WO1995032928A1 - Method of producing foam-mortar products - Google Patents

Method of producing foam-mortar products Download PDF

Info

Publication number
WO1995032928A1
WO1995032928A1 PCT/DE1995/000656 DE9500656W WO9532928A1 WO 1995032928 A1 WO1995032928 A1 WO 1995032928A1 DE 9500656 W DE9500656 W DE 9500656W WO 9532928 A1 WO9532928 A1 WO 9532928A1
Authority
WO
WIPO (PCT)
Prior art keywords
starting materials
mortar products
aerated concrete
cut
additives
Prior art date
Application number
PCT/DE1995/000656
Other languages
German (de)
French (fr)
Inventor
Anton SCHNIEDERJÜRGEN
Original Assignee
Ahg Baustoffhandelsgesellschaft Mbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ahg Baustoffhandelsgesellschaft Mbh filed Critical Ahg Baustoffhandelsgesellschaft Mbh
Publication of WO1995032928A1 publication Critical patent/WO1995032928A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates

Definitions

  • the invention relates to a process for the production of aerated concrete bodies, the starting materials being suitably mixed and poured into a mold in which a setting takes place to form a green body, which is then cut and then autoclaved.
  • the starting materials mentioned are sand, lime, Portland cement, gypsum / anhydrite, water and pore formers.
  • the higher the quality of the raw materials the better it can be used to produce intermediate products such as the green bodies mentioned at the beginning and the end products from the intermediate products.
  • the higher the quality of the raw materials the easier it is, of course, to implement a continuous production process.
  • Inferior raw materials on the other hand, have the consequence that an additional effort arises in the production process or suitable aids are required to reduce this additional effort.
  • the sand used is usually quartz sand, in which the quartz content should be greater than 90%.
  • the quartz sand can be ground to sand sludge by adding water.
  • the sand sludge is usually placed in a wet component silo.
  • the dry components such as lime, Portland cement and gypsum / anhydrite are stored in appropriate silos.
  • Lime is the actual reac- agent that reacts with the ground quartz sand.
  • Portland cement is used as a setting agent.
  • the setting of the mixture is influenced by gypsum / anhydrite. This means that it is possible to optimize the strength properties of aerated concrete bodies.
  • Aluminum is usually used as the pore former in the form of a powder or paste.
  • An aluminum suspension is obtained by adding water.
  • the wet components and the dry components are weighed in together with the pore former and mixed in a mixer.
  • the homogeneous mixture is then poured into a mold. After the mixture has set in the mold, this results in a so-called green body with a certain green hardness.
  • the green block-shaped body is then cut apart by means of a cutting tool into the individual shaped bodies, which are then autoclaved in an autoclave. It is heated in the autoclave with live steam. At about 156 degrees Celsius and a pressure of the order of 11 to 12 bar with a pressure holding time of about 6 to 8 hours, the so-called aerated concrete is formed.
  • aerated concrete bodies of this type it can be stated that the greater their bulk density, the greater their mechanical strength, that is to say in particular their compressive strength.
  • the greater the bulk density of the aerated concrete bodies the greater their thermal conductivity, that is, the greater their heat transfer coefficient.
  • the thermal conductivity is determined in accordance with DIN 52 616.
  • the invention has for its object to provide a method of the type mentioned, with which aerated concrete bodies can be produced, which have a high mechanical strength, in particular pressure resistance, a low thermal conductivity, that is, good thermal insulation properties.
  • this object is achieved in accordance with the invention in that fibrous additives are added to the starting materials.
  • one kilogram of fibrous additives are added to the starting materials per one cubic meter.
  • Temperature-resistant high-modulus fibers are preferably added as fibrous additives at over 180 degrees Celsius. These are glass, mineral, natural and plastic breaths.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

Described is a method for the production of foam-mortar products, the starting materials being suitably mixed and cast in a mould in which the mixture sets to form a green compact which is then cut and autoclaved. In order to produce foam-mortar products with low thermal conductivity and high mechanical strength, in particular high resistance to crushing, the invention calls for fibrous aggregate to be mixed into the starting materials, preferably high-tensile-modulus fibres which are stable at temperatures of over 180 °C.

Description

Verfahren zur Herstellung von PorenbetonkörpernProcess for the production of aerated concrete bodies
Die Erfindung betrifft ein Verfahren zur Herstellung von Porenbetonkörpern, wobei die Ausgangsmaterialien geeignet gemischt und in eine Form eingegossen werden, in der ein Abbinden zu einem grünen Körper erfolgt, der anschließend geschnitten und danach autoklavisiert wird.The invention relates to a process for the production of aerated concrete bodies, the starting materials being suitably mixed and poured into a mold in which a setting takes place to form a green body, which is then cut and then autoclaved.
Bei den genannten Ausgangsmaterialien handelt es sich um Sand, Kalk, Portland¬ zement, Gips/Anhydrit, Wasser und Porenbildner. Je hochwertiger die Rohstoffe sind, umso besser lassen sich daraus Zwischenprodukte wie die eingangs erwähn¬ ten grünen Körper sowie aus den Zwischenprodukten die Endprodukte herstellen. Je hochwertiger die Ausgangs-Rohstoffe sind, umso einfacher ist es selbstverständlich auch, einen kontinuierlichen Produktionsablauf zu realisieren. Minderwertige Aus¬ gangs-Rohstoffe haben demgegenüber zur Folge, daß sich im Produktionsablauf ein Mehraufwand einstellt bzw. zur Reduzierung dieses Mehraufwandes geeignete Hilfs¬ mittel erforderlich sind.The starting materials mentioned are sand, lime, Portland cement, gypsum / anhydrite, water and pore formers. The higher the quality of the raw materials, the better it can be used to produce intermediate products such as the green bodies mentioned at the beginning and the end products from the intermediate products. The higher the quality of the raw materials, the easier it is, of course, to implement a continuous production process. Inferior raw materials, on the other hand, have the consequence that an additional effort arises in the production process or suitable aids are required to reduce this additional effort.
Bei dem zur Anwendung gelangenden Sand handelt es sich üblicherweise um Quarzsand, bei dem der Quarzanteil größer als 90 % sein soll. Der Quarzsand kann durch Zugabe von Wasser zu Sandschlamm vermählen werden. Der Sandschlamm wird üblicherweise in ein Naßkomponenten - Silo eingebracht. In entsprechenden Silos werden die Trockenkomponenten wie Kalk, Portlandzement und Gips/Anhydrit bevorratet. Kalk bildet bei der Herstellung von Porenbeton das eigentliche Reak- tionsmittel, das mit dem gemahlenen Quarzsand reagiert. Portlandzement wird als Abbindemittel eingesetzt. Durch Gips/Anhydrit wird das Abbinden des Gemisches beeinflußt. Das bedeutet, daß hiermit eine Optimierung der Festigkeitseigenschaften von Porenbetonkörpern möglich ist.The sand used is usually quartz sand, in which the quartz content should be greater than 90%. The quartz sand can be ground to sand sludge by adding water. The sand sludge is usually placed in a wet component silo. The dry components such as lime, Portland cement and gypsum / anhydrite are stored in appropriate silos. Lime is the actual reac- agent that reacts with the ground quartz sand. Portland cement is used as a setting agent. The setting of the mixture is influenced by gypsum / anhydrite. This means that it is possible to optimize the strength properties of aerated concrete bodies.
Als Porenbildner kommt üblicherweise Aluminium in Form eines Pulvers oder einer Paste zur Anwendung. Durch Zugabe von Wasser erhält man eine Aluminium-Sus¬ pension.Aluminum is usually used as the pore former in the form of a powder or paste. An aluminum suspension is obtained by adding water.
Die Naßkomponenten und die Trockenkomponenten werden gemeinsam mit dem Porenbildner eingewogen und in einem Mischer gemischt. Das homogene Gemisch wird dann in eine Form eingegossen. Nach dem Abbinden des Gemisches in der Form ergibt sich in dieser ein sogenannter grüner Körper mit einer bestimmten Grünstandshärte. Der grüne blockförmige Körper wird dann mittels eines Schneid¬ werkzeuges in die einzelnen Formkörper auseinandergeschnitten, die anschließend in einem Autoklaven autoklavisert werden. Dabei wird im Autoklaven mit Frisch¬ dampf aufgeheizt. Bei ca. 156 Grad Celsius und einem Druck von größenordnungs¬ gemäß 11 bis 12 bar bei einer Druckhaltezeit von ca. 6 bis 8 Stunden entsteht der sogenannte Porenbeton.The wet components and the dry components are weighed in together with the pore former and mixed in a mixer. The homogeneous mixture is then poured into a mold. After the mixture has set in the mold, this results in a so-called green body with a certain green hardness. The green block-shaped body is then cut apart by means of a cutting tool into the individual shaped bodies, which are then autoclaved in an autoclave. It is heated in the autoclave with live steam. At about 156 degrees Celsius and a pressure of the order of 11 to 12 bar with a pressure holding time of about 6 to 8 hours, the so-called aerated concrete is formed.
Bei derartigen Porenbetonkörpern ist festzustellen, daß ihre mechanische Festigkeit, das heißt insbesondere ihre Druckfestigkeit, umso größer ist, je größer ihre Roh¬ dichte ist. Je größer die Rohdichte der Porenbetonkörper ist, umso größer ist jedoch auch ihre Wärmeleitfähigkeit, das heißt umso größer ist ihre Wärmedurchgangszahl. Die Wärmeleitfähigkeit wird nach DIN 52 616 ermittelt. Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art zu schaffen, mit welchem Porenbetonkörper herstellbar sind, die bei einer hohen mechanischen Festigkeit, insbesondere Druckfestigkeit, eine geringe Wärmeleit¬ fähigkeit, das heißt gute Wärmeisolationseigenschaften, besitzen.In the case of aerated concrete bodies of this type, it can be stated that the greater their bulk density, the greater their mechanical strength, that is to say in particular their compressive strength. However, the greater the bulk density of the aerated concrete bodies, the greater their thermal conductivity, that is, the greater their heat transfer coefficient. The thermal conductivity is determined in accordance with DIN 52 616. The invention has for its object to provide a method of the type mentioned, with which aerated concrete bodies can be produced, which have a high mechanical strength, in particular pressure resistance, a low thermal conductivity, that is, good thermal insulation properties.
Diese Aufgabe wird bei einem Verfahren der eingangs genannten Art erfindungs¬ gemäß dadurch gelöst, daß den Ausgangsmaterialien faserartige Zuschlagsstoffe zugemischt werden. Durch die Zumischung der genannten faserigen Zuschlagstoffe zu den an sich üblichen Ausgangsmaterialien für Porenbetonkörper ist es erstmals möglich, die sich bislang widersprechenden physikalischen Eigenschaften aneinan¬ der derartig anzupassen, daß bei reduzierter Dichte und damit erzielter hoher Wär¬ meisolation gleichzeitig eine ausgezeichnete mechanische Festigkeit, insbesondere Druckfestigkeit, erreicht wird. Das ist durch den Einsatz der faserigen Zuschlagstoffe möglich.In a method of the type mentioned at the outset, this object is achieved in accordance with the invention in that fibrous additives are added to the starting materials. By admixing the fibrous additives mentioned with the usual starting materials for aerated concrete bodies, it is now possible for the first time to adapt the physical properties, which have hitherto contradicted each other, in such a way that, with reduced density and thus high thermal insulation, excellent mechanical strength, in particular Compressive strength is achieved. This is possible through the use of fibrous additives.
Erfindungsgemäß werden den Ausgangsmaterialien pro einem Kubikmeter größen¬ ordnungsmäßig ein Kilogramm faserige Zuschlagstoffe zugegeben. Vorzugsweise werden als faserige Zuschlagstoffe bei über 180 Grad Celsius temperaturbeständige Hochmodulfasern zugegeben. Es handelt sich hier um Glas-, Mineral-, Natur- sowie Kunststoffasem.According to the invention, one kilogram of fibrous additives are added to the starting materials per one cubic meter. Temperature-resistant high-modulus fibers are preferably added as fibrous additives at over 180 degrees Celsius. These are glass, mineral, natural and plastic breaths.
Nachdem es mit bekannten Schneidwerkzeugen Probleme bereiten kann, einen blockförmigen grünen Körper scharf- bzw. ebenflächig zu zerschneiden, bei wel¬ chem den Ausgangsmaterialien solche faserigen Zuschlagstoffe zugemischt worden sind, ist es zweckmäßig, den faserigen Zuschlagstoffe aufweisenden grünen Körper mit einem Schneidwerkzeug auseinander zu schneiden, wie es in der DE-Patent- anmeldung P 4338295 des Anmelders beschrieben ist. Since known cutting tools can cause problems to cut a block-shaped green body sharply or evenly, in which such fibrous additives have been admixed with the starting materials, it is expedient to cut the green body containing fibrous additives apart with a cutting tool as described in the applicant's DE patent application P 4338295.

Claims

Ansprüche: Expectations:
1. Verfahren zur Herstellung von Porenbetonkörpern, wobei die Ausgangsmateria¬ lien geeignet gemischt und in eine Form eingegossen werden, in der ein Abbin¬ den zu einem grünen Körper erfolgt, der anschließend geschnitten und danach autoklavisiert wird, dadurch gekennzeichnet, daß den Ausgangsmaterialien fase¬ rige Zuschlagstoffe zugemischt werden.1. A process for the production of aerated concrete bodies, the starting materials being suitably mixed and poured into a mold in which setting takes place to form a green body, which is then cut and then autoclaved, characterized in that the starting materials are fase¬ other additives.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß den Ausgangsmateria¬ lien pro einem Kubikmeter größenordnungsmäßig ein Kilogramm faserige Zu¬ schlagstoffe zugegeben werden.2. The method according to claim 1, characterized in that one kilogram of fibrous additives are added to the starting materials per one cubic meter.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß als faserige Zuschlagstoffe bis über 180 Grad Celsius temperaturbeständige Hochmodulfa¬ sern verwendet werden. 3. The method according to claim 1 or 2, characterized in that temperature-resistant Hochmodulfa¬ sern are used as fibrous additives to over 180 degrees Celsius.
PCT/DE1995/000656 1994-05-26 1995-05-10 Method of producing foam-mortar products WO1995032928A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4418310.0 1994-05-26
DE19944418310 DE4418310A1 (en) 1994-05-26 1994-05-26 High strength insulating porous concrete body prodn.

Publications (1)

Publication Number Publication Date
WO1995032928A1 true WO1995032928A1 (en) 1995-12-07

Family

ID=6518973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1995/000656 WO1995032928A1 (en) 1994-05-26 1995-05-10 Method of producing foam-mortar products

Country Status (2)

Country Link
DE (1) DE4418310A1 (en)
WO (1) WO1995032928A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19619263C2 (en) * 1996-05-13 2001-04-19 Ytong Ag Process for the production of lightweight materials
DE19933297C2 (en) * 1999-07-15 2001-10-04 Ytong Holding Gmbh Fiber-reinforced aerated concrete and process for its production
AU767560B2 (en) 1999-10-07 2003-11-13 Consolidated Minerals, Inc. System and method for making wallboard or backerboard sheets including aerated concrete

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB609638A (en) * 1946-03-19 1948-10-05 Structural & Mechanical Dev En Improvements relating to the production of cellular mortar or concrete panels and like articles
JPS5637266A (en) * 1979-09-04 1981-04-10 Sumitomo Metal Mining Co Shockkresistant steammcured lightweight foamed concrete
JPS62241883A (en) * 1986-04-08 1987-10-22 日本板硝子株式会社 Manufacture of lightweight fiber reinforced cement set body
WO1992011217A1 (en) * 1990-12-20 1992-07-09 Marley Building Materials Limited Fibre-reinforced materials
DE4327074A1 (en) * 1993-08-12 1995-02-16 Dennert Kg Veit Process for producing a mineral lightweight insulation board

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61197454A (en) * 1985-02-25 1986-09-01 三菱レイヨン株式会社 Manufacture of lightweight calcium silicate product
DE3711549C2 (en) * 1986-04-04 1997-09-04 Ube Industries Light calcium silicate article and process for its manufacture
DE3709374A1 (en) * 1987-03-20 1988-09-29 Al Dairani Khalid Porous lightweight concrete
DE3739997A1 (en) * 1987-11-25 1989-06-08 Hochtief Ag Hoch Tiefbauten Concrete mixture
JP2673218B2 (en) * 1990-11-28 1997-11-05 協和技研株式会社 Manufacturing method of fiber-reinforced slag gypsum cement-based lightweight cured product
EP0548371B1 (en) * 1991-07-09 1998-03-11 Showa Denko Kabushiki Kaisha Process for producing a fibrous reinforcing material for civil engineering and construction work
DE4141271C1 (en) * 1991-12-14 1992-11-05 Sicowa Verfahrenstech
DE4207235A1 (en) * 1992-03-07 1993-09-09 Norbert Dipl Ing Lang Insulation material for thermal insulation applications having good strength - having foam structure and fibres in thread form, mfd. by mixing in pressure chamber with water
DE4215814A1 (en) * 1992-05-13 1993-11-18 Bernd Grimm Foamed or unfoamed material contg. sodium gluconate - with high strength and low brittleness for use in noise enclosures
DE4241042C1 (en) * 1992-12-05 1994-02-17 Hebel Ag Composite brick or slab prodn. with ready-made decorative cover plate of silicate - by moulding on cement and/or lime compsn., pre-hardening and steam cure in autoclave.
DE4316258A1 (en) * 1993-05-14 1994-11-17 Hofmann Udo Dr Process for producing lightweight concrete components or porous concrete components or insulation or barrier materials from aluminium-containing waste materials from composite materials

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB609638A (en) * 1946-03-19 1948-10-05 Structural & Mechanical Dev En Improvements relating to the production of cellular mortar or concrete panels and like articles
JPS5637266A (en) * 1979-09-04 1981-04-10 Sumitomo Metal Mining Co Shockkresistant steammcured lightweight foamed concrete
JPS62241883A (en) * 1986-04-08 1987-10-22 日本板硝子株式会社 Manufacture of lightweight fiber reinforced cement set body
WO1992011217A1 (en) * 1990-12-20 1992-07-09 Marley Building Materials Limited Fibre-reinforced materials
DE4327074A1 (en) * 1993-08-12 1995-02-16 Dennert Kg Veit Process for producing a mineral lightweight insulation board

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 88, no. 8, 20 February 1978, Columbus, Ohio, US; abstract no. 54363f *
CHEMICAL ABSTRACTS, vol. 95, no. 6, 10 August 1981, Columbus, Ohio, US; abstract no. 47966w *
DATABASE WPI Section Ch Week 8748, Derwent World Patents Index; Class L02, AN 87-337804 *

Also Published As

Publication number Publication date
DE4418310A1 (en) 1995-11-30

Similar Documents

Publication Publication Date Title
DE3414967A1 (en) LIGHT CERAMIC MATERIAL FOR CONSTRUCTION PURPOSES, METHOD FOR THE PRODUCTION AND USE THEREOF
EP2371783A1 (en) Porous concrete moulded part and method for its manufacture
EP2163534B1 (en) Porous concrete material and method for production of same
EP3945083B1 (en) Lime sand moulding and method for the production of same
DE102007062492B4 (en) Process for the production of a cementitious shaped block and manufactured molded block
DE4308655C2 (en) Silicate concrete in the form of a preformed component
WO1995032928A1 (en) Method of producing foam-mortar products
DE3117662A1 (en) Production of gypsum stone and gypsum sandstone
DE2021532A1 (en) Mold making material for the production of working molds for the ceramic industry
EP0026945B1 (en) Method and device for lining hollow shaped parts on the interior
DE2718469A1 (en) CERAMIC INSULATION STONES
CH631144A5 (en) LIME-SILICONE MIXTURE AND METHOD FOR THE PRODUCTION OF STEAM-HARDENED BUILDING MATERIALS.
EP0208070B1 (en) Process for producing construction materials from combustion residues
DE10131361B4 (en) Process for the production of aerated concrete
DE602005005172T2 (en) USE OF NEW FAST-HARDENING MORTARS FOR MANUFACTURING PRODUCTS THROUGH CASTING IN FOUNDRY TINS
AT372062B (en) FIRE-RESISTANT CERAMIC INSULATION STONES
DE1271679B (en) Process for the production of porous granules
DE2617218A1 (en) Rapidly setting high-strength concrete - contg. Portland cement, alumina cement and lime
DE3346120A1 (en) FLOWED PERLITE
DE3304033A1 (en) Lightweight building material and a process for the manufacture thereof
DE651404C (en) Process for the production of cement or concrete products
DE638698C (en) Process for the production of high-pore artificial stone masses
DE3709374A1 (en) Porous lightweight concrete
DE2430914A1 (en) Refractory concrete compsn. - contg. crude kaolin, clay, sand, refractory filler and cement
AT153813B (en) Process for the production of stone masses with a highly porous structure.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): PL

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase