WO1996001404A1 - Personal weapon sharpshooting aid - Google Patents
Personal weapon sharpshooting aid Download PDFInfo
- Publication number
- WO1996001404A1 WO1996001404A1 PCT/FR1995/000878 FR9500878W WO9601404A1 WO 1996001404 A1 WO1996001404 A1 WO 1996001404A1 FR 9500878 W FR9500878 W FR 9500878W WO 9601404 A1 WO9601404 A1 WO 9601404A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reticle
- computer
- target
- lines
- image
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41G—WEAPON SIGHTS; AIMING
- F41G3/00—Aiming or laying means
- F41G3/06—Aiming or laying means with rangefinder
Definitions
- the invention is in the field of individual weapons, it relates more particularly to individual weapons intended for precision shooting, in particular at long range, and equipped for this purpose with improved aiming devices.
- a known device for anti-tank rocket launcher comprises an aiming telescope intended to provide a magnification of the distant optical image, angular speed sensors intended to measure the rotation speed of the weapon, wind speed sensors and a rangefinder. Aiming with such a device is carried out as follows:
- a first phase the shooter follows the target, this means that he keeps the crosshair of the weapon fixed on the target. This first action makes it possible to measure an angular speed of movement of the target.
- two measurements of the target distance are also made. These two measurements, separated by a known time, make it possible to know the distance from the target and to calculate its distance or approach speed. All these data are entered into a calculator which calculates the angular deflection to be given to the weapon so that the projectile fired meets its target.
- the computer controls means for moving a mirror placed in the optical means. The function of this mirror is to angularly move the image seen by the shooter through the optical means, without moving the reticle. The lighting of a signaling diode warns the shooter that the weapon is ready to fire.
- the shooter replaces the image of the reticle on the image of the target and shoots.
- the subject of the present invention is an individual weapon equipped with an aiming device of the kind which has just been described, in which the image of the reticle marking the target and the image comprising the target have an insensitive relative displacement without suddenly, during the target follow-up phase, so that at the end of the follow-up phase, without the reticle having the appearance of leaving the target for the shooter, the line of sight and the axis of fire of the weapon are offset by an angle representing the angle of target depointing.
- the deflection angle is the angle necessary between the line of sight and the firing axis of the weapon for a projectile fired by the weapon to reach the target.
- the aiming angle takes into account in the particular conditions of each shot, the movement of the target and the factors influencing the trajectory of the projectile.
- the invention therefore relates to an individual weapon comprising a barrel and an aiming device comprising a collimated reticle, optical means capturing an image of the landscape, a targeted point of the landscape being defined by the position of the reticle in the image, gun angular speed sensors intended to measure the angular speed of a target C on which the reticle would be kept, a rangefinder intended to measure the distance of this target C and a computer, the computer being provided with a program allowing it to calculating a point of impact of a munition in target C and receiving for this purpose the information coming from the angular speed sensors and from the range finder, the computer controlling means of relative displacement of the image and the reticle to reveal the reticle at the future point of impact characterized in that the reticle is constituted by means of constituting lines, these means being displaceable d e continuously or almost continuously by electrical means receiving electrical control quantities, these quantities being controllable by the computer, and in that the computer is equipped with a program for controlling electrical quantities making it possible to imp
- the displacement of the line forming means is said to be continuous or almost continuous because in one of the embodiments which will be described later, the lines move in a physically discontinuous manner, the discontinuity being however not apparent to the eye. of the shooter.
- the displacement of the means of constituting lines, together constituting the reticle is said to be insensitive insofar as it is imperceptible to the shooter. This implies that the displacement of the reticle from an initial position to a final position is relatively slow and gradual.
- FIG. 1 is a diagram for explaining the principle of the invention
- FIG. 2 to 4 each show an embodiment of the line forming means;
- FIG. 5 and 6 show an individual weapon equipped with a sighting device according to the invention;
- FIG. 8 is a graph showing two ways of joining the reticle.
- Figure 1 shows in the form of functions all the means contributing to the production of a weapon according to the invention.
- the device includes:
- a means 1 for measuring the distance from the target In the embodiment which will be described in relation to FIG. 5, it will be a laser mini-rangefinder, integral with the weapon.
- a means 2 for measuring the speed of rotation of the barrel of the weapon achievable, for example, using “solid state” mini-gyroscopes integrated in the weapon, or by image processing means in particular when the optical means for acquiring the external image is a video camera.
- a means 3 for measuring the cant of the weapon for example, an inclinometer or a static accelerometer, integral with the weapon.
- a means 4 for measuring the wind speed and direction for example a miniature anemometer secured to the weapon.
- a means 5 intended to supply a computer with data relating to the type of ammunition which will be fired. It may for example be a semiconductor read-only memory.
- the results of the measurements carried out by the means 1 to 4 feed a computer 6, which also receives the data relating to the ammunition from the means 5.
- the computer 6 calculates, as a function of the data received, by means of dedicated software, periodically, the apparent trajectory of the target, the point of impact of the ammunition and the position shift of the reticle.
- This position data is transmitted to a control block 7.
- This control block delivers the control voltages or currents which will supply means for moving the line-making means.
- the lines constituting means have not been shown in Figure 1.
- a conventional reticle 10 has been shown in the form of two lines 9, seen in the eyepiece 8 of a telescopic sight.
- the crossing point of two perpendicular axes 11 materializes the pointing direction of the barrel of the weapon.
- the axis crossing point 12 materializes the aiming axis.
- the crossing point of the axes 12 represents for a target moving in the direction materialized by an arrow x the correction in ⁇ x and ⁇ y whose reticle must be moved so that when the reticle thus displaced is positioned on the target, the axis of the cannon be shifted forward and generally above the target of ⁇ x and ⁇ y respectively.
- the reticle appears actually offset by an amount ⁇ x, ⁇ y and the shooter must by a sudden movement catch up with the offset thus revealed.
- the reticle is moved behind and generally below the target progressively at a rate imperceptible to the eye so that the shooter always has the impression of following the target.
- the reticle reaches the position represented by the crossing of the axes 12 after a period necessary for acquiring the target and rallying the reticle, but the shooter never had the impression of letting go of the target. Indications on the type of calculation to be introduced into the calculator to obtain this result will be given later.
- FIG. 2 represents a first example of means for constituting lines.
- the lines are each made up of a style 14.
- the two styles are crossed at 90 °.
- the plane of Figure 2 is a longitudinal axial plane of the telescope parallel to one of the styles and perpendicular to the other.
- One of the styles 14 has therefore been represented in the form of a line, and the second as a point.
- Each of these styles is carried by a style carriage 15, only one of which has been shown.
- These style carriages 15 are mounted on endless screws 16.
- These endless screws 16 are rotated by reducing micromotors 13.
- the control voltages from the computer control the rotation of the motor and therefore the position of styles 14.
- the crossing point of the styles 14 represents the position of the reticle 10.
- the two styles 14 are located in the image plane 17 of a target 19 of a rifle scope mounted in a known manner on the rifle.
- the image plane 17 has been represented by a dotted line and the bezel by a set of two lenses, an ocular lens 18 and an objective lens 19.
- the objective 19 is the optical means picking up the image of the landscape.
- FIG. 3 describes another embodiment of the line-making means.
- the lines materializing the reticle 10 consist of the needles 20 of two identical galvanometers 21.
- the needles 20 are placed so as to be at rest perpendicular to each other in the image plane 17 of the objective 19 of a telescope shown in FIG. 3 also by its eyepiece 18 and its objective 19.
- FIG. 4 describes a preferred embodiment of the line making means.
- These means consist of a medium whose optical characteristics change according to the value of the electromagnetic fields to which the medium is subjected.
- the medium may for example be constituted, in a known manner, by liquid crystals arranged between transparent plates, the field being created by a matrix network of transparent electrodes.
- Figure 4 shows such a device. It consists of a high definition liquid crystal screen 22 placed in the image plane 17 of the objective 19 of a telescopic sight represented by its eyepiece 18 and its objective 19. Networks of transparent electrodes 23 placed on either side on the other side of the screen allow the local modification of the optical characteristics of the crystals. It is thus possible to materialize lines which together constitute the design of the reticle 10.
- the displacement is a discontinuous displacement whose pitch is that of the matrix networks of electrodes 23. If this step is small enough, the displacement has, for the shooter the appearance of a continuous displacement.
- FIG. 5 represents an individual weapon, for example a rifle 30, equipped with a device according to the invention produced according to the preferred mode.
- the rifle 30 is equipped with a telescopic sight 31 comprising a objective 19 and an eyepiece 18.
- the telescopic sight comprises in an image plane of the objective a liquid crystal screen 22 controlled by electrodes 23.
- the rifle is also equipped with 'a laser rangefinder 1, sensors for the rotation speed of the weapon in elevation and azimuth 2 and 2', an inclinometer 3 intended to measure the cant of the weapon and an anemometer 4 intended to measure the relative speed of the wind relative to the weapon.
- the parameters relating to the ammunition are introduced in the form of a plug-in card 5 in a reader 5 '.
- the other components of the weapon known in themselves such as the barrel 32 have been shown in simplified form easily recognizable by a person skilled in the art.
- the telescope is replaced by a thermal camera 40.
- the means of constituting lines consist of a set of pixels whose gray level is controlled by the calculator to be in contrast with the background of the image. Instructions necessary for programming the computer to imperceptibly rally the reticle 10 to the target will now be given.
- the shooter is pointing at a target animated with a constant speed moving at a constant distance from the shooter.
- the system gradually and gradually shifts the reticle behind the target.
- the shooter accelerates the speed of rotation of his weapon to maintain the reticle on the target. (The weapon rotation speed becomes higher than that of the target).
- a simple calculation shows that if no precaution is taken, this apparent acceleration of the target will be taken into account to calculate a position too far back of the reticle, then for inverse reasons too far.
- FIG. 7 is intended to materialize the different angles which are used for the calculation. The following simplifying assumptions are made:
- Target C moves at a constant distance De from shooter A;
- the target has a constant speed (rotation).
- w a (t) weapon rotation speed as a function of time
- ⁇ c (t) target rotation angle as a function of time
- ⁇ a (t) angle of rotation of the weapon as a function of time
- ⁇ m (t) angle of rotation of the reticle as a function of time
- D c target / shooter distance assumed to be constant
- Tp Time of flight of the bullet to cover the distance D c ; Tp is assumed to be constant, for example 1 second.
- T p - w c .
- the position in the final phase of the reticle is therefore represented by the line RR '.
- the line RR ' is symmetrical with the line AA' with respect to the line CC.
- the DE or DH curves can be calculated point by point or preferably as the result of simple functions.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
Abstract
A personal weapon (30) with a sight (31) in which a computer (7) controls a collimated reticle (10) to move it onto the future point of impact between a target and a projectile fired from the weapon. Said reticle (10) consists of line drawing means (9, 14, 20, 22, 40) continuously movable by means of electrical units (13, 21, 23, 40) that receive control inputs from the computer (7), and said computer is provided with an electrical input control program for imperceptibly moving the reticle (10) onto the future point of impact and locking it on.
Description
DISPOSITIF D'AIDE AU TIR DE PRECISION POUR UNE ARME INDIVIDUELLE PRECISION SHOOTING AID FOR AN INDIVIDUAL WEAPON
L'invention se situe dans le domaine des armes individuelles, elle concerne plus particulièrement les armes individuelles destinées au tir de précision, en particulier à longue portée, et équipées à cette fin de dispositifs de visée perfectionnés.The invention is in the field of individual weapons, it relates more particularly to individual weapons intended for precision shooting, in particular at long range, and equipped for this purpose with improved aiming devices.
Un dispositif connu pour lance-roquettes anti-char comporte une lunette de visée destinée à procurer un grossissement de l'image optique lointaine, des capteurs de vitesse angulaire destinés à mesurer la vitesse de rotation de l'arme, des capteurs de vitesse du vent et un télémètre. La visée avec un tel dispositif s'effectue de la façon suivante :A known device for anti-tank rocket launcher comprises an aiming telescope intended to provide a magnification of the distant optical image, angular speed sensors intended to measure the rotation speed of the weapon, wind speed sensors and a rangefinder. Aiming with such a device is carried out as follows:
Dans une première phase, le tireur suit la cible, cela signifie qu'il maintient le réticule de l'arme fixé sur la cible. Cette première action permet de mesurer une vitesse angulaire de déplacement de la cible. Au cours de cette phase, il est également procédé à deux mesures de la distance de la cible. Ces deux mesures séparées d'un temps connu permettent de connaître la distance de la cible et de calculer sa vitesse d'éloignement ou de rapprochement. Toutes ces données sont introduites dans un calculateur qui calcule le dépointage angulaire à donner à l'arme pour que le projectile tiré rencontre sa cible. Dans une deuxième phase, le calculateur commande des moyens de déplacement d'un miroir disposé dans les moyens optiques. Ce miroir a pour fonction de déplacer angulairement l'image vue par le tireur à travers les moyens optiques, sans déplacer le réticule. L'allumage d'une diode de signalisation prévient le tireur que l'arme est prête au tir. Dans une troisième phase, le tireur replace l'image du réticule sur l'image de la cible et tire.In a first phase, the shooter follows the target, this means that he keeps the crosshair of the weapon fixed on the target. This first action makes it possible to measure an angular speed of movement of the target. During this phase, two measurements of the target distance are also made. These two measurements, separated by a known time, make it possible to know the distance from the target and to calculate its distance or approach speed. All these data are entered into a calculator which calculates the angular deflection to be given to the weapon so that the projectile fired meets its target. In a second phase, the computer controls means for moving a mirror placed in the optical means. The function of this mirror is to angularly move the image seen by the shooter through the optical means, without moving the reticle. The lighting of a signaling diode warns the shooter that the weapon is ready to fire. In a third phase, the shooter replaces the image of the reticle on the image of the target and shoots.
On voit qu'avec un tel dispositif le tir doit suivre rapidement l'allumage de la diode, car si le tir tarde trop, les données ayant servi au calcul du dépointage angulaire ne sont plus d'actualité. On voit également que du fait du déplacement brutal de l'image vue par le tireur, ce dernier doit refaire une recherche de la cible et un repointage. Cette nécessité peut conduire, lorsque plusieurs cibles semblables sont présentes sur le terrain à une confusion de cible et à un choix d'une fausse cible pour laquelle les données acquises au cours de la première phase ne sont d'aucune utilité.
La présente invention a pour objet une arme individuelle équipée d'un dispositif de visée du genre de celui qui vient d'être décrit, dans lequel l'image du réticule marquant la cible et l'image comportant la cible ont un déplacement relatif insensible sans à coup, au cours de la phase de suivi de la cible, de telle sorte qu'en fin de phase de suivi, sans que le réticule n'ait jamais pour le tireur eu l'apparence de quitter la cible, la ligne de visée et l'axe de tir de l'arme soient décalés d'un angle représentant l'angle de dépointage de la cible. On rappelle que l'angle de dépointage est l'angle nécessaire entre la ligne de visée et l'axe de tir de l'arme pour qu'un projectile tiré par l'arme atteigne la cible. L'angle de dépointage prend en compte dans les conditions particulières de chaque tir, le mouvement de la cible et les facteurs influant sur la trajectoire du projectile. L'invention est donc relative à une arme individuelle comportant un canon et un dispositif de visée comportant un réticule collimaté, des moyens optiques captant une image du paysage, un point visé du paysage étant défini par la position du réticule dans l'image, des capteurs de vitesse angulaire du canon destinés à mesurer le vitesse angulaire d'une cible C sur laquelle serait maintenu le réticule, un télémètre destiné à mesurer la distance de cette cible C et un calculateur, le calculateur étant muni d'un programme lui permettant de calculer un point d'impact d'une munition dans la cible C et recevant à cet effet les informations en provenance des capteurs de vitesse angulaire et du télémètre, le calculateur commandant des moyens de déplacement relatif de l'image et du réticule pour faire apparaître le réticule au futur point d'impact caractérisé en ce que le réticule est constitué par des moyens de constitution de traits, ces moyens étant deplaçables de façon continue ou quasi continue par des moyens électriques recevant des grandeurs électriques de commande, ces grandeurs étant commandables par le calculateur, et en ce que le calculateur est équipé d'un programme de commande des grandeurs électriques permettant de déplacer insensiblement le réticule pour l'amener au futur point d'impact et l'y maintenir. Le déplacement des moyens de constitution de trait est dit continu ou quasi continu car dans l'un des modes de réalisation qui sera décrit plus loin, les traits se déplacent de façon physiquement discontinue, la discontinuité n'étant cependant pas apparente pour l'oeil du tireur. Le déplacement des moyens de constitution de traits, constituant ensemble le
réticule est dit insensible dans la mesure où il est imperceptible pour le tireur. Cela implique que le déplacement du réticule d'une position initiale à une position finale est relativement lent et progressif.It can be seen that with such a device, the firing must rapidly follow the lighting of the diode, because if the firing lags too long, the data used for the calculation of the angular depointing are no longer current. We also see that due to the sudden displacement of the image seen by the shooter, the latter must redo a search for the target and a repointing. This necessity can lead, when several similar targets are present in the field, to a target confusion and to a choice of a false target for which the data acquired during the first phase are of no use. The subject of the present invention is an individual weapon equipped with an aiming device of the kind which has just been described, in which the image of the reticle marking the target and the image comprising the target have an insensitive relative displacement without suddenly, during the target follow-up phase, so that at the end of the follow-up phase, without the reticle having the appearance of leaving the target for the shooter, the line of sight and the axis of fire of the weapon are offset by an angle representing the angle of target depointing. It will be recalled that the deflection angle is the angle necessary between the line of sight and the firing axis of the weapon for a projectile fired by the weapon to reach the target. The aiming angle takes into account in the particular conditions of each shot, the movement of the target and the factors influencing the trajectory of the projectile. The invention therefore relates to an individual weapon comprising a barrel and an aiming device comprising a collimated reticle, optical means capturing an image of the landscape, a targeted point of the landscape being defined by the position of the reticle in the image, gun angular speed sensors intended to measure the angular speed of a target C on which the reticle would be kept, a rangefinder intended to measure the distance of this target C and a computer, the computer being provided with a program allowing it to calculating a point of impact of a munition in target C and receiving for this purpose the information coming from the angular speed sensors and from the range finder, the computer controlling means of relative displacement of the image and the reticle to reveal the reticle at the future point of impact characterized in that the reticle is constituted by means of constituting lines, these means being displaceable d e continuously or almost continuously by electrical means receiving electrical control quantities, these quantities being controllable by the computer, and in that the computer is equipped with a program for controlling electrical quantities making it possible to imperceptibly move the reticle for the '' bring it to the future point of impact and keep it there. The displacement of the line forming means is said to be continuous or almost continuous because in one of the embodiments which will be described later, the lines move in a physically discontinuous manner, the discontinuity being however not apparent to the eye. of the shooter. The displacement of the means of constituting lines, together constituting the reticle is said to be insensitive insofar as it is imperceptible to the shooter. This implies that the displacement of the reticle from an initial position to a final position is relatively slow and gradual.
Le principe général de l'invention et des variantes de réalisation seront maintenant décrits en regard des dessins annexés dans lesquels :The general principle of the invention and variant embodiments will now be described with reference to the appended drawings in which:
- La figure 1 est un schéma destiné à expliquer le principe de l'invention ;- Figure 1 is a diagram for explaining the principle of the invention;
- Les figures 2 à 4 représentent chacune un mode de réalisation des moyens de constitution de trait ; - Les figures 5 et 6 représentent une arme individuelle équipée d'un dispositif de visée selon l'invention ;- Figures 2 to 4 each show an embodiment of the line forming means; - Figures 5 and 6 show an individual weapon equipped with a sighting device according to the invention;
- La figure 7 représente les angles qui sont pris en compte pour le ralliement du réticule sur la cible ;- Figure 7 shows the angles which are taken into account for the rallying of the reticle on the target;
- La figure 8 est un graphique représentant deux modes de ralliement du réticule.- Figure 8 is a graph showing two ways of joining the reticle.
La figure 1 représente sous forme de fonctions l'ensemble des moyens concourant à la réalisation d'une arme selon l'invention. Le dispositif comporte :Figure 1 shows in the form of functions all the means contributing to the production of a weapon according to the invention. The device includes:
- un moyen 1 de mesure de la distance de la cible. Dans la forme de réalisation qui sera décrite en relation avec la figure 5, il s'agira d'un mini-télémètre laser, solidaire de l'arme.a means 1 for measuring the distance from the target. In the embodiment which will be described in relation to FIG. 5, it will be a laser mini-rangefinder, integral with the weapon.
- un moyen 2 de mesure de la vitesse de rotation du canon de l'arme, réalisable, par exemple, à l'aide de mini-gyroscopes "état solide" intégrés dans l'arme, ou par des moyens de traitement d'image en particulier lorsque le moyen optique d'acquisition de l'image extérieure est une caméra vidéo.a means 2 for measuring the speed of rotation of the barrel of the weapon, achievable, for example, using “solid state” mini-gyroscopes integrated in the weapon, or by image processing means in particular when the optical means for acquiring the external image is a video camera.
- un moyen de mesure 3 du dévers de l'arme, par exemple, un inclinomètre ou un accéléromètre statique, solidaire de l'arme.a means 3 for measuring the cant of the weapon, for example, an inclinometer or a static accelerometer, integral with the weapon.
- un moyen de mesure 4 de la vitesse et de la direction du vent, par exemple un anémomètre miniature solidaire de l'arme.a means 4 for measuring the wind speed and direction, for example a miniature anemometer secured to the weapon.
- un moyen 5 destiné à alimenter un calculateur avec des données relatives au type de la munition qui va être tirée. Il peut s'agir par exemple d'une mémoire morte à semi-conducteur.
Les résultats des mesures réalisées par les moyens 1 à 4 alimentent un calculateur 6, qui reçoit par ailleurs les données relatives à la munition en provenance des moyens 5.- A means 5 intended to supply a computer with data relating to the type of ammunition which will be fired. It may for example be a semiconductor read-only memory. The results of the measurements carried out by the means 1 to 4 feed a computer 6, which also receives the data relating to the ammunition from the means 5.
Le calculateur 6 calcule en fonction des données reçues, au moyen d'un logiciel dédié, de façon périodique, la trajectoire apparente de la cible, le point d'impact de la munition et le décalage de position du réticule.The computer 6 calculates, as a function of the data received, by means of dedicated software, periodically, the apparent trajectory of the target, the point of impact of the ammunition and the position shift of the reticle.
Ces données de position sont transmises à un bloc de commande 7. Ce bloc de commande délivre les tensions ou courants de commande qui alimenteront des moyens de déplacement des moyens de constitutions de traits. Les moyens de constitutions de traits n'ont pas été représentés sur la figure 1. Un réticule classique 10 a été représenté sous la forme de deux traits 9, vu dans l'occulaire 8 d'une lunette de visée.This position data is transmitted to a control block 7. This control block delivers the control voltages or currents which will supply means for moving the line-making means. The lines constituting means have not been shown in Figure 1. A conventional reticle 10 has been shown in the form of two lines 9, seen in the eyepiece 8 of a telescopic sight.
Dans l'image 8 de l'occulaire, le point de croisement de deux axes perpendiculaires 11 matérialise la direction de pointage du canon de l'arme. Le point de croisement d'axe 12 matérialise l'axe de visée. Le point de croisement des axes 12 représente pour une cible se déplaçant dans la direction matérialisée par une flèche x la correction en Δx et Δy dont il faut déplacer le réticule pour que lorsque le réticule ainsi déplacé est positionné sur la cible, l'axe du canon soit décalé en avant et en général au-dessus de la cible de Δx et Δy respectivement. Dans le dispositif de l'art antérieur décrit plus haut, le réticule apparaît réellement décalé d'une quantité Δx, Δy et le tireur doit par un mouvement brutal rattraper le décalage ainsi révélé. Dans le dispositif selon l'invention, le réticule est déplacé en arrière et en général en-dessous de la cible de façon progressive à une cadence imperceptible à l'oeil en sorte que le tireur a toujours l'impression de suivre la cible. Le réticule atteint bien la position représentée par le croisement des axes 12 après une durée nécessaire à l'acquisition de la cible et au ralliement du réticule, mais le tireur n'a jamais eu l'impression de lâcher la cible. Des indications sur le type de calcul à introduire dans le calculateur pour obtenir ce résultat seront données plus loin.In image 8 of the eyepiece, the crossing point of two perpendicular axes 11 materializes the pointing direction of the barrel of the weapon. The axis crossing point 12 materializes the aiming axis. The crossing point of the axes 12 represents for a target moving in the direction materialized by an arrow x the correction in Δx and Δy whose reticle must be moved so that when the reticle thus displaced is positioned on the target, the axis of the cannon be shifted forward and generally above the target of Δx and Δy respectively. In the device of the prior art described above, the reticle appears actually offset by an amount Δx, Δy and the shooter must by a sudden movement catch up with the offset thus revealed. In the device according to the invention, the reticle is moved behind and generally below the target progressively at a rate imperceptible to the eye so that the shooter always has the impression of following the target. The reticle reaches the position represented by the crossing of the axes 12 after a period necessary for acquiring the target and rallying the reticle, but the shooter never had the impression of letting go of the target. Indications on the type of calculation to be introduced into the calculator to obtain this result will be given later.
La figure 2 représente un premier exemple de moyens de constitution de traits. Les traits sont constitués chacun par un style 14. Les deux styles sont croisés à 90°. Le plan de la figure 2 est un plan axial longitudinal de la lunette parallèle à l'un des styles et perpendiculaire à l'autre. L'un des styles 14 a donc été représenté sous forme d'un trait, et le
second sous forme d'un point. Chacun de ces styles est porté par un chariot porte style 15 dont un seul a été représenté. Ces chariots porte style 15 sont montés sur des vis sans fin 16. Ces vis sans fin 16 sont entraînées en rotation par des micromoteurs réducteurs 13. Les tensions de commande en provenance du calculateur commandent la rotation du moteur et donc la position des styles 14. Le point de croisement des styles 14 représente la position du réticule 10. Les deux styles 14 sont situés dans le plan image 17 d'un objectif 19 d'une lunette de visée montée de façon connue sur le fusil. Sur la figure 2, le plan image 17 a été représenté par une ligne pointillée et la lunette par un ensemble de deux lentilles, une lentille occulaire 18 et une lentille objectif 19. Dans ce cas simple l'objectif 19 est le moyen optique captant l'image du paysage.FIG. 2 represents a first example of means for constituting lines. The lines are each made up of a style 14. The two styles are crossed at 90 °. The plane of Figure 2 is a longitudinal axial plane of the telescope parallel to one of the styles and perpendicular to the other. One of the styles 14 has therefore been represented in the form of a line, and the second as a point. Each of these styles is carried by a style carriage 15, only one of which has been shown. These style carriages 15 are mounted on endless screws 16. These endless screws 16 are rotated by reducing micromotors 13. The control voltages from the computer control the rotation of the motor and therefore the position of styles 14. The crossing point of the styles 14 represents the position of the reticle 10. The two styles 14 are located in the image plane 17 of a target 19 of a rifle scope mounted in a known manner on the rifle. In FIG. 2, the image plane 17 has been represented by a dotted line and the bezel by a set of two lenses, an ocular lens 18 and an objective lens 19. In this simple case, the objective 19 is the optical means picking up the image of the landscape.
La figure 3 décrit un autre mode de réalisation des moyens de constitution de trait. Dans ce mode, les traits matérialisant le réticule 10 sont constitués par les aiguilles 20 de deux galvanomètres 21 identiques. Les aiguilles 20 sont placées pour être au repos perpendiculaires l'une à l'autre dans le plan image 17 de l'objectif 19 d'une lunette représentée sur la figure 3 également par son occulaire 18 et son objectif 19.FIG. 3 describes another embodiment of the line-making means. In this mode, the lines materializing the reticle 10 consist of the needles 20 of two identical galvanometers 21. The needles 20 are placed so as to be at rest perpendicular to each other in the image plane 17 of the objective 19 of a telescope shown in FIG. 3 also by its eyepiece 18 and its objective 19.
La figure 4 décrit un mode préféré de réalisation des moyens de constitution de trait. Ces moyens sont constitués par un milieu dont les caractéristiques optiques changent en fonction de la valeur des champs électromagnétiques auxquels est soumis le milieu. Le milieu pourra être par exemple constitué, de façon connue, par des cristaux liquides disposés entre des lames transparentes, le champ étant créé par un réseau matriciel d'électrodes transparentes. La figure 4 représente un tel dispositif. Il est constitué par un écran à cristaux liquide haute définition 22 placé dans le plan image 17 de l'objectif 19 d'une lunette de visée représentée par son occulaire 18 et son objectif 19. Des réseaux d'électrodes transparentes 23 placés de part et d'autre de l'écran permettent la modification locale des caractéristiques optiques des cristaux. Il est ainsi possible de matérialiser des traits qui constituent ensemble le dessin du réticule 10. Par la commande des électrodes à partir du calculateur de commande 7, il est possible de déplacer le réticule de façon quasi continue pour le tireur. Il est dit de façon quasi continue car en réalité le déplacement est un déplacement discontinu dont le pas est celui des réseaux matriciels
d'électrodes 23. Si ce pas est assez petit, le déplacement a, pour le tireur l'apparence d'un déplacement continu.FIG. 4 describes a preferred embodiment of the line making means. These means consist of a medium whose optical characteristics change according to the value of the electromagnetic fields to which the medium is subjected. The medium may for example be constituted, in a known manner, by liquid crystals arranged between transparent plates, the field being created by a matrix network of transparent electrodes. Figure 4 shows such a device. It consists of a high definition liquid crystal screen 22 placed in the image plane 17 of the objective 19 of a telescopic sight represented by its eyepiece 18 and its objective 19. Networks of transparent electrodes 23 placed on either side on the other side of the screen allow the local modification of the optical characteristics of the crystals. It is thus possible to materialize lines which together constitute the design of the reticle 10. By controlling the electrodes from the control computer 7, it is possible to move the reticle almost continuously for the shooter. It is said almost continuously because in reality the displacement is a discontinuous displacement whose pitch is that of the matrix networks of electrodes 23. If this step is small enough, the displacement has, for the shooter the appearance of a continuous displacement.
La figure 5 représente une arme individuelle, par exemple un fusil 30, équipée d'un dispositif selon l'invention réalisé selon le mode préféré. Le fusil 30 est équipé d'une lunette de visée 31 comportant un objectif 19 et un occulaire 18. La lunette comporte dans un plan image de l'objectif un écran à cristaux liquides 22 commandé par des électrodes 23. Le fusil est équipé également d'un télémètre laser 1 , de capteurs de vitesse de rotation de l'arme en site et azimuth 2 et 2', un inclinomètre 3 destiné à mesurer le dévers de l'arme et d'un anémomètre 4 destiné à mesurer la vitesse relative du vent par rapport à l'arme. Les paramètres relatifs à la munition sont introduits sous forme d'une carte enfichable 5 dans un lecteur 5'. Des liaisons non représentées lient les capteurs 1 à 4 et le lecteur 5' à un calculateur 6, dont un module 7 commande par des liaisons non représentées les électrodes 23, déterminant la position du réticule 10 et l'apparition d'un signe indiquant que le réticule est en position de tir. Les autres composants de l'arme connus en eux-mêmes tel le canon 32 ont été représentés sous forme simplifiée aisément reconnaissable par l'homme du métier. Dans un autre mode préféré de réalisation représenté figure 6 et adapté au tir de nuit, la lunette est remplacée par une caméra thermique 40. Dans ce cas les moyens de constitutions de traits sont constitués par un ensemble de pixels dont le niveau de gris est commandé par le calculateur pour être en contraste avec le fond de l'image. Des indications nécessaires à la programmation du calculateur pour rallier insensiblement le réticule 10 à la cible seront maintenant données. Pour les explications qui vont suivre, on suppose que le tireur pointe une cible animée d'une vitesse constante se déplaçant à une distance constante du tireur. Après une phase initiale de poursuite de la cible par le tireur, le système décale insensiblement et progressivement le réticule en arrière de la cible. A cet instant le tireur accélère la vitesse de rotation de son arme pour maintenir le réticule sur la cible. (La vitesse de rotation arme devient supérieure à celle de la cible). Un calcul simple montre que si aucune précaution n'est prise, cette accélération apparente de la cible va être prise
en compte pour calculer une position trop arrière du réticule, puis pour des raisons inverses trop avant.FIG. 5 represents an individual weapon, for example a rifle 30, equipped with a device according to the invention produced according to the preferred mode. The rifle 30 is equipped with a telescopic sight 31 comprising a objective 19 and an eyepiece 18. The telescopic sight comprises in an image plane of the objective a liquid crystal screen 22 controlled by electrodes 23. The rifle is also equipped with 'a laser rangefinder 1, sensors for the rotation speed of the weapon in elevation and azimuth 2 and 2', an inclinometer 3 intended to measure the cant of the weapon and an anemometer 4 intended to measure the relative speed of the wind relative to the weapon. The parameters relating to the ammunition are introduced in the form of a plug-in card 5 in a reader 5 '. Unrepresented connections link the sensors 1 to 4 and the reader 5 ′ to a computer 6, a module 7 of which controls, by connections not shown, the electrodes 23, determining the position of the reticle 10 and the appearance of a sign indicating that the reticle is in the firing position. The other components of the weapon known in themselves such as the barrel 32 have been shown in simplified form easily recognizable by a person skilled in the art. In another preferred embodiment shown in FIG. 6 and suitable for night shooting, the telescope is replaced by a thermal camera 40. In this case, the means of constituting lines consist of a set of pixels whose gray level is controlled by the calculator to be in contrast with the background of the image. Instructions necessary for programming the computer to imperceptibly rally the reticle 10 to the target will now be given. For the following explanations, it is assumed that the shooter is pointing at a target animated with a constant speed moving at a constant distance from the shooter. After an initial phase of pursuit of the target by the shooter, the system gradually and gradually shifts the reticle behind the target. At this instant the shooter accelerates the speed of rotation of his weapon to maintain the reticle on the target. (The weapon rotation speed becomes higher than that of the target). A simple calculation shows that if no precaution is taken, this apparent acceleration of the target will be taken into account to calculate a position too far back of the reticle, then for inverse reasons too far.
On sera en présence d'un mouvement oscillatoire en général amorti. Il convient donc d'introduire une loi de ralliement du réticule à sa position en arrière de la cible qui évite les mouvements oscillatoires.We will be in the presence of a generally damped oscillatory movement. It is therefore necessary to introduce a law of rallying of the reticle to its position behind the target which avoids oscillatory movements.
La solution d'un tel problème est bien connue en servomécanisme, il en est donné ci-après et à toutes fins utiles un mode de traitement.The solution of such a problem is well known in servomechanism, it is given below and for all practical purposes a method of treatment.
La figure 7 est destinée à matérialiser les différents angles qui sont utilisés pour le calcul. On fait les hypothèses simplificatrices suivantes :FIG. 7 is intended to materialize the different angles which are used for the calculation. The following simplifying assumptions are made:
1. La cible C se déplace à une distance constante De du tireur A ;1. Target C moves at a constant distance De from shooter A;
2. La cible est animée d'une vitesse constante (rotation). On pose : wc : vitesse de rotation cible ; wc=cte par exemple (=0,5 deg/sec) wa(t) : vitesse de rotation arme en fonction du temps αc(t) : angle de rotation de la cible en fonction du temps αa(t) : angle de rotation de l'arme en fonction du temps αm(t) : angle de rotation du réticule en fonction du temps Dc: distance cible/tireur supposée constante Tp : Temps de vol de la balle pour parcourir la distance Dc ; Tp est supposé constant par exemple 1 seconde. δ : décalage angulaire entre l'angle du réticule et l'angle de l'arme [ δ= am (t) - aa {t) }2. The target has a constant speed (rotation). We set: w c : target speed of rotation; w c = cte for example (= 0.5 deg / sec) w a (t): weapon rotation speed as a function of time α c (t): target rotation angle as a function of time α a (t) : angle of rotation of the weapon as a function of time α m (t): angle of rotation of the reticle as a function of time D c : target / shooter distance assumed to be constant Tp: Time of flight of the bullet to cover the distance D c ; Tp is assumed to be constant, for example 1 second. δ: angular offset between the angle of the reticle and the angle of the weapon [δ = a m (t) - a a {t)}
Dans ces conditions et selon les hypothèses : δ= -wa (t) .Tp (1 ) cc,„ (0 = cca (t) + δ (2) c (t) = wc . t + cte (3)Under these conditions and according to the assumptions: δ = -w a (t) .T p (1) cc, „(0 = cc a (t) + δ (2) c (t) = w c . T + cte ( 3)
Ceci posé, imaginons le scénario suivant représenté figure 8.That said, imagine the following scenario shown in Figure 8.
1. Le tireur repère une cible. Il va ajuster sa visée en amenant le réticule sur la cible et engager une poursuite. Dans cette phase, le réticule reste au centre du viseur (il n'est pas mis à jour) mais la séquence d'acquisition de tous les paramètres est initialisée et les blocs de calculs 6 sont rapidement en mesure de visualiser le point d'impact de la balle si le tir était déclenché à cet instant. A l'issue de cette phase on a :
wa (0 = wc = cte (4)
1. The shooter spots a target. He will adjust his aim by bringing the crosshair to the target and initiate a chase. In this phase, the reticle remains in the center of the viewfinder (it is not updated) but the acquisition sequence of all the parameters is initialized and the calculation blocks 6 are quickly able to visualize the point of impact of the ball if the shot was fired at that time. At the end of this phase we have: w a (0 = w c = cte ( 4 )
2. Dès que le tireur estime que la cible est bien accrochée, il en informe le calculateur en appuyant légèrement sur la queue de détente ce qui correspond à l'instant t=0 sur le graphe figure 8.2. As soon as the shooter considers that the target is well hooked, he informs the computer by pressing lightly on the trigger tail which corresponds to the instant t = 0 on the graph in figure 8.
Le réticule doit alors se décaler d'une quantité : δ= wa . Tp = - wc . Tp The reticle must then shift by an amount: δ = w a . T p = - w c . T p
Pendant ce déplacement le tireur qui continue à suivre la cible avec son réticule va imprimer au fusil une vitesse de rotation accélérée. Pour éviter les mouvements oscillatoires de ralliement à la nouvelle position, le ralliement doit se faire de façon asymptotique ou tangentielle.During this movement, the shooter who continues to follow the target with his reticle will give the rifle an accelerated speed of rotation. To avoid oscillating movements of rallying to the new position, rallying must be done asymptotically or tangentially.
Ce point est illustré par le graphe de la figure 8. Sur cette figure on a représenté en abscisse le temps et en ordonnée la valeur des angles, mesurés tous à partir d'un même axe d'origine arbitraire. Sur cette figure l'angle ac(t) qui représente le déplacement angulaire de la cible est représenté par une droite CC puisque par hypothèse la vitesse angulaire de la cible est constante.This point is illustrated by the graph in FIG. 8. In this figure, time is represented on the abscissa and the value of the angles on the ordinate, all measured from the same axis of arbitrary origin. In this figure the angle a c (t) which represents the angular displacement of the target is represented by a straight line CC since by assumption the angular speed of the target is constant.
L'angle que doit suivre l'axe du fusil, l'angle a(t) correspond à un angle augmenté par rapport à ac(t) de la quantité δ= wa .Tp. Il s'agit donc d'une droite AA' parallèle à CC mais décalée selon l'ordonnée d'une quantité positive δf. Ce décalage sera obtenu en décalant en arrière le réticule d'une quantité négative δf. La position en phase finale du réticule est donc représentée par la droite RR'. La droite RR' est symétrique de la droite AA' par rapport à la droite CC. A l'instant 0 qui correspond au moment où le calculateur 6 a déterminé la valeur de δf, le réticule et l'axe du canon sont alignés et l'on a δ=0. Il va falloir faire croître δ négativement jusqu'à sa valeur δf. Cela correspond à un déplacement en arrière du réticule jusqu'à δf. Si le déplacement est réalisé de façon telle que δf rejoigne asymptotiquement la droite RR' et si le tireur continue à maintenir le réticule sur la cible alors le canon se déplace en avant de la cible et atteint asymptotiquement la droite AA' au même instant t«j . Ces déplacements du réticule et du canon sont représentés par les courbes DE et DF.The angle which the axis of the rifle must follow, the angle a (t) corresponds to an angle increased with respect to a c (t) by the quantity δ = w a .T p . It is therefore a straight line AA 'parallel to CC but offset according to the ordinate of a positive quantity δf. This offset will be obtained by shifting the reticle backwards by a negative quantity δf. The position in the final phase of the reticle is therefore represented by the line RR '. The line RR 'is symmetrical with the line AA' with respect to the line CC. At the instant 0 which corresponds to the moment when the computer 6 determined the value of δf, the reticle and the axis of the barrel are aligned and we have δ = 0. We will have to grow δ negatively to its value δf. This corresponds to a displacement behind the reticle up to δf. If the displacement is carried out in such a way that δf asymptotically joins the straight line RR 'and if the shooter continues to maintain the reticle on the target then the gun moves in front of the target and asymptotically reaches the straight line AA' at the same instant t “ j. These displacements of the reticle and the barrel are represented by the curves DE and DF.
On sait qu'il existe une infinité de solutions pour que DE rejoigne asymptotiquement RR'. Si l'on choisit de faire croître δ de 0 à δf selon une exponentielle alors la valeur de l'exposant déterminera la vitesse et donc le
temps au bout duquel δ sera pratiquement égal à δf. Il conviendra de prendre une constante de temps (l'exposant de l'exponentielle) qui représente un compromis entre une transition rapide entre 0 et δf ce qui est souhaitable, et une accélération trop grande à partir de D qui risque de perturber le tireur.We know that there are infinitely many solutions for DE to join RR 'asymptotically. If we choose to make δ grow from 0 to δf according to an exponential then the value of the exponent will determine the speed and therefore the time after which δ will be practically equal to δf. It will be necessary to take a time constant (the exponent of the exponential) which represents a compromise between a rapid transition between 0 and δf which is desirable, and too great acceleration from D which is likely to disturb the shooter.
Il est également possible de prendre des familles de courbes telles que DH qui sont tangentes à la droite CC au point 0 et à la droite RR' en un point H. L'abscisse du point H est également fonction de la vitesse de ralliement. La courbe DG qui représente le ralliement du canon sera également tangente en D à la droite CC et en G de même abscisse que H à la droite AA'. On aura ainsi une transition douce et exempte d'à-coup en accélération entre la position initiale et la position finale.It is also possible to take families of curves such as DH which are tangent to the line CC at point 0 and to the line RR 'at a point H. The abscissa of point H is also a function of the joining speed. The curve DG which represents the rallying of the barrel will also be tangent in D to the line CC and in G of the same abscissa as H to the line AA '. There will thus be a smooth and jerk-free transition in acceleration between the initial position and the final position.
Les explications ci-dessus sont destinées à montrer que le problème posé est soluble d'une part et à montrer les éléments conduisant à une solution possible.The explanations above are intended to show that the problem posed is soluble on the one hand and to show the elements leading to a possible solution.
Les courbes DE ou DH peuvent être calculées point par point ou de préférence comme le résultat de fonctions simples.
The DE or DH curves can be calculated point by point or preferably as the result of simple functions.
Claims
1. Arme individuelle (30) comportant un canon (32) et un dispositif de visée (31 ) comportant un réticule (10) collimaté, des moyens optiques (19,40) captant une image du paysage, un point visé du paysage étant défini par la position du réticule (10) dans l'image, des capteurs de vitesse angulaire (2,2') du canon destinés à mesurer la vitesse angulaire d'une cible (C) sur laquelle serait maintenu le réticule (10), un télémètre (1) destiné à mesurer la distance de cette cible (C) et un calculateur (6,7), le calculateur (6,7) étant muni d'un programme lui permettant de calculer un point d'impact d'une munition dans la cible (C) et recevant à cet effet les informations en provenance des capteurs de vitesse angulaire (2,2') et du télémètre (1), le calculateur commandant des moyens de déplacement relatif de l'image et du réticule (10) pour faire apparaître le réticule (10) au futur point d'impact caractérisé en ce que le réticule (10) est constitué par des moyens de constitutions de traits (9,14,20,22,40), ces moyens étant deplaçables de façon continue ou quasi continue par des moyens électriques (13,21 ,23,40) recevant des grandeurs électriques de commande, ces grandeurs étant commandables par le calculateur (7), et en ce que le calculateur (6,7) est équipé d'un programme de commande des grandeurs électriques permettant de déplacer insensiblement le réticule (10) pour l'amener au futur point d'impact et l'y maintenir.1. Individual weapon (30) comprising a barrel (32) and a sighting device (31) comprising a collimated reticle (10), optical means (19.40) capturing an image of the landscape, a targeted point of the landscape being defined by the position of the reticle (10) in the image, angular speed sensors (2,2 ′) of the gun intended to measure the angular speed of a target (C) on which the reticle (10) would be kept, a rangefinder (1) intended to measure the distance of this target (C) and a calculator (6,7), the calculator (6,7) being provided with a program allowing it to calculate a point of impact of a munition in the target (C) and receiving for this purpose the information coming from the angular speed sensors (2,2 ') and from the rangefinder (1), the computer controlling means of relative displacement of the image and the reticle (10 ) to reveal the reticle (10) at the future point of impact characterized in that the reticle (10) is constituted by means of constitutions of lines (9,14,20,22,40), these means being continuously or almost continuously movable by electrical means (13,21, 23,40) receiving electrical control quantities, these quantities being controllable by the computer (7), and in that the computer (6,7) is equipped with a program for controlling the electrical quantities making it possible to imperceptibly move the reticle (10) to bring it to the future point of impact and l 'keep it there.
2. Arme individuelle (30) selon la revendication 1 caractérisée en ce que les moyens optiques captant une image de paysage sont constitués par une lunette (31 ) de visée comportant un objectif (19) et un occulaire (18), les moyens de constitutions de traits (14,20,22) constituant les traits dans le plan focal image (17) de l'objectif (19).2. Individual weapon (30) according to claim 1 characterized in that the optical means capturing a landscape image are constituted by a telescopic sight (31) comprising a lens (19) and an eyepiece (18), the means of constitutions of lines (14, 20, 22) constituting the lines in the image focal plane (17) of the objective (19).
3. Arme individuelle (30) selon la revendication 2 caractérisée en ce que les moyens de constitutions de traits sont composés de deux styles (14) croisés, les moyens de déplacement de chaque style étant constitué par un micromoteur (13) électrique recevant des tensions d'alimentation commandées par le calculateur (6,7). 3. Individual weapon (30) according to claim 2 characterized in that the means of constituting lines are composed of two styles (14) crossed, the means of movement of each style being constituted by an electric micromotor (13) receiving voltages supply controlled by the computer (6,7).
4. Arme individuelle (30) selon la revendication 2 caractérisée en ce que les moyens de constitutions de traits sont constitués par deux aiguilles (20) croisées, chaque aiguille (20) étant l'aiguille d'un galvanomètre (21) recevant un courant d'alimentation commandé par le calculateur (7).4. Individual weapon (30) according to claim 2 characterized in that the means of constituting lines consist of two needles (20) crossed, each needle (20) being the needle of a galvanometer (21) receiving a current supply controlled by the computer (7).
5. Arme individuelle (30) selon la revendication 2 caractérisée en ce que les moyens de constitutions de traits sont constitués par contraste obtenu au moyen d'un milieu transparent (22) optiquement sensible à une variation de champ électrique les moyens de déplacement des traits étant constitués par un réseau d'électrodes (23) agissant sur le champ électrique du milieu (22) optiquement sensible, les tensions inter-électrodes étant commandées par le calculateur (7).5. Individual weapon (30) according to claim 2 characterized in that the means of constituting lines are constituted by contrast obtained by means of a transparent medium (22) optically sensitive to a variation of electric field the means of displacement of the lines being constituted by an array of electrodes (23) acting on the electric field of the optically sensitive medium (22), the inter-electrode voltages being controlled by the computer (7).
6. Arme individuelle selon la revendication 1 caractérisée en ce que les moyens optiques captant une image du paysage sont constitués par une caméra vidéo (40) couplée à un écran de visualisation comportant des pixels, la luminance de chaque pixel étant une fonction d'une tension affectée à un pixel et les moyens de constitution de traits étant constitués par des pixels recevant une tension commandée par le calculateur. 6. Individual weapon according to claim 1 characterized in that the optical means capturing an image of the landscape consist of a video camera (40) coupled to a display screen comprising pixels, the luminance of each pixel being a function of a voltage assigned to a pixel and the means for constituting lines being constituted by pixels receiving a voltage controlled by the computer.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR94/08285 | 1994-07-05 | ||
FR9408285A FR2722280B1 (en) | 1994-07-05 | 1994-07-05 | PRECISION SHOOTING AID FOR AN INDIVIDUAL WEAPON |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1996001404A1 true WO1996001404A1 (en) | 1996-01-18 |
Family
ID=9465009
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR1995/000878 WO1996001404A1 (en) | 1994-07-05 | 1995-06-30 | Personal weapon sharpshooting aid |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR2722280B1 (en) |
WO (1) | WO1996001404A1 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998028587A1 (en) * | 1996-12-21 | 1998-07-02 | Dynamit Nobel Gmbh Explosivstoff- Und Systemtechnik | Nonlethal weapons |
FR2788845A1 (en) * | 1999-01-21 | 2000-07-28 | Soc Et De Realisations Et D Ap | Shooting supervisor for machine gun, rocket launcher or anti-tank includes first and second modules to measure and visualize line of sight of projectile |
US6449892B1 (en) | 2001-06-18 | 2002-09-17 | Xybernaut Corporation | Smart weapon |
US7089845B2 (en) | 2001-10-12 | 2006-08-15 | Chartered Ammunition Industries Pte Ltd. | Method and device for aiming a weapon barrel and use of the device |
US7946048B1 (en) * | 2007-01-10 | 2011-05-24 | Horus Vision, Llc | Shooting calibration systems and methods |
ITTV20100100A1 (en) * | 2010-07-12 | 2012-01-13 | Selex Galileo Spa | OPTOELECTRONIC DIGITAL APPARATUS TO ASSIST A OPERATOR IN DETERMINING THE SHOE STRUCTURE TO BE ATTACHED TO A PORTABLE GRENADE LAUNCHER TO HIT A MOVING TARGET, AND ITS OPERATING METHOD |
US8893971B1 (en) | 2009-05-15 | 2014-11-25 | Horus Vision, Llc | Apparatus and method for calculating aiming point information |
US8893423B2 (en) | 2011-05-27 | 2014-11-25 | G. David Tubb | Dynamic targeting system with projectile-specific aiming indicia in a reticle and method for estimating ballistic effects of changing environment and ammunition |
US8959824B2 (en) | 2012-01-10 | 2015-02-24 | Horus Vision, Llc | Apparatus and method for calculating aiming point information |
US8966806B2 (en) | 1997-12-08 | 2015-03-03 | Horus Vision, Llc | Apparatus and method for calculating aiming point information |
US9068794B1 (en) | 1997-12-08 | 2015-06-30 | Horus Vision, Llc; | Apparatus and method for aiming point calculation |
US9121672B2 (en) | 2011-01-01 | 2015-09-01 | G. David Tubb | Ballistic effect compensating reticle and aim compensation method with sloped mil and MOA wind dot lines |
US9557142B2 (en) | 2011-01-01 | 2017-01-31 | G. David Tubb | Ballistic effect compensating reticle and aim compensation method with leveling reference and spin-drift compensated wind dots |
US10254082B2 (en) | 2013-01-11 | 2019-04-09 | Hvrt Corp. | Apparatus and method for calculating aiming point information |
US10823532B2 (en) | 2018-09-04 | 2020-11-03 | Hvrt Corp. | Reticles, methods of use and manufacture |
US11480411B2 (en) | 2011-01-01 | 2022-10-25 | G. David Tubb | Range-finding and compensating scope with ballistic effect compensating reticle, aim compensation method and adaptive method for compensating for variations in ammunition or variations in atmospheric conditions |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001092809A1 (en) * | 2000-05-26 | 2001-12-06 | Dynamit Nobel Gmbh Explosivstoff- Und Systemtechnik | Sighting mechanism for fire arms for moving targets |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2344807A1 (en) * | 1976-03-17 | 1977-10-14 | Realisa Electroniques Et | Antitank rocket firing tube sight - employs laser and calculator on same axes of rotation as tube |
FR2384227A1 (en) * | 1977-03-18 | 1978-10-13 | Sopelem | Firearm aiming system for moving target - has cross-wires driven proportionately to telescope angular velocity with timer stopped after period proportional to range |
GB2068091A (en) * | 1980-01-25 | 1981-08-05 | Messerschmitt Boelkow Blohm | An optical aiming device |
FR2524978A1 (en) * | 1982-04-08 | 1983-10-14 | Diehl Gmbh & Co | SIGHTING DEVICE |
DE3325755A1 (en) * | 1983-07-16 | 1985-01-24 | Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn | Night-combat aiming aid for anti-tank hand weapons |
DE3605074A1 (en) * | 1986-02-18 | 1987-08-27 | Messerschmitt Boelkow Blohm | Aiming method for sights of unguided weapons |
DE3837922A1 (en) * | 1988-11-09 | 1990-05-10 | Rheinmetall Gmbh | Method and device for aiming at moving targets, and use of the device for a Panzerfaust (standard German infantry anti-tank weapon) |
WO1992018823A1 (en) * | 1991-04-17 | 1992-10-29 | Saab Instruments Aktiebolag | A device for aiming at a mobile target and directing an anti-aircraft gun or the like at same |
-
1994
- 1994-07-05 FR FR9408285A patent/FR2722280B1/en not_active Expired - Fee Related
-
1995
- 1995-06-30 WO PCT/FR1995/000878 patent/WO1996001404A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2344807A1 (en) * | 1976-03-17 | 1977-10-14 | Realisa Electroniques Et | Antitank rocket firing tube sight - employs laser and calculator on same axes of rotation as tube |
FR2384227A1 (en) * | 1977-03-18 | 1978-10-13 | Sopelem | Firearm aiming system for moving target - has cross-wires driven proportionately to telescope angular velocity with timer stopped after period proportional to range |
GB2068091A (en) * | 1980-01-25 | 1981-08-05 | Messerschmitt Boelkow Blohm | An optical aiming device |
FR2524978A1 (en) * | 1982-04-08 | 1983-10-14 | Diehl Gmbh & Co | SIGHTING DEVICE |
DE3325755A1 (en) * | 1983-07-16 | 1985-01-24 | Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn | Night-combat aiming aid for anti-tank hand weapons |
DE3605074A1 (en) * | 1986-02-18 | 1987-08-27 | Messerschmitt Boelkow Blohm | Aiming method for sights of unguided weapons |
DE3837922A1 (en) * | 1988-11-09 | 1990-05-10 | Rheinmetall Gmbh | Method and device for aiming at moving targets, and use of the device for a Panzerfaust (standard German infantry anti-tank weapon) |
WO1992018823A1 (en) * | 1991-04-17 | 1992-10-29 | Saab Instruments Aktiebolag | A device for aiming at a mobile target and directing an anti-aircraft gun or the like at same |
Cited By (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998028587A1 (en) * | 1996-12-21 | 1998-07-02 | Dynamit Nobel Gmbh Explosivstoff- Und Systemtechnik | Nonlethal weapons |
US8966806B2 (en) | 1997-12-08 | 2015-03-03 | Horus Vision, Llc | Apparatus and method for calculating aiming point information |
US9335123B2 (en) | 1997-12-08 | 2016-05-10 | Horus Vision, Llc | Apparatus and method for aiming point calculation |
US9068794B1 (en) | 1997-12-08 | 2015-06-30 | Horus Vision, Llc; | Apparatus and method for aiming point calculation |
FR2788845A1 (en) * | 1999-01-21 | 2000-07-28 | Soc Et De Realisations Et D Ap | Shooting supervisor for machine gun, rocket launcher or anti-tank includes first and second modules to measure and visualize line of sight of projectile |
US6449892B1 (en) | 2001-06-18 | 2002-09-17 | Xybernaut Corporation | Smart weapon |
US7089845B2 (en) | 2001-10-12 | 2006-08-15 | Chartered Ammunition Industries Pte Ltd. | Method and device for aiming a weapon barrel and use of the device |
US10731948B2 (en) | 2003-11-12 | 2020-08-04 | Hvrt Corp. | Apparatus and method for calculating aiming point information |
US10295307B2 (en) | 2003-11-12 | 2019-05-21 | Hvrt Corp. | Apparatus and method for calculating aiming point information |
US9869530B2 (en) | 2003-11-12 | 2018-01-16 | Hvrt Corp. | Apparatus and method for calculating aiming point information |
US9459077B2 (en) | 2003-11-12 | 2016-10-04 | Hvrt Corp. | Apparatus and method for calculating aiming point information |
US7946048B1 (en) * | 2007-01-10 | 2011-05-24 | Horus Vision, Llc | Shooting calibration systems and methods |
US8991702B1 (en) | 2009-05-15 | 2015-03-31 | Horus Vision, Llc | Apparatus and method for calculating aiming point information |
US11421961B2 (en) | 2009-05-15 | 2022-08-23 | Hvrt Corp. | Apparatus and method for calculating aiming point information |
US10948265B2 (en) | 2009-05-15 | 2021-03-16 | Hvrt Corp. | Apparatus and method for calculating aiming point information |
US8893971B1 (en) | 2009-05-15 | 2014-11-25 | Horus Vision, Llc | Apparatus and method for calculating aiming point information |
US10060703B2 (en) | 2009-05-15 | 2018-08-28 | Hvrt Corp. | Apparatus and method for calculating aiming point information |
US9250038B2 (en) | 2009-05-15 | 2016-02-02 | Horus Vision, Llc | Apparatus and method for calculating aiming point information |
US8905307B2 (en) | 2009-05-15 | 2014-12-09 | Horus Vision Llc | Apparatus and method for calculating aiming point information |
US9574850B2 (en) | 2009-05-15 | 2017-02-21 | Hvrt Corp. | Apparatus and method for calculating aiming point information |
US10502529B2 (en) | 2009-05-15 | 2019-12-10 | Hvrt Corp. | Apparatus and method for calculating aiming point information |
EA024098B1 (en) * | 2010-07-12 | 2016-08-31 | СЕЛЕКС ГАЛИЛЕО С.п.А. | Optoelectronic digital apparatus for assisting an operator in determining the shooting attitude to be given to a hand-held grenade launcher so as to strike a moving target, and respective operation method |
ITTV20100100A1 (en) * | 2010-07-12 | 2012-01-13 | Selex Galileo Spa | OPTOELECTRONIC DIGITAL APPARATUS TO ASSIST A OPERATOR IN DETERMINING THE SHOE STRUCTURE TO BE ATTACHED TO A PORTABLE GRENADE LAUNCHER TO HIT A MOVING TARGET, AND ITS OPERATING METHOD |
US8757487B2 (en) | 2010-07-12 | 2014-06-24 | Selex Galileo S.P.A. | Optoelectronic digital apparatus for assisting an operator in determining the shooting attitude to be given to a hand-held grenade launcher so as to strike a moving target, and respective operation method |
WO2012007820A1 (en) * | 2010-07-12 | 2012-01-19 | Selex Galileo S.P.A. | Optoelectronic digital apparatus for assisting an operator in determining the shooting attitude to be given to a hand-held grenade launcher so as to strike a moving target, and respective operation method |
US9557142B2 (en) | 2011-01-01 | 2017-01-31 | G. David Tubb | Ballistic effect compensating reticle and aim compensation method with leveling reference and spin-drift compensated wind dots |
US9581415B2 (en) | 2011-01-01 | 2017-02-28 | G. David Tubb | Ballistic effect compensating reticle and aim compensation method |
US11480411B2 (en) | 2011-01-01 | 2022-10-25 | G. David Tubb | Range-finding and compensating scope with ballistic effect compensating reticle, aim compensation method and adaptive method for compensating for variations in ammunition or variations in atmospheric conditions |
US10180307B2 (en) | 2011-01-01 | 2019-01-15 | G. David Tubb | Ballistic effect compensating reticle, aim compensation method and adaptive method for compensating for variations in ammunition or variations in atmospheric conditions |
US9121672B2 (en) | 2011-01-01 | 2015-09-01 | G. David Tubb | Ballistic effect compensating reticle and aim compensation method with sloped mil and MOA wind dot lines |
US10371485B2 (en) | 2011-01-01 | 2019-08-06 | G. David Tubb | Reticle and ballistic effect compensation method having gyroscopic precession compensated wind dots |
US9175927B2 (en) | 2011-05-27 | 2015-11-03 | G. David Tubb | Dynamic targeting system with projectile-specific aiming indicia in a reticle and method for estimating ballistic effects of changing environment and ammunition |
US8893423B2 (en) | 2011-05-27 | 2014-11-25 | G. David Tubb | Dynamic targeting system with projectile-specific aiming indicia in a reticle and method for estimating ballistic effects of changing environment and ammunition |
US11965711B2 (en) | 2012-01-10 | 2024-04-23 | Hvrt Corp. | Apparatus and method for calculating aiming point information |
US10488153B2 (en) | 2012-01-10 | 2019-11-26 | Hvrt Corp. | Apparatus and method for calculating aiming point information |
US10488154B2 (en) | 2012-01-10 | 2019-11-26 | Hvrt Corp. | Apparatus and method for calculating aiming point information |
US10451385B2 (en) | 2012-01-10 | 2019-10-22 | Hvrt Corp. | Apparatus and method for calculating aiming point information |
US9255771B2 (en) | 2012-01-10 | 2016-02-09 | Horus Vision Llc | Apparatus and method for calculating aiming point information |
US11181342B2 (en) | 2012-01-10 | 2021-11-23 | Hvrt Corp. | Apparatus and method for calculating aiming point information |
US8959824B2 (en) | 2012-01-10 | 2015-02-24 | Horus Vision, Llc | Apparatus and method for calculating aiming point information |
US11391542B2 (en) | 2012-01-10 | 2022-07-19 | Hvrt Corp. | Apparatus and method for calculating aiming point information |
US10254082B2 (en) | 2013-01-11 | 2019-04-09 | Hvrt Corp. | Apparatus and method for calculating aiming point information |
US11255640B2 (en) | 2013-01-11 | 2022-02-22 | Hvrt Corp. | Apparatus and method for calculating aiming point information |
US10895434B2 (en) | 2013-01-11 | 2021-01-19 | Hvrt Corp. | Apparatus and method for calculating aiming point information |
US11656060B2 (en) | 2013-01-11 | 2023-05-23 | Hvrt Corp. | Apparatus and method for calculating aiming point information |
US10458753B2 (en) | 2013-01-11 | 2019-10-29 | Hvrt Corp. | Apparatus and method for calculating aiming point information |
US11293720B2 (en) | 2018-09-04 | 2022-04-05 | Hvrt Corp. | Reticles, methods of use and manufacture |
US10895433B2 (en) | 2018-09-04 | 2021-01-19 | Hvrt Corp. | Reticles, methods of use and manufacture |
US10823532B2 (en) | 2018-09-04 | 2020-11-03 | Hvrt Corp. | Reticles, methods of use and manufacture |
Also Published As
Publication number | Publication date |
---|---|
FR2722280A1 (en) | 1996-01-12 |
FR2722280B1 (en) | 1996-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1996001404A1 (en) | Personal weapon sharpshooting aid | |
EP0966647B1 (en) | Telescopic sight for individual weapon with automatic aiming and adjustment | |
EP0356303B1 (en) | Firing control system with compensation of aiming errors | |
EP0432014B1 (en) | Optoelectronic assistance system for air-raid missions and navigation | |
EP0628780B1 (en) | Aiming system for aircraft | |
EP0100719B1 (en) | Fire simulation device for small arms or the like | |
US20060005447A1 (en) | Processor aided firing of small arms | |
FR2639127A1 (en) | APPARATUS FOR ELECTRONIC PROCESSING OF IMAGES FOR DETERMINING THE DISTANCE OR SIZE OF AN OBJECT | |
FR2475208A1 (en) | LASER OBJECTIVE DESIGNATION SYSTEM | |
EP0028966A1 (en) | Method of piloting and guiding missiles in terminal flight | |
FR2656079A1 (en) | MODULAR AND RECONFIGURABLE EPISCOPIC GLASSES. | |
JP6643254B2 (en) | Optical device utilizing ballistic zoom and method of aiming at target | |
FR3067449B1 (en) | TWO EYE VISOR OPEN DIGITAL DAY / NIGHT FOR FIREARMS | |
EP0953140B1 (en) | Device for determining the direction of a target in a predetermined index mark | |
FR2742540A1 (en) | PROJECTILE WITH TRAJECTORY CORRECTION DEVICE | |
FR2788845A1 (en) | Shooting supervisor for machine gun, rocket launcher or anti-tank includes first and second modules to measure and visualize line of sight of projectile | |
BE1006775A3 (en) | STABILIZED SIGHT WEAPON. | |
EP3155358B1 (en) | System for guiding missiles for vehicles and moving targets | |
FR2524978A1 (en) | SIGHTING DEVICE | |
EP3485221B1 (en) | Telescopic sight | |
EP0605290B1 (en) | Optronic shooting aid device for hand weapon and its application to progress in a hostile environment | |
EP0127528A1 (en) | Ground-to-ground fire control system | |
FR3064737A1 (en) | VISEE DEVICE WITH ASSISTED CALIBRATION | |
FR2700840A1 (en) | Weapon with stabilized sight | |
FR2634012A1 (en) | Mobile anti-target projectile with a single correcting step, with control by oscillating reference and with three selectable detection modes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): SG US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |