WO1996007056A1 - Combustion equipment for judging abnormality or life - Google Patents

Combustion equipment for judging abnormality or life Download PDF

Info

Publication number
WO1996007056A1
WO1996007056A1 PCT/JP1995/001720 JP9501720W WO9607056A1 WO 1996007056 A1 WO1996007056 A1 WO 1996007056A1 JP 9501720 W JP9501720 W JP 9501720W WO 9607056 A1 WO9607056 A1 WO 9607056A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion
detected
rotation speed
air
airflow
Prior art date
Application number
PCT/JP1995/001720
Other languages
French (fr)
Japanese (ja)
Inventor
Masanori Enomoto
Naoto Tominaga
Masato Kondo
Tatsuo Fujimoto
Original Assignee
Gastar Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP23073294A external-priority patent/JP3566757B2/en
Priority claimed from JP24956594A external-priority patent/JP3566758B2/en
Priority claimed from JP28440394A external-priority patent/JP3566765B2/en
Application filed by Gastar Co., Ltd. filed Critical Gastar Co., Ltd.
Priority to EP95930007A priority Critical patent/EP0781966A1/en
Publication of WO1996007056A1 publication Critical patent/WO1996007056A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/24Preventing development of abnormal or undesired conditions, i.e. safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/24Preventing development of abnormal or undesired conditions, i.e. safety arrangements
    • F23N5/242Preventing development of abnormal or undesired conditions, i.e. safety arrangements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
    • F23N5/184Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/08Microprocessor; Microcomputer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/04Measuring pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2227/00Ignition or checking
    • F23N2227/12Burner simulation or checking
    • F23N2227/16Checking components, e.g. electronic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2231/00Fail safe
    • F23N2231/26Fail safe for clogging air inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • F23N2233/08Ventilators at the air intake with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/18Groups of two or more valves

Definitions

  • FIG. 15 shows a system configuration of a general water heater as a combustion device.
  • a burner 2 is installed below the combustion chamber 1, and a combustion fan 3 for supplying and exhausting air is provided below the burner 2.
  • the combustion fan 3 is provided with a rotation speed detection sensor.
  • a hot water supply heat exchanger 4 is provided above the combustion chamber 1, a hot water supply heat exchanger 4 is provided.
  • a water supply pipe 5 is connected to the inlet side of the hot water supply heat exchanger 4, and a water supply temperature sensor 6 such as a thermistor for detecting the water supply temperature to the water supply pipe 5 and a water supply flow rate.
  • a water amount sensor 7 to be detected is provided.
  • a hot water supply pipe 8 is connected to the outlet side of the hot water supply heat exchanger 4, and the hot water supply pipe 8 is connected to the hot water supply pipe 8.
  • a tapping temperature sensor 10 such as a thermistor for detecting the temperature and a water quantity control valve 11 for controlling the tapping flow rate are provided.
  • the gas supply passage 12 of the burner 2 is provided with a solenoid valve 13 and a proportional valve 14 for controlling a gas supply amount. Further, a pressure introduction port of a pressure introduction pipe 20a, 20b of a differential pressure sensor 16 functioning as an airflow sensor is provided below the burner 2 and the exhaust passage 19. I have. The differential pressure between the space below the parner 2 and the exhaust passage 19 guided by the pressure introducing pipes 20 a and 20 b is detected by the differential pressure sensor 16.
  • the control unit 15 has a built-in sequence program for controlling the hot water supply operation of the water heater. Further, the control section 15 is provided with a control circuit for controlling the hot water supply operation in accordance with this sequence program.
  • the control unit 15 is provided with the input water temperature sensor 6, the water flow sensor 7, the tap water temperature sensor 10, the differential pressure sensor 16, and a remote control (not shown).
  • the operation of the solenoid valve 13, the proportional valve 14, the combustion fan 3, and the water amount control valve 11 is controlled to perform the hot water supply operation.
  • the water passing through the hot water supply heat exchanger 4 is heated by the combustion of the wrench 2 to hot water having a set temperature set by a remote controller or the like, and the set temperature generated by the hot water supply heat exchanger 4 is obtained.
  • the hot water is guided to a desired hot water supply place such as a kitchen or a bathroom via a hot water supply pipe 8.
  • the control unit 15 controls the rotation of the combustion fan 3 in accordance with the combustion capacity (combustion amount) of the parner 2. That is, the control unit 15 performs the combustion control data relating to the gas supply amount and the combustion capacity as shown in FIG. Such air flow (fan rotation speed) and fan rotation control data corresponding to the combustion capacity are given.
  • the required amount of heat for increasing the incoming water temperature to the set temperature is constantly being calculated by the arithmetic circuit in the control unit 15.
  • the opening amount of the proportional valve 14, that is, the gas supply amount is controlled in accordance with the combustion capacity of the required calorific value and the data in FIG. This valve opening amount is controlled by the valve opening drive current applied to the proportional valve 14.
  • the rotation speed of the fan is controlled so that the combustion capacity and the air flow according to the data shown in Fig. 13 are maintained, and the optimal air flow for the burner is supplied to the burner 2. It is.
  • the control of the air volume is performed based on the differential pressure detection signal of the differential pressure sensor 16. That is, the control section 15 is provided with data on the relationship between the differential pressure of the differential pressure sensor 16 and the air volume (air volume) as shown in FIG. As a result, the actual detected airflow is obtained based on the differential pressure detection value detected by the differential pressure sensor 16. Then, the difference between the required airflow and the actual detected airflow was determined, and the fan rotation speed of combustion fan 3 was controlled in a direction to correct this deviation to zero, and the amount of combustion was matched. Optimal airflow is provided.
  • the abnormality or the life of the appliance is determined based on the number of burners, the burn time, and the like. With such a method, it is difficult to accurately determine the life of the appliance, and despite the fact that the hot water supply heat exchanger 4 and the like have clogged considerably and the combustion state has deteriorated, However, since the number of times of burning and the burning time have not reached the reference values for determining the life, the life is not determined and the water heater may continue to be used as it is. In this case, of course, the amount of carbon monoxide gas generated in the exhaust gas also becomes large, and it is dangerous.
  • the present invention focuses on the differential pressure sensor 16 for controlling the air flow rate of the combustion fan 3, and uses the differential pressure detection signal of the differential pressure sensor 16 to determine the failure of the water heater or the service life.
  • the present invention relates to a combustion device that can accurately perform combustion.
  • the differential pressure sensor 16 is referred to as an airflow sensor 16 for convenience of explanation.
  • Figure 16 is a graph showing the relationship between the air volume (output of the air volume sensor 16) and the number of revolutions of the combustion fan. As shown by the solid line in this graph, the number of revolutions of the combustion fan required to obtain a constant air volume can be uniquely obtained. However, as described above, when the airflow resistance increases, the number of revolutions of the combustion fan required to obtain a constant airflow increases. From a different perspective, this means that the amount of air that can be supplied is reduced when the combustion fan is rotated at a constant speed.
  • the present inventor has found that the output from the airflow sensor 16 is affected by the wind from outside where the combustion equipment is installed through the exhaust port 19. Were found.
  • the present inventors have found that simply changing the relationship between the air flow rate and the fan rotation speed from the normal state may not yet require disposal of the combustion equipment. did. In other words, even if the air volume at the maximum rated speed of the combustion fan is reduced, if the operation is performed with reduced combustion capacity, it is possible to supply the air volume corresponding to the reduced combustion capacity. If not.
  • the present invention solves the above-mentioned conventional problems, and provides a combustion device capable of appropriately monitoring and detecting a state in which the ventilation resistance of the air in the device is high.
  • the purpose is to do.
  • An object of the present invention is to provide a combustion device capable of detecting an engagement, monitoring whether the relationship is normal or not, and detecting an abnormality of the equipment.
  • the input down operation for reducing the combustion capacity is performed.
  • dISCLOSURE one when shifted range by Ri size has a second range above the twin-Ru 0 invention as providing combustion device that can have a this to stop the row have combustion operation decisions to be life
  • the basic principle of the invention is that after confirming that the outside world is calm, the output value of the airflow sensor and the output value of the fan rotation speed detector are monitored, and the abnormal At the point of detection. Therefore, the first method of monitoring the airflow detected by the airflow sensor when the combustion fan is rotated at zero rotation or constant tilling, and the airflow detected by the airflow sensor is maintained at a constant value.
  • the first invention is a method for supplying a power to a burner and a burner.
  • Combustion fan for air and exhaust and exhaust from the air supply passage to the burner
  • a combustion device provided with an airflow sensor for detecting an airflow flowing in an air flow path leading to an air passage, the airflow sensor detected at zero rotation or constant rotation of the combustion fan
  • a burner for supplying and exhausting air to and from the burner, a rotation speed detecting device for detecting a rotation speed of the combustion fan,
  • a rotation speed detecting device for detecting a rotation speed of the combustion fan
  • the detected flow rate of the flow rate sensor becomes a constant value.
  • the first aspect it is possible to easily detect that there is no wind in the outside world.
  • a second invention is directed to a burner, a combustion fan for supplying and exhausting air to and from the burner, and an air volume for detecting an air volume flowing in an air circulation path from an air supply passage to the exhaust passage of the burner.
  • a combustion device equipped with a sensor and
  • the airflow judgment value which is a reference for judging abnormality or life when the combustion fan is rotated at a predetermined rotation speed is stored, and the combustion fan is rotated at zero rotation or constant rotation.
  • a burner for supplying and exhausting air to and from the burner, a rotation speed detecting device for detecting the rotation speed of the combustion fan,
  • a combustion device having an airflow sensor for detecting an airflow flowing in an air flow path from an air supply passage to an exhaust passage to the burner.
  • a rotation speed judgment value which is a reference for judging abnormality or life when controlling the rotation of the combustion fan so that the detected air flow of the air flow sensor becomes a constant reference value, is stored.
  • Fluctuations in the rotation speed detected by the rotation speed detection device which are detected when controlling the rotation of the combustion fan so that the air volume detected by the air volume sensor becomes an arbitrary constant value, are within a predetermined allowable range. At some point, it detects a windless condition
  • the rotation speed detection device detects the rotation speed of the combustion fan when the rotation of the combustion fan is controlled such that the airflow detected by the airflow sensor becomes the constant reference value.
  • This is a combustion device that has a control unit that detects an abnormality or life when it is higher than the judgment value.
  • the second aspect of the invention it is possible to appropriately monitor the relationship between the air volume and the number of revolutions of the combustion fan when there is no wind, Appropriate abnormality or life can be detected.
  • the third invention detects a burner, a combustion fan for supplying and exhausting air to and from the burner, and a flow rate of air flowing in an air circulation path from an air supply passage to the burner to an exhaust air passage.
  • An airflow determination value serving as a reference for determining an abnormality or life when the combustion fan is rotated at a predetermined rotation speed is stored, and the combustion fan is rotated at the predetermined rotation speed.
  • an abnormal condition is detected. It is a combustion device that has a control unit that detects the life.
  • a third aspect of the present invention provides a burner, a burner that performs solid air and exhaust to the burner, a rotation speed detection device that detects the rotation speed of the combustion fan,
  • a combustion device having a flow rate sensor for detecting a flow rate flowing in an air flow path from a lined air passage to an exhaust passage to the burner, the detected flow rate of the flow rate sensor is set to a constant reference value.
  • a rotation speed judgment value serving as a reference for judging abnormality or life when controlling the rotation of the combustion fan is stored.
  • the rotation speed detected by the rotation speed detection device Fluctuations in the rotation speed detected by the rotation speed detection device, which are detected when the rotation speed of the combustion fan is controlled so that the air volume detected by the air volume sensor becomes the constant reference value, are within a predetermined allowable range.
  • the rotation speed detected by the rotation speed detection device is This is a combustion device that has a control unit that detects abnormality or life when the rotation speed is higher than the judgment value.
  • the third aspect it is possible to simultaneously detect that the outside world is in a windless state and that the relationship between the air volume and the fan rotation speed is out of an appropriate value. You.
  • the combustion device further includes a fuel control unit that supplies fuel required for supplying a required amount of heat to the parner.
  • the fuel control unit forcibly reduces the amount of fuel supplied to the parner when the abnormality or the life is detected.
  • the air volume determination value further includes a first air volume determination value and a second air volume determination value lower than the first air volume determination value. If the detected airflow of the airflow sensor is lower than the first airflow determination value when the abnormality or the life is detected, the fuel control unit forcibly supplies the fuel supplied to the burner.
  • the fuel control unit When the detected air volume of the air volume sensor is lower than the second air volume determination value, the fuel control unit does not supply fuel to the burner.
  • This fourth invention is also directed to the second or third invention described above.
  • the combustion device further has a fuel control unit that supplies fuel required for supplying a required amount of heat to the parner, and when the abnormality or the life is detected, the fuel control unit performs the fuel control.
  • the control unit is a combustion device characterized by forcibly reducing the amount of fuel supplied to the parner.
  • the rotation speed determination value may further include a first rotation speed determination value and a second rotation speed determination value higher than the first rotation speed determination value.
  • the fuel control unit is configured to perform Forcibly reduce the amount of fuel supplied to the parner,
  • the fuel control unit When the rotation speed detected by the rotation speed detection device is higher than the second rotation speed determination value, the fuel control unit does not supply fuel to the burner. o
  • the fuel is forcibly reduced to avoid incomplete combustion and to perform the combustion operation.
  • a burner for supplying and exhausting air to and from the burner, and an airflow sensor for detecting an airflow flowing in an air flow path from a lined air passage to the exhaust passage to the burner.
  • the present invention provides a combustion device having a control unit that detects deterioration of ventilation when the initial value is not less than a determination reference value.
  • a burner for supplying and exhausting air to and from the burner, a rotation speed detecting device for detecting a rotation speed of the combustion fan, And a flow rate sensor for detecting a flow rate of air flowing in an air flow path from an air supply passage to an exhaust passage to the burner so that the flow rate detected by the flow rate sensor becomes a constant reference value.
  • the detected rotation speed of the rotation speed detecting device at that time fluctuates by more than the determination reference value from the initial value.
  • This is a combustion device that has a control unit that detects deterioration of ventilation when it has been in use.
  • the initial value of the airflow sensor is stored after the combustion equipment is installed, so that the sensitivity of the airflow sensor differs for each combustion equipment and for each installation environment. Adjust can do.
  • a sixth invention provides a burner, a combustion fan for supplying and exhausting air to and from the burner, and an air flow sensor for detecting an airflow flowing in an air flow path from a lined air passage to the exhaust passage to the burner.
  • a combustion device provided with a sensor, when a change in the airflow detected by the airflow sensor, which is detected based on zero rotation of the combustion fan, is within a predetermined allowable range, a no-air condition is detected.
  • a combustion device having a control unit that stores the detected airflow of the airflow sensor when the no-air condition is detected as a zero point.
  • the zero correction according to the aging of the airflow sensor can be performed without being affected by the wind of the outside world, combustion control and abnormalities can be performed using the airflow sensor. Or, the life can be properly judged.
  • a burner for supplying and exhausting air to and from the burner, and an air flow rate for detecting an air volume flowing in an air flow path from an air supply passage to an exhaust passage of the burner.
  • a combustion device equipped with a sensor and
  • An airflow judgment value serving as a reference for judging abnormality or life when the combustion fan is rotated at a predetermined rotation speed is stored, and the combustion fan is rotated at the predetermined rotation speed.
  • a combustion unit having a control unit that detects an abnormality or a life is provided. Equipment.
  • a burner for supplying and exhausting air to and from the burner and the combustion fan.
  • a combustion device comprising a rotation speed detection device for detecting the rotation speed of the burner, and a flow rate sensor for detecting a flow rate in an air flow path from an air supply passage to an exhaust passage to the burner, the air flow sensor is provided.
  • the rotation speed judgment value which serves as a reference for judging an abnormality or life when controlling the rotation of the combustion fan so that the detected air volume of the combustion fan becomes a constant reference value, is stored.
  • the rotation speed detected by the rotation speed detection device which is detected when the rotation speed of the combustion fan is controlled so that the air volume detected by the air volume sensor becomes the constant reference value, is continuously maintained within a predetermined time.
  • This is a combustion device that has a control unit that performs abnormality or life detection when the rotation speed is higher than the judgment value.
  • FIG. 1 is a block diagram showing a configuration of a main part of a first embodiment of a combustion apparatus according to the present invention.
  • FIG. 2 is a block diagram of an operation circuit for reducing the combustion capacity according to the first embodiment.
  • FIG. 3 is an explanatory diagram of the water heater having the life determining function of the first embodiment.
  • FIG. 4 shows the detection of the wind speed and the air volume inside the equipment under the environment where the equipment is installed.
  • FIG. 4 is an explanatory diagram showing the relationship between the fluctuation states of the differential pressure sensor output.
  • FIG. 5 is an explanatory diagram of a three-stage combustion control characteristic straight line of the water heater and a combustion control characteristic straight line when the capacity is down.
  • FIG. 6 is a flowchart of the first operation of the first embodiment.
  • FIG. 7 is a flowchart of a first operation of the first embodiment.
  • FIG. 8 is a flowchart of the second operation of the first embodiment.
  • FIG. 9 is a flowchart of the third operation of the first embodiment.
  • FIG. 10 is a flowchart of the third operation of the first embodiment.
  • FIG. 11 is a flowchart of a fourth operation of the first embodiment.
  • Fig. 12 is a graph showing the relationship between the combustion capacity of the water heater and the gas supply.
  • Fig. 13 is a graph showing the relationship between the air volume of the water heater and the combustion capacity.
  • Fig. 14 is a graph showing the relationship between the detected differential pressure of the differential pressure sensor that detects the air volume and the air volume.
  • Fig. 15 is an explanatory diagram of a common water heater as a combustion device.
  • Fig. 16 shows the relationship between the target output value of the air flow sensor and the fan speed. This is a graph showing the relationship.
  • FIG. 17 is a block diagram of a main part configuration of a second embodiment of the combustion equipment according to the present invention.
  • FIG. 18 shows the input down data (first rotation speed judgment value) and the life judgment data (second rotation speed) used in the operation in the life diagnosis mode of the second embodiment.
  • FIG. 4 is an explanatory diagram showing a relationship with a number judgment value.
  • FIG. 19 is an explanatory diagram showing the relationship between the sensor output target value and the fan rotation speed average value obtained at each sensor output target value in the second embodiment.
  • FIG. 20 is a flowchart showing the operation of the combustion apparatus according to the second embodiment.
  • FIG. 21 is a flowchart showing the operation of the combustion equipment according to the second embodiment.
  • FIG. 22 is a block diagram of a main configuration of a third embodiment of the combustion equipment according to the present invention.
  • FIG. 23 is a flowchart showing the operation of the third embodiment.
  • FIG. 24 is a flowchart showing the operation of the third embodiment.
  • Fig. 25 is a graph for determining the judgment ratio, which is the standard for judging the magnitude of the fluctuation with respect to the initial value of the inspection data taken at regular intervals.
  • FIG. 26 is a flowchart showing the operation of the fourth embodiment.
  • FIG. 27 is a diagram for describing a first operation of the first embodiment.
  • FIG. 28 is a diagram for explaining a first operation of the first embodiment.
  • BEST MODE FOR CARRYING OUT THE INVENTION First, second, third, and fourth embodiments of the present invention will be described below with reference to the drawings. In the description of the embodiments, the same reference numerals are given to the same names as those in the conventional example, and the duplicate description thereof will be omitted.
  • the air volume detected from the air volume sensor 16 is simply referred to as a detected air volume value or an output of the air volume sensor.
  • its direct output may be a voltage value or another physical quantity. Regardless of the physical quantity, it is clear that the detected airflow value of the airflow sensor or simply the output of the airflow sensor means the detected airflow.
  • the output of the combustion fan rotation speed detector or the rotation speed detection value also means the detected rotation speed irrespective of the physical quantity of the direct output.
  • FIG. 3 shows a combustion apparatus provided with an abnormality or life determining means according to the present invention, taking a water heater as an example.
  • the example water heater has a burner 2 of the capacity switching type.
  • Opening of the capacity switching valves 18a and 18b results in a two-stage combustion state of the A and B sides, and the capacity switching valves 18a, 18b, and 18c.
  • the combustion switching performance of the burner 17 can be switched by the valve switching operation of the capacity switching valves 18a, 18b, 18c.
  • the control unit 15 controls the combustion switching of the burner 2, that is, the switching of the capacity switching valves 18 a, 18 b, and 18 c. Further, in the present embodiment, the differential pressure between the upper and lower sides of the burner 2 is detected by the differential pressure sensor 16 as an air volume detection sensor. Further, the rotation speed of the combustion fan 3 is detected by a fan rotation detection sensor 28 such as a Hall IC.
  • This embodiment is characterized by controlling the air flow of the combustion fan 3 based on the detection value of the differential pressure sensor 16 which is an air flow sensor, and also detecting an abnormality in the lined hot water heater. Means for performing the life determination is provided in the control unit 15.
  • differential pressure sensor 16 used in the embodiment is substantially an air flow detection sensor, and will be described below as an air flow detection sensor for convenience of explanation.
  • the characteristic abnormality or life determining means includes a condition determining unit 22, a memory 23, and a combustion stopping unit 24. And a fan restart unit 25, an abnormality or lifetime judgment unit 26, and an evening image 27. These are realized in the control unit 15.
  • the memory 23 stores a flow rate determination value serving as a criterion for determining whether a water heater is abnormal or has a life with respect to a set fan speed, which is a preset control condition.
  • a set fan speed which is a preset control condition.
  • data such as the allowable setting range of the variation in the airflow detection sensor output when the fan rotation is zero rotation and when the fan rotation is given constant rotation is also stored.
  • the set rotation speed of the fan is determined as appropriate, in the present embodiment, the rated maximum rotation speed of the combustion fan 3 is set, and the airflow judgment value at the rated maximum rotation speed is determined. It is stored in memory 23.
  • the situation determination unit 22 determines whether the combustion fan 3 is rotating at zero speed, that is, when the combustion fan 3 is not rotating, in a non-wind stable state and a windy state of the appliance installation environment.
  • Do Figure 4 shows the relationship between the magnitude of the wind speed and the sensor output of the airflow sensor 16 when the water heater was exposed to a windy environment with the combustion fan 3 stopped. This is the graph I sought. As can be seen from this graph, in a windy condition, the detected airflow of the airflow sensor fluctuates asymmetrically with respect to the zero point of the sensor, and the fluctuation of this fluctuation The width increases as the wind speed increases.
  • the condition determination unit 22 stores, in the memory 23, the detected value of the air flow of the air flow sensor 16 when the combustion fan 3 is rotating at zero speed or the fluctuation range of the air flow. Compare with the setting allowable range.
  • This setting allowable range is set to determine whether there is a wind state or no wind state depending on whether the fluctuation range of the air flow detection value is equal to or more than a predetermined value or less. For example, it is determined whether there is a wind condition or no wind condition based on whether the fluctuation range of the air flow detection value exceeds or does not exceed a predetermined allowable value. It is also possible to easily determine whether there is a wind condition or no wind condition by determining whether the detected air volume exceeds a predetermined absolute value.
  • the situation determination unit 22 performs an evening image. 27 is operated for a predetermined time, and during the timer operation time, the detected air flow value added from the air flow sensor 16 is compared with the air flow judgment value stored in the memory 23. If the airflow detection value is out of the set allowable range, it is determined that there is wind. Further, when the current value is within the set allowable range, it is determined that the wind is stable, and the result is added to the combustion stopping unit 24 and the abnormality or life determining unit 26.
  • the combustion stop unit 24 When the combustion fan 3 is rotating at the rated maximum number of revolutions and the combustion operation is being performed, the combustion stop unit 24 outputs a result that the detected air flow is smaller than the air flow determination value from the status determination unit 22. When it is received, the combustion of the burner 2 is stopped, and a signal of the combustion stop is applied to the fan restarting unit 25.
  • the motor starts rotating at the rated maximum number of rotations of fan 3, and this fan restart signal is applied to the abnormality or life determination section 26.
  • the abnormal state or life determination unit 26 After receiving the fan restart signal from the fan restart unit 25, the abnormal state or life determination unit 26 is in the state of stable windless state by the judgment of the state judgment unit 22.
  • the combustion fan 3 is rotating at the rated maximum speed and the detected air flow value is equal to or less than the air flow judgment value, it is determined that the water heater is abnormal or the service life has expired. Outputs a life signal.
  • the water heater is abnormal or abnormal. Judged that the life is not reached and no error or life signal is output.
  • Fig. 2 shows the circuit of the operation control unit of the water heater when an abnormality or life signal is output from the abnormality or life judgment unit 26.
  • This circuit includes a combustion capacity down switching unit 31, a performance characteristic graph selection unit 32, a fan control unit 34, and a water amount control unit 33.
  • the water heater having the abnormality or life can be disposed of.
  • the circuit shown in Fig. 2 does not immediately discard the abnormal or long-life water heater when an abnormal or long-life signal is output. This is a circuit that can be used temporarily until installation is performed.
  • the combustion capacity down-switching unit 31 can lower the combustion capacity of the water heater by one rank and output it from the combustion fan 3 when an abnormal or life signal is added. Attempt to avoid incomplete combustion of Pana 2 by air flow It is.
  • the combustion capacity down switching unit 31 is provided with a water heater of No. 24 (output 36,000 K ca 1 / h) when an abnormality or a life signal is added, for example, 20 units.
  • the down-converted combustion capacity is added to the performance characteristic graph selection section 32 and the water flow control section 33.
  • the performance characteristic graph selection unit 32 is provided with, for example, control characteristic data of each combustion performance of three-stage combustion as shown in (a) of FIG.
  • the characteristic line is a characteristic line of the combustion surface A of the parner 2 at the time of the first stage combustion
  • the characteristic line D 2 is a characteristic line of the A surface and the B surface of the parner 2 at the time of the second stage combustion
  • D 3 is This is the characteristic line for the three-stage combustion on the surfaces B, B and C.
  • Overlapping margins AD and AD ' are given between the characteristic straight lines of the respective stages, so that the conversion between the characteristic straight lines D2 and D3 can be performed smoothly.
  • the starting end position D s of the characteristic line is minimal capacity position.
  • the end position DF of the characteristic line D is reached. If a larger combustion capacity is required, the two-stage combustion on the A and B planes is performed by switching the capacity of the parner 2, and the combustion characteristic straight line is D, DF. point or al characteristic line D 2 of the transfer Ri Kawa Ri to D p point, the combustion control is performed in accordance with the characteristic straight line D 2.
  • the straight line of the D 2 According to come to be performed combustion control, the can and was Switching Operation place et ability Switching Operation recombination is performed by two-stage combustion or al 1 stage combustion PANA 2, characteristic line is the straight line D 2 D. of the starting end position D s or et al straight line Then, the combustion control is performed according to the characteristic line of D ,. As described above, when the performance of each stage is switched, the combustion control line is also switched. However, by providing the overlap margins AD and D ', the c is reduced. The switching between the characteristic lines can be performed smoothly without causing ching.
  • the combustion capacity down switching unit 31 can switch the combustion capacity in the down direction, the combustion supply amount (proportional valve) on the right side of the line L in FIG. The current) portion is discarded. If it their respective characteristic line D,, D 2, between D heavy Do Ri white ⁇ D, delta D 'Gana rather Do I then have until the switching Rikae combustion characteristic line is Do smoothly performed The problem is that it's gone.
  • the performance characteristic graph selection unit 32 determines that the required combustion performance is reduced when the combustion performance down switching unit 31 receives the combustion performance down switching. When it is between the characteristic lines D,, D 2 , and D, select the characteristic line with the smaller combustion capacity (for example, in Fig. 5 (b), the required combustion capacity P is D, and D ( D1 is selected between 2 ), and combustion control is performed according to the selected characteristic line.
  • the water volume control unit 33 receives the signal for switching the combustion capacity down from the combustion capacity down switching unit 31. Then, the set temperature set by the remote control etc. is compared with the tapping temperature detected by tapping temperature sensor 10, and if the tapping temperature detected by tapping temperature sensor is lower than the set temperature. In this case, the water amount control valve 11 is controlled to be throttled, and the water amount control valve 11 is throttled in a direction to discharge hot water at a set temperature. In other words, since the combustion capacity is reduced, the amount of hot water is reduced, and the set temperature is maintained.
  • the outline of the first operation flow is as follows. That is, if it is detected that the detected value of the air volume of the air volume sensor has decreased during the combustion, the combustion is temporarily stopped and the diagnostic operation is performed. In the diagnostic operation, the fan is restarted, and if the air volume during a constant rotation is within a predetermined range for a predetermined time, it is recognized as a no-air condition, and whether the air volume at that time is lower than the air volume judgment value is determined. Is checked. If it is low, the subsequent combustion is continued in the combustion capacity down mode, and if it is detected that the detected value of the air volume of the air volume sensor has decreased, the same diagnosis is performed again. If the result of the diagnosis indicates that the air volume is lower than the air volume judgment value again, it is determined that the life has expired and combustion is prohibited.
  • step 101 zero is given as an initial value to the abnormality or life determination flag (LIFE).
  • the operation from the next step 102 to 120 is a normal combustion operation control operation, so that the description will be simplified.
  • step 102 Incoming water is confirmed by the signal of sensor 7.
  • step 104 the feedforward amount (FF amount) of the amount of heat required to raise the incoming water temperature to the set temperature is calculated, and the capacity switching valves 18a to 18c are calculated. ON / OFF determination, determination of the opening / closing amount of the proportional valve and energization of the proportional valve current corresponding to the opening amount, rotation of the combustion fan at the pre-purging speed, and ON of the solenoid valve 13 Action is taken.
  • FF amount feedforward amount
  • step 105 it is determined whether or not it is within the pre-purging time.
  • the combustion fan is increased to the ignition tri-speed, and the capacity switching valve is turned on and the ignition is turned on. .
  • the ignition is turned off in step 112.
  • step 107 it is determined in step 108 whether the ignition trie time has elapsed, and if it is within the ignition trie time, Repeat the ignition. If ignition is not confirmed even after repeated ignition, in step 109, the solenoid valve, capacity switching valve, and proportional valve are each turned off. Then, it is determined that the hot-water tap (not shown) at the end of the hot-water supply pipe 8 is closed, and the flow rate sensor 7 no longer detects flowing water. Stop the combustion fan with and wait for the hot water tap to be opened again.
  • step 107 ignition is confirmed, and in step 112, ignition is turned off. Then, in step 113, it is determined whether the abnormality or the life determination flag is zero. . At this point, since the abnormality or life judgment flag is set to zero in step 101, the flow advances to step 114, and the feedforward (FF) and the feedforward are set. Combustion operation is performed by both gas control of the FB (FB) and water control by the water control valve.
  • step 115 it is determined whether or not the air volume matches the burner combustion amount during this combustion operation.
  • ⁇ between the valve opening amount of the proportional valve 14, that is, the valve opening drive current I and the air flow.
  • ⁇ ⁇ ⁇ is the differential pressure between the upper and lower air passage sections of the parner 2 and corresponds to the air volume.
  • is a proportionality constant, and the value of ⁇ is set in advance. If the relationship between the valve-opening drive current I and the air volume satisfies the above equation, the combustion operation is continued in the fan control state as it is because the combustion volume and the air volume match.
  • step 117 the magnitude of the valve opening drive current I and ⁇ ⁇ ⁇ of the air volume information is determined.
  • I is smaller than ⁇ , it corresponds to the valve opening of the proportional valve 14, that is, when the air volume is too large compared to the gas supply volume.
  • step 118 To control the number of revolutions of the combustion fan 3 to decrease.
  • step 119 it is determined in step 119 whether the fan rotation speed is equal to or higher than the rated maximum rotation speed. If the fan speed does not reach the rated maximum speed (upper limit), the fan speed should be increased. Since there is room, the fan speed is increased in step 120 to compensate for the lack of air volume. When the fan rotation speed is higher than the upper limit, it corresponds to the case of insufficient air volume (insufficient air volume). In this case, the insufficient air volume occurs due to the abnormality or the life of the equipment. Move on to the confirmation operation of whether it is due to wind or the influence of the wind in the equipment installation environment.
  • step 121 it is determined whether or not the abnormality or life determination flag is zero in step 121 in FIG. 7.
  • the flag is determined in step 101. Since zero is given, the operation proceeds to the operation of step 122, and the burner combustion is stopped by turning off the solenoid valve 13, the capacity switching valves 18a to 18c, and the proportional valve 14 respectively.
  • Step 123 the combustion fan 3 is set under the control conditions, in this example, the motor rotates at the rated maximum speed, and in Steps 12 and 4, the airflow detection value ⁇ of the airflow sensor 16 and In step 125, the airflow detection value is compared with the airflow determination value, and the airflow detection value is sampled until the operation time of the timer 27 elapses in step 125, and the airflow determination value is compared with the airflow determination value. Is repeated.
  • the status determination unit 22 determines that the airflow is stable. Despite such a stable windless condition, the lack of air volume occurred due to poor ventilation due to soot clogging in the hot water supply heat exchanger 4. Is determined to have occurred, and in step 126, the appliance is judged to be abnormal or the service life is judged to be abnormal by the life judgment unit 26, or the life is judged by the life judgment unit 26. 1 is set. Against this If the airflow detection value ⁇ P exceeds the airflow judgment value even at least once during the timer operation time (C minutes) described above, the airflow detection value is set in step 117 above.
  • the reason that ⁇ P exceeded the airflow judgment value IZK to the low pressure side is not due to the abnormality or the life of the appliance, but is temporarily due to the effect of the wind, such as the back wind hitting the exhaust side of the water heater. It is determined that the airflow detection value has dropped.
  • the determination as to whether or not there is a stable windless state and the determination of the appliance abnormality or the life are simultaneously performed.
  • the above-mentioned airflow determination value is, for example, a limit value at which, if incomplete combustion proceeds and the airflow becomes lower, the airflow of carbon monoxide, hydrocarbons, nitrogen oxides, etc. in the exhaust gas becomes higher. Can be determined.
  • Step 124 above will be further described with reference to FIG.
  • Figure 27 shows an example of the change in airflow when the fan is rotated at a constant rotation with the passage of time on the horizontal axis. If the airflow detection value is higher than the airflow judgment value BmmAq, the airflow is normal, but the airflow judgment value fluctuates as shown in the figure due to the influence of the external wind. I have.
  • C shows an example in which the shadow of the wind is coming from the outside world for 1 minute. If a strong wind blows into the exhaust port from the outside world, the detected airflow value will temporarily decrease. However, in the natural world, certain strong winds do not change direction and do not blow continuously. Therefore, the strength of the wind blown from the outside fluctuates, and as shown in C1 in Fig. 27, the airflow value partially exceeds BmmAq.
  • the airflow detection value ⁇ exceeds the judgment value BmmAq. In this case, it is determined that there is a wind.
  • Figure 28 shows the change in the number of revolutions of the combustion fan when the combustion fan was controlled so that the airflow detected by the airflow sensor was constant. In this case, contrary to the above, whether the rotation speed from the rotation speed detector of the fan continuously becomes higher than the rotation speed determination value B for a certain period of time. By monitoring the wind, it is possible to judge whether there is wind or no wind and also to judge whether it is abnormal or long-lived.
  • step 1226 it is determined in step 1226 that the appliance is abnormal or has reached the end of its life, and if an abnormal or end of life signal has been output, the abnormality or end of life signal is output.
  • an abnormal or end of life signal has been output
  • the abnormality or end of life signal is output.
  • Abnormality or life judgment is performed from the above steps 122 to 126, and if it is judged that abnormality or life is not reached, the abnormality or life judgment flag remains at zero. If it is determined that the battery is abnormal or has reached the end of its service life, 1 is given to the abnormality or service life determination flag.
  • steps 102-113 is performed by opening the hot water tap next time. Then, when it is confirmed in step 11 that the abnormality or life judgment flag is set to 1, it is determined that the equipment is abnormal or the life is expired. Judgment is made as the state of the later combustion operation, and the operation after step 127 in FIG.
  • step 127 shows the operation of temporarily making the water heater usable within the range of the air volume reduced due to the appliance abnormality or the service life.
  • the combustion capacity of the water heater is reduced to a predetermined amount, for example, 1 N for each stage of combustion of the burner 2. This N is a real number including a small number. That is, the ability on the right side of the line is cut, as shown in FIG. 5 (a).
  • Step 1 1 6 When the water flow is determined to be ON (while combustion is continuing), the operation in step 113 is not performed, and the combustion capacity is reduced to 1 N as indicated by the broken line. In response, the operation proceeds to the operation of step 114.
  • step 128 it may be determined that the combustion capacity of the feedforward operation amount cannot be obtained. That is, as shown in (a) and (b) of FIG. 5, the right side of the line L is cut and overlapped between the characteristic straight lines of each stage ⁇ D, ⁇ D ′ In this case, the combustion performance at the gap between the characteristic straight line on the low capacity side and the higher characteristic straight line is required.
  • step 129 the combustion control is performed by shifting the combustion control characteristic line to the lower characteristic line. Then, in order to compensate for the drop in hot water temperature due to the selection of the characteristic line on the low capacity side, the water amount control valve 11 is controlled in the closing direction in the next step 130.
  • step 1 15 the combustion operation is performed after step 1 15. Also in this case, when the water flow is determined to be ON in step 116, the operation does not proceed to step 113 but moves to the operation of step 114.
  • the air volume control is performed from step 115 to step 120.
  • the abnormality or life judgment flag is zero in step 122. Whether or not Refused. In this case, 1 has already been set in the abnormality or life judgment flag, and the operation of the appliance is forcibly stopped in step 13 1. Then, the combustion operation cannot be performed after that, preventing the combustion operation from being performed while the combustion is poor, thereby achieving safety.
  • FIG. 8 is a flowchart showing a second operation for judging the abnormality or the life of the appliance.
  • the outline of the flow of the second operation is as follows. That is, if an abnormality is detected in the air volume during the combustion, the combustion is temporarily stopped. Then, in the diagnosis operation, based on the non-combustion and zero rotation of the fan, a determination of a no-wind state is made, and when there is no wind, it is determined whether or not a sufficient amount of air is obtained by rotating the fan a predetermined number of times. A determination is made.
  • the operation of discriminating between a windy condition and a stable condition with no wind, the operation of judging abnormality or life, and the combustion operation are performed in step 122. After stopping, the operations were performed simultaneously by the operations of steps 123 to 125. However, in the second operation, the determination of the stable state of wind and no wind and the determination of the abnormality or life determination are performed by separate operations. Therefore, the determination of stable conditions with and without wind can be made more accurately. In this regard, the second behavior is more favorable.
  • the other operation is the same as the first operation, and the same operation is denoted by the same step number.
  • the operation from step 101 to 121 and the operation from step 127 to 131 are the same as the first operation. Therefore, FIG. 8 illustrates the operations of step 101, step 102, step 121, and step 131, and omits the common step operation between the first operation and the first operation. .
  • the operation from step 132 to step 139 shows the operation of discriminating between the windy state and the stable windless state of the equipment installation environment.
  • the operations from step 140 to step 142 indicate the operation of determining the abnormality or the life of the appliance.
  • the detected air volume is insufficient compared to the gas supply despite the fact that the rotation of the combustion fan is higher than the rated maximum speed in step 119. It is determined that it is.
  • step 132 is used to determine if the air shortage is due to wind or due to equipment malfunction or longevity. Stop combustion with. When the combustion is stopped, the solenoid valve, the performance switching valve, and the proportional valve are turned off, and the combustion fan 3 is also stopped. Then, the operation proceeds to steps 133 to 139 for judging whether there is a windy state or a stable state of no wind.
  • Kazeryouse capacitors 16 maximum instantaneous value ⁇ P ⁇ ⁇ ⁇ and minimum instantaneous value ⁇ ⁇ ⁇ of, and ⁇ is input as the initial value data
  • This input value is stored in the memory 23 or the like.
  • the initial value for example, the value of the sensor zero point in FIG.
  • step 134 it is determined whether or not the detected airflow value ⁇ detected by the airflow sensor 16 is greater than or equal to ⁇ , and the detected airflow value ⁇ is set to the maximum instantaneous initial value ⁇ . If it is larger than ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ , replace the detected value ⁇ ⁇ with ⁇ ⁇ ⁇ . Also, in step 136, the air flow detection value ⁇ is compared with the minimum instantaneous initial value ⁇ , ⁇ , and it is determined whether ⁇ is equal to or less than ⁇ 1 ⁇ .
  • ⁇ ⁇ is ⁇ ⁇ ⁇ , is to come even small-les-Ri good ⁇ , and replace the ⁇ ⁇ to ⁇ ⁇ ⁇ 1 ⁇ .
  • the maximum instantaneous value ⁇ PMAX and the minimum instantaneous value ⁇ P M , N are replaced with each other for a predetermined sampling time specified by the operation of the imager 27, and Determine ⁇ ⁇ ⁇ and ⁇ ⁇ ⁇ ⁇ ⁇ .
  • the difference between the stearyl-up 139 the determined ⁇ ⁇ ⁇ ⁇ and ⁇ ⁇ ⁇ ⁇ ⁇ the difference between this (variation fluctuation width) is equal to or below the value of the allowable setting range.
  • the difference between the maximum instantaneous value and the minimum instantaneous value is equal to or larger than the allowable setting range D, in other words, the wind speed that causes the variation in the airflow detection value of the airflow sensor 16 falls within the allowable setting range D.
  • the wind speed is higher than the corresponding wind speed, it is determined that there is a wind, and it is determined that the shortage of air volume is caused by the temporary wind, and the operation after step 102 I do .
  • step 140 the combustion fan 3 is rotated at the rated maximum speed, which is the set control condition, without the burner in the burner.
  • the airflow detection value ⁇ P is compared with the airflow judgment value (BmmAq) at step 141, and when the airflow detection value ⁇ P is lower than the airflow judgment value.
  • the abnormality or life determination flag is set to 1 and an abnormality or life signal is output, and the step in FIG. 7 is performed.
  • the combustion capacity is reduced to 1 N and the combustion operation is temporarily enabled.
  • FIG. 9 and FIG. 10 are flowcharts showing a third operation of the present embodiment.
  • the third operation after the operation switch is turned on and the power is turned on, before turning on the combustion fan, it is determined whether the wind is stable or not, and the combustion is started. During the fan rotation of the previous pre-purging, it is characterized by judging abnormality of equipment or life.
  • the same operation as the first operation or the second operation is denoted by the same step number, and the description thereof is omitted (or (Simplification).
  • step 302 the wind condition The timer 27 for judging the wind stability state is started (including the reset evening).
  • steps 134 to 137 the same operation as steps 134 to 137 in FIG. 8 showing the second operation is performed, and sampling is performed using the air flow detection value of the air flow sensor 16.
  • step 303 it is confirmed that the flow sensor (water sensor 7) is off, and in step 304, the determined maximum instantaneous value ⁇ ⁇ ⁇ ⁇ And the minimum instantaneous value ⁇ ⁇ ⁇ ⁇ ⁇ , and the allowable setting range D.
  • step 307 The determination of the windy state and the stable state of the windless state is repeated until the ON signal is added from the water flow sensor 7 in step 307, and the water flow sensor 7 is turned ON. Go to step 10.
  • the combustion fan 3 is printed in the next step 104.
  • One rotation operation to rotate the combustion fan to exhaust the exhaust gas in the combustion chamber before burning the burner.
  • step 308 in FIG. 10 when the fan rotation of the prepurge is stabilized to a certain level, the detected airflow value ⁇ ⁇ of the airflow sensor 16 and its The air volume judgment value (B mm A q) at the constant speed of the prepurge is compared with.
  • step 309 If the airflow detection value ⁇ P is lower than the airflow determination value, it is determined in step 309 whether or not 1 is set in the no-wind determination flag. When 1 is set in the windless judgment flag, it means that the airflow is insufficient under stable windless conditions. Therefore, in this case, it is determined that the equipment is abnormal or the service life due to the deterioration of the ventilation clogging is degraded.In step 310, 1 is set to the abnormal or life-determining flag, and the abnormal condition is set. Outputs the life signal. If the detected airflow value is larger than the airflow judgment value in step 308, the airflow is not in a state of insufficient airflow, and the no-airflow judgment flag is zero in step 309. In this case, it is determined that the lack of air volume is due to the presence of wind. Perform the combustion operation after 06.
  • step 106 when the abnormality or the life judgment flag is zero, the normal combustion operation is performed. Further, when 1 is set in the abnormality or life determination flag, this is determined in step 113, and the step of FIG. 7 showing the first operation is performed. The same operation as the operation from 127 to 130 is performed, and the combustion operation is performed by reducing the combustion capacity of the appliance.
  • FIG. 11 is a flowchart showing a fourth operation of the present embodiment.
  • the fourth operation is to stop the combustion operation when it is determined that there is insufficient airflow during combustion operation by burning the wrench and the rotation of the combustion fan cannot cope. Another feature is that while the combustion operation is continued, a judgment is made as to whether there is a wind or no wind and whether an abnormality or life of the appliance is determined.
  • step 401 when the operation switch is turned on, the abnormality or life determination flag is set to zero in step 401, and the air flow sensor 16 detects the air flow.
  • the initial values of the maximum instantaneous value ⁇ ⁇ ⁇ ⁇ and the minimum instantaneous value ⁇ ⁇ ,, ⁇ are input and stored.
  • the combustion operation is started by the operation after step 102.
  • the operation from step 102 to 121 is the same as the step operation of the same number in FIG. 8 of the second operation and FIGS. 6 and 7 of the first operation. is there. Insufficient air flow is determined for gas supply If so, it is determined in step 119 whether the rotation speed of the combustion fan 3 is higher or lower than the rated maximum rotation speed. Fan rotation is up.
  • step 121 the abnormality or service life in step 121 is exceeded. It is determined whether or not the determination flag is zero. When the abnormality or life determination flag is zero, the combustion operation is continued, and it is determined whether or not the wind is stable and whether the abnormality or life is determined. From step 134 to step 138, the maximum instantaneous value is obtained using the airflow detection value detected by the airflow sensor 16 during sampling by a predetermined timer operation. placing delta P MA X and a minimum instantaneous value ⁇ ⁇ ⁇ ⁇ ⁇ .
  • step 139 the difference between the maximum instantaneous value ⁇ PMAX and the minimum instantaneous value ⁇ ⁇ ⁇ ⁇ ⁇ is compared with D of the set allowable range. That is, when the combustion fan is rotating at a constant rotational speed, the amount of change in the detected airflow value of the airflow sensor 16 when the combustion fan is rotating is compared with D within the allowable setting range. If the variation of the airflow detection value falls below the set allowable range, it is determined to be a stable state with no wind; otherwise, it is determined to be a windy state.
  • the next step 141 compares the airflow detection value ⁇ taken by the airflow sensor 16 with the airflow determination value BmmAq. Will be When the airflow detection value ⁇ P falls below the airflow judgment value, the airflow is stable. Despite this, it means that the air volume is insufficient, and it is judged as abnormal or life due to clogging and deterioration of the equipment. Then, in step 142, the abnormality or life judgment flag is set to 1 and an abnormality or life signal is output, and the operations in steps 127 to 130 in FIG. 7 are performed. The same operation as that described above is performed, and the combustion operation is continued in the prone state in which the combustion capacity of the appliance is reduced.
  • the combustion operation is temporarily stopped as in the first and second operations.
  • the abnormality or life of the appliance is determined while the combustion operation is continued. Therefore, there is no inconvenience that the hot water temporarily goes out during the use of the hot water, and it is possible to judge the abnormality or the service life of the appliance while using the hot water without any trouble. The excellent effect can be achieved.
  • the abnormality or life of the appliance can be determined based on the detected air volume of the air volume sensor that performs the air volume control. Can accurately know the service life.
  • a time of C minutes is given in step 1 25 of Fig. 7, and if the airflow detection value ⁇ P exceeds the airflow judgment value at least once within this time, an abnormality occurs. Or, it is determined that it is not the service life, and if the airflow detection value is less than the airflow determination value for all C minutes, it is determined that the appliance is abnormal or the service life has expired.
  • abnormality or life judgment is immediately performed based on the airflow detection value detected after it is judged that there is no wind stability. You may do it.
  • the second to fourth operations if the airflow detection value detected after the determination of the stable windless state falls below the airflow determination value, the operation is immediately performed.
  • the airflow detection sensor of the present invention Since the abnormality or the life can be determined by using the airflow detection sensor of the present invention, the device configuration of the combustion equipment having the abnormality or life determination function of the present invention can be simplified, and Accordingly, it is possible to reduce the cost of the apparatus.
  • the burner is reduced by outputting an abnormality or life signal by the abnormality or life judgment unit by using a multi-stage switching type of the wrench.
  • a capability adjusting means is provided to forcibly specify the lower control characteristic data when the combustion performance of the missing part is required.
  • the detection airflow of the airflow sensor when the fan speed is kept constant is monitored.
  • the feature of the second embodiment is to monitor the relationship between the air flow rate and the number of revolutions of the combustion fan.
  • the feature of the second embodiment is to monitor the relationship between the air flow rate and the number of revolutions of the combustion fan.
  • the first judgment value and the second judgment value are If the fan rotation speed when maintaining the predetermined air volume exceeds the first judgment value, the fuel supplied to the burner is forcibly reduced and exceeds the second judgment value. At times, fuel supply is prohibited.
  • the abnormality or the life is judged by monitoring the number of revolutions of the combustion fan when the output of the air flow sensor is kept constant.
  • the sensor output target value of the airflow detection sensor is determined according to the required combustion capacity that is demanded moment by moment, and the output of the airflow sensor is determined by this sensor.
  • the rotation control of the combustion fan is performed to match the output target value.
  • each sensor for each output target value V S 1 ⁇ V SN the rotational speed is detected storage of one or more combustion fan being designated One by the target value specifying portion It is.
  • the detection and storage of the combustion fan rotation speed is performed, if the unit has a validity judgment unit for the detection and storage data, the variation in the detected and stored fan rotation speed data varies. The width is calculated.
  • this variation fluctuation range deviates from the predetermined fluctuation range, it is determined that the wind is blowing in the surrounding environment where the equipment is installed and that the data fluctuates. Then, the acquired detection and storage data is invalidated and deleted, and the detection and storage are performed again by retrieving the data. Detects and stores the rotation speed detection data of the combustion fan in a stable condition with no wind and no wind.
  • the life determining unit obtains an average value of the number of revolutions of the combustion fan monitored by the fan rotation monitoring unit for each sensor output target value, and obtains a fan output for each sensor output target value. Compare the average value of the fan speed with the input down data and the lifetime judgment data. Then, among the average values of the fan rotation speed of each sensor output target value, the data of L or more of the preset reference number is input down data and life judgment data. When the vehicle enters the region before the evening, a down command signal of the combustion capacity is output. Chi sales of fan rotational speed average value of each cell down output target value, and the can exceeds a lifetime judgment data set reference number of L 2 or more given in advance, it is determined that the device lifetime life The signal is output.
  • the combustion capacity is controlled in a decreasing direction by outputting a down command signal of the combustion capacity from the life determining section. Even if the air volume decreases, it is good within the range of the reduced air volume. Perform combustion operation while maintaining combustion performance. On the other hand, when the life signal is output from the life judgment section, the combustion is locked, and the combustion operation is performed in a state of insufficient air flow to prevent the combustion operation from being performed. Prevention of danger due to the increase in generated amount.
  • combustion device of the present embodiment is directed to a water heater similar to that shown in FIG. 3, and the same reference numerals are given to the same names, and the description thereof will not be repeated.
  • FIG. 17 shows a block configuration of the characteristic life determining means of this embodiment.
  • the unique life determining means includes a combustion control unit 1017, a fan rotation control unit 1018, and a diagnostic mode operation unit 1021 that performs an operation in the appliance life diagnostic mode. ing.
  • the configurations and operations of the combustion control unit 1017 and the fan rotation control unit 1018 are the same as those described above, and the description thereof will not be repeated.
  • the diagnostic mode operation unit 1021 includes a target value designation unit 1022, a fan rotation command unit 1023, a fan rotation monitoring unit 1024, a validity determination unit 1025, a combustion capacity down control unit 1026, and a life. It has a judgment section 1027 and an evening image 1031.
  • the operation in the diagnostic mode operation unit 1021 is performed in a non-burning state of the parner 2.
  • the diagnostic mode is that the fan rotation speed of the combustion fan 3 exceeds the upper limit of the fan control characteristic data shown in FIG. 16 during the combustion operation. It is carried out after the combustion is stopped by. This limit
  • the evening value is a value obtained from the boundary point where the amount of carbon monoxide, hydrocarbons, nitrogen oxides, etc. in the exhaust gas increases due to incomplete combustion.
  • the target value specifying unit 1022 specifies one or more sensor output target values of the air flow detection sensor 16 when performing the life diagnosis.
  • the sensor output target value specified in the memory or the like may be input and stored in advance, or the target value may be specified by keyboard or keyboard. It is also possible to adopt a configuration in which input is specified externally by using a password, memory card, or the like.
  • the sensor output target values V S1 to V SN specified by the target value specifying unit 1022 are added to the fan rotation coupling unit 23.
  • Fan rotation command unit 1023 adds the fan rotation controller 18 over collectively the specified sensor output target value V S 1 ⁇ V SN or sequential predetermined time.
  • fan rotation Sashiawase 10 23 or racemate capacitors output target value V S 1 is Ri by the and this applied, fan rotation controller 1018 outputs cell down support of the air flow detection cell down support 16
  • the rotation control of the combustion fan 3 is performed so that the output target value Vs is obtained.
  • air volume detection cell burning off ⁇ output of capacitors 16 in earthenware pots by that Do and V s 2 Control the rotation of pin 3.
  • the rotation control of the combustion fan 3 that was different from the sequentially down output target value is performed.
  • the timer 1103 is used, and the fan rotation monitor unit 1024 detects the fan rotation speed R and T at intervals of T seconds. and stores it in the Note Li crowded Ri sequentially retrieve the ⁇ R M.
  • the validity judging unit 1025 detects and stores the number of detected fan rotations each time the fan rotation monitoring unit 1024 detects and stores the fan rotation speed of each sensor output target value.
  • the variation fluctuation range is within the set fluctuation range
  • the surrounding environment where the water heater is installed is in a calm state
  • the detected and stored data is a reliable and effective data. Judgment that it is.
  • the fan rotation monitor unit 1024 is informed of the fact, and the process proceeds to the detection and storage of the fan rotation speed at the next sensor output target value.
  • the fluctuation range of the fan rotation speed deviates from the set fluctuation range, it is determined that the wind is unstable.
  • the validity judging unit 1025 determines whether the fluctuation range of the fan rotation speed data detected and stored by the fan rotation monitoring unit 1024 is out of the set fluctuation range. Instructs to repeat the detection and storage of erased data and the detection and storage of fan speed data again. When the fluctuation range of the fan rotation speed detection storage data falls within the set fluctuation range, the next sensor output command the detection and storage of the fan rotation speed of the target value, and Sensor output target value The fan speed data for each fan is detected and stored under stable windless conditions.
  • the detection value of the airflow detection sensor fluctuates vertically and asymmetrically with respect to the zero point of the sensor.
  • the fluctuation width of the wind increases as the wind speed increases.
  • the validity judging unit 1025 compares the fluctuation range of the detection value of the airflow detection sensor 16 with the set fluctuation range, and sets the set fluctuation range (the set fluctuation range is given by the upper limit level and the lower limit level). However, depending on the case, it may be given only at the upper limit level. When it deviates from the upper limit level (when the setting fluctuation range is given only at the upper limit level) ) Is judged to be windy. If the fluctuation range of the detection value (sensor output value) of the air flow detection sensor 16 is within the set fluctuation range, it is determined that there is no wind stability.
  • a lifetime as shown in FIG. 18 is given to the life determining unit 1027 in advance.
  • the fan rotation speed becomes large relative to the same sensor output target value for the fan control characteristic data RI at the initial stage of installation of the water heater without deterioration due to ventilation clogging.
  • the input down data RB is provided to the input side, and the same sensor output is supplied to this input down data.
  • the life judgment data RC is given to the side where the fan rotation speed is higher than the force target value. This input down time overnight RB is the first judgment value, and the life judgment data RC is the second judgment value. Life determination unit 1027, FIG.
  • each sensor output target value V S 1 ⁇ V SN average value of the detected stored fan revolution speed detection storing data for each RA, the ⁇ RA N The average value of the fan rotation speed of each sensor output target value obtained RA!
  • the ⁇ RA N is compared with the data shown in FIG 8.
  • the down amount of the combustion capacity may be given as a predetermined fixed amount, and the combustion capacity may be gradually reduced every time a down command of the combustion capacity is issued. Alternatively, according to the number of fan rotation speed average values in the area between the input down data RB and the life judgment data RC, the amount of combustion capacity down is proportionally reduced. The configuration may be such that it is reduced.
  • the combustion control section 1017 Upon receiving the combustion capacity down command from the combustion capacity down control section 1026, the combustion control section 1017 reduces the valve-opening drive current applied to the proportional valve 14 by the combustion capacity down amount. To reduce gas supply to facility 2.
  • the life judgment unit 1027 each cell down output target value V s, ⁇ V SN every fan rotational speed average value RA, Chi sales of ⁇ RA N, life determination data (lifetime determination data If there are any exceeding the RC line), count the number.
  • L 2 L 2 is an integer of 1 or more
  • the rotational speed is an upper limit Li Mi Tsu evening combustion fan 3 - Zhang Ri attached to The fan speed cannot be increased any further.Even though it is the maximum speed in the rotation control range, the airflow is insufficient due to clogging and deterioration, and the combustion performance is degraded.
  • Judge and output the life signal When this life signal is output, the solenoid valve 13 is forcibly shut off and held, the supply of fuel is prohibited, and the combustion stops in a locked state. Combustion operation is prevented.
  • the life determination unit 1027 If the average value of the fan rotation speed of each sensor output target value does not reach the input down data RB, the life determination unit 1027 If the average value data exceeds the number L, even if it exceeds the average RB, it is judged that the ventilation clogging has not deteriorated and it is appropriate (normal). The signal of is output.
  • the notification unit 1030 receives the signal of each determination result of the life determination unit 1027, and notifies the determination result differently.
  • a character or symbol is displayed on the liquid crystal screen, or a distinction is displayed based on various modes such as lighting or blinking of a lamp, or the like.
  • the judgment result is determined by the life judgment unit 1027 based on an appropriate specification such as sounding a buzzer. The judgment result is notified separately.
  • the second embodiment is configured as described above. next
  • step 1101 indicates that the water heater is in the combustion operation.
  • the combustion control unit 1017 applies a valve-opening drive current corresponding to the required amount of combustion heat to the proportional valve 14.
  • step 1102 the sensor output target value of the airflow detection sensor according to the required combustion heat is determined.
  • step 1103 the voltage applied to the combustion fan 3 is controlled so that the sensor output of the air flow detection sensor 16 matches the sensor output target value, and the rotation of the combustion fan 3 is controlled. Will be
  • step 1104 the fan rotation speed is detected.
  • step 1105 it is determined whether or not the detected fan rotation speed of the combustion fan 3 has reached the upper limit of the fan control characteristic data shown in FIG. 16. . If the fan speed has not reached the upper limiter, it is determined that the fan is in the normal airflow control state, and the combustion operation is continued as it is. . On the other hand, when the detected fan rotation speed exceeds the upper limiter, the combustion operation is stopped immediately in step 1106, and the life diagnosis mode shown in FIG. Move to the operation of.
  • the sensor output target values V S1 to V SN are set in step 121 of FIG.
  • the combustion fan 3 is started to rotate.
  • Sensor output air volume detecting sensor 16 is fan rotation speed Cormorants by matching Initial sensor output target value V s is controlled.
  • the timer 1031 is turned on from the reset state, and after waiting for time T to elapse, the fan rotation detection sensor 28 causes the combustion fan to be turned on. Detects the rotation speed of fan 3 and stores it in memory.
  • the rotation speed detection and storage operation of the combustion fan 3 is repeated every T seconds, and the M fan rotation speed detection data R, to RM (M is an integer of 1 or more) are stored. Store in memory.
  • step 1207 it is again determined whether or not the variation range of the detection storage data is smaller than the set variation range e. If the variation range is outside the set variation range e, the determination is repeated. Return Returns the sensor output detection and storage operation at the sensor output target value.
  • step 1207 When it is confirmed in step 1207 that the variation fluctuation width falls within the range of the set fluctuation width e, it is determined that there is no wind, and the sensor output target value V S fan rotation speed detected in 1 Out of the storage data is be handled by as a valid data, detecting and storing data R in the stearyl Tsu-flops 1208, the average value RA of ⁇ R M, is Me GaMotomu.
  • sensor output target value V S 1 ⁇ V SN to the average value RA of the fan rotation speed so as to correspond, after the obtained values of ⁇ RA N, in the stearyl-up 1211 Is performed.
  • RA is the input down data RB!
  • Their to, fan rotational speed average value RA, Chi sales of ⁇ RA N, in the region between Lee emissions flop Tsu preparative down de one evening RB La Lee emission and lifetime determination de one evening RC La Lee down Calculate the number of fan rotation average data. If the number is equal to or greater than a predetermined reference number, a combustion capacity down signal is output.
  • life determination data RC la least two fan rotational speed average value L of the pre-given set reference number in a region beyond the fin to come to have Tsu Day TagaIri's is determined with an instrument life And a life signal is output.
  • the down command signal of the combustion capacity When the down command signal of the combustion capacity is output, the down control of the combustion capacity is performed as described above, and the gas supply amount is reduced to solve the shortage of the air amount. To enable the next combustion operation.
  • the combustion stop state is locked (the combustion operation is not accepted) to prevent the combustion operation from being performed in a state where the combustion is deteriorated due to the clogged ventilation. I do. And these life judgment operations
  • the determination result in is notified by the notification unit 1030 in a distinguished manner.
  • the life of the appliance is not reached, but if the ventilation is somewhat clogged and the combustion operation is performed with insufficient air, the combustion capacity is reduced.
  • the fingering signal is output, and the combustion capacity is down-controlled. Therefore, it is possible to continue the combustion operation in a state where the shortage of the air volume has been eliminated, and to operate the water heater with the deterioration of combustion eliminated until the water heater is replaced with a new product. It is very convenient because it can be used without any problems.
  • the burner combustion when the operation in the tool life diagnosis mode is performed, the burner combustion is stopped, so that the reliability of the life diagnosis operation is further improved.
  • the ventilation resistance of the air passage (air passage) from the combustion fan 3 to the exhaust passage 29 differs between when the burner 2 is burning and when the combustion is stopped. It is known that the ventilation resistance during burner combustion is higher than during combustion stop. This increase in airflow resistance depends on the amount of heat of combustion.
  • the life since the life is determined in the combustion stopped state, the life can be determined in a steady state where the exhaust resistance of the air passage does not fluctuate, so that the accuracy and reliability of the life determination are improved. Therefore, the effect of further increasing the effect can be obtained.
  • a plurality of sensor output target values are specified, but only one sensor output target value may be specified.
  • a plurality of fans are provided for each sensor output target value.
  • the number of rotations to RM is detected, only the number of rotations of one fan may be detected.
  • the calculation for obtaining the average value is omitted, and the detected data means the average value in the present invention as it is.
  • the operation of detecting the fan rotation speed means the operation of obtaining the average value of the fan rotation speed.
  • the judgment operation can be performed in a short time. It can be.
  • a plurality of sensor output target values and detecting a plurality of fan revolutions as in the present embodiment, it is possible to improve the accuracy of the life determination.
  • the fan rotation speed of the combustion fan 3 exceeds the upper limit of the fan control characteristic data
  • combustion is immediately stopped to shorten the life. Moved to diagnosis operation, but this is not the case.
  • the life diagnosis command flag is set.
  • the treatment may be performed, and then, at an appropriate time, for example, when the device is not used after being used for combustion or before the next combustion, the life diagnosis may be performed. In this way, when performing the life diagnosis after using the appliance, even if the fan rotation speed exceeds the upper limit, combustion is not stopped and the appliance can be used continuously. Therefore, there is no inconvenience to the user, which is advantageous in terms of usability.
  • the degree of safety is classified according to the degree to which the fan rotation speed exceeds the upper limiter, and if the risk is the highest, combustion is stopped immediately to diagnose the life. If the risk is low (small), the combustion operation can be continued and the life can be diagnosed at an appropriate time after the use of combustion. You.
  • the fan provided to prevent runaway of the combustion fan 3 is set as the upper limit of the fan rotation speed as a reference for performing the life diagnosis.
  • the upper limiter of the control characteristic data was used as a substitute, but the upper limiter dedicated to life diagnosis is set independently of the upper limiter for runaway prevention and fan rotation. After the number exceeds the set upper limiter dedicated to life diagnosis, the life diagnosis may be performed as in the above cases.
  • the rotation of the combustion fan is controlled so as to maintain the air flow at the target value, and the rotation speed is monitored, but the rotation speed of the combustion fan is maintained constant.
  • the method of monitoring the detected airflow of the airflow sensor is technically the same.
  • the input down data is the first airflow judgment value lower than the appropriate airflow
  • the life judgment data is the second airflow judgment value lower than the first airflow judgment value. It becomes. If the detected airflow of the airflow sensor when the fan is rotated at a constant speed is lower than the first airflow determination value, operation in the input-down mode is performed. If it is done and it is lower than the second airflow determination value, the supply of fuel to the burner is prohibited.
  • the outline of the third embodiment is as follows.In the initial stage of the combustion equipment, the initial value is the air volume when the combustion fan is rotating at a constant speed under no wind. At the regular interval time, measure the same airflow under no wind and compare the two values to judge the service life.
  • a plurality of detection outputs of the airflow detection sensor when the rotation of the combustion fan is zero when the bar is not burning are taken.
  • the situation determination unit determines that the wind is stable.
  • the initial value determination section determines the initial value of the sensor when there is no wind based on the detection output of the airflow detection sensor in the stable state of no wind, and stores it in memory or the like.
  • the combustion fan is cultivated under the set reference conditions, and when the situation determination unit determines that the wind is stable, the sensor for the airflow detection sensor is used.
  • the sensor output is taken in, and based on this detection data, an initial value that is used as a criterion for judging the deterioration of the sensor output is determined and stored in a memory or the like.
  • the burner is not burned at a predetermined regular interval.
  • the combustion fan is rotating at zero speed, no wind is generated due to the output of the airflow detection sensor.
  • a determination is made as to whether the situation is stable.
  • the amount of change in the sensor output value with respect to the sensor initial value at that time is obtained.
  • this variation exceeds a predetermined sensor determination reference value, it is determined that a sensor failure has occurred, and a determination signal is output.
  • the burner is not burned, and the combustion fan is rotated under the same set standard conditions as when the initial value was determined.
  • the amount of variation between the two is calculated, and when the amount of variation exceeds a predetermined reference value, a warning signal is output to notify the clogged and deteriorated ventilation.
  • FIG. 22 shows a characteristic configuration of the present embodiment.
  • the sampling unit 2025 is, for example, based on when the power of the appliance is turned on, and when the power is turned on, starting from the power on, At a predetermined periodic interval, which is given in advance, for example, at a predetermined interval, such as after one day, one week, one month, etc.
  • the output of the airflow sensor 16 is captured using the clock mechanism 2035 such as an image sensor. Then, it is added to the situation determination unit 2026, the initial value determination unit 2027, the input down control unit 2033, and the ventilation deterioration stabilization unit 2032 as appropriate.
  • the condition determination unit 2026 is given in advance an allowable range e of the variation in the output of the air flow sensor 16 in a no-wind condition, as shown in FIG.
  • the output of the intake air flow sensor 16 fluctuates.
  • the sensor output of the air flow sensor 16 is effectively detected. It is intended to be used as data.
  • the condition determination unit 2026 includes a plurality of airflow sensors 16
  • the output is acquired at a predetermined timing (for example, 10 data are acquired at an interval of 0.1 second), and the fluctuations of the plurality of data are dispersed.
  • a predetermined timing for example, 10 data are acquired at an interval of 0.1 second
  • the fluctuations of the plurality of data are dispersed.
  • the judgment result of the no-wind stable state may be added to the initial value determination unit 2027 and the ventilation deterioration determination unit 2032.
  • the airflow sensor 1 taken in when the burner 2 is not burning and the combustion fan 3 is at zero rotation
  • the sensor output of the air flow sensor 16 is determined as the sensor initial value, and the non-volatile Stored in memory 2028.
  • the minimum value or the average value of a plurality of acquired data is set as the initial value. No data will be collected if the wind condition is judged by the condition judgment unit 2026.
  • the initial value determination unit 2027 determines the initial value of the sensor when there is no wind, and then sets the combustion fan 3 to the set reference condition without burning the burner 2, and in this embodiment, the combustion fan The motor rotates at the maximum fan speed in the rotation control range of motor 3. And the wind A plurality of outputs of the quantity sensors 16 are acquired via the sampling section 2025 in accordance with a predetermined sampling timing given in advance. Then, based on the acquired data, it is confirmed that the situation judgment section 2026 has determined that the airflow is stable without wind. Reference value for judging the initial value of the sensor output at the time of the maximum rotation of the combustion fan 2 based on the output of 6 (no detection data is taken in the presence of wind) And store it in memory 2028.
  • the fan drive unit 2029 when determining the initial value of the initial value determination unit 2027, receives a command to rotate the combustion fan 3 at the maximum rotation speed from the initial value determination unit 2027.
  • the combustion fan 3 is driven to rotate according to the command.
  • the fan drive unit 2029 receives the fan drive command from the ventilation deterioration stabilizing unit 2032 in the same manner as in the case of the initial value determination unit 2027, and activates the combustion fan 3. It rotates at the maximum speed of the control range.
  • the ventilation deterioration determination unit 2032 obtains the output value of the air flow sensor 16 at a predetermined interval time. Put in. Then, when the situation determination section 2026 determines that the wind is stable, the combustion fan 3 is set to the fan drive section 2029 at the maximum rotational speed of the set reference condition. Add rotation command.
  • the condition determination unit 2026 determines that there is no wind under the condition that the burner 3 is not burning and the burner 3 is not burning. Have been Then, the ventilation deterioration determination unit 2032 obtains the output value of the air flow sensor 16 applied through the sampling unit 2025 at a predetermined sampling timing. Put in. Then, the variation of the output of the airflow sensor 16 with respect to the initial value for judging ventilation deterioration is obtained. In this embodiment, the absolute value of the difference between the initial value and the value of the inspection data is obtained. This variation is compared with a predetermined reference value, and when the variation exceeds the determination reference value, it is determined that clogging and deterioration of ventilation in the appliance has occurred.
  • clogging and deterioration of the ventilation in the equipment may be caused by soot clogging in the hot water supply heat exchanger 4, the air supply port (not shown), the curved part of the propeller of the combustion fan 3, or the pan fin. Dust and the like also accumulate and accumulate in holes and the like in gutters (not shown). Also, it is caused by the adhesion of dust to Nokuna 2.
  • the life judging unit 2031 rotates the combustion fan 3 during the combustion operation by burning the burner 2 after receiving the warning signal of the clogging and deterioration of the ventilation from the ventilation deterioration judging unit 2032. Detect the speed and determine whether it exceeds the maximum speed, which is the upper limit of the control range. If the upper limit of the control range is exceeded, it is judged that the ventilation state in the appliance has become severely clogged, and the life state is such that the air amount required for combustion cannot be supplied. Then, a danger warning signal is output, the burner combustion of the water heater is immediately stopped, and after that, a function such as not accepting a combustion command is added to disable the combustion operation of the appliance thereafter. I do.
  • the input down control unit 2033 obtains the ratio of the value of the inspection data taken at each periodic interval to the initial value, and calculates the ratio in advance. When the ratio becomes smaller than the given judgment ratio, it is judged that the ventilation deterioration due to soot clogging etc. has not reached the service life yet but has advanced considerably. Then, even if the ventilation is blocked, the valve opening drive current to the proportional valve 4 is controlled so that the amount of air required for combustion can be secured, so that the valve opening amount of the proportional valve 4 is reduced.
  • the throttle is controlled so as to reduce the amount of fuel supplied to the bar 12.
  • the sensor failure determination unit 2030 determines whether the burner 2 is in a non-combustion state after both the initial value of the ventilation deterioration determination and the sensor initial value are determined by the initial value determination unit 2027.
  • the output value of the airflow sensor 16 when there is no wind is compared with the initial sensor value when there is no wind at every interval I do. That is, the amount of fluctuation of the sensor output value with respect to the sensor initial value is determined, and when this fluctuation exceeds a predetermined sensor judgment reference value, a sensor failure is determined and the Outputs a sensor failure judgment signal.
  • the display means 2034 includes a ventilation deterioration warning signal added from the ventilation deterioration judging section 2032, a danger warning signal added from the life judging section 2031 to inform the life of the appliance, and a sensor failure judging section. 20
  • the sensor failure judgment signal added from 30 is received, and these signals are distinguishably displayed on a desired display unit such as a remote control, for example.
  • the display means 2034 can be distinguished by, for example, displaying symbols on the liquid crystal screen according to the respective modes. More distinctive indication, or by visually changing the lighting or blinking state of the lamp, or by using a buzzer, etc., the buzzer volume, continuous sound, intermittent sound, etc.
  • Various distinctive display configurations can be employed, for example, the display is made differently according to the length of the intermittent time.
  • FIG. 23 shows an operation in which the initial value determination unit 2027 determines the initial value of the sensor no-wind output and the initial value of the ventilation deterioration determination.
  • This operation is performed when the power of the equipment is turned on during inspection after manufacture of the equipment, or when the power is turned on after the installation of the equipment, or by setting a finger button or the like in the initial value confirmation mode. This is performed at an appropriate time, such as when an operation command is issued by using this button.
  • m 0 is set.
  • step 2101 it is determined whether burner 2 is in a non-combustion state. This determination is made by detecting the signal of the frame opening electrode 20. If it is determined that the combustion is non-combustion, it is confirmed in step 2102 that the rotation of the combustion fan 3 is stopped.
  • step 2103 the sensor output of airflow sensor 16 is read.
  • An inset is performed.
  • step 2104 it is determined whether the reading of the sensor output has been completed, that is, whether or not T minutes have elapsed.
  • the reading of the sensor output is performed, for example, at a rate of one per 0.1 second. It is determined in step 2104. If it is determined that T minutes have elapsed, the difference between the maximum value (MAX) and the minimum value (MIN) of the sensor output values read in step 2105 is calculated. The difference between the maximum value and the minimum value, that is, the fluctuation range of the acquired sensor output is within the allowable range.
  • MAX maximum value
  • MIN minimum value
  • step 2105 if it is determined in step 2105 that the difference between the maximum value and the minimum value is within the range of eI, the minimum value among the plurality of read data is obtained.
  • the mean in this case the mean, is stored in memory as VM, N (m) (in this case, m, 0, VM, N (0)).
  • This V MIN (0) is one of the initial sensor values when there is no wind o
  • Step 2107 the combustion fan 3 is rotated at the maximum number of revolutions in the control range (3000 rpm in this example) without burning the burner 2 in Step 2107, and in Step 2108, the sensor of the air flow sensor 16 is rotated. Out Perform a force read.
  • step 2109 a plurality of data readings of the sensor output value are performed, and it is determined in step 2109 whether or not the reading time has elapsed.
  • the reading time has elapsed
  • the can with the difference between the maximum value and the minimum value stearyl-up 21 10 is one input to e 2 of the set allowable variation range, it is determined that no wind stable situation. Its to, Chi sales of multiple data that has been read, a maximum of also of, there have an average value (average value in the example of this), V MA X (m) ( in the case of now times m is 0 der Runode, store in Note Li as a V MA X (0)). This is one of the initial values for ventilation deterioration judgment.
  • step 2112 it is determined whether m is 3 or not. If the m-force has not reached 3, m is incremented by one in step 2114. (In this case, m is incremented from 0 to 1.)
  • step 2115 wait one week. Then, the operation after step 2101 is performed again. By performing the operations after step 2101 in this manner, the initial sensor values in the absence of wind from four V MIN (0) to V M , until m becomes 3 are obtained. N. (3) the value of the value of the four initial values V MAX for ventilation deterioration determination (0) ⁇ V MA X ( 3) is stored.
  • Steps 2100 to 2113 largest Ri by the operation the water heater is calm Tokise capacitors initial and V M during fan zero rotation of the feeder and Ri is not clogged ventilated immediately placed construction, and N, the combustion fan
  • V MAX the initial value
  • Figure 24 shows the initial value V MAX and the sensor initial value when there is no wind.
  • step 2200 After V, and ⁇ are determined and recorded, at regular interval time intervals, for example, ventilation deterioration and equipment life, which occur every L times or every ⁇ months, etc. This is the action flow to make a decision.
  • step 2201 the same operation as that of steps 2101 to 2111 of the flowchart shown in FIG. 23 is performed.
  • Sensor output V ⁇ ( ⁇ ) and Tube Sensor output V ⁇ ( ⁇ ) and Tube.
  • the absolute value of the difference between the sensor no-wind output initial value V MIN previously determined and stored in step 2202 and V MIN (N) determined in step 2201 is calculated as the amount of change.
  • This variation is compared with a sensor determination reference value given in advance, in this embodiment, the tolerance range of the air flow sensor 16 to determine whether the variation falls within the tolerance range. I do . If the variation is out of the tolerance range, it is determined in step 2209 that the airflow sensor 16 has failed, and the sensor failure determination unit 2030 outputs a sensor failure determination signal. Is output and a display to that effect is displayed on the display means 2034. When the variation is within the tolerance range, the air flow sensor 16 is determined to be normal, and the operation proceeds to the next step 2203.
  • V ⁇ is the sensor of the air flow sensor 16 when the fan rotation speed of the combustion fan 3 is changed during non-combustion.
  • the sensor output is shown.
  • This VA1 data is the data for A, when the passage area through which the wind in the instrument is not completely blocked.
  • the relationship data between the fan rotation speed and the sensor output when the closing ratio is changed in multiple stages, for example, the closing ratio is 90%, 60%, 50%, and 3.0%. Is required separately.
  • This V A1 data is obtained immediately after the appliance has been manufactured, with no blockage of the ventilation yet ⁇
  • V A 2 of graph data is variable during the entire Ku no state of deterioration Jam passing wind like immediately after the production of the same rather instrument, a bar one Na 2 by combustion, the fan rotational speed
  • This is a graph showing the sensor output of the airflow sensor 16 at that time.
  • the ventilation resistance is higher during combustion than during non-combustion.
  • the passage area with the passage area blocked by Y% is 2 % of the normal output V A 1 during non-combustion. data of the fan speed and the sensor output is present What Do the equivalent data of V a 2 at the time of non-combustion.
  • V A3 indicates sensor output data at the time of non-combustion and abnormalities where clogging and deterioration of ventilation occur
  • V A3 is the above known value of V A. It is obtained from 1 , A2 and A4 by the following formula.
  • V A 3 V A 1 x A 4 / A 2.
  • the passage area of the ventilation when the graph data of V A1 is A and that the blocking area is V A2 , VA 3, and V A 4 with respect to the passage area A, respectively.
  • graph data V a 3 of the door-out of the passage area a 3 the graph data V a 4 DOO Kino passage area is given as the value of a 4.
  • Abnormal corresponding sensor output V A3 at the time of non-combustion in the present embodiment a value obtained by multiplying the ratio V A 3 constant K to ZV A 1 of the normal sensor output V A 1 during the non-combustion as a determination ratio Is set. Its to, in stearyl-up 2203, since the deterioration of jams ventilation in-out door V MA X ratio is equal to or greater than the determination ratio of (N) for the V MA X is in La no good combustion conditions, such as the problem, this In this case, the combustion operation of the water heater is performed in the normal operation state of the combustion control.
  • step 2204 it is determined whether or not the rotation speed of the combustion fan 3 has reached the maximum rotation speed in the control range. When the combustion fan reaches the maximum speed Otherwise, even if the effects of clogging and deterioration of the ventilation occur, there is room to increase the air volume, so in this case, normal combustion operation control is performed.
  • the input down control unit 2033 executes the ' The combustion operation is performed by controlling the gas supply amount to the burner 2 in the direction of decreasing X%.
  • the sampling unit 2025 determines whether the next predetermined period of time, for example, whether the number of combustion times L or M months has elapsed, is performed by the clock unit 2035. When the interval time has arrived, N is increased to 1 in step 2208.
  • Step 22 1 2 It is judged that clogging of the burner or soot clogging of the hot water supply heat exchanger 8 caused clogging and deterioration of ventilation. To output a warning signal, and the display means 2034 indicates that.
  • step 2213 during the operation in which the water heater burner 2 is burned after the warning signal is output, the fan rotation speed of the combustion fan 3 increases the maximum rotation speed of the control range. It is determined whether or not the rotation speed (upper limit) has been reached. When the fan rotation speed has not reached the upper limit, combustion operation is continued because there is still room in the direction in which the rotation of the combustion fan 3 is to be ablated. However, when the fan rotation speed exceeds the upper limit, the clogging and deterioration of the ventilation are considerably worse, and even if the rotation of the combustion fan is set to the maximum rotation, the combustion It is determined that the life state is short of the amount of air, and in this case, the life determination unit 2031 outputs a danger warning signal indicating the life. Then, the danger message is displayed on the display means 2034, the combustion operation of the partner 2 is forcibly stopped, and the subsequent combustion of the partner is disabled, resulting in poor combustion. Avoid danger.
  • the setting reference condition of the combustion fan is set at the maximum number of revolutions of the rotation control range of the combustion fan 3, but the maximum The rotation speed may be set slightly lower than the rotation speed, and the set reference condition may be given not by the rotation speed but by the drive current and work amount of the combustion fan 3. You can do it.
  • the ventilation deterioration judging unit 2032 determines the ventilation deterioration as shown in Step 22 of the flowchart in FIG. , but it was determined the amount of variation in One by the absolute value of the difference between the draft decision of deterioration of the initial 16 ⁇ VMAX and inspection data V MAX (N), Unlike this, of this time i te one Bal time
  • the absolute value of the difference between the inspection data V MA x (N + 1) captured at the previous interval and the inspection data VMAX (N) captured at the previous interval time that is,
  • the amount of change in the interval intake inspection data is the amount of change that determines ventilation deterioration based on the absolute value.
  • the value D may be compared with that of the above-described embodiment, and the deterioration of the ventilation clogging may be determined by the ventilation deterioration determining unit 32. In this way, it is not necessary to consider the case where the initial value of the sensor fluctuates with the passage of time. Is known. This may be due to the fact that the heat exchanger is oxidized first, causing incomplete combustion of the wrench, resulting in more soot and more airflow clogging. Will be understood. Therefore, there is no practical problem by comparing with the previous data.
  • the situation determination unit of the above embodiment distinguishes between a stable windless situation and a windy situation based on the degree of variation in the detection data of the air supply amount detection sensor (airflow sensor 16). .
  • the number of revolutions of the combustion fan 3 is controlled so that the sensor output of the air flow sensor becomes constant, and the fan rotation detection sensor detects the rotation speed of the combustion fan 3 at this time.
  • the fluctuation range of the fan rotation speed is within the set allowable fluctuation range, it is determined that there is no wind stability, and when it is out of the set allowable fluctuation range, it is determined that there is wind. Good.
  • the fan drive current and work amount are detected instead of the fan rotation speed, and whether or not the fluctuation range of the detected data is within the set allowable fluctuation range. In the same way, it may be possible to distinguish between a stable windless situation and a windy situation.
  • the determination of ventilation clogging and deterioration is also determined by the fan rotation speed and the like.
  • the determination can be made based on the magnitude of the variation in the driving conditions.
  • the drive conditions such as the fan rotation speed when the ventilation output that has the sensor output of the airflow sensor at the set value has not occurred are set as the initial values. Good.
  • determine the driving conditions such as the fan speed at which the sensor output of the airflow sensor has the same set value.
  • the initial value of the sensor in the absence of wind when the combustion fan is at zero rotation when there is no clogging deterioration of the ventilation fan, and the combustion fan is determined based on the set reference conditions.
  • the initial value of the judgment of deterioration of the ventilation when rotating is fixed and stored in advance as a non-combustion state in advance, and is stored at predetermined intervals.
  • the clogging and deterioration of the ventilation are detected based on the amount of change in the inspection data to be entered from the initial value. Therefore, it is possible to determine the initial value of the air flow sensor having characteristics that vary depending on the combustion equipment, not at the time of shipment from a factory, but in a state according to the environment after construction. As a result, it is possible to more accurately determine the life due to deterioration of the ventilation clogging.
  • the detection data of the airflow sensor when the rotation of the combustion fan is zero at every interval time is acquired, and the sensor at the time of no wind is acquired. Since the presence or absence of a sensor failure is determined by calculating the amount of fluctuation with respect to the sensor initial value, the sensor output value is a valid value regardless of the sensor failure. As a result, it is possible to increase the reliability of the judgment of ventilation clogging and deterioration and the processing
  • the airflow sensor # 6 in a no-wind state fluctuates from the initial value by a tolerance or more, it is determined that the airflow sensor has failed.
  • the airflow sensor can be used continuously by correcting it to the initial zero point by the amount of the fluctuation. Can be done.
  • the fourth embodiment is characterized in that the zero point value, which is the output value of the airflow sensor 16 in a no-wind state, is detected and corrected.
  • Figure 26 details the zero point detection flow.
  • the zero point correction is performed at the time of cold start.
  • the air flow sensor 16 0 is given to the maximum value V omax and the minimum value V omin of the output value.
  • step 3001 the output value V0 of the air flow sensor 16 is recorded in the memory.
  • step 3002 the output value V 0 of the air flow sensor 16 recorded in the memory is compared with the 0-point output upper limit value V 0 max 1 imit recorded in the same manner. With, 0 point output lower limit Also compare with V o minlimit.
  • step 3003 to step 3004 if the output value V 0 is equal to or less than the 0-point output upper limit value V 0 max1 imit and equal to or greater than the 0-point output lower limit value V o minlimit, The output value Vo of the sensor 16 is sequentially sent to the memory 30 as the recording data Vo, i.
  • step 3002 the output value V 0 becomes the 0-point output upper limit
  • V 0 ma X 1 imit or more, or 0 point output lower limit value V o minlimit or less the sensor output value V o is stored in memory as inappropriate data. It is erased from. Then, in step 3013, the number of times that the incorrect data signal has been output to memory is recorded.
  • the sensor output value Vo, i stored and adopted in the memory is set to the maximum value Voma, and the maximum value Vomax is used next.
  • the data to be processed is compared with V o, i, and the larger value is stored in memory as the maximum value V o max. In this way, the maximum value Vo max is selected from the sensor outputs Vo and i which are sequentially adopted in step 3002.
  • the minimum value Vo min is selected from the sensor output values Vo and i in the same manner as described above.
  • step 3009 the difference between the maximum value Vo max and the minimum value Vo min is sequentially calculated, and the difference between the two is compared with the allowable fluctuation range e. Wind is generated The sensor output is detected again as incorrect data. On the other hand, if the difference is within the allowable range, it is determined that there is no wind, and the detected data is recorded in memory as an appropriate data.
  • step 3010 is the sensor output value V o, i stored in the memory as an appropriate delay in a no-wind condition reached to a predetermined number t?
  • a predetermined number t of recording data Vo, i is adopted as the data for correction.
  • step 3011 the average value of the correction data is calculated, and the average value is stored in the memory as the zero-point correction value V0 of the airflow sensor 16 and thereafter, It will be used for determining the service life and controlling the air flow.
  • the zero point value obtained as described above is used as a new zero point using the airflow sensor corrected. Then, it moves to the post fan ignition sequence and enters the normal combustion operation.
  • the burner 2 is configured with the three-stage combustion switching system.
  • the burner 2 may be configured with a multi-stage combustion switching system other than the three-stage combustion switching system or with the combustion switching system. A burner other than the burner may be used.
  • the differential pressure in the upper and lower sections of the burner 2 sandwiching the burner 2 is detected by the differential pressure sensor 16 which is the air flow sensor.
  • this differential pressure can be detected by detecting the differential pressure between an arbitrary upstream and downstream section of the air flow path from the air supply section to the burner to the exhaust passage.
  • the path section for differential pressure detection such as the differential pressure in the section above, can be set to an infinite number of other sections.
  • the differential pressure sensor 16 was used as the air volume detection sensor.
  • a heat dicing heater for example, a heat dicing heater or The air volume can be detected directly or indirectly by using a Kalman vortex type wind speed sensor or by using a rotary air flow meter that detects the air volume directly.
  • a variety of available sensors can be used.
  • the setting control condition of the combustion fan is given by the fan rotation speed.
  • the setting control condition of the combustion fan depends on the driving current of the combustion fan and the amount of work. May be given under other control conditions. At this time, the combustion fan is rotated under these fan drive current and work load setting conditions, and the air flow detection value and the air flow judgment value are compared to determine whether the equipment is abnormal. Otherwise, the life is judged.
  • a combustion fan is required to determine the life or abnormality. This can be done by monitoring whether the motor is rotating at the above speed or if the output of the air flow sensor is less than necessary.
  • a single-purpose water heater (a water heater having only a hot-water supply function) has been described as an example of a combustion device.
  • the present invention is not limited to a hot-water supply and a reheating or a hot-water supply. It is applied to combined water heaters that have both functions such as hot water heating, and other combustion equipment that has various burners, such as bath kettles, heaters, air conditioners, air conditioners, and air conditioners.
  • the combustion fan 3 was pushed in, but this may be sucked out, which is a matter of course.
  • the combustion equipment according to the present invention can perform combustion control while suppressing the amount of exhausted carbon monoxide, hydrocarbons, and nitrogen oxides. It is possible to prevent incomplete combustion from occurring due to soot clogging in the inside or unexpected clogging of the exhaust port.
  • the present invention in order to prevent incomplete combustion, it is determined whether or not the relationship between the air volume and the rotation of the combustion fan is within a normal range. At that time, it monitors the output of the airflow sensor or the number of revolutions of the combustion fan when there is no wind in the outside world. Therefore, inspection without external influence It does not make unnecessary failure decisions.
  • the relationship between the air volume and the number of revolutions of the combustion fan is monitored, and if it is out of the normal state to the first range, the amount of gas supplied to the combustion burner is first reduced.
  • the input-down operation is performed first. If the relationship between the air volume and the number of revolutions of the combustion fan further deviates from the normal state to the second range, it is determined that the combustion equipment has reached the end of its life and the combustion operation is stopped. I'm doing it. As a result, unnecessary repair and disposal of combustion equipment can be eliminated.
  • the value of the air flow sensor can be appropriately used for each product and installation environment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

Combustion equipment which comprises a burner, a combustion fan for supplying air to and exhausting the burner, and an airflow sensor for detecting air volume flowing in an airflow passage leading to an exhaust passage from an air supply passage to the burner. In the equipment, an air volume judgement value providing a criterion of abnormality or life when the combustion fan is rotated at a predetermined number of revolutions is stored, a windless condition is detected when a variation in air volume detected by the airflow sensor with the combustion fan rotated at zero or a given number of revolutions is within a predetermined allowable range, and at that time abnormality or life is detected in the case where the air volume detected by the airflow sensor with the combustion fan rotated at the predetermined number of revolutions falls below the air volume judgement value. In this manner, whether a relationship between air volume and the number of revolutions of the combustion fan is favorable in a condition not influenced by outside wind can be properly judged to provide correct judgement of abnormality or life.

Description

明 細 書  Specification
異常ま たは寿命判定を行う 燃焼機器 技術分野 本発明は、 一酸化炭素、 炭化水素及び窒素酸化物等の 有害物質の排出量を低 く 抑えた燃焼制御を、 風量セ ンサ の出力 によ る風量制御 と燃料の供給量を制御する こ と に よ り 行う 給湯器、 風呂釜、 暖房器等の燃焼機器に関す る も のであ る。 背景技術 図 1 5には、 燃焼機器 と して、 一般的な給湯器の システ ム構成が示されている。 同図において、 燃焼室 1 の下方 側にはパーナ 2 が設置さ れ、 そのパーナ 2 の下方側には 給排気を行う 燃焼フ ァ ン 3 が設け られている。 そ して、 こ の燃焼フ ァ ン 3 には回転数検出セ ンサが設け られてい る。 燃焼室 1 の上方側には給湯熱交換器 4 が設け られて い る。 こ の給湯熱交換器 4 の入口側には給水管 5 が接続 さ れてお り 、 こ の給水管 5 に入水温度を検出するサー ミ ス 夕等の入水温度セ ンサ 6 と、 入水流量を検出する水量 セ ンサ 7 とが設け られている。 TECHNICAL FIELD The present invention relates to combustion control that suppresses emission of harmful substances such as carbon monoxide, hydrocarbons, and nitrogen oxides by using the output of an air flow sensor. It relates to combustion equipment such as water heaters, bath kettles, and heaters that are controlled by controlling the air volume and the amount of fuel supplied. BACKGROUND ART FIG. 15 shows a system configuration of a general water heater as a combustion device. In the figure, a burner 2 is installed below the combustion chamber 1, and a combustion fan 3 for supplying and exhausting air is provided below the burner 2. The combustion fan 3 is provided with a rotation speed detection sensor. Above the combustion chamber 1, a hot water supply heat exchanger 4 is provided. A water supply pipe 5 is connected to the inlet side of the hot water supply heat exchanger 4, and a water supply temperature sensor 6 such as a thermistor for detecting the water supply temperature to the water supply pipe 5 and a water supply flow rate. A water amount sensor 7 to be detected is provided.
ま た、 給湯熱交換器 4 の出側には給湯管 8 が接続さ れ てお り 、 こ の給湯管 8 には給湯熱交換器 4 か らの出湯温 度を検出するサー ミ ス タ等の出湯温度セ ン サ 10と、 出湯 流量を制御する水量制御弁 11が設け られている。 A hot water supply pipe 8 is connected to the outlet side of the hot water supply heat exchanger 4, and the hot water supply pipe 8 is connected to the hot water supply pipe 8. A tapping temperature sensor 10 such as a thermistor for detecting the temperature and a water quantity control valve 11 for controlling the tapping flow rate are provided.
前記バーナ 2 のガス供給通路 12には、 電磁弁 13と、 ガ ス供給量を制御する比例弁 14が設け らている。 ま た、 バ ー ナ 2 の下方側と排気通路 19と には、 風量セ ンサ と して 機能する差圧セ ン サ 1 6 の圧力導入管 20 a, 20 b の圧力 導入口が設け られている。 こ の圧力導入管 20 a , 20 b に よ っ て導かれるパーナ 2 の下方側空間 と排気通路 19間の 差圧が、 差圧セ ンサ 16に よ って検出 さ れている。  The gas supply passage 12 of the burner 2 is provided with a solenoid valve 13 and a proportional valve 14 for controlling a gas supply amount. Further, a pressure introduction port of a pressure introduction pipe 20a, 20b of a differential pressure sensor 16 functioning as an airflow sensor is provided below the burner 2 and the exhaust passage 19. I have. The differential pressure between the space below the parner 2 and the exhaust passage 19 guided by the pressure introducing pipes 20 a and 20 b is detected by the differential pressure sensor 16.
制御部 15には給湯器の給湯運転を制御する シ ー ケ ン ス プロ グラ ムが内蔵さ れている。 ま た制御部 1 5 には、 こ の シ ー ケ ン スプロ グラ ムに従って給湯運転を制御する制 御回路が設け られている。 こ の制御部 15は、 前記入水温 度セ ン サ 6 と、 水量セ ン サ 7 と、 出湯温度セ ンサ 10と、 差圧セ ンサ 16と、 リ モ コ ン (図示せず) か らの情報を受 けて、 電磁弁 13、 比例弁 14、 燃焼フ ァ ン 3 、 水量制御弁 11の動作を制御 して給湯運転を行う 。 パーナ 2 の燃焼に よ っ て給湯熱交換器 4 を通る水を リ モ コ ン等で設定さ れ る設定温度の湯に加熱 し、 こ の給湯熱交換器 4 で作 り 出 した設定温度の湯を給湯管 8 を介 して台所やバス ルーム 等の所望の給湯場所に導 く も のであ る。  The control unit 15 has a built-in sequence program for controlling the hot water supply operation of the water heater. Further, the control section 15 is provided with a control circuit for controlling the hot water supply operation in accordance with this sequence program. The control unit 15 is provided with the input water temperature sensor 6, the water flow sensor 7, the tap water temperature sensor 10, the differential pressure sensor 16, and a remote control (not shown). Upon receiving the information, the operation of the solenoid valve 13, the proportional valve 14, the combustion fan 3, and the water amount control valve 11 is controlled to perform the hot water supply operation. The water passing through the hot water supply heat exchanger 4 is heated by the combustion of the wrench 2 to hot water having a set temperature set by a remote controller or the like, and the set temperature generated by the hot water supply heat exchanger 4 is obtained. The hot water is guided to a desired hot water supply place such as a kitchen or a bathroom via a hot water supply pipe 8.
こ の給湯運転に際 し、 制御部 15は、 パーナ 2 の燃焼能 力 (燃焼量) に応 じて燃焼フ ァ ン 3 の回転制御を行っ て いる。 すなわち、 制御部 15には図 12に示すよ う なガス供 給量 と燃焼能力に関する燃焼制御デ一 夕 と、 図 13に示す よ う な風量 ( フ ァ ン回転数) と燃焼能力に閟する フ ァ ン 回転制御デー タ とが与え られている。 制御部 1 5内の演算 回路によ っ て、 入水温を設定温に高める要求熱量が時々 刻々 求め られている。 こ の要求熱量の燃焼能力及び図 1 2 のデー タ に応 じて、 比例弁 1 4の開弁量、 つま り 、 ガス 供給量が制御さ れる。 尚、 こ の開弁量は比例弁 1 4に加え られる開弁駆動電流によ って制御される。 同時に、 その 燃焼能力及び図 1 3 のデ一 夕 に応 じた風量に維持さ れる 様に フ ァ ン の回転数が制御さ れ、 パー ナ燃焼に最適な空 気量がパーナ 2 に供給さ れる。 During this hot water supply operation, the control unit 15 controls the rotation of the combustion fan 3 in accordance with the combustion capacity (combustion amount) of the parner 2. That is, the control unit 15 performs the combustion control data relating to the gas supply amount and the combustion capacity as shown in FIG. Such air flow (fan rotation speed) and fan rotation control data corresponding to the combustion capacity are given. The required amount of heat for increasing the incoming water temperature to the set temperature is constantly being calculated by the arithmetic circuit in the control unit 15. The opening amount of the proportional valve 14, that is, the gas supply amount, is controlled in accordance with the combustion capacity of the required calorific value and the data in FIG. This valve opening amount is controlled by the valve opening drive current applied to the proportional valve 14. At the same time, the rotation speed of the fan is controlled so that the combustion capacity and the air flow according to the data shown in Fig. 13 are maintained, and the optimal air flow for the burner is supplied to the burner 2. It is.
こ の風量の制御は、 前記差圧セ ンサ 1 6の差圧検出信号 に基づいて行われている。 すなわち、 制御部 1 5には、 図 1 4に示すよ う な差圧セ ンサ 1 6の差圧 と風量 (空気量) と の関係デー タが与え られている。 こ れによ り、 差圧セ ン サ 1 6で検出 さ れる差圧検出値に基づき実際の検出風量が 求め られる。 そ して、 要求風量 と実際の検出風量 とのず れを求め、 こ のずれを零に修正する方向に燃焼フ ァ ン 3 のフ ァ ン回転数を制御 して、 燃焼量に見合 っ た最適の風 量が供給 さ れるのである。  The control of the air volume is performed based on the differential pressure detection signal of the differential pressure sensor 16. That is, the control section 15 is provided with data on the relationship between the differential pressure of the differential pressure sensor 16 and the air volume (air volume) as shown in FIG. As a result, the actual detected airflow is obtained based on the differential pressure detection value detected by the differential pressure sensor 16. Then, the difference between the required airflow and the actual detected airflow was determined, and the fan rotation speed of combustion fan 3 was controlled in a direction to correct this deviation to zero, and the amount of combustion was matched. Optimal airflow is provided.
燃焼量に見合 っ た最適の風量が供給さ れる時、 不完全 燃焼に起因す る排気ガス中の一酸化炭素や炭化水素、 そ の他窒素酸化物の排出量は低 く 抑え られる。  When the optimum air flow is supplied in proportion to the amount of combustion, the emission of carbon monoxide, hydrocarbons, and other nitrogen oxides in the exhaust gas due to incomplete combustion is kept low.
一般に、 給湯器を長期に渡っ て使用する う ちに、 給湯 熱交換器 4 の フ ィ ン 9 やバーナ 2 等に ごみや煤等の詰ま り が生 じ る。 こ の詰ま り が徐々 に進行する と、 空気の通 気抵抗が徐々 に大き く な り 、 最終的には、 パーナ燃焼に 必要な空気が供給さ れず器具の異常ま たは寿命 とな る。 Generally, when the water heater is used for a long time, fins and soot are clogged in the fins 9 and the burners 2 of the water heater 4. As this clogging progresses gradually, airflow The air resistance gradually increases, and eventually the air required for burner combustion is not supplied, resulting in abnormalities or life of the equipment.
従来においては、 こ の器具の異常ま たは寿命の判定を 、 パーナの燃焼回数や燃焼時間等によ って判断 している 。 こ のよ う な手法では的確な器具の寿命判断を行う こ と が困難であ り、 給湯熱交換器 4 等の詰ま り がかな り進行 して燃焼状態が悪 く な つ ている に も拘わ らず、 燃焼回数 や燃焼時間が寿命判断の基準値に達 していないために、 寿命 と判定されずに、 そのま ま給湯器の使用が引き続き 行われる場合が生 じる。 こ の場合には、 当然に排気ガス 中の一酸化炭素ガスの発生量 も大き く な り、 危険な状態 とな る。 こ れに対 し、 袷湯器が十分良好な燃焼性能を維 持 している に も拘わ らず、 燃焼回数や燃焼時間が寿命判 断の基準値に達 したために、 寿命と判断され、 給湯器が 廃棄処分に さ れる こ とがある。 こ の場合は給湯器の有効 活用が図れず、 経済的に も不利であ る。  Conventionally, the abnormality or the life of the appliance is determined based on the number of burners, the burn time, and the like. With such a method, it is difficult to accurately determine the life of the appliance, and despite the fact that the hot water supply heat exchanger 4 and the like have clogged considerably and the combustion state has deteriorated, However, since the number of times of burning and the burning time have not reached the reference values for determining the life, the life is not determined and the water heater may continue to be used as it is. In this case, of course, the amount of carbon monoxide gas generated in the exhaust gas also becomes large, and it is dangerous. On the other hand, despite the fact that the lined water heater maintained a sufficiently good combustion performance, the number of times of burning and the burning time reached the standard values for the life judgment, and it was judged that the life was over. Water heaters may be disposed of. In this case, the water heater cannot be used effectively, which is economically disadvantageous.
本発明は、 燃焼フ ァ ン 3 の風量制御を行う ための差圧 セ ンサ 1 6に着目 し、 こ の差圧セ ンサ 1 6の差圧検出信号を 用 いて給湯器の故障判定又は寿命判定を的確に行う こ と ができ る燃焼機器に関する。 以下、 説明の便宜上、 差圧 セ ンサ 1 6 を風量セ ンサ 1 6 と称す。  The present invention focuses on the differential pressure sensor 16 for controlling the air flow rate of the combustion fan 3, and uses the differential pressure detection signal of the differential pressure sensor 16 to determine the failure of the water heater or the service life. The present invention relates to a combustion device that can accurately perform combustion. Hereinafter, the differential pressure sensor 16 is referred to as an airflow sensor 16 for convenience of explanation.
図 1 6 は、 風量 (風量セ ンサ 1 6 の出力) と燃焼フ ァ ン の回転数 との関係を示すグラ フであ る。 こ の グラ フ の 実線に示さ れる通 り 、 一定の風量を得る ために必要な燃 焼フ ァ ンの回転数は一義的に求め られる。 しか しなが ら 、 上記の様に、 空気の通気抵抗が大き く な る と、 一定の 風量を得るために必要な燃焼フ ァ ンの回転数は増大する こ と にな る。 こ れは、 見方を変えれば、 燃焼フ ァ ンを一 定の回転数で回転する場合では、 供給でき る風量が少な く な る こ とを意味する。 Figure 16 is a graph showing the relationship between the air volume (output of the air volume sensor 16) and the number of revolutions of the combustion fan. As shown by the solid line in this graph, the number of revolutions of the combustion fan required to obtain a constant air volume can be uniquely obtained. However However, as described above, when the airflow resistance increases, the number of revolutions of the combustion fan required to obtain a constant airflow increases. From a different perspective, this means that the amount of air that can be supplied is reduced when the combustion fan is rotated at a constant speed.
本発明者 らは、 こ の風量と燃焼フ ァ ンの回転数 との関 係が適正な閱係か らある程度ずれる と、 空気の通気抵抗 が変化 し、 燃焼機器に寿命な どの故障の原因がある と判 断でき る点に着目 した。  If the relationship between the air volume and the number of revolutions of the combustion fan deviates to some extent from the proper relationship, the present inventors will change the airflow resistance and cause failures such as life of the combustion equipment. We paid attention to the point that we could judge that there was.
しか しなが ら、 風量セ ンサ 1 6 か らの出力には、 燃焼 機器が設置さ れている外界での風が、 排気口 1 9 を通 じ て影響を与え る こ とを本発明者 らは見い出 した。  However, the present inventor has found that the output from the airflow sensor 16 is affected by the wind from outside where the combustion equipment is installed through the exhaust port 19. Were found.
更に、 単純に風量 と フ ァ ン回転数 との関係が正常状態 か ら変化 しただけでは、 未だ燃焼機器を廃棄処分にする 必要がない場合 も あ る点 も、 本発明者 らは見い出 した。 即ち、 燃焼フ ァ ンの最大定格回転数での風量が低下 した と して も、 燃焼能力を低下させて運転すれば、 低下さ れ た燃焼能力に見合 う 風量を供給する こ とができ る場合が め る。  Further, the present inventors have found that simply changing the relationship between the air flow rate and the fan rotation speed from the normal state may not yet require disposal of the combustion equipment. did. In other words, even if the air volume at the maximum rated speed of the combustion fan is reduced, if the operation is performed with reduced combustion capacity, it is possible to supply the air volume corresponding to the reduced combustion capacity. If not.
従 っ て、 本発明は、 上記 した従来の問題点を解決 し、 機器内の空気の通風抵抗が高 く な つ ている状態を、 適正 に監視 し検知する こ とができ る燃焼機器を提供する こ と を 目 的 とする。  Therefore, the present invention solves the above-mentioned conventional problems, and provides a combustion device capable of appropriately monitoring and detecting a state in which the ventilation resistance of the air in the device is high. The purpose is to do.
更に、 本発明は、 外界が無風状態であ る こ とを監視 し 、 無風状態での風量セ ンサの出力 と フ ァ ン回転数 との関 係を検知 し、 その関係が正常状態か らずれているか ど う かを監視 し、 機器の異常を検知する こ とができ る燃焼機 器を提供する こ と にある。 Furthermore, the present invention monitors the absence of wind in the outside world and monitors the relationship between the output of the air flow sensor and the fan rotation speed in the absence of wind. An object of the present invention is to provide a combustion device capable of detecting an engagement, monitoring whether the relationship is normal or not, and detecting an abnormality of the equipment.
ま た、 本発明は、 風量 と燃焼フ ァ ンの関係が、 正常状 態か ら第一の範囲以上ずれた場合は、 燃焼能力を減 じ る イ ンプ ッ ト ダウ ンの運転を行い、 第一の範囲よ り大き い 第二の範囲以上ずれた場合は、 寿命である との判断を行 い燃焼運転を停止する こ とができ る燃焼機器を提供する と にめ る 0 発明の開示 本発明の基本的な原理は、 外界が無風状態である こ と を確認 した上で、 風量セ ンサの出力値やフ ァ ンの回転数 検出装置の出力値を監視 し、 異常ま たは寿命の検知を行 う 点にあ る。 従って、 燃焼フ ァ ンを零回転ま たは一定回 耘させている状態での風量セ ンサの検出風量を監視する 第一の方法と、 風量セ ンサの検出風量が一定値に維持さ れる よ う 燃焼フ ァ ンを回転させている状態での フ ァ ンの 回転数検知装置の検出回転数を監視する第二の方法とが あ る。 何れの場合で も、 原理は同 じであ り 、 以下説明の 都合上、 両者の方法によ る発明の構成を交互に説明する ま ず、 第一の発明は、 パーナ と、 該バーナヘの給気と 排気を行う 燃焼フ ァ ン と、 該バーナヘの給気通路か ら排 気通路にいた る空気流通経路内を流れる風量を検出する 風量セ ンサ と を備えた燃焼機器において、 該燃焼フ ァ ン を零回転ま たは一定回転の も とで検出 さ れる該風量セ ン サの検出風量の変動が、 所定の許容範囲内にある時に、 無風状態を検知する制御部を有する燃焼機器である。 Further, according to the present invention, when the relationship between the air volume and the combustion fan deviates from the normal state by a first range or more, the input down operation for reducing the combustion capacity is performed. dISCLOSURE one when shifted range by Ri size has a second range above the twin-Ru 0 invention as providing combustion device that can have a this to stop the row have combustion operation decisions to be life The basic principle of the invention is that after confirming that the outside world is calm, the output value of the airflow sensor and the output value of the fan rotation speed detector are monitored, and the abnormal At the point of detection. Therefore, the first method of monitoring the airflow detected by the airflow sensor when the combustion fan is rotated at zero rotation or constant tilling, and the airflow detected by the airflow sensor is maintained at a constant value. There is a second method of monitoring the rotational speed detected by the fan rotational speed detector while the combustion fan is rotating. In either case, the principle is the same, and for convenience of the following description, instead of alternately describing the constitutions of the inventions by both methods, the first invention is a method for supplying a power to a burner and a burner. Combustion fan for air and exhaust and exhaust from the air supply passage to the burner In a combustion device provided with an airflow sensor for detecting an airflow flowing in an air flow path leading to an air passage, the airflow sensor detected at zero rotation or constant rotation of the combustion fan This is a combustion device having a control unit that detects a no-wind state when the variation of the detected air volume is within a predetermined allowable range.
こ の第一の発明は、 別の見方をすれば、 パーナ と、 該 バーナヘの給気 と排気を行う 燃焼フ ァ ン と、 該燃焼フ ァ ンの回転数を検出する回転数検出装置 と、 該バ一ナヘの 給気通路か ら排気通路にいた る空気流通経路内を流れる 風量を検出する風量セ ンサ と を備えた燃焼機器において 、 該風量セ ンサの検出風量が一定の値にな る よ う 該燃焼 フ ァ ンを回転制御する時に検出 さ れる前記回転数検出装 置の検出回転数の変動が、 所定の許容範囲内にある時に 、 無風伏態である と判断する制御部を有する燃焼機器で あ る。  According to another aspect of the first invention, a burner for supplying and exhausting air to and from the burner, a rotation speed detecting device for detecting a rotation speed of the combustion fan, In a combustion device having a flow rate sensor for detecting a flow rate flowing in an air flow path from an air supply path to an exhaust path to the burner, the detected flow rate of the flow rate sensor becomes a constant value. When the variation in the detected rotation speed of the rotation speed detection device detected when controlling the rotation of the combustion fan is within a predetermined allowable range, the control unit determines that the windless state is established. It is a combustion device.
こ の第一の発明によれば、 外界が無風であ る こ とを容 易に検知する こ とができ る。  According to the first aspect, it is possible to easily detect that there is no wind in the outside world.
第二の発明は、 パーナ と、 該バーナヘの給気 と排気を 行 う 燃焼フ ァ ン と、 該バー ナヘの給気通路か ら排気通路 にいた る空気流通経路内を流れる風量を検出する風量セ ンサ とを備えた燃焼機器において、  A second invention is directed to a burner, a combustion fan for supplying and exhausting air to and from the burner, and an air volume for detecting an air volume flowing in an air circulation path from an air supply passage to the exhaust passage of the burner. In a combustion device equipped with a sensor and
該燃焼フ ァ ンを所定の回転数で回転させた時の異常 ま たは寿命判定の基準 とな る風量判定値を記憶 してお き、 該燃焼フ ァ ンを零回転ま たは一定回転の も とで検出 さ れ る該風量セ ンサの検出風量の変動が、 所定の許容範囲 内にある時に、 無風状態を検知 し、 The airflow judgment value which is a reference for judging abnormality or life when the combustion fan is rotated at a predetermined rotation speed is stored, and the combustion fan is rotated at zero rotation or constant rotation. The fluctuation of the airflow detected by the airflow sensor detected in the When it is inside, it detects no wind condition,
該無風状態を検知 した時に、 該燃焼フ ァ ンを所定回転 で回転さ せた時の前記風量セ ンサの検出風量が前記風量 判定値よ り 低い場合に、 異常ま たは寿命検知を行う 制御 部を有する燃焼機器である。  When the no-air condition is detected, if the detected airflow of the airflow sensor when the combustion fan is rotated at a predetermined speed is lower than the airflow determination value, control for detecting abnormality or life is performed. It is a combustion device having a part.
こ の第二の発明は、 別の見方をすれば、 パーナ と、 該 バーナヘの給気と排気を行う 燃焼フ ァ ン と、 該燃焼フ ァ ンの回転数を検出する回転数検出装置と、 該バーナヘの 給気通路か ら排気通路にいた る空気流通経路内を流れる 風量を検出する風量セ ンサ とを備えた燃焼機器において  According to another aspect of the present invention, there is provided a burner for supplying and exhausting air to and from the burner, a rotation speed detecting device for detecting the rotation speed of the combustion fan, A combustion device having an airflow sensor for detecting an airflow flowing in an air flow path from an air supply passage to an exhaust passage to the burner.
該風量セ ンサの検出風量が一定の基準値になる よ う 該 燃焼フ ァ ンを回転制御する時の異常ま たは寿命判定の基 準とな る回転数判定値を記憶 しておき、 A rotation speed judgment value, which is a reference for judging abnormality or life when controlling the rotation of the combustion fan so that the detected air flow of the air flow sensor becomes a constant reference value, is stored.
該風量セ ンサの検出風量が任意の一定値にな る よ う 該 燃焼フ ァ ンを回転制御する時に検出 さ れる前記回転数検 出装置の検出回転数の変動が、 所定の許容範囲内にあ る 時に、 無風状態を検知 し、  Fluctuations in the rotation speed detected by the rotation speed detection device, which are detected when controlling the rotation of the combustion fan so that the air volume detected by the air volume sensor becomes an arbitrary constant value, are within a predetermined allowable range. At some point, it detects a windless condition,
該無風状態を検知 した時に、 該風量セ ンサの検出風量 が前記一定の基準値にな る よ う 該燃焼フ ァ ンを回転制御 した時の前記回転数検出装置の検出回転数が前記回転数 判定値よ り 高い場合に、 異常ま たは寿命検知を行う 制御 部を有する燃焼機器である。  When the no-air condition is detected, the rotation speed detection device detects the rotation speed of the combustion fan when the rotation of the combustion fan is controlled such that the airflow detected by the airflow sensor becomes the constant reference value. This is a combustion device that has a control unit that detects an abnormality or life when it is higher than the judgment value.
上記第二の発明に よれば、 無風状態の時の風量と燃焼 フ ァ ンの回転数 との関係を適切に監視する こ とができ、 適切な異常ま たは寿命の検知を行う こ とができ る。 According to the second aspect of the invention, it is possible to appropriately monitor the relationship between the air volume and the number of revolutions of the combustion fan when there is no wind, Appropriate abnormality or life can be detected.
更に、 第三の発明は、 パーナ と、 該バーナヘの給気と 排気を行う 燃焼フ ァ ン と、 該バーナヘの給気通路か ら排 気通路にいた る空気流通経路内を流れる風量を検出する 風量セ ンサ とを備えた燃焼機器において、  Further, the third invention detects a burner, a combustion fan for supplying and exhausting air to and from the burner, and a flow rate of air flowing in an air circulation path from an air supply passage to the burner to an exhaust air passage. In combustion equipment equipped with an air flow sensor,
該燃焼フ ァ ンを所定の回転数で回転させた時の異常ま たは寿命判定の基準 となる風量判定値を記憶 しておき、 該燃焼フ ァ ンを前記所定の回転数で回転させた時に検 出 さ れ る該風量セ ンサの検出風量の変動が、 所定の許容 範囲内にあ る時であ って、 当該風量セ ンサの検出風量が 前記風量判定値よ り 低い場合に、 異常ま たは寿命の検知 を行う 制御部を有する燃焼機器である。  An airflow determination value serving as a reference for determining an abnormality or life when the combustion fan is rotated at a predetermined rotation speed is stored, and the combustion fan is rotated at the predetermined rotation speed. When the detected airflow of the airflow sensor detected at this time is within a predetermined allowable range and the airflow detected by the airflow sensor is lower than the airflow determination value, an abnormal condition is detected. It is a combustion device that has a control unit that detects the life.
こ の第三の発明は、 別の見方をすれば、 パーナ と、 該 バーナヘの袷気 と排気を行う 燃焼フ ァ ン と、 該燃焼フ ァ ンの回転数を検出する回転数検出装置と、 該バーナヘの 袷気通路か ら排気通路にいた る空気流通経路内を流れる 風量を検出する風量セ ンサ とを備えた燃焼機器において 該風量セ ンサの検出風量が一定の基準値にな る よ う 該 燃焼フ ァ ンを回転制御する時の異常ま たは寿命判定の基 準とな る回転数判定値を記憶 しておき、  According to another aspect of the present invention, a third aspect of the present invention provides a burner, a burner that performs solid air and exhaust to the burner, a rotation speed detection device that detects the rotation speed of the combustion fan, In a combustion device having a flow rate sensor for detecting a flow rate flowing in an air flow path from a lined air passage to an exhaust passage to the burner, the detected flow rate of the flow rate sensor is set to a constant reference value. A rotation speed judgment value serving as a reference for judging abnormality or life when controlling the rotation of the combustion fan is stored.
該風量セ ンサの検出風量が該一定の基準値にな る よ う 該燃焼フ ァ ンを回転制御する時に検出 さ れる前記回転数 検出装置の検出回転数の変動が、 所定の許容範囲内にあ る時であ っ て、 当該回転数検出装置の検出回転数が前記 回転数判定値よ り 高い場合に、 異常ま たは寿命検知を行 う 制御部を有する燃焼機器である。 Fluctuations in the rotation speed detected by the rotation speed detection device, which are detected when the rotation speed of the combustion fan is controlled so that the air volume detected by the air volume sensor becomes the constant reference value, are within a predetermined allowable range. At some point, the rotation speed detected by the rotation speed detection device is This is a combustion device that has a control unit that detects abnormality or life when the rotation speed is higher than the judgment value.
上記の第三の発明に よれば、 外界が無風状態である と の検知 と、 風量と フ ァ ン回転数 との関係が適正値か ら外 れている との検知を同時に行う こ とができ る。  According to the third aspect, it is possible to simultaneously detect that the outside world is in a windless state and that the relationship between the air volume and the fan rotation speed is out of an appropriate value. You.
第四の発明は、 上記の第二ま たは第三の発明において 、 前記燃焼機器は、 更に、 要求される熱量を供給する た めに必要な燃料を前記パーナに供給する燃料制御部を有 し、 前記異常ま たは寿命の検知を行っ た時に、 該燃料制 御部は前記パーナに供給する燃料を強制的に少な く する こ と を特徴とする燃焼機器である。  In a fourth aspect based on the second or third aspect, the combustion device further includes a fuel control unit that supplies fuel required for supplying a required amount of heat to the parner. The fuel control unit forcibly reduces the amount of fuel supplied to the parner when the abnormality or the life is detected.
第四の発明の変形例 と しては、 更に、 前記風量判定値 が、 第一の風量判定値と該第一の風量判定値よ り も低い 第二の風量判定値とを有 し、 前記異常ま たは寿命の検知 を行っ た時に、 前記の風量セ ンサの検出風量が前記第一 の風量判定値よ り 低い場合は、 該燃料制御部は前記バー ナに供給する燃料を強制的に少な く し、  As a modified example of the fourth invention, the air volume determination value further includes a first air volume determination value and a second air volume determination value lower than the first air volume determination value. If the detected airflow of the airflow sensor is lower than the first airflow determination value when the abnormality or the life is detected, the fuel control unit forcibly supplies the fuel supplied to the burner. Reduce
前記の風量セ ンサの検出風量が前記第二の風量判定値 よ り 低い場合は、 該燃料制御部は前記バーナヘの燃料の 供給を行わない こ とを特徴とする燃焼機器であ る。  When the detected air volume of the air volume sensor is lower than the second air volume determination value, the fuel control unit does not supply fuel to the burner.
こ の第四の発明は、 ま た、 上記の第二ま たは第三の発 明において、  This fourth invention is also directed to the second or third invention described above.
前記燃焼機器は、 更に、 要求さ れる熱量を供給する た めに必要な燃料を前記パーナに供給する燃料制御部を有 し、 前記異常ま たは寿命の検知を行っ た時に、 該燃料制 御部は前記パーナに供給する燃料を強制的に少な く する こ と を特徴 とする燃焼機器であ る。 The combustion device further has a fuel control unit that supplies fuel required for supplying a required amount of heat to the parner, and when the abnormality or the life is detected, the fuel control unit performs the fuel control. The control unit is a combustion device characterized by forcibly reducing the amount of fuel supplied to the parner.
こ の第四の発明の変形例 と しては、 更に、 前記回転数 判定値が、 第一の回転数判定値と該第一の回転数判定値 よ り も高い第二の回転数判定値 と を有 し、 前記異常ま た は寿命の検知を行っ た時、 前記回転数検出装置の検出回 転数が前記第一の回転数判定値よ り も高い場合は、 該燃 料制御部は前記パーナに供給する燃料を強制的に少な く し、  As a modified example of the fourth invention, the rotation speed determination value may further include a first rotation speed determination value and a second rotation speed determination value higher than the first rotation speed determination value. When the abnormality or the life is detected, and the detected rotation speed of the rotation speed detection device is higher than the first rotation speed determination value, the fuel control unit is configured to perform Forcibly reduce the amount of fuel supplied to the parner,
前記回転数検出装置の検出回転数が前記第二の回転数 判定値よ り も高い場合は、 該燃料制御部は前記バーナヘ の燃料の供給を行わない こ とを特徴 とする燃焼機器であ る o  When the rotation speed detected by the rotation speed detection device is higher than the second rotation speed determination value, the fuel control unit does not supply fuel to the burner. o
上記の第四の発明によれば、 風量と フ ァ ン回転数 と の 関係が適正値か ら外れていて も、 強制的に燃料を減 じる こ とで、 不完全燃焼を避けて燃焼運転を行う こ とができ る o  According to the fourth aspect of the invention, even if the relationship between the air volume and the fan speed is out of the proper value, the fuel is forcibly reduced to avoid incomplete combustion and to perform the combustion operation. O
第五の発明は、 パーナ と、 該バーナヘの給気 と排気を 行う 燃焼フ ァ ン と、 該バーナヘの袷気通路か ら排気通路 にいたる空気流通経路内を流れる風量を検出する風量セ ンサ とを備えた燃焼機器において、  According to a fifth aspect of the present invention, there is provided a burner for supplying and exhausting air to and from the burner, and an airflow sensor for detecting an airflow flowing in an air flow path from a lined air passage to the exhaust passage to the burner. In a combustion device equipped with
該燃焼フ ァ ンを零回転ま たは一定回転の も とで検出 さ れる該風量セ ンサの検出風量の変動が、 所定の許容範囲 内にあ る 時に、 無風状態を検知 し、 その時に該燃焼フ ァ ン を所定の回転数で回転さ せた時の当該風量セ ンサの検 出風量を初期値 と して記憶 しておき、 When the variation of the airflow detected by the airflow sensor, which is detected based on zero or constant rotation of the combustion fan, is within a predetermined allowable range, a no-air condition is detected. Detection of the air flow sensor when the combustion fan is rotated at a predetermined speed Memorize the air flow as the initial value,
該初期値を記憶 して所定時間経過後に、 前記の無風状 態を検知 した時であ って、 該燃焼フ ァ ンを前記所定回転 で回転さ せた時の前記風量セ ンサの検出風量が、 前記初 期値よ り 判定基準値以上変動 していた場合に、 通風の劣 化の検知を行う 制御部を有する燃焼機器であ る。  After the predetermined time has elapsed from the storage of the initial value, when the above-mentioned no-air condition is detected, and the detected air volume of the air volume sensor when the combustion fan is rotated at the predetermined rotation speed, In addition, the present invention provides a combustion device having a control unit that detects deterioration of ventilation when the initial value is not less than a determination reference value.
こ の第五の発明は、 別の見方をすれば、 パーナ と、 該 バーナヘの給気と排気を行う 燃焼フ ァ ン と、 該燃焼フ ァ ンの回転数を検出する回転数検出装置 と、 該バーナヘの 給気通路か ら排気通路にいた る空気流通経路内を流れる 風量を検出する風量セ ンサ と を備えた燃焼機器において 該風量セ ンサの検出風量が一定の基準値になる よ う 該 燃焼フ ァ ンを回転制御する時に検知さ れる該回転数検出 装置の検出回転数の変動が、 所定の許容範囲内にあ る時 に、 無風状態を検知 し、 その時の該回転数検出装置の検 出回転数を初期値 と して記憶 してお き、  According to another aspect of the fifth invention, a burner for supplying and exhausting air to and from the burner, a rotation speed detecting device for detecting a rotation speed of the combustion fan, And a flow rate sensor for detecting a flow rate of air flowing in an air flow path from an air supply passage to an exhaust passage to the burner so that the flow rate detected by the flow rate sensor becomes a constant reference value. When a change in the detected rotation speed of the rotation speed detection device detected when controlling the rotation of the combustion fan is within a predetermined allowable range, a windless state is detected, and the rotation speed detection device at that time is detected. The detection speed is stored as the initial value,
該初期値を記憶 して所定時間経過後に、 前記の無風状 態を検知 した時であ っ て、 その時の当該回転数検出装置 の検出回転数が、 前記初期値よ り 判定基準値以上変動 し ていた場合に、 通風の劣化の検知を行 う 制御部を有する 燃焼機器であ る。  When the windless state is detected after a predetermined period of time after storing the initial value, the detected rotation speed of the rotation speed detecting device at that time fluctuates by more than the determination reference value from the initial value. This is a combustion device that has a control unit that detects deterioration of ventilation when it has been in use.
こ の第五の発明によれば、 燃焼機器を設置 した後に、 風量セ ンサの初期値を記憶させてお く こ とで、 燃焼機器 毎に、 及び設置環境毎に異な る風量セ ンサの感度を調整 する こ とができ る。 According to the fifth aspect of the present invention, the initial value of the airflow sensor is stored after the combustion equipment is installed, so that the sensitivity of the airflow sensor differs for each combustion equipment and for each installation environment. Adjust can do.
第六の発明は、 パーナ と、 該バ一ナヘの給気と排気を 行う 燃焼フ ァ ン と、 該バーナヘの袷気通路か ら排気通路 にいたる空気流通経路内を流れる風量を検出する風量セ ンサ とを備えた燃焼機器において、 該燃焼フ ァ ンを零回 転の も とで検出 さ れる該風量セ ンサの検出風量の変動が 、 所定の許容範囲内にある時に、 無風状態を検知 し、 該 無風状態を検知 した時の、 当該風量セ ンサの検出風量を 零点 と して記憶する制御部を有する燃焼機器である。  A sixth invention provides a burner, a combustion fan for supplying and exhausting air to and from the burner, and an air flow sensor for detecting an airflow flowing in an air flow path from a lined air passage to the exhaust passage to the burner. In a combustion device provided with a sensor, when a change in the airflow detected by the airflow sensor, which is detected based on zero rotation of the combustion fan, is within a predetermined allowable range, a no-air condition is detected. A combustion device having a control unit that stores the detected airflow of the airflow sensor when the no-air condition is detected as a zero point.
上記第六の発明に よれば、 風量セ ンサの経年変化に伴 う 零点補正を外界の風の影饗を受けずに行う こ とができ る ので、 風量セ ンサを利用 して燃焼制御や異常ま たは寿 命の判定を適正に行う こ とができ る。  According to the sixth aspect of the invention, since the zero correction according to the aging of the airflow sensor can be performed without being affected by the wind of the outside world, combustion control and abnormalities can be performed using the airflow sensor. Or, the life can be properly judged.
第七の発明は、 パーナ と、 該バーナヘの給気 と排気を 行う 燃焼フ ァ ン と、 該バ一ナヘの給気通路か ら排気通路 にいた る空気流通経路内を流れる風量を検出する風量セ ンサ とを備えた燃焼機器において、  According to a seventh aspect of the present invention, there is provided a burner for supplying and exhausting air to and from the burner, and an air flow rate for detecting an air volume flowing in an air flow path from an air supply passage to an exhaust passage of the burner. In a combustion device equipped with a sensor and
該燃焼フ ァ ンを所定の回転数で回転させた時の異常ま たは寿命判定の基準とな る風量判定値を記憶 してお き、 該燃焼フ ァ ンを前記所定の回転数で回転させた時に検 出 さ れる該風量セ ンサの検出風量が、 所定の時間内にお いて継続的に前記風量判定値よ り 低い場合に、 異常ま た は寿命の検知を行う 制御部を有する燃焼機器であ る。  An airflow judgment value serving as a reference for judging abnormality or life when the combustion fan is rotated at a predetermined rotation speed is stored, and the combustion fan is rotated at the predetermined rotation speed. When the detected air volume of the air volume sensor detected when the air volume sensor is detected is lower than the air volume determination value within a predetermined period of time, a combustion unit having a control unit that detects an abnormality or a life is provided. Equipment.
こ の第七の発明は、 別の見方をすれば、 パーナ と、 該 バー ナヘの給気 と排気を行 う 燃焼フ ァ ン と、 該燃焼フ ァ ンの回転数を検出する回転数検出装置 と、 該バーナヘの 給気通路か ら排気通路にいた る空気流通経路内を流れる 風量を検出する風量セ ンサ とを備えた燃焼機器において 該風量セ ンサの検出風量が一定の基準値にな る よ う 該 燃焼フ ァ ンを回転制御する時の異常ま たは寿命判定の基 準とな る回転数判定値を記憶 しておき、 According to another aspect of the present invention, there is provided a burner for supplying and exhausting air to and from the burner and the combustion fan. In a combustion device comprising a rotation speed detection device for detecting the rotation speed of the burner, and a flow rate sensor for detecting a flow rate in an air flow path from an air supply passage to an exhaust passage to the burner, the air flow sensor is provided. The rotation speed judgment value, which serves as a reference for judging an abnormality or life when controlling the rotation of the combustion fan so that the detected air volume of the combustion fan becomes a constant reference value, is stored.
該風量セ ンサの検出風量が該一定の基準値になる よ う 該燃焼フ ァ ンを回転制御する時に検出 さ れる前記回転数 検出装置の検出回転数が、 所定の時間内において継続的 に前記回転数判定値よ り 高い場合に、 異常ま たは寿命検 知を行 う 制御部を有する燃焼機器であ る。  The rotation speed detected by the rotation speed detection device, which is detected when the rotation speed of the combustion fan is controlled so that the air volume detected by the air volume sensor becomes the constant reference value, is continuously maintained within a predetermined time. This is a combustion device that has a control unit that performs abnormality or life detection when the rotation speed is higher than the judgment value.
上記第七の発明によれば、 無風状態であるか否かを簡 便的に行う こ と に よ り 、 無風状態 と異常ま たは寿命検知 を同時に行う こ とができ る。 図面の簡単な説明 図 1 は、 本発明に係る燃焼機器の第一の実施例の要部 構成のブロ ッ ク 図であ る。  According to the seventh aspect, by simply determining whether or not there is a windless state, it is possible to simultaneously detect the windless state and detect an abnormality or life. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a configuration of a main part of a first embodiment of a combustion apparatus according to the present invention.
図 2 は、 第一の実施例の燃焼能力の低減を行う 動作回 路のブ口 ッ ク 図であ る。  FIG. 2 is a block diagram of an operation circuit for reducing the combustion capacity according to the first embodiment.
図 3 は、 第一の実施例の寿命判定機能を備えた給湯器 の説明図である。  FIG. 3 is an explanatory diagram of the water heater having the life determining function of the first embodiment.
図 4 は、 器具設置環境下の風速 と器具内風量を検出す る差圧セ ン サ出力のば らつき状態の関係を示す説明図で あ る。 Figure 4 shows the detection of the wind speed and the air volume inside the equipment under the environment where the equipment is installed. FIG. 4 is an explanatory diagram showing the relationship between the fluctuation states of the differential pressure sensor output.
図 5 は、 給湯器の 3 段の燃焼制御特性直線と、 能力 ダ ゥ ン時の燃焼制御特性直線の説明図である。  FIG. 5 is an explanatory diagram of a three-stage combustion control characteristic straight line of the water heater and a combustion control characteristic straight line when the capacity is down.
図 6 は、 第一の実施例の第 1 の動作の フ ロ ー チ ャ ー ト であ る。  FIG. 6 is a flowchart of the first operation of the first embodiment.
図 7 は、 第一の実施例の第 1 の動作の フ ロ ーチ ヤ 一 ト である。  FIG. 7 is a flowchart of a first operation of the first embodiment.
図 8 は、 第一の実施例の第 2 の動作のフ ロ ーチ ヤ 一 ト であ る。  FIG. 8 is a flowchart of the second operation of the first embodiment.
図 9 は、 第一の実施例の第 3 の動作の フ ロ ー チ ャ ー ト であ る。  FIG. 9 is a flowchart of the third operation of the first embodiment.
図 1 0は、 第一の実施例の第 3 の動作の フ ロ ー チ ャ ー ト であ る。  FIG. 10 is a flowchart of the third operation of the first embodiment.
図 1 1は、 第一の実施例の第 4 の動作のフ ロ ー チ ャ ー ト であ る。  FIG. 11 is a flowchart of a fourth operation of the first embodiment.
図 1 2は、 給湯器の燃焼能力 と ガス供給量 との関係を示 す グラ フであ る。  Fig. 12 is a graph showing the relationship between the combustion capacity of the water heater and the gas supply.
図 1 3は、 給湯器の風量と燃焼能力 と の関係を示す グラ フ である。  Fig. 13 is a graph showing the relationship between the air volume of the water heater and the combustion capacity.
図 1 4は、 風量検出を行 う 差圧セ ン サの検出差圧 と風量 との関係を示す グラ フ であ る。  Fig. 14 is a graph showing the relationship between the detected differential pressure of the differential pressure sensor that detects the air volume and the air volume.
図 1 5は、 燃焼機器 と して一般的な給湯器の説明図であ 図 1 6は、 風量セ ン サの 目標出力値 と フ ァ ン回転数 との 関係を示す グラ フである。 Fig. 15 is an explanatory diagram of a common water heater as a combustion device. Fig. 16 shows the relationship between the target output value of the air flow sensor and the fan speed. This is a graph showing the relationship.
図 1 7は、 本発明に係る燃焼機器の第二の実施例の要部 構成のプロ ッ ク 図であ る。  FIG. 17 is a block diagram of a main part configuration of a second embodiment of the combustion equipment according to the present invention.
図 1 8は、 第二の実施例の寿命診断モー ドでの動作にお いて使用 さ れる イ ンプ ッ ト ダウ ンデー タ (第一の回転数 判定値) と寿命判定デー タ (第二の回転数判定値) との 関 を示す説明図であ る。  Fig. 18 shows the input down data (first rotation speed judgment value) and the life judgment data (second rotation speed) used in the operation in the life diagnosis mode of the second embodiment. FIG. 4 is an explanatory diagram showing a relationship with a number judgment value.
図 1 9は、 第二の実施例におけるセ ンサ出力 目標値とそ の各セ ン サ出力 目標値において求め られた フ ァ ン回転数 平均値 と の関係説明図である。  FIG. 19 is an explanatory diagram showing the relationship between the sensor output target value and the fan rotation speed average value obtained at each sensor output target value in the second embodiment.
図 20は、 第二の実施例の燃焼装置の動作の フ ロ ーチ ヤ 一 ト であ る。  FIG. 20 is a flowchart showing the operation of the combustion apparatus according to the second embodiment.
図 2 1は、 第二の実施例の燃焼機器の動作の フ ロ ー チ ヤ 一 ト であ る。  FIG. 21 is a flowchart showing the operation of the combustion equipment according to the second embodiment.
図 22は、 本発明に係る燃焼機器の第三の実施例の要部 構成のブロ ッ ク 図である。  FIG. 22 is a block diagram of a main configuration of a third embodiment of the combustion equipment according to the present invention.
図 23は、 第三の実施例の動作の フ ロ ー チ ヤ一 ト であ る 図 24は、 第三の実施例の動作の フ ロ ーチ ヤ一 ト である o  FIG. 23 is a flowchart showing the operation of the third embodiment. FIG. 24 is a flowchart showing the operation of the third embodiment.
図 25は、 定期的なイ ン タ ーバル時期 ご と に取 り 込ま れ る点検デー タ の初期値に対する変動量の大き さ を判断す る ための基準 とな る判定比率を求める ための グラ フ デ一 夕 の説明図であ る。  Fig. 25 is a graph for determining the judgment ratio, which is the standard for judging the magnitude of the fluctuation with respect to the initial value of the inspection data taken at regular intervals. FIG.
図 2 6は、 第四の実施例の動作のフ ロ ーチ ヤ一 ト であ る 図 27は、 上記第一の実施例の第一の動作を説明するた めの図である。 FIG. 26 is a flowchart showing the operation of the fourth embodiment. FIG. 27 is a diagram for describing a first operation of the first embodiment.
図 28は、 上記第一の実施例の第一の動作を説明するた めの図である。 発明を実施する為の最良の形態 以下本発明の第一、 第二、 第三、 第四の実施例を、 図 面に従って説明する。 実施例の説明において、 従来例と 同一の名称部分には同一符号を付し、 その重複説明は省 略する。  FIG. 28 is a diagram for explaining a first operation of the first embodiment. BEST MODE FOR CARRYING OUT THE INVENTION First, second, third, and fourth embodiments of the present invention will be described below with reference to the drawings. In the description of the embodiments, the same reference numerals are given to the same names as those in the conventional example, and the duplicate description thereof will be omitted.
以下の実施例では、 風量セ ンサ 1 6 から検出される風 量を簡略して、 風量検出値或いは風量セ ンサの出力 と称 する。 使用 される風量セ ンサの種類によ って、 その直接 の出力が、 電圧値であった り或いは別の物理量であ った り する。 何れの物理量の場合でも、 風量セ ンサの風量検 出値或いは単に風量セ ンサの出力 とは、 検出される風量 を意味するのは明 らかである。  In the following embodiments, the air volume detected from the air volume sensor 16 is simply referred to as a detected air volume value or an output of the air volume sensor. Depending on the type of airflow sensor used, its direct output may be a voltage value or another physical quantity. Regardless of the physical quantity, it is clear that the detected airflow value of the airflow sensor or simply the output of the airflow sensor means the detected airflow.
更に、 同様に燃焼フ ァ ンの回転数検出器の出力あるい は回転数検出値等について も、 その直接の出力の物理量 に係わ らず、 検出される回転数を意味する。  Further, the output of the combustion fan rotation speed detector or the rotation speed detection value also means the detected rotation speed irrespective of the physical quantity of the direct output.
[第一の実施例 ]  [First embodiment]
図 3 には本発明に係る異常または寿命判定手段を備え た燃焼機器が耠湯器を例に して示されている。 こ の実施 例の給湯器は、 能力切 り 換え式のバ ー ナ 2 を有 している 。 パー ナ 2 の燃焼面を A面 と B面と C面の 3 面に区分 し 、 電磁弁等に よ り 形成される能力切 り 換え弁 18 a のみを 開 ける こ と によ り A面の 1 段燃焼状態 とな り 、 能力切 り 換え弁 18 a と 18b を開ける こ と に よ り A面 と B面の 2 段 燃焼状態 とな り 、 能力切 り換え弁 18 a , 18b , 18 c を開 け る こ と によ り 、 A面と B面 と C面の全面燃焼状態 とな る。 こ れ ら能力切 り 換え弁 18 a , 18b , 18 c の弁切 り 換 え動作に よ り バ ーナ 17の燃焼能力を切 り 換え可能にな つ ている。 こ のバ一ナ 2 の燃焼切 り換え、 つま り 、 能力切 り換え弁 18 a , 18b , 18 c の弁切 り 換え駆動は、 制御部 15に よ っ て制御さ れている。 ま た、 本実施例では、 風量 検出セ ンサ と しての差圧セ ンサ 16に よ り バーナ 2 の上下 両側間の差圧を検出する構成とな っ ている。 さ らに、 燃 焼フ ァ ン 3 の回転数はホール I C等の フ ァ ン回転検出セ ンサ 28によ っ て検出 されている。 FIG. 3 shows a combustion apparatus provided with an abnormality or life determining means according to the present invention, taking a water heater as an example. This implementation The example water heater has a burner 2 of the capacity switching type. By dividing the combustion surface of Parner 2 into three surfaces, A-side, B-side and C-side, and opening only the capacity switching valve 18a formed by a solenoid valve, etc. Opening of the capacity switching valves 18a and 18b results in a two-stage combustion state of the A and B sides, and the capacity switching valves 18a, 18b, and 18c. By opening the opening, the entire surface A, B and C are in a state of combustion. The combustion switching performance of the burner 17 can be switched by the valve switching operation of the capacity switching valves 18a, 18b, 18c. The control unit 15 controls the combustion switching of the burner 2, that is, the switching of the capacity switching valves 18 a, 18 b, and 18 c. Further, in the present embodiment, the differential pressure between the upper and lower sides of the burner 2 is detected by the differential pressure sensor 16 as an air volume detection sensor. Further, the rotation speed of the combustion fan 3 is detected by a fan rotation detection sensor 28 such as a Hall IC.
本実施例において特徴的な こ と は、 風量セ ンサであ る 差圧セ ンサ 16の検出値に基づき、 燃焼フ ァ ン 3 の風量制 御を行う 他に、 袷湯器の異常ま たは寿命判定を行う 手段 を制御部 15に設けた こ とであ る。  This embodiment is characterized by controlling the air flow of the combustion fan 3 based on the detection value of the differential pressure sensor 16 which is an air flow sensor, and also detecting an abnormality in the lined hot water heater. Means for performing the life determination is provided in the control unit 15.
尚、 実施例で使用 さ れる差圧セ ンサ 1 6 は実質的には 風量検出セ ンサであ り 、 以下説明の便宜上、 風量検出セ ンサ と称 して説明する。  It should be noted that the differential pressure sensor 16 used in the embodiment is substantially an air flow detection sensor, and will be described below as an air flow detection sensor for convenience of explanation.
こ の特徴的な異常ま たは寿命判定手段は、 図 1 に示す よ う に、 状況判定部 22と、 メ モ リ 23と、 燃焼停止部 24と 、 フ ァ ン再起動部 25と、 異常ま たは寿命判定部 26と、 夕 イ マ 27と を有 して構成さ れている。 こ れ らは、 制御部 1 5 内にて実現されている。 As shown in FIG. 1, the characteristic abnormality or life determining means includes a condition determining unit 22, a memory 23, and a combustion stopping unit 24. And a fan restart unit 25, an abnormality or lifetime judgment unit 26, and an evening image 27. These are realized in the control unit 15.
メ モ リ 23には、 予め与えた設定制御条件であ る設定フ ア ン回転数に対する給湯器の異常ま たは寿命判定の基準 とな る風量判定値が記憶さ れている。 ま た、 フ ァ ン回転 が零回転の と き と予め与えた一定回転の と きの風量検出 セ ンサ出力のば らつき変動の設定許容範囲等のデー タ も 記憶さ れている。 前記フ ァ ン の設定回転数は適宜決め ら れるが、 本実施例では、 燃焼フ ァ ン 3 の定格最大回転数 に してお り 、 こ の定格最大回転数の と き の風量判定値が メ モ リ 23に記憶されてい る。  The memory 23 stores a flow rate determination value serving as a criterion for determining whether a water heater is abnormal or has a life with respect to a set fan speed, which is a preset control condition. In addition, data such as the allowable setting range of the variation in the airflow detection sensor output when the fan rotation is zero rotation and when the fan rotation is given constant rotation is also stored. Although the set rotation speed of the fan is determined as appropriate, in the present embodiment, the rated maximum rotation speed of the combustion fan 3 is set, and the airflow judgment value at the rated maximum rotation speed is determined. It is stored in memory 23.
状況判定部 22は、 燃焼フ ァ ン 3 が零回転の と き、 つま り、 燃焼フ ァ ン 3 が回転 していない と き の器具設置環境 の無風安定状況 と有風状况との区別判断を行う 。 図 4 は 燃焼フ ァ ン 3 の停止状態で、 給湯器を有風環境に さ ら し 、 その と き の風速の大き さ と風量セ ンサ 1 6のセ ンサ出力 との関係を実験によ り 求めた グラ フであ る。 こ の グラ フ か ら分かる よ う に、 有風状況にな る と、 風量セ ン サの風 量検出値がセ ン サの零点に対 して上下非対称にばらつき 、 こ のば らつき の変動幅は風速が大き く な る につれ大き く な る。  The situation determination unit 22 determines whether the combustion fan 3 is rotating at zero speed, that is, when the combustion fan 3 is not rotating, in a non-wind stable state and a windy state of the appliance installation environment. Do Figure 4 shows the relationship between the magnitude of the wind speed and the sensor output of the airflow sensor 16 when the water heater was exposed to a windy environment with the combustion fan 3 stopped. This is the graph I sought. As can be seen from this graph, in a windy condition, the detected airflow of the airflow sensor fluctuates asymmetrically with respect to the zero point of the sensor, and the fluctuation of this fluctuation The width increases as the wind speed increases.
状況判定部 22は、 燃焼フ ァ ン 3 が零回転の と き にお け る風量セ ンサ 1 6の風量検出値ま たはその風量の変動幅を 、 メ モ リ 23に格納さ れている設定許容範囲 と比較する。 こ の設定許容範囲は、 風量検出値の変動幅が所定値以上 かま たは以下かに よ り 、 有風状態か無風状態かの判定を するために設定さ れる ものであ る。 例えば、 風量検出値 の変動幅が所定の許容値を越えるか越えないかによ り 、 有風状況か無風状況かの判断がさ れる。 ま た、 風量検出 値自体が所定の絶対値を越えるか どう かによ つ て も、 簡 便的に有風状况か無風状況かの判断が可能であ る。 The condition determination unit 22 stores, in the memory 23, the detected value of the air flow of the air flow sensor 16 when the combustion fan 3 is rotating at zero speed or the fluctuation range of the air flow. Compare with the setting allowable range. This setting allowable range is set to determine whether there is a wind state or no wind state depending on whether the fluctuation range of the air flow detection value is equal to or more than a predetermined value or less. For example, it is determined whether there is a wind condition or no wind condition based on whether the fluctuation range of the air flow detection value exceeds or does not exceed a predetermined allowable value. It is also possible to easily determine whether there is a wind condition or no wind condition by determining whether the detected air volume exceeds a predetermined absolute value.
ま た、 状況判定部 22は、 非燃焼状態でフ ァ ン回転検出 セ ンサ 28か らのフ ァ ン回転検出値が予め設定さ れる定回 転数にな っ た と き に、 夕 イ マ 27を所定の時間動作させ、 その タ イ マ動作時間中に、 風量セ ンサ 1 6か ら加え られる 風量検出値 と、 メ モ リ 23に記憶されている前記風量判定 値とを比較する。 風量検出値が、 設定許容範囲から外れ た と き には有風状況と判定する。 さ らに、 設定許容範囲 内の と き は無風安定状況と判定 しその結果を燃焼停止部 24と異常ま たは寿命判定部 2 6へ加える。  In addition, when the fan rotation detection value from the fan rotation detection sensor 28 has reached a preset constant rotation speed in a non-combustion state, the situation determination unit 22 performs an evening image. 27 is operated for a predetermined time, and during the timer operation time, the detected air flow value added from the air flow sensor 16 is compared with the air flow judgment value stored in the memory 23. If the airflow detection value is out of the set allowable range, it is determined that there is wind. Further, when the current value is within the set allowable range, it is determined that the wind is stable, and the result is added to the combustion stopping unit 24 and the abnormality or life determining unit 26.
燃焼停止部 24は、 燃焼フ ァ ン 3 が定格最大回転数で回 転 して燃焼運転が行われている と き に、 状況判定部 22か ら風量検出値が風量判定値よ り 少ない結果を受けた と き に、 バーナ 2 の燃焼を停止 し、 その燃焼停止の信号を フ ア ン再起動部 25に加え る。 フ ァ ン再起動部 25は燃焼停止 部 24か ら燃焼停止の信号を受けた と き に、 バー ナ 2 の燃 焼を行わずに燃焼フ ァ ン 3 を前記設定回転数、 つま り 、 燃焼フ ァ ン 3 の定格最大回転数で回転起動 し、 こ の フ ァ ン再起動信号を異常ま たは寿命判定部 2 6へ加える。 異常ま たは寿命判定部 2 6は、 フ ァ ン再起動部 25か ら フ ァ ン再起動信号を受けた後に、 状況判定部 22の判定によ り 、 無風安定状況の状態にあ り 、 かつ、 燃焼フ ァ ン 3 が 定格最大回転数で回転 している と き に、 風量検出値が風 量判定値以下の と き には給湯器の異常ま たは寿命と判定 し、 異常ま たは寿命信号を出力する。 こ れに対 し、 有風 状況 と判定さ れた と きや、 無風安定状況であ っ て も風量 検出値が風量判定値を上回 っ た と き には、 給湯器は異常 ま たは寿命でない もの と判定 し、 異常ま たは寿命信号の 出力 は行われない。 When the combustion fan 3 is rotating at the rated maximum number of revolutions and the combustion operation is being performed, the combustion stop unit 24 outputs a result that the detected air flow is smaller than the air flow determination value from the status determination unit 22. When it is received, the combustion of the burner 2 is stopped, and a signal of the combustion stop is applied to the fan restarting unit 25. The fan restart unit 25, when receiving a combustion stop signal from the combustion stop unit 24, does not burn the burner 2 but drives the combustion fan 3 to the set rotation speed, that is, the combustion. The motor starts rotating at the rated maximum number of rotations of fan 3, and this fan restart signal is applied to the abnormality or life determination section 26. After receiving the fan restart signal from the fan restart unit 25, the abnormal state or life determination unit 26 is in the state of stable windless state by the judgment of the state judgment unit 22. In addition, when the combustion fan 3 is rotating at the rated maximum speed and the detected air flow value is equal to or less than the air flow judgment value, it is determined that the water heater is abnormal or the service life has expired. Outputs a life signal. On the other hand, when it is determined that there is a wind condition, or when the detected airflow value exceeds the airflow determination value even in a stable windless condition, the water heater is abnormal or abnormal. Judged that the life is not reached and no error or life signal is output.
図 2 は異常ま たは寿命判定部 2 6か ら異常ま たは寿命信 号が出力 さ れた と き の給湯器の運転制御部の回路を示 し た も のである。 こ の回路は、 燃焼能力 ダウ ン切 り換え部 3 1と、 能力特性グラ フ選定部 32と、 フ ァ ン制御部 34と、 水量制御部 33と を有 して構成さ れている。  Fig. 2 shows the circuit of the operation control unit of the water heater when an abnormality or life signal is output from the abnormality or life judgment unit 26. This circuit includes a combustion capacity down switching unit 31, a performance characteristic graph selection unit 32, a fan control unit 34, and a water amount control unit 33.
前記異常ま たは寿命判定部 2 6か ら異常ま たは寿命信号 が出力 さ れた と き には、 異常ま たは寿命の給湯器を廃棄 処分にする こ と も可能である。 しか し、 こ の図 2 に示す 回路は、 異常ま たは寿命信号が出力 さ れた と き に、 その 異常ま たは寿命の給湯器を直ち に廃棄せずに、 新 しい給 湯器が設置施工さ れる ま での間、 一時的に使用可能にす る ための回路であ る。 図において、 燃焼能力 ダウ ン切 り 換え部 3 1は、 異常ま たは寿命信号が加え られた と き に、 給湯器の燃焼能力を 1 ラ ン ク下げて、 燃焼フ ァ ン 3 か ら 出せる風量でパーナ 2 の不完全燃焼を避けよ う とする も のであ る。 燃焼能力 ダウ ン切替え部 3 1 は、 異常ま たは 寿命信号が加え られた と き に、 24号 (出力 3 6 , 0 0 0 K c a 1 / h ) の給湯器であれば、 例えば、 20号 (出力 3 0 , O O O K c a l Z h ) の燃焼能力 にダウ ン切 り 換 えする等 して、 その ダウ ン切 り 換え した燃焼能力を能力 特性グラ フ選定部 32と水量制御部 33へ加える。 燃焼能力 をダウ ンする ためには、 パーナ 2 への燃料を減 らせばよ い o When the abnormality or life signal is output from the abnormality or life determination unit 26, the water heater having the abnormality or life can be disposed of. However, the circuit shown in Fig. 2 does not immediately discard the abnormal or long-life water heater when an abnormal or long-life signal is output. This is a circuit that can be used temporarily until installation is performed. In the figure, the combustion capacity down-switching unit 31 can lower the combustion capacity of the water heater by one rank and output it from the combustion fan 3 when an abnormal or life signal is added. Attempt to avoid incomplete combustion of Pana 2 by air flow It is. The combustion capacity down switching unit 31 is provided with a water heater of No. 24 (output 36,000 K ca 1 / h) when an abnormality or a life signal is added, for example, 20 units. For example, by switching down to the combustion capacity of the output signal (output 30, OOOK cal Zh), the down-converted combustion capacity is added to the performance characteristic graph selection section 32 and the water flow control section 33. . To reduce combustion capacity, reduce fuel to Pana 2 o
能力特性グラ フ選定部 32には、 例えば、 図 5 の ( a ) に示すよ う な 3 段燃焼の各燃焼能力の制御特性デー タ が 与え られている。 特性直線 は、 パーナ 2 の燃焼面 A の第 1 段燃焼時における特性直線であ り 、 D 2 はパーナ 2 の A面と B面の 2 段燃焼時の特性直線であ り、 D 3 は A面 と B面 と C面の 3 段燃焼時の特性直線であ る。 こ の 各段の特性直線間には重ね しろ A D , A D ' が与え られ てお り 、 各特性直線 , D 2 , D 3 間の変換が円滑に 行われる よ う にな っ ている。 The performance characteristic graph selection unit 32 is provided with, for example, control characteristic data of each combustion performance of three-stage combustion as shown in (a) of FIG. The characteristic line is a characteristic line of the combustion surface A of the parner 2 at the time of the first stage combustion, the characteristic line D 2 is a characteristic line of the A surface and the B surface of the parner 2 at the time of the second stage combustion, and D 3 is This is the characteristic line for the three-stage combustion on the surfaces B, B and C. Overlapping margins AD and AD 'are given between the characteristic straight lines of the respective stages, so that the conversion between the characteristic straight lines D2 and D3 can be performed smoothly.
例えば、 第 1 段燃焼状態においては、 特性直線 の 始端位置 D s が最小能力位置である。 燃焼能力が次第に 大き く な り 、 第 1 段燃焼の最大燃焼能力 にな る と特性直 線 D , の終端位置 D F とな る。 さ ら に大き な燃焼能力が 要求さ れた と き には、 パーナ 2 の能力切 り 換えに よ り 、 A面 と B面の 2 段燃焼 とな り 、 燃焼の特性直線は D , の D F 点か ら特性直線 D 2 の D p 点に移 り 変わ り 、 特性直 線 D 2 に従っ て燃焼制御が行われる。 ま た、 D 2 の直線 に従って燃焼制御を行っ ている と き に、 パーナ 2 の能力 切 り 換えが行われて 2 段燃焼か ら 1 段燃焼に切 り 換え ら れた と き には、 特性直線は D 2 の直線の始端位置 D s か ら直線 の D。 点に移 り 変わ り 、 D , の特性直線に従 つ て燃焼制御が行われる。 こ のよ う に、 各段の能力切 り 換えが行われた と き には、 燃焼制御直線 も切 り 換わるが 、 前記重な り しろ A D , 厶 D ' を設ける こ と に よ り 、 ハ ンチ ン グを起こ す こ とな く 各特性直線間の切 り 換えが円 滑に行われる こ と とな る。 For example, in the first stage combustion condition, the starting end position D s of the characteristic line is minimal capacity position. When the combustion capacity gradually increases and reaches the maximum combustion capacity of the first stage combustion, the end position DF of the characteristic line D, is reached. If a larger combustion capacity is required, the two-stage combustion on the A and B planes is performed by switching the capacity of the parner 2, and the combustion characteristic straight line is D, DF. point or al characteristic line D 2 of the transfer Ri Kawa Ri to D p point, the combustion control is performed in accordance with the characteristic straight line D 2. Also, the straight line of the D 2 According to come to be performed combustion control, the can and was Switching Operation place et ability Switching Operation recombination is performed by two-stage combustion or al 1 stage combustion PANA 2, characteristic line is the straight line D 2 D. of the starting end position D s or et al straight line Then, the combustion control is performed according to the characteristic line of D ,. As described above, when the performance of each stage is switched, the combustion control line is also switched. However, by providing the overlap margins AD and D ', the c is reduced. The switching between the characteristic lines can be performed smoothly without causing ching.
と こ ろが、 前記燃焼能力 ダウ ン切 り 換え部 31は、 燃焼 能力をダウ ン方向に切 り換え られる為、 図 5 の ( a ) の ラ イ ン L の右側の燃焼供給量 (比例弁電流) 部分が切 り 捨て られる。 そ う する と、 各特性直線 D , , D 2 , D 間の重な り しろ △ D , Δ D ' がな く な って し ま い、 燃焼 特性直線の切 り換えが円滑に行われな く な っ て しま う と い う 問題が生 じ る。 こ の問題を解消する たに、 能力特性 グラ フ選定部 32は、 前記燃焼能力 ダウ ン切 り 換え部 3 1か ら燃焼能力の ダウ ン切 り換えを受けた と き に、 要求燃焼 能力が各特性直線 D , , D 2 , D の間にある と き には 、 燃焼能力の小さ い方の特性直線を選定 (例えば、 図 5 の ( b ) で、 要求燃焼能力 P が D , と D 2 の間の と き に は D 1 を選定) し、 こ の選定 した特性直線に従っ て燃焼 制御を行わせる のであ る。 However, since the combustion capacity down switching unit 31 can switch the combustion capacity in the down direction, the combustion supply amount (proportional valve) on the right side of the line L in FIG. The current) portion is discarded. If it their respective characteristic line D,, D 2, between D heavy Do Ri white △ D, delta D 'Gana rather Do I then have until the switching Rikae combustion characteristic line is Do smoothly performed The problem is that it's gone. In order to solve this problem, the performance characteristic graph selection unit 32 determines that the required combustion performance is reduced when the combustion performance down switching unit 31 receives the combustion performance down switching. When it is between the characteristic lines D,, D 2 , and D, select the characteristic line with the smaller combustion capacity (for example, in Fig. 5 (b), the required combustion capacity P is D, and D ( D1 is selected between 2 ), and combustion control is performed according to the selected characteristic line.
その一方で、 水量制御部 33は、 燃焼能力 ダウ ン切 り 換 え部 31か ら燃焼能力の ダウ ン切 り 換えの信号を受けた と き に、 リ モ コ ン等で設定さ れる設定温度 と出湯温度セ ン サ 1 0で検出 される 出湯温度 とを比較 し、 出湯温度セ ン サ の出湯検出温度が設定温度よ り も低い と き には水量制御 弁 1 1を絞る方向に制御 し、 設定温度の湯を出湯する方向 に水量制御弁 1 1の絞 り 制御を行う 。 即ち、 燃焼能力を下 げる ので出湯量を少な く して、 設定温度を維持するので め る o On the other hand, the water volume control unit 33 receives the signal for switching the combustion capacity down from the combustion capacity down switching unit 31. Then, the set temperature set by the remote control etc. is compared with the tapping temperature detected by tapping temperature sensor 10, and if the tapping temperature detected by tapping temperature sensor is lower than the set temperature. In this case, the water amount control valve 11 is controlled to be throttled, and the water amount control valve 11 is throttled in a direction to discharge hot water at a set temperature. In other words, since the combustion capacity is reduced, the amount of hot water is reduced, and the set temperature is maintained.
[第 1 の動作の フ ロ ー ]  [First action flow]
次に、 本実施例の第 1 の動作を図 6 〜図 7 のフ ロ ーチ ヤ ー ト に基づき説明する。 第 1 の動作フ ロ ー の概略は、 次の通 り である。 即ち、 燃焼中に風量セ ン サの風量検出 値が低下 している こ とを検知する と、 一旦燃焼を停止 し 、 診断動作を行う 。 診断動作では、 フ ァ ンを再起動 し、 一定回転中の風量が所定時間の間、 所定範囲内にある時 は無風状態 と認識 して、 その時の風量が風量判定値よ り 低いか否かがチ ヱ ッ ク さ れる。 低い場合は、 その後の燃 焼を燃焼能力 ダウ ンのモー ドで続け、 さ らに風量セ ンサ の風量検出値が低下 している こ とが検知さ れる と、 再度 同 じ診断を行う 。 その診断で再度、 風量が風量判定値よ り 低い と の結果がでる と、 寿命 と判断 して燃焼を禁止す る o  Next, the first operation of the present embodiment will be described based on the flowcharts of FIGS. The outline of the first operation flow is as follows. That is, if it is detected that the detected value of the air volume of the air volume sensor has decreased during the combustion, the combustion is temporarily stopped and the diagnostic operation is performed. In the diagnostic operation, the fan is restarted, and if the air volume during a constant rotation is within a predetermined range for a predetermined time, it is recognized as a no-air condition, and whether the air volume at that time is lower than the air volume judgment value is determined. Is checked. If it is low, the subsequent combustion is continued in the combustion capacity down mode, and if it is detected that the detected value of the air volume of the air volume sensor has decreased, the same diagnosis is performed again. If the result of the diagnosis indicates that the air volume is lower than the air volume judgment value again, it is determined that the life has expired and combustion is prohibited.
ま ず、 ステ ッ プ 1 0 1 で異常ま たは寿命判断フ ラ グ ( L I F E ) に初期値 と して零が与え られる。 次のステ ッ プ 1 02 か ら 1 20 ま での動作は通常の燃焼運転制御の動作で あるのでその説明を簡略化する。 ステ ッ プ 1 02 で水量セ ンサ 7 の信号に よ り 入水が確認さ れる。 そ して、 ステ ツ ブ 104 で、 入水温度を設定温度に高めるために要する熱 量の フ ィ ー ド フ ォ ワ ー ド量 ( F F量) の演算、 能力切 り 換え弁 18 a 〜 18 c のオ ン、 オ フ判断、 比例弁の開閉量判 断 とその開弁量に対応する比例弁電流の通電、 燃焼フ ァ ンのプ リ パー ジ回転数での回転、 電磁弁 13のォ ン動作が 行われる。 First, in step 101, zero is given as an initial value to the abnormality or life determination flag (LIFE). The operation from the next step 102 to 120 is a normal combustion operation control operation, so that the description will be simplified. In step 102, Incoming water is confirmed by the signal of sensor 7. Then, in step 104, the feedforward amount (FF amount) of the amount of heat required to raise the incoming water temperature to the set temperature is calculated, and the capacity switching valves 18a to 18c are calculated. ON / OFF determination, determination of the opening / closing amount of the proportional valve and energization of the proportional valve current corresponding to the opening amount, rotation of the combustion fan at the pre-purging speed, and ON of the solenoid valve 13 Action is taken.
ステ ッ プ 105 でプ リ パー ジ時間以内か否かが判断さ れ る。 プ リ パー ジ時間が経過 した と き に、 燃焼フ ァ ンを着 火 ト ラ イ 回転数へア ッ プ し、 能力切 り 換え弁のオ ン制御 と、 ィ グナイ 夕 のオ ン動作を行う 。 ステ ッ プ 107 でフ レ —ム ロ ツ ド電極 (図示せず) に よ り着火を確認 した後、 ステ ッ プ 112 でィ グナイ 夕 をオ フする。  At step 105, it is determined whether or not it is within the pre-purging time. When the purge time elapses, the combustion fan is increased to the ignition tri-speed, and the capacity switching valve is turned on and the ignition is turned on. . After confirming the ignition by the frame rod electrode (not shown) in step 107, the ignition is turned off in step 112.
前記ステ ッ プ 107 で着火が確認さ れない と き には、 ス テ ツ プ 108 で着火 ト ラ イ 時間が経過 したか否かを判断 し 、 着火 ト ラ イ 時間以内である と き には着火を繰 り 返 し行 う 。 着火を繰 り 返 し行っ て も着火確認がさ れない と き に は、 ステ ッ プ 109 で電磁弁、 能力切 り換え弁、 比例弁を それぞれオ フ にする。 そ して、 給湯管 8 の先端側の給湯 栓 (図示せず) が閉め られて水量セ ンサ 7 に よ り 流水が 検知さ れな く な つ た こ と を判断 して、 ステ ッ プ 111 で燃 焼フ ァ ンを停止 し、 給湯栓が再び開 け られる のを待つ。  If ignition is not confirmed in step 107, it is determined in step 108 whether the ignition trie time has elapsed, and if it is within the ignition trie time, Repeat the ignition. If ignition is not confirmed even after repeated ignition, in step 109, the solenoid valve, capacity switching valve, and proportional valve are each turned off. Then, it is determined that the hot-water tap (not shown) at the end of the hot-water supply pipe 8 is closed, and the flow rate sensor 7 no longer detects flowing water. Stop the combustion fan with and wait for the hot water tap to be opened again.
前記ステ ッ プ 107 で着火が確認さ れ、 ステ ッ プ 1 1 2 でィ グナイ 夕 がオ フ さ れる。 その後に、 ステ ッ プ 113 で 異常ま たは寿命判断フ ラ グが零であ るか否かを判断する 。 今の時点では前記ステ ッ プ 101 で異常ま たは寿命判断 フ ラ グに零が立て られている ので、 ステ ッ プ 114 に進み 、 フ ィ ー ドフ ォ ワ ー ド ( F F ) と フ ィ ー ドバ ッ ク ( F B ) の両方のガス量制御 と、 水量制御弁に よ る水量制御に よ っ て燃焼運転が行われる。 In step 107, ignition is confirmed, and in step 112, ignition is turned off. Then, in step 113, it is determined whether the abnormality or the life determination flag is zero. . At this point, since the abnormality or life judgment flag is set to zero in step 101, the flow advances to step 114, and the feedforward (FF) and the feedforward are set. Combustion operation is performed by both gas control of the FB (FB) and water control by the water control valve.
ステ ッ プ 115 では、 こ の燃焼運転中に風量がバーナ燃 焼量に合 っ ているか否かが判断さ れる。 一般に、 比例弁 14の開弁量、 つま り 、 開弁駆動電流 I と、 風量との間に は、 Ι = Κ Δ Ρの関係があ る。 こ こ で、 Δ Ρはパー ナ 2 の上下空気通路区間の差圧であ り 風量に対応する。 Κは 比例定数であ り 、 こ の Κの値は予め設定されている。 開 弁駆動電流 I と風量との関係が前記式を満足する場合に は、 燃焼量と風量が合 っ ている のでその ま ま の フ ァ ン制 御状態で燃焼運転を継続する。 即ち、 完全燃焼に近い理 想的な燃焼であ り 、 一酸化炭素、 炭化水素、 窒素酸化物 の排出量 も少ない。 前記式を満足 していない と き には、 次のステ ッ プ 117 で開弁駆動電流 I と風量情報の Κ Δ Ρ との大小を判断する。 I が Κ Δ Ρよ り も小さ レ、 と き には 比例弁 14の開弁量、 つま り 、 ガス供給量に比べ風量が大 きすぎる場合に相当 し、 こ の場合にはステ ッ プ 118 で燃 焼フ ァ ン 3 の フ ァ ン回転数を減少する方向に制御する。  In step 115, it is determined whether or not the air volume matches the burner combustion amount during this combustion operation. Generally, there is a relationship of Ι = ΚΔΡ between the valve opening amount of the proportional valve 14, that is, the valve opening drive current I and the air flow. Here, Δ で あ is the differential pressure between the upper and lower air passage sections of the parner 2 and corresponds to the air volume. Κ is a proportionality constant, and the value of Κ is set in advance. If the relationship between the valve-opening drive current I and the air volume satisfies the above equation, the combustion operation is continued in the fan control state as it is because the combustion volume and the air volume match. In other words, it is an ideal combustion approaching complete combustion, and emits little carbon monoxide, hydrocarbons, and nitrogen oxides. If the above expression is not satisfied, in step 117, the magnitude of the valve opening drive current I and 風 Δ の of the air volume information is determined. When I is smaller than ΚΔΡ, it corresponds to the valve opening of the proportional valve 14, that is, when the air volume is too large compared to the gas supply volume. In this case, step 118 To control the number of revolutions of the combustion fan 3 to decrease.
一方、 開弁駆動電流 I が Κ Δ Ρ よ り も大の と き には、 ステ ッ プ 119 でフ ァ ン回転数が定格最大回転数以上か否 かを判断する。 フ ァ ン回転数が定格最大回転数 (上限値 ) に達 していない と き には フ ァ ン回転数をア ッ プする余 裕があ る ので、 ステ ッ プ 120 でフ ァ ン回転数をア ッ プ し て風量の不足を補 う 。 フ ァ ン回転数が上限値以上の と き には、 風量不足 (空気量不足) の場合に該当 し、 こ の場 合には風量不足が器具の異常ま たは寿命に よ って生 じた も のなのか、 あ る いは器具設置環境下の有風の影響に よ る も のなのかの確認動作に移 る。 On the other hand, if the valve opening drive current I is larger than ΚΔΡ, it is determined in step 119 whether the fan rotation speed is equal to or higher than the rated maximum rotation speed. If the fan speed does not reach the rated maximum speed (upper limit), the fan speed should be increased. Since there is room, the fan speed is increased in step 120 to compensate for the lack of air volume. When the fan rotation speed is higher than the upper limit, it corresponds to the case of insufficient air volume (insufficient air volume). In this case, the insufficient air volume occurs due to the abnormality or the life of the equipment. Move on to the confirmation operation of whether it is due to wind or the influence of the wind in the equipment installation environment.
ま ず、 図 " 7 のステ ッ プ 121 で異常ま たは寿命判断フ ラ グが零であるか否かを判断する。 今の段階では前記の如 く 、 ステ ッ プ 101 でフ ラ グに零が与え られている ので、 ステ ッ プ 122 の動作に移 り 、 電磁弁 13、 能力切 り 換え弁 18 a 〜 18 c 、 比例弁 14をそれぞれオ フ してバーナ燃焼を 停止する。 そ して、 ステ ッ プ 123 で燃焼フ ァ ン 3 を設定 制御条件、 こ の例では定格最大回転数で回転する。 そ し てステ ッ プ 1 2 4 で風量セ ンサ 16の風量検出値 Δ Ρ と、 風量判定値の B mm A q とを比較 し、 ステ ッ プ 125 でタ イ マ 27の動作時間が経過する ま で前記風量検出値をサ ン プ リ ン グ し風量判定値 との比較判断を繰 り 返 し行う。  First, it is determined whether or not the abnormality or life determination flag is zero in step 121 in FIG. 7. At this stage, as described above, the flag is determined in step 101. Since zero is given, the operation proceeds to the operation of step 122, and the burner combustion is stopped by turning off the solenoid valve 13, the capacity switching valves 18a to 18c, and the proportional valve 14 respectively. Then, in Step 123, the combustion fan 3 is set under the control conditions, in this example, the motor rotates at the rated maximum speed, and in Steps 12 and 4, the airflow detection value ΔΡ of the airflow sensor 16 and In step 125, the airflow detection value is compared with the airflow determination value, and the airflow detection value is sampled until the operation time of the timer 27 elapses in step 125, and the airflow determination value is compared with the airflow determination value. Is repeated.
そ して、 こ のタ イ マ動作時間の間、 全て風量検出値 Δ P が風量判定値を下回 っ ていた と き には状況判定部 22に よ り 無風安定状況 と判断さ れる。 そ して、 こ の よ う な無 風安定状況に も拘わ らず風量の不足状態が生 じた こ と は 、 給湯熱交換器 4 に煤詰ま り が生 じる等の通風詰ま り 劣 化が生 じた も の と判断さ れ、 ステ ッ プ 126 で異常ま たは 寿命判定部 26に よ り 器具異常ま たは寿命 と判定さ れて、 異常ま たは寿命判断フ ラ グに 1 が立て られる。 こ れに対 し、 前述のタ イ マー動作時間 ( C分間) の間に 1 回で も 風量検出値 Δ P が風量判定値を上回 っ た と き には、 前記 ステ ッ プ 1 1 7 で風量検出値 Δ P が風量判定値 I Z Kを低 圧側に越えたのは器具の異常ま たは寿命のためではな く 、 給湯器の排気側に逆風が当たる等の有風の影饗によ つ て一時的に風量検出値が低下 した もの と判断する。 こ れ らステ ッ プ 123 〜ステ ッ プ 1 25 の動作では、 無風安定状 況にあるか否かの判定と、 器具異常ま たは寿命の判定 と が同時に行われる。 前記の風量判定値は、 例えば、 不完 全燃焼が進行 し こ れ以上風量が少な く な る と排ガス内の 一酸化炭素、 炭化水素、 窒素酸化物等の風量が高 く な る 限界値か ら決め られる。 If the detected airflow values ΔP are all below the airflow determination value during the timer operation time, the status determination unit 22 determines that the airflow is stable. Despite such a stable windless condition, the lack of air volume occurred due to poor ventilation due to soot clogging in the hot water supply heat exchanger 4. Is determined to have occurred, and in step 126, the appliance is judged to be abnormal or the service life is judged to be abnormal by the life judgment unit 26, or the life is judged by the life judgment unit 26. 1 is set. Against this If the airflow detection value ΔP exceeds the airflow judgment value even at least once during the timer operation time (C minutes) described above, the airflow detection value is set in step 117 above. The reason that ΔP exceeded the airflow judgment value IZK to the low pressure side is not due to the abnormality or the life of the appliance, but is temporarily due to the effect of the wind, such as the back wind hitting the exhaust side of the water heater. It is determined that the airflow detection value has dropped. In the operations of these steps 123 to 125, the determination as to whether or not there is a stable windless state and the determination of the appliance abnormality or the life are simultaneously performed. The above-mentioned airflow determination value is, for example, a limit value at which, if incomplete combustion proceeds and the airflow becomes lower, the airflow of carbon monoxide, hydrocarbons, nitrogen oxides, etc. in the exhaust gas becomes higher. Can be determined.
上記のステ ッ プ 1 24 について、 更に図 2 7 を参照 して 説明する。 図 2 7 には、 横軸の時間軸の経過に伴い、 一 定回転でフ ァ ンを回転させた場合の風量の変化の例を示 している。 風量判定値の B m m A q よ り 風量検出値が高 い場合は、 正常な状態であ るが、 外界の風の影饗に よ り 、 風量判定値は図示さ れる通 り常に変動 している。  Step 124 above will be further described with reference to FIG. Figure 27 shows an example of the change in airflow when the fan is rotated at a constant rotation with the passage of time on the horizontal axis. If the airflow detection value is higher than the airflow judgment value BmmAq, the airflow is normal, but the airflow judgment value fluctuates as shown in the figure due to the influence of the external wind. I have.
そ して、 C 1 分間では、 外界か ら風の影饗が出ている 場合の例が示さ れている。 外界か ら強い風が排気口 に吹 き込むと、 検出 さ れる風量値が一時的に下がる こ とにな る。 しか し、 自然界では一定の強風が風向 き を変える こ と な く 連続 して吹 く こ とがない。 従っ て、 外界か ら吹き 込む風の強弱が変動 し、 図 2 7 の C 1 中に示される よ う に、 風量値が一部 B m m A q を越える こ と にな る。 従つ て、 風量検出値 Δ Ρが、 判定値 B m m A q を上回る現象 が生 じ る こ と にな る。 こ の場合が、 有風の状態であ る と 判断さ れる。 In addition, C shows an example in which the shadow of the wind is coming from the outside world for 1 minute. If a strong wind blows into the exhaust port from the outside world, the detected airflow value will temporarily decrease. However, in the natural world, certain strong winds do not change direction and do not blow continuously. Therefore, the strength of the wind blown from the outside fluctuates, and as shown in C1 in Fig. 27, the airflow value partially exceeds BmmAq. Follow As a result, a phenomenon occurs in which the airflow detection value ΔΡ exceeds the judgment value BmmAq. In this case, it is determined that there is a wind.
一方、 更に時間が経過 して、 C 2 分間においては、 外 界の風がな く 、 且つ風量値が B m m A q よ り 低 く な る例 が示されている。 こ の場合は、 外界の風がな く 、 風量値 の変動 も少ないので、 ステ ッ プ 1 24 にて、 無風であるが 風量値が風量判定値よ り も下がっ ている こ とが検出 さ れ る  On the other hand, there is shown an example in which, after a further lapse of time, there is no external wind for 2 minutes in C, and the airflow value is lower than BmmAq. In this case, since there is no outside wind and there is little fluctuation in the airflow value, it is detected in step 124 that there is no wind but the airflow value is lower than the airflow judgment value. To
以上のよ う に、 こ の例では、 一定時間の間、 継続的に 、 風量値が風量判定値 B よ り も低い状態が保たれるか否 かを監視する こ とで、 有風か無風かの判定と、 異常ま た は寿命かの判定を同時に行う こ とができ る。  As described above, in this example, by monitoring whether or not the airflow value is kept lower than the airflow determination value B for a certain period of time, windy or windless Can be determined at the same time as whether it is abnormal or the service life has expired.
図 2 8 には、 風量セ ン サの検出風量が一定にな る よ う に燃焼フ ァ ンを制御 した時の、 当該燃焼フ ァ ン の回転数 の変化を示 している。 こ の場合は、 上記 と逆に、 一定時 間の間、 継続的に、 フ ァ ン の回転数検出器か らの回転数 が、 回転数判定値 B よ り も高 く な るか どう かを監視する こ とで、 有風か無風かの判定と、 異常ま たは寿命かの判 定を同時に行う こ とができ る。  Figure 28 shows the change in the number of revolutions of the combustion fan when the combustion fan was controlled so that the airflow detected by the airflow sensor was constant. In this case, contrary to the above, whether the rotation speed from the rotation speed detector of the fan continuously becomes higher than the rotation speed determination value B for a certain period of time. By monitoring the wind, it is possible to judge whether there is wind or no wind and also to judge whether it is abnormal or long-lived.
図 7 に戻る と、 前記ステ ッ プ 1 2 6 で器具が異常ま たは 寿命 と判定され、 異常ま たは寿命信号が出力 さ れた と き には、 こ の異常ま たは寿命信号を用 いて器具が異常ま た は寿命であ る 旨をラ ン プ表示、 ある いは リ モ コ ン等の表 示部に表示する等 して器具の異常ま たは寿命を報知する 。 こ の こ とで、 器具の買い換えや、 メ ン テナ ン ス等、 適 切な処置を使用者に促す。 Returning to FIG. 7, it is determined in step 1226 that the appliance is abnormal or has reached the end of its life, and if an abnormal or end of life signal has been output, the abnormality or end of life signal is output. To indicate that the equipment is abnormal or has reached the end of its service life, or to indicate on the display of a remote control, etc. . This encourages the user to take appropriate measures, such as replacement of equipment and maintenance.
前記ステ ッ プ 1 22 か ら 1 26 にかけて異常ま たは寿命判 断が行われ、 異常ま たは寿命でない と判定さ れた場合に は異常ま たは寿命判断フ ラ グが零の ま まで、 異常ま たは 寿命 と判定さ れた と き には異常ま たは寿命判断フ ラ グに 1 が与え られる。  Abnormality or life judgment is performed from the above steps 122 to 126, and if it is judged that abnormality or life is not reached, the abnormality or life judgment flag remains at zero. If it is determined that the battery is abnormal or has reached the end of its service life, 1 is given to the abnormality or service life determination flag.
いずれの場合 も次に給湯栓が開け られる こ と によ り 、 ステ ッ プ 1 02 - 1 1 3 の動作が行われる。 そ して、 ステ ツ プ 1 1 3 で、 異常ま たは寿命判断フ ラ グに 1 が立て られて いる こ と を確認 した と き には、 器具異常ま たは寿命と判 定さ れた後の燃焼運転の状態 と判断 し、 図 7 のステ ッ プ 1 27 以降の動作が行われる。  In either case, the operation of steps 102-113 is performed by opening the hot water tap next time. Then, when it is confirmed in step 11 that the abnormality or life judgment flag is set to 1, it is determined that the equipment is abnormal or the life is expired. Judgment is made as the state of the later combustion operation, and the operation after step 127 in FIG.
こ のステ ッ プ 1 27 以降の動作は、 器具異常ま たは寿命 によ っ て低下 した風量の範囲内で給湯器を一時的に使用 可能状態にする動作を示 した ものである。 ステ ッ プ 1 27 で給湯器の燃焼能力をバーナ 2 の各段燃焼ごと に所定量 、 例えば 1 N に低下させる。 こ の Nは少数を含む実数 であ る。 つま り 、 図 5 の ( a ) に示す如 く 、 ラ イ ン し の 右側の能力がカ ツ ト さ れる。 次に、 ステ ッ プ 1 28 で設定 温度に対 し、 フ ィ ー ド フ ォ ワ ー ド演算によ り 求め られる 燃焼能力が出せるか否か ( フ ィ ー ド フ ォ ワ ー ドガス量制 御が可能か否か) を判断する。 こ の燃焼能力が出せる場 合には燃焼能力のカ ツ ト状態でステ ッ プ 1 1 5 以降の燃焼 運転が行われる こ と となる。 こ の場合は、 ステ ッ プ 1 1 6 の動作で、 水流オ ンが判断さ れた と き (燃焼継続中の と き) はステ ッ プ 1 1 3 の動作に行かず、 破線の示すよ う に 、 1 Nに低下 した燃焼能力 に対応 してステ ッ プ 1 1 4 の 動作に移る こ とにな る。 The operation after step 127 shows the operation of temporarily making the water heater usable within the range of the air volume reduced due to the appliance abnormality or the service life. In step 127, the combustion capacity of the water heater is reduced to a predetermined amount, for example, 1 N for each stage of combustion of the burner 2. This N is a real number including a small number. That is, the ability on the right side of the line is cut, as shown in FIG. 5 (a). Next, in step 128, it is determined whether or not the combustion capacity required by the feedforward calculation can be obtained for the set temperature (feedforward gas amount control). Is possible or not?). If this combustion capacity can be obtained, the combustion operation after step 115 is performed in the cut state of the combustion capacity. In this case, Step 1 1 6 When the water flow is determined to be ON (while combustion is continuing), the operation in step 113 is not performed, and the combustion capacity is reduced to 1 N as indicated by the broken line. In response, the operation proceeds to the operation of step 114.
こ れに対 し、 ステ ッ プ 1 28 でフ ィ ー ドフ ォ ワ ー ド演算 量の燃焼能力が出せない も の と判断さ れる場合があ る。 すなわち、 前記図 5 の ( a ) , ( b ) に示すよ う に、 ラ イ ン L の右側がカ ツ 卜 さ れて、 各段数の特性直棣間に重 ね しろ Δ D , Δ D ' がな く な っ て し ま って、 低能力側の 特性直棣 とそれよ り に高い方の特性直線 との間の欠落部 の燃焼能力が要求された ものである場合であ る。 その場 合は、 ステ ッ プ 1 29 で燃焼制御の特性直線を低い側の特 性直線に移行 して燃焼制御を行わせる。 そ して、 こ の低 能力側の特性直線を選定 した こ と に よ る給湯湯温の低下 分を補 う ために、 次のステ ッ プ 1 30 で水量制御弁 1 1を閉 方向に制御 して出湯量を少な く する方向に制御 し、 設定 温度の湯温を出湯でき る態勢に水量制御するのであ る。 そ して、 ステ ッ プ 1 1 5 以降の燃焼運転を行う 。 こ の場合 も ステ ッ プ 1 1 6 で水流オ ンの判断時にはステ ッ プ 1 1 3 へ は行かず、 ステ ッ プ 1 1 4 の動作に移る こ と にな る。  On the other hand, in step 128, it may be determined that the combustion capacity of the feedforward operation amount cannot be obtained. That is, as shown in (a) and (b) of FIG. 5, the right side of the line L is cut and overlapped between the characteristic straight lines of each stage ΔD, ΔD ′ In this case, the combustion performance at the gap between the characteristic straight line on the low capacity side and the higher characteristic straight line is required. In this case, in step 129, the combustion control is performed by shifting the combustion control characteristic line to the lower characteristic line. Then, in order to compensate for the drop in hot water temperature due to the selection of the characteristic line on the low capacity side, the water amount control valve 11 is controlled in the closing direction in the next step 130. Then, the amount of hot water is controlled to decrease, and the amount of hot water at the set temperature is controlled so that the hot water can be discharged. Then, the combustion operation is performed after step 1 15. Also in this case, when the water flow is determined to be ON in step 116, the operation does not proceed to step 113 but moves to the operation of step 114.
前記の よ う に、 異常ま たは寿命判断フ ラ グに 1 が立て られた後には、 ステ ッ プ 1 1 5 か ら ステ ッ プ 1 20 にかけて の風量制御が行われる。 こ の と き ステ ッ プ 1 1 9 でフ ァ ン 回転数が定格最大回転数以上であ る と き には、 ステ ッ プ 1 2 1 で異常ま たは寿命判断フ ラ グが零であるか否かが判 断さ れる。 今回は、 既に異常ま たは寿命判断フ ラ グに 1 が立て られている ので、 ステ ッ プ 1 3 1 で強制的に器具運 転が停止される。 そ して、 それ以降の燃焼運転をでき な い状態に し、 燃焼不良の ま ま燃焼運転が行われるのを防 止 し、 安全が図 られる。 As described above, after “1” is set to the abnormality or life determination flag, the air volume control is performed from step 115 to step 120. At this time, if the fan rotation speed is equal to or higher than the rated maximum rotation speed in step 119, the abnormality or life judgment flag is zero in step 122. Whether or not Refused. In this case, 1 has already been set in the abnormality or life judgment flag, and the operation of the appliance is forcibly stopped in step 13 1. Then, the combustion operation cannot be performed after that, preventing the combustion operation from being performed while the combustion is poor, thereby achieving safety.
[第二の動作の フ ロ ー ]  [Second action flow]
図 8 は器具の異常ま たは寿命判定を行う 第 2 の動作を 示すフ ロ ーチ ャ ー ト であ る。 第二の動作のフ ロ ーの概略 は、 次の通 り である。 即ち、 燃焼中に風量に異常が検知 さ れる と、 一旦燃焼を停止する。 そ して診断動作では、 非燃焼、 フ ァ ン零回転の も とで、 無風状態の判定を行い 、 無風の時はフ ァ ンを所定回転させて十分なる風量が得 られているか否かの判定が行われる。  FIG. 8 is a flowchart showing a second operation for judging the abnormality or the life of the appliance. The outline of the flow of the second operation is as follows. That is, if an abnormality is detected in the air volume during the combustion, the combustion is temporarily stopped. Then, in the diagnosis operation, based on the non-combustion and zero rotation of the fan, a determination of a no-wind state is made, and when there is no wind, it is determined whether or not a sufficient amount of air is obtained by rotating the fan a predetermined number of times. A determination is made.
前記図 6 およ び図 7 に示す第一の動作では、 有風状況 と無風安定状況との区別判断動作 と、 異常ま たは寿命判 定の動作を、 燃焼運転をステ ッ プ 1 22 で停止 した後、 ス テ ツ プ 1 23 か ら 1 25 の動作によ っ て同時に行っ た。 しか し、 第 2 の動作では、 有風と無風安定状況の判断と、 異 常ま たは寿命判定の判断を別個の動作によ って行っ た も のであ る。 従っ て、 有風と無風安定状況の判断がよ り 正 確に行われる こ と にな る。 こ の点では、 第二の動作はよ り 好ま しい。 そ して、 それ以外の動作は前記第 1 の動作 と 同様であ り 、 同 じ動作には同一のステ ッ プ番号を付 し てあ る。 ステ ッ プ 1 0 1 か ら 1 2 1 までの動作 と、 ステ ッ プ 1 27 か ら 1 3 1 ま での動作は前記第 1 の動作 と同一であ る ので、 図 8 では、 ステ ッ プ 101 とステ ッ プ 102 とステ ツ プ 121 とステ ッ プ 131 の動作を図示 し、 その間の第 1 の 動作 と共通のステ ッ プ動作は省略 してあ る。 In the first operation shown in FIGS. 6 and 7, the operation of discriminating between a windy condition and a stable condition with no wind, the operation of judging abnormality or life, and the combustion operation are performed in step 122. After stopping, the operations were performed simultaneously by the operations of steps 123 to 125. However, in the second operation, the determination of the stable state of wind and no wind and the determination of the abnormality or life determination are performed by separate operations. Therefore, the determination of stable conditions with and without wind can be made more accurately. In this regard, the second behavior is more favorable. The other operation is the same as the first operation, and the same operation is denoted by the same step number. The operation from step 101 to 121 and the operation from step 127 to 131 are the same as the first operation. Therefore, FIG. 8 illustrates the operations of step 101, step 102, step 121, and step 131, and omits the common step operation between the first operation and the first operation. .
図 8 の フ ロ ーチ ャ ー ト で、 ステ ッ プ 132 か らステ ッ プ 139 までの動作は器具設置環境の有風状況 と無風安定状 況の区別判断の動作を示 してお り 、 ステ ッ プ 140 か らス テ ツ プ 142 までの動作は器具の異常ま たは寿命判定の動 作を示 している。 器具の燃焼運転を行っ ている と き に、 ステ ッ プ 119 において燃焼フ ァ ンの回転が定格最大回転 数以上とな っ ている に もかかわ らずガス供給量に比べ検 出風量が不足 とな っ ている との判断がな される。 その場 合は、 その空気の不足状態が有風のために生 じている も のか、 あるいは器具異常ま たは寿命のために生 じている ものなのかを判断するために、 ステ ッ プ 132 で燃焼停止 を行う 。 こ の燃焼停止に際 し、 電磁弁、 能力切 り 換え弁 、 比例弁がそれぞれオ フ さ れ、 燃焼フ ァ ン 3 も停止さ れ る。 そ して、 次に有風状況にあ るか、 無風安定状況にあ るかの判断動作ステ ッ プ 133 — 139 に移る。  In the flowchart of FIG. 8, the operation from step 132 to step 139 shows the operation of discriminating between the windy state and the stable windless state of the equipment installation environment. The operations from step 140 to step 142 indicate the operation of determining the abnormality or the life of the appliance. During the combustion operation of the appliance, the detected air volume is insufficient compared to the gas supply despite the fact that the rotation of the combustion fan is higher than the rated maximum speed in step 119. It is determined that it is. In that case, step 132 is used to determine if the air shortage is due to wind or due to equipment malfunction or longevity. Stop combustion with. When the combustion is stopped, the solenoid valve, the performance switching valve, and the proportional valve are turned off, and the combustion fan 3 is also stopped. Then, the operation proceeds to steps 133 to 139 for judging whether there is a windy state or a stable state of no wind.
外界に一定以上の風速の風があ る と、 風量セ ンサ 1 6 の出力 はその影響を受けて大き く ばらつ く 。 こ の点は図 4 で説明 した通 り であ る。 そ こ で、 以下の動作では、 燃 焼フ ァ ンの回転ゼロで非燃焼状態での風量セ ンサ 1 6 の 出力のばらつき を監視 している。  If there is a wind of a certain speed or higher in the outside world, the output of the airflow sensor 16 will be greatly affected by the influence. This point is as explained in FIG. Therefore, in the following operation, the variation of the output of the air flow sensor 16 in the non-combustion state at zero rotation of the combustion fan is monitored.
ま ず、 ステ ッ プ 133 で、 風量セ ンサ 16の最大瞬間値 Δ P Μ Λ Χ と最小瞬間値 Δ Ρ ΜΝ とが初期値デー タ と して入 力 さ れ、 こ の入力値は メ モ リ 23等に格納さ れる。 こ の初 期値 と して、 例えば、 図 4 のセ ンサ零点の値が Δ P M A XAlso not a, in stearyl-up 133, Kazeryouse capacitors 16 maximum instantaneous value Δ P Μ Λ Χ and minimum instantaneous value Δ Ρ Μ of, and Ν is input as the initial value data This input value is stored in the memory 23 or the like. As the initial value, for example, the value of the sensor zero point in FIG.
, Δ P Μ , Ν の値 と して入力 さ れる。 ステ ッ プ 134 では、 風量セ ンサ 16に よ っ て検出 さ れた風量検出値 Δ Ρ が Δ Ρ ΜΑ Χ 以上であるか否かを判断 し、 風量検出値 Δ Ρ が最大 瞬間初期値 Δ Ρ ΜΑ Χ よ り も大き い と き にはその検出値 Δ Ρ を Δ Ρ ΜΑ Χ に置き換える。 ま た、 ステ ッ プ 136 では風 量検出値 Δ Ρ と最小瞬間初期値 Δ Ρ Μ , Ν と を比較 し、 Δ Ρ が Δ Ρ Μ 1 Ν 以下か否かを判断する。 Δ Ρ が Δ Ρ Μ , Ν よ り も小さ レ、 と き には Δ Ρ を Δ Ρ Μ 1 Ν に置き換える。 こ れ らの最大瞬間値 Δ P M A X と最小瞬間値 Δ P M , N の置き換 え動作を夕 イ マ 27の動作に よ っ て指定さ れる所定のサ ン プ リ ン グ'時間行い、 Δ Ρ ΜΑ Χ と Δ Ρ Μ Ι Ν を確定する。 , ΔPΜ, Ν. In step 134, it is determined whether or not the detected airflow value ΔΡ detected by the airflow sensor 16 is greater than or equal to ΔΡΡ, and the detected airflow value ΔΡ is set to the maximum instantaneous initial value ΔΡ. If it is larger than ΜΑ 置 き 換 え る , replace the detected value Ρ Χ with Ρ Ρ Χ . Also, in step 136, the air flow detection value ΔΡ is compared with the minimum instantaneous initial value ΔΡΡ, Ν, and it is determined whether ΔΡ is equal to or less than ΔΡΡ1Ρ . Δ Ρ is Δ Ρ Μ, is to come even small-les-Ri good Ν, and replace the Δ Ρ to Δ Ρ Μ 1 Ν. The maximum instantaneous value ΔPMAX and the minimum instantaneous value ΔP M , N are replaced with each other for a predetermined sampling time specified by the operation of the imager 27, and Determine Ρ ΜΑ Χ and Δ Ρ Μ Ι Ν .
次に、 ステ ッ プ 139 で確定さ れた 厶 Ρ ΜΑ Χ と Δ Ρ Μ Ι Ν の差を求め、 こ の差 (ばらつき変動幅) が設定許容範囲 の値を下回るか否かを判断する。 最大瞬間値 と最小瞬間 値の差が設定許容範囲の D以上の時に、 換言すれば、 風 量セ ンサ 16の風量検出値のば らつき変動の要因 とな る風 速が設定許容範囲 D に対応する風速よ り も大き い と き に は有風状況と判定 し、 空気量の不足が生 じたのは一時的 な有風の影響であ る と判断 し、 ステ ッ プ 102 以降の動作 を行 う 。 Next, determine the difference between the stearyl-up 139 the determined厶Ρ ΜΑ Χ and Δ Ρ Μ Ι Ν, the difference between this (variation fluctuation width) is equal to or below the value of the allowable setting range. When the difference between the maximum instantaneous value and the minimum instantaneous value is equal to or larger than the allowable setting range D, in other words, the wind speed that causes the variation in the airflow detection value of the airflow sensor 16 falls within the allowable setting range D. When the wind speed is higher than the corresponding wind speed, it is determined that there is a wind, and it is determined that the shortage of air volume is caused by the temporary wind, and the operation after step 102 I do .
こ れに対 し、 前記ステ ッ プ 139 で最大瞬間値△ P M A X と最小瞬間値 Δ P M , N の差が D よ り 小さ い と き には、 無 風安定状況 と判定 し、 次のステ ッ プ 140 か ら 141 にかけ て器具異常ま たは寿命の判定動作に移る。 ステ ッ プ 1 40 では、 燃焼フ ァ ン 3 をパー ナの非燃焼状態で、 設定制御 条件であ る定格最大回転数で回転する。 こ の状態で、 ス テ ツ ブ 1 4 1 で、 風量検出値 Δ P と風量判定値 ( B mm A q ) と を比較 し、 風量検出値 Δ P が風量判定値よ り も低い と き には、 通風詰ま り 劣化によ る器具異常ま たは寿命 と 判定 し、 異常ま たは寿命判断フ ラ グに 1 を立てて異常ま たは寿命信号を出力 し、 前記図 7 のステ ッ プ 1 27 以降の 動作によ り 、 燃焼能力を 1 Nに低減 して一時的に燃焼 運転を可能状態にする。 On the other hand, if the difference between the maximum instantaneous value △ PMAX and the minimum instantaneous value ΔPM, N is smaller than D in step 139, it is determined that there is no wind and the next step is taken. From 140 to 141 Then, the operation proceeds to the operation for judging the equipment abnormality or the life. In step 140, the combustion fan 3 is rotated at the rated maximum speed, which is the set control condition, without the burner in the burner. In this state, the airflow detection value ΔP is compared with the airflow judgment value (BmmAq) at step 141, and when the airflow detection value ΔP is lower than the airflow judgment value. Is determined to be an appliance abnormality or life due to deterioration of the ventilation clogging, the abnormality or life determination flag is set to 1 and an abnormality or life signal is output, and the step in FIG. 7 is performed. By the operation after 127, the combustion capacity is reduced to 1 N and the combustion operation is temporarily enabled.
[第三の動作のフ ロ ー ]  [Third action flow]
図 9 およ び図 1 0は本実施例の第 3 の動作を示すフ 口一 チ ャ ー ト である。 こ の第 3 の動作は、 運転スィ ッ チがォ ン さ れて電源が投入さ れた後、 燃焼フ ァ ンを回転する前 に有風状況か無風安定状況かの判定を行い、 燃焼開始前 のプ リ パー ジの フ ァ ン回転中に、 器具の異常ま たは寿命 判定を行う よ う に した こ とを特徴とする。 こ の第 3 の動 作を示すフ ロ ーチ ャ ー ト において、 前記第 1 の動作や第 2 の動作と同一の動作には同一のステ ッ プ番号を付 して その説明は省略 (又は簡略化) する。  FIG. 9 and FIG. 10 are flowcharts showing a third operation of the present embodiment. In the third operation, after the operation switch is turned on and the power is turned on, before turning on the combustion fan, it is determined whether the wind is stable or not, and the combustion is started. During the fan rotation of the previous pre-purging, it is characterized by judging abnormality of equipment or life. In the flowchart showing the third operation, the same operation as the first operation or the second operation is denoted by the same step number, and the description thereof is omitted (or (Simplification).
ま ず、 運転スィ ッ チがオ ン さ れる と、 ステ ッ プ 1 0 1 で 異常ま たは寿命判断フ ラ グに零が置かれ、 ステ ッ プ 30 1 で風量セ ンサ 1 6の最大瞬間値 Δ P M A X と最小瞬間値 Δ PFirst, when the operation switch is turned on, zero is set to the abnormality or life determination flag in step 101, and the maximum moment of the air flow sensor 16 is set in step 301. Value Δ PM A X and minimum instantaneous value Δ P
Μ , Ν との初期値が入力 さ れ、 同時に、 無風判断フ ラ グ Ε に零が置かれる。 そ して、 ステ ッ プ 302 で有風状況 と無 風安定状況を判定するためのタ イ マ 27がス タ ー ト ( リ セ ッ ト ス 夕 一 ト を含む) さ れる。 The initial values of Μ and Ν are input, and at the same time, zero is set in the windless judgment flag Ε. Then, in step 302, the wind condition The timer 27 for judging the wind stability state is started (including the reset evening).
次に、 ステ ッ プ 134 か ら 137 にかけて、 前記第 2 の動 作示す図 8 のステ ッ プ 134 〜 137 と同様な動作を行い、 風量セ ンサ 16の風量検出値を用いてサ ン プ リ ン グ時間中 の最大瞬間値 Δ Ρ ΜΑ Χ と最小瞬間値 Δ Ρ Μ Ι Ν の値を確定 する。 そ して、 ステ ッ プ 303 でフ ロ ーセ ンサ (水量セ ン サ 7 ) がオ フ している こ とを確認 して、 ステ ッ プ 304 で 、 前記確定 した最大瞬間値 Δ Ρ ΜΑ Χ と最小瞬間値 Δ Ρ Μ Ι Ν の差 と、 設定許容範囲 D とを比較する。 最大瞬間値 Δ P M A X と最小瞬間値 Δ P M , N とのば らつき変動幅が設定 許容範囲 Dを下回る と き には無風安定状況と判定 し、 無 風判断フ ラ グ E に 1 を立てる。 最大瞬間値 Δ Ρ ΜΑ Χ と最 小瞬間値 Δ Ρ Μ , Ν との変動幅が設定許容範囲の D よ り も 大き い と き には、 有風状況 と判定 し、 無風判断フ ラ グ Ε は零の ま ま に してお く 。 Next, in steps 134 to 137, the same operation as steps 134 to 137 in FIG. 8 showing the second operation is performed, and sampling is performed using the air flow detection value of the air flow sensor 16. Determine the maximum instantaneous value Δ Ρ Ρ Χ and the minimum instantaneous value Δ Ρ Ι Ν during the swing time. Then, in step 303, it is confirmed that the flow sensor (water sensor 7) is off, and in step 304, the determined maximum instantaneous value Δ Ρ ΜΑ Χ And the minimum instantaneous value Δ Ρ Μ Ν 差 , and the allowable setting range D. When the fluctuation range between the maximum instantaneous value ΔPMAX and the minimum instantaneous value ΔPM, N falls below the allowable setting range D, it is judged that there is no wind stability and 1 is set in the windless judgment flag E. If the fluctuation range between the maximum instantaneous value Δ Ρ ΜΑ Χ and the minimum instantaneous value Δ Ρ ,, Ν is larger than the set allowable range D, it is judged as a windy condition and the windless judgment flag Ε Should be left at zero.
前記有風状況 と無風安定状況との判別判定は、 ステ ツ プ 307 で水量セ ンサ 7 か らオ ン信号が加え られる ま で繰 り 返さ れ、 水量セ ンサ 7 がオ ン した と こ ろでステ ッ プ 10 に移 る。 水量セ ンサ 7 か らオ ン信号が加え られた と き には、 次のステ ッ プ 104 で燃焼フ ァ ン 3 をプ リ ノ、。一 ジ回 転 (パー ナを燃焼する前に燃焼室内の排気ガスを排出す る ために、 燃焼フ ァ ンを回転する動作) する。 プ リ パー ジの フ ァ ン回転が一定に安定 した時期とな っ た図 10のス テ ツ プ 308 で、 風量セ ンサ 16の風量検出値 Δ Ρ と、 その プ リ パー ジの定速時における風量判定値 ( B mm A q ) と .を比較する。 風量検出値 Δ P が風量判定値を下回 っ た と き には、 ステ ッ プ 30 9 で無風判断フ ラ グに 1 が立っ てい るか否かを判断する。 無風判断フ ラ グに 1 が立っ ている と き には、 無風安定状況の下で風量不足が生 じた こ と と な る。 従って こ の と き には、 通風詰ま り 劣化に よ る器具 異常ま たは寿命 と判定 し、 ステ ッ プ 3 1 0 で異常ま たは寿 命判断フ ラ グに 1 を立て、 異常ま たは寿命信号を出力す る。 前記ステ ッ プ 30 8 で風量検出値が風量判定値よ り も 大き い と き には、 風量不足の状態ではな く 、 ま た、 ステ ッ ブ 30 9 で無風判断フ ラ グが零であ る と き には、 風量不 足は有風のため と判断さ れ、 こ れ らの場合はいずれ も器 具の通風詰ま り劣化の異常ま たは寿命ではない と判断 し 、 ステ ッ プ 1 0 6 以降の燃焼運転動作を行う 。 The determination of the windy state and the stable state of the windless state is repeated until the ON signal is added from the water flow sensor 7 in step 307, and the water flow sensor 7 is turned ON. Go to step 10. When the ON signal is supplied from the water sensor 7, the combustion fan 3 is printed in the next step 104. One rotation (operation to rotate the combustion fan to exhaust the exhaust gas in the combustion chamber before burning the burner). At step 308 in FIG. 10 when the fan rotation of the prepurge is stabilized to a certain level, the detected airflow value Δ の of the airflow sensor 16 and its The air volume judgment value (B mm A q) at the constant speed of the prepurge is compared with. If the airflow detection value ΔP is lower than the airflow determination value, it is determined in step 309 whether or not 1 is set in the no-wind determination flag. When 1 is set in the windless judgment flag, it means that the airflow is insufficient under stable windless conditions. Therefore, in this case, it is determined that the equipment is abnormal or the service life due to the deterioration of the ventilation clogging is degraded.In step 310, 1 is set to the abnormal or life-determining flag, and the abnormal condition is set. Outputs the life signal. If the detected airflow value is larger than the airflow judgment value in step 308, the airflow is not in a state of insufficient airflow, and the no-airflow judgment flag is zero in step 309. In this case, it is determined that the lack of air volume is due to the presence of wind. Perform the combustion operation after 06.
こ のステ ッ プ 1 0 6 以降の動作において、 異常ま たは寿 命判断フ ラ グが零の状態にある と き には通常の燃焼運転 を行う 。 ま た異常ま たは寿命判断フ ラ グに 1 が立て られ ている と き には、 こ れがステ ッ プ 1 1 3 で判断さ れ、 前記 第 1 の動作を示す図 7 のステ ッ プ 1 27 か ら 1 3 0 の動作 と 同一の動作を行い、 器具の燃焼能力を低減 して燃焼運転 を行わせる。  In the operation after this step 106, when the abnormality or the life judgment flag is zero, the normal combustion operation is performed. Further, when 1 is set in the abnormality or life determination flag, this is determined in step 113, and the step of FIG. 7 showing the first operation is performed. The same operation as the operation from 127 to 130 is performed, and the combustion operation is performed by reducing the combustion capacity of the appliance.
こ の第 3 の動作では、 燃焼フ ァ ン 3 を回転する前に有 風と無風の状況判定を行い、 バー ナ 2 を燃焼する前のプ リ パー ジのフ ァ ン回転を利用 して器具の異常ま たは寿命 判定を行う ので、 前記第 1 お よ び第 2 の動作のよ う に燃 焼運転を一旦停止 してか ら燃焼フ ァ ンを回転 して異常ま たは寿命判定を行う のに比べ、 その異常ま たは寿命判定 を短時間の う ち に迅速に行う こ とができ る と い う 効果が 得 られる。 ま た、 前記第 2 の動作と同様に、 燃焼フ ァ ン 3 を回転 していない状態で有風と無風の状況判定を行う ので、 その状況判定の精度を格段に高める こ とができ る o In this third operation, before turning on the combustion fan 3, a judgment is made as to whether there is a breeze or no wind, and using the fan rotation of the prepurge before burning the burner 2 The abnormality or the life of the battery is judged, so that the fuel is burned as in the first and second operations. Compared to stopping the burning operation and then rotating the combustion fan to determine the abnormality or life, the abnormality or life can be determined quickly in a short time. The effect is obtained. Further, similarly to the second operation, since the determination of the condition of the presence or absence of the wind is performed while the combustion fan 3 is not rotating, the accuracy of the condition determination can be significantly improved.o
[第四の動作の フ ロ ー ]  [Fourth action flow]
図 1 1は本実施例の第 4 の動作を示すフ ロ ー チ ヤ一 ト で あ る。 こ の第 4 の動作は、 パーナを燃焼 しての燃焼運転 中 、 燃焼フ ァ ン の回転ア ッ プでは対応でき ない風量不 足が判断さ れた と き に、 燃焼運転を停止する こ とな く 、 燃焼運転を継続 した ま ま、 有風と無風の状況判定と器具 の異常ま たは寿命判定を行う よ う に した こ とを特徴とす る。 こ の第 4 の動作のフ ロ ーチ ャ ー ト で、 前記図 8 に示 す第 2 の動作の フ ロ ーチ ヤ一 ト と同一の動作には同一符 号を付 してその動作説明を省略あ る いは簡略化する。  FIG. 11 is a flowchart showing a fourth operation of the present embodiment. The fourth operation is to stop the combustion operation when it is determined that there is insufficient airflow during combustion operation by burning the wrench and the rotation of the combustion fan cannot cope. Another feature is that while the combustion operation is continued, a judgment is made as to whether there is a wind or no wind and whether an abnormality or life of the appliance is determined. In the flowchart of the fourth operation, the same operations as those in the flowchart of the second operation shown in FIG. Is omitted or simplified.
こ の第 4 の動作では、 運転スィ ッ チがオ ン さ れる と、 ステ ッ プ 4 0 1 で異常ま たは寿命判断フ ラ グに零が立て ら れ、 風量セ ンサ 1 6の風量検出の最大瞬間値 Δ Ρ Μ Α Χ と最 小瞬間値 Δ Ρ Μ , Ν の初期値が入力記憶さ れる。 次に、 ス テ ツ プ 1 02 以降の動作によ っ て燃焼運転が開始さ れる。 ステ ッ プ 1 0 2 か ら 1 2 1 ま での動作は第 2 の動作の図 8 お よ び第 1 の動作の図 6 およ び図 7 の同 じ番号のステ ッ プ 動作 と同様であ る。 ガス供給量に対 して風量不足が判断 さ れた と き には、 ステ ッ プ 119 で燃焼フ ァ ン 3 の回転数 が定格最大回転数よ り も大か小かが判断さ れ、 小の と き には、 ステ ッ プ 120 でフ ァ ン回転がア ッ プされる。 しか し フ ァ ン回転数が定格最大回転数以上の と き には、 風量 ア ッ プができない風量不足の状態であ り 、 こ の と き には 、 ステ ッ プ 121 で異常ま たは寿命判断フ ラ グが零であ る か否かが判断さ れる。 異常ま たは寿命判断フ ラ グが零の と き には、 燃焼運転を継続 した ま ま無風安定状態か否か 及び異常ま たは寿命判定が行われる。 ステ ッ プ 134 か ら ステ ッ プ 138 にかけて、 所定のタ イ マ動作によ るサ ンプ リ ン グ峙間中に、 風量セ ン サ 16で検出 さ れる風量検出値 を利用 して最大瞬間値 Δ P MA X と最小瞬間値 Δ Ρ Μ Ι Ν を 確定する。 In this fourth operation, when the operation switch is turned on, the abnormality or life determination flag is set to zero in step 401, and the air flow sensor 16 detects the air flow. The initial values of the maximum instantaneous value Δ Ρ Μ Α and the minimum instantaneous value Δ Ρ ,, Ν are input and stored. Next, the combustion operation is started by the operation after step 102. The operation from step 102 to 121 is the same as the step operation of the same number in FIG. 8 of the second operation and FIGS. 6 and 7 of the first operation. is there. Insufficient air flow is determined for gas supply If so, it is determined in step 119 whether the rotation speed of the combustion fan 3 is higher or lower than the rated maximum rotation speed. Fan rotation is up. However, when the fan rotation speed is higher than the rated maximum rotation speed, the air flow is insufficient to prevent the air flow from being increased.In this case, the abnormality or service life in step 121 is exceeded. It is determined whether or not the determination flag is zero. When the abnormality or life determination flag is zero, the combustion operation is continued, and it is determined whether or not the wind is stable and whether the abnormality or life is determined. From step 134 to step 138, the maximum instantaneous value is obtained using the airflow detection value detected by the airflow sensor 16 during sampling by a predetermined timer operation. placing delta P MA X and a minimum instantaneous value Δ Ρ Μ Ι Ν.
そ して、 その後、 ステ ッ プ 139 で最大瞬間値 Δ P M A X と最小瞬間値 Δ Ρ Μ Ι Ν の差が設定許容範囲の D と比較さ れる。 つま り 、 燃焼フ ァ ン が一定の回転数で回転 してい る と き の状態時にお ける風量セ ンサ 16の風量検出値の変 動量が設定許容範囲の D と比較さ れる。 風量検出値のば らつき変動量が設定許容範囲を下回る と き には無風安定 状況と判定 し、 それ以外の と き には有風判定状況 と判定 する。 Then, in step 139, the difference between the maximum instantaneous value ΔPMAX and the minimum instantaneous value Δ Ρ Μ Ν Ν is compared with D of the set allowable range. That is, when the combustion fan is rotating at a constant rotational speed, the amount of change in the detected airflow value of the airflow sensor 16 when the combustion fan is rotating is compared with D within the allowable setting range. If the variation of the airflow detection value falls below the set allowable range, it is determined to be a stable state with no wind; otherwise, it is determined to be a windy state.
無風安定状況 と判定さ れた と き には、 次のステ ッ プ 14 1 で風量セ ンサ 16に よ り取 り込まれる風量検出値 Δ Ρ と 風量判定値 B mm A q との比較が行われる。 風量検出値 Δ Pが風量判定値を下回る と き には無風安定状況にあ る に も拘わ らず風量不足の状態にあ る こ とを意味 し、 器具の 詰ま り 劣化に よ る異常ま たは寿命 と判定さ れる。 そ して 、 ステ ッ プ 1 42 で異常ま たは寿命判断フ ラ グに 1 が立て られて異常ま たは寿命信号が出力 さ れ、 図 7 のステ ッ プ 1 27 か ら 1 30 の動作 と同様の動作を行っ て器具の燃焼能 力を低減させた伏態で燃焼運転を継続する。 If it is determined that the airflow is stable, the next step 141 compares the airflow detection value ΔΡ taken by the airflow sensor 16 with the airflow determination value BmmAq. Will be When the airflow detection value ΔP falls below the airflow judgment value, the airflow is stable. Despite this, it means that the air volume is insufficient, and it is judged as abnormal or life due to clogging and deterioration of the equipment. Then, in step 142, the abnormality or life judgment flag is set to 1 and an abnormality or life signal is output, and the operations in steps 127 to 130 in FIG. 7 are performed. The same operation as that described above is performed, and the combustion operation is continued in the prone state in which the combustion capacity of the appliance is reduced.
こ の第 4 の動作では、 風量ァ ッ プができ ない状態で風 量不足が判断さ れた と き には、 前記第 1 お よ び第 2 の動 作のよ う に燃焼運転を一旦停止 して異常ま たは寿命判定 を行う のではな く 、 その ま ま燃焼運転を梡けなが ら器具 異常ま たは寿命の判定を行う 。 従って、 湯の使用中に湯 が一時的に出な く な る とい う 不都合がな く 、 湯を支障な く 使用 している間に器具の異常ま たは寿命判定を行う こ とができ る と い う 優れた効果を奏する こ とができ る。 本実施例によれば、 風量制御を行う 風量セ ンサの風量 検出値に基づき、 器具の異常ま たは寿命を判定する こ と ができ るので、 こ の判定結果に基づき、 器具の異常ま た は寿命を的確に知る こ とができ る。 こ れに よ り 、 器具が 異常ま たは寿命にな っ ている に も拘わ らず器具の使用が それ以降 も継続され、 C O ガスの過剰発生等の燃焼悪化 を引 き起こ した り 、 器具が未だ十分良好な燃焼性能を維 持 している に も拘わ らず器具の異常ま たは寿命 と判断さ れて器具が廃棄処分に さ れる と い う 無駄を防止する こ と ができ る。  In the fourth operation, when it is determined that the air volume is insufficient while the air volume is not increased, the combustion operation is temporarily stopped as in the first and second operations. Instead of performing an abnormality or life determination, the abnormality or life of the appliance is determined while the combustion operation is continued. Therefore, there is no inconvenience that the hot water temporarily goes out during the use of the hot water, and it is possible to judge the abnormality or the service life of the appliance while using the hot water without any trouble. The excellent effect can be achieved. According to this embodiment, the abnormality or life of the appliance can be determined based on the detected air volume of the air volume sensor that performs the air volume control. Can accurately know the service life. As a result, even though the equipment is abnormal or has reached the end of its life, the use of the equipment is continued even after that, leading to deterioration of combustion such as excessive generation of CO gas, It is possible to prevent waste that the equipment is discarded because it is judged to be abnormal or the life of the equipment, even though the equipment still maintains a sufficiently good combustion performance. You.
しか も、 器具の異常ま たは寿命判定は無風安定状況下 で行われるので、 器具設置環境下における逆風等の有風 の影響 (有風に よ る風量セ ンサ出力の変動) の影響を受 ける こ とな く 行われる ので、 その異常ま たは寿命判定の 精度が高ま り 、 異常ま たは寿命判定の信頼性を格段に高 める こ とができ る。 In addition, it is possible to judge whether the device is abnormal or its life is stable under no wind conditions. This is performed without being affected by the effects of winds such as headwinds (fluctuations in airflow sensor output due to winds) in the environment in which the equipment is installed. The accuracy of the determination is improved, and the reliability of the abnormality or life determination can be significantly improved.
尚、 上記実施例で異常ま たは寿命判定を行う 場合、 第 In the above embodiment, when the abnormality or the life is determined,
1 の動作では、 図 7 のステ ッ プ 1 2 5 で C分間の時間を与 え、 こ の時間内に一度で も風量検出値 Δ P が風量判定値 を上回 っ た と き には異常ま たは寿命でない もの と 定 し 、 その C 分間の間全て風量検出値が風量判定値を下回 つ た と き には器具異常ま たは寿命 と判定 しているが、 こ れ を、 第 2 〜第 4 の動作と同様に、 C分間の時間を与える こ とな く 、 無風安定状況と判定さ れた以降に検出 さ れる 風量検出値に基づいて直ち に異常ま たは寿命判定を行う よ う に して も よい。 ま たその逆に、 第 2 〜第 4 の動作で は、 無風安定状況 と判定さ れた以降に検出 さ れた風量検 出値が風量判定値を下回 っ た と き には直ち に器具異常ま たは寿命 と判定 したが、 こ れを、 第 1 の動作と同様に、 所定の C分間の時間を与え、 こ の時間内に風量検出値が 一度で も風量判定値を上回 っ た と き には異常ま たは寿命 でない も の と判定 し、 C 分間の間全ての風量検出値 (差 圧検出値) が風量判定値 (差圧判定値) を下回 っ た と き に器具異常ま たは寿命 と判定する よ う に して も よい。 In the operation 1, a time of C minutes is given in step 1 25 of Fig. 7, and if the airflow detection value ΔP exceeds the airflow judgment value at least once within this time, an abnormality occurs. Or, it is determined that it is not the service life, and if the airflow detection value is less than the airflow determination value for all C minutes, it is determined that the appliance is abnormal or the service life has expired. As in the second to fourth operations, without giving time for C minutes, abnormality or life judgment is immediately performed based on the airflow detection value detected after it is judged that there is no wind stability. You may do it. Conversely, in the second to fourth operations, if the airflow detection value detected after the determination of the stable windless state falls below the airflow determination value, the operation is immediately performed. It was determined that the device was abnormal or the service life expired.However, as in the first operation, this was given a time of a predetermined C minute, and within this time the detected airflow value exceeded the airflow determination value even if it was even once. If it is determined that the life is not abnormal or that the service life has expired, and all air flow detection values (differential pressure detection values) fall below the air flow judgment values (differential pressure judgment values) for C minutes. Alternatively, it may be determined that the appliance is abnormal or has reached its end of life.
さ らに、 第一の実施例によれば、 異常ま たは寿命判定 を行 う ためのセ ンサを別途設ける必要はな く 、 風量制御 の風量検出セ ンサを利用 して異常ま たは寿命判定を行う こ とができ る ので、 本発明の異常ま たは寿命判定機能を 備えた燃焼機器の装置構成 も簡易 とな り 、 こ れに伴い、 装置の コ ス ト 低減を図る こ とが可能 とな る。 Further, according to the first embodiment, it is not necessary to separately provide a sensor for judging abnormality or life, and the air flow control Since the abnormality or the life can be determined by using the airflow detection sensor of the present invention, the device configuration of the combustion equipment having the abnormality or life determination function of the present invention can be simplified, and Accordingly, it is possible to reduce the cost of the apparatus.
さ ら に、 第一の実施例によれば、 パーナを多段能力切 り 換え式と し、 異常ま たは寿命判定部によ り異常ま たは 寿命信号が出力 さ れて燃焼能力が低減され、 制御特性デ 一 夕 に欠落部が生 じた と き に、 その欠落部の燃焼能力が 要求さ れた際に、 下位側の制御特性デー タ を強制的に指 定する能力調整手段を設けた構成と した こ と に よ っ て、 前記欠落部の燃焼能力が要求さ れて も必ず燃焼制御の特 性デー タが与え られる こ と とな り、 こ れによ り 、 支障な く 、 かつ、 円滑に燃焼運転を行う こ とができ る。  In addition, according to the first embodiment, the burner is reduced by outputting an abnormality or life signal by the abnormality or life judgment unit by using a multi-stage switching type of the wrench. In the event that a missing part occurs in the control characteristic data overnight, a capability adjusting means is provided to forcibly specify the lower control characteristic data when the combustion performance of the missing part is required. With this configuration, even if the combustion performance of the missing portion is required, the characteristic data of the combustion control is always provided, and thereby, there is no problem. In addition, the combustion operation can be performed smoothly.
尚、 第一の実施例では、 フ ァ ン回転数を一定に した時 の風量セ ンサの検出風量を監視 している。 しか し、 技術 的は、 風量が一定にな る様フ ァ ンの回転を制御 し、 その 回転数を監視する こ とで も良い こ と は明 らかである。  In the first embodiment, the detection airflow of the airflow sensor when the fan speed is kept constant is monitored. However, it is clear that it is technically possible to control the rotation of the fan so that the air volume becomes constant and monitor the rotation speed.
[第二の実施例 ]  [Second embodiment]
次に、 本発明の第二の実施例について説明する。 先ず 、 第二の実施例の概略は以下の通 り であるが、 その特徴 点は、 風量 と燃焼フ ァ ンの回転数 と の関係を監視 し、 異 常があ る場合一旦はイ ンプ ッ ト ダウ ンの動作を行い、 更 に当該関係の異常の程度が大き い場合は、 燃焼機器が異 常ま たは寿命であ る との判断を行い運転停止を行う こ と にあ る。 即ち、 第一の判定値 と第二の判定値をあ らか じ め記憶 しておき、 所定風量に維持する時の フ ァ ン回転数 が第一の判定値を越え る時は、 バーナヘ供給 さ れる燃料 が強制的に減 じ られ、 第二の判定値を越える時は、 燃料 供給が禁止される。 Next, a second embodiment of the present invention will be described. First, the outline of the second embodiment is as follows. The feature of the second embodiment is to monitor the relationship between the air flow rate and the number of revolutions of the combustion fan. When the down operation is performed and the degree of abnormality in the relation is further large, it is determined that the combustion equipment is abnormal or the service life has expired, and then the operation is stopped. That is, the first judgment value and the second judgment value are If the fan rotation speed when maintaining the predetermined air volume exceeds the first judgment value, the fuel supplied to the burner is forcibly reduced and exceeds the second judgment value. At times, fuel supply is prohibited.
ま た、 第二の実施例では、 風量セ ンサの出力を一定に 維持する時の燃焼フ ァ ンの回転数を監視する こ とで、 異 常ま たは寿命の判断を している。 第一の実施例では、 燃 焼フ ァ ンの回転数を一定に維持 した時の風量セ ンサの出 力が低下 したか どう かで同様の判断を していた。 こ れ ら は、 技術的には同 じ こ とを意味するのは明 らかであ る。  In the second embodiment, the abnormality or the life is judged by monitoring the number of revolutions of the combustion fan when the output of the air flow sensor is kept constant. In the first embodiment, the same judgment was made based on whether or not the output of the air flow sensor when the rotation speed of the combustion fan was kept constant was reduced. It is clear that these technically mean the same thing.
尚、 以下説明の簡略化の為に、 「異常ま たは寿命」 を 簡略 して 「寿命」 と称 して説明する。  For the sake of simplicity, the term “abnormal or life” will be referred to simply as “life”.
第二の実施例において、 燃焼運転中には、 時々 刻々 求 め られる要求燃焼能力に応 じ、 風量検出セ ンサのセ ンサ 出力 目標値が決定さ れ、 風量セ ンサの出力がこ のセ ンサ 出力 目標値に一致する よ う に燃焼フ ァ ンの回転制御が行 われる。  In the second embodiment, during the combustion operation, the sensor output target value of the airflow detection sensor is determined according to the required combustion capacity that is demanded moment by moment, and the output of the airflow sensor is determined by this sensor. The rotation control of the combustion fan is performed to match the output target value.
こ の燃焼運転中に、 図 1 6 に示さ れた様に、 フ ァ ン回 転数がフ ァ ン制御特性デー タ の上側に与え られている リ ミ ッ タ ーを超えた と き には、 通風詰ま り劣化の状態が発 生 した もの と推定さ れ、 その後、 燃焼運転が停止されて 寿命診断モー ドでの動作が行われる。  During this combustion operation, when the fan rotation speed exceeds the limiter given in the upper part of the fan control characteristic data as shown in Fig. 16, However, it is estimated that a state of deterioration due to clogging of the ventilation has occurred, and thereafter, the combustion operation is stopped and the operation in the life diagnosis mode is performed.
こ の寿命診断モー ドの動作では、 目標値指定部に よ つ て指定さ れる各セ ンサ出力 目標値 V S 1〜 V S N毎に、 燃焼 フ ァ ンの回転数が 1 個以上検出記憶さ れる。 こ の燃焼フ ァ ン回転数の検出記憶に際 し、 検出記憶デ 一 夕 の有効性判断部を持つ も の にあ っては、 検出記憶さ れた フ ァ ン回転数デー タ のばらつき変動幅が算出される 。 こ のばらつき変動幅が予め与え られる設定変動幅か ら 外れた と き には、 器具が設置さ れている周囲環境に風が 吹いていて、 デー タがば らついた も の と判断する。 そ し て、 取 り込んだ検出記憶デー タ を無効 と して消去 し、 再 度デー タ を取 り込んでの検出記憶を行わせる。 有風状況 でない無風安定状況下で燃焼フ ァ ン の回転数検出デー タ を検出記憶さ せる。 In the operation of the lifting mode of this, each sensor for each output target value V S 1 ~ V SN, the rotational speed is detected storage of one or more combustion fan being designated One by the target value specifying portion It is. When the detection and storage of the combustion fan rotation speed is performed, if the unit has a validity judgment unit for the detection and storage data, the variation in the detected and stored fan rotation speed data varies. The width is calculated. When this variation fluctuation range deviates from the predetermined fluctuation range, it is determined that the wind is blowing in the surrounding environment where the equipment is installed and that the data fluctuates. Then, the acquired detection and storage data is invalidated and deleted, and the detection and storage are performed again by retrieving the data. Detects and stores the rotation speed detection data of the combustion fan in a stable condition with no wind and no wind.
寿命判定部では、 各セ ン サ出力 目標値毎に、 前記フ ァ ン回転モニタ部でモニタ された燃焼フ ァ ン の回転数の平 均値を求め、 各セ ンサ出力 目標値毎に、 フ ァ ン回転数の 平均値の値をィ ンプ ッ ト ダウ ンデー タ およ び寿命判定デ 一 夕 と比較する。 そ して、 各セ ンサ出力 目標値の フ ァ ン 回転数平均値の う ち、 予め与えた設定基準個数の L , 個 以上のデ一 夕がイ ン プ ッ ト ダウ ンデー タ と寿命判定デー 夕 との間の領域に入 っ た と き には燃焼能力のダウ ン指令 信号が出力 さ れる。 各セ ン サ出力 目標値の フ ァ ン回転数 平均値の う ち、 予め与えた設定基準個数の L 2 個以上が 寿命判定デー タ を超えた と き には、 器具寿命 と判断 して 寿命信号が出力 さ れ る。 The life determining unit obtains an average value of the number of revolutions of the combustion fan monitored by the fan rotation monitoring unit for each sensor output target value, and obtains a fan output for each sensor output target value. Compare the average value of the fan speed with the input down data and the lifetime judgment data. Then, among the average values of the fan rotation speed of each sensor output target value, the data of L or more of the preset reference number is input down data and life judgment data. When the vehicle enters the region before the evening, a down command signal of the combustion capacity is output. Chi sales of fan rotational speed average value of each cell down output target value, and the can exceeds a lifetime judgment data set reference number of L 2 or more given in advance, it is determined that the device lifetime life The signal is output.
前記寿命判定部か ら燃焼能力の ダウ ン指令信号が出力 さ れる こ と に よ り 、 燃焼能力が減少方向に制御さ れる。 風量が低下 して も、 その低下 した風量の範囲内で良好な 燃焼性能を維持 して燃焼運転を行う 。 一方、 寿命判定部 か ら寿命信号が出力 さ れた と き には、 燃焼停止の ロ ッ ク 状態 と成 し、 風量不足の状態で燃焼運転が行われる のを 回避 し、 一酸化炭素等の発生量の増大に伴う 危険防止が 図 られる。 The combustion capacity is controlled in a decreasing direction by outputting a down command signal of the combustion capacity from the life determining section. Even if the air volume decreases, it is good within the range of the reduced air volume. Perform combustion operation while maintaining combustion performance. On the other hand, when the life signal is output from the life judgment section, the combustion is locked, and the combustion operation is performed in a state of insufficient air flow to prevent the combustion operation from being performed. Prevention of danger due to the increase in generated amount.
以下、 本第二の実施例を図面に基づいて詳細に説明す る。 本実施例の燃焼装置は、 図 3 に示す も の と同様な給 湯器を対象に してお り 、 同一の名称部分には同一符号を 付 し、 その重複説明は省略する。  Hereinafter, the second embodiment will be described in detail with reference to the drawings. The combustion device of the present embodiment is directed to a water heater similar to that shown in FIG. 3, and the same reference numerals are given to the same names, and the description thereof will not be repeated.
図 1 7 には本実施例の特徴的な寿命判定手段のブロ ッ ク構成が示されている。 こ の特有な寿命判定手段は、 燃 焼制御部 1017と、 フ ァ ン回転制御部 1018と、 器具の寿命 診断モー ドでの動作を行う 診断モー ド動作部 1021と を有 して構成さ れている。 前記燃焼制御部 1017と フ ァ ン回転 制御部 1018の構成およ びその動作は前述 と と同様であ り 、 その重複説明は省略する。  FIG. 17 shows a block configuration of the characteristic life determining means of this embodiment. The unique life determining means includes a combustion control unit 1017, a fan rotation control unit 1018, and a diagnostic mode operation unit 1021 that performs an operation in the appliance life diagnostic mode. ing. The configurations and operations of the combustion control unit 1017 and the fan rotation control unit 1018 are the same as those described above, and the description thereof will not be repeated.
診断モー ド動作部 1021は、 目標値指定部 1022と、 フ ァ ン回転指令部 1023と、 フ ァ ン回転モニタ部 1024と、 有効 性判断部 1025と、 燃焼能力 ダウ ン制御部 1026と、 寿命判 定部 1027と、 夕 イ マ 1031とを有 して構成さ れている。 診 断モー ド動作部 1021での動作は、 パー ナ 2 が非燃焼状態 で行われる も のである。 ま たその診断モー ドは、 燃焼運 転中に燃焼フ ァ ン 3 の フ ァ ン回転数が前記図 16に示すフ ア ン制御特性デー タ の上側の リ ミ ッ 夕 ーを越えた こ と に よ っ て燃焼停止が行われた後に、 行われる。 こ の リ ミ ッ 夕値は、 不完全燃焼によ り排ガス中の一酸化炭素、 炭化 水素、 窒素酸化物等の量が増加する境界点か ら求め られ る値である。 目標値指定部 1022は、 寿命診断を行う に際 し、 風量検出セ ン サ 16のセ ン サ出力 目標値を 1 個以上指 定する。 こ の 目標値の指定に際 しては、 メ モ リ 等に指定 する セ ンサ出力 目標値を予め入力格納 してお く こ と に よ り 指定 して も よ く 、 ある いは、 キー ボー ド、 メ モ リ カ ー ド等に よ り 外部か ら入力指定する構成と して も よ い。 こ の 目標値指定部 1022で指定さ れたセ ン サ出力 目標値 V S 1 〜 V S Nはフ ァ ン回転指合部 23に加え られる。 The diagnostic mode operation unit 1021 includes a target value designation unit 1022, a fan rotation command unit 1023, a fan rotation monitoring unit 1024, a validity determination unit 1025, a combustion capacity down control unit 1026, and a life. It has a judgment section 1027 and an evening image 1031. The operation in the diagnostic mode operation unit 1021 is performed in a non-burning state of the parner 2. The diagnostic mode is that the fan rotation speed of the combustion fan 3 exceeds the upper limit of the fan control characteristic data shown in FIG. 16 during the combustion operation. It is carried out after the combustion is stopped by. This limit The evening value is a value obtained from the boundary point where the amount of carbon monoxide, hydrocarbons, nitrogen oxides, etc. in the exhaust gas increases due to incomplete combustion. The target value specifying unit 1022 specifies one or more sensor output target values of the air flow detection sensor 16 when performing the life diagnosis. When specifying the target value, the sensor output target value specified in the memory or the like may be input and stored in advance, or the target value may be specified by keyboard or keyboard. It is also possible to adopt a configuration in which input is specified externally by using a password, memory card, or the like. The sensor output target values V S1 to V SN specified by the target value specifying unit 1022 are added to the fan rotation coupling unit 23.
フ ァ ン回転指令部 1023は指定されたセ ンサ出力 目標値 V S 1〜 V S Nを一括 して又は順次所定の時間をかけて フ ァ ン回転制御部 18に加える。 例えば、 フ ァ ン回転指合部 10 23か らセ ンサ出力 目標値 V S 1が加え られる こ と に よ り 、 フ ァ ン回転制御部 1018は風量検出セ ン サ 16の出力がセ ン サ出力 目標値 V s ,とな る よ う に燃焼フ ァ ン 3 の回転制御 を行う 。 ま た、 フ ァ ン回転指令部 1023か ら加え られる セ ン サ出力 目標値 V S 2に対 しては、 風量検出セ ンサ 16の出 力が V s 2とな る よ う に燃焼フ ァ ン 3 の回転を制御する。 こ の様に、 フ ァ ン回転司令部 1023か ら加え られる各セ ン サ出力値 V S!〜 V s Nに対 して、 それぞれ所定の時間間隔 を も って、 順次セ ン サ出力 目標値を異に した燃焼フ ァ ン 3 の回転制御が行われる。 Fan rotation command unit 1023 adds the fan rotation controller 18 over collectively the specified sensor output target value V S 1 ~ V SN or sequential predetermined time. For example, fan rotation Sashiawase 10 23 or racemate capacitors output target value V S 1 is Ri by the and this applied, fan rotation controller 1018 outputs cell down support of the air flow detection cell down support 16 The rotation control of the combustion fan 3 is performed so that the output target value Vs is obtained. Also, in against the cell down output target value V S 2 applied fan rotation command unit 1023 or al, air volume detection cell burning off § output of capacitors 16 in earthenware pots by that Do and V s 2 Control the rotation of pin 3. In this way, each sensor output value VS! Added from the fan rotation command unit 1023. And against the ~ V s N, respectively I also for a predetermined time interval, the rotation control of the combustion fan 3 that was different from the sequentially down output target value is performed.
フ ァ ン回転モニ タ部 1024は各セ ンサ出力 目標値 V S 1〜 V S N毎に、 1 個以上の燃焼フ ァ ン 3 の フ ァ ン回転数を取 り込み検出 して メ モ リ に記憶する。 こ の フ ァ ン回転数の 検出記憶に際 しては、 夕 イ マ 1 0 3 1が使用 さ れ、 フ ァ ン回 転モニタ部 1 024は T秒間隔でフ ァ ン回耘数 R , 〜 R M を 順次取 り 込んでメ モ リ に記憶する。 有効性判断部 1 0 25は 、 前記フ ァ ン回転モニ タ部 1 0 24に よ り 各セ ン サ出力 目標 値の フ ァ ン回転数が検出記憶さ れる毎に、 検出記億さ れ た R , 〜 R M の う ち、 最大の値と最小の値 との差をばら つき変動幅と して求め、 こ の求めたば らつき変動幅が予 め与え られている設定変動幅の範囲内に入 っ ているか否 かを判断する。 The fan rotation monitor 1024 for each sensor output target value V S 1 ~ V SN, preparative fan rotation speed of the one or more combustion fan 3 Detected and stores it in memory. In the detection and storage of the fan rotation speed, the timer 1103 is used, and the fan rotation monitor unit 1024 detects the fan rotation speed R and T at intervals of T seconds. and stores it in the Note Li crowded Ri sequentially retrieve the ~ R M. The validity judging unit 1025 detects and stores the number of detected fan rotations each time the fan rotation monitoring unit 1024 detects and stores the fan rotation speed of each sensor output target value. R, ~ Chi sales of R M, the difference between the maximum value and the minimum value determined by the variation fluctuation range, the range of the set fluctuation width when calculated this variability fluctuation range is given Me pre Judge whether it is inside.
ば らつき変動幅が設定変動幅の範囲内の と き には、 給 湯器が設置さ れている周囲環境が無風状態であ り、 検出 記憶 したデー タ は信頼性のあ る有効なデー タであ る と判 断する。 そ して、 その旨をフ ァ ン回転モニタ部 1 024に知 らせて次のセ ンサ出力 目標値での フ ァ ン回転数の検出記 憶に移 らせる。 こ れに対 し、 フ ァ ン回転数のば らつき変 動幅が設定変動幅か ら外れた と き には、 有風に よ る不安 定状況と判断する。  When the variation fluctuation range is within the set fluctuation range, the surrounding environment where the water heater is installed is in a calm state, and the detected and stored data is a reliable and effective data. Judgment that it is. Then, the fan rotation monitor unit 1024 is informed of the fact, and the process proceeds to the detection and storage of the fan rotation speed at the next sensor output target value. On the other hand, when the fluctuation range of the fan rotation speed deviates from the set fluctuation range, it is determined that the wind is unstable.
有効性判断部 1 025は、 フ ァ ン回転モニ タ部 1 0 24が検出 記憶 した フ ァ ン回転数のデー タ のば らつき変動幅が設定 変動幅か ら外れている と き には、 繰 り 返 し検出記憶デー 夕 の消去と再度のフ ァ ン回転数デー タ の検出記憶を指合 する。 フ ァ ン回転数検出記憶デー タ のば らつき変動幅が 設定変動幅に入 っ た と き に、 次のセ ンサ出力 目標値の フ ア ン回転数の検出記憶を指令 して、 各セ ン サ出力 目標値 毎の フ ァ ン回転数デー タ を無風安定状況の下で検出記憶 さ せる。 The validity judging unit 1025 determines whether the fluctuation range of the fan rotation speed data detected and stored by the fan rotation monitoring unit 1024 is out of the set fluctuation range. Instructs to repeat the detection and storage of erased data and the detection and storage of fan speed data again. When the fluctuation range of the fan rotation speed detection storage data falls within the set fluctuation range, the next sensor output command the detection and storage of the fan rotation speed of the target value, and Sensor output target value The fan speed data for each fan is detected and stored under stable windless conditions.
既に説明 した通 り 、 図 4 の グラ フか ら分かる よ う に、 有風状況にな る と、 風量検出セ ンサの検出値がセ ンサの 零点に対 して上下非対称にばらつき、 こ のばらつき の変 動幅は風速が大き く な る につれ大き く な る。  As described above, as can be seen from the graph in Fig. 4, when there is a windy condition, the detection value of the airflow detection sensor fluctuates vertically and asymmetrically with respect to the zero point of the sensor. The fluctuation width of the wind increases as the wind speed increases.
有効性判断部 1 025は、 風量検出セ ンサ 1 6の検出値のば らつき変動幅を、 設定変動幅と比較 し、 設定変動幅 ( こ の設定変動幅は上限 レベル と下限 レベルで与え られ るが 、 場合に よ っては上限 レベルのみで与え られる こ と も あ る) か らはずれた と き (設定変動幅が上限 レベルのみで 与え られる と き は上限 レベルを上に越えた と き) には有 風状况と判定する。 そ して、 風量検出セ ンサ 1 6の検出値 (セ ンサ出力値) のばらつき変動幅が設定変動幅範囲内 にあ る と き には無風安定状況 と判定する。 換言すれば、 設定変動幅に対応する基準風速に対 し、 こ の基準風速よ り も低い風速の環境下にある と き には無風安定状況と判 定 し、 基準風速よ り も給湯器設置環境下の風速が大き く な っ た と き には有風状況と判定する のである。  The validity judging unit 1025 compares the fluctuation range of the detection value of the airflow detection sensor 16 with the set fluctuation range, and sets the set fluctuation range (the set fluctuation range is given by the upper limit level and the lower limit level). However, depending on the case, it may be given only at the upper limit level. When it deviates from the upper limit level (when the setting fluctuation range is given only at the upper limit level) ) Is judged to be windy. If the fluctuation range of the detection value (sensor output value) of the air flow detection sensor 16 is within the set fluctuation range, it is determined that there is no wind stability. In other words, when the wind speed is lower than the reference wind speed corresponding to the set fluctuation range, it is determined that there is no wind stability, and the water heater is installed more than the reference wind speed. When the wind speed in the environment increases, it is determined that there is wind.
寿命判定部 1 027には、 図 1 8 に示すよ う なデ一 夕が予 め与え られている。 すなわち、 通風詰ま り 劣化のない給 湯器の設置施工初期時の フ ァ ン制御特性デー タ R I に対 し、 同 じセ ンサ出力 目標値に対 して フ ァ ン回転数が大 と な る側にイ ン プ ッ ト ダウ ンデー タ R B が与え られ、 さ ら に、 こ のイ ンプ ッ ト ダウ ンデー タ に対 し、 同 じセ ンサ出 力 目標値に対 して フ ァ ン回転数が大 とな る側に寿命判定 デー タ R C が与え られている。 こ のイ ンプ ッ ト ダウ ンデ 一 夕 R B が第一の判定値で、 寿命判定デー タ R Cが第二 の判定値 となる。 寿命判定部 1027は、 図 1 9 の如 く 、 各 セ ンサ出力 目標値 V S 1〜 V S N毎に検出記憶さ れた フ ァ ン 回転数検出記憶デー タ の平均値 R A , 〜 R A N を求め、 こ の求めた各セ ンサ出力 目標値の フ ァ ン回転数の平均値 R A ! 〜 R A N を図 1 8 に示すデー タ と比較する。 A lifetime as shown in FIG. 18 is given to the life determining unit 1027 in advance. In other words, the fan rotation speed becomes large relative to the same sensor output target value for the fan control characteristic data RI at the initial stage of installation of the water heater without deterioration due to ventilation clogging. The input down data RB is provided to the input side, and the same sensor output is supplied to this input down data. The life judgment data RC is given to the side where the fan rotation speed is higher than the force target value. This input down time overnight RB is the first judgment value, and the life judgment data RC is the second judgment value. Life determination unit 1027, FIG. 1-9如rather, each sensor output target value V S 1 ~ V SN average value of the detected stored fan revolution speed detection storing data for each RA, the ~ RA N The average value of the fan rotation speed of each sensor output target value obtained RA! The ~ RA N is compared with the data shown in FIG 8.
そ して、 各セ ンサ出力 目標値 V S 1〜 V S Nの フ ァ ン回転 数平均値 R A , 〜 R A N の う ち、 イ ン プ ッ ト ダウ ンデー 夕 R B のラ イ ン と寿命判定デ一 夕 R C のラ イ ン との間の 領域に入 っ た平均値の個数が、 予め与え られた L , ( L 1 は 1 以上の整数) 個以上か否かを判断する。 L , 個以 上の と き には、 風量不足気味の燃焼状態 と判断 し、 燃焼 能力の ダウ ン指合信号を燃焼制御部 1017に加える。 Their to each sensor output target value V S 1 ~ V SN of fan rotational speed average value RA, Chi sales of ~ RA N, Lee emissions flop Tsu preparative Dow Nde evening RB La Lee emissions and life determination de Judgment is made as to whether or not the number of average values in the area between the RC line and the overnight is equal to or greater than a predetermined L, (L1 is an integer of 1 or more). If L or more, it is determined that the combustion state is such that the air volume is insufficient, and a down signal indicating the combustion capacity is added to the combustion control unit 1017.
こ の燃焼能力のダウ ン量は、 所定の一定量と して与え 、 燃焼能力のダウ ン指令が出 される毎に、 段階的に燃焼 能力を低減させる よ う に構成 して も よい。 ある いは、 ィ ンプ ッ ト ダウ ンデー タ R B と寿命判定デー タ R C の間の 領域にあ る フ ァ ン回転数平均値の個数に応 じて、 燃焼能 力の ダウ ン量を比例的に減少さ せる構成と して も よい も のであ る。 こ の燃焼能力 ダウ ン制御部 1026か らの燃焼能 力 ダウ ン指令を受け、 燃焼制御部 1017は、 比例弁 14に加 え る開弁駆動電流を燃焼能力のダウ ン量だけ減少 し、 バ ーナ 2 へのガス供給量を減少する。 ま た、 寿命判定部 1027は、 各セ ン サ出力 目標値 V s ,〜 V S N毎の フ ァ ン回転数平均値 R A , 〜 R A N の う ち、 寿 命判定デー タ (寿命判定デー タ の R C のラ イ ン ) を越え る も のがあ る と き にはその数を計数する。 そ して、 予め 与えた設定基準個数の L 2 ( L 2 は 1 以上の整数) 個を 越えた と き には、 燃焼フ ァ ン 3 の回転数が上限 リ ミ ツ 夕 —に張 り 付いてそれ以上フ ァ ン回転数がァ ッ ブでき ない 回転制御範囲の最大回転数であ る に もかかわ らず、 通風 詰ま り 劣化に よ り風量が不足 していて燃焼性能が悪化の 状態 と判定 し、 寿命信号を出力する。 こ の寿命信号が出 力 さ れる こ と によ り、 電磁弁 13が強制的に遮断保持さ れ て、 燃料の供給が禁 じ られ、 燃焼停止のロ ッ ク状態 とな り 、 それ以降の燃焼運転が阻止さ れる。 The down amount of the combustion capacity may be given as a predetermined fixed amount, and the combustion capacity may be gradually reduced every time a down command of the combustion capacity is issued. Alternatively, according to the number of fan rotation speed average values in the area between the input down data RB and the life judgment data RC, the amount of combustion capacity down is proportionally reduced. The configuration may be such that it is reduced. Upon receiving the combustion capacity down command from the combustion capacity down control section 1026, the combustion control section 1017 reduces the valve-opening drive current applied to the proportional valve 14 by the combustion capacity down amount. To reduce gas supply to facility 2. Also, the life judgment unit 1027, each cell down output target value V s, ~ V SN every fan rotational speed average value RA, Chi sales of ~ RA N, life determination data (lifetime determination data If there are any exceeding the RC line), count the number. Their to, L 2 (L 2 is an integer of 1 or more) to come to have exceeded pieces of the set criteria number given in advance, the rotational speed is an upper limit Li Mi Tsu evening combustion fan 3 - Zhang Ri attached to The fan speed cannot be increased any further.Even though it is the maximum speed in the rotation control range, the airflow is insufficient due to clogging and deterioration, and the combustion performance is degraded. Judge and output the life signal. When this life signal is output, the solenoid valve 13 is forcibly shut off and held, the supply of fuel is prohibited, and the combustion stops in a locked state. Combustion operation is prevented.
なお、 寿命判定部 1027によ り、 各セ ン サ出力 目標値の フ ァ ン回転数平均値がイ ンプ ッ ト ダウ ンデー タ R B に達 しない と き、 あ る レ、はイ ンプ ッ ト ダウ ンデ一 夕 R B を越 えて も、 その越えた平均値デー タ の個数が L , 個未満の と き には通風詰ま り が悪化状態に達 していない もの と判 断 し、 適正 (正常) の信号を出力する。  If the average value of the fan rotation speed of each sensor output target value does not reach the input down data RB, the life determination unit 1027 If the average value data exceeds the number L, even if it exceeds the average RB, it is judged that the ventilation clogging has not deteriorated and it is appropriate (normal). The signal of is output.
報知部 1030は、 寿命判定部 1027の各判定結果の信号を 受けて、 その判定結果を区別報知する。 こ の報知手法 と しては、 液晶画面に文字や記号で表示 した り 、 あ る いは ラ ン プ等の点灯、 点滅等の各種態様に基づいて区別表示 した り 、 さ らには、 寿命判定結果についてはブザー音を 鳴 らす等の適宜の仕様態様に基づいて寿命判定部 1027の 判定結果を区別報知する。 The notification unit 1030 receives the signal of each determination result of the life determination unit 1027, and notifies the determination result differently. As this notification method, a character or symbol is displayed on the liquid crystal screen, or a distinction is displayed based on various modes such as lighting or blinking of a lamp, or the like. The judgment result is determined by the life judgment unit 1027 based on an appropriate specification such as sounding a buzzer. The judgment result is notified separately.
[フ ロ ーチ ヤ 一 ト に よ る動作説明 ]  [Explanation of operation by flow chart]
本第二の実施例は上記のよ う に構成されている。 次に The second embodiment is configured as described above. next
、 図 2 0 およ び図 2 1 の フ ロ ーチ ャ ー ト に基づき、 寿命 判定の動作を説明する。 図 2 0 で、 ステ ッ プ 1101は給湯 器の燃焼運転中を示 している。 こ の状態においては、 燃 焼制御部 1017に よ り 、 要求燃焼熱量に応 じた開弁駆動電 流が比例弁 14に加え られる。 その一方で、 ステ ッ プ 1102 では要求燃焼熱量に応 じた風量検出セ ンサのセ ンサ出力 目標値が決定される。 ステ ッ プ 1103では風量検出セ ンサ 16のセ ンサ出力がセ ンサ出力 目標値に一致する よ う に燃 焼フ ァ ン 3 への印加電圧を制御 し、 燃焼フ ァ ン 3 の回転 制御が行われる。 The operation of the life determination will be described based on the flowcharts of FIGS. 20 and 21. In FIG. 20, step 1101 indicates that the water heater is in the combustion operation. In this state, the combustion control unit 1017 applies a valve-opening drive current corresponding to the required amount of combustion heat to the proportional valve 14. On the other hand, in step 1102, the sensor output target value of the airflow detection sensor according to the required combustion heat is determined. In step 1103, the voltage applied to the combustion fan 3 is controlled so that the sensor output of the air flow detection sensor 16 matches the sensor output target value, and the rotation of the combustion fan 3 is controlled. Will be
そ して、 ステ ッ プ 1104でフ ァ ン回転数が検出 さ れる。 ステ ッ プ 1105では検出 さ れた燃焼フ ァ ン 3 のフ ァ ン回転 数が図 16に示すフ ァ ン制御特性デー タ の上側の リ ミ ッ 夕 一に達 しているか否かを判断する。 フ ァ ン回転数が上側 の リ ミ ッ タ ーに達 していない と き には正常な風量制御状 態にあ る も の と判断 し、 そのま ま の状態で燃焼運転を継 続さ せる。 こ れに対 し、 検出 フ ァ ン回転数が上側の リ ミ ッ タ ーを越えた と き には、 ステ ッ プ 1106で直ち に燃焼運 転を停止 し、 図 21の寿命診断モー ドの動作へ移行する。  Then, in step 1104, the fan rotation speed is detected. In step 1105, it is determined whether or not the detected fan rotation speed of the combustion fan 3 has reached the upper limit of the fan control characteristic data shown in FIG. 16. . If the fan speed has not reached the upper limiter, it is determined that the fan is in the normal airflow control state, and the combustion operation is continued as it is. . On the other hand, when the detected fan rotation speed exceeds the upper limiter, the combustion operation is stopped immediately in step 1106, and the life diagnosis mode shown in FIG. Move to the operation of.
寿命診断モー ドの動作では、 まず、 図 21のステ ッ プ 12 01でセ ンサ出力 目標値 V S 1〜 V S Nが設定さ れる。 そ して 、 ステ ッ プ 1202で燃焼フ ァ ン 3 が回転起動さ れ、 まず、 風量検出セ ンサ 16のセ ンサ出力が最初のセ ンサ出力 目標 値 V s】に一致する よ う に フ ァ ン回転数が制御さ れる。 次 にステ ッ プ 1203でタ イ マ 1031を リ セ ッ ト状態か らオ ン し 、 時間 Tが経過する のを待 ってか ら フ ァ ン回転検出セ ン サ 28によ り 、 燃焼フ ァ ン 3 の回転数 を検出 して メ モ リ に記憶する。 こ の燃焼フ ァ ン 3 の回転数検出記憶動作 を T秒間毎に繰 り 返 し行い、 M個の フ ァ ン回転数検出デ 一 夕 R , 〜 R M ( Mは 1 以上の整数) を メ モ リ に格納記 憶する。 In the operation of the life diagnosis mode, first, the sensor output target values V S1 to V SN are set in step 121 of FIG. Then, in step 1202, the combustion fan 3 is started to rotate. Sensor output air volume detecting sensor 16 is fan rotation speed Cormorants by matching Initial sensor output target value V s is controlled. Next, in step 1203, the timer 1031 is turned on from the reset state, and after waiting for time T to elapse, the fan rotation detection sensor 28 causes the combustion fan to be turned on. Detects the rotation speed of fan 3 and stores it in memory. The rotation speed detection and storage operation of the combustion fan 3 is repeated every T seconds, and the M fan rotation speed detection data R, to RM (M is an integer of 1 or more) are stored. Store in memory.
ス テ ツ プ 1207では こ の格納 したフ ァ ン回転数検出記憶 デー タ R , 〜 R M の う ち、 最大の値 と最小の値の差を求 めて変動幅と し、 その変動幅が予め与え られている設定 変動幅 e を下回るか否かを判断する。 ば らつき変動幅が e 以上の と き には、 有風状況と判断 し、 メ モ リ に格納 し たセ ンサ出力 目標値 V s lの M個の フ ァ ン回転数検出記憶 デー タ R , 〜 R M を消去する。 そ して、 再度ステ ッ プ 12 01でセ ン サ出力 目標値 V S 1を指定 してステ ツ ブ 1202以降 の フ ァ ン回転数検出記憶動作を行う。 そ して、 ステ ッ プ 1207で再び検出記憶デー タ のば らつき変動幅が設定変動 幅 e を下回るか否かの判断を行い、 設定変動幅 e か ら外 れた と き には繰 り返 しそのセ ンサ出力 目標値での フ ァ ン 回転数の検出記憶動作を緣 り返す。 Scan tape class tap 1207 in this storage the fan rotation speed detecting storage data R, Chi sales of ~ R M, the difference between the maximum value and the minimum value as determined Umate fluctuation range, its fluctuation range Judgment is made as to whether or not it falls below the preset fluctuation range e. The variability in the fluctuation width-out bets or e is windy situation is determined, M-number of fan rotation speed detecting storage data R of sensor output target value V sl stored in Note Li, ~ Erase M. Their to performs stearyl Tsu Bed 1202 subsequent fan rotation speed detection storing operation by specifying a stearyl-up 12 01 Dese emissions output target value V S 1 again. Then, in step 1207, it is again determined whether or not the variation range of the detection storage data is smaller than the set variation range e. If the variation range is outside the set variation range e, the determination is repeated. Return Returns the sensor output detection and storage operation at the sensor output target value.
前記ステ ツ プ 1207でばらつき変動幅が設定変動幅 e の 範囲に入 っ た こ とが確認さ れた と き には、 無風状態 と判 断さ れ、 こ のセ ン サ出力 目標値 V S 1での フ ァ ン回転数検 出記憶デー タ は有効なデー タ と して取 り 扱われ、 ステ ツ プ 1208で検出記憶デー タ R , 〜 R M の平均値 R A , が求 め られる。 When it is confirmed in step 1207 that the variation fluctuation width falls within the range of the set fluctuation width e, it is determined that there is no wind, and the sensor output target value V S fan rotation speed detected in 1 Out of the storage data is be handled by as a valid data, detecting and storing data R in the stearyl Tsu-flops 1208, the average value RA of ~ R M, is Me GaMotomu.
ステ ッ プ 1209では フ ァ ン回転数平均値の個数 Nがセ ン サ出力 目標値 V s 1〜 V s Nの個数の Nに達 したか否かが判 断される。 こ の例では、 セ ンサ出力 目標値 V S 1の フ ァ ン 回転数平均値 R A , が求め られた段階では N = l であ る 。 そ して、 ステ ッ プ 1210で Nに 1 を加えた も のを N とす る と、 N = 2 とな る。 そ して、 ステ ッ プ 1201でセ ンサ出 力 目標値 V S 2が指定さ れ、 風量検出セ ンサのセ ンサ出力 値が V s 2とな る よ う に燃焼フ ァ ン 3 の回転が制御さ れる 。 そ して、 セ ンサ出力 目標値 V S 1の場合 と同様に、 セ ン サ出力 目標値 V S 2の下でのフ ァ ン回転数 R , 〜 R M が検 出記憶さ れ、 そのば らつき変動幅が設定変動幅 e の範囲 に入る無風安定状況の下での フ ァ ン回転数のデ一 夕が検 出記憶さ れ、 その平均値 R A 2 がステ ッ プ 1208で求め ら れる。 Stearyl Tsu whether reached the number N Gase emissions output target value V s. 1 to V s the number of N of N-flop 1209 in the fan rotational speed average value is judged. In this example, N = l at the stage when the fan rotation speed average value RA, of the sensor output target value V S1 is obtained. Then, if N is obtained by adding 1 to N in step 1210, then N = 2. Its to, stearyl-up 1201 Dese capacitors output target value V S 2 is specified, the rotation of the wind amount detection sensor of the sensor combustion output value is cormorants by that Do and V s 2 fan 3 Controlled. Their to, as in the case of sensor output target value V S 1, Se emissions output target value V S fan rpm under 2 R, ~ R M are stored detect, in situ variability fluctuation range set variation range e fan rotation speed of de one evening under windless stable situation within the scope of stored detect, the average value RA 2 is prompted by stearyl-up 1208 .
こ のよ う に して、 セ ンサ出力 目標値 V S 1〜 V S Nに対応 さ せて フ ァ ン回転数の平均値 R A , 〜 R A N の値が求め られた後に、 ステ ッ プ 1211での寿命判定動作が行われる 。 こ の寿命判定動作では、 図 19に示すよ う に求め られた 、 各セ ンサ出力 目標値 V S 1〜 V SNに対応する フ ァ ン回転 数検出デー タ の平均値 R A , 〜 R A N が図 18のイ ンプ ッ ト ダウ ンデー タ R B と寿命判定デー タ R C と比較さ れる 。 例えば、 R A , はイ ンプ ッ ト ダウ ンデー タ R B ! お よ び寿命判定デー タ R C i とそれぞれ比較さ れ、 同様にセ ン サ出力 目標値 V S 2における フ ァ ン回転数平均値 R A 2 は同 じセ ンサ出力 目標値 V S 2のイ ンプ ッ ト ダウ ンデー タ R B 2 およ び寿命判定デー タ R C 2 とそれぞれ比較さ れ る。 In the jar good of this, sensor output target value V S 1 ~ V SN to the average value RA of the fan rotation speed so as to correspond, after the obtained values of ~ RA N, in the stearyl-up 1211 Is performed. The life determination operation this was prompts you 19, each sensor output target value V S 1 ~ V SN to the average value RA of the corresponding fan rotation speed detection data, is ~ RA N This is compared with the input down data RB and the life judgment data RC shown in FIG. For example, RA, is the input down data RB! Oyo Fine life determination data RC i respectively are compared, similarly Se emission fan rotational speed average value RA 2 in the output target value V S 2 are of the same sensor output target value V S 2 b amp Tsu DOO It is compared with down data RB 2 and life judgment data RC 2 respectively.
こ の よ う に、 各セ ン サ出力 目標値 V S 1〜 V SNの各フ ァ ン回転数平均値 R A , 〜 R A N は、 それぞれ対応する セ ンサ出力 目標値における イ ンブ ッ ト ダウ ンデー タ R B t 〜 R B N およ び寿命判定デ一 夕 R C : 〜 R C N と比較さ れる。 そ して、 フ ァ ン回転数平均値 R A , 〜 R A N の う ち、 イ ン プ ッ ト ダウ ンデ一 夕 の R B ラ イ ン と寿命判定デ 一 夕 の R C ラ イ ン間の領域に何個の フ ァ ン回転数平均値 のデー タがあ るかを算出する。 その個数が予め与え られ る設定基準個数の 個以上の と き には燃焼能力 ダウ ン 指合信号が出力 される。 一方、 寿命判定デー タ の R C ラ ィ ンを越える領域に予め与え られる設定基準個数の L 2 個以上の フ ァ ン回転数平均値デー タが入 っ た と き には、 器具寿命 と判断さ れ、 寿命信号が出力 さ れる。 Ni will Yo of this, each fan rotation speed average value RA of each cell down output target value V S 1 ~ V SN, ~ RA N the stomach in the corresponding sensor output target value Nbu Tsu door Dow Nde data RB t ~ RB N and life determination de one evening RC: is compared to ~ RC N. Their to, fan rotational speed average value RA, Chi sales of ~ RA N, in the region between Lee emissions flop Tsu preparative down de one evening RB La Lee emission and lifetime determination de one evening RC La Lee down Calculate the number of fan rotation average data. If the number is equal to or greater than a predetermined reference number, a combustion capacity down signal is output. On the other hand, life determination data RC la least two fan rotational speed average value L of the pre-given set reference number in a region beyond the fin to come to have Tsu Day TagaIri's, is determined with an instrument life And a life signal is output.
そ して、 燃焼能力のダウ ン指令信号が出力 さ れた と き には、 前記 した如 く 、 燃焼能力のダウ ン制御が行われ、 ガス供給量を減 ら して空気量の不足を解消 して次の燃焼 運転を可能にする。 前記寿命信号が出力 さ れた と き には 、 燃焼の停止状態をロ ッ ク し (燃焼運転を受け付けない 状態に し) 、 通風詰ま り 劣化の燃焼悪化状態で燃焼運転 が行われる のを防止する。 そ して、 こ れ ら寿命判定動作 での判定結果は、 報知部 1 030で区別報知さ れる。 When the down command signal of the combustion capacity is output, the down control of the combustion capacity is performed as described above, and the gas supply amount is reduced to solve the shortage of the air amount. To enable the next combustion operation. When the life signal is output, the combustion stop state is locked (the combustion operation is not accepted) to prevent the combustion operation from being performed in a state where the combustion is deteriorated due to the clogged ventilation. I do. And these life judgment operations The determination result in is notified by the notification unit 1030 in a distinguished manner.
本第二の実施例では、 器具寿命には到 らないが、 通風 詰ま り が多少進行 し、 空気が不足気味で燃焼運転が行わ れる よ う な状態にあ っては、 燃焼能力の ダウ ン指合信号 が出力 さ れて、 燃焼能力の ダウ ン制御が行われる。 従つ て、 空気量の不足状態を解消 した状態で燃焼運転を引 き 続き行う こ とができ、 給湯器が新 しい製品と交換さ れる ま での間燃焼悪化を解消 した状態で給湯器を支障な く 使 用する こ とができ る ので、 非常に好都合であ る。  In the second embodiment, the life of the appliance is not reached, but if the ventilation is somewhat clogged and the combustion operation is performed with insufficient air, the combustion capacity is reduced. The fingering signal is output, and the combustion capacity is down-controlled. Therefore, it is possible to continue the combustion operation in a state where the shortage of the air volume has been eliminated, and to operate the water heater with the deterioration of combustion eliminated until the water heater is replaced with a new product. It is very convenient because it can be used without any problems.
さ ら に、 本実施例では、 器具の寿命診断モー ドでの動 作を行 う 際には、 パーナ燃焼を停止 した状態で行う ので 、 その寿命診断動作の信頼性をよ り一層高める こ とがで き る という 効果が得られる。 周知のよ う に、 バ一ナ 2 の 燃焼時 と、 燃焼停止中 とでは、 燃焼フ ァ ン 3 か ら排気通 路 29に至る風路 (空気通路) の通気抵抗が異な り 、 バー ナ 2 の燃焼停止中よ り もバ一ナ燃焼中の通気抵抗が高ま る現象が知 られている。 こ の通気抵抗の増加は燃焼熱量 に よ って異な る。 こ の点、 本実施例では、 燃焼停止状態 で寿命判定を行う ので、 風路の排気抵抗が変動する こ と のない定常状態で行う こ とができ るので、 その寿命判定 の精度 と信頼性を さ らに高める こ とができ る と い う 効果 が得 られる。  Further, in the present embodiment, when the operation in the tool life diagnosis mode is performed, the burner combustion is stopped, so that the reliability of the life diagnosis operation is further improved. This has the effect of being able to produce As is well known, the ventilation resistance of the air passage (air passage) from the combustion fan 3 to the exhaust passage 29 differs between when the burner 2 is burning and when the combustion is stopped. It is known that the ventilation resistance during burner combustion is higher than during combustion stop. This increase in airflow resistance depends on the amount of heat of combustion. In this regard, in this embodiment, since the life is determined in the combustion stopped state, the life can be determined in a steady state where the exhaust resistance of the air passage does not fluctuate, so that the accuracy and reliability of the life determination are improved. Therefore, the effect of further increasing the effect can be obtained.
さ ら に、 上記実施例ではセ ンサ出力 目標値を複数指定 したが 1 個のみのセ ンサ出力 目標値を指定 して も よい。 ま た、 実施例では各セ ンサ出力 目標値毎に複数の フ ァ ン 回転数 〜 R M を検出 したが、 1 個のフ ァ ン回転数の みを検出する よ う に して も よい。 こ の場合は平均値を求 める演算は省略さ れ、 検出デー タがその ま ま本発明にお ける平均値を意味する こ と にな る。 つま り 、 フ ァ ン回転 数の検出動作がフ ァ ン回転数の平均値を求める動作を意 味する。 こ の よ う に、 1 個のセ ンサ出力 目標値を指定 し 、 1 個の フ ァ ン回転数のみを検出 して寿命判定を行う こ と によ り 、 その判定動作を短時間で行う こ とができ る。 ただ、 本実施例のよ う にセ ン サ出力 目標値を複数指定 し 、 フ ァ ン回転数の検出を複数にする こ と によ り 、 寿命判 定の精度を高める こ とができ る。 Further, in the above embodiment, a plurality of sensor output target values are specified, but only one sensor output target value may be specified. In the embodiment, a plurality of fans are provided for each sensor output target value. Although the number of rotations to RM is detected, only the number of rotations of one fan may be detected. In this case, the calculation for obtaining the average value is omitted, and the detected data means the average value in the present invention as it is. In other words, the operation of detecting the fan rotation speed means the operation of obtaining the average value of the fan rotation speed. In this way, by specifying one sensor output target value and detecting only one fan rotation speed and performing the life judgment, the judgment operation can be performed in a short time. It can be. However, by specifying a plurality of sensor output target values and detecting a plurality of fan revolutions as in the present embodiment, it is possible to improve the accuracy of the life determination.
さ らに、 上記実施例では、 燃焼フ ァ ン 3 のフ ァ ン回転 数がフ ァ ン制御特性デー タの上側の リ ミ ッ 夕 一を越えた と き には直ちに燃焼を停止 して寿命診断の動作に移行 し たが、 こ れ とは異な り、 例えば、 フ ァ ン回転数が上側の リ ミ ッ タ ーを越えた と き に寿命診断指令のフ ラ ッ グを立 てる等の処理を して、 その後、 適宜の時期、 例えば、 器 具の燃焼使用後の未使用時や、 次回燃焼前に寿命診断を 行う よ う に して も よい。 こ のよ う に、 器具使用後に寿命 診断を行う よ う にする場合には、 フ ァ ン回転数が上側 リ ミ ッ 夕 ーを越えて も燃焼停止が行われず、 器具をひき続 き使用でき るので、 使用者に不便をかける こ とがな く 、 使い勝手上有利 とな る。 こ の場合、 フ ァ ン回転数が上側 の リ ミ ッ タ ーを越えた程度に よ っ て安全度を区分 し、 最 も危険度が高い場合には直ち に燃焼停止 して寿命診断を 行う よ う に し、 危険度が低い (小さ い) 場合には、 その ま ま燃焼運転を継続 して燃焼使用後の適宜の時期に寿命 診断を行う 等の構成展開を図 る こ と もでき る。 Further, in the above embodiment, when the fan rotation speed of the combustion fan 3 exceeds the upper limit of the fan control characteristic data, combustion is immediately stopped to shorten the life. Moved to diagnosis operation, but this is not the case.For example, when the fan speed exceeds the upper limiter, the life diagnosis command flag is set. The treatment may be performed, and then, at an appropriate time, for example, when the device is not used after being used for combustion or before the next combustion, the life diagnosis may be performed. In this way, when performing the life diagnosis after using the appliance, even if the fan rotation speed exceeds the upper limit, combustion is not stopped and the appliance can be used continuously. Therefore, there is no inconvenience to the user, which is advantageous in terms of usability. In this case, the degree of safety is classified according to the degree to which the fan rotation speed exceeds the upper limiter, and if the risk is the highest, combustion is stopped immediately to diagnose the life. If the risk is low (small), the combustion operation can be continued and the life can be diagnosed at an appropriate time after the use of combustion. You.
さ らに、 上記実施例では、 寿命診断を行う 基準 とな る フ ァ ン回転数の上側 リ ミ ッ 夕 一 と して、 燃焼フ ァ ン 3 の 暴走を防止する ために設け られる フ ァ ン制御特性デー タ の上側の リ ミ ッ 夕 ーを代用 したが、 暴走防止用の上側 リ ミ ッ タ ー と は別個独立の寿命診断専用の上側 リ ミ ッ 夕 ー を設定 し、 フ ァ ン回転数がこ の設定 した寿命診断専用の 上側 リ ミ ッ タ ーを越えたあ とで前記各場合の如 く 寿命診 断を行う よ う に して も よい。  Further, in the above embodiment, the fan provided to prevent runaway of the combustion fan 3 is set as the upper limit of the fan rotation speed as a reference for performing the life diagnosis. The upper limiter of the control characteristic data was used as a substitute, but the upper limiter dedicated to life diagnosis is set independently of the upper limiter for runaway prevention and fan rotation. After the number exceeds the set upper limiter dedicated to life diagnosis, the life diagnosis may be performed as in the above cases.
上記実施例では、 風量を 目標値に維持する よ う燃焼フ ア ンの回転を制御 し、 その回転数を監視 しているが、 燃 焼フ ァ ンの回転数を一定に維持 した状態での風量セ ンサ の検出風量を監視する方法で も、 技術的には同 じである 。 その場合は、 イ ンプッ ト ダウ ンデー タ は、 適正な風量 よ り も低い第一の風量判定値であ り、 寿命判定デー タ は 第一の風量判定値よ り も低い第二の風量判定値とな る。 そ して、 一定回転でフ ァ ンを回転さ せた時の風量セ ンサ の検出風量が、 第一の風量判定値よ り も低い場合は、 ィ ン プ ッ ト ダウ ンモー ドでの運転が行われ、 第二の風量判 定値よ り も低い場合は、 バーナヘの燃料の供給が禁 じ ら れる。  In the above embodiment, the rotation of the combustion fan is controlled so as to maintain the air flow at the target value, and the rotation speed is monitored, but the rotation speed of the combustion fan is maintained constant. The method of monitoring the detected airflow of the airflow sensor is technically the same. In that case, the input down data is the first airflow judgment value lower than the appropriate airflow, and the life judgment data is the second airflow judgment value lower than the first airflow judgment value. It becomes. If the detected airflow of the airflow sensor when the fan is rotated at a constant speed is lower than the first airflow determination value, operation in the input-down mode is performed. If it is done and it is lower than the second airflow determination value, the supply of fuel to the burner is prohibited.
[第三の実施例 ]  [Third embodiment]
更に、 本発明の第三の実施例について、 以下に説明す る Further, a third embodiment of the present invention will be described below. To
第三の実施例の概略は、 以下の通 り であるが、 燃焼機 器の初期において、 無風下の も とで燃焼フ ァ ンを一定回 転数で回転 している時の風量を初期値と して記録 してお き、 定期的なイ ン タ ーバル時期毎に、 無風下での同様の 風量を測定 し、 両者の値を比較 して寿命判断を行う 点に の  The outline of the third embodiment is as follows.In the initial stage of the combustion equipment, the initial value is the air volume when the combustion fan is rotating at a constant speed under no wind. At the regular interval time, measure the same airflow under no wind and compare the two values to judge the service life.
第三の実施例において、 燃焼機器の出荷時、 あ る いは 設置施工後、. バー十の非燃焼時に燃焼フ ァ ンの回転が零 の と きの風量検出セ ンサの検出出力を複数取 り 込み、 こ れ らの検出出力の変動幅が許容範囲以内であ る と き に、 状況判断部に よ り、 無風安定状況と判断される。  In the third embodiment, at the time of shipment of the combustion equipment or after the installation and installation, a plurality of detection outputs of the airflow detection sensor when the rotation of the combustion fan is zero when the bar is not burning are taken. When the fluctuation range of these detection outputs is within the allowable range, the situation determination unit determines that the wind is stable.
そ して、 初期値確定部は、 こ の無風安定状況時の風量 検出セ ンサの検出出力 に基づき、 無風時のセ ンサ初期値 が確定さ れ、 メ モ リ 等に記憶さ れる。  The initial value determination section determines the initial value of the sensor when there is no wind based on the detection output of the airflow detection sensor in the stable state of no wind, and stores it in memory or the like.
次に、 パーナを燃焼させない状態で、 燃焼フ ァ ンを設 定基準条件の も とで回耘 し、 前記状況判断部によ り無風 安定状況と判断された と き に風量検出セ ンサのセ ンサ出 力を取 り 込み、 こ の検出デー タ に基づいて、 セ ンサ出力 の通風劣化判断の基準 とな る初期値を確定 し、 こ れを メ モ リ 等に記憶する。  Next, in a state where the burner is not burned, the combustion fan is cultivated under the set reference conditions, and when the situation determination unit determines that the wind is stable, the sensor for the airflow detection sensor is used. The sensor output is taken in, and based on this detection data, an initial value that is used as a criterion for judging the deterioration of the sensor output is determined and stored in a memory or the like.
前記無風時のセ ンサ初期値 と前記通風劣化判断用の初 期値が確定さ れた後は、 予め与え られた定期的なイ ン タ 一バル時期ご と に、 パー ナを燃焼さ せないで、 燃焼フ ァ ンが零回転の と き の風量検出セ ンサの出力によ って無風 安定状況にあ るか否かの判断が行われる。 無風安定状況 と判断さ れた と き には、 その と き のセ ンサ出力値のセ ン サ初期値に対する変動量が求め ら る。 こ の変動量が予め 与え られる セ ンサ判定基準値を越えた と き に、 セ ンサ故 障と判定されてその判定信号が出力 さ れる。 After the initial value of the sensor in the absence of wind and the initial value for judging the ventilation deterioration are determined, the burner is not burned at a predetermined regular interval. When the combustion fan is rotating at zero speed, no wind is generated due to the output of the airflow detection sensor. A determination is made as to whether the situation is stable. When it is determined that the wind is stable, the amount of change in the sensor output value with respect to the sensor initial value at that time is obtained. When this variation exceeds a predetermined sensor determination reference value, it is determined that a sensor failure has occurred, and a determination signal is output.
セ ンサ故障でない と き には、 パーナを燃焼さ せないで 、 燃焼フ ァ ンを前記初期値を確定 した と き と同 じ設定基 準条件の も とで回転 し、 こ の と き無風安定状況時の空気 供給量検出セ ンサの出力を点検デー タ と して取 り 込む。 そ して、 前記初期値に対する点検デー タ の変動量、 又は 今回のィ ン タ ーバル時期に取 り込んだ点検デー タ と前回 のィ ン 夕 ーバル時期に取 り込んだ点検デー タ との相互間 の変動量を求め、 こ れ らの変動量が予め与え られる判定 基準値を越えた と き に、 通風の詰ま り 劣化を知 らせる警 告信号が出力 さ れる。  If there is no sensor failure, the burner is not burned, and the combustion fan is rotated under the same set standard conditions as when the initial value was determined. Take in the output of the air supply amount detection sensor at the time of the situation as inspection data. Then, the amount of fluctuation of the inspection data with respect to the initial value, or the mutual relation between the inspection data acquired at the current interval time and the inspection data acquired at the previous interval time. The amount of variation between the two is calculated, and when the amount of variation exceeds a predetermined reference value, a warning signal is output to notify the clogged and deteriorated ventilation.
こ の警告信号が出力 された後に、 パーナを燃焼さ せて 通常の燃焼運転を行っ ている と き に、 燃焼フ ァ ンの駆動 制御条件を検知 し、 こ の検知 した駆動制御条件が、 制御 範囲の上限を上側に越えていた と き には、 器具寿命の危 険警告信号が出力 さ れ、 危険警告が適宜の表示手段に表 示さ れる一方において、 燃焼運転が強制的に停止さ れる 以下、 第三の実施例を図面に基づいて説明する。 図 2 2 は こ の本実施例の特徴的な構成を示す も ので、 サ ン プ リ ン グ部 20 25と、 状況判断部 20 26と、 初期値確定部 20 27 と、 メ モ リ 2028と、 フ ァ ン駆動部 2029と、 セ ンサ故障判 定部 20 30と、 寿命判定部 20 3 1と、 通風劣化判定部 20 32と 、 イ ン プッ ト ダウ ン制御部 2033と、 表示手段 20 34と、 時 計機構 20 35とを有 して構成されている。 こ れ らは、 制御 部 1 5内の メ モ リ に記憶さ れている シー ケ ン スプロ グラ ム に従っ て実現される。 After this warning signal is output, when the burner is burned to perform normal combustion operation, the drive control condition of the combustion fan is detected, and the detected drive control condition If the upper limit of the range is exceeded, an instrument life danger warning signal is output and a danger warning is displayed on appropriate display means, while combustion operation is forcibly stopped. A third embodiment will be described with reference to the drawings. FIG. 22 shows a characteristic configuration of the present embodiment. A sampling section 2025, a situation determination section 2026, and an initial value determination section 2027 , Memory 2028, fan drive unit 2029, sensor failure judgment unit 2030, life judgment unit 2031, ventilation deterioration judgment unit 2032, input down control unit 2033, display means 2034, and a clock mechanism 2035. These are realized according to a sequence program stored in the memory in the control unit 15.
サ ンプ リ ン グ部 2025は、 例えば、 器具の電源がオ ン さ れた と き を基準と して、 その電源がオ ン された と き と、 こ の電源オ ンを起点 と して、 予め与え られる所定の定期 的なイ ン タ ーバル時期、 例えば、 1 日経過後、 1 週間経 過後、 1 か月経過後 とい う 如 く 、 所定のイ ン タ ーバル時 期が来る ご とに、 タ イ マ等の時計機構 20 35を利用 して風 量セ ン サ 1 6 の出力を取 り 込む。 そ して、 適宜、 状況判 断部 202 6と、 初期値確定部 2027と、 イ ンプ ッ ト ダウ ン制 御部 20 33と、 通風劣化安定部 20 32とに加え る。  The sampling unit 2025 is, for example, based on when the power of the appliance is turned on, and when the power is turned on, starting from the power on, At a predetermined periodic interval, which is given in advance, for example, at a predetermined interval, such as after one day, one week, one month, etc. The output of the airflow sensor 16 is captured using the clock mechanism 2035 such as an image sensor. Then, it is added to the situation determination unit 2026, the initial value determination unit 2027, the input down control unit 2033, and the ventilation deterioration stabilization unit 2032 as appropriate.
状況判断部 2026には予め、 図 4 に示すよ う に、 無風状 態における風量セ ンサ 1 6 の出力のばらつき の許容範囲 e が与え られている。 周知のよ う に、 給湯器が屋外等に 設置さ れた場合に、 有風状態にな る と燃焼フ ァ ン 5 が停 止中であ る に もかかわ らず、 器具内に風が入 り込み風量 セ ン サ 1 6 の出力が変動する。 本実施例では、 こ の よ う な風量セ ン サ 1 6 の出力の変動がない時期、 つま り 、 無 風状態を検知判断 し、 風量セ ン サ 1 6 のセ ンサ出力を有 効な検出デー タ と して利用する よ う に している。  As shown in FIG. 4, the condition determination unit 2026 is given in advance an allowable range e of the variation in the output of the air flow sensor 16 in a no-wind condition, as shown in FIG. As is well known, when a water heater is installed outdoors or the like, wind enters the equipment regardless of whether the combustion fan 5 is stopped when a wind condition occurs. The output of the intake air flow sensor 16 fluctuates. In the present embodiment, when there is no such fluctuation in the output of the air flow sensor 16, that is, when no wind is detected, the sensor output of the air flow sensor 16 is effectively detected. It is intended to be used as data.
つま り 、 状況判断部 202 6は、 風量セ ン サ 1 6 の複数の 出力を所定のタ イ ミ ン グで取 り 込み (例えば、 0 . 1 秒間 隔で 1 0個のデー タ を取 り 込む) 、 その複数のデ一 夕 の変 動ば らつき、 こ の実施例では取 り 込んだデー タ の最大値 と最小値の差が、 前記許容範囲 e に入 っ ている と き には 無風安定状況 と判断する。 ま た、 取 り込んだデー タ の最 大値 と最小値の差が、 許容範囲 e か ら外れた と き には、 有風状況 と判断する。 そ して、 こ れ ら の状況判断結果を 初期値確定部 2027と通風劣化判定部 20 32に加え る。 なお 、 こ の場合、 初期値確定部 20 27と通風劣化判定部 20 32に 無風安定状況の判断結果のみを加える よ う に して も よい 初期値確定部 2027は、 器具設置施工後の最初の時期、 つま り 、 通風の詰ま り 劣化の生 じていない時期に、 バー ナ 2 が非燃焼であ っ て、 燃焼フ ァ ン 3 が零回転の状況で 取 り 込ま れた風量セ ン サ 1 6 の出力が前記状況判断部 20 2 6に よ り 無風安定状況と判断された と き に、 その風量セ ンサ 1 6 のセ ンサ出力をセ ンサ初期値 と して確定 し、 不 揮発性メ モ リ 2028に格納する。 こ の場合、 例えば、 複数 の取 り 込みデー タ の う ちの最小値ある いは平均値を初期 値 とする。 なお、 状況判断部 2026によ り 有風状況 と判断 さ れた と き はデー タ を採取 しない。 In other words, the condition determination unit 2026 includes a plurality of airflow sensors 16 The output is acquired at a predetermined timing (for example, 10 data are acquired at an interval of 0.1 second), and the fluctuations of the plurality of data are dispersed. In the example, when the difference between the maximum value and the minimum value of the fetched data falls within the allowable range e, it is determined that the wind is stable. When the difference between the maximum value and the minimum value of the acquired data is out of the allowable range e, it is determined that a wind is present. Then, the results of these state determinations are added to the initial value determination unit 2027 and the ventilation deterioration determination unit 2032. In this case, only the judgment result of the no-wind stable state may be added to the initial value determination unit 2027 and the ventilation deterioration determination unit 2032. At the time, that is, when the ventilation is not clogged and the deterioration does not occur, the airflow sensor 1 taken in when the burner 2 is not burning and the combustion fan 3 is at zero rotation When the output of No. 6 is judged to be a stable windless state by the status judgment section 20 26, the sensor output of the air flow sensor 16 is determined as the sensor initial value, and the non-volatile Stored in memory 2028. In this case, for example, the minimum value or the average value of a plurality of acquired data is set as the initial value. No data will be collected if the wind condition is judged by the condition judgment unit 2026.
その一方で、 初期値確定部 2027は、 無風時のセ ンサ初 期値を確定 した後、 バーナ 2 を燃焼さ せないで燃焼フ ァ ン 3 を設定基準条件、 こ の実施例では燃焼フ ァ ン 3 の回 転制御範囲の最大フ ァ ン回転数で回転する。 そ して、 風 量セ ンサ 1 6 の出力をサ ンブ リ ン グ部 2025を介 して予め 与え られた所定のサ ン プ リ ン グタ イ ミ ン グに従っ て複数 取 り 込む。 そ して、 取 り 込みデー タ に基づき前記状況判 断部 20 2 6に よ り 無風安定状況 と判断さ れた こ とを確認 し て、 こ れ らの取 り 込ま れた風量セ ンサ 1 6 の出力 (有風 状況時には検出デ一 夕 の取 り込みは行わない) に基づい て、 燃焼フ ァ ン 2 の最大回転時における セ ン サ出力の初 期値を通風劣化を判断する基準値と して確定 し、 メ モ リ 20 28に格納する。 On the other hand, the initial value determination unit 2027 determines the initial value of the sensor when there is no wind, and then sets the combustion fan 3 to the set reference condition without burning the burner 2, and in this embodiment, the combustion fan The motor rotates at the maximum fan speed in the rotation control range of motor 3. And the wind A plurality of outputs of the quantity sensors 16 are acquired via the sampling section 2025 in accordance with a predetermined sampling timing given in advance. Then, based on the acquired data, it is confirmed that the situation judgment section 2026 has determined that the airflow is stable without wind. Reference value for judging the initial value of the sensor output at the time of the maximum rotation of the combustion fan 2 based on the output of 6 (no detection data is taken in the presence of wind) And store it in memory 2028.
フ ァ ン駆動部 20 29は、 前記初期値確定部 2027の初期値 確定に際 し、 初期値確定部 2027か ら燃焼フ ァ ン 3 を最大 回転数で回転させる指令を受けた と き に、 その指令通 り に燃焼フ ァ ン 3 を回転駆動する。 ま た、 フ ァ ン駆動部 20 29は前記初期値確定部 2027の指合の場合 と同様に、 通風 劣化安定部 20 32か らのフ ァ ン駆動指令を受けて、 燃焼フ ァ ン 3 を制御範囲の最大回転数で回転する。  The fan drive unit 2029, when determining the initial value of the initial value determination unit 2027, receives a command to rotate the combustion fan 3 at the maximum rotation speed from the initial value determination unit 2027. The combustion fan 3 is driven to rotate according to the command. In addition, the fan drive unit 2029 receives the fan drive command from the ventilation deterioration stabilizing unit 2032 in the same manner as in the case of the initial value determination unit 2027, and activates the combustion fan 3. It rotates at the maximum speed of the control range.
セ ン サ初期値 と、 通風劣化判断の初期値の確定が行わ れた後、 通風劣化判定部 20 32は、 所定のイ ン タ ーバル時 期毎に風量セ ンサ 1 6 の出力値を取 り 込む。 そ して、 状 况判断部 20 2 6に よ り 無風安定伏况と判断さ れた と き に、 フ ァ ン駆動部 20 2 9に燃焼フ ァ ン 3 を設定基準条件の最大 回転数で回転する指令を加える。  After the initial sensor value and the initial value of the ventilation deterioration determination are determined, the ventilation deterioration determination unit 2032 obtains the output value of the air flow sensor 16 at a predetermined interval time. Put in. Then, when the situation determination section 2026 determines that the wind is stable, the combustion fan 3 is set to the fan drive section 2029 at the maximum rotational speed of the set reference condition. Add rotation command.
そ して、 燃焼フ ァ ン 3 が最大回転数で回転 している と き に、 パーナ 2 が燃焼 していない条件の も とで、 かつ、 状況判断部 202 6に よ り 無風安定状況と判断さ れている こ と を確認 して、 通風劣化判定部 20 32は、 サ ンプ リ ン グ部 2025を通 して加え られる風量セ ンサ 1 6 の出力値を所定 のサ ンプ リ ン グタ イ ミ ン グで取 り 込む。 そ して、 風量セ ンサ 1 6 の出力の通風劣化判断用初期値に対する変動量 を求める。 こ の実施例では初期値と点検デー タ の値 との 差の絶対値を求める。 こ の変動量と、 予め与え られてい る判定基準値とを比較 し、 変動量が判定基準値を越えた と き に、 器具内の通風の詰ま り 劣化が生 じた も の と判断 して、 その詰ま り 劣化を知 らせる警告信号を出力する。 なお、 器具内の通風の詰ま り 劣化は、 給湯熱交換器 4 に 煤詰ま り が生 じた り 、 給気口 (図示せず) や燃焼フ ァ ン 3 のプロペラ の湾曲部やパ ンチ ン グメ タ ル (図示せず) の孔等に埃等が付着堆積する こ とによ つて も生 じ る。 ま た、 ノくーナ 2 へのゴ ミ の付着に よ って も生 じる。 When the combustion fan 3 is rotating at the maximum rotational speed, the condition determination unit 2026 determines that there is no wind under the condition that the burner 3 is not burning and the burner 3 is not burning. Have been Then, the ventilation deterioration determination unit 2032 obtains the output value of the air flow sensor 16 applied through the sampling unit 2025 at a predetermined sampling timing. Put in. Then, the variation of the output of the airflow sensor 16 with respect to the initial value for judging ventilation deterioration is obtained. In this embodiment, the absolute value of the difference between the initial value and the value of the inspection data is obtained. This variation is compared with a predetermined reference value, and when the variation exceeds the determination reference value, it is determined that clogging and deterioration of ventilation in the appliance has occurred. Outputs a warning signal to inform the clogging deterioration. In addition, clogging and deterioration of the ventilation in the equipment may be caused by soot clogging in the hot water supply heat exchanger 4, the air supply port (not shown), the curved part of the propeller of the combustion fan 3, or the pan fin. Dust and the like also accumulate and accumulate in holes and the like in gutters (not shown). Also, it is caused by the adhesion of dust to Nokuna 2.
寿命判定部 20 3 1は、 通風劣化判定部 20 32によ り 通風の 詰ま り 劣化の警告信号を受けた以降に、 バーナ 2 を燃焼 しての燃焼運転中に、 燃焼フ ァ ン 3 の回転数を検知 し、 それが制御範囲の上限である最大回転数を越えているか 否かを判断する。 制御範囲の上限を越えていた と き には 、 器具内の通風の詰ま り が酷 く な つ ていて、 燃焼に必要 な空気量が供給でき な く な っ ている寿命状態 と判断する 。 そ して、 危険警告信号を出力 し、 給湯器のバーナ燃焼 を直ち に停止 し、 それ以降は、 燃焼指令を受け付けない 等の機能を付加 して、 それ以降の器具の燃焼運転を不能 にする。 イ ンプ ッ ト ダウ ン制御部 20 33は、 定期的なィ ン タ 一バ ル時期 ご と に取 り 込ま れる点検デー タ の値の前記初期値 に対する割合を求め、 こ の求めた割合が予め与え られて いる判定比率よ り も小さ く な つ た と き に、 煤詰ま り等に よ る通風劣化が寿命には未だ達 しないがかな り 進んでい る と判断する。 そ して、 通風の詰ま り が生 じていて も、 燃焼に必要な空気量が確保でき る よ う に、 比例弁 4 への 開弁駆動電流を制御 して比例弁 4 の開弁量を絞 り 、 バー 十 2 に供給する燃料供給量を低減する方向に制御する。 The life judging unit 2031 rotates the combustion fan 3 during the combustion operation by burning the burner 2 after receiving the warning signal of the clogging and deterioration of the ventilation from the ventilation deterioration judging unit 2032. Detect the speed and determine whether it exceeds the maximum speed, which is the upper limit of the control range. If the upper limit of the control range is exceeded, it is judged that the ventilation state in the appliance has become severely clogged, and the life state is such that the air amount required for combustion cannot be supplied. Then, a danger warning signal is output, the burner combustion of the water heater is immediately stopped, and after that, a function such as not accepting a combustion command is added to disable the combustion operation of the appliance thereafter. I do. The input down control unit 2033 obtains the ratio of the value of the inspection data taken at each periodic interval to the initial value, and calculates the ratio in advance. When the ratio becomes smaller than the given judgment ratio, it is judged that the ventilation deterioration due to soot clogging etc. has not reached the service life yet but has advanced considerably. Then, even if the ventilation is blocked, the valve opening drive current to the proportional valve 4 is controlled so that the amount of air required for combustion can be secured, so that the valve opening amount of the proportional valve 4 is reduced. The throttle is controlled so as to reduce the amount of fuel supplied to the bar 12.
セ ン サ故障判定部 20 30は、 前記初期値確定部 2027によ り 通風劣化判断の初期値 とセ ン サ初期値が共に確定さ れ た後、 バーナ 2 が非燃焼時であ って、 燃焼フ ァ ン 3 が回 転 していない時であ って、 イ ン 夕 一バル時期ごとに、 無 風時の風量セ ンサ 1 6 の出力値 と無風時のセ ン サ初期値 とを比較する。 つま り 、 セ ンサ出力値のセ ンサ初期値に 対する変動量を求め、 こ の変動量が予め与え られるセ ン サ判定基準値を越えた と き に、 セ ンサ故障と判定 して、 そ のセ ンサ故障の判定信号を出力する。  The sensor failure determination unit 2030 determines whether the burner 2 is in a non-combustion state after both the initial value of the ventilation deterioration determination and the sensor initial value are determined by the initial value determination unit 2027. When the combustion fan 3 is not rotating, the output value of the airflow sensor 16 when there is no wind is compared with the initial sensor value when there is no wind at every interval I do. That is, the amount of fluctuation of the sensor output value with respect to the sensor initial value is determined, and when this fluctuation exceeds a predetermined sensor judgment reference value, a sensor failure is determined and the Outputs a sensor failure judgment signal.
表示手段 2034は、 通風劣化判定部 20 32か ら加え られる 通風劣化の警告信号と、 寿命判定部 20 3 1か ら加え られる 器具の寿命を知 らせる危険警告信号 と、 セ ン サ故障判定 部 20 30か ら加え られる セ ンサ故障の判定信号を受け、 こ れ らの各信号を、 例えば、 リ モ コ ン等の所望の表示部に 区別表示する。 こ の表示手段 20 34の区別表示手法と して は、 例えば、 液晶画面にそれぞれの態様に応 じ記号等に よ り 区別表示 した り 、 あ る いは、 ラ ン プの点灯や点滅状 況を可変 して視覚的に区別 した り、 あるいは、 ブザー等 を用い、 ブザーの音量、 連続音、 間欠音、 その間欠時間 の長さ等によ り 区別 して表示する等、 様々 な区別表示の 構成態様を採 り 得る。 なお、 上記構成において、 燃焼フ ァ ン 3 が零回転であ るか最大回転であ るかは フ ァ ン回転 検出セ ンサ 2 8 の信号に よ って判断され、 バ一ナ 2 が燃 焼状態にあ るか非燃焼状態にあ るかは フ レ ーム ロ ツ ド電 極 20の信号に よ つて判断さ れる。 The display means 2034 includes a ventilation deterioration warning signal added from the ventilation deterioration judging section 2032, a danger warning signal added from the life judging section 2031 to inform the life of the appliance, and a sensor failure judging section. 20 The sensor failure judgment signal added from 30 is received, and these signals are distinguishably displayed on a desired display unit such as a remote control, for example. The display means 2034 can be distinguished by, for example, displaying symbols on the liquid crystal screen according to the respective modes. More distinctive indication, or by visually changing the lighting or blinking state of the lamp, or by using a buzzer, etc., the buzzer volume, continuous sound, intermittent sound, etc. Various distinctive display configurations can be employed, for example, the display is made differently according to the length of the intermittent time. In the above configuration, whether the combustion fan 3 is rotating at zero or at the maximum is determined by a signal from the fan rotation detecting sensor 28, and the burner 2 is burned. Whether it is in the state or the non-combustion state is determined by the signal of the frame rod electrode 20.
[第三の実施例の動作フ ロ ー ]  [Operation Flow of Third Embodiment]
本実施例は上記の よ う に構成さ れてお り 、 次に、 その 動作を図 2 3 およ び図 2 4 の フ ロ ーチ ャ ー ト に基づき具 体的に説明する。 図 2 3 は初期値確定部 2027によ り セ ン サ無風出力初期値と通風劣化判断の初期値 とを確定する 動作を示 している。 こ の動作は器具製造後の検査時に器 具の電源を投入 した と きや、 器具を設置施工後、 電源を 投入 した と きや、 初期値確定モー ドの指合ボタ ン等を設 け、 こ のボタ ン によ り動作指令が出 された と き等、 適宜 の時期に行われる。 こ の動作では、 まず、 ステ ッ プ 2 1 00 で、 m = 0 と置 く 。 ステ ッ プ 2 1 0 1でバー ナ 2 が非燃焼状 態にあ るか否かが判断さ れる。 こ の判断は、 フ レ ー ム 口 ッ ド電極 20の信号を検出する こ と に よ り 判断さ れる。 非 燃焼 と判断さ れた と き には、 ステ ッ プ 2 1 02で燃焼フ ァ ン 3 の回転が停止状態である こ とを確認する。  The present embodiment is configured as described above. Next, the operation thereof will be specifically described based on the flowcharts of FIGS. 23 and 24. FIG. 23 shows an operation in which the initial value determination unit 2027 determines the initial value of the sensor no-wind output and the initial value of the ventilation deterioration determination. This operation is performed when the power of the equipment is turned on during inspection after manufacture of the equipment, or when the power is turned on after the installation of the equipment, or by setting a finger button or the like in the initial value confirmation mode. This is performed at an appropriate time, such as when an operation command is issued by using this button. In this operation, first, in step 2100, m = 0 is set. At step 2101, it is determined whether burner 2 is in a non-combustion state. This determination is made by detecting the signal of the frame opening electrode 20. If it is determined that the combustion is non-combustion, it is confirmed in step 2102 that the rotation of the combustion fan 3 is stopped.
次にステ ッ プ 2 1 03で風量セ ンサ 1 6 のセ ンサ出力の読 み込みが行われる。 ステ ッ プ 2104ではセ ンサ出力の読み 込みが終了 したか否か、 つま り、 T分経過 したか否かを 判断する。 セ ンサ出力の読み込みは、 例えば、 0.1 秒に つき 1 個の割合で行われ、 例えば 5 個あ る いは 10個等の 所定数の読み込みが終了する T分の時間が経過 したか否 かがステ ツ プ 2104で判断さ れる。 T分経過 した と判断さ れた と き には、 次にステ ツ プ 2105で複数読み込まれたセ ンサ出力値の う ちの最大値 ( M A X ) と最小値 ( M I N ) との差が求め られ、 こ の最大値 と最小値の差、 つま り 、 取 り込ま れたセ ンサ出力の変動幅が、 許容範囲のNext, in step 2103, the sensor output of airflow sensor 16 is read. An inset is performed. In step 2104, it is determined whether the reading of the sensor output has been completed, that is, whether or not T minutes have elapsed. The reading of the sensor output is performed, for example, at a rate of one per 0.1 second. It is determined in step 2104. If it is determined that T minutes have elapsed, the difference between the maximum value (MAX) and the minimum value (MIN) of the sensor output values read in step 2105 is calculated. The difference between the maximum value and the minimum value, that is, the fluctuation range of the acquired sensor output is within the allowable range.
(図 4 の e = e , ) に入 っているか否かが判断さ れる。 こ の範囲に入っ ていない と き には、 有風状態 と判断され 、 デー タ を採取 して も有風の影響を受けて有効なデー タ とな らないので、 デー タ を取 らず、 24時間待機 して、 再 びステ ッ プ 2101以降の動作を行う 。 (E = e, in Fig. 4) is determined. If it is not within this range, it is determined that there is a wind, and even if data is collected, it will not be valid data due to the effect of the wind. After waiting for 24 hours, the operation after step 2101 is performed again.
こ れに対 し、 ステ ッ プ 2105で最大値 と最小値の差が e I の範囲内に入っ ている と判断された と き には、 複数読 み込ま れたデー タ の う ち、 最小の もの、 あるいは平均値 、 こ の例では平均値を、 V M , N ( m ) (今回の場合は、 m = 0 なので、 V M , N ( 0 ) ) と して メ モ リ に保管する 。 こ の V M I N ( 0 ) が無風時のセ ンサ初期値の一つであ o On the other hand, if it is determined in step 2105 that the difference between the maximum value and the minimum value is within the range of eI, the minimum value among the plurality of read data is obtained. Or the mean, in this case the mean, is stored in memory as VM, N (m) (in this case, m, 0, VM, N (0)). This V MIN (0) is one of the initial sensor values when there is no wind o
次にステ ッ プ 2107でパーナ 2 を燃焼させないで、 燃焼 フ ァ ン 3 を制御範囲の最大回転数 ( こ の例では 3000rpm ) で回転 し、 ステ ッ プ 2108で風量セ ンサ 1 6 のセ ンサ出 力の読み込みを行う 。 Next, in Step 2107, the combustion fan 3 is rotated at the maximum number of revolutions in the control range (3000 rpm in this example) without burning the burner 2 in Step 2107, and in Step 2108, the sensor of the air flow sensor 16 is rotated. Out Perform a force read.
こ の場合 も、 セ ンサ出力値の複数のデー タ読み込みが 行われ、 ステ ッ プ 2109でこ の読み込み時間が経過 したか 否かが判断さ れる。 読み込み時間が経過 した と き に、 ス テ ツ ブ 2110で同 じ く 読み込ま れた複数のセ ンサ出力値の う ち、 最大値 と最小値のば らつき変動を求め、 こ の変動 が設定許容変動範囲 e 2 (図 4 の e = e 2 ) の範囲に入 つ ているか否かを判断する。 こ の範囲 e 2 に入っ ていな い と き には、 有風のためにデー タがば らつき変動 してい る もの と判断 し、 デー タ を採取せずに、 24時間待機 して 、 ステ ッ プ 2101以降の動作を繰 り返 し行う 。 ステ ッ プ 21 10で最大値 と最小値の差が設定許容変動範囲の e 2 に入 つ ている と き には、 無風安定状況と判断される。 そ して 、 読み込ま れた複数のデー タ の う ち、 最大の も の、 ある いは平均値 ( こ の例では平均値) を、 V MA X ( m ) (今 回の場合は mが 0 であ るので、 V MA X ( 0 ) ) と して メ モ リ に保管する。 こ れが、 通風劣化判断の初期値の一つ であ る。 Also in this case, a plurality of data readings of the sensor output value are performed, and it is determined in step 2109 whether or not the reading time has elapsed. When the reading time has elapsed, the variation in the maximum and minimum values of the multiple sensor output values read in the same manner in step 2110 is determined, and this variation is allowed to be set. It is determined whether it is within the range of the fluctuation range e 2 (e = e 2 in Fig. 4). To come and have a have entered the range e 2 of this, it is determined that because of the windy you are Day Tagaba variability change, without collecting the data, and wait 24 hours, stearyl The operation after step 2101 is repeated. The can with the difference between the maximum value and the minimum value stearyl-up 21 10 is one input to e 2 of the set allowable variation range, it is determined that no wind stable situation. Its to, Chi sales of multiple data that has been read, a maximum of also of, there have an average value (average value in the example of this), V MA X (m) ( in the case of now times m is 0 der Runode, store in Note Li as a V MA X (0)). This is one of the initial values for ventilation deterioration judgment.
そ して、 ステ ッ プ 2112では、 mが 3 であ るか否かが判 断さ れ、 m力 3 に達 していない と き には、 ステ ッ プ 2114 で mを 1 個繰 り 上げ (今回の場合は mが 0 か ら 1 に繰 り 上げ られる ) ステ ッ プ 2115で 1 週間の経過を待つ。 そ し て、 再びステ ッ プ 2101以降の動作を行 う 。 こ のよ う にス テ ツ プ 2101以降の動作を行う こ と に よ り 、 mが 3 にな る ま で、 4 個の無風時のセ ンサ初期値 V M I N ( 0 ) 〜 V M, N . ( 3 ) の値 と、 4 個の通風劣化判断用の初期値 V MAX ( 0 ) 〜 V MA X ( 3 ) の値が保管さ れる。 Then, in step 2112, it is determined whether m is 3 or not. If the m-force has not reached 3, m is incremented by one in step 2114. (In this case, m is incremented from 0 to 1.) In step 2115, wait one week. Then, the operation after step 2101 is performed again. By performing the operations after step 2101 in this manner, the initial sensor values in the absence of wind from four V MIN (0) to V M , until m becomes 3 are obtained. N. (3) the value of the value of the four initial values V MAX for ventilation deterioration determination (0) ~ V MA X ( 3) is stored.
ステ ッ プ 2112で m = 3 と判断された と き には、 ステ ツ プ2113では、 ¥„^ ( 0 ) 〜 V M,N ( 3 ) の 4 個の値を 平均演算 して無風時のセ ン サ初期値 V M I N を確定する。 同 じ く 、 4 個の V MAX ( 0 ) 〜 V MAX ( 3 ) の値の平均 値を求めて燃焼フ ァ ンが最大回転数で回転 している と き の通風劣化判断の初期値 V MAX を確定する。 そ して、 そ れぞれの確定値 V M,N , V M A X を メ モ リ 2028に格納する 。 以上のステ ッ プ 2100か ら 2113の動作に よ り、 給湯器が 設置施工された直後の通風の詰ま り がない と き のフ ァ ン 零回転時の無風時セ ンサ初期値 と V M,N と、 燃焼フ ァ ン の最大回転時における通風詰ま り のない通風劣化判断の 基準とな る初期値 V MA X がそれぞれ確定記億さ れる。 To come and it is determined that m = 3 in the stearyl-up 2112, the stearyl Tsu-flops 2113, ¥ "^ (0) ~ V M, N 4 pieces of the value, on average calculation of a no-flow condition of (3) Determine the sensor initial value V MIN Similarly , determine the average value of the four V MAX (0) to V MAX (3) values, and the combustion fan is rotating at the maximum speed At this time, the initial value V MAX for the judgment of ventilation deterioration is determined, and the respective determined values V M , N and VMAX are stored in the memory 2028. Steps 2100 to 2113 largest Ri by the operation, the water heater is calm Tokise capacitors initial and V M during fan zero rotation of the feeder and Ri is not clogged ventilated immediately placed construction, and N, the combustion fan The initial value V MAX, which is the standard for judging deterioration of ventilation without rotation clogging during rotation, is fixedly recorded.
図 2 4 は、 前記初期値 V MAX と無風時のセ ン サ初期値Figure 24 shows the initial value V MAX and the sensor initial value when there is no wind.
V Μ , Ν とが確定記億された後、 定期的な イ ン タ ーバル時 期ご と、 例えば、 燃焼回数 L回ある いは Μか月経過 ご と 等に行われる通風劣化と器具寿命の判断を行う 動作フ ロ 一である。 まず、 ステ ッ プ 2200で Ρ = 0 , Ν = 0 が設定 さ れ る。 次に、 ステ ッ プ 2201では、 前記図 2 3 の フ ロ ー チ ヤ一 卜 のステ ッ プ 2101か ら 2111ま での動作 と同 じ動作 を行い、 無風安定状況時であ っ て燃焼フ ァ ンが零回転時 における セ ンサ出力 V Μ , Ν ( Ν ) の値 と、 燃焼フ ァ ン 3 が制御範囲の最大回転で回転さ れた と きの同 じ く 無風安 定状況時におけるセ ン サ出力 V ΜΑΧ ( Ν ) と を求めて保 管する。 After V, and Ν are determined and recorded, at regular interval time intervals, for example, ventilation deterioration and equipment life, which occur every L times or every 月 months, etc. This is the action flow to make a decision. First, in step 2200, Ρ = 0 and Ν = 0 are set. Next, in step 2201, the same operation as that of steps 2101 to 2111 of the flowchart shown in FIG. 23 is performed. The value of the sensor output V Μ , Ν (に お け る) when the fan is at zero rotation, and the same value when the combustion fan 3 is rotated at the maximum rotation of the control range when the wind is stable. Sensor output V ΜΑΧ (Ν) and Tube.
次に、 ステ ッ プ 2202で予め確定記憶さ れている セ ンサ 無風出力初期値 V M I N の値 と、 前記ステ ッ プ 2201で求め られた V M I N ( N ) との差の絶対値を変動量と して求め 、 こ の変動量が予め与え られるセ ンサ判定基準値、 こ の 実施例では風量セ ンサ 1 6 の公差範囲 と比較 し、 変動量 が公差範囲に入 っ ているか否かの判断を行う 。 そ して、 変動量が公差範囲か ら外れている と き には、 ステ ッ プ 22 09で風量セ ンサ 16の故障 と判断さ れ、 セ ンサ故障判定部 2030か らセ ンサ故障の判定信号が出力 さ れて表示手段 20 34にその旨の表示が行われる。 変動量が公差範囲に入 つ ている と き には風量セ ンサ 1 6 は正常 と判断さ れ、 次の ステ ツ プ 2203の動作に移る。 Next, the absolute value of the difference between the sensor no-wind output initial value V MIN previously determined and stored in step 2202 and V MIN (N) determined in step 2201 is calculated as the amount of change. This variation is compared with a sensor determination reference value given in advance, in this embodiment, the tolerance range of the air flow sensor 16 to determine whether the variation falls within the tolerance range. I do . If the variation is out of the tolerance range, it is determined in step 2209 that the airflow sensor 16 has failed, and the sensor failure determination unit 2030 outputs a sensor failure determination signal. Is output and a display to that effect is displayed on the display means 2034. When the variation is within the tolerance range, the air flow sensor 16 is determined to be normal, and the operation proceeds to the next step 2203.
ステ ッ プ 2203では、 予め確定さ れている初期値 V MA X と、 前記ステ ッ プ 2201で求め られた非燃焼時であ っ て、 かつ、 燃焼フ ァ ン 3 の最大回転時にお ける点検デー タ の 値 V MA X ( N ) の値に基づき、 V MA X ( N ) の初期値 V M A X に対する割合 ( V MA X ( N ) と V MA X の比) がイ ン プ ッ ト ダウ ン制御部 2033に よ り 求め られる。 そ して、 こ の値が予め定め られた判定比率よ り も小さ いか否かが判 断さ れる。 こ の判定比率 と しては、 適宜の設定値を与え る こ とができ るが、 本実施例では、 図 2 5 に示すよ う な グラ フ デー タ を用いて設定さ れている。 In stearyl-up 2203, in advance an initial value V MA X that has been determined, the stearyl Tsu Tsu non-combustion time der obtained in flop 2201, and our Keru inspected at the maximum rotation of the combustion fan 3 based on the value of the data values V MA X (N), (the ratio of V MA X (N) and V MA X) V MA X ratio to the initial value VMAX (N), the Guy emissions flop Tsu preparative down control Required by part 2033. Then, it is determined whether or not this value is smaller than a predetermined determination ratio. An appropriate set value can be given as this determination ratio, but in the present embodiment, it is set using graph data as shown in FIG.
図 2 5 において、 V Α ,は、 非燃焼時に、 燃焼フ ァ ン 3 の フ ァ ン回転数を変化させた と き の風量セ ンサ 1 6 のセ ンサ出力を示 している。 こ の V A 1のデー タ は器具内の風 の通る通路面積が全 く 閉塞さ れていない A , の と きのデ 一 夕 であ る。 同様に して例えば閉塞率 90% , 60% , 50% , 3.0% とい う 如 く 、 閉塞率を複数段に変化させた と きの フ ァ ン回転数 とセ ンサ出力 との閬係デー タ を別個に求め てお く 。 こ の V A 1のデー タ は器具が製造された直後のま だ通風の詰ま り が全 く 発生 していない状態で求め られる ο In FIG. 25, V Α , is the sensor of the air flow sensor 16 when the fan rotation speed of the combustion fan 3 is changed during non-combustion. The sensor output is shown. This VA1 data is the data for A, when the passage area through which the wind in the instrument is not completely blocked. Similarly, the relationship data between the fan rotation speed and the sensor output when the closing ratio is changed in multiple stages, for example, the closing ratio is 90%, 60%, 50%, and 3.0%. Is required separately. This V A1 data is obtained immediately after the appliance has been manufactured, with no blockage of the ventilation yet ο
グラ フ デー タ の V A 2は、 同 じ く 器具の製造直後等の通 風詰ま り 劣化の全 く ない状態時において、 バ一ナ 2 を燃 焼さ せて、 フ ァ ン回転数を可変 した と き の風量セ ンサ 1 6 のセ ンサ出力を示すグラ フである。 一般に、 非燃焼時 に比べ、 燃焼時では、 通気抵抗が高 く な るため、 非燃焼 時の正常出力 V A 1に対 し、 通路面積を Y %閉塞させた通 路面積 Α 2 の状態の非燃焼時における フ ァ ン回転数 とセ ンサ出力 とのデー タが V A 2のデー タ と等価 とな っている 。 なお、 非燃焼時に対する燃焼時の通気抵抗の増加に対 応ずる閉塞率 Y %の値は既知の値と して求め られるので 、 その時の通路面積 Α 2 も既知の値 と して求め られる。 従っ て、 実際には、 V A 2の グラ フ デー タ は V A,の グラ フ デー タか ら計算に よ り 求め られる。 も ち ろん、 実際に燃 焼させて V A 2のデ一 夕 を求めて も よい。 V A 2 of graph data is variable during the entire Ku no state of deterioration Jam passing wind like immediately after the production of the same rather instrument, a bar one Na 2 by combustion, the fan rotational speed This is a graph showing the sensor output of the airflow sensor 16 at that time. In general, the ventilation resistance is higher during combustion than during non-combustion.Therefore, the passage area with the passage area blocked by Y% is 2 % of the normal output V A 1 during non-combustion. data of the fan speed and the sensor output is present What Do the equivalent data of V a 2 at the time of non-combustion. Incidentally, blockage rate Y% of the value of meeting pair to an increase in ventilation resistance at the time of combustion for time of non-combustion since it is determined by a known value, the passage area Alpha 2 at that time is also determined by a known value. Therefore, in fact, graph data of V A 2 is obtained Ri by the V A, graph data or et al calculation of. Ron Chi may also actually by combustion seek de one evening V A 2.
グラ フ デー タ の V A 4は異常燃焼時の風量セ ンサ 1 6 の 出力を示すデー タで、 正常燃焼時の出力 V A 2の状態か ら 、 通風の詰ま り 劣化に よ り 、 閉塞率が W %にな っ た も の と想定 して V A 1ある いは V A 2のデー タか ら計算によ り 求 め られる。 尚、 W %は排気中の一酸化炭素等が一定の量 を越える場合か ら求め られる。 V A 4 of the graph data in the data indicating the output of Kazeryouse capacitors 1 6 when abnormal combustion, Ri by the normal state to the output V A 2 at the time of combustion, deterioration jams ventilated, closed rate Has become W% Assuming that V A1 or V A2 , it can be obtained by calculation. Note that W% is obtained from the case where the amount of carbon monoxide and the like in the exhaust exceeds a certain amount.
V A 3は非燃焼時であ って、 通風の詰ま り 劣化が発生 し ている異常時における セ ンサ出力デー タ を示す も ので、 こ の V A 3は、 上記の既知の値の V A 1、 A 2 、 A 4 か ら、 次の式によ り 求めている。 V A 3= V A 1 x A 4 / A 2 。 な お、 V A 1の グラ フ デー タの と きの通風の通路面積を A , と した と き、 こ の通路面積 A , に対 しそれぞれ V A2, V A 3 , V A 4では閉塞率が異な る こ と とな り、 V A 2の グラ フ デー タでは通風の通路面積は A 2 、 グラ フ デー タ V A 3の と き の通路面積は A 3 、 グラ フ デー タ V A 4の と きの通路 面積は A 4 の値 と して与え られている。 V A3 indicates sensor output data at the time of non-combustion and abnormalities where clogging and deterioration of ventilation occur, and V A3 is the above known value of V A. It is obtained from 1 , A2 and A4 by the following formula. V A 3 = V A 1 x A 4 / A 2. In addition, assuming that the passage area of the ventilation when the graph data of V A1 is A, and that the blocking area is V A2 , VA 3, and V A 4 with respect to the passage area A, respectively. this different that the door Ri name, the passage area of the ventilation in the graph data of V a 2 a 2, graph data V a 3 of the door-out of the passage area a 3, the graph data V a 4 DOO Kino passage area is given as the value of a 4.
本実施例では非燃焼時の異常相当セ ンサ出力 V A3と、 非燃焼時の正常セ ンサ出力 V A 1との比 V A 3Z V A 1に定数 Kを掛けた値を判定比率と して設定 している。 そ して、 ステ ッ プ 2203において、 V MA X に対する V MA X ( N ) の 割合が判定比率以上の と き には通風詰ま り 劣化が問題 と な らない良好な燃焼状況にある ので、 こ の場合には、 通 常の燃焼制御の運転状態で給湯器の燃焼運転を行う 。 Abnormal corresponding sensor output V A3 at the time of non-combustion in the present embodiment, a value obtained by multiplying the ratio V A 3 constant K to ZV A 1 of the normal sensor output V A 1 during the non-combustion as a determination ratio Is set. Its to, in stearyl-up 2203, since the deterioration of jams ventilation in-out door V MA X ratio is equal to or greater than the determination ratio of (N) for the V MA X is in La no good combustion conditions, such as the problem, this In this case, the combustion operation of the water heater is performed in the normal operation state of the combustion control.
V MAX に対する V MAX ( N ) の割合が判定比率よ り も 小さ い と き には、 通風詰ま り の劣化の影響が生 じている 状態 と判断さ れ、 こ の と き には、 次のステ ッ プ 2204で燃 焼フ ァ ン 3 の回転数が制御範囲の最大回転数にな っ てい るか否かを判断する。 燃焼フ ァ ンが最大回転数に達 して - 1 1 - いない と き には、 通風の詰ま り劣化の影響が生 じていて も、 風量をア ッ プする余裕があるので、 こ の場合には通 常の燃焼運転制御を行う 。 To come to the rate of V MAX (N) is less also Ri by determining the ratio for V MAX, it is determined that the state impact of the deterioration of jams ventilation is Ji raw, in the gas-this of the, of the following: In step 2204, it is determined whether or not the rotation speed of the combustion fan 3 has reached the maximum rotation speed in the control range. When the combustion fan reaches the maximum speed Otherwise, even if the effects of clogging and deterioration of the ventilation occur, there is room to increase the air volume, so in this case, normal combustion operation control is performed.
こ れに対 し、 燃焼フ ァ ン 3 の フ ァ ン回転数が制御範囲 の最大回転数 ( こ の実施例では 3000rpm ) に達 していた と き には、 P に 1 を加えた後、 ステ ッ プ 2205で P = 2 で あ るか否かの判断が行われる。 今回の場合は、 P = 1 で あ るので、 P は 2 でなし、 こ と とな り 、 こ の場合には、 ス テ ッ プ 2206でイ ンブ ッ ト ダウ ン制御部 2033に よ り 'ーナ 2 へのガス供給量を X %低減方向に制御 して燃焼運転が 行われる。 ステ ッ プ 2207では次の所定のィ ン 夕 ーバル時 期、 例えば、 燃焼回数 L 回あ る いは Mか月 が経過 したか 否かがサ ン プ リ ン グ部 2025によ り 時計機構 2035を利用 し て判断さ れ、 そのイ ン タ ーバル時期が到来 した と き には 、 ステ ッ プ 2208で Nに 1 を操 り上げる。  On the other hand, when the fan speed of the combustion fan 3 has reached the maximum speed of the control range (3000 rpm in this embodiment), 1 is added to P, and In step 2205, a determination is made as to whether P = 2. In this case, since P = 1, P is not 2, and in this case, in step 2206, the input down control unit 2033 executes the ' The combustion operation is performed by controlling the gas supply amount to the burner 2 in the direction of decreasing X%. In step 2207, the sampling unit 2025 determines whether the next predetermined period of time, for example, whether the number of combustion times L or M months has elapsed, is performed by the clock unit 2035. When the interval time has arrived, N is increased to 1 in step 2208.
前記ステ ッ プ 2205で P = 2 である こ とが判断された と き には、 ステ ッ プ 2211で完全に通風詰ま り劣化の状態に あるか否かの判断が行われる。 すなわち、 前記図 23に示 すフ ロ ーチ ヤ 一 卜 のステ ッ プ 2113で確定さ れている通風 劣化判断の初期値 V M A X と、 各イ ン タ ーバル時期ご と に 前記ステ ッ プ 2201で取 り 込ま れる検出デー タ (点検デー 夕 ) V MA X ( N ) との変動量を V MA X と V MA X ( N ) の 差の絶対値で求める。 そ して、 こ の変動量が予め与え ら れ る判定基準値 D よ り も大か否かを判断する。 こ こ で、 D は、 本実施例では D = ( V A 1 - V A 3) Z 2 の値と して 与えている。 初期値 と点検デ一 夕 との変動量が D よ り も 大 とな らない と き には、 通風詰ま り の劣化が生 じていな い も の と判断 し、 警告信号の出力は行わない。 こ れに対 し、 初期値 と点検デー タ との変動量が判定基準値 Dを越 えた と き には、 ルーバゃ燃焼フ ァ ン 3 のプロペラの曲面 部に埃等が堆積付着 した り 、 パー ナのゴ ミ 付着あ る いは 給湯熱交換器 8 に煤詰ま り が生 じる等 して、 通風の詰ま り 劣化が確実に生 じた も の と判断 し、 ステ ツ プ 22 1 2で警 告信号を出力 し、 その旨を表示手段 20 34に表示する。 If it is determined in step 2205 that P = 2, it is determined in step 2211 whether or not the air is completely blocked and deteriorated. That is, the initial value VMAX of the ventilation deterioration determination determined in step 2113 of the flow chart shown in FIG. 23 and the step 2201 for each interval time are determined. Request Installing variation amount of the detection data (inspection data evening) V MA X (N) to be written in the absolute value of the difference of V MA X and V MA X (N). Then, it is determined whether or not this variation is larger than a predetermined reference value D. In here, D is, in this example D = (V A 1 - V A 3) as the value of Z 2 Have given. If the amount of change between the initial value and the inspection time is not greater than D, it is determined that deterioration of the ventilation clogging has not occurred and no warning signal is output. . On the other hand, when the variation between the initial value and the inspection data exceeds the criterion value D, dust or the like may be deposited on the curved surface of the propeller of the louver combustion fan 3, Step 22 1 2 It is judged that clogging of the burner or soot clogging of the hot water supply heat exchanger 8 caused clogging and deterioration of ventilation. To output a warning signal, and the display means 2034 indicates that.
次に、 ステ ッ プ 22 1 3では、 こ の警告信号が出力 された 以降の給湯器のバーナ 2 を燃焼 しての運転時に、 燃焼フ ァ ン 3 の フ ァ ン回転数が制御範囲の最大回転数 (上限値 ) に達 したか否かが判断される。 フ ァ ン回転数が上限値 に達 していない と き には、 ま だ燃焼フ ァ ン 3 の回転をァ ッ ブする方向に余裕があ る ので、 燃焼運転を継続する。 しか し、 フ ァ ン回転数が上限値を越えている と き には、 通風の詰ま り 劣化が相当酷 く な っ ていて燃焼フ ァ ンの回 転を最大回転に して も、 燃焼の空気量が不足 している寿 命状態と判断さ れ、 こ の場合には、 寿命判定部 203 1によ り 、 寿命を示す危険警告信号が出力 さ れる。 そ して、 そ の危険饕告が表示手段 2034に表示さ れる と共に、 パー ナ 2 の燃焼運転を強制的に停止 し、 それ以降のパー ナ燃焼 を不能状態に して、 燃焼不良に よ る危険を回避する。  Next, in step 2213, during the operation in which the water heater burner 2 is burned after the warning signal is output, the fan rotation speed of the combustion fan 3 increases the maximum rotation speed of the control range. It is determined whether or not the rotation speed (upper limit) has been reached. When the fan rotation speed has not reached the upper limit, combustion operation is continued because there is still room in the direction in which the rotation of the combustion fan 3 is to be ablated. However, when the fan rotation speed exceeds the upper limit, the clogging and deterioration of the ventilation are considerably worse, and even if the rotation of the combustion fan is set to the maximum rotation, the combustion It is determined that the life state is short of the amount of air, and in this case, the life determination unit 2031 outputs a danger warning signal indicating the life. Then, the danger message is displayed on the display means 2034, the combustion operation of the partner 2 is forcibly stopped, and the subsequent combustion of the partner is disabled, resulting in poor combustion. Avoid danger.
上記実施例では、 燃焼フ ァ ンの設定基準条件を燃焼フ ア ン 3 の回転制御範囲の最大回転数で設定 したが、 最大 回転数よ り も多少低い回転数で設定 して も よ く 、 さ らに は、 回転数でな く 、 燃焼フ ァ ン 3 の駆動電流や仕事量に よ っ て設定基準条件を与え る よ う に して も よ い。 In the above embodiment, the setting reference condition of the combustion fan is set at the maximum number of revolutions of the rotation control range of the combustion fan 3, but the maximum The rotation speed may be set slightly lower than the rotation speed, and the set reference condition may be given not by the rotation speed but by the drive current and work amount of the combustion fan 3. You can do it.
さ ら に、 上記実施例において、 図 2 4 のフ ロ ーチ ヤ一 ト のステ ッ プ 221 1で与え られている判定基準値 D は予め 求めて外部入力デー タ と して与えて も よ いが、 器具自身 が燃焼フ ァ ン 3 を回転 して図 2 5 の V A 1のデー タ を求め 、 自 ら演算処理を行っ て判定基準値 D を求めて設定する よ う に して も よい。 も ち ろん D は D = ( V A 1 - V A 3 ) / 2 以外の値で与えて も よい。 Furthermore, in the above embodiment, the judgment reference value D given in step 2211 of the flowchart of FIG. 24 may be obtained in advance and given as external input data. bur, even in the earthenware pots by the instrument itself obtains the data in the V a 1 in FIG. 2 5 rotates the combustion fan 3, sets seeking determination reference value D by performing the self-et processing Good. May be given by - (V A 3 V A 1 ) / 2 value other than Ron D Chi also is D =.
さ らに、 上記実施例では、 通風詰ま り 劣化を判断する 際に、 図 2 4 のフ ロ ーチ ャ ー ト のステ ッ プ 22 Πに示すよ う に、 通風劣化判定部 2032によ り 、 通風劣化判断の初期 16· V M A X と点検デー タ V M A X ( N ) との差の絶対値によ つ て変動量を求めたが、 こ れ と は異な り 、 今回のイ ン タ 一バル時期に取 り込ま れた点検デー タ V M A x ( N + 1 ) と前回のィ ン タ ーバル時期に取 り 込ま れた点検デー タ V M A X ( N ) との差の絶対値、 つま り 、 前後のイ ン タ ーバ ル取 り込み点検デー タ の変動量 (デー タ の傾き変化に相 当) の絶対値によ っ て通風劣化を判断する変動量と成 し 、 こ の変動量と判定基準値 D とを比較 して上記実施例 と 同様に通風詰ま り 劣化を通風劣化判定部 32によ り 判断す る よ う に して も よい。 こ のよ う にする と、 セ ンサの初期 値が経年変化に よ り 変動する場合を考慮する必要がない „ ま た通風詰ま り は、 通常は加速度的に進むこ とが経験 上知 られている。 こ れは、 最初に熱交換器が酸化する こ と によ り 、 パーナの不完全燃焼が始ま り 、 それに伴っ て よ り多 く の煤が発生 し、 さ らに通風詰ま り が進むこ とか ら理解さ れる。 従っ て、 前回のデー タ との比較をする こ とで、 実際上の支障はない。 Further, in the above embodiment, when judging the deterioration of the ventilation clogging, the ventilation deterioration judging unit 2032 determines the ventilation deterioration as shown in Step 22 of the flowchart in FIG. , but it was determined the amount of variation in One by the absolute value of the difference between the draft decision of deterioration of the initial 16 · VMAX and inspection data V MAX (N), Unlike this, of this time i te one Bal time The absolute value of the difference between the inspection data V MA x (N + 1) captured at the previous interval and the inspection data VMAX (N) captured at the previous interval time, that is, The amount of change in the interval intake inspection data (corresponding to the change in the slope of the data) is the amount of change that determines ventilation deterioration based on the absolute value. The value D may be compared with that of the above-described embodiment, and the deterioration of the ventilation clogging may be determined by the ventilation deterioration determining unit 32. In this way, it is not necessary to consider the case where the initial value of the sensor fluctuates with the passage of time. Is known. This may be due to the fact that the heat exchanger is oxidized first, causing incomplete combustion of the wrench, resulting in more soot and more airflow clogging. Will be understood. Therefore, there is no practical problem by comparing with the previous data.
さ らに、 上記実施例の状況判断部では空気供給量検出 セ ンサ (風量セ ンサ 1 6 ) の検出デー タ のば らつき程度 に よ っ て無風安定状況 と有風状況とを区別判断 した。 し か し、 風量セ ンサのセ ンサ出力が一定にな る よ う に燃焼 フ ァ ン 3 の回転数を制御 し、 こ の と き フ ァ ン回転検出セ ンサに よ っ て検出 さ れる フ ァ ン回転数の変動幅が設定許 容変動範囲以内の と き は無風安定状況 と判断 し、 設定許 容変動範囲か ら外れた と き には有風状況と判断する よ う に して も よい。 ま た、 こ の場合、 フ ァ ン回転数の代わ り に フ ァ ン駆動電流や仕事量を検出 し、 こ れ らの検出デー 夕 のば らつき変動幅が設定許容変動範囲以内か否かに よ つて同様に無風安定状況と有風状況を区別判断する よ う に して も よい。  In addition, the situation determination unit of the above embodiment distinguishes between a stable windless situation and a windy situation based on the degree of variation in the detection data of the air supply amount detection sensor (airflow sensor 16). . However, the number of revolutions of the combustion fan 3 is controlled so that the sensor output of the air flow sensor becomes constant, and the fan rotation detection sensor detects the rotation speed of the combustion fan 3 at this time. When the fluctuation range of the fan rotation speed is within the set allowable fluctuation range, it is determined that there is no wind stability, and when it is out of the set allowable fluctuation range, it is determined that there is wind. Good. In this case, the fan drive current and work amount are detected instead of the fan rotation speed, and whether or not the fluctuation range of the detected data is within the set allowable fluctuation range. In the same way, it may be possible to distinguish between a stable windless situation and a windy situation.
前記のよ う に、 有風と無風の状況判断をフ ァ ン回転数 等の駆動条件のばらつき変動によ っ て判断する場合には 、 通風詰ま り 劣化の判定 も フ ァ ン回転数等の駆動条件の ば らつき変動量の大き さ によ って判定する こ とができ る 。 こ の場合は、 例えば、 風量セ ンサのセ ンサ出力が設定 値 とな る通風劣化が生 じていない と き のフ ァ ン回転数等 の駆動条件を、 初期値 と して設定 してお く 。 そ して、 所 定のイ ン タ ーノくル時期 ご と に、 風量セ ンサのセ ンサ出力 が同 じ設定値 とな る フ ァ ン回転数等の駆動条件を求める 。 そ して、 こ の各イ ン タ ーバル時期ご との フ ァ ン駆動条 件 と初期値 との変動量、 あ るいは今回のイ ン タ ーバル時 期に求め られたフ ァ ン駆動条件と前回のイ ン タ 一バル時 期に求め られたフ ァ ン駆動条件との変動量が、 判定基準 値,を越えた と き に、 通風詰ま り 劣化が生 じている もの と 判定する こ と にな る。 As described above, in the case where the determination of the presence or absence of wind is made based on variations in the driving conditions such as the fan rotation speed, the determination of ventilation clogging and deterioration is also determined by the fan rotation speed and the like. The determination can be made based on the magnitude of the variation in the driving conditions. In this case, for example, the drive conditions such as the fan rotation speed when the ventilation output that has the sensor output of the airflow sensor at the set value has not occurred are set as the initial values. Good. And the place For each fixed interval, determine the driving conditions such as the fan speed at which the sensor output of the airflow sensor has the same set value. Then, the amount of change between the fan driving condition and the initial value at each interval time, or the fan driving condition obtained at the current interval time and When the amount of change from the fan drive condition obtained in the previous interval time exceeds the judgment reference value, it is judged that the ventilation clogging and deterioration have occurred. become.
第三の実施例では、 通風の詰ま り劣化のない時点の燃 焼フ ァ ンが零回転の と き の無風時のセ ンサ初期値 と、 燃 焼フ ァ ンを設定基準条件の も とで回転 した と き の通風劣 化判断の初期値とを、 共に非燃焼の状態における デ一 夕 と して前 も って確定記憶 しておき、 所定のイ ン タ ー バ ル 時期 ご と に取 り込ま れる点検デー タ の前記初期値に対す る変動量に よ って通風の詰ま り 劣化を検出する よ う に し ている。 従って、 燃焼機器毎に特性にバラ ツキがあ る風 量セ ンサの初期値を、 工場出荷時ではな く 、 施工後にそ の環境に応 じた状態で確定する こ とができ る。 こ れに よ り 、 通風詰ま り の劣化によ る寿命をよ り 的確に判断する こ とが可能 とな る。  In the third embodiment, the initial value of the sensor in the absence of wind when the combustion fan is at zero rotation when there is no clogging deterioration of the ventilation fan, and the combustion fan is determined based on the set reference conditions. The initial value of the judgment of deterioration of the ventilation when rotating is fixed and stored in advance as a non-combustion state in advance, and is stored at predetermined intervals. The clogging and deterioration of the ventilation are detected based on the amount of change in the inspection data to be entered from the initial value. Therefore, it is possible to determine the initial value of the air flow sensor having characteristics that vary depending on the combustion equipment, not at the time of shipment from a factory, but in a state according to the environment after construction. As a result, it is possible to more accurately determine the life due to deterioration of the ventilation clogging.
さ ら に、 第三の実施例では、 イ ン タ ーバル時期 ご と に 燃焼フ ァ ン の回転が零の と き の風量セ ン サの検出デー タ を取 り込んで、 無風時のセ ン サ初期値に対する変動量を 求めてセ ンサ故障の有無を判定 しているので、 セ ンサが 故障 している に もかかわ らずセ ンサ出力の値を有効な値 と して採用する こ とがな く な るので、 通風の詰ま り 劣化 の判断と その処理に対する信頼性を高める こ とができ る Further, in the third embodiment, the detection data of the airflow sensor when the rotation of the combustion fan is zero at every interval time is acquired, and the sensor at the time of no wind is acquired. Since the presence or absence of a sensor failure is determined by calculating the amount of fluctuation with respect to the sensor initial value, the sensor output value is a valid value regardless of the sensor failure. As a result, it is possible to increase the reliability of the judgment of ventilation clogging and deterioration and the processing
[ 第四の実施例 ] [Fourth embodiment]
上記の第三の実施例においては、 風量セ ンサ 〗 6 の無 風状態での出力が、 初期値か ら公差以上変動する と風量 セ ンサ故障と判断 している。 しか しなが ら、 風量セ ンサ に よ っては、 そのゼロ点が変動 した場合、 初期値のゼロ 点に変動値分補正する こ とで、 風量セ ンサを引 き続き使 用する こ とができ る。 第四の実施例では、 無風状態での 風量セ ンサ 1 6 の出力値であるゼロ点値を検出 し、 補正 する点に特徴がある。  In the third embodiment described above, if the output of the airflow sensor # 6 in a no-wind state fluctuates from the initial value by a tolerance or more, it is determined that the airflow sensor has failed. However, depending on the airflow sensor, if the zero point fluctuates, the airflow sensor can be used continuously by correcting it to the initial zero point by the amount of the fluctuation. Can be done. The fourth embodiment is characterized in that the zero point value, which is the output value of the airflow sensor 16 in a no-wind state, is detected and corrected.
図 2 6 には、 そのゼロ点値の検出 フ ロ ーについて詳細 に示さ れている。 図 2 6 の例では、 0 点補正は、 冷起動 時に行なわれる。  Figure 26 details the zero point detection flow. In the example of Fig. 26, the zero point correction is performed at the time of cold start.
図 2 6 に示すよ う に、 給湯栓が開かれフ ロ ーセ ンサが 始動する と、 先ず初期値 と して、 不適性デー タ信号の出 力回数 m は 0 、 風量セ ンサ 1 6 の出力値の最大値 V o ma x お よ び最小値 V o m i n は 0 が与え られる。  As shown in Fig. 26, when the hot water tap is opened and the flow sensor is started, first, as the initial values, the output frequency m of the inappropriate data signal is 0, the air flow sensor 16 0 is given to the maximum value V omax and the minimum value V omin of the output value.
ステ ッ プ 300 1において、 風量セ ンサ 1 6の出力値 V 0 は メ モ リ に記録さ れる。  In step 3001, the output value V0 of the air flow sensor 16 is recorded in the memory.
ステ ツ プ 3002において、 メ モ リ に記録さ れた風量セ ン サ 1 6 の出力値 V 0 と、 同 じ く 記録さ れた 0 点出力上限 値 V 0 ma x 1 i m i tと を比較する と と も に、 0 点出力下限値 V o minlimitと も比較する。 In step 3002, the output value V 0 of the air flow sensor 16 recorded in the memory is compared with the 0-point output upper limit value V 0 max 1 imit recorded in the same manner. With, 0 point output lower limit Also compare with V o minlimit.
ステ ッ プ 3003〜ステ ッ プ 3004において、 出力値 V 0 が 0点出力上限値 V 0 max 1 i m i t以下で、 かつ、 0 点出力下 限値 V o minlimit以上であ る場合に、 その風量セ ンサ 1 6 の出力値 V oを記録デー タ V o , i と して順次メ モ リ 3 0 に送出する。  In step 3003 to step 3004, if the output value V 0 is equal to or less than the 0-point output upper limit value V 0 max1 imit and equal to or greater than the 0-point output lower limit value V o minlimit, The output value Vo of the sensor 16 is sequentially sent to the memory 30 as the recording data Vo, i.
ステ ツ プ 3002において、 出力値 V 0 が 0点出力上限値 In step 3002, the output value V 0 becomes the 0-point output upper limit
V 0 ma X 1 i m i t以上であ っ た り 、 ま た、 0 点出力下限値 V o minlimit以下であ る場合に、 そのセ ン サ出力値 V o は 不適性デー タ と して メ モ リ か ら消去さ れる。 そ して、 ス テ ツ プ 3013において、 メ モ リ に不適正デー タ信号が出力 さ れた回数を記録する。 If V 0 ma X 1 imit or more, or 0 point output lower limit value V o minlimit or less, the sensor output value V o is stored in memory as inappropriate data. It is erased from. Then, in step 3013, the number of times that the incorrect data signal has been output to memory is recorded.
ステ ツ プ 3005〜ステ ツ プ 3006において、 メ モ リ に記憶 さ れて採用 さ れたセ ンサ出力値 V o , i を最大値 V o ma と し、 該最大値 V o max と次に採用 さ れるデー タ V o , i とを比較 して、 大き い数値の方を最大値 V o max と して メ モ リ に記憶する。 こ のよ う に、 ステ ッ プ 3002で順 次採用 さ れるセ ン サ出力 V o , i の中か ら最大値 V o ma X を選出する。  In steps 3005 to 3006, the sensor output value Vo, i stored and adopted in the memory is set to the maximum value Voma, and the maximum value Vomax is used next. The data to be processed is compared with V o, i, and the larger value is stored in memory as the maximum value V o max. In this way, the maximum value Vo max is selected from the sensor outputs Vo and i which are sequentially adopted in step 3002.
ステ ッ プ 3007〜ステ ッ プ 3008においては、 上記と同様 にセ ンサ出力値 V o , i の中か ら最小の値 V o min を選 出する。  In steps 3007 to 3008, the minimum value Vo min is selected from the sensor output values Vo and i in the same manner as described above.
ステ ッ プ 3009において、 最大値 V o max と最小値 V o min の差を逐次算出 し、 該両者の差 と許容変動幅 e とを 比較 し、 その差が許容幅 e以上あ る と、 外界に風が発生 している と判断 し、 不適正デー タ と して再度セ ンサ出力 の検知が行われる。 一方、 その差が許容幅の中にあれば 、 無風状態であ る と判断 し、 検知 したデー タ は適正なデ 一 夕 と して メ モ リ に記録さ れる。 In step 3009, the difference between the maximum value Vo max and the minimum value Vo min is sequentially calculated, and the difference between the two is compared with the allowable fluctuation range e. Wind is generated The sensor output is detected again as incorrect data. On the other hand, if the difference is within the allowable range, it is determined that there is no wind, and the detected data is recorded in memory as an appropriate data.
ステ ッ プ 30 1 0において、 無風状態での適正デ一 夕 と し て メ モ リ に記憶されたセ ンサ出力値 V o , i のデー タ数 が、 所定数 t に達 したか ど う かの判断がな され、 達 した 場合は、 所定数 t の記録デー タ V o , i を補正用デ一 夕 と して採用する。  In step 3010, is the sensor output value V o, i stored in the memory as an appropriate delay in a no-wind condition reached to a predetermined number t? When the judgment is made, and a certain amount of data is reached, a predetermined number t of recording data Vo, i is adopted as the data for correction.
そ して、 ステ ッ プ 30 1 1において、 補正用デー タ の平均 値を算出 し、 該平均値を風量セ ンサ 1 6 の 0 点補正値 V 0 と して メ モ リ に記憶 し、 その後の寿命判断や風量制御 に利用 される こ と になる。  Then, in step 3011, the average value of the correction data is calculated, and the average value is stored in the memory as the zero-point correction value V0 of the airflow sensor 16 and thereafter, It will be used for determining the service life and controlling the air flow.
ステ ツ ブ 3002と 3009にて不適正デー タ と判断さ れた場 合は、 ステ ッ プ 30 1 4において、 不適正デー タ信号と判断 さ れた回数 m と、 所定回数 M と を比較 し、 m < Mであ る 場合には、 リ セ ッ ト し (ステ ッ プ 30 1 6 ) 再度ステ ッ プ 30 00以降の風量セ ンサ出力検知の動作を行う 。 ま た m = M にな つ た場合には、 適正なゼロ点を検出する こ とができ ない と して、 エラ ー信号を出力 し、 0 点補正の実行を終 了する。 こ の場合は、 一定時間後に改めて 0 点補正が行 なわれる。 ま た、 エラ ー信号が度重な る場合には、 風量 セ ンサ 1 6 の故障や寿命であ る こ と も考え られる。  If it is determined in Steps 3002 and 3009 that the data is incorrect, in Step 3014, the number m of times determined to be an incorrect data signal is compared with the predetermined number M. If m <M, reset (step 3016) and perform the operation of detecting the air flow sensor output after step 300 again. If m = M, an appropriate zero point cannot be detected, an error signal is output, and the execution of the zero point correction ends. In this case, the zero point correction is performed again after a certain period of time. In addition, if the error signal is repeated, it is possible that the airflow sensor 16 is out of order or the service life has expired.
ステ ッ プ 30 1 2において、 上記の如 く 求め られたゼロ点 値が新 しいゼロ点 と して補正さ れた風量セ ンサを利用 し て、 ポス ト フ ァ ン点火シー ケ ン ス に移 り 、 通常の燃焼動 作に入る。 なお、 本発明は上記第一か ら第四の実施例に限定さ れ る こ と はな く 、 様々 な実施の態様を採 り 得る。 例えば、 上記実施例では、 バ―ナ 2 を 3 段の燃焼切 り 換え方式で 構成 したが、 3 段以外の多段燃焼切 り換え方式と して も よ く 、 ある いは、 燃焼切 り 換え式でないバーナで も よ い ま た、 上記実施例では風量セ ン サであ る差圧セ ンサ 1 6 によ つ てバーナ 2 をはさむバーナ 2 の上下両側の区間の 差圧を検出する よ う に したが、 こ の差圧は、 バーナヘの 空気供袷部か ら排気通路に至る空気流通経路内の上流側 と下流側の任意の経路区間の差圧を検出すればよ く 、 例 えば、 燃焼フ ァ ン の吸気口 と燃焼室の区間の差圧、 燃焼 フ ァ ン の送風出側部分 と燃焼室の区間の差圧、 あ る いは 、 こ れ ら燃焼フ ァ ン の吸気口 や送風出 口部分 と給湯熱交 換器の上側の排気 ト ツ プとの区間の差圧、 燃焼室 と排気 ト ッ プ側の区間の差圧等、 差圧検出の経路区間はそれ以 外に も無数の区間を設定する こ とができ る も のであ る。 ただ、 本実施例のよ う にパーナ 2 を挟んでパーナの下側 と上側の区間で差圧を検出する構成と した場合には、 給 湯熱交換器等に比べ、 パーナ 2 では ごみ等によ る詰ま り はほ とん ど生 じないので、 バーナ 2 を通る空気抵抗の経 時変化は殆 どな く 、 燃焼フ ァ ン 3 か ら送出 さ れる風量を 正確に差圧で も って検出でき る こ と とな り 、 こ の点か らIn step 3012, the zero point value obtained as described above is used as a new zero point using the airflow sensor corrected. Then, it moves to the post fan ignition sequence and enters the normal combustion operation. It should be noted that the present invention is not limited to the above-described first to fourth embodiments, but can adopt various embodiments. For example, in the above embodiment, the burner 2 is configured with the three-stage combustion switching system. However, the burner 2 may be configured with a multi-stage combustion switching system other than the three-stage combustion switching system or with the combustion switching system. A burner other than the burner may be used.In the above embodiment, the differential pressure in the upper and lower sections of the burner 2 sandwiching the burner 2 is detected by the differential pressure sensor 16 which is the air flow sensor. However, this differential pressure can be detected by detecting the differential pressure between an arbitrary upstream and downstream section of the air flow path from the air supply section to the burner to the exhaust passage. The differential pressure between the combustion fan's inlet and the combustion chamber section, the differential pressure between the combustion fan's air outlet side and the combustion chamber's section, or the pressure difference between the combustion fan's intake port and Differential pressure in the section between the blower outlet and the exhaust top above the hot water heat exchanger, the combustion chamber and the exhaust top The path section for differential pressure detection, such as the differential pressure in the section above, can be set to an infinite number of other sections. However, when the differential pressure is detected between the lower side and the upper side of the spanner with the spanner 2 as in the present embodiment, compared to the hot water supply heat exchanger, etc. Since there is almost no clogging, there is almost no change in the air resistance through the burner 2 with time, and the air volume sent out from the combustion fan 3 is reduced. It is possible to detect accurately with differential pressure, and from this point
、 本実施例のよ う にパーナ 2 を挟む経路区間で差圧を検 出する方式とする こ とが望ま しい。 However, it is desirable to adopt a method of detecting a differential pressure in a path section sandwiching the parner 2 as in the present embodiment.
さ らに、 上記実施例では、 風量検出セ ンサ と して差圧 セ ンサ 1 6を用いたが、 こ の差圧セ ンサ 1 6の代わ り に、 例 えば、 熱棣 ヒ ー夕式やカ ルマ ン渦方式の風速セ ンサを用 いて も よ く 、 あるいは、 風量を直接的に検出する ブロぺ ラ 回転式の風量計を用いて も よ く 、 風量を直接的又は間 接的に検出でき る様々 なセ ンサを用 いる こ とができ る。  Further, in the above embodiment, the differential pressure sensor 16 was used as the air volume detection sensor. However, instead of the differential pressure sensor 16, for example, a heat dicing heater or The air volume can be detected directly or indirectly by using a Kalman vortex type wind speed sensor or by using a rotary air flow meter that detects the air volume directly. A variety of available sensors can be used.
さ らに、 上記実施例では、 燃焼フ ァ ンの設定制御条件 をフ ァ ン回転数で与えたが、 こ の燃焼フ ァ ンの設定制御 条件は燃焼フ ァ ンの駆動電流や、 仕事量等の他の制御条 件によ っ て与えて も よい。 こ の と き には、 こ れ らのフ ァ ン駆動電流や仕事量の設定条件の下で燃焼フ ァ ンを回転 し、 風量検出値 と風量判定値の比較に よ っ て器具の異常 ま たは寿命判定を行う こ と とな る。  Further, in the above embodiment, the setting control condition of the combustion fan is given by the fan rotation speed. However, the setting control condition of the combustion fan depends on the driving current of the combustion fan and the amount of work. May be given under other control conditions. At this time, the combustion fan is rotated under these fan drive current and work load setting conditions, and the air flow detection value and the air flow judgment value are compared to determine whether the equipment is abnormal. Otherwise, the life is judged.
ま た、 無風か否かの判定は、 風量セ ンサの出力がば ら つき を有 しているか どう かを監視する こ とで行う こ とを 説明 した。 しか し、 燃焼フ ァ ンが回転 している場合は、 風量セ ンサの出力が一定にな る よ う フ ァ ンの回転数が制 御さ れる こ とがある。 その場合は、 フ ァ ンの回転数のば らっき を監視する こ とで、 無風か ど う かを検知する こ と ができ る。 も ち ろん、 燃焼フ ァ ンの電力を監視する場合 も同様であ る。  Also, it was explained that the determination of whether there is no wind was made by monitoring whether or not the output of the airflow sensor had variations. However, when the combustion fan is rotating, the rotation speed of the fan may be controlled so that the output of the air flow sensor becomes constant. In that case, by monitoring the variation of the fan speed, it is possible to detect whether there is no wind or not. Of course, the same applies when monitoring the power of the combustion fan.
さ ら に、 寿命ま たは異常の判断は、 燃焼フ ァ ンが必要 以上の回転数で回転 しているか、 或いは風量セ ンサの出 力が必要以下 しか得 られてないかの何れかを監視する こ とで行う こ とができ る。 In addition, a combustion fan is required to determine the life or abnormality. This can be done by monitoring whether the motor is rotating at the above speed or if the output of the air flow sensor is less than necessary.
さ らに、 上記実施例では燃焼機器 と して単能給湯器 ( 給湯機能のみの給湯器) を例に して説明 したが、 本発明 は、 給湯 と追い焚き、 あ る いは、 給湯 と温水暖房等の両 機能を備えた複合給湯器や、 その他、 風呂釜、 暖房機、 冷房機、 冷暖房機、 空調機等の様々 なバーナを有する燃 焼機器に適用 さ れる も のである。  Further, in the above embodiment, a single-purpose water heater (a water heater having only a hot-water supply function) has been described as an example of a combustion device. However, the present invention is not limited to a hot-water supply and a reheating or a hot-water supply. It is applied to combined water heaters that have both functions such as hot water heating, and other combustion equipment that has various burners, such as bath kettles, heaters, air conditioners, air conditioners, and air conditioners.
さ らに、 上記実施例では、 燃焼フ ァ ン 3 を押 し込み方 式と したが、 こ れを吸い出 し方式と して も よレ、 こ と は も ち ろんの こ とである。 産業上の利用性 以上説明 した通 り、 本発明によ る燃焼機器は、 一酸化 炭素、 炭化水素、 窒素酸化物が排気される量を低 く 抑え た燃焼制御を行う こ とができ、 機器内の煤詰ま り や排気 口 の予期せぬ詰ま り に よ り不完全燃焼が起き る こ とを未 然に防止する こ とができ る。  Furthermore, in the above embodiment, the combustion fan 3 was pushed in, but this may be sucked out, which is a matter of course. . INDUSTRIAL APPLICABILITY As described above, the combustion equipment according to the present invention can perform combustion control while suppressing the amount of exhausted carbon monoxide, hydrocarbons, and nitrogen oxides. It is possible to prevent incomplete combustion from occurring due to soot clogging in the inside or unexpected clogging of the exhaust port.
更に、 本発明では、 不完全燃焼の未然防止のために、 風量 と燃焼フ ァ ン回転の関係が正常の範囲にあるか否か の判断を行っ ている。 そ して、 その時、 外界が無風状態 の時の風量セ ンサの出力 ま たは燃焼フ ァ ンの回転数を監 視 している。 従っ て、 外界に よ る影響がない状態で検査 する こ とができ る ので、 不必要な故障判断を下す こ とが ない。 Further, in the present invention, in order to prevent incomplete combustion, it is determined whether or not the relationship between the air volume and the rotation of the combustion fan is within a normal range. At that time, it monitors the output of the airflow sensor or the number of revolutions of the combustion fan when there is no wind in the outside world. Therefore, inspection without external influence It does not make unnecessary failure decisions.
更に、 本発明では、 風量 と燃焼フ ァ ンの回転数 との閟 係を監視 し、 正常状態か ら第一の範囲 ま でずれている場 合は、 先ず燃焼バーナーへの供給ガス量を減 じてイ ンプ ッ ト ダウ ンの運転を行う よ う に している。 そ して、 更に 風量 と燃焼フ ァ ンの回転数 との関係が、 正常状態か ら第 二の範囲 までずれている場合は、 燃焼機器に寿命がきて いる と判断 し燃焼運転を停止する よ う に している。 その 為、 不必要な燃焼機器への修理や廃棄処分を無 く す こ と ができ る。  Further, according to the present invention, the relationship between the air volume and the number of revolutions of the combustion fan is monitored, and if it is out of the normal state to the first range, the amount of gas supplied to the combustion burner is first reduced. The input-down operation is performed first. If the relationship between the air volume and the number of revolutions of the combustion fan further deviates from the normal state to the second range, it is determined that the combustion equipment has reached the end of its life and the combustion operation is stopped. I'm doing it. As a result, unnecessary repair and disposal of combustion equipment can be eliminated.
更に、 本発明では、 風量セ ンサの初期値を最初に検知 してお く こ とで、 製品と設置環境毎にばらつ く 風量セ ン ザの値を適正に利用する こ とができ る。  Further, according to the present invention, by detecting the initial value of the air flow sensor first, the value of the air flow sensor can be appropriately used for each product and installation environment.
さ らに、 本発明では、 無風状態に検知 した風量セ ンサ の出力値を利用 して、 ゼロ点補正を行う こ とで、 セ ンサ の経年変化に よ る弊害を無 く す こ とができ る。  Further, in the present invention, by performing zero point correction using the output value of the airflow sensor detected in a no-wind state, it is possible to eliminate the adverse effects due to aging of the sensor. You.

Claims

請 求 の 範 囲 The scope of the claims
1 . パーナ と、 該バーナヘの給気と排気を行う燃焼フ ア ン と、 該バーナヘの給気通路か ら排気通路にいたる空 気流通経路内を流れる風量を検出する風量セ ンサ とを備 えた燃焼機器において、 1. A burner that supplies and exhausts air to and from the burner, and an air flow sensor that detects the amount of air flowing through an air flow path from the air supply passage to the exhaust passage to the burner. In combustion equipment,
該燃焼フ ァ ンを零回転ま たは一定回転の も とで検出 さ れる該風量セ ンサの検出風量の変動が、 所定の許容範囲 内にあ る時に、 無風状態を検知する制御部を有する燃焼 機 si 0 A control unit for detecting a windless state when a variation in the detected airflow of the airflow sensor detected based on zero rotation or constant rotation of the combustion fan is within a predetermined allowable range; Combustion machine si 0
2 . 請求項 1 において、 前記制御部は、  2. The control unit according to claim 1, wherein
該燃焼フ ァ ンを^回転ま たは一定回転の も とで検出 さ れる該風量セ ンサの検出風量が、 所定時間の間、 所定の 範囲内に維持さ れる時に、 前記の検出風量の変動が許容 範囲内にある との判断をする こ とを特徴 とする燃焼機器  When the detected air flow of the air flow sensor, which is detected based on the rotation of the combustion fan or at a constant rotation, is maintained within a predetermined range for a predetermined time, a change in the detected air flow is obtained. Combustion equipment characterized in that it is determined that the temperature is within the allowable range
3 . パーナ と、 該バーナヘの給気 と排気を行う 燃焼フ ア ン と、 該燃焼フ ァ ンの回転数を検出する回転数検出装 置 と、 該バー ナヘの給気通路か ら排気通路にいたる空気 流通経路内を流れる風量を検出する風量セ ンサ とを備え た燃焼機器において、 3. A burner that supplies and exhausts air to and from the burner, a rotation speed detection device that detects the number of rotations of the combustion fan, and an exhaust passage from the air supply passage to the burner Combustion equipment equipped with an air flow sensor that detects the amount of air flowing through the entire air distribution path,
該風量セ ンサの検出風量が一定の値にな る よ ぅ 該燃焼 フ ァ ンを回転制御する時に検出 さ れる前記回転数検出装 置の検出回転数の変動が、 所定の許容範囲内にある時に 、 無風状態であ る と判断する制御部を有する燃焼機器。 The detected air volume of the air volume sensor is set to a constant value. The rotation speed detection device detected when controlling the rotation of the combustion fan A combustion device having a control unit that determines that there is no wind when the fluctuation of the detected rotation speed of the device is within a predetermined allowable range.
4 . 請求項 3 において、 前記制御部は、 4. In Claim 3, the control unit comprises:
該風量セ ンサの検出風量が一定の値にな る よ う 該燃焼 フ ァ ンを回転制御する時に検出 さ れる前記回転数検出装 置の検出回転数が、 所定時間の間、 所定の範囲内に維持 さ れる時に、 前記の検出回転数の変動が許容範囲内にあ る との判断をする こ とを特徴 とする燃焼機器。  The rotation speed detected by the rotation speed detection device, which is detected when controlling the rotation of the combustion fan so that the air volume detected by the air volume sensor becomes a constant value, is within a predetermined range for a predetermined time. A combustion apparatus that determines that the fluctuation of the detected rotation speed is within an allowable range when the temperature is maintained at a predetermined value.
5 . パー ナ と、 該バーナヘの給気 と排気を行う 燃焼フ ア ン と、 該バーナヘの給気通路か ら排気通路にいたる空 気流通経路内を流れる風量を検出する風量セ ンサ とを備 えた燃焼機器において、 5. A burner that supplies and exhausts air to and from the burner and an air flow sensor that detects the amount of air flowing through the air flow path from the air supply passage to the exhaust passage to the burner In the combustion equipment
該燃焼フ ァ ンを所定の回転数で回転させた時の異常ま たは寿命判定の基準 とな る風量判定値を記憶 しておき、 該燃焼フ ァ ンを零回転ま たは一定回転の も とで検出 さ れる該風量セ ンサの検出風量の変動が、 所定の許容範囲 内にある時に、 無風状態を検知 し、  The airflow judgment value serving as a reference for judging abnormality or life when the combustion fan is rotated at a predetermined rotation speed is stored, and the combustion fan is rotated at zero rotation or at a constant rotation. Detecting a no-wind condition when the variation of the detected airflow of the airflow sensor detected within the original range is within a predetermined allowable range;
該無風状態を検知 した時に、 該燃焼フ ァ ンを所定回転 で回転さ せた時の前記風量セ ンサの検出風量が前記風量 判定値よ り 低い場合に、 異常ま たは寿命検知を行う 制御 部を有する燃焼機器。  When the no-air condition is detected, if the detected airflow of the airflow sensor when the combustion fan is rotated at a predetermined speed is lower than the airflow determination value, control for detecting abnormality or life is performed. Combustion equipment having a part.
6 . パー ナ と、 該バーナヘの給気 と排気を行う 燃焼フ ア ン と、 該燃焼フ ァ ンの回転数を検出する回転数検出装 置と、 該バーナヘの給気通路か ら排気通路にいた る空気 流通経路内を流れる風量を検出する風量セ ンサ と を備え た燃焼機器において、 6. A burner that supplies and exhausts air to and from the burner And a rotation speed detection device for detecting a rotation speed of the combustion fan, and a flow rate sensor for detecting a flow rate flowing through an air flow path from an air supply passage to the burner to an exhaust passage. Equipped combustion equipment,
該風量セ ンサの検出風量が一定の基準値になる よ う 該 燃焼フ ァ ンを回転制御する時の異常ま たは寿命判定の基 準とな る回転数判定値を記憶 しておき、  A rotation speed judgment value, which is a reference for judging abnormality or life when controlling the rotation of the combustion fan so that the detected air flow of the air flow sensor becomes a constant reference value, is stored.
該風量セ ンサの検出風量が任意の一定値にな る よ う 該 燃焼フ ァ ンを回転制御する時に検出 さ れる前記回転数検 出装置の検出回転数の変動が、 所定の許容範囲内にあ る 時に、 無風状態を検知 し、  Fluctuations in the rotation speed detected by the rotation speed detection device, which are detected when controlling the rotation of the combustion fan so that the air volume detected by the air volume sensor becomes an arbitrary constant value, are within a predetermined allowable range. At some point, it detects a windless condition,
該無風状態を検知 した時に、 該風量セ ンサの検出風量 が前記一定の基準値になる よ う 該燃焼フ ァ ンを回転制御 した時の前記回転数検出装置の検出回転数が前記回転数 判定値よ り 高い場合に、 異常ま たは寿命検知を行う 制御 部を有する燃焼機器。  When the no-air condition is detected, the detected rotation speed of the rotation speed detection device when the rotation of the combustion fan is controlled so that the detected air volume of the air volume sensor becomes the constant reference value is determined as the rotation speed determination. Combustion equipment that has a control unit that detects an abnormality or life when the value is higher than the value.
7 . パーナ と、 該バーナヘの給気と排気を行う燃焼フ ア ン と、 該バーナヘの給気通路か ら排気通路にいた る空 気流通経路内を流れる風量を検出する風量セ ンサ とを備 えた燃焼機器において、 7. A burner that supplies and exhausts air to and from the burner and an air flow sensor that detects the amount of air flowing through an air flow path from the air supply passage to the exhaust passage to the burner. In the combustion equipment
該燃焼フ ァ ンを所定の回転数で回転さ せた時の異常ま たは寿命判定の基準 とな る風量判定値を記億 しておき、 該燃焼フ ァ ンを前記所定の回転数で回転させた時に検 出 される該風量セ ンサの検出風量の変動が、 所定の許容 範囲内にあ る時であ っ て、 当該風量セ ンサの検出風量が 前記風量判定値よ り 低い場合に、 異常ま たは寿命の検知 を行 う 制御部を有する燃焼機器。 The airflow determination value serving as a criterion for judging abnormality or life when the combustion fan is rotated at a predetermined rotation speed is recorded, and the combustion fan is rotated at the predetermined rotation speed. Fluctuation of the detected air volume of the air volume sensor detected when the motor is rotated A combustion device having a control unit for detecting an abnormality or life when the air flow sensor is within the range and the air flow detected by the air flow sensor is lower than the air flow determination value.
8 . パーナ と、 該バーナヘの耠気 と排気を行う 燃焼フ ア ン と、 該燃焼フ ァ ンの回転数を検出する回転数検出装 置 と、 該バーナヘの給気通路か ら排気通路にいたる空気 流通経路内を流れる風量を検出する風量セ ンサ と を備え た燃焼機器において、 8. A burner that burns and exhausts air to and from the burner, a rotation speed detection device that detects the rotation speed of the combustion fan, and an exhaust passage from an air supply passage to the burner. A combustion device equipped with an airflow sensor that detects the amount of airflow flowing in the airflow path,
該風量セ ンサの検出風量が一定の基準値にな る よ う 該 燃焼フ ァ ンを回転制御する時の異常ま たは寿命判定の基 準 とな る回転数判定値を記憶 しておき、  A rotation speed judgment value which is a reference for judging abnormality or life when the rotation of the combustion fan is controlled so that the air flow detected by the air flow sensor becomes a constant reference value is stored.
該風量セ ンサの検出風量が該一定の基準値にな る よ う 該燃焼フ ァ ンを回転制御する時に検出 さ れる前記回転数 検出装置の検出回転数の変動が、 所定の許容範囲内にあ る時であ っ て、 当該回転数検出装置の検出回転数が前記 回転数判定値よ り 高い場合に、 異常ま たは寿命検知を行 う 制御部を有する燃焼機器。 9 . 請求項 5 ま たは 7 において、  Fluctuations in the rotation speed detected by the rotation speed detection device, which are detected when the rotation speed of the combustion fan is controlled so that the air volume detected by the air volume sensor becomes the constant reference value, are within a predetermined allowable range. A combustion apparatus having a control unit that detects an abnormality or life when the rotation speed detection device detects a rotation speed higher than the rotation speed determination value even at a certain time. 9. In claim 5 or 7,
前記燃焼機器は、 更に、 要求さ れる熱量を供給する た めに必要な燃料を前記パーナに供給する燃料制御部を有 し、  The combustion device further includes a fuel control unit that supplies fuel required for supplying a required amount of heat to the parner,
前記異常ま たは寿命の検知を行っ た時に、 該燃料制御 部は前記パーナに供給する燃料を強制的に少な く する こ とを特徴 とする燃焼機器。 When the abnormality or the life is detected, the fuel control unit forcibly reduces the amount of fuel supplied to the parner. And a combustion device.
1 0 . 請求項 9 において、 10. In claim 9,
前記風量判定値が、 第一の風量判定値と第二の風量判 定値とを有 し、  The air volume determination value has a first air volume determination value and a second air volume determination value,
前記異常ま たは寿命の検知を行っ た時に、 前記の風量 セ ンサの検出風量が前記第一の風量判定値よ り低い場合 は、 該燃料制御部は前記パーナに供給する燃料を強制的 に少な く し、  If the detected airflow of the airflow sensor is lower than the first airflow determination value when the abnormality or the life is detected, the fuel control unit forcibly supplies the fuel supplied to the parner. Reduce
前記の風量セ ンサの検出風量が前記第二の風量判定値 よ り 低い場合は、 該燃料制御部は前記バーナヘの燃料の 供袷を行わない こ とを特徴とする燃焼機器。  The combustion device, wherein when the detected air volume of the air volume sensor is lower than the second air volume determination value, the fuel control unit does not supply fuel to the burner.
1 1 . 請求項 6 ま たは 8 において、 1 1. In Claim 6 or 8,
前記燃焼機器は、 更に、 要求される熱量を供給するた めに必要な燃料を前記パーナに供給する燃料制御部を有 し、  The combustion device further includes a fuel control unit that supplies fuel required for supplying a required amount of heat to the parner,
前記異常ま たは寿命の検知を行っ た時に、 該燃料制御 部は前記パーナに供給する燃料を強制的に少な く する こ とを特徴 とする燃焼機器。  A combustion apparatus characterized in that, when the abnormality or the life is detected, the fuel control unit forcibly reduces the amount of fuel supplied to the parner.
1 2 . 請求項 1 1 において、 1 2. In claim 11,
前記回転数判定値が、 第一の回転数判定値 と第二の回 転数判定値 とを有 し、  The rotation speed determination value has a first rotation speed determination value and a second rotation speed determination value,
前記異常ま たは寿命の検知を行っ た時、 前記回転数検 出装置の検出回転数が前記第一の回転数判定値よ り も高 い場合は、 該燃料制御部は前記パーナに供給する燃料を 強制的に少な く し、 When the abnormality or life is detected, the rotation speed detection is performed. When the detected rotation speed of the delivery device is higher than the first rotation speed determination value, the fuel control unit forcibly reduces the amount of fuel supplied to the parner,
前記回転数検出装置の検出回転数が前記第二の回転数 判定値よ り も高い場合は、 該燃料制御部は前記バーナヘ の燃料の供給を行わない こ とを特徴 とする燃焼機器。  The combustion apparatus, wherein when the rotation speed detected by the rotation speed detection device is higher than the second rotation speed determination value, the fuel control unit does not supply fuel to the burner.
1 3 . パーナ と、 該バーナヘの給気と排気を行う燃焼 フ ァ ン と、 該バ一ナヘの給気通路か ら排気通路にいたる 空気流通経路内を流れる風量を検出する風量セ ンサ とを 備えた燃焼機器において、 13. A burner that supplies and exhausts air to and from the burner, and an air flow sensor that detects the amount of air flowing through an air flow path from the air supply passage to the exhaust passage of the burner. In the equipped combustion equipment,
該燃焼フ ァ ンを零回転ま たは一定回転の も とで検出 さ れる該風量セ ンサの検出風量の変動が、 所定の許容範囲 内にあ る時に、 無風状態を検知 し、 その時に該燃焼フ ァ ンを所定の回転数で回転させた時の当該風量セ ンサの検 出風量を初期値と して記憶 しておき、  When the fluctuation of the airflow detected by the airflow sensor, which is detected based on zero rotation or constant rotation of the combustion fan, is within a predetermined allowable range, a no-air condition is detected. The detected airflow of the airflow sensor when the combustion fan is rotated at a predetermined speed is stored as an initial value,
該初期値を記億 して所定時間経過後に、 前記の無風状 態を検知 した時であ って、 該燃焼フ ァ ンを前記所定回転 で回転させた時の前記風量セ ンサの検出風量が、 前記初 期値よ り 判定基準値以上変動 していた場合に、 通風の劣 化の検知を行う 制御部を有する燃焼機器。  After the predetermined time has elapsed after the initial value has been stored, when the above-mentioned no-air condition is detected, the detected air volume of the air volume sensor when the combustion fan is rotated at the predetermined rotation speed is detected. A combustion apparatus having a control unit for detecting deterioration of ventilation when the initial value has changed by a criterion value or more from the initial value.
1 4 . 請求項 7 において、 該制御部は、 所定時間経過 の前後において得 られる前記風量セ ンサの検出風量の差 が前記判定基準値以上あ る場合に、 通風の劣化の検知を 行う こ とを特徴 とする燃焼機器。 14. The control unit according to claim 7, wherein the controller detects the deterioration of the ventilation when the difference between the detected airflows of the airflow sensor obtained before and after the lapse of a predetermined time is equal to or greater than the determination reference value. Combustion equipment characterized by performing.
1 5 . パーナ と、 該バーナヘの給気 と排気を行う 燃焼 フ ァ ン と、 該燃焼フ ァ ンの回転数を検出する回転数検出 装置 と、 該バーナヘの給気通路か ら排気通路にいたる空 気流通経路内を流れる風量を検出する風量セ ンサ とを備 えた燃焼機器において、 15. Pana, a combustion fan that supplies and exhausts air to and from the burner, a rotation speed detection device that detects the rotation speed of the combustion fan, and an exhaust passage from the air supply passage to the burner Combustion equipment equipped with an airflow sensor that detects the amount of airflow flowing in the airflow path,
該風量セ ンサの検出風量が一定の基準値にな る よ う 該 燃焼フ ァ ンを回転制御する時に検知 さ れる該回転数検出 装置の検出回転数の変動が、 所定の許容範囲内にあ る時 に、 無風状態を検知 し、 その時の該回転数検出装置の検 出回転数を初期値 と して記憶 してお き、  Fluctuations in the rotation speed detected by the rotation speed detection device detected when the combustion fan is controlled to rotate so that the air flow detected by the air flow sensor reaches a certain reference value are within a predetermined allowable range. When no wind is detected, the detected rotation speed of the rotation speed detection device at that time is stored as an initial value,
該初期値を記憶 して所定時間経過後に、 前記の無風状 態を検知 した時であ って、 その時の当該回転数検出装置 の検出回耘数が、 前記初期値よ り 判定基準値以上変動 し ていた場合に、 通風の劣化の検知を行う 制御部を有する 燃焼装置。  When the windless state is detected after a predetermined period of time after storing the initial value, the number of tillers detected by the rotation speed detecting device at that time fluctuates by a value equal to or more than the determination reference value from the initial value. A combustion device that has a control unit that detects deterioration of ventilation when it has been operating.
1 6 . 請求項 1 5 において、 該制御部は、 所定時間経 過の前後において得 られる前記回転数検出装置の検出回 転数の差が前記判定基準値以上ある場合に、 通風の劣化 の検知を行う こ とを特徴 とする燃焼機器。 ( 57 8 の変形 例) 16. The control unit according to claim 15, wherein the control unit detects the deterioration of the ventilation when a difference between the detected rotation speeds of the rotation speed detection device obtained before and after a predetermined time passes is equal to or greater than the determination reference value. Combustion equipment characterized by performing the following. (Example of 578)
1 7 . ノく 一ナ と、 該バーナヘの給気 と排気を行う 燃焼フ ァ ン と、 該バーナヘの給気通路か ら排気通路にいた る空気流通 経路内を流れる風量を検出する風量セ ンサ と、 1 7. A combustion fan for supplying and exhausting air to and from the burner; and an airflow sensor for detecting an airflow flowing in an air circulation path from an air supply passage to the exhaust passage to the burner.
前記空気流通経路上に位置 し、 該パーナか ら熱量を供 給 さ れ熱媒体を供給する入管 と送 り 出す出管 と に接続さ れた熱交換器 と、  A heat exchanger located on the air flow path and connected to an inlet pipe for supplying a heat medium from the parner and supplying a heat medium and an outlet pipe for delivering the heat medium;
前記出管か ら送 り 出 さ れる熱媒体が設定さ れた温度に 維持さ れる に必要な燃料を前記バー ナに供給する燃料制 御部 と、  A fuel control unit for supplying the burner with fuel necessary for maintaining the heat medium sent from the outlet pipe at a set temperature;
該燃料を前記パーナで燃焼する に適正な風量を維持す る よ う 前記燃焼フ ァ ンの回転を制御する フ ァ ン制御部 と を備えた燃焼機器において、  A fan control unit that controls the rotation of the combustion fan so as to maintain an appropriate air volume for burning the fuel with the wrench.
該燃焼フ ァ ンを所定の回転数で回転させた時の異常ま たは寿命判定の基準となる風量判定値を記憶 しておき、 該燃焼フ ァ ンを零回転ま たは一定回転の も とで検出 さ れる該風量セ ンサの検出風量の変動が、 所定の許容範囲 内にあ る時に、 無風状態を検知 し、  The airflow judgment value serving as a reference for judging abnormality or life when the combustion fan is rotated at a predetermined rotation speed is stored, and the combustion fan is controlled at zero rotation or constant rotation. When the variation of the detected air volume of the air volume sensor detected in the above is within a predetermined allowable range, a no-air condition is detected,
該無風状態を検知 した時に、 該燃焼フ ァ ンを所定回転 で回転させた時の前記風量セ ンサの検出風量が前記風量 判定値よ り 低い場合に、 異常ま たは寿命検知を行う 制御 部を有する燃焼機器。  When detecting the no-air condition, if the detected airflow of the airflow sensor when the combustion fan is rotated at a predetermined rotation is lower than the airflow determination value, a controller for performing abnormality or life detection. Combustion equipment having.
1 8 <ーナ と、 1 8 <
該バ一ナヘの給気 と排気を行う 燃焼フ ァ ン と、 該燃焼フ ァ ンの回転数を検出する回転数検出装置 と、 該バーナヘの給気通路か ら排気通路にいたる空気流通 経路内を流れる風量を検出する風量セ ンサ と、 A combustion fan that supplies and exhausts air to and from the burner; a rotation speed detection device that detects a rotation speed of the combustion fan; An airflow sensor for detecting an airflow flowing in an air circulation path from an air supply passage to the burner to an exhaust passage;
前記空気流通経路上に位置 し、 該パーナか ら熱量を供 給され熱媒体を供耠する入管 と送 り 出す出管 と に接続さ れた熱交換器 と、  A heat exchanger located on the air circulation path and connected to an inlet pipe for supplying a heat amount from the parner and supplying a heat medium and an outlet pipe for sending and receiving the heat medium;
前記出管か ら送 り 出 さ れる熱媒体が設定された温度に 維持さ れる に必要な燃料を前記パーナに供給する燃料制 御部 と、  A fuel control unit that supplies fuel necessary for maintaining the heat medium sent from the outlet pipe at a set temperature to the parner;
該燃料を前記パー ナで燃焼する に適正な風量を維持す る よ う 前記燃焼フ ァ ンの回転を制御する フ ァ ン制御部 と を備えた燃焼機器において、  A fan control unit that controls the rotation of the combustion fan so as to maintain an appropriate air volume for burning the fuel with the burner.
該風量セ ンサの検出風量が一定の基準値にな る よ う 該 燃焼フ ァ ン を回転制御する時の異常ま たは寿命判定の基 準 とな る回転数判定値を記憶 しておき、  A rotation speed judgment value, which is a reference for judging abnormality or life when the combustion fan is controlled to rotate so that the air flow detected by the air flow sensor becomes a constant reference value, is stored.
該風量セ ンサの検出風量が該一定の基準値にな る よ う 該燃焼フ ァ ンを回転制御する時に検出 さ れる前記回転数 検出装置の検出回転数の変動が、 所定の許容範囲内にあ る時であ っ て、 当該回転数検出装置の検出回転数が前記 回転数判定値よ り 高い場合に、 異常ま たは寿命検知を行 う 制御部を有する燃焼機器。  Fluctuations in the rotation speed detected by the rotation speed detection device, which are detected when the rotation speed of the combustion fan is controlled so that the air volume detected by the air volume sensor becomes the constant reference value, are within a predetermined allowable range. A combustion apparatus having a control unit that detects an abnormality or life when the rotation speed detection device detects a rotation speed higher than the rotation speed determination value even at a certain time.
1 9 . パー ナ と、 該バーナヘの給気 と排気を行う燃焼 フ ァ ン と、 該バー ナヘの給気通路か ら排気通路にいた る 空気流通経路内を流れる風量を検出する風量セ ンサ と を 備えた燃焼機器において、 該燃焼フ ァ ンを零回転の も とで検出 さ れる該風量セ ン ザの検出風量の変動が、 所定の許容範囲内にあ る時に、 無風状態を検知 し、 19. A burner that supplies and exhausts air to and from the burner, and an air flow sensor that detects the amount of air flowing through the air flow path from the air supply passage to the exhaust passage to the burner In combustion equipment equipped with Detecting a no-air condition when the variation of the airflow detected by the airflow sensor, which is detected based on zero rotation of the combustion fan, is within a predetermined allowable range;
該無風状態を検知 した時の、 当該風量セ ンサの検出風 量を零点 と して記憶する制御部を有する燃焼機器。  A combustion device having a control unit that stores the detected airflow of the airflow sensor as a zero point when the airless state is detected.
2 0 . ノくーナ と、 2 0.
該バーナヘの給気と排気を行う 燃焼フ ァ ン と、 該燃焼フ ァ ンの回転数を検出する回転数検出装置 と、 該バーナヘの給気通路か ら排気通路にいた る空気流通 経路内を流れる風量を検出する風量セ ンサ と、  A combustion fan that supplies and exhausts air to and from the burner, a rotation speed detection device that detects the rotation speed of the combustion fan, and an air flow passage from an air supply passage to an exhaust passage of the burner. An airflow sensor that detects the amount of air flowing,
前記空気流通経路上に位置 し、 該パーナか ら熱量を供 給さ れ熱媒体を供給する入管 と送 り 出す出管 と に接続さ れた熱交換器 と、  A heat exchanger located on the air flow path, connected to an inlet pipe for supplying a heat medium from the parner and supplying a heating medium, and an outlet pipe for delivering the heat medium;
前記出管か ら送 り 出 さ れる熱媒体が設定さ れた温度に 維持さ れる に必要な燃料を前記パーナに供給する燃料制 御部 と、  A fuel control unit that supplies fuel necessary for maintaining the heat medium sent from the outlet pipe at a set temperature to the parner;
該燃料を前記パーナで燃焼する に適正な風量を維持す る よ う 前記燃焼フ ァ ンの回転を制御する フ ァ ン制御部 と を備えた燃焼機器において、  A fan control unit that controls the rotation of the combustion fan so as to maintain an appropriate air volume for burning the fuel with the wrench.
該燃焼フ ァ ンを零回転の も とで検出 さ れる該風量セ ン ザの検出風量の変動が、 所定の許容範囲内にあ る時に、 無風状態を検知 し、  Detecting a no-air condition when the variation of the airflow detected by the airflow sensor, which is detected based on zero rotation of the combustion fan, is within a predetermined allowable range;
該無風状態を検知 した時の、 当該風量セ ンサの検出風 量を零点 と して記憶する制御部を有する燃焼機器。 A combustion device having a control unit that stores the detected airflow of the airflow sensor as a zero point when the airless state is detected.
2 1 . パーナ と、 該バ一ナヘの給気 と排気を行う 燃焼 フ ァ ン と、 該バーナヘの給気通路か ら排気通路にいたる 空気流通経路内を流れる風量を検出する風量セ ンサ と を 備えた燃焼機器において、 21. A parner, a combustion fan for supplying and exhausting air to and from the burner, and an air flow sensor for detecting the amount of air flowing in an air flow path from an air supply passage to an exhaust passage of the burner. In the equipped combustion equipment,
該燃焼フ ァ ンを所定の回転数で回転させた時の異常ま たは寿命判定の基準 とな る風量判定値を記憶 してお き、 該燃焼フ ァ ンを前記所定の回転数で回転さ せた時に検 出 さ れる該風量セ ンサの検出風量が、 所定の時間内にお いて継続的に前記風量判定値よ り 低い場合に、 異常ま た は寿命の検知を行う 制御部を有する燃焼機器。  An airflow judgment value serving as a reference for judging abnormality or life when the combustion fan is rotated at a predetermined rotation speed is stored, and the combustion fan is rotated at the predetermined rotation speed. When the detected air flow of the air flow sensor detected when the air flow sensor is detected is lower than the air flow determination value continuously within a predetermined time, a control unit that detects an abnormality or a life is provided. Combustion equipment.
2 2 . パーナ と、 該バーナヘの給気と排気を行う燃焼 フ ァ ン と、 該燃焼フ ァ ンの回転数を検出する回転数検出 装置 と、 該バーナヘの給気通路か ら排気通路にいた る空 気流通経路内を流れる風量を検出する風量セ ンサ とを備 えた燃焼機器において、 22. A burner that supplies and exhausts air to and from the burner, a rotation speed detection device that detects the rotation speed of the combustion fan, and an exhaust passage from the air supply passage to the burner Combustion equipment equipped with an airflow sensor that detects the amount of air flowing through
該風量セ ンサの検出風量が一定の基準値にな る よ ぅ 該 燃焼フ ァ ン を回転制御する時の異常ま たは寿命判定の基 準 とな る回転数判定値を記憶 してお き、  The detected air volume of the air volume sensor will be a fixed reference value. ぅ Store the rotation speed judgment value that is the standard for judging abnormality or life when controlling the rotation of the combustion fan. ,
該風量セ ンサの検出風量が該一定の基準値にな る よ う 該燃焼フ ァ ンを回転制御する時に検出 さ れる前記回転数 検出装置の検出回転数が、 所定の時間内において継続的 に前記回転数判定値よ り 高い場合に、 異常ま たは寿命検 知を行 う 制御部を有する燃焼機器。  The rotation speed detected by the rotation speed detection device, which is detected when the rotation speed of the combustion fan is controlled so that the air volume detected by the air volume sensor becomes the constant reference value, is continuously within a predetermined time. A combustion device having a control unit for detecting abnormality or life when the rotation speed is higher than the rotation speed determination value.
PCT/JP1995/001720 1994-08-31 1995-08-30 Combustion equipment for judging abnormality or life WO1996007056A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP95930007A EP0781966A1 (en) 1994-08-31 1995-08-30 Combustion equipment for judging abnormality or life

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP23073294A JP3566757B2 (en) 1994-08-31 1994-08-31 Combustion equipment
JP6/230732 1994-08-31
JP6/249565 1994-10-14
JP24956594A JP3566758B2 (en) 1994-10-14 1994-10-14 Combustor air amount control device and method
JP6/284403 1994-10-24
JP28440394A JP3566765B2 (en) 1994-10-24 1994-10-24 Combustion equipment

Publications (1)

Publication Number Publication Date
WO1996007056A1 true WO1996007056A1 (en) 1996-03-07

Family

ID=27331683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/001720 WO1996007056A1 (en) 1994-08-31 1995-08-30 Combustion equipment for judging abnormality or life

Country Status (4)

Country Link
EP (1) EP0781966A1 (en)
KR (1) KR970704995A (en)
CN (1) CN1159852A (en)
WO (1) WO1996007056A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0724122A1 (en) * 1995-01-30 1996-07-31 Gastar Co., Ltd. Combustion device
US10935238B2 (en) 2018-05-23 2021-03-02 Carrier Corporation Furnace with premix ultra-low NOx (ULN) burner
US20230184433A1 (en) * 2021-12-14 2023-06-15 Wayne/Scott Fetzer Company Electronic Gas/Air Burner Modulating Control

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1130320B1 (en) * 2000-03-03 2007-01-03 Riello S.p.A. Control system for boilers
US7494337B2 (en) * 2004-04-22 2009-02-24 Thomas & Betts International, Inc. Apparatus and method for providing multiple stages of fuel
US7726386B2 (en) 2005-01-14 2010-06-01 Thomas & Betts International, Inc. Burner port shield
CN107036684B (en) * 2017-05-11 2019-10-22 广东卓信环境科技股份有限公司 A kind of flowmeter fault detection method and device
CN109654055B (en) * 2018-12-19 2020-01-07 珠海格力电器股份有限公司 Detection method and detection device for wind pressure abnormity, fan and air conditioner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02161208A (en) * 1988-12-14 1990-06-21 Harman Co Ltd Fuel-burning equipment
JPH05118538A (en) * 1991-10-30 1993-05-14 Yamatake Honeywell Co Ltd Safety device for combustion
JPH05118532A (en) * 1991-10-30 1993-05-14 Yamatake Honeywell Co Ltd Combustion controller
JPH05157228A (en) * 1991-12-06 1993-06-22 Matsushita Electric Ind Co Ltd Hot water feeding machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02161208A (en) * 1988-12-14 1990-06-21 Harman Co Ltd Fuel-burning equipment
JPH05118538A (en) * 1991-10-30 1993-05-14 Yamatake Honeywell Co Ltd Safety device for combustion
JPH05118532A (en) * 1991-10-30 1993-05-14 Yamatake Honeywell Co Ltd Combustion controller
JPH05157228A (en) * 1991-12-06 1993-06-22 Matsushita Electric Ind Co Ltd Hot water feeding machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0724122A1 (en) * 1995-01-30 1996-07-31 Gastar Co., Ltd. Combustion device
US5658140A (en) * 1995-01-30 1997-08-19 Gastar Co., Ltd. Combustion device
US10935238B2 (en) 2018-05-23 2021-03-02 Carrier Corporation Furnace with premix ultra-low NOx (ULN) burner
US20230184433A1 (en) * 2021-12-14 2023-06-15 Wayne/Scott Fetzer Company Electronic Gas/Air Burner Modulating Control

Also Published As

Publication number Publication date
KR970704995A (en) 1997-09-06
EP0781966A1 (en) 1997-07-02
CN1159852A (en) 1997-09-17

Similar Documents

Publication Publication Date Title
CN113048657B (en) Wind-resistant control method for gas water heater and gas water heater
WO1996007056A1 (en) Combustion equipment for judging abnormality or life
JP6661384B2 (en) Water heater
JP7165593B2 (en) Combustion device
JP3967481B2 (en) Combustion equipment
JP4077370B2 (en) Combustion device supply / exhaust detection method, combustion control method, and combustion control device
JP3667871B2 (en) Combustion equipment and method for determining the life of combustion equipment
JP3558439B2 (en) Safe combustion device
JP2647584B2 (en) Combustion control device
JP3499010B2 (en) Combustion equipment
JP3611399B2 (en) Combustion equipment
JP3566757B2 (en) Combustion equipment
JP2002005436A (en) Combustor
JP3566807B2 (en) Combustion equipment
JP2002156113A (en) Gas apparatus
JPH05157228A (en) Hot water feeding machine
JP3423464B2 (en) Combustion equipment
JP3566765B2 (en) Combustion equipment
JP3312968B2 (en) Combustion apparatus, method for detecting soot clogging thereof, and method for detecting failure of CO sensor in combustion apparatus with CO sensor using the same
JP3438590B2 (en) Combustor with CO sensor
JP3744623B2 (en) Combustion device
TW293879B (en)
JP4078496B2 (en) Oxygen deficiency detection method in gas water heater
JP2000240937A (en) Combustion apparatus
JP2988834B2 (en) Hot water supply apparatus and hot water supply control method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95195515.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE GB NL

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 1997 776421

Country of ref document: US

Date of ref document: 19970129

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019970700827

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1995930007

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1995930007

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970700827

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1995930007

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1019970700827

Country of ref document: KR