WO1995025973A1 - Method of production of reflecting waveguide device - Google Patents

Method of production of reflecting waveguide device Download PDF

Info

Publication number
WO1995025973A1
WO1995025973A1 PCT/JP1995/000472 JP9500472W WO9525973A1 WO 1995025973 A1 WO1995025973 A1 WO 1995025973A1 JP 9500472 W JP9500472 W JP 9500472W WO 9525973 A1 WO9525973 A1 WO 9525973A1
Authority
WO
WIPO (PCT)
Prior art keywords
bent
waveguide
pattern
planar pattern
forming
Prior art date
Application number
PCT/JP1995/000472
Other languages
French (fr)
Japanese (ja)
Inventor
Akira Mugino
Yoshiyuki Kamata
Hisaharu Yanagawa
Original Assignee
The Furukawa Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Furukawa Electric Co., Ltd. filed Critical The Furukawa Electric Co., Ltd.
Publication of WO1995025973A1 publication Critical patent/WO1995025973A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections

Definitions

  • the present invention relates to a method of manufacturing a reflective waveguide device having a bent waveguide on a predetermined device substrate and a reflective portion at the bent portion by applying a photolithography technology and a dry etching technology.
  • the present invention relates to a method of manufacturing a reflective waveguide element which can realize low reflection loss regardless of the order of the step of forming the bent waveguide and the step of forming the reflection section, and which has a high degree of freedom in the manufacturing process.
  • an element substrate formed by laminating thin layers made of a dielectric or a compound semiconductor has an angle ⁇ .
  • the bend waveguide that bends at 0 ° ⁇ ⁇ 180 ° and a part of the corner of the bend of the bend waveguide are cut off, and the cut surface is used as a reflective surface. And a reflecting portion which is formed.
  • the following method is known as a method for manufacturing such a reflective waveguide device.
  • a paper published in Sep., 1992 discloses a method in which a reflective portion is first formed on an element substrate by applying dry etching technology, and then a bent waveguide is formed.
  • a general manufacturing method of a reflection type waveguide device will be described with reference to the drawings.
  • a substrate 1 a composed of n-type GaAs
  • a buffer layer 1 b composed of n-type GaAs and a lower cladding layer lc composed of n-type GaAs.
  • the core layer 1 d composed of n-type GaAs
  • the upper cladding layer 1 e composed of n-type Al GaAs
  • the cap layer 1 f composed of n-type GaAs
  • the elements stacked in this order by a film forming method such as the CVD method are prepared as the element substrate 1 (Fig. 1).
  • the material constituting the element substrate 1 is, for example, In P / G a I n in addition to the above-mentioned G a As / A 1 G a As system. Asp-based compound semiconductors and the like are sometimes used. Further, a dielectric material such as quartz or LiNbOs formed on the Si substrate by a flame deposition method may be used. Then, as shown in FIG. 2, by applying a photolithography technique on the cap layer 1f, the plane pattern of the resist mask 2a having the same plane pattern as the bent waveguide to be formed is formed. To form In FIG. 2, the planar pattern of the resist mask 2a is a bent portion whose corner is bent at a right angle.
  • the part excluding the part covered with the resist mask 2a is removed.
  • a part of the cladding layer 1e is partially removed by etching to a predetermined depth, and thereafter, the resist mask 2a is removed by a remover or oxygen plasma.
  • a resist mask 2b is formed on the exposed surface of the upper cladding layer 1e and the bent waveguide 3 by applying photolithography technology. I do.
  • the resist mask 2b has a triangular planar pattern, and its side 4a has a bent waveguide.
  • a window 4 is formed so as to obliquely cross the corner 3b of the bent portion 3a of the road 3 at an angle of 45 °. Therefore, from the window 4, the corner 3b in the bent portion 3a and a part of the surface of the upper cladding layer 1e are exposed.
  • the portion exposed from the window 4 is exposed to the buffer layer 1b or the substrate 1a. Etching is removed until the surface is exposed, and then the resist mask 2b is removed.
  • a dry etching technique such as REBE (Reactive Ion Beam Etching) or RIE (Reactive Ion Etching)
  • the depth reaches the exposed surface of the buffer layer 1b or the substrate 1a, and a recess 5 having the same triangular shape as the window 4 is formed in the plane pattern.
  • the corner 3b of the bent portion 3a of the bent waveguide 3 is cut off, and the cut surface 5a is exposed there.
  • the cut surface 5a cuts the optical path axes of the two linear waveguides 3A and 3B constituting the bent waveguide 3 at an angle of 45 ° larger than the critical angle of the propagating light. Therefore, for example, the light propagating through the linear waveguide 3A is reflected by the cut surface 5a to change the optical path, and propagates through the linear waveguide 3B.
  • the cut surface 5a becomes a reflection surface
  • the concave portion 5 having this reflection surface bends and functions as a reflection portion for the waveguide, and the reflection type waveguide element is obtained here.
  • each cut surface of the concave portion 5 with a metal thin film made of, for example, gold, silver, copper, aluminum, or the like, the function of the cut surface 5a as a reflection surface is more reliably achieved. In some cases, it can be demonstrated.
  • a bent waveguide is formed on the device substrate, and then a concave portion (reflection portion) 5 is formed.
  • a concave portion (reflection portion) 5 is first formed on the element substrate, and then a bent waveguide is formed.
  • the optical characteristics of a reflective waveguide device as shown in FIG. 5 are mainly determined by the following factors.
  • the first factor relates to the positional accuracy when the resist mask 2b shown in FIG. 4 is formed by applying one photolithography technique.
  • the resist mask 2b is formed so that one side 4a of the window 4 in FIG. 4 is bent and crosses the bent portion 3a of the waveguide 3 exactly at the position determined at the time of element design. If the positional accuracy is poor, the light propagating through the straight waveguide 3A in FIG. 5 does not reflect off the reflecting surface 5a as designed, and the optical path cannot be changed correctly, resulting in reflection loss. Cause a decline in properties It is.
  • the second factor relates to the perpendicularity of the cut surface (reflective surface) 5a formed in the concave portion 5 in FIG. 5, and when the perpendicularity is poor, the same as in the case of the first factor As described above, the correct optical path change is not realized on the reflection surface 5a, and the reflection loss characteristic is reduced.
  • the constituent materials of the element substrate, the etching gas to be used, etc. should be appropriately selected, and the etching conditions should be optimized. Thereby, the etched surface can be made substantially perpendicular.
  • the third factor is a problem relating to the smoothness of the cut surface 5a of the formed concave portion 5 in FIG.
  • the smoothness that is, the morphology characteristic is reduced
  • the smoothness of the cut surface 5a is inferior, that is, if the cut surface 5a is a rough surface having irregularities, the above light beam is partially reflected by the cut surface 5a. Therefore, the reflection loss characteristic is deteriorated.
  • FIG. 6 is a perspective view of the element substrate on which the resist mask 2b shown in FIG. 4 is formed as viewed from the window 4.
  • FIG. 6 is a perspective view of the element substrate on which the resist mask 2b shown in FIG. 4 is formed as viewed from the window 4.
  • this window 4 is formed by one photolithography technique, the entirety of the already formed bent waveguide 3 and the exposed surface of the upper cladding layer 1e is covered, and a predetermined resist is once applied. After the application, for example, only a portion corresponding to the window 4 to be formed is irradiated with an exposure beam, and the portion is etched and removed.
  • the exposure beam to be irradiated is used.
  • the focus of the system is either the position of the upper surface 3c of the corner 3b to be cut by the subsequent dry etching technique, the position of the lower surface of the corner 3b, that is, the position of the exposed surface of the upper cladding layer 1e, or It has to be adjusted to the position of the depth in the middle. That is, it is absolutely impossible to simultaneously focus the exposure beam on both the surface 3c of the corner 3b and the surface of the upper cladding layer 1e.
  • the focal point is set to the depth of the surface 3c of the corner, and etching is performed.
  • the resist on the corner surface 3c is removed by forming an etching surface with good smoothness.
  • the etched surface formed there tends to be a rough surface 2c having irregularities.
  • the etched surface on the corner surface 3c is roughened, contrary to the above case.
  • the exposed portion of the window 4 is then removed by a drying technique to form a reflecting portion (recess) 5 as shown in FIG. Since the rough surface 2c is formed in a projected state as it is, the reflecting surface 5a does not become a smooth surface as a whole, and its morphological characteristics deteriorate.
  • the thickness of the bent waveguide is applied to the beam irradiation surface during the final dry etching. Since a step corresponding to the step is always formed, the reactive ion beam, for example, tends to be scattered on the irradiation surface under the influence of the step. Then, due to the irregular reflection, the formed reflecting surface is roughened, and the morphological characteristics are inevitably reduced.
  • An object of the present invention is to provide a reflective waveguide having excellent morphological characteristics of the reflective surface of the formed reflective portion regardless of the order of the process of forming the bent waveguide and the process of forming the reflective portion.
  • a method for manufacturing a waveguide element is provided.
  • Another object of the present invention is therefore to provide a method of manufacturing a reflective waveguide device having excellent reflection loss characteristics in a reflective portion.
  • Still another object of the present invention is to provide a method of manufacturing a reflective waveguide device in which the degree of freedom in selecting an etching gas to be used and the degree of freedom in etching conditions are increased, so that the degree of freedom in the manufacturing process is large. That is.
  • a method for manufacturing a reflective waveguide device comprising:
  • an angle ⁇ (where ⁇ is 0 °) is applied to the element substrate.
  • a reflecting portion having a cut surface when a part of a corner of the bent portion is cut as a reflecting surface.
  • Forming an optical path changing portion; the step of forming the optical path changing portion includes: forming a planar pattern of the bent waveguide; having at least a larger area than the planar pattern of the reflecting portion, and similar to the planar pattern of the reflecting portion.
  • a step of forming a resist mask having the same plane pattern as the plane pattern of the reflection portion on the element substrate by performing dry etching after forming the resist mask on the element substrate hereinafter, referred to as B ) Is provided.
  • the step A is a step of forming a bent portion around the waveguide on the prepared element substrate
  • the step B is a step of forming a concave portion functioning as a reflecting portion. is there.
  • the order of the steps A and B is not limited, and the step A may be performed first, and then the step B may be performed, or vice versa. In any case, the object of the present invention can be achieved.
  • a resist mask of a composite planar pattern in which the planar pattern of the bent waveguide formed in the optical path changing portion and the planar pattern of the reflecting portion where one side intersects at the bent portion is overlapped. are formed on the device substrate by photolithography.
  • Figs. 7 and 8 show an example of the composite plane pattern of the resist mask at this time.
  • Each of the combined plane patterns C l and C 2 shown in FIGS. 7 and 8 is a two-line waveguide in which the plane pattern of the bent waveguide to be formed in the optical path changing section is bent at an angle ⁇ .
  • the corresponding flat pattern 6 is formed, and the flat patterns 7, 7 'of the reflection portion located at the bent portion 6a form a triangle, and the long sides 7a, 7'a of the flat pattern 6 correspond to the triangular shape. It has a shape that crosses the bent part 6a diagonally. That is, in these composite plane patterns C 1 (C 2 ), the corners 6 b of the plane pattern 6 overlap with the plane pattern 7 (7,).
  • Each of the long sides 7 a and 7 ′ a of the plane patterns 7 and 7 ′ is a straight line orthogonal to the bisector of the angle of each plane pattern 6, and the side part of the plane pattern 6. It is a straight line that does not cross four times.
  • the long sides 7a and 7'a obliquely cross the bent portion 6a at a portion between the inner bent portion 6c and the outer bent point 6d of the bent portion 6a. If such a mode is not adopted, it is impossible to change the light path of the light incident on one straight waveguide toward the other straight waveguide in the formed bent waveguide. .
  • the composite plane pattern C in FIG. 7 shows a case where the plane pattern 7 corresponding to the reflection section has the same shape as the plane pattern of the reflection section to be formed.
  • synthesis plane pattern C 2 illustrates a case where the area is in larger similar figure than the planar pattern of the reflective portion to be formed flat pattern 7 'corresponding to the reflective portion. This latter mode is preferable because the concave portion can be formed with high precision in the step B described later.
  • the composite plane pattern C! When (C 2 ) is formed and a dry etching technique is applied thereon, the portion where the composite plane pattern (C 2 ) is not formed is removed by etching, and as a result, it should be formed on the element substrate.
  • a lid portion having a planar pattern in which the bent waveguide and the reflection portion are combined is formed.
  • a plane pattern in which the bent waveguide and the reflecting portion are united with accurate alignment is formed by applying the dry etching technique once. In other words, the positional accuracy between the bent waveguide and the reflection section is high at this point.
  • the process B is a process of forming a concave portion to be a reflection portion.
  • a description will be given of a case where the present invention is applied to the bridge portion formed as described above.
  • a resist mask is formed by photolithography at locations other than the part, and then dry etching is applied. As a result, only the portion of the reflecting portion to be formed is removed by etching, and a concave portion having a predetermined depth is formed there.
  • the irradiated reactive ion beam for example, can sequentially etch a flat surface and gradually deepen a concave portion.
  • a resist mask having the composite plane pattern described above is formed on the obtained element substrate.
  • the above-mentioned concave portion is also filled with the mask resist.
  • step A proceed to step A. Since the recesses are filled with a mask resist, the walls of the recesses that become the reflecting surfaces during the formation of the edge are roughened due to the application of the dry etching technology during the process A. There is no.
  • FIG. 1 is a perspective view showing an example of an element substrate used for manufacturing a reflective waveguide element
  • FIG. 2 is an oblique view showing a state in which a bent waveguide resist mask is formed on the element substrate.
  • Perspective view
  • FIG. 3 is a perspective view showing a state in which a bent waveguide is formed
  • FIG. 4 is a resist mask for a reflecting portion formed
  • FIG. 5 is a perspective view showing a reflecting portion formed by dry etching
  • FIG. 6 is a perspective view of the element substrate shown in FIG. 4 when viewed from a window
  • 7 is a plan view showing a combined plane pattern of a resist mask formed by the present invention
  • FIG. 8 is a plan view showing another combined plane pattern of a resist mask
  • FIG. 1 is a perspective view showing an example of an element substrate used for manufacturing a reflective waveguide element
  • FIG. 2 is an oblique view showing a state in which a bent waveguide resist mask is formed on the element substrate.
  • Perspective view is
  • FIG. 10 is a perspective view showing a state in which a resist mask is formed;
  • FIG. 10 is a perspective view showing a state in which a lid portion is formed by applying a dry etching technique;
  • FIG. 12 is a perspective view showing a state in which a resist mask is formed;
  • FIG. 12 is a perspective view of a manufactured reflective waveguide device;
  • FIG. 13 is a resist mask formed on an element substrate for a reflective portion;
  • Fig. 14 is a dry etch
  • FIG. 15 is a perspective view showing a state in which a concave portion is formed by applying a polishing technique;
  • FIG. 15 is a perspective view showing a state in which a resist mask having a combined plane pattern is formed on an element substrate; and
  • an element substrate 1 having a layer structure as shown in FIG. 1 was prepared.
  • a resist is applied to the cap layer 1 f of the element substrate 1 and a photolithography technique is applied thereto, thereby forming a resist having a composite plane pattern as shown in FIG.
  • a mask 8 is formed.
  • the plane pattern of the resist mask 8 is a similar plane pattern in which the plane pattern 7 'corresponding to the reflection section has a larger area than the plane pattern of the reflection section to be formed.
  • the angle ⁇ at the bent part of the plane pattern 6 is 90 °, and the long side of the similar plane pattern 7 ′ is obliquely crossing the bent part at an angle of 45 °. I have.
  • the device substrate is set in an RI ⁇ device, and reactive ions are irradiated from above the plane pattern 8 to etch away a predetermined thickness portion of the upper cladding layer 1e, and then the resist mask 8 is removed. .
  • a ridge-shaped bend in which the plane pattern has the same shape as the plane pattern 6 of the resist mask 8 is formed on the remaining upper clad layer 1e.
  • a ridge portion 10 having a shape in which the waveguide 3 and a ridge-like convex portion 9 having the same shape as the similar planar pattern 7 ′ of the resist mask are combined is formed on the remaining upper clad layer 1e.
  • the upper surface of the lid 10 is the surface of the cap layer 1f itself, and the same horizontal plane is formed between the bent waveguide 3 and the projection 9.
  • a resist is applied on the upper lid portion 10 and the exposed upper cladding layer 1e by photolithography technology, and then the resist is formed as shown in FIG. Be
  • a resist mask 11 is formed in which a window 4 having a pattern corresponding to the planar pattern of the reflective portion is located above the convex portion 9. That is, the surface of the cap layer 1 f is exposed from the window 4 of the resist mask 11.
  • the element substrate shown in FIG. 11 is set in a RIBE apparatus, and the upper surface of the resist mask 11 is irradiated with a reactive ion so that the portion exposed from the window 4 becomes the buffer layer 1 b or the substrate. After etching and removing to a depth where 1a is exposed, the resist mask 11 is removed.
  • the depth reaches the surface of the buffer layer 1 b (or the substrate 1 a) at a predetermined position of the convex portion 9, and the bent portion 3 of the bent waveguide 3 is formed.
  • a concave portion 5 formed by cutting off a corner in a is formed.
  • the wall surface 5a of the concave portion 5 constitutes a reflecting surface of the bent waveguide 3.
  • the bent waveguide 3 and the concave portion (reflecting portion) 5 having the reflecting surface 5a are joined together to form an optical path changing portion. Is formed.
  • the concave portion 5 is formed by applying a dry etching technique to a flat surface having no step, the beam focus shift and irregular reflection due to the step do not occur. Therefore, the smoothness of the etched surface, that is, the wall surface (reflection surface) 5a becomes excellent.
  • an element substrate 1 having a layer structure as shown in FIG. 1 is prepared. After applying a resist to the cap layer 1 f of the element substrate 1 and applying photolithography technology, the planar pattern becomes a square as shown in FIG. 13. A resist mask 12 having a window 4 is formed.
  • the device substrate is set in, for example, a RIBE apparatus, and a beam of reactive ions is irradiated from above the resist mask 12 so that the portion exposed from the window 4 is covered with the buffer layer lb or the substrate la. O Remove the resist mask 12 after etching to the depth where
  • the depth reaches the surface of the buffer layer 1b (or the substrate 1a) at a predetermined location of the element substrate 1, and the bent waveguide to be formed is bent.
  • a concave portion 5 is formed in which a corner to be cut from the curved portion is cut.
  • each of the etched surfaces of the concave portion 5, that is, each of the wall surfaces is formed by sequentially dry-etching a flat surface without any step, so that the beam defocus and irregular reflection occur during the dry etching process.
  • the surface is formed as a surface having excellent smoothness.
  • a mask resist is applied to the entire surface of the element substrate shown in FIG. As shown in FIG. 5, a planar pattern of the bent waveguide to be formed and a similar planar pattern overlapping the bent portion and having a larger area and a similar shape than the planar pattern of the recess 5 described above.
  • the bending angle of the bending portion in each plane pattern corresponding to the two linear waveguides is set to 45 °.
  • the element substrate is set in, for example, a RIBE apparatus, and the resist mask is irradiated with a beam of reactive ions from above the resist mask 13 until a predetermined thickness of the upper cladding layer 1 e is removed.
  • the portions where the resist mask 13 is not formed are removed by etching, and finally the resist mask 13 is removed.
  • a ridge-shaped bent waveguide 3 was formed on the remaining upper cladding layer 1e, and at the same time, was exposed again by removing the resist mask.
  • An optical path changing portion including a reflecting portion composed of the recessed portion 5 and a frame portion surrounding and projecting in a dike shape around the recessed portion 5 is formed.
  • the already formed reflecting surface 5a is filled with the resist Because it is covered with a mask, the smooth state when initially formed is maintained.
  • a combined pattern in which a planar pattern of a bent waveguide to be formed and a planar pattern of a reflective portion to be formed in the bent portion or a pattern similar thereto is combined. Since a flat pattern is formed on the element substrate using photolithography technology and dry etching technology is applied, the dry etching technology can be used regardless of whether the bent waveguide formation process or the reflection portion formation process is performed first. Is applied to a flat surface with no steps, and as a result, the morphological characteristics of the etched surface (reflection surface) at the bent portion become excellent.
  • the reflection type waveguide element manufactured by the method of the present invention has good reflection loss characteristics at the reflection portion, and its propagation characteristics are improved.
  • the method of the present invention it is easy to select the type of the etching gas and the optimum etching conditions at the time of dry etching, and the degree of freedom of the manufacturing process is increased.

Abstract

A reflecting waveguide device which comprises a bent waveguide and a reflecting portion formed at the bent portion. The waveguide device is produced by forming a resist mask having a combined planar pattern, in which a planar pattern of the bent waveguide and another planar pattern similar to and greater area than the planar pattern at the reflecting portion partially overlap each other at the bent portion of the planar pattern of the bent waveguide, on a device substrate; and then carrying out dry etching so as to form a ridge portion having the same planar pattern as that of the combined planar pattern, and the step of forming a resist mask having the same planar pattern as that of the reflecting portion on the device substrate and then carrying out dry etching to form a recess having the same planar pattern as that of the reflecting portion on the device substrate.

Description

明 細 書  Specification
反射型導波路素子の製造方法  Method for manufacturing reflective waveguide device
技 術 分 野  Technical field
本発明は、 ホトリソグラフィ一技術と ドライエツチン グ技術を適用して所定の素子基板に折れ曲がり導波路と その折曲部に反射部とを有する反射型導波路素子を製造 する方法に関し、 更に詳しくは、 前記折れ曲がり導波路 の形成工程と前記反射部の形成工程の順番に関係なく低 反射損失を実現することができ、 また製造工程の自由度 も大きい反射型導波路素子の製造方法に関する。  The present invention relates to a method of manufacturing a reflective waveguide device having a bent waveguide on a predetermined device substrate and a reflective portion at the bent portion by applying a photolithography technology and a dry etching technology. The present invention relates to a method of manufacturing a reflective waveguide element which can realize low reflection loss regardless of the order of the step of forming the bent waveguide and the step of forming the reflection section, and which has a high degree of freedom in the manufacturing process.
背 景 技 術  Background technology
反射型導波路素子には、 例えば誘電体や化合物半導体 から成る薄層を積層して構成した素子基板に、 角度 α In a reflective waveguide device, for example, an element substrate formed by laminating thin layers made of a dielectric or a compound semiconductor has an angle α.
(ただし、 αは、 0 ° < α < 1 8 0 ° ) で折れ曲がる折 れ曲がり導波路と、 その折れ曲がり導波路の折曲部の角 部の一部を切除し、 その切除面を反射面とする反射部と が形成されている。 (However, α is 0 ° <α <180 °) The bend waveguide that bends at 0 ° <α <180 ° and a part of the corner of the bend of the bend waveguide are cut off, and the cut surface is used as a reflective surface. And a reflecting portion which is formed.
このような反射型導波路素子の製造方法としては、 次 のような方法が知られている。  The following method is known as a method for manufacturing such a reflective waveguide device.
例えば、 Trevo r M. Bensonは、 J. o f L i gh twav e Techno l ogy, Vo l . LT- 2, No. 1, Feb. , 1984において、 まず最初に素子基板の上にゥエツ トエツチング技術で平 面パターンが三角形をした凹部をその一つの壁面が反射 面となるように反射部として形成し、 ついで、 この三角 形の前記反射面が折曲部を斜めに横切るような平面バタ 一ンで折れ曲がり導波路を形成する方法を提案している。 また、 特開平 4— 7 5 0 8号公報や、 Y. Chungらが IE EE Photonics Technology Letters, Vol. 4, No. 9, For example, Trevor M. Benson, in J. of Lighttween Technology, Vol. LT-2, No. 1, Feb., 1984, first used an etching technique on the element substrate. A concave portion having a triangular flat surface pattern is formed as a reflecting portion so that one of the wall surfaces becomes a reflecting surface. A method is proposed in which the waveguide is bent with a flat pattern such that the reflecting surface of the shape crosses the bent portion obliquely. In addition, Japanese Patent Application Laid-Open No. 4-75008 and Y. Chung et al. Describe IE EE Photonics Technology Letters, Vol.
Sep., 1992で発表した論文には、 ドライエッチング技術 を適用して素子基板にまず反射部を形成し、 ついで折れ 曲がり導波路を形成する方法が開示されている。 A paper published in Sep., 1992 discloses a method in which a reflective portion is first formed on an element substrate by applying dry etching technology, and then a bent waveguide is formed.
更に、 E. Gini ら力 Electronics Letters Vol. 28, No. 5, Feb. , 1992に発表した論文や、 H. Appelman ら カ . of Lightwave Techno logy, Vol. 8, No. 1, Jan. , 1990に発表した論文には、 ドライエツチング技術を適用 して素子基板にまず折れ曲がり導波路を形成し、 ついで 反射部を形成する方法が開示されている。  Further, E. Gini et al. Published a paper in Power Electronics Letters Vol. 28, No. 5, Feb., 1992, and H. Appelman et al., Ka of Lightwave Technology, Vol. 8, No. 1, Jan. A paper published in, discloses a method in which a bent waveguide is first formed on an element substrate by applying a dry etching technique, and then a reflecting portion is formed.
ここで、 反射型導波路素子の一般的な製造方法を図面 に則して説明する。 · まず、 n型 G a A sから成る基板 1 aの上に、 n型 G a A sから成るノくッファ層 1 b, n型 A 1 G a A sから 成る下部クラ ッ ド層 l c, n型 G a A sから成るコア層 1 d, n型 A l G a A sから成る上部クラ ッ ド層 1 e, および n型 G a A sから成るキヤ ップ層 1 f が、 例えば M〇 C V D法のような成膜法によつてこの順序で積層さ れたものが素子基板 1 として用意される (第 1図) 。 な お、 素子基板 1を構成する材料としては、 上記した G a A s /A 1 G a A s系の外に、 例えば I n P/G a I n A s P系の化合物半導体などが用いられることもある。 また、 S i基板の上に火炎堆積法で形成された石英や, L i N b O sのような誘電体が用いられることもある。 ついで、 第 2図で示したように、 キャップ層 1 f の上 にホ ト リ ソグラフィ一技術を適用することにより、 形成 すべき折れ曲がり導波路と同じ平面パターンを有するレ ジス トマスク 2 aの平面パターンを形成する。 第 2図で は、 レジス トマスク 2 aの平面パターンはその角部が直 角に折れ曲がる折曲部になっている。 Here, a general manufacturing method of a reflection type waveguide device will be described with reference to the drawings. · First, on a substrate 1 a composed of n-type GaAs, a buffer layer 1 b composed of n-type GaAs and a lower cladding layer lc composed of n-type GaAs. The core layer 1 d composed of n-type GaAs, the upper cladding layer 1 e composed of n-type Al GaAs, and the cap layer 1 f composed of n-type GaAs are, for example, Mも の The elements stacked in this order by a film forming method such as the CVD method are prepared as the element substrate 1 (Fig. 1). The material constituting the element substrate 1 is, for example, In P / G a I n in addition to the above-mentioned G a As / A 1 G a As system. Asp-based compound semiconductors and the like are sometimes used. Further, a dielectric material such as quartz or LiNbOs formed on the Si substrate by a flame deposition method may be used. Then, as shown in FIG. 2, by applying a photolithography technique on the cap layer 1f, the plane pattern of the resist mask 2a having the same plane pattern as the bent waveguide to be formed is formed. To form In FIG. 2, the planar pattern of the resist mask 2a is a bent portion whose corner is bent at a right angle.
その後、 第 2図で示した素子基板の上方から反応性ィ オンビームや反応性イオンを照射する ドライエッチング 技術を適用することにより、 レジス トマスク 2 aで被覆 されている個所を除いた部分を、 上部クラ ッ ド層 1 eの 所定の深さまで一部エッチング除去し、 その後、 リムー バまたは酸素プラズマでレジス トマスク 2 aを除去する。  Then, applying dry etching technology, which irradiates a reactive ion beam or reactive ions from above the element substrate shown in Fig. 2, the part excluding the part covered with the resist mask 2a is removed. A part of the cladding layer 1e is partially removed by etching to a predetermined depth, and thereafter, the resist mask 2a is removed by a remover or oxygen plasma.
その結果、 第 3図で示したように、 残置している上部 クラ ッ ド層 l eの上には、 2本の直線導波路 3 A, 3 B とから成り、 直角に折れ曲がる折曲部 3 aを有する折れ 曲がり導波路 3がリ ッジ形状をなして形成される。  As a result, as shown in FIG. 3, on the remaining upper cladding layer le, there are two straight waveguides 3A and 3B, and a bent portion 3a bent at a right angle is formed. A bent waveguide 3 having a shape of a bridge is formed.
ついで、 ホ ト リ ソグラフィ 一技術を適用することによ り、 第 4図で示したように、 上部クラ ッ ド層 1 eの露出 表面と折れ曲がり導波路 3の上にレジス 卜マスク 2 bを 形成する。 このとき、 レジス トマスク 2 bには、 平面パ ターンが三角形であり、 その一辺 4 aは折れ曲がり導波 路 3の折曲部 3 aにおける角部 3 bを 4 5 ° の角度で斜 めに横切るような窓 4が形成される。 したがって、 窓 4 からは、 折曲部 3 aにおける角部 3 bと上部クラ ッ ド層 1 eの一部表面が露出している。 Next, as shown in FIG. 4, a resist mask 2b is formed on the exposed surface of the upper cladding layer 1e and the bent waveguide 3 by applying photolithography technology. I do. At this time, the resist mask 2b has a triangular planar pattern, and its side 4a has a bent waveguide. A window 4 is formed so as to obliquely cross the corner 3b of the bent portion 3a of the road 3 at an angle of 45 °. Therefore, from the window 4, the corner 3b in the bent portion 3a and a part of the surface of the upper cladding layer 1e are exposed.
そして、 この素子基板の上面に R E B E (Reactive Ion Beam Etching) や R I E (Reactive Ion Etching)な どの ドライエッチング技術を適用することにより、 窓 4 から露出している部分をバッファ層 1 bまたは基板 1 a の表面が露出するまでエッチング除去し、 更にレジス ト マスク 2 bを除去する。  Then, by applying a dry etching technique such as REBE (Reactive Ion Beam Etching) or RIE (Reactive Ion Etching) on the upper surface of the element substrate, the portion exposed from the window 4 is exposed to the buffer layer 1b or the substrate 1a. Etching is removed until the surface is exposed, and then the resist mask 2b is removed.
その結果、 第 5図で示したように、 深さがバッファ層 1 bまたは基板 1 aの露出面にまで至り、 平面パターン は前記した窓 4 と同じ三角形をした凹部 5が形成される。 ' この過程で、 折れ曲がり導波路 3の折曲部 3 aにおけ る角部 3 bが切除され、 そこに切除面 5 aが表出する。 この切除面 5 aは、 折れ曲がり導波路 3を構成する 2本 の直線導波路 3 A, 3 Bの光路軸を伝搬光の臨界角より も大きい 4 5 ° の角度で切除している。 したがって、 例 えば直線導波路 3 Aを伝搬してきた光はこの切除面 5 a で反射して光路を変更し、 直線導波路 3 Bを伝搬してい As a result, as shown in FIG. 5, the depth reaches the exposed surface of the buffer layer 1b or the substrate 1a, and a recess 5 having the same triangular shape as the window 4 is formed in the plane pattern. 'In this process, the corner 3b of the bent portion 3a of the bent waveguide 3 is cut off, and the cut surface 5a is exposed there. The cut surface 5a cuts the optical path axes of the two linear waveguides 3A and 3B constituting the bent waveguide 3 at an angle of 45 ° larger than the critical angle of the propagating light. Therefore, for example, the light propagating through the linear waveguide 3A is reflected by the cut surface 5a to change the optical path, and propagates through the linear waveguide 3B.
< o <o
すなわち、 この切除面 5 aが反射面となり、 この反射 面を有する凹部 5は折れ曲がり導波路に対する反射部と して機能することになり、 ここに反射型導波路素子が得 られる。 That is, the cut surface 5a becomes a reflection surface, and the concave portion 5 having this reflection surface bends and functions as a reflection portion for the waveguide, and the reflection type waveguide element is obtained here. Can be
なお、 凹部 5の各切除面を例えば金、 銀、 銅、 アルミ 二ゥムなどから成る金属薄膜でコ一ティ ングすることに より、 前記切除面 5 aの反射面としての機能をより確実 に発揮させる場合もある。  In addition, by coating each cut surface of the concave portion 5 with a metal thin film made of, for example, gold, silver, copper, aluminum, or the like, the function of the cut surface 5a as a reflection surface is more reliably achieved. In some cases, it can be demonstrated.
第 1図〜第 5図で示した反射型導波路素子の製造方法 においては、 まず最初に、 素子基板に折れ曲がり導波路 を形成し、 その後に凹部 (反射部) 5を形成しているが、 これとは逆に、 まず最初に凹部 (反射部) 5を素子基板 に形成し、 その後に折れ曲がり導波路を形成することも あ O o  In the method of manufacturing the reflection type waveguide device shown in FIGS. 1 to 5, first, a bent waveguide is formed on the device substrate, and then a concave portion (reflection portion) 5 is formed. Conversely, a concave portion (reflection portion) 5 is first formed on the element substrate, and then a bent waveguide is formed.
ところで、 第 5図で示したような反射型導波路素子の 光学特性は、 主要には、 次のような因子によって規定さ れる。  By the way, the optical characteristics of a reflective waveguide device as shown in FIG. 5 are mainly determined by the following factors.
まず、 第 1の因子は、 第 4図で示したレジス トマスク 2 bをホトリソグラフィ一技術を適用して形成するとき の位置精度に関することである。  First, the first factor relates to the positional accuracy when the resist mask 2b shown in FIG. 4 is formed by applying one photolithography technique.
すなわち、 レジストマスク 2 bは、 第 4図において窓 4の一辺 4 aが折れ曲がり導波路 3の折曲部 3 aを素子 設計時に決定した位置で正確に横切るように形成されて いることである。 この位置精度が劣る場合には、 第 5図 において直線導波路 3 Aを伝搬する光が反射面 5 aで設 計基準どおりに反射せず、 その光路変更は正しく実現し なくなり、 結果として反射損失特性の低下が引き起こさ れる。 In other words, the resist mask 2b is formed so that one side 4a of the window 4 in FIG. 4 is bent and crosses the bent portion 3a of the waveguide 3 exactly at the position determined at the time of element design. If the positional accuracy is poor, the light propagating through the straight waveguide 3A in FIG. 5 does not reflect off the reflecting surface 5a as designed, and the optical path cannot be changed correctly, resulting in reflection loss. Cause a decline in properties It is.
この窓 4の位置精度に関しては、 現在、 ホ 卜 リ ソグラ フィ一技術において例えば電子ビームを用いた露光を行 うことにより、 かなり高精度の位置合わせを実現するこ とができるようになつている。  Regarding the positional accuracy of the window 4, at present, it is possible to realize fairly high-accuracy alignment by performing exposure using an electron beam in the photolithography technology, for example. .
第 2の因子は、 第 5図において、 凹部 5に形成した切 除面 (反射面) 5 aの垂直度に関することであり、 この 垂直度が劣る場合には、 第 1の因子の場合と同じように 反射面 5 aでは正しい光路変更が実現せず、 反射損失特 性は低下してしまう。  The second factor relates to the perpendicularity of the cut surface (reflective surface) 5a formed in the concave portion 5 in FIG. 5, and when the perpendicularity is poor, the same as in the case of the first factor As described above, the correct optical path change is not realized on the reflection surface 5a, and the reflection loss characteristic is reduced.
折れ曲がり導波路の形成工程や反射部の形成工程だけ をそれぞれ個別に単独で行う場合には、 素子基板の構成 材料、 使用するエッチングガスなどを適切に選択し、 ま たエッチング条件を最適化することにより、 エッチング した面を略垂直な面にすることができる。  If only the process of forming the bent waveguide and the process of forming the reflective portion are performed individually, the constituent materials of the element substrate, the etching gas to be used, etc. should be appropriately selected, and the etching conditions should be optimized. Thereby, the etched surface can be made substantially perpendicular.
しかしながら、 前記した 2つの工程を連続して行う場 合には、 どちらの工程が先行するかに関係なく、 例えば 第 5図で示した凹部 5の切除面 5 aにおける垂直度は低 下してしまう。  However, when the above two steps are performed consecutively, regardless of which step precedes, for example, the verticality at the cut surface 5a of the concave portion 5 shown in FIG. I will.
第 3の因子は、 第 5図において、 形成された凹部 5の 切除面 5 aの平滑度に関する問題である。 この平滑度、 すなわちモフォロジー特性が低下している場合には、 直 線導波路 3 Aを伝搬する光が直線導波路 3 Bへ光路変更 するときの反射損失特性が低下する。 すなわち、 この切除面 (反射面) 5 aに伝搬してきた 光は、 直線導波路 3 Aの光軸を中心にしてある光強度の 広がりを有している。 したがって、 この光が切除面 5 a で反射して光路変更をする場合、 当該切除面 5 aはある 光強度の広がりを有する光束として感応し、 その光束を 直線導波路 3 Bの方に反射する。 The third factor is a problem relating to the smoothness of the cut surface 5a of the formed concave portion 5 in FIG. When the smoothness, that is, the morphology characteristic is reduced, the reflection loss characteristic when the light propagating in the linear waveguide 3A changes the optical path to the linear waveguide 3B is reduced. That is, the light that has propagated to the cut surface (reflection surface) 5a has a certain light intensity spread around the optical axis of the linear waveguide 3A. Therefore, when this light is reflected by the cut surface 5a to change the optical path, the cut surface 5a is sensitive as a light beam having a certain light intensity spread, and reflects the light beam toward the linear waveguide 3B. .
このとき、 切除面 5 aの平滑度が劣る場合、 すなわち 切除面 5 aが凹凸のある粗い面になっている場合には、 上記した光束は当該切除面 5 aで一部乱反射することに なるためその反射損失特性は低下してしまう。  At this time, if the smoothness of the cut surface 5a is inferior, that is, if the cut surface 5a is a rough surface having irregularities, the above light beam is partially reflected by the cut surface 5a. Therefore, the reflection loss characteristic is deteriorated.
したがって、 凹部 5の切除面 5 aの平滑度を高めるこ とが必要であるが、 前記した従来の方法では、 それを実 現することが困難である。 以下に、 その理由を説明する。  Therefore, it is necessary to increase the smoothness of the cut surface 5a of the concave portion 5, but it is difficult to realize this by the above-mentioned conventional method. The reason is explained below.
まず、 第 6図は、 第 4図で示されているレジス トマス ク 2 bが形成されている素子基板を、 窓 4の方から見た ときの斜視図である。  First, FIG. 6 is a perspective view of the element substrate on which the resist mask 2b shown in FIG. 4 is formed as viewed from the window 4. FIG.
この窓 4をホ卜リソグラフィ一技術で形成する場合に は、 既に形成されている折れ曲がり導波路 3と上部クラ ッ ド層 1 eの露出表面との全体を被覆して、 一旦、 所定 のレジストを塗布したのち、 例えば形成すべき窓 4に相 当する個所だけに露光ビ一ムを照射してその個所をエツ チング除去する。  When this window 4 is formed by one photolithography technique, the entirety of the already formed bent waveguide 3 and the exposed surface of the upper cladding layer 1e is covered, and a predetermined resist is once applied. After the application, for example, only a portion corresponding to the window 4 to be formed is irradiated with an exposure beam, and the portion is etched and removed.
このとき、 折れ曲がり導波路 3の折曲部における角部 3 bは所定の厚みを有しているので、 照射する露光ビー ムの焦点は、 後段の ドライエッチング技術で切除すべき 角部 3 bの上面 3 cの位置や、 角部 3 bの下部すなわち 上部クラ ッ ド層 1 eの露出表面の位置のいずれか、 また その途中の深さの位置に合わせざるを得なくなる。 すな わち、 角部 3 bの表面 3 c と上部クラ ッ ド層 1 eの表面 の両方に露光ビームの焦点を同時に合わせることは絶対 にできない。 At this time, since the corner 3b of the bent portion of the bent waveguide 3 has a predetermined thickness, the exposure beam to be irradiated is used. The focus of the system is either the position of the upper surface 3c of the corner 3b to be cut by the subsequent dry etching technique, the position of the lower surface of the corner 3b, that is, the position of the exposed surface of the upper cladding layer 1e, or It has to be adjusted to the position of the depth in the middle. That is, it is absolutely impossible to simultaneously focus the exposure beam on both the surface 3c of the corner 3b and the surface of the upper cladding layer 1e.
このことは、 形成した窓 4 において、 一辺 4 a側のェ ツチング面のモフォロジー特性を低下させる原因になつ ている。  This causes the morphological characteristics of the etching surface on the side 4 a side of the formed window 4 to deteriorate.
例えば、 素子基板の全面に塗布されているレジス トへ の露光ビームの照射に際し、 その焦点を前記した角部の 表面 3 cの深さとなるように設定してエッチングを行う と、 第 6図で示したように、 角部の表面 3 c上のレジス 卜は良好な平滑度のエツチング面を形成して除去される。 しかし、 それより も下に位置する上部クラ ッ ド層 1 eの 表面近傍では、 露光ビームの焦点は合っていないために、 そこに形成されたエッチング面は凹凸を有する粗面 2 c になりやすい。 露光ビームの焦点を上部クラ ッ ド層 1 e の表面の方に合わせると、 上記した場合とは逆に、 角部 の表面 3 c上のエッチング面は粗面化してしまう。  For example, when irradiating the resist applied to the entire surface of the element substrate with the exposure beam, the focal point is set to the depth of the surface 3c of the corner, and etching is performed. As shown, the resist on the corner surface 3c is removed by forming an etching surface with good smoothness. However, since the exposure beam is not focused near the surface of the upper cladding layer 1e located below, the etched surface formed there tends to be a rough surface 2c having irregularities. . When the exposure beam is focused on the surface of the upper cladding layer 1e, the etched surface on the corner surface 3c is roughened, contrary to the above case.
いずれの場合においても、 次に窓 4の露出個所を ドラ イエツチング技術で除去して第 5図で示したような反射 部 (凹部) 5を形成したときに、 その反射面 5 aは前記 粗面 2 cがそのまま投影された伏態で形成されることに なるので、 反射面 5 aは全体として平滑な面にならなく なり、 そのモフォロジー特性は低下する。 In any case, when the exposed portion of the window 4 is then removed by a drying technique to form a reflecting portion (recess) 5 as shown in FIG. Since the rough surface 2c is formed in a projected state as it is, the reflecting surface 5a does not become a smooth surface as a whole, and its morphological characteristics deteriorate.
また、 従来の方法では、 折れ曲がり導波路 3の形成ェ 程と反射部の形成工程のどちらを先行させるかに関係な く、 最終の ドライエッチング時に、 ビーム照射面には折 れ曲がり導波路の厚みに相当する段差が必ず形成されて いるので、 この段差の影響を受けて例えば反応性イオン ビームは照射面で散乱しやすく なる。 そして、 その乱反 射により、 形成される反射面は粗面化し、 そのモフォロ ジー特性の低下は避けられないことになる。  In addition, in the conventional method, regardless of whether the process of forming the bent waveguide 3 or the process of forming the reflection portion is performed first, the thickness of the bent waveguide is applied to the beam irradiation surface during the final dry etching. Since a step corresponding to the step is always formed, the reactive ion beam, for example, tends to be scattered on the irradiation surface under the influence of the step. Then, due to the irregular reflection, the formed reflecting surface is roughened, and the morphological characteristics are inevitably reduced.
本発明の目的は、 折れ曲がり導波路の形成工程と反射 部の形成工程のどちらを先行させても、 その順序に関係 なく、 形成される反射部の反射面のモフォロジー特性が 優れている反射型導波路素子の製造方法を提供すること める。  An object of the present invention is to provide a reflective waveguide having excellent morphological characteristics of the reflective surface of the formed reflective portion regardless of the order of the process of forming the bent waveguide and the process of forming the reflective portion. A method for manufacturing a waveguide element is provided.
本発明の別の目的は、 したがって、 反射部における反 射損失特性が優れている反射型導波路素子の製造方法を 提供することである。  Another object of the present invention is therefore to provide a method of manufacturing a reflective waveguide device having excellent reflection loss characteristics in a reflective portion.
また、 本発明の更に別の目的は、 使用するエッチング ガスの選択自由度やエッチング条件の自由度が大きくな り、 そのため、 製造工程の自由度が大きい反射型導波路 素子の製造方法を提供することである。  Still another object of the present invention is to provide a method of manufacturing a reflective waveguide device in which the degree of freedom in selecting an etching gas to be used and the degree of freedom in etching conditions are increased, so that the degree of freedom in the manufacturing process is large. That is.
発 明 の 開 示 上記した目的を達成するために、 本発明においては、 下記から成る反射型導波路素子の製造方法 : Disclosure of the invention In order to achieve the above object, in the present invention, there is provided a method for manufacturing a reflective waveguide device comprising:
誘電体または化合物半導体から成る複数の層を積層し て成る素子基板にホ ト リ ソグラフィ一技術と ドライエツ チング技術を適用することにより、 前記素子基板に、 角 度 α (ただし、 αは、 0 ° < α < 1 8 0 ° ) で折れ曲が る折曲部を有する折れ曲がり導波路と、 前記折曲部の角 部の一部を切除したときの切除面を反射面とする反射部 とから成る光路変更部を形成する ; 前記光路変更部を形 成する工程には、 前記折れ曲がり導波路の平面パターン と、 少なく とも前記反射部の平面パターンより も大面積 でかつ前記反射部の平面パターンに相似した相似平面パ 夕ーンとが前記折れ曲がり導波路の平面パターンの折曲 部で部分的に重なり合つている合成平面パターンを有す るレジス 卜マスクを前記素子基板の上に形成したのち ド ライエッチングを行なって、 前記素子基板に、 前記合成 平面パターンと同じ平面パターンを有する リ ッジ部を形 成する工程 (以下、 Α工程という) ; および、 前記反射 部の平面パターンと同じ平面パターンを有するレジス ト マスクを前記素子基板の上に形成したのち ドライエッチ ングを行なって、 前記素子基板に、 前記反射部の平面パ 夕ーンと同じ平面パターンを有する凹部を形成する工程 (以下、 B工程という) ; が含まれている、 が提供され る。 上記した本発明において、 A工程は、 用意された素子 基板に折れ曲がり導波路を中心にしたリ ッジ部を形成す る工程であり、 B工程は反射部として機能する凹部を形 成する工程である。 この A工程と B工程の順番は限定さ れるものではなく、 最初に A工程を進め、 ついで B工程 を進めるという態様であってもよく、 またその逆であつ てもよい。 いずれの場合でも、 本発明の目的を達成する ことができる。 By applying a photolithography technique and a dry etching technique to an element substrate formed by laminating a plurality of layers made of a dielectric or a compound semiconductor, an angle α (where α is 0 °) is applied to the element substrate. <α <180 °), a bent waveguide having a bent portion bent at (α <180 °), and a reflecting portion having a cut surface when a part of a corner of the bent portion is cut as a reflecting surface. Forming an optical path changing portion; the step of forming the optical path changing portion includes: forming a planar pattern of the bent waveguide; having at least a larger area than the planar pattern of the reflecting portion, and similar to the planar pattern of the reflecting portion. Forming a resist mask having a composite planar pattern in which the similar planar pattern overlaps partially at the bent portion of the planar pattern of the bent waveguide, on the element substrate; A step of forming a lid portion having the same plane pattern as the composite plane pattern on the element substrate by performing etching (hereinafter referred to as a step Α); and a step of forming the same plane pattern as the plane pattern of the reflection section. Forming a resist mask having the same plane pattern as the plane pattern of the reflection portion on the element substrate by performing dry etching after forming the resist mask on the element substrate (hereinafter, referred to as B ) Is provided. In the present invention described above, the step A is a step of forming a bent portion around the waveguide on the prepared element substrate, and the step B is a step of forming a concave portion functioning as a reflecting portion. is there. The order of the steps A and B is not limited, and the step A may be performed first, and then the step B may be performed, or vice versa. In any case, the object of the present invention can be achieved.
まず、 A工程の場合は、 光路変更部において形成すベ き折れ曲がり導波路の平面パターンと、 その折曲部で一 辺が交差する反射部の平面パターンとが重なり合った合 成平面パターンのレジス トマスクがホ ト リ ソグラフィー 技術によって素子基板の上に形成される。  First, in the case of process A, a resist mask of a composite planar pattern in which the planar pattern of the bent waveguide formed in the optical path changing portion and the planar pattern of the reflecting portion where one side intersects at the bent portion is overlapped. Are formed on the device substrate by photolithography.
このときのレジス トマスクの合成平面パターンの 1例 を第 7図, 第 8図に示す。 第 7図, 第 8図で示した合成 平面パターン C l , C 2 は、 いずれも、 光路変更部にお いて形成すべき折れ曲がり導波路の平面パターンが角度 αで折れ曲がる 2本の直線導波路に相当する平面パター ン 6になっていて、 またその折曲部 6 aに位置する反射 部の平面パターン 7, 7 ' が三角形をなし、 その長辺 7 a , 7 ' aが前記平面パターン 6の折曲部 6 aを斜めに 横切った形状になっている。 すなわち、 これらの合成平 面パターン C 1 ( C 2 ) は、 平面パターン 6の角部 6 b が平面パターン 7 ( 7, ) と重なり合つている。 そして、 平面パターン 7, 7 ' の長辺 7 a, 7 ' aは、 いずれも、 各平面パターン 6の角度 の 2等分線と直交 する直線になっていて、 かつ、 平面パターン 6の側部と 4回交差することのない直線になっている。 Figs. 7 and 8 show an example of the composite plane pattern of the resist mask at this time. Each of the combined plane patterns C l and C 2 shown in FIGS. 7 and 8 is a two-line waveguide in which the plane pattern of the bent waveguide to be formed in the optical path changing section is bent at an angle α. The corresponding flat pattern 6 is formed, and the flat patterns 7, 7 'of the reflection portion located at the bent portion 6a form a triangle, and the long sides 7a, 7'a of the flat pattern 6 correspond to the triangular shape. It has a shape that crosses the bent part 6a diagonally. That is, in these composite plane patterns C 1 (C 2 ), the corners 6 b of the plane pattern 6 overlap with the plane pattern 7 (7,). Each of the long sides 7 a and 7 ′ a of the plane patterns 7 and 7 ′ is a straight line orthogonal to the bisector of the angle of each plane pattern 6, and the side part of the plane pattern 6. It is a straight line that does not cross four times.
すなわち、 長辺 7 a, 7 ' aは、 折曲部 6 aの内側折 点 6 c と外側折点 6 dとの間の個所で折曲部 6 aを斜め に横切るようになつている。 このような態様を採用しな い場合には、 形成された折れ曲がり導波路において、 一 方の直線導波路に入射した光を他方の直線導波路の方に 光路変更することができなくなるからである。  That is, the long sides 7a and 7'a obliquely cross the bent portion 6a at a portion between the inner bent portion 6c and the outer bent point 6d of the bent portion 6a. If such a mode is not adopted, it is impossible to change the light path of the light incident on one straight waveguide toward the other straight waveguide in the formed bent waveguide. .
なお、 第 7図の合成平面パターン C , は、 反射部に相 当する平面パターン 7が形成すべき反射部の平面パター ンと同一の形状をしている場合を示し、 また、 第 8図の 合成平面パターン C 2 は、 反射部に相当する平面パター ン 7 ' が形成すべき反射部の平面パターンより も面積が 大きい相似形になっている場合を示す。 この後者の態様 の場合には、 後述する B工程での凹部形成を高精度に行 うことができるので好適である。 Note that the composite plane pattern C, in FIG. 7 shows a case where the plane pattern 7 corresponding to the reflection section has the same shape as the plane pattern of the reflection section to be formed. synthesis plane pattern C 2 illustrates a case where the area is in larger similar figure than the planar pattern of the reflective portion to be formed flat pattern 7 'corresponding to the reflective portion. This latter mode is preferable because the concave portion can be formed with high precision in the step B described later.
素子基板に上記した合成平面パターン C! ( C 2 ) を 形成し、 その上から ドライエッチング技術を適用すると、 上記合成平面パターン ( C 2 ) が形成されていない 部分はエッチング除去されるので、 その結果、 素子基板 には、 形成すべき折れ曲がり導波路と反射部とが合体し た形状の平面パターンを有する リ ッジ部が形成される。 このように、 A工程においては、 1度の ドライエッチ ング技術の適用により、 正確に位置合わせされた状態で 折れ曲がり導波路と反射部とが合体した平面パターンが 形成される。 すなわち、 折れ曲がり導波路と反射部との 位置精度は、 この時点で高くなつている。 The composite plane pattern C! When (C 2 ) is formed and a dry etching technique is applied thereon, the portion where the composite plane pattern (C 2 ) is not formed is removed by etching, and as a result, it should be formed on the element substrate. A lid portion having a planar pattern in which the bent waveguide and the reflection portion are combined is formed. As described above, in the process A, a plane pattern in which the bent waveguide and the reflecting portion are united with accurate alignment is formed by applying the dry etching technique once. In other words, the positional accuracy between the bent waveguide and the reflection section is high at this point.
B工程は、 反射部になる凹部を形成する工程であるが、 上記したように形成したリ ッジ部に適用する場合につい て説明すると、 まず上記リ ッジ部のうち、 形成すべき反 射部以外の個所にレジス トマスクをホ ト リ ソグラフィー 技術によって形成し、 ついでここに ドライエッチング技 術を適用する。 その結果、 形成すべき反射部の個所のみ がェッチング除去されてそこに所定深さの凹部が形成さ れる。  The process B is a process of forming a concave portion to be a reflection portion. A description will be given of a case where the present invention is applied to the bridge portion formed as described above. A resist mask is formed by photolithography at locations other than the part, and then dry etching is applied. As a result, only the portion of the reflecting portion to be formed is removed by etching, and a concave portion having a predetermined depth is formed there.
このとき、 形成すべき折れ曲がり導波路の折曲部から 切除すべき角部の上面は、 第 6図で示した場合のように 段差をもって露出せずに平坦なキヤ ップ層として露出し ている。' したがって、 照射される例えば反応性イオンビ ームは平坦な面を順次エッチングし、 凹部を順次深く し ていく ことができる。  At this time, the upper surface of the corner to be cut away from the bent portion of the bent waveguide to be formed is exposed as a flat cap layer without being exposed with a step as in the case shown in FIG. . Therefore, the irradiated reactive ion beam, for example, can sequentially etch a flat surface and gradually deepen a concave portion.
その結果、 第 6図の素子基板の ドライエツチング時の ように、 角部 3 bと上部クラッ ド層 1 e間の段差の存在 に基づく ビーム焦点の不一致やビーム乱反射などは発生 しなく なり、 形成された凹部の各エッチング面 (反射部 の壁面) は平滑となり、 そのモフォロジー特性は向上す る。 As a result, as in the case of the dry etching of the element substrate shown in FIG. 6, the mismatch of the beam focus and the irregular reflection of the beam due to the presence of the step between the corner 3b and the upper cladding layer 1e do not occur, and the formation does not occur. Each etched surface (wall surface of the reflective portion) of the recessed portion becomes smooth, and its morphological characteristics are improved. You.
B工程を先行させた場合も同様の効果が得られる。 すなわち、 まず、 素子基板に、 ホ ト リ ソグラフィ 一技 術を適用して、 形成すべき反射部の個所を除いた平面パ ターンを有するレジス トマスクを形成し、 ついでそこに ドライエッチング技術を適用して所定深さの凹部を形成 すると、 その時点で、 形成すべき折れ曲がり導波路にお いて切除すべき角部に相当する部分も一緒にエツチング 除去される。 このとき、 エッチング面 (反射部の壁面) は、 前記理由と同じ理由で、 平滑な面になっている。  Similar effects can be obtained when the process B is performed first. That is, first, a photolithography technique is applied to the element substrate to form a resist mask having a plane pattern excluding a reflection portion to be formed, and then a dry etching technique is applied thereto. When a concave portion having a predetermined depth is formed by etching, a portion corresponding to a corner to be cut in the bent waveguide to be formed is also removed at that time. At this time, the etched surface (wall surface of the reflecting portion) is a smooth surface for the same reason as described above.
ついで、 得られた素子基板に、 既に説明した合成平面 パターンを有するレジス トマスクを形成する。 このとき、 前記した凹部にもマスク レジス 卜が充塡されることにな る。  Next, a resist mask having the composite plane pattern described above is formed on the obtained element substrate. At this time, the above-mentioned concave portion is also filled with the mask resist.
この状態で A工程を進める。 凹部にはマスク レジス ト が充塡されているので、 リ ッジ部の形成時に、 反射面に なる凹部の壁面が A工程時の ドライエツチング技術の適 用の影響を受けて粗面化することはない。  In this state, proceed to step A. Since the recesses are filled with a mask resist, the walls of the recesses that become the reflecting surfaces during the formation of the edge are roughened due to the application of the dry etching technology during the process A. There is no.
図 面 の 簡 単 な 説 明  Brief explanation of drawings
第 1図は、 反射型導波路素子の製造に用いる素子基板 の 1例を示す斜視図 ; 第 2図は、 素子基板の上に折れ曲 がり導波路用のレジス トマスクを形成した状態を示す斜 視図 ; 第 3図は、 折れ曲がり導波路を形成した状態を示 す斜視図 ; 第 4図は、 反射部用のレジス トマスクを形成 した状態を示す斜視図 ;第 5図は、 ドライエッチングに よって形成された反射部を示す斜視図;第 6図は、 第 4 図の素子基板を窓の方から見たときの斜視図;第 7図は、 本発明で形成するレジストマスクの合成平面パターンを 示す平面図 ;第 8図は、 レジストマスクの別の合成平面 パターンを示す平面図 ;第 9図は、 素子基板に合成平面 パターンを有するレジス トマスクを形成した状態を示す 斜視図;第 1 0図は、 ドライエッチング技術を適用して リ ッジ部を形成した状態を示す斜視図 ;第 1 1図は、 素 子基板に反射部用のレジス トマスクを形成した状態を示 す斜視図;第 1 2図は、 製造された反射型導波路素子の 斜視図;第 1 3図は、 素子基板に反射部用のレジストマ スクを形成した状態を示す斜視図;第 1 4図は、 ドライ エッチング技術を適用して凹部を形成した状態を示す斜 視図 ;第 1 5図は、 素子基板に合成平面パターンを有す るレジス トマスクを形成した状態を示す斜視図 ; および、 第 1 6図は、 製造された別の反射型導波路素子を示す斜 視図 ;である。 FIG. 1 is a perspective view showing an example of an element substrate used for manufacturing a reflective waveguide element; FIG. 2 is an oblique view showing a state in which a bent waveguide resist mask is formed on the element substrate. Perspective view; FIG. 3 is a perspective view showing a state in which a bent waveguide is formed; FIG. 4 is a resist mask for a reflecting portion formed FIG. 5 is a perspective view showing a reflecting portion formed by dry etching; FIG. 6 is a perspective view of the element substrate shown in FIG. 4 when viewed from a window; 7 is a plan view showing a combined plane pattern of a resist mask formed by the present invention; FIG. 8 is a plan view showing another combined plane pattern of a resist mask; FIG. 9 is a plan view showing a combined plane pattern on an element substrate. FIG. 10 is a perspective view showing a state in which a resist mask is formed; FIG. 10 is a perspective view showing a state in which a lid portion is formed by applying a dry etching technique; FIG. FIG. 12 is a perspective view showing a state in which a resist mask is formed; FIG. 12 is a perspective view of a manufactured reflective waveguide device; FIG. 13 is a resist mask formed on an element substrate for a reflective portion; Perspective view showing the condition; Fig. 14 is a dry etch FIG. 15 is a perspective view showing a state in which a concave portion is formed by applying a polishing technique; FIG. 15 is a perspective view showing a state in which a resist mask having a combined plane pattern is formed on an element substrate; and FIG. Is a perspective view showing another manufactured reflection type waveguide element.
実 施 例  Example
実施例 1  Example 1
まず、 第 1図で示したような層構造の素子基板 1を用 意した。 この素子基板 1 のキャ ップ層 1 f にレジス トを 塗布し、 そこにホトリソグラフィ ー技術を適用すること により、 第 9図で示したような合成平面パターンのレジ ス トマスク 8を形成する。 First, an element substrate 1 having a layer structure as shown in FIG. 1 was prepared. A resist is applied to the cap layer 1 f of the element substrate 1 and a photolithography technique is applied thereto, thereby forming a resist having a composite plane pattern as shown in FIG. A mask 8 is formed.
このレジス トマスク 8の平面パターンは、 第 8図で示 したように、 反射部に相当する平面パターン 7 ' が、 形 成すべき反射部の平面パターンより大きな面積になって いる相似平面パターンになっており、 また、 平面パター ン 6の折曲部における角度 αは 9 0 ° であり、 更に、 相 似平面パターン 7 ' の長辺は 4 5 ° の角度をなして折曲 部を斜めに横切っている。  As shown in FIG. 8, the plane pattern of the resist mask 8 is a similar plane pattern in which the plane pattern 7 'corresponding to the reflection section has a larger area than the plane pattern of the reflection section to be formed. The angle α at the bent part of the plane pattern 6 is 90 °, and the long side of the similar plane pattern 7 ′ is obliquely crossing the bent part at an angle of 45 °. I have.
この素子基板を R I Β Ε装置にセッ ト し、 平面パター ン 8の上から反応性イオンを照射し、 上部クラッ ド層 1 eの所定の厚み部分をエッチング除去したのち、 レジス トマスク 8を除去する。  The device substrate is set in an RIΒ device, and reactive ions are irradiated from above the plane pattern 8 to etch away a predetermined thickness portion of the upper cladding layer 1e, and then the resist mask 8 is removed. .
その結果、 第 1 0図で示したように、 残置する上部ク ラ ッ ド層 1 eの上には、 平面パターンがレジス トマスク 8の平面パターン 6 と同じ形状をしたリ ッジ形状の折れ 曲がり導波路 3 と、 同じく平面パターンがレジス トマス クの相似平面パターン 7 ' と同じ形状をしたリ ッジ状の 凸部 9 とが合体した形状のリ ッジ部 1 0が形成される。 この リ ッ ジ部 1 0の上面は、 キャ ップ層 1 f の表面その ものであり、 折れ曲がり導波路 3 と凸部 9 との間は同一 の水平面になっている。  As a result, as shown in FIG. 10, on the remaining upper clad layer 1e, a ridge-shaped bend in which the plane pattern has the same shape as the plane pattern 6 of the resist mask 8 is formed. A ridge portion 10 having a shape in which the waveguide 3 and a ridge-like convex portion 9 having the same shape as the similar planar pattern 7 ′ of the resist mask are combined is formed. The upper surface of the lid 10 is the surface of the cap layer 1f itself, and the same horizontal plane is formed between the bent waveguide 3 and the projection 9.
ついで、 ホ ト リ ソグラフィ一技術により、 上部リ ッジ 部 1 0 と露出している上部クラッ ド層 1 eの上にレジス トを塗布したのち、 第 1 1図で示したように、 形成すベ き反射部の平面パターンに相当するパターンの窓 4が前 記凸部 9の上に位置しているレジス トマスク 1 1 を形成 する。 すなわち、 このレジス トマスク 1 1の窓 4からは キャ ップ層 1 f の表面が露出している。 Next, a resist is applied on the upper lid portion 10 and the exposed upper cladding layer 1e by photolithography technology, and then the resist is formed as shown in FIG. Be A resist mask 11 is formed in which a window 4 having a pattern corresponding to the planar pattern of the reflective portion is located above the convex portion 9. That is, the surface of the cap layer 1 f is exposed from the window 4 of the resist mask 11.
第 1 1図で示した素子基板を R I B E装置にセッ 卜 し、 レジス 卜マスク 1 1の上面に反応性ィォンを照射するこ とにより、 窓 4から露出している部分をバッファ層 1 b または基板 1 a が露出する深さまでエッチング除去した のち、 レジス トマスク 1 1を除去する。  The element substrate shown in FIG. 11 is set in a RIBE apparatus, and the upper surface of the resist mask 11 is irradiated with a reactive ion so that the portion exposed from the window 4 becomes the buffer layer 1 b or the substrate. After etching and removing to a depth where 1a is exposed, the resist mask 11 is removed.
その結果、 第 1 2図で示したように、 凸部 9の所定位 置には深さがバッファ層 1 b (または基板 1 a ) の表面 にまで至り、 折れ曲がり導波路 3の折曲部 3 aにおける 角部を切除して成る凹部 5が形成される。  As a result, as shown in FIG. 12, the depth reaches the surface of the buffer layer 1 b (or the substrate 1 a) at a predetermined position of the convex portion 9, and the bent portion 3 of the bent waveguide 3 is formed. A concave portion 5 formed by cutting off a corner in a is formed.
この凹部 5における壁面 5 aは折れ曲がり導波路 3の 反射面を構成し.、 ここに折れ曲がり導波路 3 と前記反射 . 面 5 aを有する凹部 (反射部) 5が一緒になつて光路変 更部が形成される。  The wall surface 5a of the concave portion 5 constitutes a reflecting surface of the bent waveguide 3. The bent waveguide 3 and the concave portion (reflecting portion) 5 having the reflecting surface 5a are joined together to form an optical path changing portion. Is formed.
この凹部 5は、 段差が存在しない平坦な面に対する ド ライエッチング技術の適用によって形成されるので、 上 記段差に基づく ビーム焦点のずれや乱反射などは発生し ない。 したがって、 そのエッチング面、 すなわち壁面 (反射面) 5 aの平滑度は優れたものになる。  Since the concave portion 5 is formed by applying a dry etching technique to a flat surface having no step, the beam focus shift and irregular reflection due to the step do not occur. Therefore, the smoothness of the etched surface, that is, the wall surface (reflection surface) 5a becomes excellent.
実施例 2  Example 2
次に、 B工程を先行させたときの実施例を説明する。 まず、 第 1図で示したような層構造の素子基板 1 を用 意する。 この素子基板 1 のキヤ ップ層 1 f にレジス トを 塗布したのち、 ホ ト リ ソグラフィ ー技術を適用すること により、 第 1 3図で示したように、 平面パターンが四角 形になっている窓 4を有するレジス トマスク 1 2を形成 する。 Next, an embodiment in which the step B is performed first will be described. First, an element substrate 1 having a layer structure as shown in FIG. 1 is prepared. After applying a resist to the cap layer 1 f of the element substrate 1 and applying photolithography technology, the planar pattern becomes a square as shown in FIG. 13. A resist mask 12 having a window 4 is formed.
ついで、 この素子基板を例えば R I B E装置にセッ ト し、 レジス トマスク 1 2の上方から反応性イオンのビ一 ムを照射することにより、 窓 4から露出している部分を バッフ ァ層 l b または基板 l a が露出する深さまで エッチング除去したのち、 レジス トマスク 1 2を除去す る o  Then, the device substrate is set in, for example, a RIBE apparatus, and a beam of reactive ions is irradiated from above the resist mask 12 so that the portion exposed from the window 4 is covered with the buffer layer lb or the substrate la. O Remove the resist mask 12 after etching to the depth where
その結果、 第 1 4図で示したように、 素子基板 1の所 定個所には、 深さがバッファ層 1 b (または基板 1 a ) の表面にまで至り、 形成すべき折れ曲がり導波路の折曲 部から切除すべき角部が切除されている凹部 5が形成さ れる。 "  As a result, as shown in FIG. 14, the depth reaches the surface of the buffer layer 1b (or the substrate 1a) at a predetermined location of the element substrate 1, and the bent waveguide to be formed is bent. A concave portion 5 is formed in which a corner to be cut from the curved portion is cut. "
このときに凹部 5の各エッチング面、 すなわち各壁面 は、 いずれも段差の存在しない平坦な面を順次ドライエ ッチングして形成されていく ので、 ドライエッチングの 過程でビームの焦点のずれや乱反射は起こらず、 その結 果、 平滑度に優れた面として形成される。  At this time, each of the etched surfaces of the concave portion 5, that is, each of the wall surfaces is formed by sequentially dry-etching a flat surface without any step, so that the beam defocus and irregular reflection occur during the dry etching process. As a result, the surface is formed as a surface having excellent smoothness.
ついで、 ホ 卜 リ ソグラフィ一技術により、 第 1 4図で 示した素子基板の全面にマスク レジス トを塗布し、 第 1 5図で示したように、 形成すべき折れ曲がり導波路の平 面パターンと、 その折曲部に重なり合い、 前記した凹部 5の平面パターンよりも大面積でかつ相似形になってい る相似平面パターンとから成る合成平面パターンを有す る レジス トマスク 1 3を形成する。 このレジス 卜マスク 1 3の形成時には、 第 1 4図で示した凹部 5にもマスク レジストが充塡されることになる。 Next, a mask resist is applied to the entire surface of the element substrate shown in FIG. As shown in FIG. 5, a planar pattern of the bent waveguide to be formed and a similar planar pattern overlapping the bent portion and having a larger area and a similar shape than the planar pattern of the recess 5 described above. A resist mask 13 having a composite plane pattern composed of When the resist mask 13 is formed, the concave portion 5 shown in FIG. 14 is also filled with the mask resist.
なお、 このレジス トマスク 1 3では、 2本の直線導波 路に対応する各平面パターンにおける折曲部の折れ曲が り角度は 4 5 ° に設定されている。  In the resist mask 13, the bending angle of the bending portion in each plane pattern corresponding to the two linear waveguides is set to 45 °.
そして、 この素子基板を例えば R I B E装置にセッ ト し、 レジス トマスク 1 3の上方から反応性イオンのビー ムを照射して上部クラッ ド層 1 eの所定の厚み部分を除 去するまで、 前記レジス トマスク 1 3が形成されていな い個所をェッチング除去し、 最後にレジス トマスク 1 3 を除去する。  Then, the element substrate is set in, for example, a RIBE apparatus, and the resist mask is irradiated with a beam of reactive ions from above the resist mask 13 until a predetermined thickness of the upper cladding layer 1 e is removed. The portions where the resist mask 13 is not formed are removed by etching, and finally the resist mask 13 is removed.
そめ結果、 第 1 6図で示したように、 残置する上部ク ラッ ド層 1 eの上に、 リ ッジ形状をした折れ曲がり導波 路 3が形成され、 同時にレジス トマスクの除去により再 度露出した凹部 5とその周囲を土堤状に突出して取り囲 む枠部とから成る反射部を備えた光路変更部が形成され る。  As a result, as shown in Fig. 16, a ridge-shaped bent waveguide 3 was formed on the remaining upper cladding layer 1e, and at the same time, was exposed again by removing the resist mask. An optical path changing portion including a reflecting portion composed of the recessed portion 5 and a frame portion surrounding and projecting in a dike shape around the recessed portion 5 is formed.
この ドライエッチング過程においては、 既に形成され ている反射面 5 aは凹部 5に充塡されているレジストマ スクで被覆されているので、 最初に形成したときの平滑 な状態は保持され続ける。 In this dry etching process, the already formed reflecting surface 5a is filled with the resist Because it is covered with a mask, the smooth state when initially formed is maintained.
産業上の利用可能性  Industrial applicability
本発明の反射型導波路素子の製造方法においては、 形 成すべき折れ曲がり導波路の平面パターンとその折曲部 に形成すべき反射部の平面パターンまたはその相似形の パターンとが合体している合成平面パターンをホ ト リ ソ グラフィ一技術で素子基板に形成して ドライエッチング 技術を適用するので、 折れ曲がり導波路の形成工程と反 射部の形成工程のいずれを先行させても、 ドライエッチ ング技術は段差のない平坦な面に適用されることになり、 その結果、 折曲部におけるエッチング面 (反射面) のモ フォロジ一特性は優れたものになる。  In the method of manufacturing a reflective waveguide device according to the present invention, a combined pattern in which a planar pattern of a bent waveguide to be formed and a planar pattern of a reflective portion to be formed in the bent portion or a pattern similar thereto is combined. Since a flat pattern is formed on the element substrate using photolithography technology and dry etching technology is applied, the dry etching technology can be used regardless of whether the bent waveguide formation process or the reflection portion formation process is performed first. Is applied to a flat surface with no steps, and as a result, the morphological characteristics of the etched surface (reflection surface) at the bent portion become excellent.
そのため、 本発明方法で製造された反射型導波路素子 は反射部における反射損失特性が良好になり、 その伝搬 特性は向上する。  Therefore, the reflection type waveguide element manufactured by the method of the present invention has good reflection loss characteristics at the reflection portion, and its propagation characteristics are improved.
また、 本発明方法によれば、 ドライエッチング時のェ ッチングガスの種類や最適なエツチング条件などの選定 は容易になり、 製造工程の自由度が増大する。  Further, according to the method of the present invention, it is easy to select the type of the etching gas and the optimum etching conditions at the time of dry etching, and the degree of freedom of the manufacturing process is increased.

Claims

請 求 の 範 囲 The scope of the claims
. 下記から成る反射型導波路素子の製造方法: A method for manufacturing a reflective waveguide device comprising:
誘電体または化合物半導体から成る複数の層を積層し て成る素子基板にホトリソグラフィ一技術と ドライエツ チング技術を適用することにより、 前記素子基板に、 角 度 α (ただし、 αは、 0 ° < α < 1 8 0 ° ) で折れ曲が る折曲部を有する折れ曲がり導波路と、 前記折曲部の角 部の一部を切除したときの切除面を反射面とする反射部 とから成る光路変更部を形成する ;  By applying a photolithography technique and a dry etching technique to an element substrate formed by laminating a plurality of layers made of a dielectric or a compound semiconductor, the element substrate has an angle α (where α is 0 ° <α). (180 °)), an optical path change comprising a bent waveguide having a bent portion bent at (180 °) and a reflecting portion having a cut surface as a reflecting surface when a part of a corner of the bent portion is cut. Forming a part;
前記光路変更部を形成する工程には、 前記折れ曲がり 導波路の平面パターンと、 少なく とも前記反射部の平面 パターンよりも大面積でかつ前記反射部の平面パターン に相似した相似平面パターンとが前記折れ曲がり導波路 の平面パターンの折曲部で部分的に重なり合っている合 成平面パターンを有するレジス トマスクを前記素子基板 の上に形成したのち ドライエッチングを行なって、 前記 素子 ί板に、 前記合成平面パターンと同じ平面パターン を有するリ ッジ部を形成する工程; および、  In the step of forming the optical path changing portion, the bent waveguide planar pattern and at least the similar planar pattern having a larger area than the reflective portion planar pattern and similar to the reflective portion planar pattern are bent. After forming a resist mask having a composite plane pattern that partially overlaps the bent portion of the plane pattern of the waveguide on the element substrate, dry etching is performed, and the composite plane pattern is formed on the element substrate. Forming a lid portion having the same planar pattern as;
前記反射部の平面パターンと同じ平面パタ一ンを有す るレジス 卜マスクを前記素子基板の上に形成したのち ド ライエッチングを行なって、 前記素子基板に、 前記反射 部の平面パターンと同じ平面パターンを有する ω部を形 成する工程;  A resist mask having the same plane pattern as the plane pattern of the reflection section is formed on the element substrate, and then dry etching is performed on the element substrate to form the same plane as the plane pattern of the reflection section. Forming an ω portion having a pattern;
が含まれている。 It is included.
. 前記リ ッジ部を形成する工程が、 前記凹部を形成する 工程より も先行して進められる請求項 1の反射型導波路 素子の製造方法。2. The method of manufacturing a reflective waveguide device according to claim 1, wherein the step of forming the lid portion is performed prior to the step of forming the concave portion.
. 前記凹部を形成する工程が、 前記リ ッジ部を形成する 工程より も先行して進められる請求項 1 の反射型導波路 素子の製造方法。 The method for manufacturing a reflective waveguide device according to claim 1, wherein the step of forming the concave portion is performed prior to the step of forming the lid portion.
. 前記合成平面パターンを有するレジス トマスクにおい て、 前記相似平面パターンと前記折れ曲がり導波路の平 面パターンとの重なり合つている個所では、 前記相似平 面パターンの辺が前記折れ曲がり導波路の平面パターン の折曲部の角度 の 2等分線と直交している請求項 1の 反射型導波路素子の製造方法。 In the resist mask having the composite planar pattern, at a place where the similar planar pattern and the planar pattern of the bent waveguide overlap each other, the side of the similar planar pattern is the same as the planar pattern of the bent waveguide. 2. The method for manufacturing a reflective waveguide device according to claim 1, wherein the angle is perpendicular to a bisector of an angle of the bent portion.
PCT/JP1995/000472 1994-03-22 1995-03-17 Method of production of reflecting waveguide device WO1995025973A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6/76661 1994-03-22
JP7666194A JPH07261043A (en) 1994-03-22 1994-03-22 Formation of corner waveguide element

Publications (1)

Publication Number Publication Date
WO1995025973A1 true WO1995025973A1 (en) 1995-09-28

Family

ID=13611600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/000472 WO1995025973A1 (en) 1994-03-22 1995-03-17 Method of production of reflecting waveguide device

Country Status (3)

Country Link
JP (1) JPH07261043A (en)
CA (1) CA2163448A1 (en)
WO (1) WO1995025973A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100335373B1 (en) * 1999-11-25 2002-05-06 오길록 Grating-assisted codirectional coupler and method for fabricating the same
JP4501949B2 (en) * 2002-09-20 2010-07-14 凸版印刷株式会社 Manufacturing method of optical waveguide
JP2004280009A (en) * 2003-03-19 2004-10-07 Toppan Printing Co Ltd Optical waveguide and its manufacturing method
KR100508336B1 (en) * 2003-05-07 2005-08-17 광주과학기술원 Fabrication of optical waveguides with reflection mirrors and optical interconnects method using the fabricated optical waveguides

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256903A (en) * 1985-09-06 1987-03-12 Omron Tateisi Electronics Co Reflection type branching optical waveguide
JPH047508A (en) * 1990-04-25 1992-01-10 Oki Electric Ind Co Ltd Production of reflection type optical bending waveguide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256903A (en) * 1985-09-06 1987-03-12 Omron Tateisi Electronics Co Reflection type branching optical waveguide
JPH047508A (en) * 1990-04-25 1992-01-10 Oki Electric Ind Co Ltd Production of reflection type optical bending waveguide

Also Published As

Publication number Publication date
JPH07261043A (en) 1995-10-13
CA2163448A1 (en) 1995-09-28

Similar Documents

Publication Publication Date Title
EP1522882B1 (en) Optical waveguide having mirror surface formed by laser beam machining
US6993225B2 (en) Tapered structure for providing coupling between external optical device and planar optical waveguide and method of forming the same
US7672559B2 (en) Optical waveguide device and fabricating method thereof
JPWO2018083966A1 (en) Optical circuit and optical device
US20060182399A1 (en) System and method for low loss waveguide bends
WO1995025973A1 (en) Method of production of reflecting waveguide device
JP5535037B2 (en) Improved mirror design for silicon optical bench
JP4146788B2 (en) Optical waveguide connection module and method for fabricating the same
JP3200996B2 (en) Optical waveguide device
JP2002277661A (en) Method for cutting out optical waveguide device
JP3857707B2 (en) Optical device manufacturing method
JP2824314B2 (en) Method of manufacturing reflective optical bending waveguide
JPH05297244A (en) Light waveguide
US5410623A (en) Optical device having two optical waveguides connected and a method of producing the same
JP2005292245A (en) Optical element and manufacturing method thereof
JPH05196825A (en) Input/output structure of light guide
JP2010127999A (en) Planar waveguide element
JPS61133906A (en) Optical confluence circuit
JP2000180645A (en) Formation of optical connection end surface of optical waveguide element
JPH10142434A (en) Optical multiplexing element
JP2000147289A (en) Optical waveguide and its manufacture
JP4461633B2 (en) Manufacturing method of glass waveguide
JPH09166715A (en) Thin film optical circuit device
JP4265437B2 (en) Optical circuit board manufacturing method and optical circuit board
JP2006330067A (en) Right-angle bending waveguide and its manufacturing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

ENP Entry into the national phase

Ref document number: 1995 557061

Country of ref document: US

Date of ref document: 19951116

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2163448

Country of ref document: CA