/L2 VLPs in terms of morphology and efficiency of incorporation.
- Serum from the immune rabbit specifically detected the HPV16E7 protein band in the Western blot, indicating the induction of antibodies specific for E7 epitopes.
- Example 10 Induction of ceH-mediated immunity Chimeric particles are assayed for induction of cell-mediated immunity specific for E7 peptides, for example, by injecting chimeric VLPs into mice, and measuring antigen-specific T cell proliferation.
- Chimeric particles are assayed for induction of prophylactic immunity against challenge infection, for example, by immunizing rabbits with E7 chimeric CRPV VLPs and nonchimeric CRPV VLPs (control), and subsequently challenging with infectious CRPV, to demonstrate that L2-E7 fusions do not abrogate prophylactic immunity; or by immunizing experimental animals with chimeric VLPs containing an STD agent, subsequently challenging with the STD agent, and measuring increased survival against lethal challenge or decreased infection following sub-lethal challenge.
- Example 12 Therapeutic immunity Chimeric particles are assayed for induction of therapeutic immunity against pre-existing papillomas, for example, by immunizing rabbits (that have pre-existing papillomas) using E7 chimeric CRPV VLPs and nonchimeric CRPV VLPs (control), and measuring regression of the pre-existing papillomas.
- Example 13 immunotherapy and immunoprevention of tumors are assayed for the ability to prevent tumor development or to treat existing tumors, for example, in experimental animals such as mice using tumor cells expressing, e.g., E7.
- Animals are immunized with. e.g., L2-E7 chimeric VLPs and tested for growth of inoculated tumorigenic cells that express, e.g., E7.
- This approach has been shown to work for animals immunized with nonco plexed E7 and a co-stimulatory protein (Chen et al., Proc. Natl. Acad. Sci. USA 88:110 (1991)).
- MOLECULE TYPE CDNA
- HYPOTHETICAL NO
- ANTISENSE NO
- FRAGMENT TYPE (vi) ORIGINAL SOURCE:
- MOLECULE TYPE cDNA
- HYPOTHETICAL NO
- ANTISENSE NO
- FRAGMENT TYPE (vi) ORIGINAL SOURCE:
- MOLECULE TYPE cDNA
- HYPOTHETICAL NO
- ANTISENSE NO
- FRAGMENT TYPE (vi) ORIGINAL SOURCE:
- MOLECULE TYPE cDNA
- HYPOTHETICAL NO
- ANTISENSE NO
- FRAGMENT TYPE (vi) ORIGINAL SOURCE:
- MOLECULE TYPE cDNA
- HYPOTHETICAL NO
- ANTISENSE NO
- FRAGMENT TYPE (vi) ORIGINAL SOURCE:
- MOLECULE TYPE cDNA
- HYPOTHETICAL NO
- ANTISENSE NO
- FRAGMENT TYPE (vi) ORIGINAL SOURCE:
- MOLECULE TYPE cDNA
- HYPOTHETICAL NO
- ANTISENSE NO
- FRAGMENT TYPE (vi) ORIGINAL SOURCE:
- MOLECULE TYPE cDNA
- HYPOTHETICAL NO
- ANTISENSE NO
- FRAGMENT TYPE (vi) ORIGINAL SOURCE: (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8 : GCGGTCCGCG GAATATGCGA CACAAACGTT CTGCAAAACG CACAAAACGT 50
- MOLECULE TYPE cDNA
- HYPOTHETICAL NO
- ANTISENSE NO
- FRAGMENT TYPE (vi) ORIGINAL SOURCE:
- MOLECULE TYPE cDNA
- HYPOTHETICAL NO
- ANTISENSE NO
- FRAGMENT TYPE (vi) ORIGINAL SOURCE:
- MOLECULE TYPE cDNA
- HYPOTHETICAL NO
- ANTISENSE NO
- FRAGMENT TYPE (vi) ORIGINAL SOURCE:
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Virology (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Immunology (AREA)
- Oncology (AREA)
- Communicable Diseases (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Gastroenterology & Hepatology (AREA)
- Dermatology (AREA)
- Peptides Or Proteins (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP95936278A EP0789766B1 (en) | 1994-10-06 | 1995-10-06 | Chimeric papillomavirus-like particles |
DE69532532T DE69532532T8 (en) | 1994-10-06 | 1995-10-06 | CHIMERIC PAPILLOMAVIRUS SIMILAR PARTICLES |
AU38284/95A AU3828495A (en) | 1994-10-06 | 1995-10-06 | Chimeric papillomavirus-like particles |
AT95936278T ATE258985T1 (en) | 1994-10-06 | 1995-10-06 | CHIMERIC PAPILLOMAVIRUS-LIKE PARTICLES |
CA 2201601 CA2201601C (en) | 1994-10-06 | 1995-10-06 | Chimeric papillomavirus-like particles |
JP51266796A JP3343912B2 (en) | 1994-10-06 | 1995-10-06 | Papillomavirus-like chimeric particles |
DK95936278T DK0789766T3 (en) | 1994-10-06 | 1995-10-06 | Chimeric papillomavirus-like particles |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/319,467 | 1994-10-06 | ||
US08/319,467 US5618536A (en) | 1992-09-03 | 1994-10-06 | Chimeric papillomavirus-like particles |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1996011274A1 true WO1996011274A1 (en) | 1996-04-18 |
Family
ID=23242365
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1995/012914 WO1996011274A1 (en) | 1994-10-06 | 1995-10-06 | Chimeric papillomavirus-like particles |
Country Status (10)
Country | Link |
---|---|
US (2) | US5618536A (en) |
EP (2) | EP0789766B1 (en) |
JP (3) | JP3343912B2 (en) |
AT (1) | ATE258985T1 (en) |
AU (1) | AU3828495A (en) |
DE (1) | DE69532532T8 (en) |
DK (1) | DK0789766T3 (en) |
ES (1) | ES2213754T3 (en) |
PT (1) | PT789766E (en) |
WO (1) | WO1996011274A1 (en) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996026277A1 (en) * | 1995-02-24 | 1996-08-29 | Cantab Pharmaceuticals Research Limited | Polypeptides useful as immunotherapeutic agents and methods of polypeptide preparation |
FR2749323A1 (en) * | 1996-06-04 | 1997-12-05 | Pasteur Merieux Serums Vacc | PSEUDO-PARTICLES VIRALES USEFUL AS A VECTOR OF NUCLEIC ACID DELIVERY |
WO1998002548A2 (en) * | 1996-07-17 | 1998-01-22 | The Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services | Infectious papillomavirus pseudoviral particles |
WO1998004705A1 (en) * | 1996-07-30 | 1998-02-05 | Transgene S.A. | Pharmaceutical composition for treating papillomavirus tumours and infection |
WO1998004706A1 (en) * | 1996-07-29 | 1998-02-05 | Cantab Pharmaceuticals Research Limited | Polypeptides useful as immunotherapeutic agents and methods of polypeptide preparation |
WO1998015631A1 (en) * | 1996-10-09 | 1998-04-16 | Btg International Limited | Attenuated microorganism strains expressing hpv proteins |
WO1999018220A1 (en) * | 1997-10-06 | 1999-04-15 | Loyola University Of Chicago | Papilloma virus capsomere vaccine formulations and methods of use |
WO2000031128A1 (en) * | 1998-11-23 | 2000-06-02 | Loyola University Of Chicago | Chimeric biotin-binding papillomavirus protein |
WO2000061616A1 (en) * | 1999-04-10 | 2000-10-19 | november Aktiengesellschaft Gesellschaft für Molekulare Medizin | Fragments of virus protein 2 or 3 of the polyoma virus, used for transporting active ingredients |
US6352696B1 (en) | 1998-02-20 | 2002-03-05 | Medigene Ag | Papillomavirus truncated L1 protein and fusion protein constructs |
US6649167B2 (en) | 1998-02-20 | 2003-11-18 | Medigene Ag | Papillomavirus truncated L1 protein and fusion protein constructs |
WO2004052395A1 (en) * | 2002-12-09 | 2004-06-24 | Glaxosmithkline Biologicals Sa | L2-peptide of the human papillomavirus associated with virus-like particles |
AU781653B2 (en) * | 1996-07-30 | 2005-06-02 | Transgene S.A. | Pharmaceutical composition for treating papollomavirus tumour and infection |
US6926897B1 (en) | 1998-03-24 | 2005-08-09 | Medigene Aktiengesellschaft | Medicament for the avoidance or treatment of papillomavirus-specific tumour |
US6936255B1 (en) * | 1999-09-07 | 2005-08-30 | Smithkline Beecham Biologicals S.A. | Vaccine composition comprising herpes simplex virus and human papilloma virus antigens |
US7118754B1 (en) | 1996-07-30 | 2006-10-10 | Transgene S.A. | Pharmaceutical composition for treating papillomavirus tumors and infection |
US7182947B2 (en) | 1998-02-20 | 2007-02-27 | Medigene Ag | Papillomavirus truncated L1 protein and fusion protein constructs |
US7247433B2 (en) | 2001-08-13 | 2007-07-24 | University Of Rochester | Transcutaneous immunization against papillomavirus with papillomavirus virus-like particles |
US7462356B2 (en) | 1992-09-03 | 2008-12-09 | The United States Of America, As Represented By The Department Of Health And Human Services | Chimeric papillomavirus-like particles |
US7494658B2 (en) | 1998-02-20 | 2009-02-24 | Medigene Ag | Papilloma virus truncated L1 protein and fusion protein constructs |
US7758866B2 (en) | 2004-06-16 | 2010-07-20 | Glaxosmithkline Biologicals, S.A. | Vaccine against HPV16 and HPV18 and at least another HPV type selected from HPV 31, 45 or 52 |
EP2217699A2 (en) * | 2007-10-22 | 2010-08-18 | University of Rochester | Respiratory syncytial virus vaccine based on chimeric papillomavirus virus-like particles or capsomeres |
US7815915B2 (en) | 2002-03-18 | 2010-10-19 | Glaxosmithkline Biologicals, S.A. | Mixture of human papillomavirus virus-like particles |
US7858098B2 (en) | 2002-12-20 | 2010-12-28 | Glaxosmithkline Biologicals, S.A. | Vaccine |
US8404244B2 (en) | 2005-02-01 | 2013-03-26 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Papillomavirus L2 N-terminal peptides for the induction of broadly cross-neutralizing antibodies |
US8628784B2 (en) | 1998-10-16 | 2014-01-14 | Glaxosmithkline Biologicals S.A. | Adjuvant systems and vaccines |
US11560408B2 (en) | 2018-12-27 | 2023-01-24 | Verimmune Inc. | Conjugated virus-like particles and uses thereof as anti-tumor immune redirectors |
US11944677B2 (en) | 2017-06-23 | 2024-04-02 | Verimmune Inc. | Chimeric virus-like particles and uses thereof as antigen-specific redirectors of immune responses |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5437951A (en) * | 1992-09-03 | 1995-08-01 | The United States Of America As Represented By The Department Of Health And Human Services | Self-assembling recombinant papillomavirus capsid proteins |
US5888516A (en) * | 1994-05-16 | 1999-03-30 | Merck & Co. Inc. | Recombinant papillomavirus vaccines |
AUPM566794A0 (en) * | 1994-05-17 | 1994-06-09 | University Of Queensland, The | Process and product |
GB9420146D0 (en) * | 1994-10-06 | 1994-11-23 | Cancer Res Campaign Tech | Papillomavirus vaccine |
ATE325875T1 (en) * | 1994-10-07 | 2006-06-15 | Univ Loyola Chicago | PAPILLOMA VIRUS-LIKE PARTICLES, FUSION PROTEINS AND METHOD FOR THE PRODUCTION THEREOF |
WO1998010790A1 (en) * | 1996-09-11 | 1998-03-19 | Merck & Co., Inc. | Papillomavirus vaccine formulation |
WO1998050071A1 (en) * | 1997-05-01 | 1998-11-12 | Chiron Corporation | Use of virus-like particles as adjuvants |
DE69933875T2 (en) * | 1998-08-14 | 2007-05-31 | Merck & Co., Inc. | PROTEIN ADMINISTRATION SYSTEM USING SIMILAR PARTICLES TO HUMAN PAPILLOMA VIRUS. |
US6991795B1 (en) | 1998-08-14 | 2006-01-31 | Merck & Co., Inc. | Protein delivery system using human papillomavirus virus-like particles |
US7112330B1 (en) | 1998-08-14 | 2006-09-26 | Chiron Corporation | Method for producing yeast expressed HPV types 6 and 16 capsid proteins |
CA2347411C (en) * | 1998-10-21 | 2012-04-03 | The Government Of The United States Of America | Virus-like particles for the induction of autoantibodies |
CU22871A1 (en) * | 1998-12-02 | 2003-10-21 | Ct Ingenieria Genetica Biotech | FORMULATIONS CONTAINING PARTICULARS SIMILAR TO VIRUS AS IMMUNOPOTENCERS BY MUCOSAL ROUTE |
US6689366B1 (en) * | 1998-12-17 | 2004-02-10 | Merck & Co., Inc. | Synthetic virus like particles with heterologous epitopes |
DE69930960T2 (en) * | 1998-12-17 | 2007-04-19 | Merck & Co., Inc. | SYNTHETIC VIRUS-RELATED PARTICLES WITH HETEROLOGIC EPITOPES. |
DE19905883C2 (en) * | 1999-02-11 | 2001-05-23 | Deutsches Krebsforsch | Chimeric virus-like particles or chimeric capsomeres from BPV |
US8128922B2 (en) * | 1999-10-20 | 2012-03-06 | Johns Hopkins University | Superior molecular vaccine linking the translocation domain of a bacterial toxin to an antigen |
US7026443B1 (en) * | 1999-12-10 | 2006-04-11 | Epimmune Inc. | Inducing cellular immune responses to human Papillomavirus using peptide and nucleic acid compositions |
US6908613B2 (en) * | 2000-06-21 | 2005-06-21 | Medimmune, Inc. | Chimeric human papillomavirus (HPV) L1 molecules and uses therefor |
ES2275699T3 (en) * | 2000-07-07 | 2007-06-16 | MERCK & CO., INC. | PRODUCTION OF A CHEMERIC HUMAN PAPILOMAVIRUS (HPV). |
GB0018050D0 (en) * | 2000-07-21 | 2000-09-13 | Norchip As | Detection of human papillomavirus mRNA |
US7318928B2 (en) * | 2000-08-01 | 2008-01-15 | The Johns Hopkins University | Molecular vaccine linking intercellular spreading protein to an antigen |
AU2001278117A1 (en) * | 2000-08-03 | 2002-02-18 | Johns Hopkins University | Molecular vaccine linking an endoplasmic reticulum chaperone polypeptide to an antigen |
WO2002079396A2 (en) * | 2001-02-13 | 2002-10-10 | Mosca Joseph D | Biological carriers for induction of immune responses |
EP1506222B2 (en) * | 2002-05-17 | 2012-05-23 | University of Cape Town | Chimeric human papillomavirus 16 l1 proteins comprising an l2 peptide, virus-like particles prepared therefrom and a method for preparing the particles |
US9045727B2 (en) * | 2002-05-17 | 2015-06-02 | Emory University | Virus-like particles, methods of preparation, and immunogenic compositions |
US20060088909A1 (en) * | 2002-05-17 | 2006-04-27 | Compans Richard W | Virus-like particles, methods of preparation, and immunogenic compositions |
WO2004098526A2 (en) * | 2003-05-05 | 2004-11-18 | Johns Hopkins University | Anti-cancer dna vaccine employing plasmids encoding signal sequence, mutant oncoprotein antigen, and heat shock protein |
AU2005222776A1 (en) * | 2003-12-31 | 2005-09-29 | Genimmune N.V. | Inducing cellular immune responses to human papillomavirus using peptide and nucleic acid compositions |
EP1819835B1 (en) | 2004-12-08 | 2010-08-04 | Gen-Probe Incorporated | Detection of nucleic acids from multiple types of human papillomaviruses |
CA2594040A1 (en) * | 2005-01-06 | 2006-07-13 | The Johns Hopkins University | Rna interference that blocks expression of pro-apoptotic proteins potentiates immunity induced by dna and transfected dendritic cell vaccines |
US7314630B2 (en) * | 2005-01-07 | 2008-01-01 | Yao-Xiong Hu | Compounds and methods of early diagnosis of cervical cancer and genital condyloma with HPV, CHSP60 tumor suppressor H-Ras, K-Ras and PTEN derived peptides modified |
WO2006081323A2 (en) * | 2005-01-26 | 2006-08-03 | The Johns Hopkins University | Anti-cancer dna vaccine employing plasmids encoding mutant oncoprotein antigen and calreticulin |
TWI321350B (en) * | 2006-04-18 | 2010-03-01 | Advanced Semiconductor Eng | Heatsink and heatsink positioning system |
US20100330105A1 (en) * | 2006-08-22 | 2010-12-30 | John Hopkins University | Anticancer Combination Therapies |
US8778351B2 (en) | 2006-08-30 | 2014-07-15 | University Of Rochester | Combined human papillomavirus VLP/gene delivery system and use thereof as a vaccine for prophylaxis and immunotherapy of infectious diseases and tumors |
US9085638B2 (en) | 2007-03-07 | 2015-07-21 | The Johns Hopkins University | DNA vaccine enhancement with MHC class II activators |
US20080260765A1 (en) * | 2007-03-15 | 2008-10-23 | Johns Hopkins University | HPV DNA Vaccines and Methods of Use Thereof |
CN113559253B (en) * | 2007-11-02 | 2024-09-17 | 约翰霍普金斯大学 | Compositions and methods for treating or preventing polytype HPV peptides from human papillomavirus infection |
US20090285861A1 (en) * | 2008-04-17 | 2009-11-19 | Tzyy-Choou Wu | Tumor cell-based cancer immunotherapeutic compositions and methods |
US9566323B2 (en) | 2009-06-19 | 2017-02-14 | Eyegene Inc. | Vaccine for cervical cancer |
JP7017811B2 (en) * | 2020-02-13 | 2022-02-09 | 国立研究開発法人農業・食品産業技術総合研究機構 | Virus-like particles and their use |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993000436A1 (en) * | 1991-06-26 | 1993-01-07 | Cancer Research Campaign Technology Limited | Papillomavirus l2 protein |
WO1993002184A1 (en) * | 1991-07-19 | 1993-02-04 | The University Of Queensland | Papilloma virus vaccine |
WO1994005792A1 (en) * | 1992-09-03 | 1994-03-17 | The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Self-assembling recombinant papillomavirus capsid proteins |
-
1994
- 1994-10-06 US US08/319,467 patent/US5618536A/en not_active Expired - Lifetime
-
1995
- 1995-10-06 AU AU38284/95A patent/AU3828495A/en not_active Abandoned
- 1995-10-06 DE DE69532532T patent/DE69532532T8/en active Active
- 1995-10-06 AT AT95936278T patent/ATE258985T1/en active
- 1995-10-06 JP JP51266796A patent/JP3343912B2/en not_active Expired - Lifetime
- 1995-10-06 EP EP95936278A patent/EP0789766B1/en not_active Expired - Lifetime
- 1995-10-06 ES ES95936278T patent/ES2213754T3/en not_active Expired - Lifetime
- 1995-10-06 EP EP00103738A patent/EP1018555A3/en not_active Ceased
- 1995-10-06 PT PT95936278T patent/PT789766E/en unknown
- 1995-10-06 WO PCT/US1995/012914 patent/WO1996011274A1/en active IP Right Grant
- 1995-10-06 DK DK95936278T patent/DK0789766T3/en active
-
1997
- 1997-01-09 US US08/781,084 patent/US5855891A/en not_active Expired - Lifetime
-
2001
- 2001-04-03 JP JP2001104294A patent/JP2002053597A/en active Pending
-
2007
- 2007-02-27 JP JP2007047248A patent/JP2007143560A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993000436A1 (en) * | 1991-06-26 | 1993-01-07 | Cancer Research Campaign Technology Limited | Papillomavirus l2 protein |
WO1993002184A1 (en) * | 1991-07-19 | 1993-02-04 | The University Of Queensland | Papilloma virus vaccine |
WO1994005792A1 (en) * | 1992-09-03 | 1994-03-17 | The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Self-assembling recombinant papillomavirus capsid proteins |
Non-Patent Citations (1)
Title |
---|
R.W.TINDLE ET AL.: "Chimeric hepatitis B core antigen praticles containing B- and Th-epitopes of human papillomavirus type 16 e7 protein induce specific antibody and t-helper reponses in immunised mice", VIROLOGY, vol. 200, pages 547 - 557 * |
Cited By (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7691386B2 (en) | 1992-09-03 | 2010-04-06 | The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Chimeric papillomavirus-like particles |
US7462356B2 (en) | 1992-09-03 | 2008-12-09 | The United States Of America, As Represented By The Department Of Health And Human Services | Chimeric papillomavirus-like particles |
US6123948A (en) * | 1995-02-24 | 2000-09-26 | Cantab Pharmaceuticals Research Limited | Polypeptides useful as immunotherapeutic agents and methods of polypeptide preparation |
WO1996026277A1 (en) * | 1995-02-24 | 1996-08-29 | Cantab Pharmaceuticals Research Limited | Polypeptides useful as immunotherapeutic agents and methods of polypeptide preparation |
US5955087A (en) * | 1995-02-24 | 1999-09-21 | Cantab Pharmaceuticals Research Limited | Polypeptides useful as immunotherapeutic agents and methods of polypeptide preparation |
FR2749323A1 (en) * | 1996-06-04 | 1997-12-05 | Pasteur Merieux Serums Vacc | PSEUDO-PARTICLES VIRALES USEFUL AS A VECTOR OF NUCLEIC ACID DELIVERY |
WO1997046693A1 (en) * | 1996-06-04 | 1997-12-11 | Pasteur Merieux Serums Et Vaccins | Virus-like particles useful as a vector for delivering nucleic acid |
AU725518B2 (en) * | 1996-06-04 | 2000-10-12 | Pasteur Merieux Serums Et Vaccins | Virus-like particles useful as a vector delivering nucleic acid |
WO1998002548A2 (en) * | 1996-07-17 | 1998-01-22 | The Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services | Infectious papillomavirus pseudoviral particles |
WO1998002548A3 (en) * | 1996-07-17 | 1998-03-05 | Us Health | Infectious papillomavirus pseudoviral particles |
US6599739B1 (en) | 1996-07-17 | 2003-07-29 | The United States Of America As Represented By The Department Of Health & Human Services | Infectious papillomavirus pseudoviral particles |
WO1998004706A1 (en) * | 1996-07-29 | 1998-02-05 | Cantab Pharmaceuticals Research Limited | Polypeptides useful as immunotherapeutic agents and methods of polypeptide preparation |
US7670607B2 (en) | 1996-07-30 | 2010-03-02 | Transgene S.A. | Pharmaceutical compositions for treating papillomavirus tumors and infection |
AU781653B2 (en) * | 1996-07-30 | 2005-06-02 | Transgene S.A. | Pharmaceutical composition for treating papollomavirus tumour and infection |
WO1998004705A1 (en) * | 1996-07-30 | 1998-02-05 | Transgene S.A. | Pharmaceutical composition for treating papillomavirus tumours and infection |
FR2751879A1 (en) * | 1996-07-30 | 1998-02-06 | Transgene Sa | PHARMACEUTICAL COMPOSITION AGAINST TUMORS AND PAPILLOMAVIRUS INFECTIONS |
US7488482B2 (en) | 1996-07-30 | 2009-02-10 | Transgene S.A. | Pharmaceutical compositions for treating papillomavirus tumors and infection |
EP1149910A1 (en) * | 1996-07-30 | 2001-10-31 | Transgene S.A. | Pharmaceutical composition for treating papillomavirus tumours and infection |
US7118754B1 (en) | 1996-07-30 | 2006-10-10 | Transgene S.A. | Pharmaceutical composition for treating papillomavirus tumors and infection |
US6251406B1 (en) | 1996-10-09 | 2001-06-26 | Btg International Limited | Attenuated microorganism strains and their uses |
WO1998015631A1 (en) * | 1996-10-09 | 1998-04-16 | Btg International Limited | Attenuated microorganism strains expressing hpv proteins |
US6458368B1 (en) | 1996-10-09 | 2002-10-01 | Btg International Limited | Attenuated microorganism strains expressing HPV proteins |
WO1999018220A1 (en) * | 1997-10-06 | 1999-04-15 | Loyola University Of Chicago | Papilloma virus capsomere vaccine formulations and methods of use |
JP2010095530A (en) * | 1997-10-06 | 2010-04-30 | Loyola Univ Of Chicago | Papilloma virus capsomere vaccine formulation and method of use |
US7371391B2 (en) | 1997-10-06 | 2008-05-13 | Loyola University Of Chicago | Papilloma virus capsomere vaccine formulations and methods of use |
EP1690941A1 (en) * | 1997-10-06 | 2006-08-16 | Loyola University Of Chicago | Papilloma virus capsomere vaccine formulations and methods of use |
US7754430B2 (en) | 1997-10-06 | 2010-07-13 | Loyola University Of Chicago | Papilloma virus capsomere vaccine formulations and methods of use |
US6228368B1 (en) | 1997-10-06 | 2001-05-08 | Loyola University Of Chicago | Papilloma virus capsomere formulations and method of use |
JP2001519161A (en) * | 1997-10-06 | 2001-10-23 | ロヨラ ユニバーシティ オブ シカゴ | Papillomavirus capsomere vaccine formulation and method of use |
US6562351B2 (en) | 1998-02-20 | 2003-05-13 | Medigene Ag | Papilloma truncated L1 protein and fusion protein constructs |
US7182947B2 (en) | 1998-02-20 | 2007-02-27 | Medigene Ag | Papillomavirus truncated L1 protein and fusion protein constructs |
US7494658B2 (en) | 1998-02-20 | 2009-02-24 | Medigene Ag | Papilloma virus truncated L1 protein and fusion protein constructs |
US6649167B2 (en) | 1998-02-20 | 2003-11-18 | Medigene Ag | Papillomavirus truncated L1 protein and fusion protein constructs |
US6352696B1 (en) | 1998-02-20 | 2002-03-05 | Medigene Ag | Papillomavirus truncated L1 protein and fusion protein constructs |
US6926897B1 (en) | 1998-03-24 | 2005-08-09 | Medigene Aktiengesellschaft | Medicament for the avoidance or treatment of papillomavirus-specific tumour |
US8628784B2 (en) | 1998-10-16 | 2014-01-14 | Glaxosmithkline Biologicals S.A. | Adjuvant systems and vaccines |
WO2000031128A1 (en) * | 1998-11-23 | 2000-06-02 | Loyola University Of Chicago | Chimeric biotin-binding papillomavirus protein |
US6380364B1 (en) | 1998-11-23 | 2002-04-30 | Loyola University Of Chicago | Chimeric biotin-binding papillomavirus protein |
EP1586582A1 (en) * | 1999-04-10 | 2005-10-19 | november Aktiengesellschaft Gesellschaft für Molekulare Medizin | Fragments of virus protein 2 or 3 of the polyoma virus, used for transporting active ingredients |
AU768669B2 (en) * | 1999-04-10 | 2003-12-18 | Responsif Gmbh | Fragments of virus protein 2 or 3 of the polyoma virus, used for transporting active ingredients |
US7011968B1 (en) | 1999-04-10 | 2006-03-14 | November Aktiengesellschaft Gesellschaft Fur Molekulare Medizin | Fragments of virus protein 2 or 3 of the polyoma virus, used for transporting active ingredients |
WO2000061616A1 (en) * | 1999-04-10 | 2000-10-19 | november Aktiengesellschaft Gesellschaft für Molekulare Medizin | Fragments of virus protein 2 or 3 of the polyoma virus, used for transporting active ingredients |
US6936255B1 (en) * | 1999-09-07 | 2005-08-30 | Smithkline Beecham Biologicals S.A. | Vaccine composition comprising herpes simplex virus and human papilloma virus antigens |
US7247433B2 (en) | 2001-08-13 | 2007-07-24 | University Of Rochester | Transcutaneous immunization against papillomavirus with papillomavirus virus-like particles |
US7815915B2 (en) | 2002-03-18 | 2010-10-19 | Glaxosmithkline Biologicals, S.A. | Mixture of human papillomavirus virus-like particles |
WO2004052395A1 (en) * | 2002-12-09 | 2004-06-24 | Glaxosmithkline Biologicals Sa | L2-peptide of the human papillomavirus associated with virus-like particles |
US7858098B2 (en) | 2002-12-20 | 2010-12-28 | Glaxosmithkline Biologicals, S.A. | Vaccine |
US7758866B2 (en) | 2004-06-16 | 2010-07-20 | Glaxosmithkline Biologicals, S.A. | Vaccine against HPV16 and HPV18 and at least another HPV type selected from HPV 31, 45 or 52 |
US9388221B2 (en) | 2005-02-01 | 2016-07-12 | The United States Of America, As Represented By The Secretary, Dept. Of Health And Human Services | Papillomavirus L2 N-terminal peptides for the induction of broadly cross-neutralizing antibodies |
US8404244B2 (en) | 2005-02-01 | 2013-03-26 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Papillomavirus L2 N-terminal peptides for the induction of broadly cross-neutralizing antibodies |
EP2217699A2 (en) * | 2007-10-22 | 2010-08-18 | University of Rochester | Respiratory syncytial virus vaccine based on chimeric papillomavirus virus-like particles or capsomeres |
EP2217699A4 (en) * | 2007-10-22 | 2012-11-28 | Univ Rochester | Respiratory syncytial virus vaccine based on chimeric papillomavirus virus-like particles or capsomeres |
US11944677B2 (en) | 2017-06-23 | 2024-04-02 | Verimmune Inc. | Chimeric virus-like particles and uses thereof as antigen-specific redirectors of immune responses |
US11560408B2 (en) | 2018-12-27 | 2023-01-24 | Verimmune Inc. | Conjugated virus-like particles and uses thereof as anti-tumor immune redirectors |
Also Published As
Publication number | Publication date |
---|---|
US5855891A (en) | 1999-01-05 |
JP2007143560A (en) | 2007-06-14 |
AU3828495A (en) | 1996-05-02 |
EP1018555A2 (en) | 2000-07-12 |
US5618536A (en) | 1997-04-08 |
ES2213754T3 (en) | 2004-09-01 |
PT789766E (en) | 2004-05-31 |
EP0789766B1 (en) | 2004-02-04 |
DE69532532T2 (en) | 2005-01-05 |
JP3343912B2 (en) | 2002-11-11 |
DK0789766T3 (en) | 2004-05-24 |
EP1018555A3 (en) | 2000-10-11 |
JP2002053597A (en) | 2002-02-19 |
DE69532532D1 (en) | 2004-03-11 |
EP0789766A1 (en) | 1997-08-20 |
DE69532532T8 (en) | 2005-05-25 |
JPH10506796A (en) | 1998-07-07 |
ATE258985T1 (en) | 2004-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5855891A (en) | Ichimeric papillomavirus-like particles | |
US6228368B1 (en) | Papilloma virus capsomere formulations and method of use | |
US7691386B2 (en) | Chimeric papillomavirus-like particles | |
US6352696B1 (en) | Papillomavirus truncated L1 protein and fusion protein constructs | |
US6649167B2 (en) | Papillomavirus truncated L1 protein and fusion protein constructs | |
US20040081661A1 (en) | Papillomavirus truncated L1 protein and fusion protein constructs | |
CA2201601C (en) | Chimeric papillomavirus-like particles | |
AU717647B2 (en) | Chimeric papillomavirus-like particles | |
AU717932B2 (en) | Chimeric papillomavirus-like particles | |
AU2007201791A1 (en) | Papilloma virus capsomere vaccine formulations and methods of use | |
MXPA00003358A (en) | Papilloma virus capsomere vaccine formulations and methods of use | |
MXPA98001583A (en) | Formulations for capsomers vaccines of papillomavirus. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IS JP KE KG KP KR KZ LK LR LT LU LV MD MG MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TT UA UG UZ VN |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): KE MW SD SZ UG AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
ENP | Entry into the national phase |
Ref document number: 2201601 Country of ref document: CA Ref country code: CA Ref document number: 2201601 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1995936278 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWP | Wipo information: published in national office |
Ref document number: 1995936278 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1995936278 Country of ref document: EP |