WO1996002581A1 - Process for producing aqueous gel, heavy-metal ion adsorbent, pigment adsorbent, microbe carrier, and carrier for enzyme immobilization - Google Patents

Process for producing aqueous gel, heavy-metal ion adsorbent, pigment adsorbent, microbe carrier, and carrier for enzyme immobilization Download PDF

Info

Publication number
WO1996002581A1
WO1996002581A1 PCT/JP1995/001424 JP9501424W WO9602581A1 WO 1996002581 A1 WO1996002581 A1 WO 1996002581A1 JP 9501424 W JP9501424 W JP 9501424W WO 9602581 A1 WO9602581 A1 WO 9602581A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogel
aqueous solution
polymer
acid
producing
Prior art date
Application number
PCT/JP1995/001424
Other languages
French (fr)
Japanese (ja)
Inventor
Reizo Fukushima
Toshiaki Sugiyama
Akira Nakajima
Naomi Maeda
Original Assignee
Hymo Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hymo Corporation filed Critical Hymo Corporation
Priority to AU29368/95A priority Critical patent/AU2936895A/en
Publication of WO1996002581A1 publication Critical patent/WO1996002581A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/44Preparation of metal salts or ammonium salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/48Isomerisation; Cyclisation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/04Enzymes or microbial cells immobilised on or in an organic carrier entrapped within the carrier, e.g. gel or hollow fibres

Definitions

  • the present invention relates to a method for producing a hydrogel having an amidine structure, a heavy metal ion adsorbent, a dye adsorbent, a microorganism carrier and a carrier for immobilizing enzymes.
  • Hydrous gels containing cationic dissociation groups have been used as adsorbents, adsorbents for anionic organic substances, adsorbents for bacteria, cells, and drugs, carriers for immobilized enzymes, fluidized bed ion exchange resins, It is used for various purposes such as fluid carriers in water treatment equipment and water-absorbing resins.
  • the hydrogel used for this purpose include cationic resins having a structure in which polyvinylamines useful as a chelating resin or polyvinylamines such as polysobopenylamine are crosslinked (Japanese Patent Application Laid-Open No. 61-449 / 1986). No.
  • a cross-linkable polymer such as vinylaviridin and chitin present in the carapace such as radish shrimp.
  • the acidic aqueous solution of chitosan are known al force key Bok San solidified particles obtained was dropped into Li aqueous solution medium (JP 6 2 2 8 8 6 0 1 JP) soil strength.
  • hydrogels The production of these hydrogels is carried out by using an organic solvent in a dispersing medium in the presence of a crosslinking agent. It is generally manufactured and has the drawback of requiring complicated operations and large-scale equipment.On the other hand, it is difficult to obtain a large amount of natural materials such as chitosan stably in large quantities. Is expensive.
  • An object of the present invention is to provide a method for easily and economically producing a hydrogel without requiring complicated operations and using a large-scale apparatus, and a heavy metal ion adsorbent comprising the hydrogel.
  • the present invention is characterized in that an aqueous solution of a polymer having a repeating unit composed of a cationic group represented by the following formula (1) and / or (2) is brought into contact with an alkaline aqueous solution to precipitate and form. This is a method for producing a hydrogel.
  • the second invention of the present invention further comprises 10 to 80 mol% of a repeating unit comprising a cationic group represented by the above formula (1) and Z or (2), and further comprises a cyano group.
  • This is a process for producing a hydrogel, which comprises contacting an aqueous solution of 1 to 50% by weight of a polymer containing 10 to 60 mol% with an aqueous solution of an alkali, precipitating and forming the gel.
  • the third invention of the present invention is the invention according to the first invention, further characterized in that the polymer is capable of reacting with active hydrogen in the molecule of the polymer in an aqueous solution of the polymer and an aqueous solution of the polymer.
  • a method for producing a hydrogel which comprises coexisting a crosslinking agent.
  • a fourth invention of the present invention is the method for producing a hydrogel according to the first invention, wherein the pH of the alkaline aqueous solution is 11 or more.
  • a fifth invention of the present invention is the method for producing a hydrogel according to the first invention, wherein the pH of the alkaline aqueous solution is 12 or more.
  • the sixth invention of the present invention is the method for producing a hydrogel according to the above-mentioned invention, further comprising immersing the hydrogel in an aqueous acid solution to control the swellability of the hydrogel.
  • a seventh invention of the present invention is the water-containing gel according to the sixth invention, wherein the aqueous acid solution is an aqueous solution of at least one polybasic acid selected from sulfuric acid, phosphoric acid, m, and carbonic acid. It is a manufacturing method of.
  • the acid aqueous solution according to the sixth aspect is selected from hydrochloric acid and acetic acid.
  • a ninth invention of the present invention is a heavy metal ion adsorbent comprising the hydrogel according to any one of the first to eighth inventions.
  • a tenth aspect of the present invention is a dye adsorbent comprising the hydrogel according to any one of the first to eighth aspects.
  • An eleventh invention of the present invention is a microorganism carrier comprising the hydrogel according to any one of the first to eighth inventions.
  • a twenty-second invention of the present invention is a carrier for immobilizing an enzyme, comprising the hydrogel according to any one of the first to eighth inventions. According to the method for producing a hydrogel of the present invention, it is possible to easily produce a hydrogel without the need for complicated operations and using a large-scale apparatus.
  • FIG. 1 is an explanatory view showing the structure of an aeration tank used in the present invention.
  • the cationic polymer having an amidine structure is sold in large quantities as a polymer flocculant, as a wastewater treatment or sludge dewatering agent, and the hydrogel of the present invention can be produced using the polymer itself. Is not particularly specified.
  • a copolymer of an ethylenically unsaturated monomer having a substituted amino group and a nitrile of acrylonitrile or methacrylonitrile with a primary amino group or a primary amino group capable of forming a primary amino group by a conversion reaction is produced. Further, it can be produced by a method of reacting a cyano group and a primary amino group in the copolymer to form an amidine.
  • the polymerization molar ratio of these ethylenically unsaturated monomers to nitriles is usually from 30:70 to 70:30, but if desired, the polymerization molar ratio outside this range, for example, ethylenic unsaturated monomer
  • the ratio L of the saturated monomer and the polymerization molar ratio may be employed.
  • a usual radical polymerization method is used, and any of aqueous solution polymerization, bulk polymerization, aqueous solution precipitation polymerization, suspension polymerization, emulsion polymerization, etc., is used. Can be.
  • the raw material monomer concentration is generally 5 to 80% by weight, preferably 20 to 60% by weight.
  • the polymerization initiator is preferably a azo compound in which a general radical polymerization initiator can be used, and examples thereof include 2,2′-azobis-1-amidinopropane hydrochloride.
  • the polymerization reaction is generally carried out at a temperature of 30 to L 00 under an inert gas stream.
  • the obtained copolymer can be subjected to the amidination reaction as it is or diluted, that is, in the form of a solution or suspension.
  • the copolymer after the solvent is removed and dried by a known method, and the copolymer is separated as a solid, it can be subjected to an amidination reaction in a solid state.
  • the N-vinylamide compound represented by the above general formula is used as the ethylenically unsaturated monomer in the amidination reaction, the substituted amino group of the copolymer is converted into a primary amino group.
  • the cationic polymer according to the present invention can be produced by a two-step reaction of reacting a group with an adjacent cyano group to form an amidine structure. Then, preferably, the copolymer is heated in a water or alcohol solution in the presence of a strong acid or strong base to generate an amidine structure in one step.
  • the primary amino group was formed as an intermediate structure.
  • Specific conditions for the reaction include, for example, usually 0.9 to 5.0 times, preferably 1.0 to 3.0 times the equivalent of a strong acid to a substituted amino group of the copolymer. Or hydrochloric acid, and heated at a temperature of usually 80 to 150 ° C., preferably 90 to 120 ° C., usually for 0.5 to 20 hours to form a cationized polymer having amidine units. It can be a molecule.
  • the greater the equivalent ratio of the strong acid to the substituted amino group the greater the force, the higher the reaction temperature, the more the amidine formation proceeds.
  • the cationic polymer according to the present invention is obtained by copolymerizing N-vinylformamide and acrylonitrile in accordance with the description above, and the resulting copolymer is usually suspended in water. It is produced by heating in the presence of hydrochloric acid as a liquid to form an amidine unit from a substituted amino group and a neighboring cyano group. Then, cationic polymers having various compositions can be produced by selecting the molar ratio of N-vinylformamide and acrylonitrile to be subjected to the copolymerization and the conditions for amidination of the copolymer.
  • An aqueous solution of 0.5% by weight or more and less than 50% by weight, preferably 1% by weight or more and less than 20% by weight of the water-soluble cationic polymer compound thus obtained is adjusted to have a pH of 11 or more,
  • the dissociation of the cation group of the water-soluble cation polymer compound is suppressed by contacting the cation group with an aqueous solution of water having a pH of preferably not less than 12, more preferably not less than pH 2.5, and the polymer compound is preferably water. It becomes an insoluble resin and a hydrogel is formed. This phenomenon is because the dissociation of the amino group having an amidine structure is suppressed at pH HI 0.5 or more, and the amino group is made hydrophobic.
  • the water-containing gel can be washed with water to remove the components in the gel, thereby preventing deterioration.
  • the cyano group and amidine unit in the polymer are hydrolyzed and converted to a carboxyl group, and the aniline is contained in the resin.
  • An amphoteric type hydrogel having an on-group and a cationic group is formed.
  • this hydrolysis can be positively progressed by immersing in an alkaline solution for a long time or immersing in an alkaline solution and heating to form a hydrogel that has a large number of carboxylic acid groups in the molecule. Can be formed.
  • neutralization with an acid or washing with an aqueous acid solution is performed.However, the obtained water-containing gel recovers its original water solubility at around neutrality due to the polymer compound of the gel constituent unit. Then, they absorb water and swell, and eventually dissolve and lose their shape.
  • a covalent bond is formed by a reaction with an amino group or a cyano group of a polymer compound in a polymer aqueous solution prepared at the time of production of a hydrogel or in an aqueous solution of alcohol to be contacted.
  • a method is used in which a cross-linking agent having two or more functional groups in one molecule is caused to coexist, and then an aqueous polymer solution is brought into contact with an aqueous solution of the polymer.
  • the water-containing gel thus formed can form a stable water-insoluble gel without being redissolved even after neutralization with an acid.
  • amino groups in the molecule form sulfates and phosphates, and can form a hydrogel having a small swelling property.
  • a hydrogel having a swelling ratio of 100 times or more can be obtained by adjusting the amount of the crosslinking agent used.
  • the cross-linking agent used include the ability to use diformylalkanes such as formaldehyde, acetoaldehyde, glyoxal, malonaldehyde, glutaraldehyde, and the like.
  • Two or more functional groups capable of forming a covalent bond in a molecule A hydrogel can also be formed by using the above crosslinking agent.
  • the hydrogel of the present invention can be obtained by contacting an aqueous solution of a polymer compound having an amidine structure with a basic aqueous medium.
  • concentration of the adjusted aqueous solution of the polymer compound is 0.5% by weight or more. The concentration is selected from a concentration of less than 50% by weight, preferably 1% by weight or more and less than 20% by weight, and the concentration is determined by the final water content of the hydrogel and the gel.
  • the aqueous polymer solution has spinnability, and the shape of the obtained hydrogel is distorted, Thread-like projections are formed. If the viscosity of the aqueous polymer solution is too high, perform appropriate dilution, but add an oxidizing agent to cut the molecule to reduce the molecular weight, or add a salt such as salt, sodium acetate, or potassium chloride. It is also possible to reduce the apparent viscosity.
  • the basic compound used for the basic medium used to form the hydrogel is, for example, hydroxylated sodium hydroxide, sodium hydroxide, ammonium hydroxide, sodium carbonate, and the like.
  • sodium hydroxide is usually used because of the cost of the ring.
  • the coexistence of a salt such as ammonium sulfate, salt crystals, sodium chloride, or potassium chloride in the basic medium used facilitates the formation of a hydrogel and can reduce the water content of the hydrogel.
  • concentration of the basic compound used in the basic medium varies depending on the total amount of the polymer compound to be brought into contact with the basic medium, but is usually used in the range of 1 to 2% by weight. No problem. However, contacting the aqueous polymer solution consumes the alcohol in the basic medium, so it is necessary to replenish the basic compound when producing a hydrogel.
  • the specific gravity of the aqueous solution of the polymer compound to be contacted is preferably adjusted to be equal to or higher than the specific gravity of the basic dispersion medium when extruding or dripping into a basic dispersion medium to form a hydrogel.
  • a method of coexisting an inorganic water-soluble electrolyte such as sodium chloride and salt crystals and a water-insoluble powder such as calcium carbonate, talc, activated clay, powdered graphite, and powdered activated carbon in an aqueous solution of a dissolved polymer compound is used.
  • an enzyme, a bacterium, and the like may coexist in an aqueous solution of a polymer compound, and these may be inclusively fixed and used as a carrier for a bioreactor.
  • the hydrogel obtained by the method of the present invention is brought into contact with an enzyme solution, and the enzyme is adsorbed to produce an immobilized enzyme.
  • a spherical spherical hydrogel can be generally formed by dropping an aqueous solution of a polymer compound using a metering pump or the like.
  • the particle size of the hydrogel can be changed by the viscosity of the polymer solution, the dropping speed, the diameter of the dropping port, and the like.
  • a rod-like or thread-like hydrogel can be formed.
  • various water-containing gel composites can be formed by impregnating a porous body, a fiber assembly, or the like with the aqueous polymer solution used in the present invention and then bringing the resultant into contact with an alkali solution.
  • the hydrogel obtained according to the present invention can be used in various industrial fields, but the following specific examples can be given.
  • bioreactors by entrapping or adsorbing bioactive substances such as microorganisms and enzymes.
  • the hydrogel having the structure of the present invention has an excellent effect as a chelating resin
  • water containing metal ions is passed through a column filled with the hydrogel of the present invention, or the solution of the present invention is placed in a metal ion-containing solution.
  • the metal ions in the solution can be removed and concentrated. If a crosslinked hydrogel is used, the adsorbed metal ions can be immersed in a mineral acid, recovered, and the regenerated gel can be used repeatedly.
  • % means “% by weight” unless otherwise specified.
  • the polymer E was obtained by polymerizing without using acrylonitrile and performing the same reaction.
  • compositions and reduced viscosities of the polymers A to E were measured by the following methods. The results are summarized in Table 1.
  • composition of each raw material polymer before amidination was calculated from the integrated value of the absorption peak corresponding to each monomer unit of the 13 C-NMR spectrum.
  • compositions of Polymers A to E after amidine formation were calculated from the integrated values of absorption peaks corresponding to each repeating unit of the 13 C-NMR spectrum. Note that the repeating units (1) and (2) should not be distinguished. The total amount was calculated.
  • the absorption beaks of the repeating units (1), (2), and primary amines are recognized at very close positions around 170 to 185 ppm, so that each absorption beak is applied in the following manner.
  • the corresponding structure was assigned. That is, the weight balance was confirmed by the elemental analysis of the polymer and the measurement of the water content.
  • the IR spectrum was also measured, and the polymer spectrum and the amidine were measured.
  • the method employs a method for comparing and examining in detail the spectrum of a known compound having a group, an amide group and a lactam group.
  • Polymers A to E were measured as solutions of 0.1 gZl00 milliliter in 1N saline at 25 ° C. using an Ostfield viscometer.
  • Polymer type A B C D E Monomer composition N-vinylform
  • Example 1 Sample 1 A 2.3.5 5 0
  • Prototype polymer C 10 g, distilled water 90 g, triiron tetroxide powder (particle size 100 or less) 3 Og were mixed and stirred to make a uniform slurry, and then 2 g of 10% acetoaldehyde solution was added. After that, in the same operation as in Example 1, the solution is dropped into a 2% sodium hydroxide solution. After the completion of the dropwise addition, the pH of the caustic soda solution was adjusted to 7.5 with sulfuric acid, and then the mixture was filtered to obtain a hydrogel containing iron tetroxide. The apparent specific gravity of the obtained hydrogel in water was 1.54, and the average particle size was 2.3 mm. The water content of this hydrogel was 215%. This hydrogel can be separated from the liquid by a magnet.
  • Example 2 250 g of the water-containing gel of Sample 1 produced in Example 1 was packed in a column having a diameter of 4 Omm and a height of 30 Omm, and a solution having a concentration of 2 OmgZ liter of copper was applied from the lower end of the column at a rate of 10 ml / min.
  • the copper ion concentration of the treated water flowing out from the upper end was measured using an atomic absorption spectrophotometer (manufactured by Shimadzu Corporation).
  • the copper ion concentration of the treated water after passing through 200 liters was 0.08 mg / liter.
  • Example 2 250 g of the water-containing gel of sample 13 prepared in Example 1 was packed in a column having a diameter of 4 Omm and a height of 300 mm, and the alminol first force was applied from the lower end of the column—400 mg Z-liter of Letto BL (manufactured by Hoechst).
  • the concentrated solution was passed through a tubing pump (manufactured by AT Corporation) at a flow rate of 2 milliliters per minute, and the residual dye concentration in the effluent from the upper end was measured using an absorptiometer. Calculate the total amount of dye adsorbed on the hydrogel when the water content is 20% or less of raw water.
  • Table 4 shows the water flow rate, the residual dye concentration and the accumulated amount of dye adsorption. From the results in Table 4, the dye adsorption capacity of this gel is 59.3 mgZg. Table 4
  • the hydrogel (sample 14) obtained in Example 1 was used as a carrier in an aerobic fluidized-bed biological treatment device equipped with a diffuser tube and an air lift tube for flowing the carrier into the aeration tank. .
  • ⁇ ⁇ 900 ml of aeration tank sludge (sludge concentration 4000 mg liter) obtained from the activated sludge treatment site at the water treatment plant to, after 24 hours aeration, human E drainage (oxidized starch 25 OmgZ liters, peptone 25 OmgZ rate torr, potassium phosphate 15mg Bruno liter ferrous lmg Bruno liter sulfuric, Maguneshiu arm lmg / / liter Calcium chloride (lmgZ liter) was supplied quantitatively into the aeration tank at a rate of 3 liters Z days using a Verista pump (manufactured by Ato Corporation).
  • the temperature inside the aeration tank during water flow is 25. C maintained.
  • the BOD of this artificial drainage is 390mgZ liter.
  • the supernatant water quality of the treated water was analyzed at 1 week, 2 weeks and 4 weeks after the start of water flow.
  • Example 6 For comparison, the same test as in Example 6 was performed using 200 g of polystyrene beads having an average particle size of about 1 mm as a carrier. C shown in Table 5 summarizes the results obtained
  • the thus obtained enzyme-immobilized hydrogel was immersed in a 0.05 mol sodium borate-hydrochloric acid buffer solution containing 0.6% glutaraldehyde for 1.5 hours, and then separated by filtration and again subjected to 0.02 g. It is suspended and dispersed in 1 liter of 5 mol of Tris-HCl buffer, filtered and the weight of the obtained enzyme-fixed hydrogel is measured.
  • the reaction mixture was added to 1 liter of a 10% solution and reacted at 40 ° C for 60 minutes.
  • the total amount of reducing sugars formed was determined by the methylene blue method, and the amount of sucrose degradation per hour by 1 g of the enzyme-fixed hydrogel was shown in Table 6. Show.
  • Example 7 For a comparative example, the same operation as in Example 7 was performed using a commercially available strong basic ion exchange resin Amberlite IRA-9OX (manufactured by Organo Corporation), and the amount of decomposition of Sacrose by resin lg was determined. Table 6 shows.
  • Example 2 10 g of a water-containing gel using the polymer B produced in Example 1 (Sample 1) was washed with 10 g of water, filtered, and placed in 0.05 ml of sodium borate-monohydrochloride buffer (pH 6.0) for 10 minutes. After immersion, filter again. This is poured into 100 ml of a three-fold diluted dialcosyl isomerase (manufactured by Nagase) which has been dialyzed, gently stirred at room temperature, and filtered. The enzyme-immobilized hydrogel thus obtained was immersed in a 0.05 mol sodium borate / hydrochloric acid buffer solution containing 0.6% glutaraldehyde for 1.5 hours.
  • sodium borate-monohydrochloride buffer pH 6.0
  • This hydrogel and the hydrogel not treated with daltaraldehyde were each immersed in 1 liter of 10% saline, stirred for 1 hour, filtered, washed, and then converted to glucose. Compared their ability to do so. Dalco-converting ability is determined by the following method.
  • the enzyme-immobilized hydrated gel obtained in 1 liter of a 40% glucose solution dissolved in a 0.1 M phosphate buffer was added, and the mixture was reacted at 60 eC for 1 hour.
  • the amount of fructose formed as a result was determined by the HPLC method, and the amount of glucose converted to fructose per 1 g of the hydrogel (glucose conversion amount) was determined. Table 7 shows the results.
  • a method capable of easily producing a hydrogel without using complicated equipment and without using a large-scale apparatus, a heavy metal ion adsorbent comprising the hydrogel, and a dye An adsorbent, a microbial carrier and a carrier for immobilizing enzymes can be provided.

Abstract

A process for producing an aqueous gel easily without the necessity for complicated operations and large-scale equipment, which comprises bringing an aqueous solution of a polymer having repeating units comprising cationic groups represented by general formulae (1) and/or (2) into contact with an aqueous alkali solution to cause deposition of an aqueous gel, (wherein R?1 and R2¿ represent each hydrogen or methyl; and X represents an anion). The obtained gel is formed into a heavy-metal ion adsorbent, pigment adsorbent, microbe carrier, and carrier for enzyme immobilization.

Description

明 細 書 含水ゲルの製造方法、 重金属イオン吸着剤、色素吸着剤、 微生物担体および酵素 固定用担体 技術分野  Description Manufacturing method of hydrogel, heavy metal ion adsorbent, dye adsorbent, microbial carrier and enzyme immobilizing carrier Technical field
本発明はアミジン構造を有する含水ゲルの製造方法、 重金属イオン吸着剤、 色 素吸着剤、 微生物担体および酵素固定用担体に関するものである。 背景技術  The present invention relates to a method for producing a hydrogel having an amidine structure, a heavy metal ion adsorbent, a dye adsorbent, a microorganism carrier and a carrier for immobilizing enzymes. Background art
カチオン性解離基を内在させる含水ゲルは、 従来から吸着剤、 ァニオン性有機 物の吸着剤、 菌体、細胞、 薬類の吸着剤、 固定化酵素の担体、 流動床式のイオン 交換樹脂、 生物処理装置の流動担体、 吸水性樹脂など様々な用途に使用されてい る。 このような目的に使用される含水ゲルとしては、 キレート樹脂として有用な ポリビニルァミンあるいはポリィソブ口べニルァミンなどのポリビニルァミン類 を架橋した構造のカチオン性樹脂 (特開昭 6 1— 4 4 9 0 2号公報) 、 ^基性 陰イオン交換樹脂ゃキレート樹脂などとして有用なポリビニルァミンあるいはポ リイソブ口べニルアミンなどのポリビニルアミン類を架橋して球状に不溶化した もの (特開昭 6 1 - 5 1 0 0 6号公報) 、 ァミノ基含有率の高いポリビニルァミ ン架橋物 (特開昭 6 1 - 5 1 0 0 7号公報) 、 ジアルキルァミノメタァクリレー トやその四級化物を単量体とした重合物 (特開平 1一 2 6 9 4 9 3号公報) ゃビ 二ルビリジンなどの架橋性重合体、 力二ゃェビなどの甲皮に存在するキチンを処 理して得られる塩基性多糖であるキトサンの酸性水溶液をアル力リ性水溶液媒体 中に滴下して得られるキ卜サン固化粒子 (特開昭 6 2— 2 8 8 6 0 1号公報) な ど力知られている。  Hydrous gels containing cationic dissociation groups have been used as adsorbents, adsorbents for anionic organic substances, adsorbents for bacteria, cells, and drugs, carriers for immobilized enzymes, fluidized bed ion exchange resins, It is used for various purposes such as fluid carriers in water treatment equipment and water-absorbing resins. Examples of the hydrogel used for this purpose include cationic resins having a structure in which polyvinylamines useful as a chelating resin or polyvinylamines such as polysobopenylamine are crosslinked (Japanese Patent Application Laid-Open No. 61-449 / 1986). No. 02), ^ basic anion exchange resin, polyvinylamines such as polyvinylamine or polyisobutenylamine useful as a chelating resin and the like, which are cross-linked and insolubilized in spherical form (Japanese Patent Laid-Open No. 61- No. 5106), a crosslinked polyvinylamine having a high amino group content (Japanese Patent Application Laid-Open No. 61-50707), a dialkylaminomethacrylate and a quaternary compound thereof. Polymer as a dimer (Japanese Patent Application Laid-Open (JP-A) No. Hei 1-269493) A polymer obtained by processing a cross-linkable polymer such as vinylaviridin and chitin present in the carapace such as radish shrimp. Is a basic polysaccharide The acidic aqueous solution of chitosan are known al force key Bok San solidified particles obtained was dropped into Li aqueous solution medium (JP 6 2 2 8 8 6 0 1 JP) soil strength.
これらの含水ゲルの製造は有機溶媒を用 L、た分散媒中で、 架橋剤を共存させて 製造するのが一般的であり、 その製造には煩雑な操作と大掛かりな装置を必要と する欠点があり、 一方、 キトサンのような天然物は原料を安定的に多量に入手す ることが困難であり、高価となる。 The production of these hydrogels is carried out by using an organic solvent in a dispersing medium in the presence of a crosslinking agent. It is generally manufactured and has the drawback of requiring complicated operations and large-scale equipment.On the other hand, it is difficult to obtain a large amount of natural materials such as chitosan stably in large quantities. Is expensive.
本発明の目的は、 煩雑な操作を必要とせず、 かつ大掛かりな装置を用いないで 含水ゲルを容易にかつ経済的に製造する方法を提供すること、 およびその含水ゲ ルからなる重金属イオン吸着剤、 色素吸着剤、 微生物担体および酵素固定用担体 を提供することである。 発明の開示  An object of the present invention is to provide a method for easily and economically producing a hydrogel without requiring complicated operations and using a large-scale apparatus, and a heavy metal ion adsorbent comprising the hydrogel. A dye adsorbent, a microorganism carrier and a carrier for enzyme immobilization. Disclosure of the invention
本発明者等は、 上記の課題に鑑み、 鋭意検討を行った結果、 ァミジン構造を有 する特定のカチオン性高分子化合物の水溶液をアル力リ水溶液と接触させること により、 容易に含水ゲルを製造することができることを見いだし、 本発明を成す に至 ϋた。 本発明は、 下記式 (1) および /または (2) で表されるカチオン性基から成 る繰り返し単位を有する高分子の水溶液をアルカリ性水溶液に接触させて析出さ せて成形することを特徴とする含水ゲルの製造方法である。  In view of the above problems, the present inventors have conducted intensive studies, and as a result, easily contacting an aqueous solution of a specific cationic polymer compound having an amidine structure with an aqueous solution of an aqueous solution to easily produce a hydrogel. And found that the present invention was achieved. The present invention is characterized in that an aqueous solution of a polymer having a repeating unit composed of a cationic group represented by the following formula (1) and / or (2) is brought into contact with an alkaline aqueous solution to precipitate and form. This is a method for producing a hydrogel.
一 (CH2-CR1-CH2-CR2) -One (CH 2 -CR 1 -CH 2 -CR 2 )-
I _ C = N—— 1 (1) I _ C = N—— 1 (1)
I  I
N+H3X" N + H 3 X "
一 (CH2-CR2-CH2-CRI) -I (CH 2 -CR 2 -CH 2 -CR I )-
1 ~ N = C—— 1 (2) 1 to N = C—— 1 (2)
I  I
N + H3X_ N + H 3 X_
(式中 R R2は水素原子またはメチル基を、 X_は陰イオンを表す。 ) また、 本発明の第 2の発明は、 さらに上記式 ( 1 ) および Zまたは (2 ) で表 されるカチオン性基から成る繰り返し単位を 1 0〜8 0モル%含有し、 かつシァ ノ基を 1 0〜6 0 m o l %含有する高分子の 1〜5 0重量%の水溶液をアル力リ 性水溶液と接触させ、析出させて成形することを特徴とする含水ゲルの製造方法 である。 本発明の第 3の発明は、 前記第 1の発明に於いて、 さらに高分子の水溶液およ びノまたはアル力リ性水溶液中に、 該高分子の分子内の活性水素と反応可能な架 橋剤を共存させることを特徴とする含水ゲルの製造方法である。 本発明の第 4の発明は、 前記第 1の発明に於いて、 さらにアルカリ性水溶液の p Hが 1 1以上であることを特徴とする含水ゲルの製造方法である。 本発明の第 5の発明は、 前記第 1の発明に於いて、 さらにアルカリ性水溶液の p H力 1 2以上であることを特徴とする含水ゲルの製造方法である。 本発明の第 6の発明は、前言 の発明において、 さらに含水ゲルを酸水溶液 に浸漬して含水ゲルの膨潤性を制御することを特徴とする含水ゲルの製造方法で ある。 (Where RR 2 represents a hydrogen atom or a methyl group, and X_ represents an anion.) The second invention of the present invention further comprises 10 to 80 mol% of a repeating unit comprising a cationic group represented by the above formula (1) and Z or (2), and further comprises a cyano group. This is a process for producing a hydrogel, which comprises contacting an aqueous solution of 1 to 50% by weight of a polymer containing 10 to 60 mol% with an aqueous solution of an alkali, precipitating and forming the gel. The third invention of the present invention is the invention according to the first invention, further characterized in that the polymer is capable of reacting with active hydrogen in the molecule of the polymer in an aqueous solution of the polymer and an aqueous solution of the polymer. A method for producing a hydrogel, which comprises coexisting a crosslinking agent. A fourth invention of the present invention is the method for producing a hydrogel according to the first invention, wherein the pH of the alkaline aqueous solution is 11 or more. A fifth invention of the present invention is the method for producing a hydrogel according to the first invention, wherein the pH of the alkaline aqueous solution is 12 or more. The sixth invention of the present invention is the method for producing a hydrogel according to the above-mentioned invention, further comprising immersing the hydrogel in an aqueous acid solution to control the swellability of the hydrogel.
本発明の第 7の発明は、 前記第 6の発明において、 酸水溶液が硫酸、 りん酸、 m , 炭酸から選択される少なくとも一つの多価塩基酸の水溶液であることを特 徴とする含水ゲルの製造方法である。 本発明の第 8の発明は、 前記第 6の発明による酸水溶液が塩酸、 酢酸から選択 される少なくとも一つの一塩基酸の水溶液であることを特徴とする含水ゲルの製 造方法である。 本発明の第 9の発明は、 前記第 1から第 8の何れかの発明による含水ゲルから 成ることを特徴とする重金属イオン吸着剤である。 本発明の第 1 0の発明は、 前記第 1から第 8の何れかの発明による含水ゲルか ら成ることを特徴とする色素吸着剤である。 本発明の第 1 1の発明は、 前記第 1から第 8の何れかの発明による含水ゲルか ら成ることを特徴とする微生物担体である。 本発明の第 1 2の発明は、 前記第 1から第 8の何れかの発明による含水ゲルか ら成ることを特徴とする酵素固定用担体である。 本発明の含水ゲルの製造方法により、煩雑な操作を必要とせず、 かつ大掛かり な装置を用いな L、で容易に含水ゲルを製造すること力《できる。 A seventh invention of the present invention is the water-containing gel according to the sixth invention, wherein the aqueous acid solution is an aqueous solution of at least one polybasic acid selected from sulfuric acid, phosphoric acid, m, and carbonic acid. It is a manufacturing method of. According to an eighth aspect of the present invention, the acid aqueous solution according to the sixth aspect is selected from hydrochloric acid and acetic acid. A hydrogel, wherein the aqueous gel is an aqueous solution of at least one monobasic acid. A ninth invention of the present invention is a heavy metal ion adsorbent comprising the hydrogel according to any one of the first to eighth inventions. A tenth aspect of the present invention is a dye adsorbent comprising the hydrogel according to any one of the first to eighth aspects. An eleventh invention of the present invention is a microorganism carrier comprising the hydrogel according to any one of the first to eighth inventions. A twenty-second invention of the present invention is a carrier for immobilizing an enzyme, comprising the hydrogel according to any one of the first to eighth inventions. According to the method for producing a hydrogel of the present invention, it is possible to easily produce a hydrogel without the need for complicated operations and using a large-scale apparatus.
含水ゲルは重金属イオン吸着剤、 色素吸着剤および微生物担体、 酵素固定用担 体などとして使用できるので産業上の利用価値が高い。 図面の簡単な説明 第 1図は、 本発明で使用される曝気槽の構造を示す説明図である。 発明を実施するための最良の形態  Hydrous gel has high industrial utility because it can be used as a heavy metal ion adsorbent, a dye adsorbent, a microbial carrier, and a carrier for enzyme immobilization. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory view showing the structure of an aeration tank used in the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の方法にて含水ゲルを製造できる水溶性高分子化合物として、 上記 (1 ) および または (2)で表された繰り返し単位 (アミジン単位) を有する水溶性 高分子化合物、 好ましくは上記単位 (ァミジン単位) を 10〜90mo l%、 更 に好ましくは上記単位 (アミジン単位) を 10〜80mo 1%有し、 かつシァノ 基を 10〜60mo 1 %有するものを用いることができる。 上記アミジン構造を有するカチオン性高分子は高分子凝集剤として、 排水処理 や汚泥の脱水剤として大量に販売されており、 本発明の含水ゲルはそれを用いて 製造することができる力 高分子自身の製造方法は特に特定されるものではない。 しかし一般的には一級ァミノ基または変換反応により一級ァミノ基が生成しうる 置換アミノ基を有するエチレン性不飽和モノマーとァクリルニトリルまたはメタ ァクリルニトリルのニ卜リル類との共重合体を製造し、 更にその共重合体中のシ ァノ基と一級ァミノ基を反応させてアミジン化する方法により製造することがで きる。 上記エチレン性不飽和モノマーとしては一般式 CH2 = CR2— NHCOR3 (式 中、 R2は水素原子またはメチル基を、 R3は炭素数 1〜4のアルキノレ基または水 素原子を表す。 ) で表される化合物力《好まい、。 共重合体中において、 かかる化 合物に由来する置換アミノ基は、 加水分解あるいは加アルコール分解により容易 に一級アミノ基に変換される。更にこの一級ァミノ基は、 隣接したシァノ基と反 応してアミジン化する。 該化合物としては、 N—ビニルホルムアミ ド (R2 = H、 R3 = H) 、 N—ビニルァセトアミ ド (R2 = H、 R3 = Me) などが例示される。 これらのエチレン性不飽和モノマーと二卜リル類との重合モル比は、 通常 30 : 70〜70: 30であるが、 若し所望ならばこの範囲外の重合モル比、 例えば、 更にェチレン性不飽和モノマーの比率の大き L、重合モル比を採用することもでき る。 エチレン性不飽和モノマーと二トリル類との共重合の方法としては、 通常のラ ジカル重合法が用いられ、 水溶液重合、塊状重合、 水溶液沈殿重合、 懸濁重合、 乳化重合などのいずれも用いることができる。 溶媒中で重合させる場合、 原料モ ノマー濃度力く通常 5 ~ 8 0重量%、 好ましくは 2 0〜6 0重量%で実施される。 重合開始剤には一般的なラジカル重合開始剤を用いることができる力 ァゾ化合 物が好ましく、 2 , 2 ' —ァゾビス一 2—アミジノプロパンの塩酸塩などカ<例示 される。 また、 重合反応は、 一般に、 不活性ガス気流下、 3 0〜: L 0 0ての温度で実施 される。 得られた共重合体は、 そのままの状態あるいは希釈して、 即ち、 溶液状 もしくは懸濁状でァミジン化反応に供することができる。 また、 公知の方法で脱 溶媒、 乾燥し、 共重合体を固体として分離した後、 固体状でアミジン化反応に供 することもできる。 アミジン化反応は、 エチレン性不飽和モノマーとして前記一般式で示される N 一ビニルァミ ド化合物を用いた場合には、共重合体の置換ァミノ基を一級ァミノ 基に変換し、 次いで、 生成した一級ァミノ基と隣接するシァノ基と反応させてァ ミジン構造を生成させるという 2段階反応により本発明に係るカチォン性高分子 を製造することができる。 そして、 好ましくは、 該共重合体を、 強酸または強塩 基の存在下、 水またはアルコール溶液中で加温して、 一段階でアミジン構造を生 成させる。 この場合においても、 先ず、一級アミノ基が中間構造として生成して いるものと考えられる。 該反応の具体的条件としては、例えば、 共重合体に対し、 その置換ァミノ基に 対して通常 0. 9 - 5. 0倍、 好ましくは 1 . 0〜3. 0倍当量の強酸、 好まし くは塩酸を加え、 通常 8 0〜1 5 0 °C、 好ましくは 9 0 ~ 1 2 0 °Cの温度で、 通 常 0. 5〜2 0時間加熱することによりアミジン単位を有するカチオン化高分子 とすることができる。 一般に置換アミノ基に対する強酸の当量比力 <大きいほど、 力、つ、 反応温度が高いほど、 アミジン化が進行する。 また、 アミジン化に際して は反応に供する共重合体に対し、 通常 1 0重量%以上、 好ましくは 2 0重量%以 上の水を反応系内に存在させる。 本発明に係るカチオン性高分子は、 最も典型的には、上記で説明したところに 従い、 N—ビニルホルムアミ ドとアクリロニトリルとを共重合させ、 生成した共 重合体を、 通常、 水懸濁液として塩酸の存在下に加熱して置換アミノ基と隣接す るシァノ基からアミジン単位を形成させることにより製造される。 そして、 共重 合に供する N—ビニルホルムアミ ドとアクリロニトリルとのモル比、 および共重 合体のアミジン化条件を選択することにより、 各種の組成のカチオン性高分子を 製造することができる。 As the water-soluble polymer compound that can be used to produce a hydrogel by the method of the present invention, the above-mentioned (1) And / or a water-soluble polymer compound having a repeating unit (amidine unit) represented by (2), preferably 10 to 90 mol% of the above unit (amidine unit), and more preferably 10 to 90 mol% of the above unit (amidine unit). It is possible to use one having about 80% mo and 1% and having 10 to 60% moyl cyano group. The cationic polymer having an amidine structure is sold in large quantities as a polymer flocculant, as a wastewater treatment or sludge dewatering agent, and the hydrogel of the present invention can be produced using the polymer itself. Is not particularly specified. However, generally, a copolymer of an ethylenically unsaturated monomer having a substituted amino group and a nitrile of acrylonitrile or methacrylonitrile with a primary amino group or a primary amino group capable of forming a primary amino group by a conversion reaction is produced. Further, it can be produced by a method of reacting a cyano group and a primary amino group in the copolymer to form an amidine. The ethylenically unsaturated monomer has a general formula CH 2 = CR 2 —NHCOR 3 (wherein R 2 represents a hydrogen atom or a methyl group, and R 3 represents an alkynole group having 1 to 4 carbon atoms or a hydrogen atom. ) Compound power represented by In the copolymer, a substituted amino group derived from such a compound is easily converted to a primary amino group by hydrolysis or alcoholysis. Further, this primary amino group reacts with an adjacent cyano group to form an amidine group. As the compound, N- vinyl formamidinium de (= R 2 = H, R 3 H), N- Biniruasetoami de (R 2 = H, R 3 = Me) and the like are exemplified. The polymerization molar ratio of these ethylenically unsaturated monomers to nitriles is usually from 30:70 to 70:30, but if desired, the polymerization molar ratio outside this range, for example, ethylenic unsaturated monomer The ratio L of the saturated monomer and the polymerization molar ratio may be employed. As a method of copolymerizing an ethylenically unsaturated monomer with nitriles, a usual radical polymerization method is used, and any of aqueous solution polymerization, bulk polymerization, aqueous solution precipitation polymerization, suspension polymerization, emulsion polymerization, etc., is used. Can be. When the polymerization is carried out in a solvent, the raw material monomer concentration is generally 5 to 80% by weight, preferably 20 to 60% by weight. The polymerization initiator is preferably a azo compound in which a general radical polymerization initiator can be used, and examples thereof include 2,2′-azobis-1-amidinopropane hydrochloride. Further, the polymerization reaction is generally carried out at a temperature of 30 to L 00 under an inert gas stream. The obtained copolymer can be subjected to the amidination reaction as it is or diluted, that is, in the form of a solution or suspension. In addition, after the solvent is removed and dried by a known method, and the copolymer is separated as a solid, it can be subjected to an amidination reaction in a solid state. When the N-vinylamide compound represented by the above general formula is used as the ethylenically unsaturated monomer in the amidination reaction, the substituted amino group of the copolymer is converted into a primary amino group. The cationic polymer according to the present invention can be produced by a two-step reaction of reacting a group with an adjacent cyano group to form an amidine structure. Then, preferably, the copolymer is heated in a water or alcohol solution in the presence of a strong acid or strong base to generate an amidine structure in one step. In this case, too, it is considered that the primary amino group was formed as an intermediate structure. Specific conditions for the reaction include, for example, usually 0.9 to 5.0 times, preferably 1.0 to 3.0 times the equivalent of a strong acid to a substituted amino group of the copolymer. Or hydrochloric acid, and heated at a temperature of usually 80 to 150 ° C., preferably 90 to 120 ° C., usually for 0.5 to 20 hours to form a cationized polymer having amidine units. It can be a molecule. In general, the greater the equivalent ratio of the strong acid to the substituted amino group, the greater the force, the higher the reaction temperature, the more the amidine formation proceeds. In addition, at the time of amidine formation, usually 10% by weight or more, preferably 20% by weight or more of water is present in the reaction system with respect to the copolymer to be subjected to the reaction. Most typically, the cationic polymer according to the present invention is obtained by copolymerizing N-vinylformamide and acrylonitrile in accordance with the description above, and the resulting copolymer is usually suspended in water. It is produced by heating in the presence of hydrochloric acid as a liquid to form an amidine unit from a substituted amino group and a neighboring cyano group. Then, cationic polymers having various compositions can be produced by selecting the molar ratio of N-vinylformamide and acrylonitrile to be subjected to the copolymerization and the conditions for amidination of the copolymer.
このようにして得られた水溶性カチオン高分子化合物の 0. 5重量%以上 5 0 重量%未満、 好ましくは 1重量%以上 2 0重量%未満の水溶液を調整して、 p H 1 1以上、 好ましくは p H 1 2以上、更に好ましくは p H I 2. 5以上のアル力 リ水溶液と接触させることにより、 水溶性カチォン高分子化合物の有するカチォ ン基は解離が抑えられ、 高分子化合物は水不溶性樹脂となり、 含水ゲルが形成さ れる。 この現象は、 アミジン構造を有するァミノ基が p H I 0. 5以上で解離が 抑えられ、 疎水化されるためである。 この含水ゲルは水洗してゲル内のアル力リ成分を除去することにより変質を防 ぐことができる。 アルカリ成分共存下で保持することにより高分子内のシァノ基 およびアミジン単位が加水分解して、 カルボキシル基に変換され、 樹脂内にァニ オン性基とカチオン性基を有する両性タイプの含水ゲル力形成される。 An aqueous solution of 0.5% by weight or more and less than 50% by weight, preferably 1% by weight or more and less than 20% by weight of the water-soluble cationic polymer compound thus obtained is adjusted to have a pH of 11 or more, The dissociation of the cation group of the water-soluble cation polymer compound is suppressed by contacting the cation group with an aqueous solution of water having a pH of preferably not less than 12, more preferably not less than pH 2.5, and the polymer compound is preferably water. It becomes an insoluble resin and a hydrogel is formed. This phenomenon is because the dissociation of the amino group having an amidine structure is suppressed at pH HI 0.5 or more, and the amino group is made hydrophobic. The water-containing gel can be washed with water to remove the components in the gel, thereby preventing deterioration. By holding in the presence of an alkali component, the cyano group and amidine unit in the polymer are hydrolyzed and converted to a carboxyl group, and the aniline is contained in the resin. An amphoteric type hydrogel having an on-group and a cationic group is formed.
用途によっては、 この加水分解を積極的に進行させるため、 長時間アルカリ溶 液に浸漬するか、 アルカリ溶液に浸漬して、 加熱することにより分子内に多数の 力ルボキシル基の共存する含水ゲルを形成させることができる。 通常この加水分解を抑えるためには、 酸による中和または酸水溶液による洗浄 がおこなわれるが、 得られた含水ゲルは中性付近ではゲル構成単位の高分子化合 物がもとの水溶性を回復して、 水を吸って膨潤し、 ついには溶解して形をとどめ なくなる。  Depending on the application, this hydrolysis can be positively progressed by immersing in an alkaline solution for a long time or immersing in an alkaline solution and heating to form a hydrogel that has a large number of carboxylic acid groups in the molecule. Can be formed. Normally, to suppress this hydrolysis, neutralization with an acid or washing with an aqueous acid solution is performed.However, the obtained water-containing gel recovers its original water solubility at around neutrality due to the polymer compound of the gel constituent unit. Then, they absorb water and swell, and eventually dissolve and lose their shape.
このような問題点を解決する方法として、 含水ゲル製造時に調整する高分子水 溶液中または、 接触させるアル力リ水溶液中に高分子化合物が有するァミノ基ま たはシァノ基との反応により共有結合を生ずる官能基を 1分子中に 2つあるいは それ以上有する架橋剤を共存させた後、 アル力リ水溶液に高分子水溶液を接触さ せる方法が用いられる。  As a method for solving such a problem, a covalent bond is formed by a reaction with an amino group or a cyano group of a polymer compound in a polymer aqueous solution prepared at the time of production of a hydrogel or in an aqueous solution of alcohol to be contacted. A method is used in which a cross-linking agent having two or more functional groups in one molecule is caused to coexist, and then an aqueous polymer solution is brought into contact with an aqueous solution of the polymer.
このようにして形成された含水ゲルは、 酸による中和が行われても、 再溶解す ることなく安定な水不溶性のゲルを形成することができる。  The water-containing gel thus formed can form a stable water-insoluble gel without being redissolved even after neutralization with an acid.
中和に用いる酸として硫酸ゃリン酸などの多価塩基酸を使用した場合、 分子内 のアミノ基は硫酸塩、 リン酸塩を形成し、膨潤性の小さい含水ゲルを形成するこ とができる。  When a polybasic acid such as sulfuric acid / phosphoric acid is used as the acid used for neutralization, amino groups in the molecule form sulfates and phosphates, and can form a hydrogel having a small swelling property. .
また、 中和に塩酸や酢酸といった一塩基酸を用いた場合は用いる架橋剤の量を 調節することにより、 膨潤倍率は 1 0 0倍以上の含水ゲルを得ることができる。 使用される架橋剤の具体例としては、 ホルムアルデヒド、 ァセトアルデヒド、 グリオキザール、 マロンアルデヒド、 グルタールアルデヒドなどのジホルミルァ ルカン類を用いることができる力 <、 これ以外にも、 1級アミノ基ゃシァノ基と反 応して共有結合を形成することのできる官能基を 1分子中に 2つあるいはそれ以 上有する架橋剤を用いても含水ゲルを形成することができる。 When a monobasic acid such as hydrochloric acid or acetic acid is used for neutralization, a hydrogel having a swelling ratio of 100 times or more can be obtained by adjusting the amount of the crosslinking agent used. Specific examples of the cross-linking agent used include the ability to use diformylalkanes such as formaldehyde, acetoaldehyde, glyoxal, malonaldehyde, glutaraldehyde, and the like. Two or more functional groups capable of forming a covalent bond in a molecule A hydrogel can also be formed by using the above crosslinking agent.
また、 合成された重合体中に N—ビニルホルムアミ ド、 N—ビニルァセトアミ ドのモノマー力 <共存している場合は、 これらのモノマーが加水分解してァセトァ ルデヒドを形成し、 それ力架橋剤として機能するため、 特に架橋剤の添加が不必 要となる場合も有る。 本発明の含水ゲルは、 アミジン構造を有する高分子化合物の水溶液を塩基性の 水性媒体と接触させることにより得られるが、 この場合調整される高分子化合物 の水溶液の濃度は 0. 5重量%以上 5 0重量%未満、 好ましくは、 1重量%以上 2 0重量%未満の濃度から選ばれるが、 その濃度は最終的に求められる含水ゲル の含水比やゲル により決められる。  In addition, when the monomer power of N-vinylformamide and N-vinylacetamide is present in the synthesized polymer, if these monomers coexist, these monomers are hydrolyzed to form acetoaldehyde, which is used as a cross-linking agent. In some cases, the addition of a cross-linking agent is unnecessary because it functions. The hydrogel of the present invention can be obtained by contacting an aqueous solution of a polymer compound having an amidine structure with a basic aqueous medium. In this case, the concentration of the adjusted aqueous solution of the polymer compound is 0.5% by weight or more. The concentration is selected from a concentration of less than 50% by weight, preferably 1% by weight or more and less than 20% by weight, and the concentration is determined by the final water content of the hydrogel and the gel.
—般的には接触させる高分子化合物の水溶液濃度が高 L、ほど含水比は低下し、 ゲル強度は上昇する。 逆にその濃度が低いほど、 高分子溶液の粘性は低下し、 ァ ルカリ水溶液との接触時に、 液面での衝撃により高分子液がアル力リ液中に分散 し、 含水ゲルの形成が困難となることから、一般に低分子量のものほど、 低濃度 での含水ゲルの製造が困難となる。  —Generally, the higher the aqueous solution concentration of the polymer compound to be brought into contact, the lower the water content ratio and the higher the gel strength. Conversely, the lower the concentration, the lower the viscosity of the polymer solution, and upon contact with the aqueous alkali solution, the polymer solution disperses in the alkaline solution due to impact on the liquid surface, making it difficult to form a hydrogel. Therefore, in general, the lower the molecular weight, the more difficult it is to produce a hydrogel at a low concentration.
また、 分子量が高すぎると、 アルカリ水溶液中に滴下または押し出しにより含 水ゲルを形成させる場合、 高分子水溶液が曳糸性を有し、得られた含水ゲルの形 状が歪んだり、 含水ゲルに糸状の突起物が形成される。 高分子水溶液の粘性が高すぎる場合は、適度の希釈を行うが、 酸化剤を添加し て分子の切断を行って、 分子量を低下させるか、 食塩、 酢酸ナトリウム、 塩化力 リウムなどの塩を添加してみかけの粘性を下げて対応することもできる。 含水ゲルを形成するために用いる塩基性媒体に用いる塩基性化合物としては、 水酸化力リゥム、 水酸化ナトリゥム、 水酸化アンモニゥム、 炭酸ナトリウムなど が用いられるが、通常ノヽンドリングゃ価格の面から水酸化ナトリウム力用いられ る。 If the molecular weight is too high, when the hydrogel is formed by dropping or extruding into an alkaline aqueous solution, the aqueous polymer solution has spinnability, and the shape of the obtained hydrogel is distorted, Thread-like projections are formed. If the viscosity of the aqueous polymer solution is too high, perform appropriate dilution, but add an oxidizing agent to cut the molecule to reduce the molecular weight, or add a salt such as salt, sodium acetate, or potassium chloride. It is also possible to reduce the apparent viscosity. The basic compound used for the basic medium used to form the hydrogel is, for example, hydroxylated sodium hydroxide, sodium hydroxide, ammonium hydroxide, sodium carbonate, and the like. However, sodium hydroxide is usually used because of the cost of the ring.
用いる塩基性媒体中に硫安、 芒晶、 食塩、 塩化カリウムなどの塩を共存させる ことにより、 含水ゲルの形成を容易にすると共に、 含水ゲルの含水比を低下させ ることかできる。 塩基性媒体に用いる塩基性化合物の濃度は、 それに接触させる高分子化合物の 総量により、 増減するが、 通常 1重量%から 2重量%の間で用いるが、 それ以上 であっても以下であっても差し支えない。 ただ高分子水溶液を接触させることに より塩基性媒体中のアル力リが消費されるため、 含水ゲル製造に当たっては塩基 性化合物の補給が必要である。  The coexistence of a salt such as ammonium sulfate, salt crystals, sodium chloride, or potassium chloride in the basic medium used facilitates the formation of a hydrogel and can reduce the water content of the hydrogel. The concentration of the basic compound used in the basic medium varies depending on the total amount of the polymer compound to be brought into contact with the basic medium, but is usually used in the range of 1 to 2% by weight. No problem. However, contacting the aqueous polymer solution consumes the alcohol in the basic medium, so it is necessary to replenish the basic compound when producing a hydrogel.
接触させる高分子化合物の水溶液の比重は、 塩基性分散媒中に押し出しまたは、 滴下して含水ゲルを形成させる場合、 塩基性分散媒の比重と同じか、 それ以上に 調整するのが望ましく、 その比重調整のために、 溶解した高分子化合物の水溶液 中に食塩、 芒晶などの無機水溶性電解質や炭酸カルシウム、 タルク、 活性白土、 粉末フヱライト、 粉末活性炭などの水不溶性粉末を共存させる方法が取られる。 本発明の方法により、 含水ゲルを製造するに当り、 高分子化合物水溶液中に酵 素、 菌などを共存させて、 これらのものを包括固定し、 バイオリアクターの担体 として使用することもできる。  The specific gravity of the aqueous solution of the polymer compound to be contacted is preferably adjusted to be equal to or higher than the specific gravity of the basic dispersion medium when extruding or dripping into a basic dispersion medium to form a hydrogel. In order to adjust the specific gravity, a method of coexisting an inorganic water-soluble electrolyte such as sodium chloride and salt crystals and a water-insoluble powder such as calcium carbonate, talc, activated clay, powdered graphite, and powdered activated carbon in an aqueous solution of a dissolved polymer compound is used. Can be In producing a hydrogel by the method of the present invention, an enzyme, a bacterium, and the like may coexist in an aqueous solution of a polymer compound, and these may be inclusively fixed and used as a carrier for a bioreactor.
または本発明の方法により得られた含水ゲルを酵素液と接触させ、 酵素を吸着 させて、 固定化酵素を作ることができる。  Alternatively, the hydrogel obtained by the method of the present invention is brought into contact with an enzyme solution, and the enzyme is adsorbed to produce an immobilized enzyme.
また、 抗生物質や殺菌剤、 抗菌剤などを高分子溶液中に分散させた後、 本発明 の方法で含水ゲルを製造することにより、 これらの薬剤の除放性を持たせること 力できる。  In addition, by dispersing an antibiotic, a bactericide, an antibacterial agent, and the like in a polymer solution and then producing a hydrogel by the method of the present invention, it is possible to impart sustained release of these agents.
また、粉末活性炭、 ゼォライト、 フェライトなどの無機粉末を高分子水溶液中 に分散させた後、 本発明の方法により含水ゲルを製造することにより、 含水ゲル の比重を調整すること力できると同時に、 得られた含水ゲルに種々の機能を持た せることができる。 本発明の方法により含水ゲルを製造するにあたり、 通常、 高分子化合物の水溶 液を定量ポンプなどを用いて滴下することにより真球状の含水ゲルを形成させる ことができる。 この含水ゲルの粒径は、 高分子溶液の粘度、 滴下速度、 滴下口の 口径などによつて変化させることができる。 In addition, inorganic powders such as powdered activated carbon, zeolite and ferrite are After the dispersion, the hydrogel is produced by the method of the present invention, whereby the specific gravity of the hydrogel can be adjusted and, at the same time, the obtained hydrogel can have various functions. In producing a hydrogel by the method of the present invention, a spherical spherical hydrogel can be generally formed by dropping an aqueous solution of a polymer compound using a metering pump or the like. The particle size of the hydrogel can be changed by the viscosity of the polymer solution, the dropping speed, the diameter of the dropping port, and the like.
また、 アルカリ水溶液中に高分子水溶液を押し出すことにより、 棒状または糸 状の含水ゲルを形成させることができる。 その他、 本発明に用いる高分子水溶液 を多孔質体、繊維集合体などに含浸させた後に、 アルカリ溶液と接触させること により、 様々な含水ゲル複合体を形成させることもできる。 本発明により得られた含水ゲルは産業上の様々な分野での利用が考えられるが 下記のような具体例を挙げることができる。  Further, by extruding the aqueous polymer solution into the alkaline aqueous solution, a rod-like or thread-like hydrogel can be formed. In addition, various water-containing gel composites can be formed by impregnating a porous body, a fiber assembly, or the like with the aqueous polymer solution used in the present invention and then bringing the resultant into contact with an alkali solution. The hydrogel obtained according to the present invention can be used in various industrial fields, but the following specific examples can be given.
1 ) 生物学的流動床式排水処理方法における流動担体への使用。  1) Use as a fluidized carrier in a biological fluidized bed wastewater treatment method.
2 ) ァニオン性有機物、 例えば染料、界面活性剤、 リグニン、 フミン質などの 吸着剤として排水処理システムへの応用。  2) Application to wastewater treatment systems as adsorbents for anionic organic substances such as dyes, surfactants, lignin, and humic substances.
3 ) 微生物、 酵素などの生理活性物質を包括固定または吸着固定して、 バイオ リアクターへの応用。  3) Application to bioreactors by entrapping or adsorbing bioactive substances such as microorganisms and enzymes.
4 ) 本発明の構造の含水ゲルはキレート樹脂としての優れた効果を有するため、 金属イオンを含む水を本発明の含水ゲルを充填したカラムに通すか、 金属 イオン含有溶液中に、 本発明の含水ゲルを浸漬することにより、 溶液中の 金属イオンの除去、 濃縮を行うことができる。 架橋された含水ゲルを用い れば吸着された金属イオンを鉱酸に浸漬して、 回収し、 再生されたゲルを 繰り返し使用することも可能である。 実施例 4) Since the hydrogel having the structure of the present invention has an excellent effect as a chelating resin, water containing metal ions is passed through a column filled with the hydrogel of the present invention, or the solution of the present invention is placed in a metal ion-containing solution. By immersing the hydrogel, the metal ions in the solution can be removed and concentrated. If a crosslinked hydrogel is used, the adsorbed metal ions can be immersed in a mineral acid, recovered, and the regenerated gel can be used repeatedly. Example
以下、 本発明を実施例により更に具体的に説明する力 本発明は、 その要旨を 越えない限り以下の実施例に限定されるものではない。  Hereinafter, the present invention will be more specifically described with reference to examples. The present invention is not limited to the following examples unless it exceeds the gist of the present invention.
なお、 実施例において 「%」 は、 特に断らない限り、 「重量%」 を意味する。  In Examples, “%” means “% by weight” unless otherwise specified.
[カチオン性高分子の製造法] [Method for producing cationic polymer]
攪拌機、 窒素導入管、 冷却管を備えた 1 0 0ミリリツトルの四つ口フラスコに、 表 1に示すモル分率のァクリロニトリルを含有する、 ァクリロニトリルと N—ビ ニルホルムアミ ドの混合物 6. 0 £ぉょび3 4. 0 gの脱塩水を入れた。 窒素ガ ス気流中、 攪样しつつ 6 0 °Cに昇温したのち、 1 0 %の 2 , 2 ' —ァゾビス- 2 一アミジノブ口パン · 2塩酸塩水溶液 0. 1 2 gを添加した。 4 5 Cで 4時間、 攪拌保持した後、 6 0でに昇温し、 更に 3時間保持し、水中に重合体が析出した 懸濁物を得た。 該懸濁物に水を 2 0 g添加し、 次いで、重合体中のホルミル基に 対して 2当量の濃塩酸を添加して攪拌しつつ 1 0 0°Cに 4時間保持し、 重合体を アミジン化した。 得られた重合体の溶液をアセトン中に添加し、 析出せしめ、 こ れを真空乾燥して固体状重合体 A〜 Eを試作した。  A mixture of acrylonitrile and N-vinylformamide, containing the mole fraction of acrylonitrile shown in Table 1, in a 100 milliliter four-neck flask equipped with a stirrer, nitrogen inlet tube, and condenser tube And 34.0 g of demineralized water. After the temperature was raised to 60 ° C. with stirring in a nitrogen gas stream, 0.12 g of an aqueous solution of 10% 2,2′-azobis-2 monoamidinobutane pan • dihydrochloride was added. After stirring and maintaining at 45 C for 4 hours, the temperature was raised to 60 and further maintained for 3 hours to obtain a suspension in which a polymer was precipitated in water. 20 g of water was added to the suspension, then 2 equivalents of concentrated hydrochloric acid was added to the formyl groups in the polymer, and the mixture was kept at 100 ° C for 4 hours with stirring, and the polymer was added. Amidine. The obtained polymer solution was added to acetone to precipitate, and this was dried under vacuum to produce solid polymers A to E as prototypes.
なお重合体 Eは、 ァクリロニトリルを用いないで重合して同様の反応を行った ものである。  The polymer E was obtained by polymerizing without using acrylonitrile and performing the same reaction.
該重合体 A〜 Eにっき、 以下に示す方法により組成と還元粘度を測定した。 結果を表 1にまとめて示す。  The compositions and reduced viscosities of the polymers A to E were measured by the following methods. The results are summarized in Table 1.
[組成の分析法] [Composition analysis method]
アミジン化を行う前の各原料重合体の組成は、 1 3 C— NMRスべクトルの各モ ノマー単位に対応した吸収ビークの積分値より算出した。 アミジン化後の重合体 A〜Eの組成は、 1 3 C— NMRスべクトルの各繰り返し単位に対応した吸収ビー クの積分値より算出した。 なお、 繰り返し単位 ( 1 ) と (2 ) は区別することな く、 その総量として求めた。 また、 繰り返し単位 (1) 、 (2) 、 および 1級ァミン等の吸収ビークは 17 0〜185 p pm付近の非常に近接した位置に認められるため、 以下のような方 法により各吸収ビークに対応する構造を帰属した。 即ち、 重合体の元素分析、 水 分量の測定により重量収支を確認し、 更に、 重合体の13 C— NMRスべクトルの 他に I Rスべクトノレも測定し、 重合体のスべクトルとアミジン基、 ァミ ド基およ びラクタム基などを有する既知化合物でのスべクトルとを詳細に比較検討する方 法を採用したものである。 The composition of each raw material polymer before amidination was calculated from the integrated value of the absorption peak corresponding to each monomer unit of the 13 C-NMR spectrum. The compositions of Polymers A to E after amidine formation were calculated from the integrated values of absorption peaks corresponding to each repeating unit of the 13 C-NMR spectrum. Note that the repeating units (1) and (2) should not be distinguished. The total amount was calculated. In addition, the absorption beaks of the repeating units (1), (2), and primary amines are recognized at very close positions around 170 to 185 ppm, so that each absorption beak is applied in the following manner. The corresponding structure was assigned. That is, the weight balance was confirmed by the elemental analysis of the polymer and the measurement of the water content. Further, in addition to the 13 C-NMR spectrum of the polymer, the IR spectrum was also measured, and the polymer spectrum and the amidine were measured. The method employs a method for comparing and examining in detail the spectrum of a known compound having a group, an amide group and a lactam group.
[還元粘度の測定] [Measurement of reduced viscosity]
重合体 A〜Eにっき、 1規定の食塩水中 0. 1 gZl 00ミ リ リ ッ トルの溶液 として 25°Cでォストヮルドの粘度計を用いて測定した。 重合体種類 A B C D E モノマー組成 N-ビニルホルム了ミト" 70 50 40 50 100  Polymers A to E were measured as solutions of 0.1 gZl00 milliliter in 1N saline at 25 ° C. using an Ostfield viscometer. Polymer type A B C D E Monomer composition N-vinylform
アクリロニトリル 30 50 80 50 0 アミジン化条件 温度 (。C) 100 100 100 50 100 時間 (Hr) 5 5 5 20 5 重合体組成 (モル %) 31 56 55 15 0  Acrylonitrile 30 50 80 50 0 Amidine conditions Temperature (.C) 100 100 100 50 100 hours (Hr) 5 5 5 20 5 Polymer composition (mol%) 31 56 55 15 0
ホルミル基 2 0 0 6 19  Formyl group 2 0 0 6 19
7 22 34 42 0 7 22 34 42 0
59 22 8 37 8159 22 8 37 81
0 0 1 0 0 かレホ"キシル基 1 0 2 3 0 還元粘度 (dl/g) 2. 8 3. 5 3. 3 3. 1 4. 0 (実施例 1 ) 0 0 1 0 0 or repho "xyl group 1 0 2 3 0 Reduced viscosity (dl / g) 2.8 3.5 3.3.3 3.14.0 (Example 1)
試作例の重合体 A〜D 5 gを蒸留水 8 5 g中に加えて混合攪拌を行い、 重合体 を溶解させた後、 食塩 1 0 g、 グルタールアルデヒドの 2 5 %水溶液 0. 1 gを 加えて、 よく攪拌を行う。 この重合体溶液をアト一製のチュービングポンプを用 いて毎分 1 0ミリリットルの速度で、 2 %苛性ソーダ溶液 5 0 0ミ リリツ トル中 に滴下する。 この場合 2 %苛性ソーダ溶液は攪拌機により 3 0 0 r p mで ffi拌し、 滴下部と苛性ソ一ダ液面の高さは約 2 c mに保持した。  5 g of the polymers A to D of the prototype example were added to 85 g of distilled water, mixed and stirred to dissolve the polymer, and then 10 g of sodium chloride and 0.1 g of a 25% aqueous solution of glutaraldehyde were obtained. And mix well. This polymer solution is dropped into 500 ml of a 2% caustic soda solution at a rate of 10 milliliters per minute using a tubing pump made by Attoichi. In this case, the 2% caustic soda solution was stirred at 300 rpm with a stirrer, and the height of the dripping portion and the caustic soda liquid level was maintained at about 2 cm.
滴下終了後、 この攪拌をさらに 3 0分間継続した後、 硫酸にて苛性ソーダ溶液 の p Hを 7. 5に調整する。 これをスクリーンにて濾別して得られた含水ゲル (試料— 1〜試料一 4 ) を純水にて洗净した後、 平均粒径および含水比を測定し て結果を表 2に示す。 なお含水比は下記式にて計算した。  After the addition, this stirring is continued for another 30 minutes, and the pH of the caustic soda solution is adjusted to 7.5 with sulfuric acid. The hydrogel (samples 1 to 14) obtained by filtering this with a screen was washed with pure water, and the average particle size and the water content were measured. The results are shown in Table 2. The water content was calculated by the following equation.
含水ゲル重量  Hydrous gel weight
含水比 (%) = X 1 0 0  Moisture content (%) = X100
乾燥ゲル重量  Dry gel weight
(比較例 1 )  (Comparative Example 1)
比較のためにァミジン化構造を有しない試作例の重合体 Eを用いる以外は実施 例 1と同様に操作して含水ゲルの製造を試みた力《、 含水ゲルは形成されず、 苛性 ソ一ダ溶液に重合体が溶解した。 結果を表 2に示す。  For comparison, an attempt was made to produce a hydrogel by operating in the same manner as in Example 1 except that the polymer E of the prototype example having no amidinated structure was used. << The hydrogel was not formed, and the caustic soda was not formed. The polymer dissolved in the solution. Table 2 shows the results.
表 2  Table 2
含水ゲル 使用重合体粒径 (mm) 含水比 (%)  Hydrous gel Polymer particle size used (mm) Water content (%)
実施例 1 試料一 1 A 2. 3 5 5 0  Example 1 Sample 1 A 2.3.5 5 0
試料- 2 B 2. 1 4 8 0  Specimen-2 B 2. 1 4 8 0
試料- 3 C 1 . 8 3 1 0  Specimen-3 C 1.8 3 10
試料- 4 D 2. 0 3 0 0  Sample-4D 2.0.30
比較例 1 含水ゲルを E  Comparative Example 1
形成せず (実施例 2 ) Do not form (Example 2)
試作例の重合体 B 5 gを蒸留水 85 gに加えて混合攪拌を行い、 重合体を溶解 した後、食塩 10 gを加え、 完全溶解するまで混合攪拌を行う。  Add 5 g of the polymer B of the prototype to 85 g of distilled water and mix and stir. After dissolving the polymer, add 10 g of common salt and mix and stir until complete dissolution.
この溶液に 1%濃度のグルタールアルデヒドを表 3に示す割合にて添加、 混合 した後、 実施例 1と同じ方法で苛性ソーダ溶液中に滴下、 造粒する。 この造粒物 をアルカリ性雰囲気下で 3 OeC、 1時間保持した後、 半量を塩酸にて中和を行い、 残り半量を硫酸にて中和して pH7に調整する。 これを濾別して、 それぞれを純 水中に 2時間浸潰した後、 再度濾別してその含水ゲル (試料一 5〜試料一 8) の 重量を測定する。 そして、 その含水ゲルを 105°Cで 20時間乾燥して、 重量を 測定し下記の式にて膨潤倍率を求める。 得られた結果はまとめて表 3に示す。 To this solution, glutaraldehyde at a concentration of 1% is added and mixed at the ratio shown in Table 3, and then dropped and granulated in the same manner as in Example 1 in a caustic soda solution. After keeping the granules in an alkaline atmosphere at 3 O e C for 1 hour, neutralize half the volume with hydrochloric acid and neutralize the other half with sulfuric acid to adjust the pH to 7. Filter this, immerse each in pure water for 2 hours, filter again, and measure the weight of the hydrogel (Sample 15 to Sample 18). Then, the hydrogel is dried at 105 ° C for 20 hours, weighed, and the swelling ratio is determined by the following equation. The results obtained are summarized in Table 3.
含水ゲル重量 (g)  Hydrous gel weight (g)
膨潤倍率 (倍) =  Swelling ratio (times) =
乾燥ゲル重量 (g)  Dry gel weight (g)
(比較例 2 )  (Comparative Example 2)
上記溶液に対して 1%濃度グルタールアルデヒド無添加とした以外は実施例 1 と同じ方法で操作した試料は中和時に溶解してしまい、 含水ゲルを形成しなかつ た。 結果を表 3に示す。  A sample operated in the same manner as in Example 1 except that 1% concentration of glutaraldehyde was not added to the above solution was dissolved at the time of neutralization, and did not form a hydrogel. Table 3 shows the results.
表 3  Table 3
含水ゲル Wル夕-ル了ル ί'ヒト' 膨潤倍率 (倍)  Water-containing gel W 夕 夕-了 ル ί 'human' swelling magnification (times)
添加量 (g) 塩酸中和 硫酸中和  Addition amount (g) Neutralized hydrochloric acid Neutralized sulfuric acid
実施例 2 試料- 5 1 145 7. 1  Example 2 Sample-5 1 145 7.1
試料一 6 2 106 6. 8  Sample 1 6 2 106 6.8
試料- 7 5 44 5. 1  Sample-7 5 44 5.1
試料— 8 10 11 5. 0  Sample—8 10 11 5.0
比較例 2 含水ゲルを 0 測定不可 測定不可  Comparative Example 2 Measurement of hydrogel was impossible 0 Measurement was impossible
形成せず (実施例 3 ) Do not form (Example 3)
試作例の重合体 C 10 g、 蒸留水 90 g、 四三酸化鉄粉末 (粒径 100 以 下) 3 Ogの混合撹拌を行い、 均一なスラリーとした後ァセトアルデヒド 10% 溶液を 2 g添加した後、 実施例 1と同様の操作にて、 2%苛性ソーダ溶液中に滴 下する。 滴下終了後、 硫酸にて、 苛性ソーダ溶液の pHを 7. 5に調整した後、 濾別することにより、 四三酸化鉄を含有する含水ゲルを製造することができた。 得られた含水ゲルの水中でのみかけ比重は 1. 54、 平均粒径は 2. 3 mmで あった。 この含水ゲルの含水比は 215%であった。 この含水ゲルは磁石により 液中より分離することができる。  Prototype polymer C 10 g, distilled water 90 g, triiron tetroxide powder (particle size 100 or less) 3 Og were mixed and stirred to make a uniform slurry, and then 2 g of 10% acetoaldehyde solution was added. After that, in the same operation as in Example 1, the solution is dropped into a 2% sodium hydroxide solution. After the completion of the dropwise addition, the pH of the caustic soda solution was adjusted to 7.5 with sulfuric acid, and then the mixture was filtered to obtain a hydrogel containing iron tetroxide. The apparent specific gravity of the obtained hydrogel in water was 1.54, and the average particle size was 2.3 mm. The water content of this hydrogel was 215%. This hydrogel can be separated from the liquid by a magnet.
(実施例 4)  (Example 4)
実施例 1において製造された試料一 2の含水ゲル 250 gを径 4 Omm、 高さ 30 Ommのカラムに充填してカラム下端より塩ィ匕銅濃度 2 OmgZリッ トルの 溶液を毎分 10ミリリットルの流速にて通液し、 上端より流出する処理水の銅ィ オン濃度を原子吸光光度計 (島津製作所製) にて測定した。 200リツトル通液 後の処理水の銅イオン濃度は 0. 08mgノリットルであった。  250 g of the water-containing gel of Sample 1 produced in Example 1 was packed in a column having a diameter of 4 Omm and a height of 30 Omm, and a solution having a concentration of 2 OmgZ liter of copper was applied from the lower end of the column at a rate of 10 ml / min. The copper ion concentration of the treated water flowing out from the upper end was measured using an atomic absorption spectrophotometer (manufactured by Shimadzu Corporation). The copper ion concentration of the treated water after passing through 200 liters was 0.08 mg / liter.
(実施例 5)  (Example 5)
実施例 1において製造された試料一 3の含水ゲル 250 gを径 4 Omm、 高さ 300mmのカラムに充填して、 カラム下端よりアルファノールファーストス力 —レツト B L (へキスト社製) の 400mgZリツトル濃度の溶液をチュービン グポンプ (ァト一社製) にて每分 2ミリリッ トルの流速にて通液し、 上端よりの 流出水の残留染料濃度を吸光光度計を用いて測定し、残留染料濃度が原水の 20 %以下になった時の含水ゲルの染料吸着総量を計算にて求める。  250 g of the water-containing gel of sample 13 prepared in Example 1 was packed in a column having a diameter of 4 Omm and a height of 300 mm, and the alminol first force was applied from the lower end of the column—400 mg Z-liter of Letto BL (manufactured by Hoechst). The concentrated solution was passed through a tubing pump (manufactured by AT Corporation) at a flow rate of 2 milliliters per minute, and the residual dye concentration in the effluent from the upper end was measured using an absorptiometer. Calculate the total amount of dye adsorbed on the hydrogel when the water content is 20% or less of raw water.
表 4に通水量と残留染料濃度および染料吸着積算量を示す。 表 4の結果からこ のゲルの染料吸着能力は 59. 3mgZgである。 表 4 Table 4 shows the water flow rate, the residual dye concentration and the accumulated amount of dye adsorption. From the results in Table 4, the dye adsorption capacity of this gel is 59.3 mgZg. Table 4
Figure imgf000019_0001
Figure imgf000019_0001
(実施例 6)  (Example 6)
曝気槽内に担体を流動させるための散気管、 エアリフト管などを設置した好気 性の流動床式生物処理装置において、実施例 1で得られた含水ゲル (試料一 4) を担体として適用した。  The hydrogel (sample 14) obtained in Example 1 was used as a carrier in an aerobic fluidized-bed biological treatment device equipped with a diffuser tube and an air lift tube for flowing the carrier into the aeration tank. .
これを図に基づいて説明する。  This will be described with reference to the drawings.
図 1に示す構造を有する容積 1リットルの曝気槽内に該含水ゲルを 200 gお よひ Ύ水処理場の活性汚泥処理現場より入手した曝気槽汚泥 (汚泥濃度 4000 mg リットル) を 900ミリリットル投入して、 24時間曝気を行った後、 人 ェ排水 (酸化澱粉 25 OmgZリツトル、 ペプトン 25 OmgZリツ トル、 リン 酸カリウム 15mgノリットル、 硫酸第一鉄 lmgノリットル、 硫酸マグネシゥ ム lmg/ /リッ トル、 塩化カルシウム lmgZリッ トル) をべリスタポンプ (ァ トー株式会社製) により 3リットル Z日の割合で曝気槽内に定量供給した。 通水 時の曝気槽内温度は、 25。Cに維持した。 この人工排水の BODは 390mgZ リットルである。 通水開始後 1週間、 2週間および 4週間後の処理水の上澄水の 水質を分析した。 200 g of the hydrogel was put into a 1-liter aeration tank with the structure shown in Fig. 1. ミ リ 900 ml of aeration tank sludge (sludge concentration 4000 mg liter) obtained from the activated sludge treatment site at the water treatment plant to, after 24 hours aeration, human E drainage (oxidized starch 25 OmgZ liters, peptone 25 OmgZ rate torr, potassium phosphate 15mg Bruno liter ferrous lmg Bruno liter sulfuric, Maguneshiu arm lmg / / liter Calcium chloride (lmgZ liter) was supplied quantitatively into the aeration tank at a rate of 3 liters Z days using a Verista pump (manufactured by Ato Corporation). The temperature inside the aeration tank during water flow is 25. C maintained. The BOD of this artificial drainage is 390mgZ liter. The supernatant water quality of the treated water was analyzed at 1 week, 2 weeks and 4 weeks after the start of water flow.
得られた結果をまとめて表 5に示す。  Table 5 summarizes the obtained results.
(比較例 3)  (Comparative Example 3)
比較のために担体を添加しないで、 実施例 6と同様の試験を行った。  For comparison, the same test as in Example 6 was performed without adding the carrier.
得られた結果をまとめて表 5に示す。  Table 5 summarizes the obtained results.
(比較例 4)  (Comparative Example 4)
比較のために担体として平均粒径約 1 mmのポリスチレンビーズを 200 g用 いて、 実施例 6と同様の試験を行った。 得られた結果をまとめて表 5に示す c For comparison, the same test as in Example 6 was performed using 200 g of polystyrene beads having an average particle size of about 1 mm as a carrier. C shown in Table 5 summarizes the results obtained
表 5  Table 5
Figure imgf000020_0001
Figure imgf000020_0001
表 5の結果から明らかなように担体を添加しないと (比較例 3 ) 曝気槽内に活 性汚泥が滞留できず、 処理不能であつたが、 実施例 6の含水ゲル (試料一 4 ) を 添加した曝気槽では、 含水ゲル表面に活性汚泥が固定され、 2週間後には、 含水 ゲル表面に微生物膜の形成力確認され、 処理水質も良好であった。 担体として比 較に用いたポリスチレンビーズ (比較例 4 ) でも、 4週間後には若干の微生物膜 の形成カ《認められ、 処理水質も改善が認められるが、 本発明の含水ゲルに比して 微生物膜の形成速度が劣り、 処理の立上がりが遅い。  As is evident from the results in Table 5, without the addition of the carrier (Comparative Example 3), the activated sludge could not stay in the aeration tank and could not be treated, but the hydrogel of Example 6 (Sample 14) was not used. In the added aeration tank, activated sludge was fixed on the surface of the hydrogel, and two weeks later, the ability to form a microbial membrane on the surface of the hydrogel was confirmed, and the quality of the treated water was good. Even with the polystyrene beads (Comparative Example 4) used for comparison as a carrier, the formation of a microbial membrane was slightly observed after 4 weeks, and the quality of the treated water was also improved. The film formation rate is poor, and the processing is slow to start.
(実施例 7 )  (Example 7)
実施例 1において製造した試料一 2および試料一 3の含水ゲルを各 1 0 g採取 して、 2 0 0ミ リリッ トルの 0. 0 5モルのトリス塩酸緩衝液 (p H 8. 0 ) に 懸濁分散した後、 濾別する。 次いでこれを 0. 0 5モルのリン酸一クェン酸緩衝 液 1 0 0ミリリツトル中に浸漬し、 さらにィンベルターゼ液 (三共株式会社製) 2 0ミリリツトルを加え、 3時間室温にて攪拌しながら固定ィ匕を行った。  10 g of each of the water-containing gels of Samples 12 and 13 produced in Example 1 were collected and placed in 200 milliliters of 0.05 mol of Tris-HCl buffer (pH 8.0). After suspension and dispersion, the mixture is filtered. Then, this was immersed in 100 milliliters of a 0.05 mol phosphate-monocitrate buffer solution, and 20 milliliters of an invertase solution (manufactured by Sankyo Co., Ltd.) was added. A dagger was performed.
こうして得られた酵素固定含水ゲルをグルタールアルデヒド 0. 6 %を含む濃 度 0. 0 5モルのホウ酸ナトリウム—塩酸緩衝液に 1 . 5時間浸漬した後、 これ を濾別して再度 0. 0 5モルのトリス塩酸緩衝液 1リッ トルに懸濁分散させて濾 過し、 得られた酵素固定含水ゲルの重量を測定する。 得られた固定化酵素を濃度 0. 0 5モルのクェン酸一リン酸緩衝液 (p H 4. 2 ) に溶解したサッカロース の 10%溶液 1リットルに添加して 40°Cにおいて 60分間反応させ、 形成され た還元糖総量をメチレンブルー法にて求め、酵素固定含水ゲル 1 gによる 1時間 当たりのサッカロース分解量を表 6に示す。 The thus obtained enzyme-immobilized hydrogel was immersed in a 0.05 mol sodium borate-hydrochloric acid buffer solution containing 0.6% glutaraldehyde for 1.5 hours, and then separated by filtration and again subjected to 0.02 g. It is suspended and dispersed in 1 liter of 5 mol of Tris-HCl buffer, filtered and the weight of the obtained enzyme-fixed hydrogel is measured. The saccharose obtained by dissolving the immobilized enzyme in a 0.05 molar citrate monophosphate buffer (pH 4.2). The reaction mixture was added to 1 liter of a 10% solution and reacted at 40 ° C for 60 minutes.The total amount of reducing sugars formed was determined by the methylene blue method, and the amount of sucrose degradation per hour by 1 g of the enzyme-fixed hydrogel was shown in Table 6. Show.
(比讓 5)  (Comparative 5)
比較例のために市販の強塩基性イオン交換樹脂アンバーライト I RA— 9 OX (オルガノ社製) を用いて実施例 7と同様の操作を行い、 樹脂 l g当たりのサッ 力ロース分解量を求め、 表 6に示す。  For a comparative example, the same operation as in Example 7 was performed using a commercially available strong basic ion exchange resin Amberlite IRA-9OX (manufactured by Organo Corporation), and the amount of decomposition of Sacrose by resin lg was determined. Table 6 shows.
表 6  Table 6
Figure imgf000021_0001
Figure imgf000021_0001
(実施例 8 )  (Example 8)
実施例 1において製造した重合体 Bを用いた含水ゲル (試料一 2) 10gを水 洗した後、 濾過して、 0. 05ミリリットルのホウ酸ナトリゥム一塩酸緩衝液 (pH6. 0) に 10分間浸潰した後、 再度濾別する。 これを透析処理したダル コースイソメラーゼ (長瀬社製) の 3倍希釈液 100ミリリットル中に投入して 室温にてゆるやかに攪拌した後、 濾別する。 こうして得られた酵素固定含水ゲル をグルタールアルデヒドを 0. 6%含む濃度 0. 05モルのホウ酸ナトリウム一 塩酸緩衝液に 1. 5時間浸漬した。  10 g of a water-containing gel using the polymer B produced in Example 1 (Sample 1) was washed with 10 g of water, filtered, and placed in 0.05 ml of sodium borate-monohydrochloride buffer (pH 6.0) for 10 minutes. After immersion, filter again. This is poured into 100 ml of a three-fold diluted dialcosyl isomerase (manufactured by Nagase) which has been dialyzed, gently stirred at room temperature, and filtered. The enzyme-immobilized hydrogel thus obtained was immersed in a 0.05 mol sodium borate / hydrochloric acid buffer solution containing 0.6% glutaraldehyde for 1.5 hours.
この含水ゲルおよびダルタールアルデヒド未処理の含水ゲルをそれぞれ 10% 食塩水 1リットル中に浸漬して 1時間攪拌を行った後、 濾別して、 それを水洗し た後、 それぞれのグルコースをフラクトースに転換する能力を比較した。 ダルコ —ス転換能は下記の方法による。  This hydrogel and the hydrogel not treated with daltaraldehyde were each immersed in 1 liter of 10% saline, stirred for 1 hour, filtered, washed, and then converted to glucose. Compared their ability to do so. Dalco-converting ability is determined by the following method.
濃度 0. 1モルのリン酸緩衝液に溶解したグルコース 40%溶液 1リッ トル中 に得られた酵素固定化含水ゲルを投入して、 60eCにて 1時間反応させ、 その結 果形成されたフラクト一ス量を H P L C法により求め、 含水ゲル 1 g当たりのフ ラクト一スに転換したグルコース量 (グルコース転換量) を求めた。 結果を表 7 に示す。 The enzyme-immobilized hydrated gel obtained in 1 liter of a 40% glucose solution dissolved in a 0.1 M phosphate buffer was added, and the mixture was reacted at 60 eC for 1 hour. The amount of fructose formed as a result was determined by the HPLC method, and the amount of glucose converted to fructose per 1 g of the hydrogel (glucose conversion amount) was determined. Table 7 shows the results.
表 7  Table 7
Figure imgf000022_0001
Figure imgf000022_0001
表 7の結果から、 本発明の含水ゲルに酵素を吸着させた後、 グルタールアルデ ヒド処理することにより、 酵素のはずれない酵素固定含水ゲルを形成することが できることカ<判る。 産業上の利用可能性  From the results shown in Table 7, it can be seen that an enzyme-fixed hydrous gel from which the enzyme cannot be removed can be formed by adsorbing the enzyme to the hydrogel of the present invention and then treating it with glutaraldehyde. Industrial applicability
以上のように、 本発明により煩雑な操作を必要とせず、 かつ大掛かりな装置を 用いな 、で容易に含水ゲルを製造することができる方法、 およびその含水ゲルか らなる重金属イオン吸着剤、 色素吸着剤、 微生物担体および酵素固定用担体を提 供する事ができる。  As described above, according to the present invention, a method capable of easily producing a hydrogel without using complicated equipment and without using a large-scale apparatus, a heavy metal ion adsorbent comprising the hydrogel, and a dye An adsorbent, a microbial carrier and a carrier for immobilizing enzymes can be provided.

Claims

1. 下記式 (1) および / /または (2)で表されるカチオン性基から成る繰り返 し単位を有する高分子の水溶液をアルカリ性水溶液に接触させて析出させて成形 することを特徴とする含水ゲル請の製造方法。 1. An aqueous solution of a polymer having a repeating unit comprising a cationic group represented by the following formula (1) and / or (2) is brought into contact with an alkaline aqueous solution to precipitate and form. Manufacturing method for hydrogel.
一 (CH2-CR1-CH2-CR2) 一 One (CH 2 -CR 1 -CH 2 -CR 2 ) One
■C = N—— 1 の (1) 囲 ■ C = N-- 1 of (1) enclosed
N+H3X- (CH2 - CR2 - CH2 - CR1) 一 N + H 3 X- (CH 2 -CR 2 -CH 2 -CR 1 )
1 ~ N = C 1 (2) 1 to N = C 1 (2)
N+HsX~ N + HsX ~
(式中 R R2は水素原子またはメチル基を、 X—は陰イオンを表す。 ) (Where RR 2 represents a hydrogen atom or a methyl group, and X— represents an anion.)
2. 前記式 (1) および Zまたは (2) で表されるカチオン性基から成る繰り返 し単位を 10〜80モル%含有し、 力つシァノ基を 10〜6 Omo 1 %含有する 高分子の 1〜50重量%の水溶液をアル力リ性水溶液と接触させ、 析出させて成 形することを特徴とする請求の範囲第 1項記載の含水ゲルの製造方法。 2. A polymer containing 10 to 80 mol% of a repeating unit composed of a cationic group represented by the above formula (1) and Z or (2), and containing 10 to 6 Omo 1% of a cyano group 2. The method for producing a hydrogel according to claim 1, wherein the aqueous solution of 1 to 50% by weight is brought into contact with an aqueous solution of aluminum hydroxide to form a precipitate by precipitation.
3. 前記高分子の水溶液および Zまたはアルカリ性水溶液中に、 該高分子の分子 内の活性水素と反応可能な架橋剤を共存させることを特徴とする請求の範囲第 1 項あるいは第 2項記載の含水ゲルの製造方法。  3. The method according to claim 1, wherein a crosslinker capable of reacting with active hydrogen in the molecule of the polymer coexists in the aqueous solution of the polymer and the Z or alkaline aqueous solution. A method for producing a hydrogel.
4. 前記アルカリ性水溶液の pHが 11以上であることを特徴とする請求の範囲 第 1項〜第 3項の L、ずれかに記載の含水ゲルの製造方法。  4. The method for producing a hydrogel according to any one of claims 1 to 3, wherein the pH of the alkaline aqueous solution is 11 or more.
5. 前記アルカリ性水溶液の pHが 12以上であることを特徴とする請求の範囲 第 1項〜第 3項のいずれかに記載の含水ゲルの製造方法。  5. The method for producing a hydrogel according to any one of claims 1 to 3, wherein the pH of the alkaline aqueous solution is 12 or more.
6. 前記含水ゲルを酸水溶液に浸漬して含水ゲルの膨潤性を制御することを特徴 とする請求の範囲第 3項記載の含水ゲルの製造方法。 6. The swellability of the hydrogel is controlled by immersing the hydrogel in an aqueous acid solution. 4. The method for producing a hydrogel according to claim 3, wherein:
7. 前記酸水溶液が硫酸、 りん酸、 硼酸、炭酸から選択される少なくとも一つの 多価塩基酸の水溶液であることを特徴とする請求の範囲第 6項記載の含水ゲルの 製造方法。  7. The method for producing a hydrogel according to claim 6, wherein the acid aqueous solution is an aqueous solution of at least one polybasic acid selected from sulfuric acid, phosphoric acid, boric acid, and carbonic acid.
8. 前記酸水溶液が塩酸、酢酸から選択される少なくとも一つの一塩基酸の水溶 液であることを特徴とする請求の範囲第 6項記載の含水ゲルの製造方法。 8. The method for producing a hydrogel according to claim 6, wherein the aqueous acid solution is an aqueous solution of at least one monobasic acid selected from hydrochloric acid and acetic acid.
9. 請求の範囲第 1項〜第 8項記載の含水ゲルから成ることを特徴とする重金属 イオン吸着剤。  9. A heavy metal ion adsorbent comprising the hydrogel according to claims 1 to 8.
1 0. 請求の範囲第 1項〜第 8項記載の含水ゲルから成ることを特徴とする色素 吸着剤。  10. A dye adsorbent comprising the hydrogel according to claims 1 to 8.
1 1 . 請求の範囲第 1項〜第 8項記載の含水ゲルから成ることを特徴とする微生 物担体。  11. A microbial carrier comprising the hydrogel according to claims 1 to 8.
1 2. 請求の範囲第 1項〜第 8項記載の含水ゲルから成ることを特徴とする酵素 固定用担体。  1 2. A carrier for immobilizing an enzyme, comprising the hydrogel according to any one of claims 1 to 8.
PCT/JP1995/001424 1994-07-18 1995-07-18 Process for producing aqueous gel, heavy-metal ion adsorbent, pigment adsorbent, microbe carrier, and carrier for enzyme immobilization WO1996002581A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU29368/95A AU2936895A (en) 1994-07-18 1995-07-18 Process for producing aqueous gel, heavy-metal ion adsorbent, pigment adsorbent, microbe carrier, and carrier for enzyme immobilization

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6/186862 1994-07-18
JP6186862A JP3071364B2 (en) 1994-07-18 1994-07-18 Method for producing hydrogel, heavy metal ion adsorbent, dye adsorbent, microorganism carrier and enzyme immobilizing carrier

Publications (1)

Publication Number Publication Date
WO1996002581A1 true WO1996002581A1 (en) 1996-02-01

Family

ID=16195969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/001424 WO1996002581A1 (en) 1994-07-18 1995-07-18 Process for producing aqueous gel, heavy-metal ion adsorbent, pigment adsorbent, microbe carrier, and carrier for enzyme immobilization

Country Status (6)

Country Link
JP (1) JP3071364B2 (en)
KR (1) KR100385848B1 (en)
CN (1) CN1063759C (en)
AU (1) AU2936895A (en)
TW (1) TW324724B (en)
WO (1) WO1996002581A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0864540A3 (en) * 1997-03-14 1999-04-21 Nisshinbo Industries Inc. Carrier for bioreactor and bioreactor using the same
DE19652040B4 (en) * 1995-12-15 2007-03-29 Mitsubishi Chemical Corp. Process for the preparation of a cationic polymer-containing aqueous solution or dispersion
CN105056911A (en) * 2015-08-05 2015-11-18 珠海国佳新材股份有限公司 Heavy metal adsorption gel material and environment embattling treatment method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1292993C (en) * 2004-07-02 2007-01-03 东北大学 Method for treating wastewater containing heavy metal and radioactive metal ions by biological method
KR100837375B1 (en) 2006-06-13 2008-06-12 한국화학연구원 Preparing method of enzyme immobilized silica
CN102492088B (en) * 2011-12-02 2013-08-21 南京大学 Hydrogel, its preparation method and its application in heavy metal waste water treatment
CN104874361A (en) * 2015-03-24 2015-09-02 仲恺农业工程学院 Corncob modified material and preparation method and application thereof
CN108624532B (en) * 2018-05-15 2022-05-10 江苏世邦生物工程科技有限公司 Core-shell structure microbial preparation for soil remediation and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05192513A (en) * 1991-08-20 1993-08-03 Mitsubishi Kasei Corp Cationic polymeric flocculant
JPH06123096A (en) * 1992-09-03 1994-05-06 Mitsubishi Kasei Corp Paper manufacturing additive consisting of cationic polymer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6030717B2 (en) * 1972-03-29 1985-07-18 株式会社竹中工務店 Chemical injection ground stabilization method
JPS6123096A (en) * 1984-07-11 1986-01-31 三菱重工業株式会社 Expansion type spreader

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05192513A (en) * 1991-08-20 1993-08-03 Mitsubishi Kasei Corp Cationic polymeric flocculant
JPH06123096A (en) * 1992-09-03 1994-05-06 Mitsubishi Kasei Corp Paper manufacturing additive consisting of cationic polymer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19652040B4 (en) * 1995-12-15 2007-03-29 Mitsubishi Chemical Corp. Process for the preparation of a cationic polymer-containing aqueous solution or dispersion
DE19652040C5 (en) * 1995-12-15 2008-10-16 Mitsubishi Chemical Corp. Process for the preparation of a cationic polymer-containing aqueous solution or dispersion
EP0864540A3 (en) * 1997-03-14 1999-04-21 Nisshinbo Industries Inc. Carrier for bioreactor and bioreactor using the same
US6133004A (en) * 1997-03-14 2000-10-17 Nisshinbo Industries, Inc. Bioreactor carrier gel prepared from a crosslinked N-vinylcarboxamide resin
CN105056911A (en) * 2015-08-05 2015-11-18 珠海国佳新材股份有限公司 Heavy metal adsorption gel material and environment embattling treatment method

Also Published As

Publication number Publication date
CN1153519A (en) 1997-07-02
KR970704796A (en) 1997-09-06
AU2936895A (en) 1996-02-16
JPH0827214A (en) 1996-01-30
CN1063759C (en) 2001-03-28
KR100385848B1 (en) 2003-12-31
TW324724B (en) 1998-01-11
JP3071364B2 (en) 2000-07-31

Similar Documents

Publication Publication Date Title
CN111495338A (en) Degradable magnetic polypropylene-based hydrogel adsorption material and preparation method thereof
CN108359103B (en) Hydrophobic modified chitosan flocculant and preparation method and application thereof
CN111573802B (en) Hydrophobic modified organic/inorganic composite flocculant and preparation method and application thereof
Ray et al. Synthesis of dipolar grafted hydroxyethyl cellulose and its application for the removal of phosphate ion from aqueous medium by adsorption
CN111992181A (en) Cationic cyclodextrin-based hydrogel adsorption material and synthesis method thereof
CN111620473B (en) Water treatment method
Zhang et al. Synthesis of a novel arginine-modified starch resin and its adsorption of dye wastewater
Zhang et al. A biomass resource strategy for alginate-polyvinyl alcohol double network hydrogels and their adsorption to heavy metals
WO1996002581A1 (en) Process for producing aqueous gel, heavy-metal ion adsorbent, pigment adsorbent, microbe carrier, and carrier for enzyme immobilization
CN108059225B (en) Titanium gel-poly dimethyl diallyl ammonium chloride composite coagulant and application thereof
CN113461128B (en) Preparation method of starch grafted quaternary phosphonium salt flocculant for treating bacteria-containing sewage
CN113307359B (en) Composite carrier material for biological fluidized bed and preparation method thereof
CN111268823B (en) Method for treating softened drinking water
Bharti et al. Synthesis, characterization and application of polymethyl methacrylate grafted oatmeal: A potential flocculant for wastewater treatment
CN113214504A (en) Preparation method of semi-interpenetrating network antibacterial gel based on natural macromolecules
CN114409850B (en) Antibacterial water purifying agent and preparation method thereof
CN114804311B (en) Preparation process of high-performance polyaluminum chloride flocculant
CN113860519B (en) Efficient microbial composite flocculant and preparation method thereof
CN114436386B (en) Composite water treatment agent
CN115672261B (en) Sulfhydryl Schiff base side group-containing polymer modified attapulgite and preparation method thereof
CN110921753B (en) Ternary graft copolymerization modified spirulina protein water quality clarifying agent and preparation method thereof
DENIZLI* et al. New dye-ligand: Procion Red MX-3B carrying poly (EGDMA-HEMA) microbeads for removal of copper ions
CN110790971B (en) Bacterial cellulose/quaternary ammonium salt compound composite membrane and preparation method and application thereof
CN117466430A (en) Sewage treatment agent based on COD degrading bacteria and preparation method thereof
KR0139649B1 (en) Process for preparing phosphorilated crosslinked chitosan chelate resins

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95194263.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN KR MX SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1019970700291

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1019970700291

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWG Wipo information: grant in national office

Ref document number: 1019970700291

Country of ref document: KR