WO1995031928A1 - Transcutane, unblutige konzentrationsbestimmung von substanzen im blut - Google Patents

Transcutane, unblutige konzentrationsbestimmung von substanzen im blut Download PDF

Info

Publication number
WO1995031928A1
WO1995031928A1 PCT/DE1995/000664 DE9500664W WO9531928A1 WO 1995031928 A1 WO1995031928 A1 WO 1995031928A1 DE 9500664 W DE9500664 W DE 9500664W WO 9531928 A1 WO9531928 A1 WO 9531928A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentration
determination
blood
water
determined
Prior art date
Application number
PCT/DE1995/000664
Other languages
English (en)
French (fr)
Inventor
Hermann KÜNST
Original Assignee
Kuenst Hermann
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuenst Hermann filed Critical Kuenst Hermann
Priority to US08/737,585 priority Critical patent/US5836317A/en
Publication of WO1995031928A1 publication Critical patent/WO1995031928A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement

Definitions

  • the invention relates to a method according to the preamble of claim 1.
  • a non-invasive procedure reduces the burden on the diabetic, improves the setting accuracy of the blood sugar level to prevent late damage, in particular by the possibility of continuous recording of the blood sugar concentration, enables the investigation of dynamic metabolic processes and the development of an artificial pancreas through development a control circuit for a blood sugar insulin pump.
  • the known methods also measure the total glucose content in the measurement area (blood, skin, tissue, bone) of a region of the body. Dynamic changes in the concentration in the blood can only be determined as a rule.
  • US Pat. No. 5,101,825 describes a method in which an amount of a substance of interest is measured in parallel with the measurement of a reference volume.
  • Drugs or the like to measure completely bloodless in vivo in the patient's blood with higher accuracy.
  • the concentration of the substance in the water is determined by forming the ratio of the measured signals for the amount of substance and water and from this the concentration value in the blood is calculated.
  • the determination of the water and glucose content is therefore very simple, although the determination of the absolute values for both components is not necessary. This would again require a bloody calibration measurement. With the procedure according to the invention, it is sufficient to determine the ratio of glucose or another substance contained to water. A molecule determines the specific properties, and the number of the respective molecules determines the strength of the action of this substance. The number of water molecules determined thus serves as a reference value for determining the concentration.
  • the signal determination is preferably carried out in a characteristic wavelength range of the spectrum.
  • the procedure is such that the characteristic absorption frequencies of the substance are first determined empirically and then a signal is generated at these frequencies using a spectoscopic method. This applies to both the substance (e.g. glucose) and water.
  • substance-in-water reference spectra can also be determined and compared.
  • substance / water spectra are recorded at different concentrations and then compared with the determined ones.
  • This method which works according to the principle of pattern recognition, has the advantage that the concentration of the substance to be determined can be determined with high accuracy even when there is noise and the presence of additional substances.
  • the concentration of the substance is first determined using a reference molecule. Water is selected because it has a high, relatively stable proportion of 85% ⁇ 2.4% in the blood. The water value is then converted to 100% to determine the blood value. It has been shown that the error that occurs as a result is negligible. The process flow is explained in more detail below using the example of glucose and the embodiment according to claim 2.
  • Fig. 1 shows the change in blood flow in the index finger compared to the electrocardiogram (EKG). The molecules are measured at maximum (point B) and minimal (point A) blood fraction.
  • Fig. 2 shows the relationships in the measuring volume.
  • Herein means 1) measurement volume, 2) skin, 3) blood vessels and 4) tissue.
  • NG GL (A) Number of glucose molecules in the tissue at diastole
  • Nuclear magnetic resonance spectroscopy can be used.
  • the selective measurement of the molecules, e.g. in the infrared range is associated with some effort due to the overlapping wide absorption bands.
  • the molecules can be recognized in nuclear magnetic resonance spectroscopy due to the chemical shift of the nucleus bound in a molecule.
  • the area below the resonance curve is proportional to the number of nuclei or molecules, and the measured values which can be processed in accordance with equation (9) can be traced back to the measurement of the area differences.
  • FIG. 3 shows the 1 H-NMR spectra of a sugar mixture in water.
  • the sensitivity of nuclear magnetic resonance spectroscopy can be increased several times by optical pumping with a light source with a suitable wavelength.
  • known methods from measured value processing such as digital filtering, Fourier analysis, correlation analysis, multiple summing to improve the signal / noise can be used for the same purpose. Ratio can be used.
  • the sensitivity of the concentration determination is mainly influenced positively by the metrological recording and processing of differences alone.
  • a connection with the EKG signal or another sum signal proportional to the blood volume has an advantageous effect in order to further increase the sensitivity.
  • several measurement methods can be used in combination.

Abstract

Die Erfindung betrifft eine transcutane, unblutige In-vivo-Konzentrationsbestimmung von im Patientenblut zu bestimmenden Substanzen, wie Glucose, Lactat, Cholesterin, Alkohol, Drogen oder dergleichen, bei der a) ein der Menge einer Substanz und der Wassermenge einer gegebenen Körperregion entsprechendes Signal, das mittels spektroskopischer Methoden erzeugt wird, gemessen wird, b) die Konzentration im Wasser durch Verhältnisbildung des Signalwertes der Substanz- und Wassermenge ermittelt wird, und c) hieraus der Konzentrationswert errechnet wird.

Description

Transcutane, unblutige Konzentrationsbestimmung von Substanzen im Blut
Die Erfindung betrifft ein Verfahren nach dem Oberbe¬ griff des Anspruchs l.
Die Zahl der beispielsweise an Diabetes erkrankten
Personen, insbesondere in hochindustrialisierten Län¬ dern, ist außerordentlich hoch und weist steigende Tendenz auf. Neueste Schätzungen gehen davon aus, daß in der Bundesrepublik Deutschland 4 Millionen Men- sehen erkrankt sind.
Die Behandlung dieser Stoffwechselkrankheit erfordert ständige Kontrolle und Messung des Blutzuckergehal¬ tes. Abweichungen von der Norm führen zu den bekann- ten Spätschäden, deren Ergebnis z.B. Blindheit oder Amputation ist. Die z.Zt. verfügbaren Meßmethoden sind invasiv, d.h. sie erfordern die Entnahme von Blut und damit eine Verletzung des Patienten. Eine nichtinvasive, d.h. verletzungsfreie Blutzuckermessung besitzt dagegen eine Reihe von Vorteilen, die mit den bekannten Ver¬ fahren und Methoden nicht erreicht werden können.
Nichtinvasives Vorgehen verringert dagegen die Bela¬ stung des Diabetikers, verbessert die Einstellgenau- igkeit des Blutzuckerspiegels zur Vorbeugung gegen Spätschäden, insbesondere durch die Möglichkeit der kontinuierlichen Aufzeichnung der Blutzuckerkonzen¬ tration, ermöglicht die Untersuchung dynamischer Stoffwechselprozesse und der Entwicklung einer künst- liehen Pankreas durch Aufbau eines Regelkreises für eine Blutzucker-Insulinpumpe.
Bisher wurden verschiedene Methoden in Betracht gezo¬ gen, die auf chemische, biologische und physikalische Verfahren bzw. Prinzipien zurückzuführen sind.
So wird bei einer aus der US 5,137,023 bekannten Lö¬ sung eine zunächst unbestimmte Glucosemenge gemessen, indem die Absorptionsdifferenz bei einer bestimmten Wellenlänge ermittelt wird. Die Zuordnung dieses Me߬ wertes zu einer entsprechenden Glucosekonzentration im Blut muß jedoch nach wie vor für jeden Patienten mit einer Eichmessung durchgeführt werden, wobei die Eichprobe selbstverständlich blutig entnommen wird. Vorausgesetzt wird hierbei, daß sich die Verhältnisse am Meßort bzw. im Meßareal nicht verändern. Tempera¬ turänderungen und Änderung der Probendicke (z.B. Fin¬ gerkuppe, Ohrläppchen) können zu Abweichungen von der Eichung führen und so den Meßfehler vergrößern. Änderungen im Meßareal, die ebenfalls zur Erhöhung des Meßfehlers führen, sind auf äußere physiologische Einflüsse auf den Patienten, wie Streß, Ärger, sport¬ liche Betätigung, zurückzuführen. Dem wird teilweise mit solche Einflüsse (Probendicke, Temperaturmessung) berücksichtigenden Korrekturwerten begegnet.
Mit den bekannten Verfahren wird außerdem der gesamte Glucoseanteil im Meßareal (Blut, Haut, Gewebe, Kno- chen) einer Körperregion gemessen. Dynamische Verän¬ derungen der Konzentration im Blut sind nur tenden¬ ziell ermittelbar.
In der US 5,101,825 ist ein Verfahren beschrieben, bei dem eine Menge einer interessierenden Substanz parallel zur Messung eines Referenzvolumens gemessen wird.
Die Genauigkeit der bekannten Verfahren führt mit den genannten Nachteilen dazu, daß trotz erheblicher Auf¬ wendungen im Forschungsbereich keine Möglichkeit der vollständigen nichtinvasiven in-vivo Blutzuckermes- sung zur Verfügung gestellt worden ist. So kann bei¬ spielsweise eine Regelung in Abhängigkeit der ge es- senen Glucosekonzentration des mit einer Pumpe zu¬ führbaren Insulins nicht genau genug erfolgen.
Es ist daher Aufgabe der Erfindung, eine Möglichkeit zu schaffen, die Konzentration von Substanzen, wie Glucose, Lactat, Blutzucker, Cholesterin, Alkohol,
Drogen oder dergleichen, vollständig unblutig in-vivo im Patientenblut mit höherer Genauigkeit zu messen.
Erfindungsgemäß wird diese Aufgabe durch die im kenn- zeichnenden Teil des Anspruchs 1 genannten Merkmale gelöst. Vorteilhafte Ausgestaltungen und Weiterbil¬ dungen ergeben sich bei Verwendung der in den unter¬ geordneten Ansprüchen enthaltenen Merkmale.
Mit Hilfe bekannter spektroskopischer Methoden gemes¬ sene Signale, der Menge einer Substanz und der Menge des Wassers, die in einem gegebenen Gewebebereich sind, wird die Konzentration der Substanz im Wasser durch die Bildung des Verhältnisses der gemessenen Signale für die Substanz- und Wassermenge ermittelt und daraus der Konzentrationswert im Blut berechnet.
Die Bestimmung des Wasser- und des Glucoseanteils ist dadurch sehr einfach, wobei die Ermittlung der abso- luten Werte für beide Bestandteile nicht erforderlich ist. Dieses würde wieder eine blutige Eichmessung erforderlich machen. Mit dem erfindungsgemäßen Vorge¬ hen genügt die Bestimmung des Verhältnisses Glucose bzw. einer anderen enthaltenen Substanz zu Wasser. Ein Molekül bestimmt die spezifischen Eigenschaften, und die Anzahl der jeweiligen Moleküle bestimmt die Stärke der Wirkung dieser Substanz. Die Anzahl der ermittelten Wassermoleküle dient so als Referenzwert für die Konzentrationsbestimmung.
Vorteilhaft ist es, die Signalwerte für die Menge der Substanz und der Wassermenge zum Zeitpunkt der Systo- le und der Diastole zu messen und die Differenz bei¬ der Meßwerte zur Verhältnisbildung heranzuziehen. Da die Messung in einem beliebigen Gewebebereich er¬ folgt, kann durch die Differenzbildung aus den systo- lischen und diastolischen Signalwerten eine mögliche Beeinflussung des Meßwertes durch den umgebenden Ge¬ webebereich ausgeschlossen werden. Die Auεführungs- form ist deshalb bevorzugt, weil sie die Ermittlung der exakten Werte allein in Wasser ermöglicht. Dieses erfindungsgemäße Verfahren kann deshalb an einer Stelle des Körpers durchgeführt werden, an der eine zeitliche Änderung der Blutmenge vorliegt. Dies ist z.B. an der Fingerguppe, dem Ohrläppchen oder an oberflächigen Blutadern der Fall.
Die Signalermittlung wird bevorzugt in einem charak¬ teristischen Wellenlängenbereich des Spektrums vor- genommen. Es wird dabei so vorgegangen, daß die cha¬ rakterische Absorptionsfrequenzen der Substanz zuerst empirisch ermittelt und dann bei diesen Frequenzen ein Signal mittels einer spektoskopischen Methode erzeugt wird. Dies gilt sowohl für die Substanz (z.B. Glucose) und Wasser.
Es können aber auch Substanz-in-Wasser-Referenzspek- tren ermittelt und verglichen werden. Dazu werden Substanz/Wasser-Spektren bei verschiedener Konzentra- tion aufgenommen und dann mit den ermittelten vergli¬ chen.
Diese nach dem Prinzip der Mustererkennung arbeitende Methode hat den Vorteil, daß die Konzentration der zu bestimmenden Substanz auch bei auftretendem Rauschen und der Anwesenheit zusätzlicher Substanzen mit hoher Genauigkeit bestimmt werden kann.
Erfindungsgemäß wird zuerst die Konzentration der Substanz mit einem Referenzmolekül ermittelt. Dabei wird Wasser ausgewählt, da es einen hohen, relativ stabilen Anteil von 85% ± 2,4% im Blut hat. Zur Er¬ mittlung des Blutwertes wird dann der Wasserwert auf 100 % umgerechnet. Es hat sich gezeigt, daß der hier- durch auftretende Fehler vernachlässigbar klein ist. Im folgenden wird der Verfahrensablauf näher erläu¬ tert am Beispiel der Glucose und der Ausführungsform nach Anspruch 2.
Fig. 1 zeigt die Durchblutungsänderung im Zeigefinger im Vergleich zum Elektrokardiogramm (EKG) . Gemessen werden die Moleküle bei maximalem (Punkt B) und mini¬ malem (Punkt A) Blutanteil.
Fig. 2 zeigt die Verhältnisse im Meßvolumen. Hierin bedeutet 1) Meßvolumen, 2) Haut, 3) Blutgefäße und 4) Gewebe.
Es gelten folgende Zuordnungen:
NB,GL(A) Anzahl der Glucosemoleküle im Blut bei der
Diastole; NB,GL(B) Anzahl der Glucosemoleküle im Blut bei der
Systole; NB,W(A) Anzahl der Wassermoleküle im Blut bei der
Diastole; NB,W(B) Anzahl der Wassermoleküle im Blut bei der
Systole; NG,GL(A) Anzahl der Glucosemoleküle im Gewebe bei der Diastole;
NG,GL(B) Anzahl der Glucosemoleküle im Gewebe bei der Systole; NG,W(A) Anzahl der Wassermoleküle im Gewebe bei der
Diastole und NG,W(B) Anzahl der Wassermoleküle im Gewebe bei der
Systole.
Mit
C= KB*NB,GL(A)/NB,W(A) = KB * NB,GL(B) /NB,W(B) (1) kann die Glucosekonzentration bestimmt werden, da die Konzentration im Maximum und Minimum des Blutanteiles (Systole, Diastole) konstant ist, wobei KB ein Kor¬ rekturfaktor ist, der den prozentualen Anteil des Wassers im Blut berücksichtigt.
Daraus folgt die Anzahl der Glucosemoleküle im Meßvo¬ lumen zum Zeitpunkt A mit N,GL(A) = NB,GL(A) + NG,GL(A) (2) und die Anzahl der Wassermoleküle mit N,W(A) = NB,W(A) + NG,W(A) (3)
Analog werden die Werte im Zeitpunkt B bestimmt: N,GL(B) = NB,GL(B) + NG,GL(B) (4) als Gesamtzahl der Glucosemoleküle und N,W(B) = NB,W(B) .+ NG,W(B) (5) als Gesamtzahl der Wassermoleküle.
Die Anzahl der jeweiligen Moleküle bleibt im Gewebe unabhängig vom Zeitpunkt A und B konstant. Im Blut verändert sie sich jedoch zwischen diesen beiden Zu¬ ständen, und es gilt mit den Gleichungen (1) und (2)
N,GL(A) - N,GL(B) = NB,GL(A) - NB,GL(B) (6) und dazu analog aus Gleichung (3) und (5) N,W(A) - N,W(B) = NB,W(A) - NB,W(B) (7).
Durch Einsetzen von Gleichung (1) in Gleichung (6) wird
N,GL(A) - N,GL(B) = c/KB * (NB,W(A) - NB,W(B)) (8), und die Division durch Gleichung (7) ergibt
(N,GL(A) - N,GL(B)) / (N,W(A) - N,W(B)) = C/KB bzw.
C = KB * (N,GL(A)-N,GL(B))/(N,W(A)-N,W(B)) (9). Dadurch ist eine Bestimmung der Glucosekonzentration allein mit maximal vier Messungen möglich, und der Einfluß von Störgrößen, wie beispielsweise mögliche Veränderungen am Gewebe, sind ausgeschlossen.
Wenn die Meßwerte der interessierenden Glucose- und Wassermoleküle entsprechend für eine Auswertung nach Gleichung (9) selektiert gemessen werden, können ver¬ schiedene Meßverfahren eingesetzt werden. So kann die Infrarot-Spektroskopie, Ramann-Spektroskopie oder
Kernresonanz-Spektroskopie verwendet werden. Die se¬ lektive Messung der Moleküle, z.B. im Infrarotbe¬ reich, ist aufgrund der sich überlappenden breiten Absorptionsbanden mit einigem Aufwand verbunden.
Die Moleküle können bei der Kernresonanz-Spektrosko- pie aufgrund der chemischen Verschiebung des in einem Molekül gebundenen Kernes erkannt werden. Die Fläche unterhalb der Resonanzkurve ist dagegen proportional zur Anzahl der Kerne bzw. Moleküle, und die entspre¬ chend der Gleichung (9) verarbeitbaren Meßwerte kön¬ nen auf die Messung der Flächendifferenzen zurückge¬ führt werden.
In Fig. 3 sind die lH-NMR-Spektren eines Zuckergemi¬ sches in Wasser dargestellt. Die mit Gl und G2 ge¬ kennzeichneten Linien der Glucose unterscheiden sich, wie auch die Wasserlinie, deutlich von den anderen. Die Empfindlichkeit der Kernresonanz-Spektroskopie kann durch optisches Pumpen mit einer Lichtquelle mit geeigneter Wellenlänge um ein Mehrfaches erhöht wer¬ den. Daneben können zum gleichen Zweck bekannte Me¬ thoden aus der Meßwertverarbeitung wie digitale Fil¬ terung, Fourieranalyse, Korrelationsanalyse, Mehr- fachsummierung zur Verbesserung des Signal/Rausch- Verhältnisses verwendet werden. Die Empfindlichkeit der Konzentrationsbestimmung wird aber hauptsächlich durch die alleinige meßtechnische Erfassung und Ver¬ arbeitung von Differenzen positiv beeinflußt.
Vorteilhaft wirkt sich eine Verbindung mit dem EKG- Signal oder einem anderen zum Blutvolumen proportio¬ nalen Summensignal aus, um die Empfindlichkeit weiter zu erhöhen. Daneben können auch mehrere Meßverfahren in Kombination eingesetzt werden.

Claims

Patentansprüche
1. Transcutane, unblutige In-vivo-Konzentrations- bestimmung von im Patientenblut zu bestimmenden Substanzen, wie Glucose, Lactat, Blutzucker, Cholesterin, Alkohol, Drogen oder dergleichen, dadurch g e k e n n z e i c h n e t , daß a) ein der Menge einer Substanz und der Was¬ sermenge einer gegebenen Körperregion ent¬ sprechendes Signal, das mittels spektrosko- pischer Methoden erzeugt wird, gemessen wird, b) die Konzentration im Wasser durch Verhält¬ nisbildung des Signalwertes der Substanz- und Wassermenge ermittelt wird, und c) hieraus der Blutkonzentrationswert errech¬ net wird.
2. Konzentrationsbestimmung nach Anspruch 1, dadurch gekennzeichnet, daß bei Verfahrens- schritt a) sowohl zum Zeitpunkt der Systole und der Diastole gemessen und aus den diastolischen und systolischen Signalwerten die Differenz ge¬ bildet wird.
3. Konzentrationsbestimmung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Signalermittlung mittels charakteristischer Absorptionsfrequenzen erfolgt.
4. Konzentrationsbestimmung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Signalermittlung mittels Mustererkennung erfolgt.
5. Konzentrationsbestimmung nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß mit Methoden der IR- Spektroskopie gearbeitet wird.
6. Konzentrationsbestimmung nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß mit Methoden der Raman-Spektroskopie gearbeitet wird.
7. Konzentrationsbestimmung nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß mit Methoden der Kernresonanz-Spektroskopie gearbeitet wird.
8. Konzentrationsbestimmung nach mindestens einem der Ansprüche 1 bis , dadurch gekennzeichnet, daß als Meßort eine Stelle mit pulsierender Blutmenge gewählt wird.
9. Konzentrationsbestimmung nach Anspruch 8, dadurch gekennzeichnet, daß als Meßort eine
Fingerkuppe, ein Ohrläppchen oder eine Blutader gewählt wird.
PCT/DE1995/000664 1994-05-20 1995-05-19 Transcutane, unblutige konzentrationsbestimmung von substanzen im blut WO1995031928A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/737,585 US5836317A (en) 1994-05-20 1995-05-19 Transcutaneous non-bloody determination of the concentration of substances in the blood

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4417849 1994-05-20
DEP4417849.2 1994-05-20

Publications (1)

Publication Number Publication Date
WO1995031928A1 true WO1995031928A1 (de) 1995-11-30

Family

ID=6518675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1995/000664 WO1995031928A1 (de) 1994-05-20 1995-05-19 Transcutane, unblutige konzentrationsbestimmung von substanzen im blut

Country Status (3)

Country Link
US (1) US5836317A (de)
DE (1) DE19518511C2 (de)
WO (1) WO1995031928A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2465817C1 (ru) * 2011-06-17 2012-11-10 Артур Джагафарович Эльбаев Способ неинвазивного определения концентрации холестерина в крови

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE225142T1 (de) * 1998-07-07 2002-10-15 Lightouch Medical Inc Verfahren zur gewebemodulation für die quantitative nichtinvasive in vivo spektroskopische analyse von gewebe
US6442411B1 (en) * 1999-04-21 2002-08-27 Optix, Lp Method for improving calibration of an instrument for non-invasively measuring constituents in arterial blood
DE19937699C1 (de) * 1999-08-10 2001-11-22 Ges Foerderung Spektrochemie Verfahren und Vorrichtung zur nichtinvasiven Messung von Blutbestandteilen und klinischen Parametern
US20040023293A1 (en) * 1999-09-27 2004-02-05 Kreimer David I. Biochips for characterizing biological processes
US20020132371A1 (en) * 1999-09-27 2002-09-19 Kreimer David I. Amplification of analyte detection by substrates having particle structures with receptors
US20030232388A1 (en) * 1999-09-27 2003-12-18 Kreimer David I. Beads having identifiable Raman markers
US20090059203A1 (en) * 2000-03-17 2009-03-05 Wei-Kung Wang Apparatus For Measuring Concentration of a Specific Ingredient In-Situ
US7389132B2 (en) * 2000-03-17 2008-06-17 Wei-Kung Wang Mold-in method and apparatus
US20140364708A1 (en) * 2000-03-17 2014-12-11 Wei-Kung Wang Apparatus for enhancing the mold-in algorithm
DE10027100C2 (de) * 2000-05-31 2002-08-08 Klaus Mueller-Dethlefs Verfahren und Vorrichtung zum Nachweisen von Substanzen in Körperflüssigkeiten
AU2001273412A1 (en) * 2000-07-11 2002-01-21 Lightouch Medical, Inc. Method of tissue modulation for noninvasive measurement of an analyte
AU2002236779A1 (en) * 2001-01-19 2002-07-30 General Instrument Corporation Voice menu controlled self-diagnostic method
US6707548B2 (en) 2001-02-08 2004-03-16 Array Bioscience Corporation Systems and methods for filter based spectrographic analysis
US20020151041A1 (en) * 2001-03-15 2002-10-17 Kreimer David I. Enhancing surfaces for analyte detection
DE10119527A1 (de) * 2001-04-12 2002-11-07 Sitec Sensortechnik Gmbh Verfahren zur mobilen oder stationären Erfassung von Körperfunktions- und Stoffwechseldaten eines lebenden Körpers und Einrichtung zur Durchführung des Verfahrens
DE10151238A1 (de) 2001-10-17 2003-04-30 Autokuehler Gmbh & Co Kg Kältemittel/Luft-Wärmeaustauschernetz
AU2002346486A1 (en) * 2001-11-21 2003-06-10 James R. Braig Method for adjusting a blood analyte measurement
US7011631B2 (en) * 2003-01-21 2006-03-14 Hemonix, Inc. Noninvasive method of measuring blood density and hematocrit
US7266401B2 (en) * 2003-08-22 2007-09-04 C8 Medisensors Inc. Measuring analytes from an electromagnetic spectrum using a wavelength router
US7722537B2 (en) 2005-02-14 2010-05-25 Optiscan Biomedical Corp. Method and apparatus for detection of multiple analytes
US7330746B2 (en) * 2005-06-07 2008-02-12 Chem Image Corporation Non-invasive biochemical analysis
US7330747B2 (en) * 2005-06-07 2008-02-12 Chemimage Corporation Invasive chemometry
US8597190B2 (en) 2007-05-18 2013-12-03 Optiscan Biomedical Corporation Monitoring systems and methods with fast initialization
EP3156796A1 (de) 2010-06-09 2017-04-19 Optiscan Biomedical Corporation Messung von analyten in einer flüssigkeitsprobe aus einem patienten
KR20130129168A (ko) 2010-06-22 2013-11-27 센스펙 게엠베하 측정 매체의 성분 또는 특성, 특히 물리적 혈액 값의 확인 및 모니터링 장치 및 방법
EP3244793A1 (de) * 2015-02-11 2017-11-22 Siemens Aktiengesellschaft Anordnung und verfahren zur nicht-invasiven untersuchung von zumindest teilen der blutbestandteile und verwendung der anordnung

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4655225A (en) * 1985-04-18 1987-04-07 Kurabo Industries Ltd. Spectrophotometric method and apparatus for the non-invasive
EP0404562A2 (de) * 1989-06-21 1990-12-27 University Of New Mexico Verfahren und Vorrichtung zur Bestimmung der Ähnlichkeit eines biologischen Analyts, ausgehend von einem aus bekannten biologischen Fluiden hergestellten Modell
WO1991015991A1 (en) * 1990-04-19 1991-10-31 Worcester Polytechnic Institute Method and apparatus for monitoring blood analytes noninvasively by pulsatile photoplethysmography
DE4128458A1 (de) * 1991-08-28 1993-03-04 Siemens Ag Verfahren und vorrichtung zur quantitativen bestimmung optisch aktiver substanzen
WO1993012712A1 (en) * 1991-12-31 1993-07-08 Vivascan Corporation Blood constituent determination based on differential spectral analysis
US5285782A (en) * 1992-01-17 1994-02-15 Physio-Control Corporation Method and apparatus for improving the accuracy of pulse transmittance oximeter
US5313941A (en) * 1993-01-28 1994-05-24 Braig James R Noninvasive pulsed infrared spectrophotometer

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0827235B2 (ja) * 1987-11-17 1996-03-21 倉敷紡績株式会社 糖類濃度の分光学的測定法
US4882492A (en) * 1988-01-19 1989-11-21 Biotronics Associates, Inc. Non-invasive near infrared measurement of blood analyte concentrations
US5101825A (en) * 1988-10-28 1992-04-07 Blackbox, Inc. Method for noninvasive intermittent and/or continuous hemoglobin, arterial oxygen content, and hematocrit determination
US5178142A (en) * 1989-05-23 1993-01-12 Vivascan Corporation Electromagnetic method and apparatus to measure constituents of human or animal tissue
US5183042A (en) * 1989-05-23 1993-02-02 Vivascan Corporation Electromagnetic method and apparatus to measure constituents of human or animal tissue
US5139023A (en) * 1989-06-02 1992-08-18 Theratech Inc. Apparatus and method for noninvasive blood glucose monitoring
US5526808A (en) * 1990-10-04 1996-06-18 Microcor, Inc. Method and apparatus for noninvasively determining hematocrit
DK95792A (da) * 1992-07-24 1994-01-25 Radiometer As Sensor til non-invasiv, in vivo bestemmelse af en analyt og blodgennemstrømning
DE4242083C2 (de) * 1992-12-14 1995-07-20 Marbach Hermann Dipl Ing Sensorvorrichtung zur reproduzierbaren, nichtinvasiven Messung der Blutglucose
DE4242232C2 (de) * 1992-12-15 1998-12-10 Burkhard Kuhls Vorrichtung und Verfahren zur nicht-invasiven Konzentrationsbestimmung polarisierender Stoffe im menschlichen Körper
US5598842A (en) * 1993-09-03 1997-02-04 Toa Medical Electronics Co., Ltd. Non-invasive blood analyzer and method using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4655225A (en) * 1985-04-18 1987-04-07 Kurabo Industries Ltd. Spectrophotometric method and apparatus for the non-invasive
EP0404562A2 (de) * 1989-06-21 1990-12-27 University Of New Mexico Verfahren und Vorrichtung zur Bestimmung der Ähnlichkeit eines biologischen Analyts, ausgehend von einem aus bekannten biologischen Fluiden hergestellten Modell
WO1991015991A1 (en) * 1990-04-19 1991-10-31 Worcester Polytechnic Institute Method and apparatus for monitoring blood analytes noninvasively by pulsatile photoplethysmography
US5137023A (en) * 1990-04-19 1992-08-11 Worcester Polytechnic Institute Method and apparatus for monitoring blood analytes noninvasively by pulsatile photoplethysmography
DE4128458A1 (de) * 1991-08-28 1993-03-04 Siemens Ag Verfahren und vorrichtung zur quantitativen bestimmung optisch aktiver substanzen
WO1993012712A1 (en) * 1991-12-31 1993-07-08 Vivascan Corporation Blood constituent determination based on differential spectral analysis
US5285782A (en) * 1992-01-17 1994-02-15 Physio-Control Corporation Method and apparatus for improving the accuracy of pulse transmittance oximeter
US5313941A (en) * 1993-01-28 1994-05-24 Braig James R Noninvasive pulsed infrared spectrophotometer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2465817C1 (ru) * 2011-06-17 2012-11-10 Артур Джагафарович Эльбаев Способ неинвазивного определения концентрации холестерина в крови

Also Published As

Publication number Publication date
DE19518511A1 (de) 1995-11-23
DE19518511C2 (de) 1998-04-02
US5836317A (en) 1998-11-17

Similar Documents

Publication Publication Date Title
DE19518511C2 (de) Verfahren zur transcutanen, unblutigen In-vivo-Konzentrationsbestimmung von Substanzen im Blut
EP0637932B1 (de) Vorrichtung zum bestimmen des füllungszustandes eines blutkreislaufs
DE60031427T2 (de) Verfahren zum kalibrieren einer spektroskopievorrichtung
DE69934888T2 (de) Nichtinvasive optische messung eines blutbestandteiles
DE69829621T2 (de) Verfahren und Gerät zur Unterdrückung von Artefakten in physiologischen Signalen
DE3807672C2 (de)
DE602004000513T2 (de) System zur Spektroskopieanalyse von Blutkomponenten und zum Beseitigen von abnormalen Daten
DE69630932T2 (de) Verfahren und Vorrichtung zur Bestimmung von Arterienblutdruckwellenform eines Armes auf der Basis von unblutigen Messungen einer Fingerblutdruckwellenform
DE102006054556A1 (de) Vorrichtung und Verfahren zum nicht-invasiven, optischen Erfassen von chemischen und physikalischen Blutwerten und Körperinhaltsstoffen
EP1518495A1 (de) Verfahren und Gerät zur laufenden Überwachung der Konzentration eines Analyten
EP0505918B1 (de) Vorrichtung und Verfahren zur Ermittlung des Herzzeitvolumens
EP1673009A1 (de) Blutdruck-messverfahren und blutdruckmessgerät
EP1182968A1 (de) Verfahren und vorrichtung zur messung des organisationsgrades von wasser in menschlichen und tierischen körpern
EP3316768B1 (de) Vorrichtung und verfahren zur überwachung und messung des autoregulationsmechanismus des blutdrucks bei einem lebewesen
DE4238641C2 (de) Vorrichtung und Arbeitsverfahren zum Bestimmen und Auswerten des physiologischen Zustandes von Gefäßsystemen
EP1793321B1 (de) Auswerteverfahren und Untersuchungssystem eines Analyten im Körperflüssigkeit eines Menschen oder Tieres
WO2011022851A1 (de) Verfahren zur eichung einer diagnostischen messvorrichtung
DE202007019341U1 (de) Vorrichtung zur nicht invasiven Messung des Blutzuckers
DE19629342C2 (de) Verfahren und Anordnung zur nicht-invasiven, transkutanen Bestimmung von Stoffkonzentrationen in Körpergeweben
DE2405348A1 (de) Verfahren und vorrichtung zur direkten messung eines mikrokreislaufsystems
EP0359972B1 (de) Vorrichtung zur optoelektronischen nichtinvasiven Erfassung der Durchflussparameter in menschlichen Extremitäten
DE102010009044A1 (de) Verfahren und Vorrichtung zur kontinuierlichen Blutdruckmessung
EP0984718B1 (de) Messgerät zur Ermittlung des Konzentrationsgehaltes von in Flüssigkeit enthaltenen Substanzen mittels einem ATR Element.
DE19937699C1 (de) Verfahren und Vorrichtung zur nichtinvasiven Messung von Blutbestandteilen und klinischen Parametern
EP0913120A1 (de) Vorrichtung und Verfahren zur nichtinvasiven Messung von Kreislauf-Parametern

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08737585

Country of ref document: US

122 Ep: pct application non-entry in european phase