WO1995035335A1 - Thermoplastic elastomer - Google Patents

Thermoplastic elastomer Download PDF

Info

Publication number
WO1995035335A1
WO1995035335A1 PCT/EP1995/002207 EP9502207W WO9535335A1 WO 1995035335 A1 WO1995035335 A1 WO 1995035335A1 EP 9502207 W EP9502207 W EP 9502207W WO 9535335 A1 WO9535335 A1 WO 9535335A1
Authority
WO
WIPO (PCT)
Prior art keywords
block
diene
block copolymer
phase
copolymer according
Prior art date
Application number
PCT/EP1995/002207
Other languages
German (de)
French (fr)
Inventor
Konrad Knoll
Hermann Gausepohl
Norbert Niessner
Dietmar Bender
Paul Naegele
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6520674&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1995035335(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to MX9606522A priority Critical patent/MX9606522A/en
Priority to JP50158896A priority patent/JP3539967B2/en
Priority to DE59509944T priority patent/DE59509944D1/en
Priority to US08/750,705 priority patent/US6031053A/en
Priority to EP95923261A priority patent/EP0766706B1/en
Priority to CA002193264A priority patent/CA2193264C/en
Publication of WO1995035335A1 publication Critical patent/WO1995035335A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2353/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2353/02Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers of vinyl aromatic monomers and conjugated dienes

Definitions

  • Block copolymers of vinyl aromatics (e.g. styrene) and dienes (e.g. butadiene) are copolymers from several strung together or otherwise linked polymer molecule areas (so-called blocks), which are more or less uniformly constructed.
  • blocks polymer molecule areas
  • diene monomers - at a certain temperature - they can be altogether elastomeric, i.e. have rubber-elastic properties or stiff, non-rubber-elastic properties, i.e. to the outside, they behave either rubber-elastic, similar to a polydiene, and have e.g. as a so-called SB rubber meaning, or like transparent, impact-resistant styrene polymers.
  • SB-Rubber cannot be processed like thermoplastics, but must be processed like ordinary diene polymers are vulcanized for use, which severely limits their use.
  • the invention normally relates to block copolymers of vinyl aromatics and dienes which can be processed purely thermoplastic and have elastomeric behavior and special mechanical properties.
  • Block copolymers are obtained by polymerizing in each case to approximately the exhaustion of a monomer supply and then changing the monomer or monomers. This process can be repeated several times.
  • Linear block copolymers are described, for example, in U.S. Patents 3,507,934 and 4,122,134.
  • Star-shaped block copolymers are known, for example, from US Pat. Nos. 4,086,298; 4,167,545 and 3,639,517.
  • the property profile of these block copolymers is essentially determined by the content of polymerized diene monomers, i.e. Length, arrangement and quantitative ratio of polydiene and polystyrene blocks characterized.
  • the type of transition between different blocks plays an important role: sharp and so-called tapered transitions are known, depending on whether the monomer change takes place abruptly or gradually. In the latter case, a more or less statistical sequence length distribution occurs.
  • Block copolymers with sharply separated blocks, with identical molecular weight and diene content, are less viscous than those with smeared block transition. If one wants to get tougher block copolymers, block transitions with statistical sequence length distribution of diene and vinyl aromatics in the transition region are therefore preferred (cf. US Pat. No. 4,122,134 and EP-A-0 316 671).
  • materials with a diene content of over 35% by weight which due to their property profile (toughness, transparency, gas permeability) would be suitable for medical applications such as infusion tubes, infusion drip chambers and stretch films, are very difficult to achieve by profile extrusion, injection molding or tubular film extrusion to process; despite stabilization with antioxidants and free radical scavengers, they are also thermally very sensitive and tend to stickiness, so that additives have to be used with great effort.
  • the so-called blocking (gluing of foils and tubes on the roll) and poor demoldability can make processing by injection molding completely impossible.
  • the object of the invention is to obtain, by suitable choice of the molecular structure, elastomeric, ie rubber-elastic, block copolymers which are easy to manufacture on an industrial scale, have a maximum of toughness with a low diene content and, moreover, like thermoplastics on extruders and Injection molding machines are easy to process.
  • this is expressed, in general terms, by the fact that in a vinylaromatic-diene block copolymer from blocks which form a hard phase (block type A) and those which form a soft phase, a block B is substituted for a pure polydiene block as the soft phase / A can occur from diene and vinyl aromatic units, which has a statistical structure.
  • the statistical average along the chain can be homogeneous or inhomogeneous.
  • a rubber-elastic block copolymer composed of at least one polymerized unit of a vinyl aromatic monomer having a hard phase-forming block A and / or a diene monomer having a first, rubber-elastic (soft) phase forming block B and at least one polymerized unit of one vinyl aromatic monomers and a diene-containing elastomeric block B / A forming a soft phase, the glass temperature T g of block A being above 25 ° C. and that of blocks B and B / A being below 25 ° C. and the phase volume ratio of block A to block B / A is selected such that the hard phase in the entire block copolymer is 1-40 volume% and the weight fraction of the diene is less than 50% by weight.
  • Such a rubber-elastic block copolymer according to the invention is obtained by forming the soft phase from a statistical copolymer of a vinylaromatic with a diene within the scope of the above parameters; statistical copoly Merisates of vinyl aromatics and dienes are obtained by polymerization in the presence of a polar cosolvent.
  • a block copolymer according to the invention can e.g. can be represented by one of the general formulas 1 to 11:
  • A stands for the vinylaromatic block and B / A for the soft phase, that is the block constructed statistically from diene and vinylaromatic units, X the rest of an n-functional initiator, Y the rest of an m-functional coupling agent and m and n are natural numbers from 1 to 10.
  • Preferred is a block copolymer of one of the general formulas AB / AA, X - [- B / AA] 2 and Y - [- B / AA] 2 (meaning of the abbreviations as above) and particularly preferably a block copolymer, whose soft phase is divided into blocks
  • each Partial blocks is below 25 ° C.
  • a block copolymer which has several blocks B / A and / or A with different molecular weights per molecule is also preferred.
  • a block B can take the place of a block A composed exclusively of vinylaromatic units, since the only thing that matters is that a rubber-elastic one Block copolymer is formed.
  • Such copolymers can have, for example, the structure (15) to (18)
  • Block copolymers according to the invention are outstandingly suitable for the production of rubber-elastic molded parts by the usual methods of thermoplastic processing, e.g. as film, foam, thermoforming, injection molding or profile extrudate.
  • Preferred vinyl aromatic compound for the purposes of the invention is styrene and also ⁇ -methylstyrene and vinyltoluene and
  • Preferred dienes are butadiene and isoprene, also piperylene, 1-phenylbutadiene and mixtures of these compounds.
  • a particularly preferred monomer combination is butadiene and styrene. All of the weight and volume information below relates to this combination; when using the technical equivalents of styrene and butadiene, you may have to convert the information accordingly.
  • the B / A block is constructed from approximately 75-30% by weight of styrene and 25-70% by weight of butadiene.
  • a soft block particularly preferably has a butadiene content between 35 and 70% and a styrene content between 65 and 30%.
  • the proportion by weight of diene in the entire block copolymer is 15-65% by weight in the case of the styrene / butadiene monomer combination, and correspondingly that of the vinylaromatic component is 85-35% by weight.
  • Butadiene-styrene block copolymers with a monomer composition of 25-60% by weight of diene and 75-40% by weight of vinylaromatic compound are particularly preferred.
  • the block copolymers are prepared by anionic polymerization in a non-polar solvent with the addition of a polar cosolvent.
  • the cosolvent acts as a Lewis base over the metal cation.
  • Aliphatic hydrocarbons such as cyclohexane or methylcyclohexane are preferably used as solvents.
  • Polar aprotic compounds such as ethers and tertiary amines are preferred as Lewis bases.
  • particularly effective ethers are tetrahydrofuran and aliphatic polyethers such as diethylene glycol dimethyl ether.
  • Amines are tributyl to call a in and pyridine.
  • the polar cosolvent is added to the non-polar solvent in a small amount, for example from 0.5 to 5% by volume. Tetrahydrofuran is particularly preferred in an amount of 0.1-0.3% by volume. Experience has shown that an amount of about 0.2% by volume is sufficient in most cases.
  • the copolymerization parameters and the proportion of 1,2 or 1,4 linkages of the diene units are determined by the dosage and structure of the Lewis base.
  • the polymers of the invention have e.g. a share of 15 - 40% in 1,2 links and 85 - 60% in 1,4 links based on all diene units.
  • the anionic polymerization is initiated using organometallic compounds.
  • organometallic compounds Compounds of alkali metals, particularly lithium, are preferred.
  • initiators are methyl lithium, ethyl lithium, propyllithium, n-butyllithium, sec. Butyllithium and tert. Butyllithium.
  • the organometallic compound is added as a solution in a chemically inert (inert) hydrocarbon. The dosage depends on the desired molecular weight of the polymer, but is generally in the range from 0.002 to 5 mol% if it is based on the monomers.
  • the polymerization temperature can be between 0 and 130 ° C.
  • the temperature range between 30 and 100 ° C. is preferred.
  • the volume fraction of the soft phase in the solid is of decisive importance for the mechanical properties.
  • the volume fraction of the soft phase built up from diene and vinyl aromatic sequences is 60-95%, preferably 70-90% and particularly preferably 80-90% by volume.
  • the blocks A formed from the vinyl aromatic monomers form the hard phase, the volume fraction of which corresponds to 5-40, preferably 10-30 and particularly preferably 10-20% by volume.
  • the volume fraction of the two phases can be measured by means of contrasted electron microscopy or solid-state NMR spectroscopy.
  • the proportion of the vinyl aromatic blocks can be determined by osmium breakdown of the polydiene fraction by precipitation and weighing.
  • the future phase ratio of a polymer can also be calculated from the amounts of monomer used if it is allowed to polymerize completely each time.
  • the block copolymer is clearly defined by the quotient of the volume fraction in percent of the soft phase formed from the B / A blocks and the fraction of diene units in the soft phase which are between 25 and 70% by weight for the styrene / butadiene combination .% lies.
  • the glass transition temperature (T g ) is influenced by the static incorporation of the vinylaromatic compounds into the soft block of the block copolymer and the use of Lewis bases during the polymerization.
  • a glass transition temperature between -50 and + 25 ° C, preferably -50 to + 5 ° C is typical.
  • the molecular weight of block A is generally between 1000 to 200,000, preferably between 3,000 and 80,000 [g / mol].
  • a blocks can have different molecular weights within one molecule.
  • the molecular weight of block B / A is usually between 2,000 and 250,000 [g / mol], values between 5,000 and 150,000 tg / mol are preferred.
  • Block B / A can also have different molecular weight values within one molecule.
  • the coupling center X is created by the reaction of the living anionic chain ends with an at least bifunctional one
  • Coupling agent formed examples of such compounds are found in U.S. Patents 3,985,830, 3,280,084, 3,637,554 and 4,091,053.
  • epoxidized glycerides such as epoxidized linseed oil or soybean oil are used; divinylbenzene is also suitable.
  • Dichlorodialkylsilanes, dialdehydes such as terephthalaldehyde and esters such as ethyl formate or benzoate are particularly suitable for dimerization.
  • Preferred polymer structures are AB / AA, X - [- B / AA] 2 and Y - [- B / AA] 2 , the statistical block B / A itself again being in blocks B1 / A1-B2 / A2-B3 / A3- ... can be divided.
  • the statistical block preferably consists of 2 to 15 statistical sub-blocks, particularly preferably 3 to 10 sub-blocks.
  • the division of the statistical block B / A into as many sub-blocks Bn / An as possible offers the decisive advantage that even with a composition gradient within a sub-block Bn / An, as is only the case in anionic polymerization under practical conditions difficult to avoid (see below), the B / A block behaves as an almost perfect statistical polymer. It therefore makes sense to add less than the theoretical amount of Lewis base, which increases the proportion of 1,4-diene linkages, lowers the glass transition temperature T g and reduces the susceptibility to crosslinking of the polymer. A larger or a smaller proportion of the sub-blocks can be equipped with a high proportion of diene. This means that the polymer retains its residual toughness even below the glass transition temperature of the predominant B / A blocks and does not become completely brittle.
  • the block copolymers according to the invention have a spectrum of properties which is very similar to that of plasticized PVC, but can be produced completely free of migratable, low molecular weight plasticizers. They are characterized by a high oxygen permeation P 0 and water vapor permeation P w of over 2,000 [cm 3 -100 ⁇ / m 2 -d-bar] and over 10 [g 100 ⁇ m / m 2 -d-bar], where Po is the amount of oxygen in cm 3 and P w is the amount of hydrogen in grams that pass through 1 m 2 of film with a standard thickness of 100 ⁇ per day and per bar partial pressure difference.
  • the block copolymers according to the invention make a suitable starting material for the production of so-called stretch or stretch films, infusion tubes and other extruded, injection-molded, thermoformed or blow-molded finished parts, for which high transparency and toughness are required, in particular for applications in Field of medical technology.
  • the polymerization is carried out in several stages and in the case of monofunctional initiation e.g. started with the production of the Hart block A. Some of the monomers are placed in the reactor and the polymerization is started by adding the initiator. In order to achieve a defined chain structure which can be calculated from the monomer and initiator dosage, it is advisable to carry out the process up to a high conversion (over 99%) before the second monomer is added. However, this is not absolutely necessary.
  • the sequence of the monomer addition depends on the selected block structure.
  • the vinylaromatic compound is either initially introduced or metered in directly. After that, diene and vinyl aromatic should be added early.
  • the statistical structure and the composition of block B / A are determined by the quantitative ratio of diene to vinylaromatic compound, the concentration and chemical structure of the Lewis base and the temperature. According to the invention, the diene takes up a proportion by weight of 25% to 70% relative to the total mass including vinyl aromatic compound.
  • Block A can then be polymerized by adding the vinylaromatic. Instead, the required polymer blocks can also be connected to one another by the coupling reaction.
  • the B / A block is built up first, followed by the A block.
  • the temperature of the reaction mixture was controlled by heating or cooling the reactor jacket. After the reaction had ended (consumption of the monomers), titration was carried out in Examples 1-10 with ethanol, in Example 11 with ethyl formate and in Example 12 with epoxidized linseed oil to colorlessness or in Examples 11 and 12 until light yellow and the Mix with one 1.5 times excess of formic acid made acidic.
  • a commercial stabilizer Irganox ® 3052 from Ciba-Geigy, Basle
  • 82 g of trisnonylphenylphosphite sets zuge ⁇ .
  • the solution was worked up on a degassing extruder (three domes, forward and backward degassing) at 200 ° C. and granulated.
  • the granules were mixed in a fluid mixer with 10 g Acrawax * 1 as external lubrication.
  • Styrene 1 1008 1008 1008 1008 1008 1008 1008 T (A) / T (E) (° C) 30/70 30/70 30/77 30/70 30/70 30/70 time (min) 30 30 12 30 30 30 30 30 30
  • Butadiene 1 (g) 1120 1120 1120 1120 1120 1120 1120 1120 1120 styrene 2 (g) 1412 1412 1412 1412 1412 T (A) / T (E) (° C) 56/73 68/96 77/102 68/96 68/96 68/96 time (min) 19 17 14 17 17 17 17
  • Butadiene 2 (g) 1120 1120 1120 1120 1120 1120 1120 1120 styrene 3 (g) 1412 1412 1412 1412 1412 1412 T (A) / T (E) (° C) 52/76 60/84 73/95 60/84 60/84 60/84 time (min) 22 12 10 12 12 12 12 12 12 12 12 12 12 12 12
  • Butadiene 3 (g) 1120 1120 1120 1120 1120 1120 1120 1120 styrene 4 (g) 1412 1412 1412 1412 1412 1412 T (A) / T (E) (° C) 54/73 64/83 74/88 64/83 64/83 64/83 time (min) 19 6 26 6 6 6
  • Styrene 5 (g) 1008 1008 1008 1008 1008 1008 1008 1008 T (A) / T (E) (° C) 60/64 70/76 74/85 70/76 70/76 70/76 time (min) 45 14 14 14 14 14 14 14

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Graft Or Block Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

A rubber elastic block copolymer has at least one block A made of polymerised units of a vinyl aromatic monomer that forms a hard phase and/or a block B with diene monomers that forms a first rubber elastic (soft) phase, and at least one elastomer block B/A with polymerised units of both a vinyl aromatic monomer and a diene that forms if required a second or additional soft phase. The glass transition temperature Tg of block A is higher than 25 °C and that of blocks B or B/A is lower than 25 °C. The phase volume ratio between blocks A and B/A is selected so that the hard phase represents 1 - 40 % by volume of the total block copolymer and the diene amounts to less than 50 % by weight.

Description

Thermoplastisches ElastomerThermoplastic elastomer
Beschreibungdescription
Blockcopolymere von Vinylaromaten (z.B. Styrol) und Dienen (z.B. Butadien) sind Copolymere aus mehreren aneinandergereihten oder sonstwie verknüpften Polymermolekül-Bereichen (sog. Blöcken) , die in sich mehr oder weniger einheitlich aufgebaut sind. Sie können je nach Struktur und Gehalt an Dienmonomeren - bei einer bestimm¬ ten Temperatur - insgesamt elastomere, d.h. kautschukelastische Eigenschaften oder steife, nicht-kautschukelastische Eigenschaf¬ ten haben, d.h. sie verhalten sich nach außen hin insgesamt ent¬ weder kautschukelastisch, ähnlich wie ein Polydien und haben z.B. als sog. SB-Rubber Bedeutung, oder wie transparente, schlagzähe Styrolpolymere. Es ist üblich, in Anlehnung an die Bezeichnungen beim schlagzäh modifizierten Polystyrol diejenigen Molekülteile, die das kautschukelastische Verhalten bestimmen, als Weichphase und die starren Molekülteile (den reinen Polystyrolanteil) als Hartphase zu bezeichnen SB-Rubber können nicht wie Thermoplaste verarbeitet werden, sondern müssen wie gewöhnliche Dienpolymere zum Gebrauch vulkanisiert werden, was ihre Verwendung stark ein¬ schränkt.Block copolymers of vinyl aromatics (e.g. styrene) and dienes (e.g. butadiene) are copolymers from several strung together or otherwise linked polymer molecule areas (so-called blocks), which are more or less uniformly constructed. Depending on the structure and content of diene monomers - at a certain temperature - they can be altogether elastomeric, i.e. have rubber-elastic properties or stiff, non-rubber-elastic properties, i.e. to the outside, they behave either rubber-elastic, similar to a polydiene, and have e.g. as a so-called SB rubber meaning, or like transparent, impact-resistant styrene polymers. It is common, based on the designations of impact-modified polystyrene, to designate those parts of the molecule which determine the rubber-elastic behavior as the soft phase and the rigid parts of the molecule (the pure polystyrene part) as the hard phase. SB-Rubber cannot be processed like thermoplastics, but must be processed like ordinary diene polymers are vulcanized for use, which severely limits their use.
Die Erfindung betrifft normalerweise transparente, rein thermo¬ plastisch verarbeitbare Blockcopolymere von Vinylaromaten und Dienen mit elastomerem Verhalten und besonderen mechanischen Eigenschaften.The invention normally relates to block copolymers of vinyl aromatics and dienes which can be processed purely thermoplastic and have elastomeric behavior and special mechanical properties.
Hierzu ist folgendes vorauszuschicken:The following should be sent in advance:
Die zu sog. lebenden Polymeren (living polymers) führende anioni¬ sche Polymerisation, bei der das Wachstum eines Kettenmoleküls an einem Kettenende stattfindet, das mangels spontaner Ketten- abbruch- oder Übertragungsreaktion theoretisch beliebig lange lebt (polymerisationsfähig bleibt), und die Umsetzung des leben¬ den Polymeren mit ein- oder mehrfunktionellen Reaktionspartnern bietet bekanntlich eine vielseitig verwendbare Möglichkeit zum Aufbau von Blockcopolymeren, wobei die Auswahl an Monomeren allerdings beschränkt ist; in der Praxis haben nur Blockcopoly¬ mere von vinylaromatischen Verbindungen, also Styrol und seinen Abkömmlingen einerseits und Dienen, im wesentlichen Butadien oder Isopren andererseits Bedeutung erlangt. Blockcopolymere erhält man dadurch, daß jeweils bis annähernd zur Erschöpfung eines Monomerenvorrats polymerisiert und das oder die Monomeren dann gewechselt werden. Dieser Vorgang ist mehrfach wiederholbar. Lineare Blockcopolymere werden z.B. in den US-PSen 3 507 934 und 4 122 134 beschrieben. Sternförmige Blockcopolymere sind z.B. aus den US-PSen 4 086 298; 4 167 545 und 3 639 517 bekannt.The anionic polymerization leading to so-called living polymers, in which the growth of a chain molecule takes place at one end of the chain, which theoretically lives for any length of time due to the lack of a spontaneous chain termination or transfer reaction (and remains capable of polymerization), and the implementation of life ¬ the polymers with mono- or polyfunctional reactants are known to offer a versatile option for building block copolymers, although the choice of monomers is limited; in practice, only block copolymers of vinyl aromatic compounds, ie styrene and its derivatives on the one hand and dienes, essentially butadiene or isoprene on the other hand, have gained importance. Block copolymers are obtained by polymerizing in each case to approximately the exhaustion of a monomer supply and then changing the monomer or monomers. This process can be repeated several times. Linear block copolymers are described, for example, in U.S. Patents 3,507,934 and 4,122,134. Star-shaped block copolymers are known, for example, from US Pat. Nos. 4,086,298; 4,167,545 and 3,639,517.
Das Eigenschaftsprofil dieser Blockcopolymeren wird wesentlich durch den Gehalt einpolymerisierter Dienmonomerer, d.h. Länge, Anordnung und Mengenverhältnis von Polydien- und Polystyrol- Blöcken gepräg . Darüberhinaus spielt die Art und Weise des Über¬ gangs zwischen unterschiedlichen Blöcken eine wichtige Rolle: Man kennt scharfe und sog. verschmierte (tapered) Übergänge, je nach¬ dem, ob der Monomerenwechsel abrupt oder allmählich stattfindet. Im letzteren Fall tritt eine mehr oder weniger statistische Sequenzlängenverteilung auf.The property profile of these block copolymers is essentially determined by the content of polymerized diene monomers, i.e. Length, arrangement and quantitative ratio of polydiene and polystyrene blocks characterized. In addition, the type of transition between different blocks plays an important role: sharp and so-called tapered transitions are known, depending on whether the monomer change takes place abruptly or gradually. In the latter case, a more or less statistical sequence length distribution occurs.
Blockcopolymere mit scharf getrennten Blöcken sind bei identi¬ schem Molekulargewicht und Dienanteil weniger zäh als solche mit verschmiertem Blockübergang. Will man zu zäheren Blockcopolymeren gelangen, wird man folglich Blockübergänge mit statistischer Sequenzlängenverteilung von Dien- und Vinylaromaten im Übergangs- bereich bevorzugen (vgl. US-PS 4 122 134 und EP-A-0 316 671).Block copolymers with sharply separated blocks, with identical molecular weight and diene content, are less viscous than those with smeared block transition. If one wants to get tougher block copolymers, block transitions with statistical sequence length distribution of diene and vinyl aromatics in the transition region are therefore preferred (cf. US Pat. No. 4,122,134 and EP-A-0 316 671).
Bei morphologischen Untersuchungen von Blockcopolymeren zeigt sich nun, daß bei verschmiertem Blockübergang die Sequenzlänge der reinen Dienphase gegenüber der Polystyrolphase und somit das Volumenverhältnis zugunsten der Dienphase verschoben ist. Durch die Art des Blockübergangs läßt sich also die Zähigkeit eines Polymerisats steigern, ohne daß der Diengehalt erhöht werden muß. Dies kann vorteilhaft sein, da mit wachsendem Diengehalt die Fließfähigkeit der Schmelze und die Thermostabilität der Polyme- ren abnimmt und die Gefahr der Vernetzung der Dienphase zunimmt. Bei Spritzguß- und Extrusionsverarbeitung macht sich die Vernet¬ zung durch sog. Stippen und Trübungen im Polymerisat bemerkbar.Morphological studies of block copolymers show that when the block transition is smeared, the sequence length of the pure diene phase is shifted relative to the polystyrene phase and thus the volume ratio is shifted in favor of the diene phase. The type of block transition can therefore increase the toughness of a polymer without the diene content having to be increased. This can be advantageous since the flowability of the melt and the thermostability of the polymers decrease with increasing diene content and the risk of crosslinking of the diene phase increases. In injection molding and extrusion processing, crosslinking is noticeable through so-called specks and cloudiness in the polymer.
Die Erzielung verschmierter Blockübergänge durch gesteuerten Wechsel der Monomerenzugabe ist nun technisch aufwendig und führt zu einer längeren Reaktionsdauer bzw. geringerer Raum-Zeit- Ausbeute, was die Herstellungskosten erhöht. Im Grenzfall, der kontinuierlich gesteuerten Zugabe (vgl. US-PS 4 346 198 und 4 248 984) nimmt die Umsetzungsdauer wegen der ungünstigen Lage der Copolymerisationsparameter von Vinylaromaten und Dienen extrem zu und man gewinnt nur Polymere mit inhomogener Verteilung der Dien- und Vinylaromaten-Einheiten im Bereich des Blocküber¬ gangs, was sich wie eine Vermehrung der Zahl der Übergänge aus¬ wirkt. Deutlich wird dies durch eine niedrige Glastemperatur (Tg unterhalb von -50°C, vgl. US-PS 4 346 198, Beispiel 1) und schlechte Verarbeitungseigenschaften. Besonders Materialien mit einem Dien-Gehalt von über 35 Gew.%, die aufgrund ihres Eigenschaftsprofils (Zähigkeit, Transparenz, Gasdurchlässigkeit) für medizintechnische Anwendungen wie Infu¬ sionsschläuche, Infusionstropfkammern und Dehnfolien geeignet wären, sind nur sehr schwierig durch Profilextrusion, Spritzguß oder Schlauchfolienextrusion zu verarbeiten; sie sind auch trotz Stabilisierung mit Antioxidantien und Radikalfängern thermisch sehr empfindlich und neigen zur Klebrigkeit, so daß man sich auf¬ wendig mit Additiven behelfen muß. Das sog. Blocken (Verkleben von Folien und Schläuchen auf der Rolle) und schlechte Entform- barkeit können die Verarbeitung durch Spritzguß gänzlich unmög¬ lich machen.The achievement of smeared block transitions by controlled change of the monomer addition is now technically complex and leads to a longer reaction time or a lower space-time yield, which increases the production costs. In the limit case, the continuously controlled addition (cf. US Pat. Nos. 4,346,198 and 4,248,984), the reaction time increases extremely because of the unfavorable position of the copolymerization parameters of vinyl aromatics and dienes, and only polymers with an inhomogeneous distribution of the diene and vinyl aromatics are obtained. Units in the area of the block transition, which has the effect of increasing the number of transitions. This becomes clear from a low glass transition temperature (T g below -50 ° C, see US Pat. No. 4,346,198, Example 1) and poor processing properties. In particular, materials with a diene content of over 35% by weight, which due to their property profile (toughness, transparency, gas permeability) would be suitable for medical applications such as infusion tubes, infusion drip chambers and stretch films, are very difficult to achieve by profile extrusion, injection molding or tubular film extrusion to process; despite stabilization with antioxidants and free radical scavengers, they are also thermally very sensitive and tend to stickiness, so that additives have to be used with great effort. The so-called blocking (gluing of foils and tubes on the roll) and poor demoldability can make processing by injection molding completely impossible.
Die Erfindung hat sich die Aufgabe gestellt, durch geeignete Wahl der molekularen Struktur zu elastomeren, also sich kautschuk¬ elastisch verhaltenden Blockcopolymeren zu gelangen, die gro߬ technisch einfach herstellbar sind, bei niedrigem Diengehalt ein Maximum an Zähigkeit besitzen und darüberhinaus wie Thermoplaste auf Extrudern und Spritzgußmaschinen einfach zu verarbeiten sind.The object of the invention is to obtain, by suitable choice of the molecular structure, elastomeric, ie rubber-elastic, block copolymers which are easy to manufacture on an industrial scale, have a maximum of toughness with a low diene content and, moreover, like thermoplastics on extruders and Injection molding machines are easy to process.
Erfindungsgemäß wird dies, allgemein ausgedrückt, dadurch mög¬ lich, daß man in einem Vinylaromat-Dien-Blockcopolymerisat aus Blöcken, die eine Hartphase (Blocktyp A) und solchen, die eine Weichphase bilden, an die Stelle eines reinen Polydienblocks als Weichphase einen Block B/A aus Dien- und Vinylaromaten-Einheiten treten läßt, der statistischen Aufbau besitzt. Der Aufbau kann dabei entlang der Kette im statistischen Mittel homogen oder inhomogen sein.According to the invention, this is expressed, in general terms, by the fact that in a vinylaromatic-diene block copolymer from blocks which form a hard phase (block type A) and those which form a soft phase, a block B is substituted for a pure polydiene block as the soft phase / A can occur from diene and vinyl aromatic units, which has a statistical structure. The statistical average along the chain can be homogeneous or inhomogeneous.
Unmittelbarer Erfindungsgegenstand ist ein kautschukelastisches Blockcopolymerisat aus mindestens einem einpolymerisierte Ein¬ heiten eines vinylaromatischen Monomeren aufweisenden, eine Hart¬ phase bildenden Block A und/oder einem Dienmonomere aufweisenden, eine erste, kautschukelastische (Weich-)Phase bildenden Block B und mindestens einem einpolymerisierte Einheiten eines vinyl¬ aromatischen Monomeren sowie eines Diens aufweisenden elasto¬ meren, eine Weichphase bildenden Block B/A, wobei die Glas¬ temperatur Tg des Blocks A über 25°C und die der Blöcke B bzw. B/A unter 25°C liegt und das Phasenvolumen-Verhältnis von Block A zu Block B/A so gewählt ist, daß der Anteil der Hartphase am ge¬ samten Blockcopolymerisat 1 - 40 Volumen-% und der Gewichtsanteil des Diens weniger als 50 Gew.% beträgt.Immediate subject matter of the invention is a rubber-elastic block copolymer composed of at least one polymerized unit of a vinyl aromatic monomer having a hard phase-forming block A and / or a diene monomer having a first, rubber-elastic (soft) phase forming block B and at least one polymerized unit of one vinyl aromatic monomers and a diene-containing elastomeric block B / A forming a soft phase, the glass temperature T g of block A being above 25 ° C. and that of blocks B and B / A being below 25 ° C. and the phase volume ratio of block A to block B / A is selected such that the hard phase in the entire block copolymer is 1-40 volume% and the weight fraction of the diene is less than 50% by weight.
Man erhält ein solches erfindungsgemäßes kautschukelastisches Blockcopolymerisat dadurch, daß im Rahmen der vorstehenden Para¬ meter die Weichphase aus einen statistischen Copolymerisat eines Vinylaromaten mit einem Dien gebildet wird; statistische Copoly- merisate von Vinylaromaten und Dienen erhält man durch Polymeri¬ sation in Gegenwart eines polaren Cosolvens.Such a rubber-elastic block copolymer according to the invention is obtained by forming the soft phase from a statistical copolymer of a vinylaromatic with a diene within the scope of the above parameters; statistical copoly Merisates of vinyl aromatics and dienes are obtained by polymerization in the presence of a polar cosolvent.
Ein erfindungsgemäßes Blockcopolymerisat kann z.B. durch eine der allgemeinen Formeln 1 bis 11 dargestellt werden:A block copolymer according to the invention can e.g. can be represented by one of the general formulas 1 to 11:
(1) (A-B/A)n;(1) (A-B / A) n;
(2) (A-B/A)n-A;(2) (A-B / A) n-A;
(3) B/A-(A-B/A)n; (4) X-[ (A-B/A)n]m+1;(3) B / A- (A-B / A) n; (4) X- [(A-B / A) n] m + 1;
(5) X-[ (B/A-A)n]m+1;(5) X- [(B / A-A) n] m + 1;
(6) X-[ (A-B/A)n-A]m+1;(6) X- [(A-B / A) n-A] m + 1;
(7) X-[ (B/A-A)n-B/A]m+1;(7) X- [(B / A-A) n-B / A] m + 1;
(8) Y-[ (A-B/A)n]m+1; (9) Y-[ (B/A-A)n]m+1;(8) Y- [(A-B / A) n] m + 1; (9) Y- [(B / A-A) n] m + 1;
(10) Y-[ (A-B/A)n-A]m+1;(10) Y- [(A-B / A) n-A] m + 1;
(11) Y-[ (B/A-A)n-B/A]m+1;(11) Y- [(B / A-A) n-B / A] m + 1;
wobei A für den vinylaromatischen Block und B/A für die Weich- phase, also den statistisch aus Dien- und vinylaromatischen Ein¬ heiten aufgebauten Block steht, X den Rest eines n-funktioneilen Initiators, Y den Rest eines m-funk ioneilen Kopplungsmittels und m und n natürliche Zahlen von 1 bis 10 bedeuten.where A stands for the vinylaromatic block and B / A for the soft phase, that is the block constructed statistically from diene and vinylaromatic units, X the rest of an n-functional initiator, Y the rest of an m-functional coupling agent and m and n are natural numbers from 1 to 10.
Bevorzugt ist ein Blockcopolymerisat einer der allgemeinen For¬ meln A-B/A-A, X-[-B/A-A]2 und Y-[-B/A-A]2 (Bedeutung der Abkür¬ zungen wie vorstehend) und besonders bevorzugt ein Block¬ copolymerisat, dessen Weichphase unterteilt ist in BlöckePreferred is a block copolymer of one of the general formulas AB / AA, X - [- B / AA] 2 and Y - [- B / AA] 2 (meaning of the abbreviations as above) and particularly preferably a block copolymer, whose soft phase is divided into blocks
(12) (B/A)!-(B/A)2;(12) (B / A)! - (B / A) 2 ;
(13) (B/A)1-(B/A)2-(B/A)1;(13) (B / A) 1 - (B / A) 2 - (B / A) 1 ;
(14) (B/A)i- (B/A)2-(B/A)3;(14) (B / A) i- (B / A) 2 - (B / A) 3 ;
deren Vinylaromat/Dien-Verhältnis in den einzelnen Blöcken B/A unterschiedlich ist oder sich innerhalb eines Blocks in den Gren¬ zen (B/A)ι<(B/A)2 kon inuierlich ändert, wobei die Glasübergangs- temperatur Tg jedes Teilblocks unter 25°C liegt.whose vinylaromatic / diene ratio in the individual blocks B / A is different or changes within a block within the limits (B / A) ι <(B / A) 2 continuously, the glass transition temperature T g each Partial blocks is below 25 ° C.
Ein Blockcopolymerisat, das mehrere Blöcke B/A und/oder A mit unterschiedlicher Molmasse je Molekül aufweist, ist ebenfalls bevorzug .A block copolymer which has several blocks B / A and / or A with different molecular weights per molecule is also preferred.
Ebenso kann an die Stelle eines ausschließlich aus vinylaroma¬ tischen Einheiten aufgebauten Blocks A ein Block B treten, da es insgesamt lediglich darauf ankommt, daß ein kautschukelastisches Blockcopolymerisat gebildet wird. Solche Copolymerisate können z.B. die Struktur (15) bis (18) habenLikewise, a block B can take the place of a block A composed exclusively of vinylaromatic units, since the only thing that matters is that a rubber-elastic one Block copolymer is formed. Such copolymers can have, for example, the structure (15) to (18)
(15) B-(B/A) (16) (B/A) -B- (B/A)(15) B- (B / A) (16) (B / A) -B- (B / A)
(17) (B/A)ι-B-{B/A)2 (17) (B / A) ι-B- { B / A) 2
(18) B- (B/A)i- (B/A)2.(18) B- (B / A) i- (B / A) 2 .
Erfindungsgemäße Blockcopolymerisate eignen sich hervorragend zur Herstellung von kautschukelastischen Formteilen mit den üblichen Methoden der Thermoplastverarbeitung, z.B. als Folie, Schaum, Thermoformling, Spritzgußformling oder Profilextrudat.Block copolymers according to the invention are outstandingly suitable for the production of rubber-elastic molded parts by the usual methods of thermoplastic processing, e.g. as film, foam, thermoforming, injection molding or profile extrudate.
Bevorzugt als vinylaromatische Verbindung im Sinne der Erfindung ist Styrol und ferner α-Methylstyrol und Vinyltoluol sowiePreferred vinyl aromatic compound for the purposes of the invention is styrene and also α-methylstyrene and vinyltoluene and
Mischungen dieser Verbindungen. Bevorzugte Diene sind Butadien und Isopren, ferner Piperylen, 1-Phenylbutadien sowie Mischungen dieser Verbindungen.Mixtures of these compounds. Preferred dienes are butadiene and isoprene, also piperylene, 1-phenylbutadiene and mixtures of these compounds.
Eine besonders bevorzugte Monomerkombination ist Butadien und Styrol. Alle nachstehenden Gewichts- und Volumenangaben beziehen sich auf diese Kombination; bei Verwendung der technischen äquivalente von Styrol und Butadien muß man ggf. die Angaben entsprechend umrechnen.A particularly preferred monomer combination is butadiene and styrene. All of the weight and volume information below relates to this combination; when using the technical equivalents of styrene and butadiene, you may have to convert the information accordingly.
Der B/A-Block wird aus etwa 75 - 30 Gew.-% Styrol und 25 - 70 Gew.-% Butadien aufgebaut. Besonders bevorzugt hat ein Weichblock einen Butadienanteil zwischen 35 und 70 % und einen Styrolanteil zwischen 65 und 30 %.The B / A block is constructed from approximately 75-30% by weight of styrene and 25-70% by weight of butadiene. A soft block particularly preferably has a butadiene content between 35 and 70% and a styrene content between 65 and 30%.
Der Gewichtsanteil des Diens im gesamten Blockcopolymer liegt im Falle der Monomerkombination Styrol/ Butadien bei 15 - 65 Gew.-%, derjenige der vinylaromatischen Komponente entsprechend bei 85 - 35 Gew.-%. Besonders bevorzugt sind Butadien-Styrol-Block- copolymere mit einer MonomerZusammensetzung aus 25 - 60 Gew.% Dien und 75 - 40 Gew.% an vinylaromatischer Verbindung.The proportion by weight of diene in the entire block copolymer is 15-65% by weight in the case of the styrene / butadiene monomer combination, and correspondingly that of the vinylaromatic component is 85-35% by weight. Butadiene-styrene block copolymers with a monomer composition of 25-60% by weight of diene and 75-40% by weight of vinylaromatic compound are particularly preferred.
Erfindungsgemäß werden die Blockcopolymeren durch anionische Polymerisation in einem unpolaren Lösungsmittel unter Zusatz eines polaren Cosolvens hergestellt. Es besteht dabei die Vor¬ stellung, daß das Cosolvens gegebenüber dem Metallkation als Lewis-Base wirkt. Als Lösungsmittel werden bevorzugt aliphatische Kohlenwasserstoffe wie Cyclohexan oder Methylcyclohexan ver¬ wendet. Als Lewis-Basen werden polare aprotische Verbindungen wie Ether und tertiäre Amine bevorzugt. Beispiele für besonders effektive Ether sind Tetrahydrofuran und aliphatische Polyether wie Diethylenglycoldimethylether. Als tert. Amine sind Tributyl- a in und Pyridin zu nennen. Das polare Cosolvens wird dem dem unpolaren Lösungsmittel in einer geringen Menge, z.B. von 0.5 - 5 Vol.-% zugesetzt. Besonders bevorzugt ist Tetrahydrofuran in einer Menge von 0.1 - 0.3 Vol.-% . Erfahrungsgemäß kommt man mit einer Menge von etwa 0.2 Vol.-% in den meisten Fällen aus.According to the invention, the block copolymers are prepared by anionic polymerization in a non-polar solvent with the addition of a polar cosolvent. There is the idea that the cosolvent acts as a Lewis base over the metal cation. Aliphatic hydrocarbons such as cyclohexane or methylcyclohexane are preferably used as solvents. Polar aprotic compounds such as ethers and tertiary amines are preferred as Lewis bases. Examples of particularly effective ethers are tetrahydrofuran and aliphatic polyethers such as diethylene glycol dimethyl ether. As tert. Amines are tributyl to call a in and pyridine. The polar cosolvent is added to the non-polar solvent in a small amount, for example from 0.5 to 5% by volume. Tetrahydrofuran is particularly preferred in an amount of 0.1-0.3% by volume. Experience has shown that an amount of about 0.2% by volume is sufficient in most cases.
Durch die Dosierung und Struktur der Lewis-Base werden die Copo- lymerisationsparameter und der Anteil an 1,2- bzw 1,4-Verknüpfun- gen der Dieneinheiten bestimmt. Die erfindungsgemäßen Polymeren haben z.B. einen Anteil von 15 - 40 % an 1,2-Verknüpfungen und 85 - 60 % an 1,4-Verknüpfungen bezogen auf alle Dieneinheiten.The copolymerization parameters and the proportion of 1,2 or 1,4 linkages of the diene units are determined by the dosage and structure of the Lewis base. The polymers of the invention have e.g. a share of 15 - 40% in 1,2 links and 85 - 60% in 1,4 links based on all diene units.
Die anionische Polymerisation wird mittels metallorganischer Verbindungen initiiert. Bevorzugt sind Verbindungen der Alkali- metalle, besonders des Lithiums. Beispiele für Initiatoren sind Methyllithium, Ethyllithium, Propyllithium, n-Butyllithium, sek. Butyllithium und tert. Butyllithium. Die metallorganische Ver¬ bindung wird als Lösung in einem chemisch indifferenten (inerten) Kohlenwasserstoff zugesetzt. Die Dosierung richtet sich nach dem angestrebten Molekulargewicht des Polymeren, liegt aber in der Regel im Bereich von 0.002 bis 5 Mol % , wenn man sie auf die Monomeren bezieht.The anionic polymerization is initiated using organometallic compounds. Compounds of alkali metals, particularly lithium, are preferred. Examples of initiators are methyl lithium, ethyl lithium, propyllithium, n-butyllithium, sec. Butyllithium and tert. Butyllithium. The organometallic compound is added as a solution in a chemically inert (inert) hydrocarbon. The dosage depends on the desired molecular weight of the polymer, but is generally in the range from 0.002 to 5 mol% if it is based on the monomers.
Die Polymerisationstemperatur kann zwischen 0 und 130°C betragen. Bevorzugt wird der Temperaturbereich zwischen 30 und 100°C.The polymerization temperature can be between 0 and 130 ° C. The temperature range between 30 and 100 ° C. is preferred.
Für die mechanischen Eigenschaften ist der Volumenanteil der Weichphase im Festkörper von entscheidender Bedeutung. Erfindungsgemäß liegt der Volumenanteil der aus Dien- und vinyl- aromatischen Sequenzen aufgebauten Weichphase bei 60 - 95, bevor¬ zugt bei 70 - 90 und besonders bevorzugt bei 80 - 90 Vol.-%. Die aus den vinylaromatischen Monomeren entstandenen Blöcke A bilden die Hartphase, deren Volumenanteil entsprechend 5-40, bevorzugt 10-30 und besonders bevorzugt 10 - 20 Vol.-% ausmacht.The volume fraction of the soft phase in the solid is of decisive importance for the mechanical properties. According to the invention, the volume fraction of the soft phase built up from diene and vinyl aromatic sequences is 60-95%, preferably 70-90% and particularly preferably 80-90% by volume. The blocks A formed from the vinyl aromatic monomers form the hard phase, the volume fraction of which corresponds to 5-40, preferably 10-30 and particularly preferably 10-20% by volume.
Es ist darauf hinzuweisen, daß zwischen den oben erwähnten Mengenverhältnissen von vinylaromatischer Verbindung und Dien, den vorstehend angegebenen Grenzwerten der Phasenvolumina und der Zusammensetzung, die sich aus den erfindungsgemäßen Bereichen der Glastemperatur ergibt, keine strenge Übereinstimmung besteht, da es sich um jeweils auf volle Zehnerstellen gerundete Zahlenwerte handelt. Dies könnte vielmehr nur zufällig der Fall sein.It should be noted that there is no strict correspondence between the above-mentioned quantitative ratios of vinylaromatic compound and diene, the limit values of the phase volumes and the composition given above, which result from the ranges of the glass temperature according to the invention, since they are in full tens rounded numerical values. Rather, this could only happen accidentally.
Meßbar ist der Volumenanteil der beiden Phasen mittels kontra- stierter Elektronenmikroskopie oder Festkörper-NMR-Spektroskopie. Der Anteil der vinylaromatischen Blöcke läßt sich nach Osmium¬ abbau des Polydienanteils durch Fällen und Auswiegen bestimmen. Das künftige Phasenverhältnis eines Polymeren läßt sich auch aus den eingesetzten Monomermengen berechnen, wenn man jedesmal voll¬ ständig auspolymerisieren läßt.The volume fraction of the two phases can be measured by means of contrasted electron microscopy or solid-state NMR spectroscopy. The proportion of the vinyl aromatic blocks can be determined by osmium breakdown of the polydiene fraction by precipitation and weighing. The future phase ratio of a polymer can also be calculated from the amounts of monomer used if it is allowed to polymerize completely each time.
Im Sinne der Erfindung eindeutig definiert wird das Block¬ copolymere durch den Quotienten aus dem Volumenanteil in Prozent der aus den B/A-Blöcken gebildeten Weichphase und dem Anteil an Dieneinheiten in der Weichphase, der für die Kombination Styrol/ Butadien zwischen 25 und 70 Gew.% liegt.For the purposes of the invention, the block copolymer is clearly defined by the quotient of the volume fraction in percent of the soft phase formed from the B / A blocks and the fraction of diene units in the soft phase which are between 25 and 70% by weight for the styrene / butadiene combination .% lies.
Durch die den statischen Einbau der vinylaromatischen Ver¬ bindungen in den Weichblock des Blockcopolymeren und die Ver¬ wendung von Lewis-Basen während der Polymerisation wird die Glas¬ übergangstemperatur (Tg) beeinflußt. Eine Glasübergangstemperatur zwischen -50 und +25°C, bevorzugt -50 bis +5°C ist typisch.The glass transition temperature (T g ) is influenced by the static incorporation of the vinylaromatic compounds into the soft block of the block copolymer and the use of Lewis bases during the polymerization. A glass transition temperature between -50 and + 25 ° C, preferably -50 to + 5 ° C is typical.
Das Molekulargewicht des Blocks A liegt dabei i.a. zwischen 1000 bis 200.000, bevorzugt zwischen 3.000 und 80.000 [g/mol] . Inner¬ halb eines Moleküls können A-Blöcke unterschiedliche Molmasse haben.The molecular weight of block A is generally between 1000 to 200,000, preferably between 3,000 and 80,000 [g / mol]. A blocks can have different molecular weights within one molecule.
Das Molekulargewicht des Blocks B/A liegt üblicherweise zwischen 2.000 bis 250.000 [g/mol], bevorzugt werden Werte zwischen 5.000 bis 150.000 tg/mol] .The molecular weight of block B / A is usually between 2,000 and 250,000 [g / mol], values between 5,000 and 150,000 tg / mol are preferred.
Auch Block B/A kann wie Block A innerhalb eines Moleküls unter¬ schiedliche Molekulargewichtswerte einnehmen.Block B / A, like block A, can also have different molecular weight values within one molecule.
Das KupplungsZentrum X wird durch die Umsetzung der lebenden anionischen Kettenenden mit einem mindestens bifunktionellenThe coupling center X is created by the reaction of the living anionic chain ends with an at least bifunctional one
Kupplungsagens gebildet. Beispiel für derartige Verbindungen sind in den US-PSen 3 985 830, 3 280 084, 3 637 554 und 4 091 053 zu finden. Bevorzugt werden z.B. epoxidierte Glyceride wie epoxi- diertes Leinsamenöl oder Sojaöl eingesetzt; geeignet ist auch Divinylbenzol. Speziell für die Dimerisierung sind Dichlordial- kylsilane, Dialdehyde wie Terephthalaldehyd und Ester wie Ethyl- for iat oder -benzoat geeignet.Coupling agent formed. Examples of such compounds are found in U.S. Patents 3,985,830, 3,280,084, 3,637,554 and 4,091,053. For example, epoxidized glycerides such as epoxidized linseed oil or soybean oil are used; divinylbenzene is also suitable. Dichlorodialkylsilanes, dialdehydes such as terephthalaldehyde and esters such as ethyl formate or benzoate are particularly suitable for dimerization.
Bevorzugte Polymerstrukturen sind A-B/A-A, X-[-B/A-A]2 und Y-[-B/ A-A]2, wobei der statistische Block B/A selbst wieder in Blöcke B1/A1-B2/A2-B3/A3-... unterteilt sein kann. Bevorzugt besteht der statistische Block aus 2 bis 15 statistischen Teilblöcken, beson¬ ders bevorzugt aus 3 bis 10 Teilblöcken. Die Aufteilung des sta¬ tistischen Blocks B/A in möglichst viele Teilblöcke Bn/An bietet den entscheidenden Vorteil, daß auch bei einem Zusammensetzungs¬ gradienten innerhalb eines Teilblocks Bn/An, wie er sich in der anionischen Polymerisation unter praktischen Bedingungen nur schwer vermeiden läßt (s.u.), sich der B/A-Block insgesamt wie ein nahezu perfektes statistisches Polymer verhält. Es bietet sich deshalb an, weniger als die theoretische Menge an Lewis-Base zuzusetzen, was den Anteil 1,4-Dienverknüpfungen erhöht, die Glastemperatur Tg absenkt und die Vernetzungsanfälligkeit des Polymeren mindert. Ein größerer oder ein kleinerer Anteil der Teilblöcke kann mit einem hohen Dienanteil ausgestattet werden. Dies bewirkt, daß das Polymer auch unterhalb der Glastemperatur der überwiegenden B/A-Blöcke eine Restzähigkeit behält und nicht vollständig versprödet.Preferred polymer structures are AB / AA, X - [- B / AA] 2 and Y - [- B / AA] 2 , the statistical block B / A itself again being in blocks B1 / A1-B2 / A2-B3 / A3- ... can be divided. The statistical block preferably consists of 2 to 15 statistical sub-blocks, particularly preferably 3 to 10 sub-blocks. The division of the statistical block B / A into as many sub-blocks Bn / An as possible offers the decisive advantage that even with a composition gradient within a sub-block Bn / An, as is only the case in anionic polymerization under practical conditions difficult to avoid (see below), the B / A block behaves as an almost perfect statistical polymer. It therefore makes sense to add less than the theoretical amount of Lewis base, which increases the proportion of 1,4-diene linkages, lowers the glass transition temperature T g and reduces the susceptibility to crosslinking of the polymer. A larger or a smaller proportion of the sub-blocks can be equipped with a high proportion of diene. This means that the polymer retains its residual toughness even below the glass transition temperature of the predominant B / A blocks and does not become completely brittle.
Die erfindungsgemäßen Blockcopolymeren besitzen ein dem Weich- PVC sehr ähnliches Eigenschaftsspektrum, können jedoch vollkommen frei von migrationsfähigen, niedermolekularen Weichmachern her- gestellt werden. Sie zeichnen sich durch eine hohe Sauerstoff- permeation P0 und Wasserdampfpermeation Pw von über 2.000 [cm3-100 μ /m2-d-bar] bzw. über 10 [g 100 μm/m2-d-bar] aus, wobei Po die Sauerstoffmenge in cm3 bzw. Pw die Wasserstoffmenge in Gramm angibt, die durch 1 m2 Folie mit einer Normdicke von 100 μ je Tag und je bar Partialdruckdifferenz hindurchtreten.The block copolymers according to the invention have a spectrum of properties which is very similar to that of plasticized PVC, but can be produced completely free of migratable, low molecular weight plasticizers. They are characterized by a high oxygen permeation P 0 and water vapor permeation P w of over 2,000 [cm 3 -100 μ / m 2 -d-bar] and over 10 [g 100 μm / m 2 -d-bar], where Po is the amount of oxygen in cm 3 and P w is the amount of hydrogen in grams that pass through 1 m 2 of film with a standard thickness of 100 μ per day and per bar partial pressure difference.
Eine hohe Rückstellkraft bei Deformation, so wie man sie bei thermoplastischen Elastomeren beobachtet, eine hohe Transparenz (über 90% bei 10 μm Schichtdicke) , eine niedrige Verschweißtempe- ratur von weniger als 120°C und ein breiter Schweißbereich (über 5°C) bei einer moderaten Klebrigkeit machen die erfindungsgemäßen Blockcopolymeren zu einem geeigneten Ausgangsmaterial für die Herstellung von sogenannten Dehn- oder Stretchfolien, Infusions¬ schläuchen und anderen extrudierten, spritzgegossenen, thermoge- formten oder blasgeformten Fertigteilen, für die hohe Transparenz und Zähigkeit verlangt werden, insbesondere für Anwendungen im Bereich der Medizintechnik.A high resilience for deformation, as observed with thermoplastic elastomers, high transparency (over 90% with a layer thickness of 10 μm), a low welding temperature of less than 120 ° C and a wide welding range (over 5 ° C) With moderate stickiness, the block copolymers according to the invention make a suitable starting material for the production of so-called stretch or stretch films, infusion tubes and other extruded, injection-molded, thermoformed or blow-molded finished parts, for which high transparency and toughness are required, in particular for applications in Field of medical technology.
Die Polymerisation wird mehrstufig durchgeführt und bei mono- funktioneller Initiierung z.B. mit der Herstellung des Hart¬ blocks A begonnen. Ein Teil der Monomeren wird im Reaktor vorge¬ legt und die Polymerisation durch Zugabe des Initiators gestar¬ tet. Um einen definierten, aus der Monomer- und Initiatordosie¬ rung berechenbaren Kettenaufbau zu erzielen, ist es empfehlens- wert, den Prozeß bis zu einem hohen Umsatz (über 99%) zu führen, bevor die zweite Monomerzugabe erfolgt. Zwingend erforderlich ist dies jedoch nicht.The polymerization is carried out in several stages and in the case of monofunctional initiation e.g. started with the production of the Hart block A. Some of the monomers are placed in the reactor and the polymerization is started by adding the initiator. In order to achieve a defined chain structure which can be calculated from the monomer and initiator dosage, it is advisable to carry out the process up to a high conversion (over 99%) before the second monomer is added. However, this is not absolutely necessary.
Die Abfolge der Monomerzugabe richtet sich nach dem gewählten Blockaufbau. Bei monofunktioneller Initiierung wird z.B. zuerst die vinylaromatische Verbindung entweder vorgelegt oder direkt zudosiert. Danach sollten Dien und Vinylaromat möglichst gleich- zeitig zugegeben werden. Durch das Mengenverhältnis von Dien zu vinylaromatischer Verbindung, die Konzentration und chemische Struktur der Lewis-Base sowie die Temperatur wird der statisti¬ sche Aufbau und die Zusammensetzung des Blocks B/A bestimmt. Erfindungsgemäß nimmt das Dien relativ zur Gesamtmasse ein¬ schließlich vinylaromatischer Verbindung einen Gewichtsanteil von 25 % bis 70 % ein. Anschließend kann Block A durch Zugabe des Vinylaromaten anpolymerisiert werden. Stattdessen können benö¬ tigte Polymerblöcke auch durch die Kopplungsreaktion miteinander verbunden werden. Im Falle der bifunktionellen Initiierung wird zuerst der B/A-Block aufgebaut, gefolgt vom A-Block.The sequence of the monomer addition depends on the selected block structure. In the case of monofunctional initiation, for example, the vinylaromatic compound is either initially introduced or metered in directly. After that, diene and vinyl aromatic should be be added early. The statistical structure and the composition of block B / A are determined by the quantitative ratio of diene to vinylaromatic compound, the concentration and chemical structure of the Lewis base and the temperature. According to the invention, the diene takes up a proportion by weight of 25% to 70% relative to the total mass including vinyl aromatic compound. Block A can then be polymerized by adding the vinylaromatic. Instead, the required polymer blocks can also be connected to one another by the coupling reaction. In the case of bifunctional initiation, the B / A block is built up first, followed by the A block.
Die weitere Aufarbeitung erfolgt nach den üblichen Verfahren. Es empfiehlt sich, dabei in einem Rührkessel zu arbeiten und mit einem Alkohol wie Isopropanol die Carbanionen zu protonieren, vor der weiteren Aufarbeitung in üblicher weise mit C02/Wasser schwach sauer zu stellen, das Polymer mit einem Oxidationsinhibitor und einem Radikalfänger (handelsübliche Produkte wie Trisnonylphenyl- phosphit (TNPP) oder α-Tokopherol (Vitamin E) bzw. unter dem Handelsnamen Irganox 1076 oder Irganox 3052 erhältliche Produkte) zu stabilisieren, das Lösungsmittel nach den üblichen Verfahren zu entfernen, zu extrudieren und zu granulieren. Das Granulat kann wie andere Kautschuksorten mit einem Antiblockmittel wie Acrawax®, Besquare® oder Aerosil® gegen Verkleben geschützt werden.Further processing takes place according to the usual procedures. It is advisable to work in a stirred kettle and to protonate the carbanions with an alcohol such as isopropanol, to make the acid weakly acidic with CO 2 / water before further work-up, to polymerize with an oxidation inhibitor and a radical scavenger (commercially available products such as Stabilize trisnonylphenyl phosphite (TNPP) or α-tocopherol (vitamin E) or products available under the trade name Irganox 1076 or Irganox 3052), remove the solvent by the usual methods, extrude and granulate. Like other types of rubber, the granulate can be protected against sticking with an antiblocking agent such as Acrawax ® , Besquare ® or Aerosil ® .
BeispieleExamples
Für jedes Beispiel wurde ein simultan heiz- und kühlbarer 50 1-Edelstahlautoklav, der mit einem Kreuzbaikenrührer ausgerü¬ stet war, durch Spülen mit Stickstoff, Auskochen mit einer Lösung von sec-Butyllithium und 1,1-Diphenylethylen (Molverhältnis 1:1) in Cyclohexan und Trocknen vorbereitet.For each example, a simultaneously heatable and coolable 50 1 stainless steel autoclave, which was equipped with a Kreuzbaiken stirrer, was flushed with nitrogen, boiled with a solution of sec-butyllithium and 1,1-diphenylethylene (molar ratio 1: 1) Prepared cyclohexane and drying.
Dann wurden jeweils 22,8 1 Cyclohexan -eingefüllt und die in der Tabelle 1 angegebenen Mengen an Initiator, Tetra ydrofuran und Monomeren zugesetzt. Angegeben ist auch die Polymerisationsdauer, Anfangs- und Endtemperatur, wobei darauf hinzuweisen ist, daß die Monomerzulaufszeit stets klein gegenüber der Polymerisationszeit war.Then 22.8 l each of cyclohexane were introduced and the amounts of initiator, tetrahydrofuran and monomers given in Table 1 were added. The duration of the polymerization, start and end temperatures are also given, it being noted that the monomer feed time was always short compared to the polymerization time.
Die Temperatur des Reaktionsgemisches wurde durch Heizung oder Kühlung des Reaktormantels gesteuert. Nach Umse zungsende (Ver¬ brauch der Monomeren) wurde in den Beispielen 1-10 mit Ethanol, im Beispiel 11 mit Ethylformiat und in Beispiel 12 mit epoxidier- tem Leinsamenöl bis zur Farblosigkeit bzw. in den Beispielen 11 und 12 bis hellgelb titriert und die Mischung mit einem 1,5-fachen Überschuß an Ameisensäure sauer gestellt. Zuletzt wurden 34 g eines handelsüblichen Stabilisators (Irganox® 3052 der Ciba-Geigy, Basel) und 82 g Trisnonylphenylphosphit zuge¬ setzt.The temperature of the reaction mixture was controlled by heating or cooling the reactor jacket. After the reaction had ended (consumption of the monomers), titration was carried out in Examples 1-10 with ethanol, in Example 11 with ethyl formate and in Example 12 with epoxidized linseed oil to colorlessness or in Examples 11 and 12 until light yellow and the Mix with one 1.5 times excess of formic acid made acidic. Recently, 34 g of a commercial stabilizer (Irganox ® 3052 from Ciba-Geigy, Basle) and 82 g of trisnonylphenylphosphite sets zuge¬.
Die Lösung wurde auf einem Entgasungsextruder (drei Dome, Vor¬ wärts- und Rückwärtsentgasung) bei 200°C aufgearbeitet und granu¬ liert. Das Granulat wurde in einem Fluidmischer mit 10 g Acrawax*1 als Außenschmierung versetzt. The solution was worked up on a degassing extruder (three domes, forward and backward degassing) at 200 ° C. and granulated. The granules were mixed in a fluid mixer with 10 g Acrawax * 1 as external lubrication.
Tabelle 1: Polymerisation und Analytik linearer S-SB-S-Blockcopolymerer und eines Sternblockcopolymeren (Bsp. 12)Table 1: Polymerization and analysis of linear S-SB-S block copolymers and a star block copolymer (Ex. 12)
Bsp. 1 Bsp. 2 Bsp. 3 Bsp. 4 Bsp. 5 Bsp. 6Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6
THF (ml) 65,8 65,8 65,8 65,8 65,8 45,6 s-BuLi (ml) 42 42 42 42 42 42THF (ml) 65.8 65.8 65.8 65.8 65.8 45.6 s-BuLi (ml) 42 42 42 42 42 42
Styrol 1 (g) 1008 1008 1008 1008 1008 1008 T(A)/T(E) (°C) 30/70 30/70 30/77 30/70 30/70 30/70 Zeit (min) 30 30 12 30 30 30Styrene 1 (g) 1008 1008 1008 1008 1008 1008 T (A) / T (E) (° C) 30/70 30/70 30/77 30/70 30/70 30/70 time (min) 30 30 12 30 30 30
Butadien 1 (g) 1120 1120 1120 1120 1120 1120 Styrol 2 (g) 1412 1412 1412 1412 1412 1412 T(A)/T(E) (°C) 56/73 68/96 77/102 68/96 68/96 68/96 Zeit (min) 19 17 14 17 17 17Butadiene 1 (g) 1120 1120 1120 1120 1120 1120 styrene 2 (g) 1412 1412 1412 1412 1412 1412 T (A) / T (E) (° C) 56/73 68/96 77/102 68/96 68/96 68/96 time (min) 19 17 14 17 17 17
Butadien 2 (g) 1120 1120 1120 1120 1120 1120 Styrol 3 (g) 1412 1412 1412 1412 1412 1412 T(A)/T(E) (°C) 52/76 60/84 73/95 60/84 60/84 60/84 Zeit (min) 22 12 10 12 12 12Butadiene 2 (g) 1120 1120 1120 1120 1120 1120 styrene 3 (g) 1412 1412 1412 1412 1412 1412 T (A) / T (E) (° C) 52/76 60/84 73/95 60/84 60/84 60/84 time (min) 22 12 10 12 12 12
Butadien 3 (g) 1120 1120 1120 1120 1120 1120 Styrol 4 (g) 1412 1412 1412 1412 1412 1412 T(A)/T(E) (°C) 54/73 64/83 74/88 64/83 64/83 64/83 Zeit (min) 19 6 26 6 6 6Butadiene 3 (g) 1120 1120 1120 1120 1120 1120 styrene 4 (g) 1412 1412 1412 1412 1412 1412 T (A) / T (E) (° C) 54/73 64/83 74/88 64/83 64/83 64/83 time (min) 19 6 26 6 6 6
Styrol 5 (g) 1008 1008 1008 1008 1008 1008 T(A)/T(E) (°C) 60/64 70/76 74/85 70/76 70/76 70/76 Zeit (min) 45 14 14 14 14 14Styrene 5 (g) 1008 1008 1008 1008 1008 1008 T (A) / T (E) (° C) 60/64 70/76 74/85 70/76 70/76 70/76 time (min) 45 14 14 14 14 14
Mn (g/mol) 117 000 118 000 119 000 79 000 107 000 119 000 Mp (g/mol) 153 000 156 000 158 000 92 000 141 000 158 000 Mw (g/mol) 172 000 176 000 180 000 100 000 159 000 177 000 Mn (g / mol) 117,000 118,000 119,000 79,000 107,000 119,000 Mp (g / mol) 153,000 156,000 158,000 92,000 141,000 158,000 Mw (g / mol) 172,000 176,000 180,000 100,000 159,000 177,000
Bsp. 1 Bsp. 2 Bsp. 3 Bsp. 4 Bsp. 5 Bsp. 6Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6
Tg (°C) -10/75 -13/75 -16/75 -10/70 -12/72 -15/75 Breite (°C) 12/15 10/13 9/12 11/20 11/15 13/15Tg (° C) -10/75 -13/75 -16/75 -10/70 -12/72 -15/75 latitude (° C) 12/15 10/13 9/12 11/20 11/15 13/15
MVI 9,2 9,0 8,5 60 21 8,6MVI 9.2 9.0 8.5 60 21 8.6
Tabelle 1 (Fortsetzung)Table 1 (continued)
Bsp. 7 Bsp. 8 Bsp. 9 Bsp. 10 Bsp. 11 Bsp. 12Ex. 7 Ex. 8 Ex. 9 Ex. 10 Ex. 11 Ex. 12
THF (ml) 65,8 65,8 65,8 65,8 65,8 65,8 s-BuLi (ml) 42 42 42 42 84 126THF (ml) 65.8 65.8 65.8 65.8 65.8 65.8 s-BuLi (ml) 42 42 42 42 84 126
Styrol 1 (g) 756 1008 1008 1008 2016 2520Styrene 1 (g) 756 1008 1008 1008 2016 2520
T(A)/T(E) (°C) 30/68 30/70 30/70 30/70 30/76 30/72T (A) / T (E) (° C) 30/68 30/70 30/70 30/70 30/76 30/72
Zeit (min) 30 30 30 30 30 30Time (min) 30 30 30 30 30 30
Butadien 1 (g) 1194 1120 1120 1120 1120 1120Butadiene 1 (g) 1194 1120 1120 1120 1120 1120
Styrol 2 (g) 1506 1412 1412 1519 1412 1412 tStyrene 2 (g) 1506 1412 1412 1519 1412 1412 t
T(A)/T(E) (°C) 66/96 68/96 68/96 70/96 68/96 68/96T (A) / T (E) (° C) 66/96 68/96 68/96 70/96 68/96 68/96
Zeit (min) 18 17 17 17 17 17Time (min) 18 17 17 17 17 17
Butadien 2 (g) 1194 1772 2532 1334 1120 1120Butadiene 2 (g) 1194 1772 2532 1334 1120 1120
Styrol 3 (g) 1506 760 - 1198 1412 1412Styrene 3 (g) 1506 760-1198 1412 1412
T(A)/T(E) (°C) 58/84 60/89 60/94 60/86 60/84 60/84T (A) / T (E) (° C) 58/84 60/89 60/94 60/86 60/84 60/84
Zeit (min) 13 16 20 13 12 12Time (min) 13 16 20 13 12 12
Butadien 3 (g) 1194 1120 1120 1120 1120 1120Butadiene 3 (g) 1194 1120 1120 1120 1120 1120
Styrol 4 (g) 1506 1412 1412 1412 1412 1412Styrene 4 (g) 1506 1412 1412 1412 1412 1412
T(A)/T(E) (°C) 62/83 64/83 64/83 64/83 64/83 64/83T (A) / T (E) (° C) 62/83 64/83 64/83 64/83 64/83 64/83
Zeit (min) 6 6 6 6 6 6Time (min) 6 6 6 6 6 6
Styrol 5 (g) 756 1008 1008 1008 - -Styrene 5 (g) 756 1008 1008 1008 - -
T(A)/T(E) (°C) 70/78 70/76 70/76 70/76 - -T (A) / T (E) (° C) 70/78 70/76 70/76 70/76 - -
Zeit (min) 14 14 14 14 - Time (min) 14 14 14 14 -
Figure imgf000015_0001
(N/mm2) Bsp. 7 Bsp. 8 Bsp. 9 Bsp. 10 Bsp. 11 Bsp. 12
Figure imgf000016_0001
Figure imgf000015_0001
(N / mm 2 ) Ex. 7 Ex. 8 Ex. 9 Ex. 10 Ex. 11 Ex. 12
Figure imgf000016_0001
Spannung 400 % 9,5 9,5 9,2 9,8 7,6 7,2Voltage 400% 9.5 9.5 9.2 9.8 7.6 7.2
Spannung 600 % - 18,3 18,1 19,1 15,5 14,8Voltage 600% - 18.3 18.1 19.1 15.5 14.8
Tabelle 2 (Fortsetzung) : VergleichsversucheTable 2 (continued): Comparative tests
(N/mm2) A B C D(N / mm 2 ) ABCD
Streckspannung 24,5 17,6 32,1 0,6Yield stress 24.5 17.6 32.1 0.6
Bruchspannung 17,8 11,0 24,4 13,9Breaking stress 17.8 11.0 24.4 13.9
Bruchdehnung (%) 242 320 22 262Elongation at break (%) 242 320 22 262
Spannung 200 % 15,9 10,7 - 10,7Tension 200% 15.9 10.7-10.7
Spannung 400 % - - - -Voltage 400% - - - -
Spannung 600 % - - - Voltage 600% - - -

Claims

Patentansprüche Claims
1. Kautschukelastisches Blockcopolymerisat aus mindestens einem, einpolymerisierte Einheiten eines vinylaromatischen Monomeren aufweisenden, eine Hartphase bildenden Block A und/oder einem Dienmonomere aufweisenden, eine erste kautschukelastische (Weich-)Phase bildenden Block B und mindestens einem einpoly¬ merisierte Einheiten sowohl eines vinylaromatischen Monomeren wie eines Diens aufweisenden elastomeren, eine Weichphase bildenden Block B/A, wobei die Glastemperatur Tg des Blocks A über 25°C und die der Blöcke B bzw. B/A unter 25°C liegt und das Phasenvolumen-Verhältnis von Block A zu Block B/A so gewählt ist, daß der Anteil der Hartphase am gesamten Block- copolymerisat 1 - 40 Volumen-% und der Gewichtsanteil des Diens weniger als 50 Gew.-% beträgt.1. Rubber-elastic block copolymer composed of at least one polymerized units of a vinyl aromatic monomer, a hard phase-forming block A and / or a diene monomer, a first rubber-elastic (soft) phase forming block B and at least one polymerized units of both a vinyl aromatic monomer such as of a diene-containing elastomeric block B / A forming a soft phase, the glass transition temperature T g of block A above 25 ° C. and that of blocks B and B / A below 25 ° C. and the phase volume ratio of block A to block B / A is selected so that the proportion of the hard phase in the total block copolymer is 1-40% by volume and the proportion by weight of the diene is less than 50% by weight.
2. Blockcopolymerisat nach Anspruch 1, dadurch gekennzeichnet, daß Tg der Hartphase über 50°C und Tg der Weichphasen unter 5°C liegt.2. Block copolymer according to claim 1, characterized in that T g of the hard phase is above 50 ° C and T g of the soft phases is below 5 ° C.
3. Blockcopolymerisat nach Anspruch 1, dadurch gekennzeichnet, daß das vinylaromatische Monomere ausgewählt ist aus Styrol, α-Methylstyrol, Vinyltoluol und Diphenylethylen und das Dien aus Butadien und Isopren.3. Block copolymer according to claim 1, characterized in that the vinyl aromatic monomer is selected from styrene, α-methyl styrene, vinyl toluene and diphenylethylene and the diene from butadiene and isoprene.
4. Blockcopolymerisat nach Anspruch 1, dadurch gekennzeichnet, daß (gegebenenfalls zweite bzw. weitere) die Weichphase aus einen Copolymerisat eines Vinylaromaten mit einem Dien gebil- det wird.4. Block copolymer according to claim 1, characterized in that (optionally second or further) the soft phase is formed from a copolymer of a vinyl aromatic with a diene.
5. Blockcopolymerisat nach Anspruch 1, dadurch gekennzeichnet, daß (gegebenenfalls zweite bzw. weitere) die Weichphase ein statistisches Copolymerisat des Vinylaromaten mit dem Dien ist.5. Block copolymer according to claim 1, characterized in that (optionally second or further) the soft phase is a random copolymer of vinyl aromatic with the diene.
6. Blockcopolymerisat nach Anspruch 1, wie es erhalten wird durch anionische Polymerisation, wobei mindestens die Poly¬ merisation der Weichphase in Gegenwart eines polaren Cosol- vens vorgenommen worden ist.6. Block copolymer as claimed in claim 1, as is obtained by anionic polymerization, at least the polymerization of the soft phase having been carried out in the presence of a polar cosolvent.
7. Blockcopolymerisat nach Anspruch 1, dadurch gekennzeichnet, daß mehrere Blöcke B/A mit unterschiedlicher Molmasse je Molekül vorhanden sind. 7. Block copolymer according to claim 1, characterized in that several blocks B / A with different molecular weights are present per molecule.
8. Blockcopolymerisat nach Anspruch 1, dadurch gekennzeichnet, daß mehrere Blöcke A mit unterschiedlicher Molmasse je Molekül vorhanden sind.8. Block copolymer according to claim 1, characterized in that several blocks A with different molecular weights are present per molecule.
9. Blockcopolymerisat nach Anspruch 1, dargestellt durch eine der allgemeinen Formeln 1 bis 119. Block copolymer according to claim 1, represented by one of the general formulas 1 to 11
(1) (A-B/A)n;(1) (A-B / A) n;
(2) (A-B/A)n-A; (3) B/A-(A-B/A)n;(2) (A-B / A) n-A; (3) B / A- (A-B / A) n;
(4) X-[ (A-B/A)n]m+1;(4) X- [(A-B / A) n] m + 1;
(5) X-[ (B/A-A)n]m+1;(5) X- [(B / A-A) n] m + 1;
(6) X-[ (A-B/A)n-A]m+1;(6) X- [(A-B / A) n-A] m + 1;
(7) X-[ (B/A-A)n-B/A]m+1; (8) Y-[ (A-B/A)n]m+1;(7) X- [(B / A-A) n-B / A] m + 1; (8) Y- [(A-B / A) n] m + 1;
(9) Y-[ (B/A-A)n]m+1;(9) Y- [(B / A-A) n] m + 1;
(10) Y-[ (A-B/A)n-A]m+1;(10) Y- [(A-B / A) n-A] m + 1;
(11) Y-[ (B/A-A)n-B/A]m+1;(11) Y- [(B / A-A) n-B / A] m + 1;
wobei A für den vinylaromatischen Block und B/A für den statistisch aus Dien- und vinylaromatischen Einheiten steht, X den Rest eines n-funktioneilen Initiators, Y den Rest eines m-funk ioneilen Kopplungsmittels und m und n natürliche Zahlen von 1 bis 10 bedeuten.where A stands for the vinylaromatic block and B / A for the randomly composed of diene and vinylaromatic units, X is the remainder of an n-functional initiator, Y is the remainder of an m-func ionic coupling agent and m and n are natural numbers from 1 to 10 .
10. Blockcopolymerisat nach Anspruch 9 einer der allgemeinen Formeln A-B/A-A, X-[-B/A-A]2 und Y-[-B/A-A]2.10. Block copolymer according to claim 9 of one of the general formulas AB / AA, X - [- B / AA] 2 and Y - [- B / AA] 2 .
11. Blockcopolymerisat nach Anspruch 1, dessen Weichphase unter- teilt ist in Blöcke11. Block copolymer according to claim 1, the soft phase of which is divided into blocks
(12) (B/A)ι-(B/A)2 (12) (B / A) ι- (B / A) 2
(13) (B/A)!-(B/A)2- (B/A)i(13) (B / A) ! - (B / A) 2 - (B / A) i
(14) (B/A)ι-(B/A)2-(B/A)3 (14) (B / A) ι- (B / A) 2 - (B / A) 3
deren Vinylaromat/Dien-Verhältnis in den einzelnen Blöcken B/A unterschiedlich ist oder sich innerhalb eines Blocks in den Grenzen (B/A) ι(B/A)2 kontinuierlich ändert, wobei die Glasübergangstemperatur Tg jedes Teilblocks unter 25°C liegt. whose vinylaromatic / diene ratio in the individual blocks B / A is different or changes continuously within a block within the limits (B / A) ι (B / A) 2 , the glass transition temperature T g of each sub-block below 25 ° C. lies.
12. Blockcopolymerisat nach Anspruch 1, dessen (weitere) Weich¬ phase unterteilt ist in Blöcke12. Block copolymer according to claim 1, whose (further) soft phase is divided into blocks
( 15 ) B- (B/A)(15) B- (B / A)
( 16 ) (B/A) -B- (B/A)(16) (B / A) -B- (B / A)
( 17 ) ( B/A) ι -B- (B/A)(17) (B / A) ι -B- (B / A)
( 18 ) B- (B/A) i- (B/A) 2 (18) B- (B / A) i- (B / A) 2
deren Vinylaromat/Dien-Verhältnis in den einzelnen Blöcken B/A unterschiedlich ist oder sich innerhalb eines Blocks in den Grenzen (B/A) ι(B/A)2 kontinuierlich ändert, wobei die Glasübergangstemperatur Tg jedes Teilblocks unter 25°C liegt.whose vinylaromatic / diene ratio in the individual blocks B / A is different or changes continuously within a block within the limits (B / A) ι (B / A) 2 , the glass transition temperature T g of each sub-block below 25 ° C. lies.
13. Verwendung einer ein Blockcopolymerisat nach einem der Ansprüche enthaltenden Formmasse zur Herstellung von Form¬ teilen.13. Use of a molding compound containing a block copolymer according to one of the claims for the production of molded parts.
14. Folie, Schaum, Thermoformling, Spritzgußformling oder Profil- extrudat aus einer Formmasse nach Anspruch 12. 14. Foil, foam, thermoforming, injection molding or profile extrudate from a molding composition according to claim 12.
PCT/EP1995/002207 1994-06-17 1995-06-08 Thermoplastic elastomer WO1995035335A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MX9606522A MX9606522A (en) 1994-06-17 1995-06-08 Thermoplastic elastomer.
JP50158896A JP3539967B2 (en) 1994-06-17 1995-06-08 Thermoplastic elastomer
DE59509944T DE59509944D1 (en) 1994-06-17 1995-06-08 Thermoplastisches elastomer
US08/750,705 US6031053A (en) 1994-06-17 1995-06-08 Thermoplastic elastomer
EP95923261A EP0766706B1 (en) 1994-06-17 1995-06-08 Thermoplastic elastomer
CA002193264A CA2193264C (en) 1994-06-17 1995-06-08 Thermoplastic elastomer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4420952.5 1994-06-17
DE4420952A DE4420952A1 (en) 1994-06-17 1994-06-17 Thermoplastic elastomer

Publications (1)

Publication Number Publication Date
WO1995035335A1 true WO1995035335A1 (en) 1995-12-28

Family

ID=6520674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1995/002207 WO1995035335A1 (en) 1994-06-17 1995-06-08 Thermoplastic elastomer

Country Status (10)

Country Link
US (1) US6031053A (en)
EP (1) EP0766706B1 (en)
JP (1) JP3539967B2 (en)
KR (1) KR100371886B1 (en)
CA (1) CA2193264C (en)
DE (2) DE4420952A1 (en)
ES (1) ES2170153T3 (en)
MX (1) MX9606522A (en)
TW (1) TW407161B (en)
WO (1) WO1995035335A1 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996023823A1 (en) * 1995-02-02 1996-08-08 Basf Aktiengesellschaft Flexible, transparent styrene polymer-based foil, in particular for food packaging, and process for its production
WO1996024634A1 (en) * 1995-02-07 1996-08-15 Basf Aktiengesellschaft Medical moulded part, in particular component of a transmission system for perfusion or transfusion purposes
WO1998012256A1 (en) * 1996-09-19 1998-03-26 Basf Aktiengesellschaft Thermoplastic moulding compounds
EP0919580A1 (en) * 1996-06-26 1999-06-02 The Yokohama Rubber Co., Ltd. Block copolymer, rubber composition comprising the same, and pneumatic tire made therefrom
DE19848683B4 (en) * 1998-10-22 2004-05-06 Basf Ag Laminated sheet
EP0761704B2 (en) 1995-08-29 2004-05-19 ConocoPhillips Company Conjugated diene/monovinylarene block copolymers
WO2005075561A1 (en) 2004-02-09 2005-08-18 Basf Aktiengesellschaft Moulding materials consisting of styrene polymers with a mat surface
WO2006053663A1 (en) 2004-11-17 2006-05-26 Basf Aktiengesellschaft Master batch based on styrol butadiene block copolymers
WO2011039301A1 (en) 2009-10-01 2011-04-07 Basf Se Functionalized expandable graphite intercalation compounds
WO2011039292A1 (en) 2009-10-01 2011-04-07 Basf Se Method for producing functionalized expandable graphite intercalation compounds
WO2012049264A2 (en) 2010-10-15 2012-04-19 Basf Se Method for producing flame-proofed thermoplastic molding compounds
WO2012055919A1 (en) 2010-10-27 2012-05-03 Basf Se Elastomeric block copolymers with a star-shaped molecular architecture, said star-shaped molecular architecture having at least two different star arms
WO2012084914A1 (en) 2010-12-23 2012-06-28 Basf Se Thermoplastic elastomer composition and method for the production thereof
WO2012089574A1 (en) 2010-12-28 2012-07-05 Basf Se Foam board based on styrene polymer-polyolefin mixtures
US8481624B2 (en) 2007-09-28 2013-07-09 Styrolution GmbH Methods for producing flameproofed thermoplastic moulding compounds
US8568633B2 (en) 2007-04-11 2013-10-29 Basf Se Elastic particle foam based on polyolefin/styrene polymer mixtures
WO2014001234A1 (en) 2012-06-26 2014-01-03 Styrolution GmbH Method for producing polymers of vinyl aromatics, as well as vinyl aromatic-diene block copolymers
US8729143B2 (en) 2008-12-30 2014-05-20 Basf Se Elastic particle foam based on polyolefin/styrene polymer mixtures
US8741973B2 (en) 2009-03-05 2014-06-03 Basf Se Elastic expanded polymer foam based on polyolefin/styrene polymer mixtures
US8835560B2 (en) 2010-10-27 2014-09-16 Styrolution GmbH Elastomeric block copolymers having star-shaped molecular architecture, where the star-shaped molecular architecture has at least two different arms in the star
WO2015071207A1 (en) 2013-11-12 2015-05-21 Styrolution Group Gmbh Polymer compositions based on smma
WO2016046762A1 (en) 2014-09-23 2016-03-31 Avore Nv Method for removing organic impurities from water
WO2016142443A2 (en) 2015-03-10 2016-09-15 Avore Nv Method for the removal of organic contaminants from water
WO2017182435A1 (en) 2016-04-21 2017-10-26 Ineos Styrolution Group Gmbh Abs molding composition having improved crack and chemical resistance and its use
US9845374B2 (en) 2013-07-08 2017-12-19 Ineos Styrolution Group Gmbh Mono vinyl aromatic conjugated diene block copolymer and polymer composition comprising said block copolymer and a mono vinylarene acrylate copolymer
US9850377B2 (en) 2013-11-11 2017-12-26 Ineos Styrolution Group Gmbh Blends of styrene butadiene copolymers with poly(lactic acid)
WO2018001943A1 (en) 2016-06-29 2018-01-04 Ineos Styrolution Group Gmbh Polymer composition comprising at least one vinyl aromatic diene block copolymer and specific amounts of oil
US10072140B2 (en) 2014-02-11 2018-09-11 Ineos Styrolution Group Gmbh Blends of thermoplastic elastomers based on styrene (S-TPE) and polyolefins
WO2018234222A1 (en) 2017-06-19 2018-12-27 Ineos Styrolution Group Gmbh Vinyl aromatic/diene-block copolymers having good organoleptic properties
WO2019158564A1 (en) 2018-02-16 2019-08-22 Ineos Styrolution Group Gmbh High heat resistant abs molding composition
WO2019170463A1 (en) 2018-03-06 2019-09-12 Basf Se Filaments based on a core material comprising a fibrous filler
WO2021032827A1 (en) 2019-08-21 2021-02-25 Ineos Styrolution Group Gmbh Abs molding composition for sheet extrusion and thermoforming with high escr, high color and thermal stability and low tendency to delamination
WO2021110751A1 (en) 2019-12-04 2021-06-10 Ineos Styrolution Group Gmbh Thermoplastic compounds containing recycling material with superior quality
US11130276B2 (en) 2013-12-18 2021-09-28 Ineos Styrolution Group Gmbh Use of molding materials based on vinyl aromatic/diene block copolymers for 3-D-printing
WO2022043548A1 (en) 2020-08-31 2022-03-03 Ineos Styrolution Group Gmbh Sealable multilayer film of styrene polymers with improved organoleptic properties

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19529402C2 (en) * 1995-08-10 2001-11-29 Basf Ag Multilayer laminate
DE19615533A1 (en) * 1996-04-19 1997-10-23 Basf Ag Thermoplastic molding compound
DE19621688A1 (en) * 1996-05-30 1997-12-04 Basf Ag Transparent, non-blocking film
DE19638254A1 (en) * 1996-09-19 1998-03-26 Basf Ag Thermoplastic elastomers
DE19710442B4 (en) * 1997-03-13 2008-02-07 Basf Ag Expandable styrene polymers, process for their preparation and elastic foams produced therefrom
DE19716572A1 (en) * 1997-04-19 1998-10-22 Basf Ag Expandable styrene polymers
DE19810141A1 (en) 1998-03-10 1999-09-16 Basf Ag Elastomeric polymer mixture with good tearing resistance and stiffness for fiber, film and molded article
US6372853B1 (en) * 1999-07-28 2002-04-16 China Petrochemical Corporation Butadiene/isoprene/monovinyl aromatic monomer heptablock copolymers and method for the preparation thereof
US6598637B2 (en) 2000-08-01 2003-07-29 The Goodyear Tire & Rubber Company Pneumatic tire having a rubber component containing a block styrene butadiene copolymer
KR100425243B1 (en) * 2001-11-14 2004-03-30 주식회사 엘지화학 Linear block copolymer and method for preparing thereof
US20030181584A1 (en) 2002-02-07 2003-09-25 Kraton Polymers U.S. Llc Elastomeric articles prepared from controlled distribution block copolymers
US7141621B2 (en) * 2002-02-07 2006-11-28 Kraton Polymers U.S. Llc Gels from controlled distribution block copolymers
US20040138371A1 (en) * 2002-02-07 2004-07-15 St. Clair David John Gels from controlled distribution block copolymers
DE60333911D1 (en) * 2002-04-25 2010-10-07 Asahi Kasei Chemicals Corp BLOCK COPOLYMER AND COMPOSITION OF IT
US7371805B2 (en) * 2002-06-27 2008-05-13 Asahi Kasei Chemicals Corporation Hydrogenated copolymer and composition thereof
DE602004013092T2 (en) * 2003-08-14 2008-07-31 Basf Se Mixture of polyesters and block copolymers of vinylaromatic compounds and conjugated dienes
US8222346B2 (en) 2003-09-23 2012-07-17 Dais-Analytic Corp. Block copolymers and method for making same
US7037980B2 (en) * 2003-11-10 2006-05-02 Chevron Phillips Chemical Company, Lp Monovinylarene/conjugated diene copolymers having lower glass transition temperatures
US7348076B2 (en) 2004-04-08 2008-03-25 Saint-Gobain Ceramics & Plastics, Inc. Single crystals and methods for fabricating same
US7717893B2 (en) * 2004-06-04 2010-05-18 The Procter & Gamble Company Absorbent articles comprising a slow recovery elastomer
US7905872B2 (en) * 2004-06-04 2011-03-15 The Procter & Gamble Company Absorbent articles comprising a slow recovery stretch laminate
DE102004029132A1 (en) * 2004-06-17 2005-12-29 Basf Ag Blends of styrene-butadiene block copolymers and polyolefins for transparent, elastic films
DE102004029138A1 (en) * 2004-06-17 2005-12-29 Basf Ag Blends of styrene-butadiene block copolymers and polyolefins for transparent, elastic films
US7965252B2 (en) * 2004-08-18 2011-06-21 Ruckus Wireless, Inc. Dual polarization antenna array with increased wireless coverage
US8419701B2 (en) * 2005-01-10 2013-04-16 The Procter & Gamble Company Absorbent articles with stretch zones comprising slow recovery elastic materials
WO2006081068A1 (en) 2005-01-26 2006-08-03 The Procter & Gamble Company Disposable pull-on diaper having a low force, slow recovery elastic waist
US7951316B2 (en) 2005-04-05 2011-05-31 Exxonmobil Chemical Patents Inc. Process for pipe seal manufacture
US8153727B2 (en) * 2005-05-11 2012-04-10 Zeon Corporation Block copolymer, resin composition comprising same, and process for producing the resin composition
US20070026251A1 (en) * 2005-07-26 2007-02-01 Kraton Polymers U.S. Llc Flexible packaging laminate films including a block copolymer layer
JP5303933B2 (en) 2005-07-29 2013-10-02 日本ゼオン株式会社 Block copolymer and method for producing the same, resin-modifying composition, and modified resin composition and method for producing the same
US20070066753A1 (en) * 2005-09-16 2007-03-22 Ehrlich Martin L Highly processible compounds of high MW conventional block copolymers and controlled distribution block copolymers
US20070078206A1 (en) * 2005-10-04 2007-04-05 Clair David J S Sound damping composition
US20070078205A1 (en) * 2005-10-04 2007-04-05 St Clair David J Hot melt adhesive composition having improved stability
US20070078194A1 (en) * 2005-10-04 2007-04-05 St Clair David J Flexographic printing plate and flexographic printing plate precursor composition for preparing same
US7737216B2 (en) * 2006-01-26 2010-06-15 Chevron Phillips Chemical Company Lp Monovinylarene conjugated diene block copolymer compositions for shrinkable films
US7592390B2 (en) * 2006-03-24 2009-09-22 Kraton Polymers U.S. Llc Hydrogenated block copolymer compositions
US7585916B2 (en) 2006-03-24 2009-09-08 Kraton Polymers Us Llc Block copolymer compositions
US7858693B2 (en) 2006-03-24 2010-12-28 Kratonpolymers U.S. Llc Unhydrogenated block copolymer compositions
US7582702B2 (en) 2006-03-24 2009-09-01 Kraton Polymers U.S. Llc Block copolymer compositons
US20070270546A1 (en) * 2006-04-24 2007-11-22 Kraton Polymers U.S. Llc Polymeric compositions and films formed therefrom
EP2042531B1 (en) * 2006-06-30 2010-09-01 Zeon Corporation Block copolymer, composition for resin modification, and modified resin composition
JP2010508055A (en) * 2006-11-02 2010-03-18 ザ プロクター アンド ギャンブル カンパニー Absorbent article with slowly recovering material handle
ATE484530T1 (en) * 2007-05-23 2010-10-15 Basf Se ISOTACTIC POLYSTYRENE WITH REACTIVE GROUPS
JP5624464B2 (en) * 2007-07-10 2014-11-12 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Flame retardant elastic copolymer
DE602008005156D1 (en) * 2007-07-10 2011-04-07 Basf Se
CN101855291B (en) 2007-09-14 2012-09-19 巴斯夫欧洲公司 Moulding composition, its uses and integrated circuit pipe package manufactured therefrom
JP5168460B2 (en) * 2007-09-28 2013-03-21 株式会社クラレ Block copolymer and method for producing the same
US8323257B2 (en) 2007-11-21 2012-12-04 The Procter & Gamble Company Absorbent articles comprising a slow recovery stretch laminate and method for making the same
WO2009109593A1 (en) * 2008-03-05 2009-09-11 Basf Se Tough and rigid mixtures of alpha-methylstyrene-acrylnitrile copolymers and block copolymers
JP5575669B2 (en) * 2008-03-13 2014-08-20 ビーエーエスエフ ソシエタス・ヨーロピア Method and dispersion for forming a metal layer on a substrate, and metallizable thermoplastic molding compound
EP2123706A1 (en) 2008-05-19 2009-11-25 Evonik Degussa GmbH Thermoplastic elastomers
CN101628959A (en) * 2008-07-15 2010-01-20 中国石油化工集团公司 Foamed styrene monomer-diolefin copolymer, and preparation method and application thereof
WO2011040408A1 (en) * 2009-09-29 2011-04-07 電気化学工業株式会社 Thermally shrinkable laminated film
US9017305B2 (en) 2010-11-12 2015-04-28 The Procter Gamble Company Elastomeric compositions that resist force loss and disintegration
MY162894A (en) 2011-03-02 2017-07-31 Basf Se Use of vinylaromatic-diene copolymers in lactam compositions
US9080050B2 (en) 2011-03-02 2015-07-14 Basf Se Use of vinylaromatic-diene copolymers in lactam compositions
EP2848650B2 (en) * 2012-05-08 2020-05-27 Denka Company Limited Block copolymer composition, and sheet
EP2904045B1 (en) 2012-10-08 2018-09-19 Teknor Apex Company Thermoplastic elastomer compositions having biorenewable content
US20140100310A1 (en) 2012-10-08 2014-04-10 Teknor Apex Company Thermoplastic elastomer compositions having biorenewable content
EP2759572A1 (en) 2013-01-23 2014-07-30 Teknor Apex Company Thermoplastic elastomer compositions having biorenewable content
EP3092269A4 (en) * 2014-01-10 2017-09-27 CommScope Connectivity Belgium BVBA Thermoplastic gel compositions and their methods of making
US10072144B2 (en) 2014-02-10 2018-09-11 Ineos Styrolution Group Gmbh Use of styrene methyl methacrylate copolymers (SMMA) as compatibilizing agents
US9156978B1 (en) 2014-06-06 2015-10-13 Teknor Apex Company Low softener halogen free flame retardant styrenic block copolymer-based thermoplastic elastomer compositions
US10839979B2 (en) 2016-07-08 2020-11-17 Teknor Apex Company Cable with flame retardant multi-layer covering
US10800870B2 (en) * 2016-12-22 2020-10-13 Exxonmobil Chemical Patents Inc. Aliphatic/aromatic olefin block copolymers
KR102462291B1 (en) 2017-03-16 2022-11-03 이네오스 스티롤루션 그룹 게엠베하 Very soft, non-tacky and transparent styrenic thermoplastic elastomer composition
CN110637062B (en) 2017-03-16 2023-05-05 英力士苯领集团股份公司 Non-tacky, soft transparent styrene thermoplastic elastomer
CN114106274B (en) * 2020-08-31 2024-04-12 中国石油化工股份有限公司 Waterproof coiled material asphalt modifier and preparation and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5095385A (en) * 1973-12-25 1975-07-29
US4054616A (en) * 1973-09-29 1977-10-18 Sumitomo Chemical Company, Limited Process for producing transparent block copolymer resins
US4122134A (en) * 1974-02-13 1978-10-24 Sumitomo Chemical Company, Limited Method for producing transparent block copolymer resin
GB2138009A (en) * 1983-03-10 1984-10-17 Japan Synthetic Rubber Co Ltd Block copolymer of an alkenyl aromatic compound and a conjugated diene
JPS60224521A (en) * 1984-04-21 1985-11-08 Asahi Chem Ind Co Ltd Heat shrinkable film of block copolymer or of block copolymer composition
EP0512530A1 (en) * 1991-05-08 1992-11-11 Phillips Petroleum Company Tapered block copolymers of conjugated dienes and monovinylarenes

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3507934A (en) * 1965-12-20 1970-04-21 Shell Oil Co Block copolymer compositions having improved processability
US3639517A (en) * 1969-09-22 1972-02-01 Phillips Petroleum Co Resinous branched block copolymers
US4089913A (en) * 1974-01-10 1978-05-16 Sumitomo Chemical Company, Limited Process for producing transparent block copolymer resin
DE2550226C2 (en) * 1975-11-08 1984-12-13 Basf Ag, 6700 Ludwigshafen Branched block copolymers and process for their preparation
US4167545A (en) * 1975-11-08 1979-09-11 Basf Aktiengesellschaft Branched block copolymers and their manufacture
US4152370A (en) * 1978-02-09 1979-05-01 Phillips Petroleum Company Preparation, composition, and use of block polymers
US4248984A (en) * 1979-05-11 1981-02-03 Arco Polymers, Inc. Clear impact resistant thermoplastic star-block copolymers
US4346198A (en) * 1980-07-14 1982-08-24 Atlantic Richfield Company Clear impact resistant thermoplastic star-block copolymers
US4412087A (en) * 1981-12-16 1983-10-25 Phillips Petroleum Company Viscosity index improver with high thickening power
LU86698A1 (en) * 1986-12-04 1988-07-14 Labofina Sa PROCESS FOR PRODUCING TRANSPARENT BLOCK COPOLYMERS
DE3738748A1 (en) * 1987-11-14 1989-05-24 Basf Ag METHOD FOR THE DISCONTINUOUS MANUFACTURE OF UNSYMMETRICALLY BUILT-ON, STERNOFERMIC BRANCHED BLOCK COPOLYMERISES AND THEIR USE
US5234999A (en) * 1989-10-27 1993-08-10 The Dow Chemical Company Tapered block copolymers
US5071920A (en) * 1989-11-24 1991-12-10 The Dow Chemical Company Tapered block copolymers
US5047484A (en) * 1989-11-24 1991-09-10 The Dow Chemical Company Tapered block copolymers
US5226419A (en) * 1992-03-13 1993-07-13 Core Medical Technologies, Inc. Method and device for cutaneous marking of the venous anatomy

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4054616A (en) * 1973-09-29 1977-10-18 Sumitomo Chemical Company, Limited Process for producing transparent block copolymer resins
JPS5095385A (en) * 1973-12-25 1975-07-29
US4122134A (en) * 1974-02-13 1978-10-24 Sumitomo Chemical Company, Limited Method for producing transparent block copolymer resin
GB2138009A (en) * 1983-03-10 1984-10-17 Japan Synthetic Rubber Co Ltd Block copolymer of an alkenyl aromatic compound and a conjugated diene
JPS60224521A (en) * 1984-04-21 1985-11-08 Asahi Chem Ind Co Ltd Heat shrinkable film of block copolymer or of block copolymer composition
EP0512530A1 (en) * 1991-05-08 1992-11-11 Phillips Petroleum Company Tapered block copolymers of conjugated dienes and monovinylarenes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 104, no. 14, Columbus, Ohio, US; abstract no. 111041Z, SHIRAKI TOSHINORI ET AL: "Heat-shrinkable block copolymer films" page 59; column 1; XP008054029 *
CHEMICAL ABSTRACTS, vol. 83, no. 24, 15 December 1975, Columbus, Ohio, US; abstract no. 194374G, IBARAGI TOSHIO ET AL.: "transparant, impact resistant styrene-butadiene polymers" page 49; column 1; XP008054023 *

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996023823A1 (en) * 1995-02-02 1996-08-08 Basf Aktiengesellschaft Flexible, transparent styrene polymer-based foil, in particular for food packaging, and process for its production
WO1996024634A1 (en) * 1995-02-07 1996-08-15 Basf Aktiengesellschaft Medical moulded part, in particular component of a transmission system for perfusion or transfusion purposes
EP0761704B2 (en) 1995-08-29 2004-05-19 ConocoPhillips Company Conjugated diene/monovinylarene block copolymers
EP0919580A4 (en) * 1996-06-26 1999-09-08 Yokohama Rubber Co Ltd Block copolymer, rubber composition comprising the same, and pneumatic tire made therefrom
US6180717B1 (en) 1996-06-26 2001-01-30 Yokohama Rubber Co., Ltd. Block copolymer and rubber composition and pneumatic tire containing the same
US6355728B1 (en) 1996-06-26 2002-03-12 The Yokohama Rubber Co. Ltd. Block copolymer rubber composition comprising the same and pneumatic tire made therefrom
EP0919580A1 (en) * 1996-06-26 1999-06-02 The Yokohama Rubber Co., Ltd. Block copolymer, rubber composition comprising the same, and pneumatic tire made therefrom
EP1433816A1 (en) * 1996-06-26 2004-06-30 The Yokohama Rubber Co., Ltd. Block copolymer and rubber composition and pneumatic tire containing the same
EP1433815A1 (en) * 1996-06-26 2004-06-30 The Yokohama Rubber Co., Ltd. Block copolymer and rubber composition and pneumatic tire containing the same
WO1998012256A1 (en) * 1996-09-19 1998-03-26 Basf Aktiengesellschaft Thermoplastic moulding compounds
DE19848683B4 (en) * 1998-10-22 2004-05-06 Basf Ag Laminated sheet
WO2005075561A1 (en) 2004-02-09 2005-08-18 Basf Aktiengesellschaft Moulding materials consisting of styrene polymers with a mat surface
WO2006053663A1 (en) 2004-11-17 2006-05-26 Basf Aktiengesellschaft Master batch based on styrol butadiene block copolymers
US8568633B2 (en) 2007-04-11 2013-10-29 Basf Se Elastic particle foam based on polyolefin/styrene polymer mixtures
US8481624B2 (en) 2007-09-28 2013-07-09 Styrolution GmbH Methods for producing flameproofed thermoplastic moulding compounds
US8729143B2 (en) 2008-12-30 2014-05-20 Basf Se Elastic particle foam based on polyolefin/styrene polymer mixtures
US8741973B2 (en) 2009-03-05 2014-06-03 Basf Se Elastic expanded polymer foam based on polyolefin/styrene polymer mixtures
WO2011039301A1 (en) 2009-10-01 2011-04-07 Basf Se Functionalized expandable graphite intercalation compounds
WO2011039292A1 (en) 2009-10-01 2011-04-07 Basf Se Method for producing functionalized expandable graphite intercalation compounds
WO2012049264A2 (en) 2010-10-15 2012-04-19 Basf Se Method for producing flame-proofed thermoplastic molding compounds
US9034949B2 (en) 2010-10-15 2015-05-19 Styrolution Europe Gmbh Method for producing flame-proofed thermoplastic molding compounds
US8835560B2 (en) 2010-10-27 2014-09-16 Styrolution GmbH Elastomeric block copolymers having star-shaped molecular architecture, where the star-shaped molecular architecture has at least two different arms in the star
CN103221441A (en) * 2010-10-27 2013-07-24 巴斯夫股份公司 Elastomeric block copolymers with a star-shaped molecular architecture, said star-shaped molecular architecture having at least two different star arms
WO2012055919A1 (en) 2010-10-27 2012-05-03 Basf Se Elastomeric block copolymers with a star-shaped molecular architecture, said star-shaped molecular architecture having at least two different star arms
US9365715B2 (en) 2010-12-23 2016-06-14 Styrolution Europe Gmbh Thermoplastic elastomer composition and method for the production thereof
WO2012084914A1 (en) 2010-12-23 2012-06-28 Basf Se Thermoplastic elastomer composition and method for the production thereof
WO2012089574A1 (en) 2010-12-28 2012-07-05 Basf Se Foam board based on styrene polymer-polyolefin mixtures
WO2014001234A1 (en) 2012-06-26 2014-01-03 Styrolution GmbH Method for producing polymers of vinyl aromatics, as well as vinyl aromatic-diene block copolymers
US9845374B2 (en) 2013-07-08 2017-12-19 Ineos Styrolution Group Gmbh Mono vinyl aromatic conjugated diene block copolymer and polymer composition comprising said block copolymer and a mono vinylarene acrylate copolymer
US9850377B2 (en) 2013-11-11 2017-12-26 Ineos Styrolution Group Gmbh Blends of styrene butadiene copolymers with poly(lactic acid)
WO2015071207A1 (en) 2013-11-12 2015-05-21 Styrolution Group Gmbh Polymer compositions based on smma
US9873784B2 (en) 2013-11-12 2018-01-23 Ineos Styrolution Group Gmbh Polymer compositions based on SMMA
US11130276B2 (en) 2013-12-18 2021-09-28 Ineos Styrolution Group Gmbh Use of molding materials based on vinyl aromatic/diene block copolymers for 3-D-printing
US10072140B2 (en) 2014-02-11 2018-09-11 Ineos Styrolution Group Gmbh Blends of thermoplastic elastomers based on styrene (S-TPE) and polyolefins
WO2016046762A1 (en) 2014-09-23 2016-03-31 Avore Nv Method for removing organic impurities from water
WO2016142443A2 (en) 2015-03-10 2016-09-15 Avore Nv Method for the removal of organic contaminants from water
WO2017182435A1 (en) 2016-04-21 2017-10-26 Ineos Styrolution Group Gmbh Abs molding composition having improved crack and chemical resistance and its use
US10711126B2 (en) 2016-04-21 2020-07-14 Ineos Styrolution Group Gmbh ABS molding composition having improved crack and chemical resistance and its use
US11078356B2 (en) 2016-06-29 2021-08-03 Ineos Styrolution Group Gmbh Polymer composition comprising at least one vinyl aromatic diene block copolymer and specific amounts of oil
WO2018001943A1 (en) 2016-06-29 2018-01-04 Ineos Styrolution Group Gmbh Polymer composition comprising at least one vinyl aromatic diene block copolymer and specific amounts of oil
WO2018234222A1 (en) 2017-06-19 2018-12-27 Ineos Styrolution Group Gmbh Vinyl aromatic/diene-block copolymers having good organoleptic properties
US11326014B2 (en) 2017-06-19 2022-05-10 Ineos Styrolution Group Gmbh Vinyl aromatic/diene-block copolymers having good organoleptic properties
WO2019158564A1 (en) 2018-02-16 2019-08-22 Ineos Styrolution Group Gmbh High heat resistant abs molding composition
US11603464B2 (en) 2018-02-16 2023-03-14 Ineos Styrolution Group Gmbh High heat resistant ABS molding composition
WO2019170463A1 (en) 2018-03-06 2019-09-12 Basf Se Filaments based on a core material comprising a fibrous filler
WO2021032827A1 (en) 2019-08-21 2021-02-25 Ineos Styrolution Group Gmbh Abs molding composition for sheet extrusion and thermoforming with high escr, high color and thermal stability and low tendency to delamination
WO2021110751A1 (en) 2019-12-04 2021-06-10 Ineos Styrolution Group Gmbh Thermoplastic compounds containing recycling material with superior quality
WO2022043548A1 (en) 2020-08-31 2022-03-03 Ineos Styrolution Group Gmbh Sealable multilayer film of styrene polymers with improved organoleptic properties

Also Published As

Publication number Publication date
CA2193264A1 (en) 1995-12-28
US6031053A (en) 2000-02-29
ES2170153T3 (en) 2002-08-01
DE59509944D1 (en) 2002-01-24
MX9606522A (en) 1997-05-31
EP0766706A1 (en) 1997-04-09
JPH10501833A (en) 1998-02-17
CA2193264C (en) 2007-01-09
JP3539967B2 (en) 2004-07-07
KR100371886B1 (en) 2003-05-09
TW407161B (en) 2000-10-01
DE4420952A1 (en) 1995-12-21
EP0766706B1 (en) 2001-12-12

Similar Documents

Publication Publication Date Title
WO1995035335A1 (en) Thermoplastic elastomer
EP0859803B1 (en) Thermoplastic moulding compound
DE602004007379T2 (en) BLOCK COPOLYMER COMPOSITION AND TRANSPARENT ELASTOMER OBJECTS MANUFACTURED THEREFROM
DE3785423T2 (en) METHOD FOR PRODUCING TRANSPARENT BLOCK COPOLYMERS.
DE3783527T2 (en) THERMOPLASTIC COMPOSITIONS AND THEIR PRODUCTION PROCESS.
EP0927210B1 (en) Thermoplastic elastomers
EP2632964B1 (en) Elastomeric block copolymers with a star-shaped molecular architecture, said star-shaped molecular architecture having at least two different star arms
DE102005001637A1 (en) Styrene-butadiene block copolymer blends for shrink films
DE19914075A1 (en) Transparent high-impact styrene-butadiene block copolymers comprises at least two hard blocks and a soft block with a low 1,2-vinyl content for improved thermal stability
DE2449299A1 (en) THREE-BLOCK POLYMERES
EP2382092B1 (en) Phase-separating block copolymers comprising incompatible hard blocks and moulding compositions having a high stiffness
EP1916267A1 (en) Block copolymer and method for producing same, composition for resin modification, and modified resin composition and method for producing same
EP0289917B1 (en) Butadiene-styrene block copolymers having an asymmetric construction, their preparation and use in moulding masses
DE60008229T2 (en) HYDROGENATED BLOCK COPOLYMERS
EP2867267B1 (en) Method for producing asymmetrically formed, star-branched vinyl aromatic-diene block copolymers
DE2156681A1 (en) Polymeric compositions based on polypropylene
EP1404730B1 (en) Core-hydrogenated block copolymers having an asymmetric structure
DE102004059783A1 (en) Transparent mixtures of linear styrene-butadiene block copolymers
WO1996018666A1 (en) Process for producing impact-resistant modified polystyrene molding compounds
EP0767213A2 (en) Thermoplastic mouldings
WO1997047672A1 (en) Block copolymers and thermoplastic mounlding compounds containing them
DE3876848T2 (en) DISPERSION POLYMERIZATION METHOD.
WO1999001487A1 (en) 1,1-diphenyl ethylene-based thermoplastic elastomers
WO1998031746A1 (en) Impact-resistant thermoplastic moulding compound
EP0176058A2 (en) Thermoplastic moulding compositions

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP KR MX RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995923261

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08750705

Country of ref document: US

Ref document number: 2193264

Country of ref document: CA

Ref document number: 1019960707244

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1995923261

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1995923261

Country of ref document: EP