WO1996005436A1 - Spherical engine - Google Patents

Spherical engine Download PDF

Info

Publication number
WO1996005436A1
WO1996005436A1 PCT/US1994/008810 US9408810W WO9605436A1 WO 1996005436 A1 WO1996005436 A1 WO 1996005436A1 US 9408810 W US9408810 W US 9408810W WO 9605436 A1 WO9605436 A1 WO 9605436A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
cusps
head
engine
nutating
Prior art date
Application number
PCT/US1994/008810
Other languages
French (fr)
Inventor
Leon Lim, Jr.
Original Assignee
Lim, Oliver, A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US08/072,306 priority Critical patent/US5336067A/en
Priority claimed from US08/072,306 external-priority patent/US5336067A/en
Priority to CA002124131A priority patent/CA2124131A1/en
Application filed by Lim, Oliver, A. filed Critical Lim, Oliver, A.
Priority to PCT/US1994/008810 priority patent/WO1996005436A1/en
Publication of WO1996005436A1 publication Critical patent/WO1996005436A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C9/00Oscillating-piston machines or engines
    • F01C9/005Oscillating-piston machines or engines the piston oscillating in the space, e.g. around a fixed point

Definitions

  • This invention relates to improvements to nutating engines.
  • variable volume pockets of the engine within which, for example,
  • a gas may be compressed or expanded. Difficulty is often experienced in lubricating these confronting surfaces, and wear may be relatively high on the
  • defining one of the pockets is in a position which, in an equivalent piston engine
  • the pressure in the one pocket is at a minimum while the pressure is an adjacent
  • the seal between these two pockets comprises a
  • I provide in a nutating engine in the relatively rotating part on which the two rounded cusps are disposed, a second pair of cusps which, as seen in plan view, are diametrically opposed and
  • nutating engine a rotor guide, the rotor and rotor guide together having a cam and
  • cam follower action which, as the rotor rotates, causes the rotor to undergo a
  • cam and cam follower are completely isolated from the pockets of
  • the confronting surfaces are provided with a ball and socket joint concentred with the notional centre of origin of the spherical chamber of the engine, and the member on which
  • the drive shaft is coupled to the ball and socket joint by a simple swivel
  • the ball is
  • FIG. 1 - is a composite view of an engine in accordance with the
  • FIG. 2 - is a vertical mid-cross section of the upper portions of the engine of Fig. 1, with the rotor removed;
  • FIG. 3 - is a view of the lower, confronting surface of the head as
  • FIG. 4 - is a view of the spherical bearing surface of the chamber
  • FIG. 5 - is a side elevation of the rotor of the engine of Fig. 1;
  • FIG. 6 - is a plan view from above of the rotor of Fig. 5;
  • FIG. 7 - is a plan view from below of the rotor of Fig. 5;
  • FIG. 8 - is a cross section of the rotor of Fig. 5, seen on line 8-8 of Fig. 6;
  • FIG. 9 - is a side elevation of the drive shaft used with the rotor
  • FIG. 10 - is similar to Fig. 9, but rotated through 90° about the axis
  • FIG. 11 - is a plan view from above of the rotor guide of the
  • FIG. 12 - is a plan view from below of the rotor guide of Fig. 11. DESCRIPTION OF THE PREFERRED EMBODIMENT
  • this type of engine may be used as an internal or external combustion engine or as a pump, and auxiliary parts that may be used therefor such as valves and ignition
  • Engine 10 includes a casing 12 having a side wall 14 which is generally circular in horizontal cross-section, and a spherical bearing surface 16
  • Bearing surface 16 has a notional
  • Engine 10 further includes a head 24 which is secured to casing 12
  • Rotor 30 has a
  • spherically formed seat 32 complementary to the bearing surface 16, and an upper surface 34.
  • the surface of head 24 confronting upper surface 34 of rotor 30 is
  • Confronting surface 40 has a spherical socket 42 concentred on the
  • the surface 40 is defined by the locus of points on a radial line originating at the centre of origin 20 which is rotated
  • the surface 34 is defined by the locus of points on a line centred on centre 50
  • cusps 54 are gently rounded, in comparison to cusps 44 and cusps 54 have a height
  • Rotor 30 has a central opening 60 in seat 32, the shape and purpose
  • Opening 60 connects to a flat sided
  • rotor 30 is positioned within chamber 26, ball centre 50 and sphere centre of origin
  • Engine 10 includes a drive shaft 64 having a flat sided, rounded end 66 which is a snug fit within slot 60 to permit the rotor 30 to rock on the drive shaft
  • the drive shaft 64 is considered to rotate in a clockwise direction, shown by arrow 74.
  • the components defining pocket 70 would be at bottom dead centre, and moving towards compression of
  • volume of gas contained within pocket 72 will be at its minimum pressure while the volume of gas contained within pocket 70 will be at its maximum pressure. Put another way, the pressure differential between pockets 70 and 72 will be at about
  • the provision of the minor cusps 54 acts to enhance the seal between adjacent pockets when the rotor 30 is in a position in which a cusp 44 locates
  • wear bars are provided with wear bars (not shown) to decrease the rate of wear.
  • Engine 10 further comprises a rotor guide 80 secured to the underside
  • Rotor guide 80 includes a cam 84 which projects
  • rotor 30 is provided with a central opening 60 therein, which forms a
  • cam follower 86 Conveniently the rotor guide 80 forms a bearing 90 for drive shaft
  • Cam 84 has three lobes 88 and cam follower 86 is shaped so that as drive shaft 64 rotates, rotor 30 will undergo the same type of nutational action of the rotor in chamber 26 as it would be caused
  • the clearance ween the head and rotor may be adjusted to suit the duty of engine 10, and the wear between the
  • oil is provided by openings 94 passing through rotor guide 80.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transmission Devices (AREA)

Abstract

In a nutating spherical engine, improvements for increasing the seal between the rotor (30) and the engine head (24) comprise the provisions of a pair of minor cusps (44) disposed on the rotor as seen in plan view as diametrically opposed and at right angles to the major cusps (52) of the rotor. The engine may include a rotor guide including a cam and a cam follower which cause the rotor to undergo the same nutational rotation as that caused by the interaction of the rotor and the cylinder head. The rotor and cylinder head may be coupled by a ball and socket, and the ball may contain a simple coupling for the drive shaft of the engine. The cam, cam follower and coupling of the engine are easily lubricated as they are not in direct communication with the working chambers of the engine.

Description

SPHERICAL ENGINE
FIELD OF INVENTION
This invention relates to improvements to nutating engines.
BACKGROUND OF INVENTION
Nutating engines are well known in the patent literature, and are well
described in the following patents:
U.S. Patent 3,492,974 to Kreineyer
U.S. Patent 4,877,379 to Okabe
As used herein the word engine is used in its broadest sense to define a
mechanism which may be used as a pump for pumping fluids including
compressible and non-compressible fluids and as an internal or external
combustion engine, for example.
Although nutating engines have excited considerable interest, this has
been largely confined to paper proposals, in part due to difficulties in machining the relatively complex surfaces, and also in part due to wear problems, sealing
problems and gearing problems. The first two problems are somewhat inter¬
related. In the engines of the prior art, the nutating action of the rotor arises from
the face to face contact of confronting, relatively rotating surfaces, which define
between them the variable volume pockets of the engine within which, for example,
a gas may be compressed or expanded. Difficulty is often experienced in lubricating these confronting surfaces, and wear may be relatively high on the
rubbing portions of the surfaces, leading to rapid wear and a loss of seal between
adjacent pockets.
Typically in a nutating engine one of the relatively rotating surfaces
has three cavities alternating with three sharply defined cusps, and the other
surface has two rounded, diametrically opposed cusps alternating with two shallow cavities. In such engine, when the parts are relatively rotated so that the rotor
defining one of the pockets is in a position which, in an equivalent piston engine
would be referred to as bottom dead centre, the rotor will at the same time define
an adjacent pocket which would be equivalent to that where a piston would be at top dead centre in a piston engine. In this relative position of the rotary engine,
the pressure in the one pocket is at a minimum while the pressure is an adjacent
pocket is at a maximum. The seal between these two pockets comprises a
sharply defined cusp which contacts a shallow cavity adjacent to its maximum
radius of curvature, whereby the area of contact and interfering proximity between
the adjacent confronting surfaces is at a minimum. SUMMARY OF THE INVENTION
In accordance with one aspect of the invention, I provide in a nutating engine in the relatively rotating part on which the two rounded cusps are disposed, a second pair of cusps which, as seen in plan view, are diametrically opposed and
at right angles to the first described pair. The second pair of cusps are minor in
comparison to the first pair. The minor cusps disposed in this manner create a
zone of minimum radius against which a seal is made when the pressure differential between adjacent pockets is at a maximum, as described above, thereby increasing the area of contact and interfering proximity between the
relatively rotating parts when in this relative position.
In accordance with another aspect of my invention, I provide in a
nutating engine a rotor guide, the rotor and rotor guide together having a cam and
cam follower action which, as the rotor rotates, causes the rotor to undergo a
nutating action to mimic that arising from the interaction of the cusps and cavities.
Accordingly, it is not required that there by any surface contact between the
confronting surfaces of the engine in order to induce the nutating action of the engine. The degree of contact and close interference between the confronting
faces may therefore be adjusted to suit the purpose for which the engine is to be
used, generally resulting in a greatly reduced wear between the confronting
surfaces. The cam and cam follower are completely isolated from the pockets of
the engine and are easily lubricated, whereby the wear between them is limited. ln accordance with yet another aspect of my invention, the confronting surfaces are provided with a ball and socket joint concentred with the notional centre of origin of the spherical chamber of the engine, and the member on which
the rounded major pair of diametrically opposed cusps are disposed forms the
rotor. The drive shaft is coupled to the ball and socket joint by a simple swivel
mechanism which permits the rotor to rock in a plane containing the drive shaft and the diameter on which the cusps are disposed, but which otherwise constrains
relative movement between the rotor and the drive shaft. Suitably, the ball is
disposed on the rotor and is provided with a flat sided, rounded bottom slot; the drive shaft is provided with a rounded, flat sided end which is received in the slot to permit the desired rocking action. This swivel mechanism is completely sealed
from the pockets of the engine and is easily lubricated so as to reduce wear.
These foregoing objects and aspects of the invention, together with
other objects, aspects and advantages thereof will be more apparent from the following description of a preferred embodiment thereof, taken in conjunction with
the following drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 - is a composite view of an engine in accordance with the
invention showing the casing in vertical mid-cross
section and the rotor and head portions in side elevation; FIG. 2 - is a vertical mid-cross section of the upper portions of the engine of Fig. 1, with the rotor removed;
FIG. 3 - is a view of the lower, confronting surface of the head as
seen in 3-3 of Fig. 2;
FIG. 4 - is a view of the spherical bearing surface of the chamber
as seen in 4-4 of Fig. 2;
FIG. 5 - is a side elevation of the rotor of the engine of Fig. 1;
FIG. 6 - is a plan view from above of the rotor of Fig. 5;
FIG. 7 - is a plan view from below of the rotor of Fig. 5;
FIG. 8 - is a cross section of the rotor of Fig. 5, seen on line 8-8 of Fig. 6;
FIG. 9 - is a side elevation of the drive shaft used with the rotor
of Fig. 5; FIG. 10 - is similar to Fig. 9, but rotated through 90° about the axis
of the rotor;
FIG. 11 - is a plan view from above of the rotor guide of the
engine of Fig. 1, and
FIG. 12 - is a plan view from below of the rotor guide of Fig. 11. DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring to the drawings in detail, the nutating engine of the invention
is identified generally therein by the numeral 10. As is well known in the art, this type of engine may be used as an internal or external combustion engine or as a pump, and auxiliary parts that may be used therefor such as valves and ignition
plugs are well known and are omitted from the drawings and the ensuing
description for the sake of clarity.
Engine 10 includes a casing 12 having a side wall 14 which is generally circular in horizontal cross-section, and a spherical bearing surface 16
having a central opening 18 therethrough. Bearing surface 16 has a notional
centre of origin 20.
Engine 10 further includes a head 24 which is secured to casing 12
to define therewith a chamber 26.
Within chamber 26 there is disposed a rotor 30. Rotor 30 has a
spherically formed seat 32 complementary to the bearing surface 16, and an upper surface 34. The surface of head 24 confronting upper surface 34 of rotor 30 is
identified by the number 40.
Confronting surface 40 has a spherical socket 42 concentred on the
centre of origin 20, and surrounding the socket, the surface 40 is defined by the locus of points on a radial line originating at the centre of origin 20 which is rotated
about an angle of 360° while undergoing a wave like motion to define three
relatively sharp cusps 44 alternating with three rounded cavities 46. The upper, confronting surface 34 of rotor 30 has a ball 48 raised centrally thereon
complementary to socket 42, the ball having a centre 50. Surrounding the ball 45,
the surface 34 is defined by the locus of points on a line centred on centre 50
which is rotated about an angle of 360° while undergoing a wave like motion to
define a first pair of diametrically opposed major cusps 52 and a second pair of
diametrically opposed minor cusps 54 at right angles to the first pair as seen in
plan view, cusps 52 and 54 alternating with four rounded cavities 56. Cusps 52 and
54 are gently rounded, in comparison to cusps 44 and cusps 54 have a height
above cavities 56 which is somewhat less than that of cusps 52.
Rotor 30 has a central opening 60 in seat 32, the shape and purpose
of which will be subsequently described. Opening 60 connects to a flat sided
slot 62 formed in the interior of ball 48 in alignment with major cusps 52. The
upper blind end of slot 62 is formed on a radius centred on ball centre 50. When
rotor 30 is positioned within chamber 26, ball centre 50 and sphere centre of origin
20 will be coincident. Engine 10 includes a drive shaft 64 having a flat sided, rounded end 66 which is a snug fit within slot 60 to permit the rotor 30 to rock on the drive shaft
end in the plane containing major cusps 52, but to otherwise constrain relative
rotational movement between the rotor and drive shaft. Considering the operation of engine 10 as thus far described, wherein
it operates as a compressor and wherein the elements are in the relative rotational
position as illustrated in Fig. l, parts of two pockets 70, 72 are seen. In this
operation, the drive shaft 64 is considered to rotate in a clockwise direction, shown by arrow 74. In comparison with a piston compressor, the components defining pocket 70 would be at bottom dead centre, and moving towards compression of
the gas contained within the pocket, while the components defining pocket 72
would be at top dead centre, and moving to an exhaust stroke. Accordingly, the
volume of gas contained within pocket 72 will be at its minimum pressure while the volume of gas contained within pocket 70 will be at its maximum pressure. Put another way, the pressure differential between pockets 70 and 72 will be at about
the maximum for the operation of engine 10, and as a corollary, the tendency for
the escape of gas from pocket 70 to pocket 72 will be at a maximum.
The provision of the minor cusps 54 acts to enhance the seal between adjacent pockets when the rotor 30 is in a position in which a cusp 44 locates
along the line of intersection of a minor cusp 54 with a cavity 56. In comparison,
the seal that is obtained by prior art nutating engines wherein the minor cusps are
absent tends to be at a minimum in this position of the rotor, and accordingly it may be seen that the minor cusps act to decrease the leakage between adjacent
pockets. It will be appreciated that this is true irrespective of whether engine 10
operates as a compressor or an internal or external combustion engine.
As shaft 64 is rotated, rotor 30 will rotate together with the shaft, and simultaneously it will rock about the lollipop end 66 of the shaft as the confronting
surface 34 of the rotor rides over the cusps 44 of head 24. Traditionally, cusps 44
are provided with wear bars (not shown) to decrease the rate of wear.
Engine 10 further comprises a rotor guide 80 secured to the underside
of bearing surface 16 by bolts 82. Rotor guide 80 includes a cam 84 which projects
upwardly through central opening 18 of the bearing surface 16. As previously
mentioned, rotor 30 is provided with a central opening 60 therein, which forms a
cam follower 86. Conveniently the rotor guide 80 forms a bearing 90 for drive shaft
64 to reduce the unsupported length of the shaft. Cam 84 has three lobes 88 and cam follower 86 is shaped so that as drive shaft 64 rotates, rotor 30 will undergo the same type of nutational action of the rotor in chamber 26 as it would be caused
to undergo by the interaction of confronting surfaces 34 and 40. It will be
appreciated that the action of the cam 84 and cam follower 86 makes it no longer
necessary that there be any contact between the confronting surfaces 34 and 40
of the rotor 30 and head 24. Accordingly, the clearance ween the head and rotor may be adjusted to suit the duty of engine 10, and the wear between the
head and rotor may be substantially diminished. The cam 84 and cam follower 86
are conveniently lubricated by means of an oil bath 96 and a spiral channel 92 formed in the surface of drive shaft 64 to pump the oil, this serving also to lubricate
the bearing surface 16 and the rocking bearing at shaft end 66. A return path for
oil is provided by openings 94 passing through rotor guide 80.
It will be apparent that many changes may be made to the illustrative
embodiment while falling within the scope of the invention, and it is intended that all such changes be covered by the claims appended hereto.

Claims

1. A nutating engine comprising: a casing having a concave bearing surface forming part of a
sphere having a notional centre;
a head defining with said concave bearing surface a chamber;
a rotor contained within said chamber;
said rotor having a spherical seat complementary to said bearing surface and an upper surface,
said upper surface and said head forming mutually confronting
surfaces each of which has a plurality of cusps alternating with rounded cavities,
together forming a plurality of pockets therebetween, the volume of which changes as said rotor undergoes nutational rotation with respect to said head, a drive shaft connected to said rotor for rotation therewith;
said cusps disposed on said rotor including a first, generally
aligned pair respectively locating on opposite sides of said notional centre, and a second pair of minor cusps disposed on said confronting surface thereof at right
angles to said first pair of cusps as seen in plan view, said second pair of cusps
having a lesser height above said rounded cavities associated with said rotor than
said first pair of cusps; and
a rocking mechanism coupling said drive shaft to said rotor to
permit said rotor to rock in a plane containing said first pair of cusps and to constrain relative rotational movement between said rotor and said drive shaft in
other planes.
2. The nutating engine of Claim 1, wherein a rotor guide is secured to
said casing on the underside of said rotor, said rotor guide and said rotor together
having a cam and a cam follower arranged to mimic the nutating action of said
rotor in said chamber, and means for introducing a lubricating oil onto said cam
and cam follower surfaces.
3. The nutating engine of Claim 2, wherein said cam follower
is disposed on the underside of said rotor.
4. The nutating engine of Claim 2, wherein said cam has a number of lobes equal to the number of cusps disposed on said confronting surface of said head.
5. The nutating engine of Claim 4, wherein the number of lobes is three.
6. The nutating engine of any one of Claims 1 - 5, wherein said head is
provided with a socket centred on said notional centre, and said rotor is provided
with a ball received in said socket, and wherein said rocking mechanism is
contained within said ball.
7. A nutating engine comprising: a casing having a concave bearing surface forming part of a sphere having a notional centre; a head defining with said concave bearing surface a chamber;
a rotor contained within said chamber;
said rotor having a spherical seat complementary to said bearing surface and an upper surface,
said upper surface and said head forming mutually confronting
surfaces each of which has a plurality of cusps alternating with rounded cavities,
together forming a plurality of pockets therebetween, the volume of which changes
as said rotor undergoes nutational rotation with respect to said head, a drive shaft connected to said rotor for rotation therewith; said cusps disposed on said rotor including a first, generally
aligned pair respectively locating on opposite sides of said notional centre;
characterized wherein said rotor has a second pair of cusps
disposed on said confronting surface thereof at right angles to said first pair of
cusps as seen in plan view, said second pair of cusps having a lesser height
above said rounded cavities associated with said rotor than said first pair of cusps.
8. The nutating engine of Claim 7, wherein said drive shaft is coupled to
said rotor by a rocking mechanism to permit said rotor to rock in a plane containing said first pair of cusps and to constrain relative rotational movement between said rotor and said drive shaft in other planes.
9. The nutating engine of Claim 7, wherein a rotor guide is secured to
said casing on the underside of said rotor, said rotor guide and said rotor together
having a cam and a cam follower arranged to mimic the nutating action of said rotor in said chamber, and means for introducing a lubricating oil onto said cam and cam follower surfaces.
10. The nutating engine of Claim 9, wherein said cam follower is disposed on the underside of said rotor.
11. The nutating engine of Claim 9, wherein said cam has a number of
lobes equal to the number of cusps disposed on said confronting surface of said
head.
12. The nutating engine of Claim 11, wherein the number of lobes is three.
13. The nutating engine of any one of Claims 8 - 12, wherein said rotor
and said head are together provided with a ball and socket centred on said
notional centre.
14. A nutating engine comprising:
a casing having a concave bearing surface forming part of a
sphere having a notional centre; a head defining with said concave bearing surface a chamber;
a rotor contained within said chamber;
said rotor having a spherical seat complementary to said
bearing surface and an upper surface, said upper surface and said head forming mutually confronting
surfaces each of which has a plurality of cusps alternating with rounded cavities,
together forming a plurality of pockets therebetween, the volume of which changes
as said rotor undergoes nutational rotation with respect to said head,
a drive shaft connected to said rotor for rotation therewith; said cusps disposed on said rotor including a first, generally
aligned pair respectively locating on opposite sides of said notional centre, and a
second pair of cusps disposed on said confronting surface thereof at right angles
to said first pair of cusps, said second pair of cusps having a lesser height above said rounded cavities associated with said rotor than said first pair of cusps; and
a rotor guide secured to said casing on the underside of said
rotor, said rotor guide and said rotor together having a cam and a cam follower
arranged to mimic the nutating action of said rotor in said chamber, and means for
introducing a lubricating oil onto said cam and cam follower surfaces.A nutating
engine comprising: a casing having a concave bearing surface forming part of a
sphere having a notional centre;
a head defining with said concave bearing surface a chamber;
a rotor contained within said chamber;
said rotor having a spherical seat complementary to said
bearing surface and an upper surface,
said upper surface and said head forming mutually confronting
surfaces each of which has a plurality of cusps alternating with rounded cavities,
together forming a plurality of pockets therebetween, the volume of which changes
as said rotor undergoes nutational rotation with respect to said head,
a drive shaft connected to said rotor for rotation therewith;
said cusps disposed on said rotor including a first, generally
aligned pair respectively locating on opposite sides of said notional centre;
characterized wherein a rotor guide is secured to said casing
on the underside of said rotor, said rotor guide and said rotor together having a
cam and a cam follower arranged to mimic the nutating action of said rotor in said
chamber, and means for introducing a lubricating oil onto said cam and cam
follower surfaces.
15. The nutating engine of Claim 14, wherein said drive shaft is coupled
to said rotor by a rocking mechanism to permit said rotor to rock in a plane containing said first pair of cusps and to constrain relative rotational movement
between said rotor and said drive shaft in other planes.
16. The nutating engine of Claim 15, wherein said cam follower is
disposed on the underside of said rotor.
17. The nutating engine of Claim 15, wherein said cam has a number of
lobes equal to the number of cusps disposed on said confronting surface of said
head.
18. The nutating engine of Claim 17, wherein the number of lobes is three.
19. The nutating engine of any one of Claims 14 - 18, wherein said rotor
and said head are together provided with a ball and socket centred on said
notional centre, and wherein said rocking mechanism is contained within said ball.
20. A nutating engine comprising:
a casing having a concave bearing surface forming part of a
sphere having a notional centre;
a head defining with said concave bearing surface a chamber;
said head having a socket centred on said notional centre,
a rotor contained within said chamber; said rotor having a spherical seat complementary to said bearing surface and an upper surface, and having a ball received in said socket;
said upper surface and said head forming mutually confronting
surfaces each of which has a plurality of cusps alternating with rounded cavities,
together forming a plurality of pockets therebetween, the volume of which changes
as said rotor undergoes nutational rotation with respect to said head;
a drive shaft connected to said rotor for rotation therewith;
said cusps disposed on said rotor including a first, generally
aligned pair respectively locating on opposite sides of said notional centre;
a rocking mechanism coupling said drive shaft to said rotor to
permit said rotor to rock in a plane containing said first pair of cusps and to
constrain relative rotational movement between said rotor and said drive shaft in
other planes;
said rocking mechanism being contained within said ball.
21. A nutating engine comprising:
a casing having a concave bearing surface forming part of a
sphere having a notional centre;
a head defining with said concave bearing surface a chamber;
a rotor contained within said chamber;
said rotor having a spherical seat complementary to said
bearing surface and an upper surface; said upper surface and said head forming mutually confronting
surfaces each of which has a plurality of cusps alternating with rounded cavities,
together forming a plurality of pockets therebetween, the volume of which changes
as said rotor undergoes nutational rotation with respect to said head;
a drive shaft connected to said rotor for rotation therewith;
said cusps disposed on said rotor including a first, generally
aligned pair respectively locating on opposite sides of said notional centre;
a rotor guide secured to said casing on the underside of said
rotor, said rotor guide and said rotor together having a cam and a cam follower
arranged to mimic the nutating action of said rotor in said chamber, and means for
introducing a lubricating oil onto said cam and cam follower surfaces;
said rotor and said head together being provided with a ball and
socket centered on said notional center, with a rocking mechanism contained
within said ball.
PCT/US1994/008810 1993-06-09 1994-08-08 Spherical engine WO1996005436A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US08/072,306 US5336067A (en) 1993-06-09 1993-06-09 Spherical engine
CA002124131A CA2124131A1 (en) 1993-06-09 1994-05-24 Spherical engine
PCT/US1994/008810 WO1996005436A1 (en) 1993-06-09 1994-08-08 Spherical engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/072,306 US5336067A (en) 1993-06-09 1993-06-09 Spherical engine
PCT/US1994/008810 WO1996005436A1 (en) 1993-06-09 1994-08-08 Spherical engine

Publications (1)

Publication Number Publication Date
WO1996005436A1 true WO1996005436A1 (en) 1996-02-22

Family

ID=26753226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1994/008810 WO1996005436A1 (en) 1993-06-09 1994-08-08 Spherical engine

Country Status (1)

Country Link
WO (1) WO1996005436A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008110155A1 (en) * 2007-03-13 2008-09-18 Cor Pumps + Compressors Ag Pump or motor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2496668A (en) * 1946-02-18 1950-02-07 David O Manseau Nutating axis rotary compressor
US3464361A (en) * 1966-06-14 1969-09-02 Otto O Voser Volumetric machine
US3492974A (en) * 1968-01-30 1970-02-03 Heinrich Kreimeyer Rotary nutating power device
US3895610A (en) * 1974-05-17 1975-07-22 Robert H Wahl Rotary Nutating engine
US4877379A (en) * 1986-06-25 1989-10-31 Kunio Okabe Rotary mechanism for three-dimensional volumetric change

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2496668A (en) * 1946-02-18 1950-02-07 David O Manseau Nutating axis rotary compressor
US3464361A (en) * 1966-06-14 1969-09-02 Otto O Voser Volumetric machine
US3492974A (en) * 1968-01-30 1970-02-03 Heinrich Kreimeyer Rotary nutating power device
US3895610A (en) * 1974-05-17 1975-07-22 Robert H Wahl Rotary Nutating engine
US4877379A (en) * 1986-06-25 1989-10-31 Kunio Okabe Rotary mechanism for three-dimensional volumetric change

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008110155A1 (en) * 2007-03-13 2008-09-18 Cor Pumps + Compressors Ag Pump or motor
US8821142B2 (en) 2007-03-13 2014-09-02 Robert Bosch Gmbh Pump or motor for liquid or gaseous media having an increased diameter shaft toward a slanted sliding plane

Similar Documents

Publication Publication Date Title
US5951261A (en) Reversible drive compressor
KR890000688B1 (en) Rotary compressor
US3924968A (en) Radial compressor with muffled gas chambers and short stable piston skirts and method of assembling same
KR850007659A (en) Refrigerant compressor
JPS641668B2 (en)
JPH0151910B2 (en)
KR900000594A (en) Movable swash plate compressor
US6336795B1 (en) Fluid displacement apparatus with suction reed valve stopper
US5336067A (en) Spherical engine
US6168389B1 (en) Swash plate type compressor in which improvement is made about a shoe interposed between a swash plate and a piston
CN104314808A (en) Anti-blocking power mechanism of spherical compressor
US3946617A (en) Motion translation mechanism
US8286608B2 (en) Sealing system for an oscillating-piston engine
WO1996005436A1 (en) Spherical engine
JP3479233B2 (en) Cam mechanism of variable capacity swash plate type compressor
US3784331A (en) Radial compressor with two-piece cylinder housing and shell
US4160436A (en) Rotary valves
US4080114A (en) Oscillating positive displacement machine
US6010322A (en) Rotational power generating device
KR20010062839A (en) Variable displacement compressor having piston anti-rotation structure
KR20020038396A (en) Connecting structure of piston for hermetic compressor
KR900003678B1 (en) Gas compressor
KR870001337Y1 (en) Compressor
KR20010014520A (en) Variable displacement compressor
KR0179944B1 (en) Vane pump

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE JP

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642