WO1995023116A1 - Sistema integrado de tratamiento de aguas residuales - Google Patents

Sistema integrado de tratamiento de aguas residuales Download PDF

Info

Publication number
WO1995023116A1
WO1995023116A1 PCT/ES1995/000023 ES9500023W WO9523116A1 WO 1995023116 A1 WO1995023116 A1 WO 1995023116A1 ES 9500023 W ES9500023 W ES 9500023W WO 9523116 A1 WO9523116 A1 WO 9523116A1
Authority
WO
WIPO (PCT)
Prior art keywords
flotation
treatment system
sludge
sedimentation
aeration
Prior art date
Application number
PCT/ES1995/000023
Other languages
English (en)
French (fr)
Inventor
Antonio Gutierrez
Mario Diaz
Original Assignee
Universidad De Oviedo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Oviedo filed Critical Universidad De Oviedo
Priority to EP95908945A priority Critical patent/EP0713841A1/en
Publication of WO1995023116A1 publication Critical patent/WO1995023116A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1263Sequencing batch reactors [SBR]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/24Treatment of water, waste water, or sewage by flotation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1242Small compact installations for use in homes, apartment blocks, hotels or the like
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a system for the treatment of wastewater, industrial, urban or mixed, with great integration of operations, taking advantage of the interactions and flow characteristics between the different stages for the treatment.
  • the proposed system has advantages of flexibility, controllability and cost reduction for the treatment of certain wastewater.
  • the invention has special application in the field of wastewater treatment (urban and industrial) containing appreciable amounts of fats or other floating materials, and organic matter that can be eliminated by biological degradation.
  • Biological processes of high capacity are usually classified into processes of supported biomass (for example filters, biodisks, columns) and suspended biomass (activated sludge and its various modifications).
  • the system of the invention is designed to operate in the environment of suspended biomass processes, which basically consist of two processes or stages: aeration and sedimentation. In aeration the biodegradable materials are transformed into gases, water and, above all, cellular material, solids that must be separated from the clean water to be poured, through a process, often, of sedimentation.
  • SUBSTITUTED SHEET Aeration is performed classically in large continuous installations, using essentially turbines or bubblers.
  • the former more widespread, have a higher energy efficiency, although problems of fog occurrence are mentioned.
  • Bubbles of various types, have some advantages for adaptation to new types of bioreactors.
  • Various forms of flow in the continuous reactors have also been proposed, seeking some approximation to the requirements of successive degradation.
  • Sedimentation is usually carried out continuously in large installations.
  • the discontinuous process is well known, it is mostly used in the laboratory, for example to design the continuous process.
  • Perhaps the discontinuous process of greater volume occurs when the aeration is performed in discontinuous, which is usually followed by discontinuous separation of solids, constituting the processes of sequential type.
  • the system of the invention comprises an integrated treatment tank to which the waste water arrives, prior to the disposal by prewriting of coarse solids, where it will be continuously subjected to a flotation process,
  • the feeding can be continuous or discontinuous, while the aeration-sedimentation are sequential.
  • the main feature of the system of the invention is that there is an interaction that is controlled between the different stages: flotation, aeration and sedimentation.
  • This interaction between aeration and sedimentation is analogous to that of sequential processes, but with the particularity that sludge separation can also be done through flotation.
  • Aeration and flotation are simultaneous in some parts of the process, and flotation of fats and floating solids is influenced by the presence of biological flocs during flotation.
  • the invention proposes to integrate flotation-aeration-sedimentation processes into a system that are advantageous for the treatment of various wastewater.
  • the classification of these integrated processes can be done based on the following options:
  • This option is more complex, it allows a continuous operation of the flotation with the desired interaction by the aeration-sedimentation, thus requiring greater control.
  • the system of the invention has interactions between the flows and the work of the equipment in which it is carried out, such as:
  • the stabilized sludges are traversed with a stream of partially treated water, short time, the organic matter being adsorbed in a manner similar to oxidation-stabilization.
  • Figure 1 is a general scheme (A elevation, B plant) of the system with air pump arrangement.
  • the numerical references identify the following elements: 1 flotation chamber, 2 mixing chamber, 3 aeration and sedimentation chamber, 4 feed, 5 air, 6 supernatant, 7 floating, 8 sludge, 9 float outlet, 10 fat collection.
  • FIG. 2 is a detail of the air pumping: 11 air pump tube, 12 closure of the grease and liquid outlet zone.
  • Figure 3 is a general scheme (A elevation, B plant) of the system with venturi arrangement: 1 flotation chamber, 2 mixing chamber, 3 aeration and sedimentation chamber, 4 feed, 5 air, 6 supernatant, 7 floating, 8 sludge, 9 float outlet, 10 grease collection, 13 air outlet from the mixing chamber.
  • SUBSTITUTED SHEET Figure 4 represents forms of the venturi (A without extra air, B with extra air): 2 mixing chamber, 4 feed, 5 air, 8 sludge.
  • Figure 5 represents the arrangement of the diffusers within the equipment (A lower floor, B upper floor): 5 air, 14 diffusers, 4 feed, 6 supernatant.
  • Figure 6 represents (A side elevation, front B) a porous diffuser 14 and its anchor: manifold.
  • Figure 7 represents the feeding and aeration of the float (A raised, B perspective): 4 feed, 5 air, 14 diffusers, 11 air pump tube.
  • Figure 8 represents the collection of floats in the float: 16 engine, 17 grease drag scrapers.
  • Figure 9 represents the sludge outlet of the float: 9 sludge purge from the float.
  • Figure 10 represents the collection of floats and effluent in the float, and passage to the mixing chamber: 18 grease chamber, 10 grease and float collection hopper, 19 grease and float outlet, 1 liquid chamber, 12 closure separator of the grease chamber of the liquid, 20 pipe from flotation to mixing.
  • Figure 11 represents the passage windows of the aeration mixing chamber (A elevation, B plant): 2 mixing chamber, 5 air, 21 windows.
  • Figure 12 depicts a telescopic device for supernatant output: 22 motor, 23 screw, 24 screen.
  • Figure 13 represents the general sludge discharge.
  • SUBSTITUTED SHEET Figure 14 represents the accesses and operating platform in the system (A elevation, B plant): 25 platform, 26 stairs.
  • - Diffusers are arranged in the equipment in two heights; a low, near the bottom for general aeration, and a low, arranged on the float to supply the air for flotation (Figure 5).
  • these diffusers 14 will be arranged on general collectors 15 that will be supported on the funds of the equipment itself ( Figure 6).
  • Fats and floats are collected on the surface of the float and dragged by means of scrapers 17 (Figure 8) into an exit hole 19 after passing through a ramp that prevents the liquid from leaking out ( Figure 10).
  • the clarified supernatant can be extracted from the equipment either by a fixed pipe 6 arranged in its upper part or, for example, by means of a device that moves inside the liquid mass collecting the liquid, such as a landfill that pivots on an axis sinks in a programmed way, or also a floating landfill that moves by means of a mechanism, or even by a telescopic type landfill ( Figure 12) with programmed actuation, mechanically or in function of a quality control of the supernatant.
  • a device that moves inside the liquid mass collecting the liquid, such as a landfill that pivots on an axis sinks in a programmed way, or also a floating landfill that moves by means of a mechanism, or even by a telescopic type landfill ( Figure 12) with programmed actuation, mechanically or in function of a quality control of the supernatant.
  • the solids generated in the biological treatment can be separated in the float, as floats, after passing from the reactor to the float, or in the reactor itself, for this there is an outlet pipe 8 at the foot of the equipment ( Figure 13) . If you want to increase the concentration of the solids extracted, you can arrange a pot attached to the reactor wall.
  • the raw water to be treated enters the float ( Figure 7) passing, through a communicating vessel system, to the mixing chamber 2 and subsequently, through communication windows 21, to the aeration and sedimentation chamber 3 ( Figure 11).
  • Communication between mixing chamber 2 and flotation chamber 1 occurs, for example, by one of the following two devices: air pump ( Figure 2) or venturi ( Figure 4). In both cases, liquor passage from mixing chamber 2 to flotation 1 occurs.
  • the communication between the mixing and aeration chambers 3 is total by the aeration itself.
  • the equipment constitutes by itself a rigid structure, presenting in its upper part a work platform 25, with auxiliary equipment arrangement, as well as access to the different points of the installation ( Figure 14).
  • Flotation with constant free surface obtainable by overflow, differentiating (a.l) and not differentiating (a.2) two zones in the flotation and dispersion tank.
  • the times indicated are a function of the characteristics of the waters to be treated and the level of purification desired. Characteristic orders of magnitude are: ti between 1 and 24 hours, t4-tl between 0.1 and 12 hours, t4-t2 between 0.1 and 3 hours and t4-t3 between 0.05 and 1 hour.
  • the raw water to be treated continuously enters the bottom, above the aerators, of the flotation chamber 1.
  • the float is aerated continuously, the fats and floating solids are continuously dragged to the surface of where they are removed, while the liquid taken from the bottom of the float passes
  • SUBSTITUTED SHEET also continuously, by means of a communicating vessel, to the mixing chamber 2.
  • the mixing chamber 2 is fed continuously and is aerated during the same period that the aeration chamber 3 is, so that a complete mixing is caused, and at the same time by means of an air pumping tube 11, which crosses the float and discharges on its surface, a part of the mixed liquor passes to the flotation chamber 1. During the period that is not aerated, the chamber 2 is fed and the flow generated is of the piston type.
  • the aeration and sedimentation chamber 3 is fed continuously through the lower windows 21 that communicate with the mixing chamber 2.
  • This chamber is strongly aerated for a while, which allows a good mixing and adsorption-degradation of the organic matter, subsequently going to the sedimentation phase, during which all aeration is interrupted, which allows the sedimentation of the sludge and a clarification of the supernatant.
  • the experiments have been carried out in a pilot plant reactor of 1.4 m 3 of total volume, section 0.36 m 2 and 4 m high. It is provided with aeration and mixing by bubbling, through the use of fine bubble membrane holes and bubblers.
  • the mixture liquor was transported by means of an air pump with a 0.08 m diameter pipe.
  • the air flows used were maintained within the range of 1 to 10 m 3 / hour with a working pressure of 1 to 6 bar.
  • Both the feeding and the different outputs were made through pneumatic valves.
  • the feeding is prepared in a 100 dm 3 tank and is introduced by means of a peristaltic pump of variable flow, between 0.01 and 6,000 dm 3 / h.
  • the control of the installation, fundamentally the programming of times, was carried out through a programmable automaton and by means of a computer in basic language.
  • Example 2 Chemical industry waste An industrial waste stream with 600 mg / dm 3 of oils and 800 mg / dm 3 of BOD at the entrance is treated in a single device increasing the percentage occupied by flotation and operating times up to 100% To obtain efficiencies of 90% oil removal and 90% BOD, degradation times of 8 hours and a settling time of 2 hours are required.
  • a dairy company residue with 400 mg / dm 3 of fats and 400 mg / dm 3 of BOD is treated with a device like the one indicated above, the elimination of fats by flotation is regulated between 10 and 95% for a correct handling of sludge You can easily obtain more than 90% fat removal and more than 97% BOD removal, with degradation times of 5 hours and sedimentation of 1.5 hours.

Abstract

Sistema integrado de tratamiento de aguas residuales que comprende los elementos de tratamiento primario por flotación (1), tanque de aeración biológico (3) y el de sedimentación (3) para separación de lodos, en un solo equipo, en el cual mediante control de tiempos y de las interacciones y flujos entre las etapas de flotación-aeración-sedimentación, se consigue tratar una corriente de agua residual (4) para obtener un agua depurada (6) cumpliendo con las normativas usuales, y unos lodos (8) que pueden ser enviados a concentración.

Description

Sistema integrado de tratamiento de aguas residuales
La presente invención se refiere a un sistema para el tratamiento de aguas residuales, industriales, urbanas o mixtas, con gran integración de operaciones, aprovechamiento de las interacciones y características de flujo entre las diferentes etapas para el tratamiento. El sistema que se propone presenta ventajas de flexibilidad, controlabilidad y reducción de costes para el tratamiento de determinadas aguas residuales.
La invención tiene especial aplicación en el campo del tratamiento de aguas residuales (urbanas e industriales) que contienen cantidades apreciables de grasas u otros materiales flotables, y de materia orgánica susceptible de ser eliminada por degradación biológica.
Estado de la técnica
La flotación como operación primaria del tratamiento de aguas residuales urbanas es bien conocida. Esta operación se ha realizado en proceso continuo con una superficie libre constante que se mantiene con el tiempo. No obstante, se ha planteado como una operación separada y diferenciada.
Los procesos biológicos de alta capacidad suelen clasificarse en procesos de biomasa soportada (por ejemplo filtros, biodiscos, columnas) y de biomasa suspendida (lodos activados y sus diversas modificaciones) . El sistema de la invención está concebido para operar en el entorno de los procesos de biomasa suspendida, que constan básicamente de dos procesos o etapas: aeración y sedimentación. En la aeración los materiales biodegradables se transforman en gases, agua y, sobre todo, material celular, sólidos que deben separarse del agua limpia a verter, mediante un proceso, frecuentemente, de sedimentación.
HOJA SUSTITUIDA La aeración se realiza clásicamente en grandes instalaciones continuas, usando esencialmente turbinas o burbujeadores. Las primeras, más extendidas, tienen una eficacia energética más alta, aunque se mencionan problemas de aparición de neblinas. Los burbujeadores, de diversos tipos, presentan algunas ventajas para su adaptación a nuevos tipos de biorreactores. También se han propuesto diversas formas de flujo en los reactores continuos, buscando alguna aproximación a los requerimientos de degradación sucesiva.
Los reactores discontinuos, menos usados y para caudales más bajos, han sido ya propuestos desde inicios de este siglo, y pueden ser usados ajustando mejor las necesidades de degradación con el tiempo.
La sedimentación se realiza habitualmente en continuo en grandes instalaciones. El proceso discontinuo se conoce bien, se usa sobre todo en laboratorio, por ejemplo para diseñar el proceso continuo. Quizá el proceso discontinuo de mayor volumen se presenta cuando se realiza la aeración en discontinuo, que suele ir seguida entonces de separación discontinua de sólidos, constituyendo los procesos de tipo secuencial.
En resumen, en el proceso de tratamiento de aguas residuales con flotación y lodos activados, ambos en continuo, se precisan tres tanques (TI, T2, T3) , con dedicación temporal del 100%, cada uno de ellos:
100 o 100 o 100
Flotación Aeración Sedimentación
TI T2 T3
En los procesos de tipo reactor secuencial, en el sistema de
HOJA SUSTITUIDA tanques separados, se precisan tres tanques:
100 60 Llenado
Flotación Aeración TI'
60 80 100
Sedimentación- aciado
TI T2
T3
o dos tanques, con uno separado en zonas, si se aprovecha la dispersión de flujo:
100 o 60 60 80 100
Flotación Aeración Sedimentación-vaciado
Llenado
TI
T2 + Dispersión
Descripción de la invención
La integración de la flotación con las operaciones involucradas en el tratamiento biológico de las aguas residuales podría aprovechar diferentes sinergismos, sobre todo con el proceso de aeración, e incluso procurar una separación de flóculos biológicos por cabeza de la operación a través de la flotación. Para ello, de acuerdo con la invención, se plantean diversas alternativas posibles, se seleccionan algunas opciones de operación utilizables según el tipo de agua a tratar, y se plantean soluciones técnicas para poder llevar a cabo los esquemas de operación planeados.
El sistema de la invención comprende un tanque de tratamiento integrado al cual llega el agua residual, previa eliminación por precribado de sólidos gruesos, donde se someterá de forma continuada a un proceso de flotación,
HOJA SUSTITUIDA mezcla-retardo-aclimatación y aeración-sedimentación. La alimentación puede ser continua o discontinua, mientras que la aeración-sedimentación son secuenciales.
La característica principal del sistema de la invención es que existe una interacción que se controla entre las distintas etapas: flotación, aeración y sedimentación. Esta interacción entre aeración y sedimentación es análoga a la de los procesos secuenciales, pero con la particularidad de que la separación de lodos puede hacerse también a través de la flotación. La aeración y flotación son simultáneas en alguas partes del proceso, y la flotación de grasas y sólidos flotables viene influida por la presencia de flóculos biológicos durante la flotación.
Aeración
Agua bruta- Flotación Dispersión
Grasas Sólidos
Sedimentación
Sólidos Efluentes
La invención propone integrar en un sistema los procesos de flotación-aeración-sedimentación que resultan ventajosos para el tratamiento de diversas aguas residuales. La clasificación de estos procesos que se integran puede realizarse en base a las opciones siguientes:
- Flotación:
(1 - - -) Con superficie libre constante. (2 - - -) Con superficie libre variable, que puede dividirse en:
(2 - - -) Continua (Dos zonas, por ejemplo por el centro aerar, por el lateral arrastrar) , o
(2'- - -) Discontinua. (Aerar - parar - arrastrar)
HOJA SUSTITUIDA (- A - -) Con diferenciación de zonas de flotación y dispersión.
(- B - -) Sin diferenciación de zonas de flotación y dispersión.
- Aeración:
(- - 1 -) Con superficie libre variable.
(- - 1' -) Con superficie libre constante.
(- - 2 -) Sin separación neta (cierre) de cámara previa,
(- - 2' -) Con separación (cierre) de la cámara previa.
(- - 3 -) Sin separación de zonas de mezcla.
(- - 3' -) Con separación de zonas de mezcla.
- Sedimentación:
(- - - 1) Superficie libre variable. (- - - 1') Superficie libre fija. (- - - 2) Extracción de sobrenadante, que puede ser: (- - - 2) Extractor a profundidad fija, o (- - - 2') Extractor siguiendo el frente de sedi¬ mentación.
Al trabajar con un sistema integrado, las trayectorias con el tiempo son diferentes que en los tratamientos clásicos conocidos. En los esquemas que siguen se indica una fracción de tiempos iniciales según las posibles opciones.
- Opción básica.
Con igual trayectoria de aire en el tanque.
0 60 60 80 100
Aeración Sedimentación-vaciado
Flotación Llenado
T2 + Dispersión
Esta opción es simple, sin separación entre zonas, pero por el contrario la flotación es intermitente.
HOJA SUSTITUIDA - Opción avanzada
Con distinta trayectoria de aire en el tanque.
60 60 80 100
Aeración Sedimentación- aciado
Flotación Llenado
T2 + Dispersión
Esta opción es más compleja, permite un funcionamiento continuo de la flotación con la interacción que se desee por parte de la aeración-sedimentación, exigiendo por ello un mayor control.
En todos los ciclos anteriores, los valores 0, 60, 80, 100 son sólo indicativos y deben ajustarse en cada operación en función del tipo de residuo y características cinéticas.
El sistema de la invención presenta interacciones entre los flujos y las labores del equipo en que se realice, tales como:
Entre flujos, mediante: Sobrenadantes Flujo inferior
Cambio de niveles por burbujeo Bombeo por aire Venturi
Entre labores
Flotación-sedimentación:
Arrastrar los flóculos desde la floculación a la celda de flotación. Se favorece la separación de grasas. Regular la cantidad de grasa que se extrae en relación con la que se separa por degradación.
Flotación-aerobio:
En flotación se produce al mismo tiempo la
HOJA SUSTITUIDA degradación aerobia, aprovechándose este volumen como cámara previa, dado que también hay flóculos. La separación de grasas facilita la degradación aerobia.
Aerobio-sedimentación
Los flóculos recién aerobizados sedimentan mal, por eso conviene dejarlos un tiempo para que lo pierdan, lo que se hace al ser proceso discontinuo. Por otra parte, durante la sedimentación, los lodos estabilizados se atraviesan con una corriente de agua tratada parcialmente, tiempo corto, siendo adsorbida la materia orgánica en forma parecida a la oxidación-estabilización.
En procesos donde se suceden etapas aerobio-anaerobio, por ejemplo para la eliminación de nitrógeno y de fósforo, se pueden desarrollar diversas estrategias, con iguales o análogos equipos para producir la desnitrificación en medio anóxico por agitación suave que puede ser incluso neumática periódica, o para retener el fósforo en el proceso anaerobio, para lo que se deben sustituir los ciclos según la eliminación que se busque, y los momentos de extracción y adición de corrientes.
Las ventajas del sistema de la invención frente a otros métodos existentes pueden resumirse en: - Sistema compacto.
- Sistema integrado.
- Sistema flexible.
- Fácil de operar.
- Fácil adaptación a los cambios (más que el SBR) . - Posibilidad de hacer un mayor desarrollo en cada una de las tres operaciones con el mismo equipo, aumentando unas y disminuyendo otras.
- Posibilidad de operación global y parcialmente en continuo y discontinuo. - Separación simultánea de grasas y lodos.
HOJA SUSTITUIDA - Control de la separación de flóculos por flotación
Capacidad de generar mezclas de grasas y lodos adecuadas para posteriores tratamientos.
Posibilidad de separar la materia orgánica bien mecánicamente (flotación) o por degradación-oxidación (aerobio-anaerobio) .
- Operación con nitrificación-desnitrificación.
Debe indicarse que donde aparece el proceso de aeración, cuando se trabaja con nitrificación-desnitrificación se debe sustituir con etapas sucesivas aerobia-anaerobia, por lo que las alternativas de utilización del sistema de la invención se multiplican.
índice de las figuras
En las hojas de dibujos que se acompañan:
La Figura 1 es un esquema general (A alzado, B planta) del sistema con disposición de bomba de aire. Las referencias numéricas identifican los siguientes elementos: 1 cámara de flotación, 2 cámara de mezcla, 3 cámara de aeración y sedimentación, 4 alimentación, 5 aire, 6 sobrenadante, 7 flotantes, 8 lodos, 9 salida de flotador, 10 recogida de grasas.
La Figura 2 es un detalle del bombeo por aire: 11 tubo de bomba de aire, 12 cierre de la zona de salida de grasas y líquido.
La Figura 3 es un esquema general (A alzado, B planta) del sistema con disposición venturi: 1 cámara de flotación, 2 cámara de mezcla, 3 cámara de aeración y sedimentación, 4 alimentación, 5 aire, 6 sobrenadante, 7 flotantes, 8 lodos, 9 salida de flotador, 10 recogida de grasas, 13 salida del aire de la cámara de mezcla.
HOJA SUSTITUIDA La Figura 4 representa formas del venturi (A sin aire extra, B con aire extra) : 2 cámara de mezcla, 4 alimentación, 5 aire, 8 lodos.
La Figura 5 representa la disposición de los difusores dentro del equipo (A planta inferior, B planta superior) : 5 aire, 14 difusores, 4 alimentación, 6 sobrenadante.
La Figura 6 representa (A alzado lateral, B frontal) un difusor poroso 14 y su anclaje: 15 colector.
La Figura 7 representa la alimentación y aireación del flotador (A alzado, B perspectiva) : 4 alimentación, 5 aire, 14 difusores, 11 tubo de la bomba de aire.
La Figura 8 representa la recogida de flotantes en el flotador: 16 motor, 17 rasquetas de arrastre de grasas.
La Figura 9 representa la salida de lodos del flotador: 9 purga de fangos del flotador.
La Figura 10 representa la recogida de flotantes y efluente en el flotador, y paso a la cámara de mezcla: 18 cámara de grasas, 10 tolva de recogida de grasas y flotantes, 19 salida de grasas y flotantes, 1 cámara del líquido, 12 cierre separador de la cámara de grasas de la del líquido, 20 tubería de paso de flotación a mezcla.
La Figura 11 representa las ventanas de paso de la cámara de mezcla a aeración (A alzado, B planta) : 2 cámara de mezcla, 5 aire, 21 ventanas.
La Figura 12 representa un dispositivo telescópico para salida de sobrenadante: 22 motor, 23 tornillo sinfín, 24 pantalla.
La Figura 13 representa la descarga general de lodos.
HOJA SUSTITUIDA La Figura 14 representa los accesos y plataforma de operación en el sistema (A alzado, B planta) : 25 plataforma, 26 escalera.
Modos de realización de la invención
Como elementos precisos para el funcionamiento de un equipo según el sistema de la invención, se definen:
- Geometría del reactor
Se considera inicialmente una geometría circular, presentando en su interior otros elementos de igual geometría, no obstante la geometría puede ser paralelepipédica, poligonal o derivada, pudiendo ser los elementos interiores de igual o diferente geometría y estando situados en alguno de sus lados o en el centro.
- Difusores Se disponen en el equipo en dos alturas; una baja, cercana al fondo para la aeración general, y otra alta, dispuesta en el flotador para suministrar el aire para flotación (Figura 5) . En ambos casos, estos difusores 14 se encontrarán dispuestos sobre unos colectores generales 15 que irán soportados sobre los fondos del propio equipo (Figura 6) . En cuanto a los tipos de difusores estos pueden ser de orificios y de placas porosas. En todo caso tienen que poseer la característica de poder actuar (soplar) durante cortos espacios de tiempo (4 a 6 segundos) cada cierto tiempo, lo que también puede ser usado como agitación durante ciertos periodos de condición anóxica.
- Separadores de grasas y flotantes
Las grasas y flotantes son recogidos en la superficie del flotador y arrastrados por medio de unas rasquetas 17 (Figura 8) hacia un orificio de salida 19 previo paso por una rampa que evita la salida del líquido (Figura 10) .
HOJA SUSTITUIDA - Separación de sobrenadante
El sobrenadante clarificado se puede extraer del equipo bien por una tubería fija 6 dispuesta en su parte superior o, por ejemplo, mediante algún dispositivo que se desplace dentro de la masa líquida recogiendo el líquido, tal como un vertedero que pivotando sobre un eje se hunda de forma programada, o también un vertedero flotante que se desplace por medio de un mecanismo, o incluso por un vertedero de tipo telescópico (Figura 12) con accionamiento programado, mecánicamente o en función de un control de calidad del sobrenadante.
- Separadores de sólidos
Los sólidos que quedan en el fondo del flotador son extraídos por un proceso automático, bien fuera del equipo o bien al reactor biológico (Figura 9) .
Los sólidos generados en el tratamiento biológico se pueden separar en el flotador, como flotables, previo paso del reactor al flotador, o en el propio reactor, para ello se dispone de una tubería de salida 8 a pié de solera del equipo (Figura 13) . En caso de querer aumentar la concentración de los sólidos extraídos se puede disponer una poceta adosada a la pared del reactor.
- Interacción entre zonas
El agua bruta a tratar entra en el flotador (Figura 7) pasando, por medio de un sistema de vaso comunicante, a la cámara de mezcla 2 y posteriormente, por medio de unas ventanas de comunicación 21, a la cámara de aeración y sedimentación 3 (Figura 11) . La comunicación entre la cámara de mezcla 2 y la de flotación 1 se produce, por ejemplo, mediante uno de los dos dispositivos siguientes: bomba de aire (Figura 2) o venturi (Figura 4) . En ambos casos se produce paso de licor de la cámara de mezcla 2 a la de flotación 1. La comunicación entre las cámaras de mezcla y la de aeración 3 es total por la propia aireación.
HOJA SUSTITUIDA - Estructura
El equipo constituye por sí mismo una estructura rígida, presentando en su parte superior una plataforma de trabajo 25, con disposición de equipos auxiliares, así como unos accesos a los distintos puntos de la instalación (Figura 14) .
- Procesos
Al considerar la integración de procesos, se presentan diversas alternativas para las que se desarrollan soluciones mecánicas y de operación adecuadas para tener una eficacia adecuada del sistema.
Son objeto de esta invención los procesos:
a) Proceso con flotación constante de rebose.
Flotación con superficie libre constante, obtenible por rebose, diferenciando (a.l) y no diferenciando (a.2) dos zonas en el tanque de flotación y dispersión.
Así, pueden contruirse diversas opciones según los esquemas (1,A-l,2,3' -x) ... (1,B-1,2,3'- x) expuestos en páginas anteriores, en los cuales x significa cualquiera de las opciones mencionadas.
b) Proceso con flotación constante de cierre.
Flotación con superficie libre constante, obtenible por cierre controlado con el tanque de aeración: esquemas (l,x- 1,2'x-x) .
c) Proceso con flotación variable.
Flotación con superficie libre variable. La misma que en el aerador (el) o modificada en parte usando distinta retención de gas en el aerador y en el flotador (c.2) .
d) Proceso con flotación discontinua. Se airea al tiempo que en el aerador, pero para el arrastre de grasas se interrumpe previamente, se deja pasar un
HOJA SUSTITUIDA tiempo, y se hacen funcionar las rasquetas (durante la decantación en el aerador) .
Ejemplo de configuración del sistema
A continuación se describe de forma detallada el proceso designado como a.l, con reciclo de bombeo por aire:
Un ciclo característico de operación sería:
O P E R A C I Ó N T I E M P O 0 ti t2 t3 t4
Flotación
Mezcla
Aeración
Sedimentación Salida sobrenadante Descarga de lodos
Los tiempos señalados son función de las características de las aguas a tratar y del nivel de depuración deseado. Ordenes de magnitud característicos son: ti entre 1 y 24 horas, t4-tl entre 0,1 y 12 horas, t4-t2 entre 0,1 y 3 horas y t4-t3 entre 0,05 y 1 hora.
Los tiempos señalados son también indicativos para otras posibles configuraciones del sistema objeto de la invención.
El agua bruta a tratar entra de forma continua en la parte inferior, por encima de los aeradores, de la cámara de flotación 1. El flotador es aireado de forma continua, las grasas y los sólidos flotantes son arrastrados de forma continua a la superficie de donde son retirados, mientras que el líquido tomado de la parte baja del flotador pasa
HOJA SUSTITUIDA igualmente de forma continua, por medio de un vaso comunicante, a la cámara de mezcla 2.
La cámara de mezcla 2 es alimentada de forma continua y está aireada durante el mismo periodo que lo esté la cámara de aeración 3, por lo que se provoca una mezcla completa, y al mismo tiempo por medio de un tubo de bombeo por aire 11, que atraviesa el flotador y descarga en su superficie, pasa una parte del licor mezcla a la cámara de flotación 1. Durante el periodo que no se airea, la cámara 2 se alimenta y el flujo que se genera es del tipo pistón.
La cámara de aeración y sedimentación 3 es alimentada de forma continua a través de las ventanas inferiores 21 que comunican con la cámara de mezcla 2. Esta cámara está fuertemente aerada durante un tiempo, lo que permite una buena mezcla y la adsorción-degradación de la materia orgánica, pasando posteriormente a la fase de sedimentación, durante la cual se interrumpe toda aireación, lo cual permite la sedimentación de los lodos y un clarificado del sobrenadante.
Al cabo de un tiempo de iniciarse la sedimentación, se provoca la salida del clarificado depurado y posteriormente se retiran por el fondo 8 los lodos en exceso que se hayan producido y no hayan sido retirados por flotación. Una vez acabadas estas operaciones comienza de nuevo el ciclo.
Otros sistemas de acuerdo con la invención se configurarían de forma análoga a la descrita anteriormente, con las diferencias inherentes a los cambios introducidos, por ejemplo con referencia a los procesos antes designados como b, c, y d.
b) Flotación constante de cierre: Deja más libertad de niveles en las diferentes partes del sistema.
c) Flotación variable: Se simplifica la relación de niveles,
HOJASUSTITUIDA que resulta uniforme en el interior, debiendo regularse mecánicamente la salida de flotantes del flotador.
d) Flotación discontinua: Se simplifica el control de aire a los procesos, el mismo en todas las partes, realizándose la salida de flotantes a través de tiempos.
Ejemplos de aplicación
Los experimentos se han realizado en un reactor de planta piloto de 1,4 m3 de volumen total, sección 0,36 m2 y 4 m de altura. Está provisto con aeración y mezcla por burbujeo, mediante el empleo orificios y burbujeadores de membrana de burbuja fina. El transporte del licor mezcla se realizó por medio de una bomba de aire con una tubería de 0,08 m de diámetro. Los caudales de aire empleados se mantuvieron dentro del intervalo de 1 a 10 m3/hora con una presión de trabajo de 1 a 6 bar. Tanto la alimentación como las diferentes salidas se realizaban a través de válvulas neumáticas. La alimentación se prepara en un tanque de 100 dm3 y se introduce por medio de una bomba peristáltica de caudal variable, entre 0,01 y 6.000 dm3/h. El control de la instalación, fundamentalmente la programación de tiempos, se realizó a través de un autómata programable y por medio de un ordenador en lenguaje basic.
Siguen ejemplos de utilización del sistema de la invención aplicado a diversos problemas de aguas residuales:
Ejemplo 1. Residuo mezcla urbana
Una corriente de agua residual urbana con 200 mg/dm3 de grasas, y 250 mg/dm3 de DBO a la entrada, que habría necesitado tres tanques con los procesos convencionales, mediante el sistema de la invención en un sólo equipo permitiría eliminar en la zona de flotación el 50% de la grasa y alrededor del 30% de la DBO. Se obtiene a la salida alrededor del 90% de eliminación de grasa, y 95% de DBO, con tiempos de degradación de 4,5 horas y 1 hora de
HOJA SUSTITUIDA sedimentación.
Ejemplo 2. Residuo industria química Una corriente residual industrial con 600 mg/dm3 de aceites y 800 mg/dm3 de DBO a la entrada, se trata en un sólo equipo aumentando el porcentaje ocupado por la flotación y los tiempos de operación hasta el 100%. Para obtener eficacias del 90% de eliminación de aceites y 90% de DBO se precisan tiempos de degradación de 8 horas y un tiempo de sedimentación de 2 horas.
Ejemplo 3. Residuo lácteo
Un residuo de empresa láctea con 400 mg/dm3 de grasas y 400 mg/dm3 de DBO se trata con un equipo como el antes indicado, se regula la eliminación de grasas por flotación entre 10 y 95% para un correcto manejo de los lodos. De forma sencilla se puede obtener más de un 90% de eliminación de grasas y más del 97% de eliminación de DBO, con tiempos de degradación de 5 horas y sedimentación de 1,5 horas.
HOJA SUSTITUIDA

Claims

REIVINDICACIONES
1. Un sistema de tratamiento de aguas residuales, caracterizado por integrar los procesos de flotación primaria, depuración biológica (aerobia y anaerobia) y separación de lodos/sobrenadante en un solo equipo en el cual se regulan, en base a ciclos de tiempo, las interacciones entre las tres etapas básicas, flotación- aeración-sedimentación, de los procesos anteriores, para tratar aguas residuales adaptándose a sus variaciones.
2. Un sistema de tratamiento de aguas residuales, según la reivindicación 1, caracterizado porque la flotación puede hacerse de forma continua o discontinua, siendo la alimentación al equipo continua o discontinua.
3. Un sistema de tratamiento, según las reivindicaciones 1 y 2, caracterizado porque los lodos del proceso biológico pueden separarse por la sedimentación secundaria, o por la etapa de flotación, o por ambas etapas.
4. Un sistema de tratamiento, según las revindicaciones 1 a 3, caracterizado porque se regulan la cantidad de grasas/aceites que se eliminan, entre 5 y 95%, por flotación, para controlar las características de los procesos siguientes.
5. Un sistema de tratamiento, según las reivindicaciones 1 a 4, caracterizado porque se separan lodos y aceites por la flotación, para controlar las características de los lodos extraídos.
6. Aplicación de un sistema según las reivindicaciones anteriores, a la separación de grasas y flotantes, junto con la degradación biológica del resto de materia orgánica, en los intervalos siguientes: a) Grasas y flotantes desde 1 mg/dm3 a 10 g/dm3, con tiempos de retención en flotación entre 0,1 a 5 horas, y con
HOJA SUSTITUIDA posibilidad de extraer mezcla de lodos flotantes. b) Degradación de materia orgánica desde 60 mg/dm3 a 6000 mg/dm3 de DBO, con tiempos de retención entre 1 y 24 horas. c) Sedimentación de lodos entre 300 mg/dm3 y 20.000 mg/dm3 de sólidos suspendidos, con tiempos de operación entre 0,1 y 12 horas. d) Tiempos de extracción de líquido y sólidos, entre 0,1 y 3 horas.
7. Un sistema de tratamiento, según las reivindicaciones anteriores, con reciclo de lodos mediante bombeo de aire para promover la interacción flotación, degradación y separación de sólidos .
8. Un sistema de tratamiento, según las reivindicaciones anteriores, usando bombeo-venturi o impulsión externa, en lugar de bombeo por aire para el reciclo de lodos.
9. Un sistema de tratamiento, según las reivindicaciones anteriores, inducido con flotación por burbujeo o con aire disuelto.
10. Un sistema de tratamiento, según las reivindicaciones anteriores, con interacción entre las tres etapas, con flotación de superficie constante o variable.
11. Un sistema de tratamiento, según las reivindicaciones anteriores, con interacción entre las tres etapas, con nivel de la etapa de degradación de superficie constante o variable.
HOJA SUSTITUIDA
PCT/ES1995/000023 1994-02-23 1995-02-23 Sistema integrado de tratamiento de aguas residuales WO1995023116A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP95908945A EP0713841A1 (en) 1994-02-23 1995-02-23 Integrated system for treating waste waters

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP9400391 1994-02-23
ES09400391A ES2079316B1 (es) 1994-02-23 1994-02-23 Sistema integrado flotacion-biologico de tratamiento de aguas residuales.

Publications (1)

Publication Number Publication Date
WO1995023116A1 true WO1995023116A1 (es) 1995-08-31

Family

ID=8285373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES1995/000023 WO1995023116A1 (es) 1994-02-23 1995-02-23 Sistema integrado de tratamiento de aguas residuales

Country Status (3)

Country Link
EP (1) EP0713841A1 (es)
ES (1) ES2079316B1 (es)
WO (1) WO1995023116A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0913362A1 (fr) * 1997-10-17 1999-05-06 Baudouin Platiau Station d'épuration d'eau
US10253320B2 (en) 2010-05-26 2019-04-09 Curna, Inc. Treatment of atonal homolog 1 (ATOH1) related diseases by inhibition of natural antisense transcript to ATOH1

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE523570C2 (sv) * 2002-10-14 2004-04-27 Flootek Wts Ab Anläggning och metod för satsvis avskiljning av suspenderad substans från vatten
FR2976937B1 (fr) * 2011-06-22 2013-07-05 Veolia Water Solutions & Tech Procede sequence de traitement biologique d'eau mettant en oeuvre des granules de biomasse

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1146813B (de) * 1960-05-04 1963-04-04 Metallgesellschaft Ag Verfahren und Vorrichtung zur Behandlung schaumbildender, insbesondere Detergentien enthaltender Abwaesser
US3746638A (en) * 1971-03-03 1973-07-17 Bio Pure Inc Batch sewage treatment system and method
DE3347525A1 (de) * 1983-12-30 1985-09-05 Bayer Ag, 5090 Leverkusen Verfahren und vorrichtung zur flotativen abtrennung und aufkonzentrierung von biomassen und verfahren zur biologischen abwasserreinigung
EP0274083A1 (de) * 1986-12-22 1988-07-13 Forschungszentrum Jülich Gmbh Begasungs/Flotationsreaktor
US5275732A (en) * 1990-07-03 1994-01-04 International Environmental Systems, Inc., Usa Combined coarse and fine bubble separation system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3812715A1 (de) * 1988-04-16 1989-10-26 Borsig Gmbh Absetzbehaelter fuer eine belebtschlamm-abwasser-suspension
US5035795A (en) * 1990-05-11 1991-07-30 Aero-Mod, Inc. Modular clarifier with integral flocculator
US5084165A (en) * 1990-07-06 1992-01-28 Int'l Environmental Systems, Inc. Water treatment apparatus
US5068031A (en) * 1990-07-06 1991-11-26 Int'l Environmental Systems, Inc. Sludge treatment apparatus
HU206069B (en) * 1991-01-29 1992-11-30 Aquanett Koernyezetvedelmi Es Equipment for purifying water and/r industrial sewage containing floating and/or suspendable materials

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1146813B (de) * 1960-05-04 1963-04-04 Metallgesellschaft Ag Verfahren und Vorrichtung zur Behandlung schaumbildender, insbesondere Detergentien enthaltender Abwaesser
US3746638A (en) * 1971-03-03 1973-07-17 Bio Pure Inc Batch sewage treatment system and method
DE3347525A1 (de) * 1983-12-30 1985-09-05 Bayer Ag, 5090 Leverkusen Verfahren und vorrichtung zur flotativen abtrennung und aufkonzentrierung von biomassen und verfahren zur biologischen abwasserreinigung
EP0274083A1 (de) * 1986-12-22 1988-07-13 Forschungszentrum Jülich Gmbh Begasungs/Flotationsreaktor
US5275732A (en) * 1990-07-03 1994-01-04 International Environmental Systems, Inc., Usa Combined coarse and fine bubble separation system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0913362A1 (fr) * 1997-10-17 1999-05-06 Baudouin Platiau Station d'épuration d'eau
US10253320B2 (en) 2010-05-26 2019-04-09 Curna, Inc. Treatment of atonal homolog 1 (ATOH1) related diseases by inhibition of natural antisense transcript to ATOH1

Also Published As

Publication number Publication date
ES2079316A1 (es) 1996-01-01
ES2079316B1 (es) 1996-08-16
EP0713841A1 (en) 1996-05-29

Similar Documents

Publication Publication Date Title
US8211316B2 (en) Device for deep sewage treatment without sludge discharge
JP5749731B2 (ja) 汚水処理装置
US5534141A (en) Wastewater treatment system with in-pond clarifier
WO2007089168A1 (fr) Procédé auto-régulateur d'épuration des eaux usées et dispositif de mise en oeuvre de ce procédé
EP3209613B1 (en) Water treatment system and method
CN110451722A (zh) 一种污水处理系统
WO1995023116A1 (es) Sistema integrado de tratamiento de aguas residuales
CN211946461U (zh) 一种序批式活性污泥法污水生物处理装置
KR102182069B1 (ko) 식생이 결합된 생물막 수처리 장치
CN217780848U (zh) 村镇生活污水处理装置
KR100879788B1 (ko) 초기우수에 의한 오염물질을 효율적으로 제거할 수 있는오폐수 처리장치, 그 방법, 및 시스템
CN217148916U (zh) 生活污水处理装置
CN215627417U (zh) 一种多级耦合污水处理系统
CN116675330B (zh) 环流澄清器及其应用
CN210103550U (zh) 一种抗膜污染的mbr污水处理设备
CN217148725U (zh) 一种使用活性污泥的序批式污水处理系统
CN213446429U (zh) 污水处理系统中的三相分离装置及水质净化设备
CN210122534U (zh) 富营养化污水处理设备
CN110606567A (zh) 一种序批式活性污泥法污水生物处理装置
CN202369472U (zh) 一种分体式地埋生活污水处理装置
KR200307954Y1 (ko) 오수의 고도처리장치
SU1031914A1 (ru) Комбинированное устройство дл биологической обработки сточных вод
CN208414136U (zh) 一种拼装式污水处理装置
RU2137720C1 (ru) Установка для биологической очистки бытовых сточных вод
US10196291B1 (en) Wastewater treatment

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1995908945

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1995908945

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1995908945

Country of ref document: EP