WO1995020923A1 - Porte-outil pour outil medical ou chirurgical et robot comportant un tel porte-outil - Google Patents

Porte-outil pour outil medical ou chirurgical et robot comportant un tel porte-outil Download PDF

Info

Publication number
WO1995020923A1
WO1995020923A1 PCT/FR1995/000121 FR9500121W WO9520923A1 WO 1995020923 A1 WO1995020923 A1 WO 1995020923A1 FR 9500121 W FR9500121 W FR 9500121W WO 9520923 A1 WO9520923 A1 WO 9520923A1
Authority
WO
WIPO (PCT)
Prior art keywords
tool holder
spindle
holder according
tool
tube
Prior art date
Application number
PCT/FR1995/000121
Other languages
English (en)
Inventor
François Danel
Original Assignee
Danel Technology Societe Anonyme
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Danel Technology Societe Anonyme filed Critical Danel Technology Societe Anonyme
Publication of WO1995020923A1 publication Critical patent/WO1995020923A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/03Automatic limiting or abutting means, e.g. for safety
    • A61B2090/033Abutting means, stops, e.g. abutting on tissue or skin
    • A61B2090/034Abutting means, stops, e.g. abutting on tissue or skin abutting on parts of the device itself
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/10Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis
    • A61B90/11Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis with guides for needles or instruments, e.g. arcuate slides or ball joints

Definitions

  • TOOL HOLDER FOR MEDICAL OR SURGICAL TOOL AND ROBOT COMPRISING SUCH A TOOL HOLDER
  • the invention relates to a tool holder for carrying and guiding a medical or surgical tool, and a robot comprising such a tool holder.
  • the invention applies more particularly in neurosurgery.
  • the operating field has a variable shape in space depending on the patient, the operating field must be left as free as possible and unobstructed so as not to interfere with the practitioner's manipulations,
  • the movement of the tool must be controlled in an extremely precise manner as regards not only its amplitudes of displacement, but also the forces exerted. We thus seek to control the displacement of the tool as a function of the forces undergone by the tool during its work, so as to ensure, for example, the automatic stopping of the tool if the resistance suddenly comes to decrease (for example at the end of a bone wall) or increase.
  • the known tool holders on programmable supports or robots of the prior art generally have a large size in the operating field. They do not allow an instantaneous change of the tool without loss of the position of the tool holder in space, and precise control of the movement of the tool both in amplitude and with regard to the resistance forces during from his work.
  • the invention therefore aims to overcome these drawbacks by proposing a tool holder and a robot by which the operating field is left free and unobstructed for the manipulations of the practitioner (that is to say which generate only a small footprint at the level and around the tool), which allow extremely precise movement and positioning in the tool space, and which allow the tool to be changed instantly during an operation without losing the position of the holder. tool.
  • the object of the invention is to propose such a tool holder and such a robot by means of which it is possible to control the displacements of the tool not only in amplitude, but also with regard to the resistance forces undergone by the tool while working.
  • the object of the invention is to propose such a tool holder and such a robot which can be produced at low cost in an extremely simple and reliable manner with a minimum of parts, and which simultaneously exhibit mechanical characteristics, in particular in rigidity compatible with the positioning precision required in the medical or surgical field and in particular in neurosurgery.
  • the invention relates to a tool holder characterized in that the tool is rigidly associated with or consists of a spindle, and in that the tool holder has a cylindrical bore opening at each of its two ends to receive the spindle, the end of the bore opposite to the working end of the tool allowing the introduction of the spindle into the bore when it is mounted on the tool holder.
  • the bore is formed in a tube guided in axial rotation relative to a frame associated with the support.
  • the tool holder comprises means for rigid but removable association of the spindle relative to the tube, which comprise means forming an axial stop limiting the axial displacement of the spindle relative to the tube in the direction of the working end, and a radial clamping mandrel of the tube at the insertion end.
  • the tool holder comprises a motor for driving the tool in rotation, the rotor of which is coupled to the spindle, in particular directly coupled in rotation to the tube.
  • the motor rotor is arranged around a portion of the tube, in particular in a position located at least in the vicinity of the insertion end.
  • the frame carries the motor mounted between the chuck and the end of the bore opposite to the insertion end.
  • the frame forms an elongated axial cylinder for guiding the rotating tube. This cylinder extends between a housing for receiving the engine and the end of the tube opposite the insertion end, and carries at each of its ends a bearing or bearing.
  • the tool holder comprises motorized means for guiding in translation of the frame with respect to the support along the axis of the tool and of the spindle.
  • the invention also relates to a medical or surgical robot - in particular a neurosurgical robot -, which comprises such a tool holder forming the hand of the robot having a general form of articulated arm.
  • the invention also relates to a tool holder and a robot comprising in combination all or part of the characteristics mentioned above or described below.
  • FIG. 1 is a schematic general perspective view of a robot according to the invention
  • FIG. 2 is a front view in partial section of the end of a robot according to the invention carrying a tool holder according to the invention.
  • FIG. 3 is a front view in axial half-section of a tool holder according to the invention
  • FIGS. 4a and 4b are front and right views of a spindle of a tool holder according to the invention
  • FIG. 5 is a front view in axial half-section of a tube for receiving the spindle of a tool holder according to the invention.
  • FIG. 1 represents a medical * or surgical robot, in particular neurosurgical.
  • a robot allows the movement and positioning of a tool 1 intended to move in space in an operating field, of the type comprising at least three degrees of freedom in series with respect to a fixed structure 2.
  • the robot comprises an articulated arm 3 carried by one of its ends 4 by the structure 2 and carrying at its other end 5 a tool holder 6.
  • tool is used in the most general way with reference not only to a machining tool but also any other medical or surgical tool
  • the embodiment shown in Figure 1 is more particularly intended for neurosurgery.
  • the head 7 of a patient is immobilized in a stereotaxic frame 8 positioned relative to the fixed structure 2, in particular aligned with the first axis 9 of articulation of the articulated arm 3 on the fixed structure 2.
  • the tool holder 6 is more particularly intended for a tool 1 active in continuous or discontinuous rotation around its axis 10, and / or in continuous or discontinuous translation along this axis 10.
  • the tool holder 6 has the function of carrying the tool 1 and guiding it in its movements relative to the axis 10, that is to say in rotation and / or translation relative to a support 5 formed by the end 5 of the arm 3.
  • this axis 10 is an important constant which it is generally advisable to be able to keep with great reliability while allowing changes of tools.
  • the tool holder 6 forms the robot's hand articulated on the arm 3.
  • the robot therefore comprises means 3, 9, 11, 12, 13 for positioning the end 5 in space.
  • These means consist of the arm 3 itself, and in the example shown in FIG. 1, of four degrees of freedom, namely a rotation of axis 9, a translation of axis 11 orthogonal to axis 9, and two rotations of axes 12, 13 parallel to the axis 11.
  • the tool holder 6 is associated with the end 5 of the arm 3 by a rotation RI of axis 14 orthogonal to the axis 10 and parallel to the axes 11 , 12 and 13.
  • the rotation RI therefore forms the wrist of the robot.
  • the degrees of freedom between the end 5 of the arm 3 and the tool 1 are successively: rotation RI, translation TI of axis 15 parallel to axis 10, and proper rotation R2 of tool 1 around its axis 10.
  • the tool 1 is mounted on a frame 16.
  • the tool holder 6 comprises motorized means 17, 18, 19, 20 for guiding the frame 16 in translation relative to the support 5 along the axis 10.
  • the frame 16 is mounted on a chassis 17 thanks to a clamp 22.
  • the chassis 17 comprises a screw 18 whose axis 15 is that of translation of the chassis 17.
  • the screw 18 meshes with a thread of a nut 19 carried by an associated plate 21 at the end 5 of the arm 3.
  • An electric motor 20 carried by the chassis 17 is mounted around the screw 18 in order to drive it in rotation. In FIG. 2, the extreme positions of the plate 21 are shown in solid lines and in broken lines.
  • the tool 1 has a free working end 23.
  • the tool 1 is rigidly associated with or consists of a spindle 24 whose dimensions and shape are known and constant.
  • the user generally has a set of tools 1 with different working characteristics, all having a spindle such as 24.
  • tool 1 is a drill bit rigidly associated with the drilled end 25 of a spindle 24.
  • the drill bit can be crimped or welded in this hole.
  • the spindle 24 itself constitutes the tool 1.
  • the tool holder 6 has a cylindrical bore 26, opening at its two ends 27, 28, receiving the spindle 24.
  • the end 27 opposite the working end 23 of the tool 1 and the operating field is that by which the pin 24 is introduced into the bore 26 when it is mounted on the tool holder 6.
  • the bore 26 has a cross section which corresponds to that of the pin 24, at least at the level of the contact surfaces. This section can be circular (in the case of the figures), or non-circular (for example polygonal).
  • the bore 26 is formed in a tube 29 guided in axial rotation relative to the frame 16.
  • the pin 24 is rigidly and removably associated with the tube 29 by means of removable rigid association means 30, 31, 32.
  • the means 30 to 32 and / or the shape of the non-circular section of the bore 26 and of the spindle 24 locks in rotation the spindle 24 relative to the tube 29.
  • the spindle 24 cooperates with the tube 29 so that its position, after mounting in the bore 26, is predetermined and invariable regardless of the type of tool.
  • the frame 16 forms a cylinder 33 for guiding the tube 29 in rotation.
  • the cylinder 33 is axially elongated and centered on the axis 10.
  • the external surface 34 of the tube 29 has a circular cross section at least in line with the guides of the tube 29.
  • the cylinder 33 carries at each of its ends 35, 36 a bearing or bearing 37, 38.
  • the bearings 37, 38 have their outer cage crimped in cylindrical housings formed hollow in the internal surface of the cylinder 33 (FIG. 3 ).
  • the tube 29 is locked axially relative to the bearings 37, 38 by means of a shoulder 39 formed by a circular peripheral rib 40 extending radially projecting from the external surface 34.
  • the axial locking is achieved by a tightening nut 41 and a locking locking nut 42 cooperating with a threading of the end 43 of the tube 29.
  • the length of the bore 26 is sufficient to ensure blockage without play and proper centering of the spindle 24 relative to the tube 29. This length is greater than the half-length of the spindle 24.
  • the length of the cylinder 33 is sufficient to ensure proper guiding and centering of the tube 29 in its rotational movements relative to the frame 16 This length is greater than the half-length of the tube 29.
  • the spindle 24 is centered axially relative to the bore 26 by at least two internal bore portions 45, 46 forming contact and centering surfaces, one at each end 27, 28. These bore portions 45, 46 are machined with great precision and rectified as well as the facing portions of the external surface 47 of the spindle 24.
  • the means 30 to 32 are formed at least in the vicinity of the end 27, and cooperate with a portion 48 of the spindle 24 opposite the working end 23. This portion 48 is located in the half-length of the spindle 24 opposite end 25.
  • the means 30 to 32 comprise means 31, 32 forming an axial stop positively limiting the axial displacement of the spindle 24 relative to the tube 29 in the direction of the working end 23 and the approximation of the operating field.
  • the tool holder 6 does not have any positive stop limiting the axial translation of the spindle 24 in the direction of its distance from the operating field.
  • the means 31, 32 therefore prevent the spindle 24 from being moved axially in translation beyond a predetermined position during its mounting in the bore 26, and ensure that after its mounting, the spindle 24 is placed in the position predetermined.
  • the means 31, 32 comprise at least one longitudinal groove 31 formed in the tube 29 from the end 27, and at least one stud 32 integral with the spindle 24, extending radially projecting from the external surface 47 of the spindle 24 and entering the groove 31 to abut against the closed internal end 49 of the groove 31 located on the side of the working end 23.
  • the means 31, 32 have two longitudinal grooves 31 and two pins 32 placed symmetrically with respect to the axis 10.
  • the two pins 32 can be formed by the same pin of length greater than the diameter of the pin 24, engaged transversely in a radial bore of the pin 24
  • the means 30, 31, 32 comprise a mandrel 30 for radially tightening the tube 29 at the end 27.
  • This mandrel 30 consists of an external thread 30b formed at the end 44 of the tube 29 opposite the operating field and at the working end 23, and a tightening nut 30a cooperating with the thread 30b.
  • the end 44 is conical or pseudo-conical so that the nut 30a tends to tighten radially inwards, the portion 46 of the bore 26 coming into contact with the spindle 24.
  • the latter is knurled like the end 50 of the spindle 24 opposite the working end 23.
  • Each longitudinal groove 31 consists of a slot in the mandrel 30.
  • the latter comprises a series, for example four, regularly distributed longitudinal slots, two of which are extended towards the end of work 23 to form the grooves 31.
  • the spindle 24 To mount the spindle 24 in the tool holder 6, the tool 1 is engaged and the end 25 of the spindle 24 in the end 27 of the bore 26, the spindle 24 is positioned so that the pins 32 penetrate in the grooves 31, and the spindle 24 is introduced until the pins 32 abut against the ends 49. Then place the nut 30a which is tightened while retaining the knurled end 50 of spindle 24 until fully tightened.
  • the means 31, 32 also ensure the rotation of the spindle 24 relative to the tube 29, the pins 32 bearing on the lateral faces of the grooves 31.
  • the assembly and disassembly of the tool i relative to the tool holder 6 is therefore simple, rapid, is done from the rear opposite the operating field, with great reliability, while retaining the spatial coordinates of the holder -tool 6 and of tool 1.
  • the tool holder 6 comprises an electric motor 51 for driving the tool 1 in rotation, the rotor 52 of which is coupled to the spindle 24 via the tube 29 to which it is directly coupled in rotation.
  • the rotor 52 is disposed around a portion 54 of the tube 29 which extends from a shoulder ent 55 formed by the rib 40 on the side opposite the operating field and at the working end 23.
  • the rotor 52 can be hooped around the portion 54.
  • the motor 51 is therefore mounted in the vicinity of the end 27, facing radially from the portion 48 of the spindle 24 located in its half-length opposite to the working end 23.
  • the motor 51 is mounted between the mandrel 30 and the end 28, and more precisely the portion of the tube 29 opposite the cylinder 33.
  • the stator 53 of the motor 51 is rigidly associated with the frame 16.
  • the cylinder 33 extends between a housing 56 for receiving the motor 51, and the end 43 of the tube 29.
  • the motor 51 more bulky radially than the cylinder 33, is pushed back (towards the end 27) and far from the operating field.
  • the motor 51 is coupled to the spindle 24 and to the tool 1 which makes it possible to measure the torque undergone by the tool 1 during its rotation and to control the operation of the motor 51 as a function of the resistant forces which it undergoes due to the resistance of the tool 1.
  • the frame 16 carrying the motor 51, the tube 29 and the spindle 24 constitute a self-contained one-piece tool holder assembly for carrying and guiding a tool 1 in rotation.
  • This assembly comprises a small number of parts and nevertheless allows axial and rotating guidance excellent.
  • the bearings 37, 38 are placed in their housing, the tube 29 is inserted on the side of the orifice of the cylinder 33 defining the housing 56 of the motor 51, the nut 41 and the lock nut are placed 42 to block the tube 29, the motor 51 is force-fitted around the tube 29 until it comes into contact with the housing 56 formed at the end of the cylinder 33 and in abutment against the shoulder 55 of the tube 29 , a cover 57 is placed around the tube 29, this cover 57 is tightened on the frame 16 by means of a series of screws 58 passing through the stator 53, a pin 24 is introduced into the end 27 for introducing the bore 26 from the tube 29 to the contact of the pins 32 with the bottom 49 of the grooves 31 and the nut 30a of

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Robotics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Manipulator (AREA)

Abstract

L'invention concerne un porte-outil (6) pour porter et guider par rapport à un support (5) un outil médical ou chirurgical (1) comportant une extrémité libre (23) de travail. L'outil (1) est associé rigidement à ou est constitué d'une broche (24), et le porte-outil (6) comporte un alésage cylindrique débouchant à chacune de ses extrémités pour recevoir la broche (24), l'extrémité de l'alésage qui est opposée à l'extrémité (23) de travail de l'outil (1) formant l'extrémité d'introduction de la broche (24) dans l'alésage lors de son montage sur le porte-outil. L'invention concerne également un robot médical ou chirurgical -notamment neurochirurgical- caractérisé en ce qu'il comporte un porte-outil selon l'invention.

Description

PORTE-OUTIL POUR OUTIL MEDICAL OU CHIRURGICAL ET ROBOT COMPORTANT UN TEL PORTE-OUTIL
L'invention concerne un porte-outil pour porter et guider un outil médical ou chirurgical, et un robot comportant un tel porte-outil. L'invention s'applique plus particulièrement en neuro-chirurgie.
Dans le domaine médical ou chirurgical -et plus particulièrement en neurochirurgie-, on cherche à utiliser des supports programmables, notamment à commande numérique, c'est à dire des robots pour assister le geste du médecin ou du chirurgien. En particulier, on souhaite disposer d'un robot d'une grande souplesse d'utilisation, d'une grande précision et qui soit compatible avec les brides utilisées en stéréotaxie neurochirurgicale. Or, la conception d'un tel robot pose plusieurs problèmes :
- le champ opératoire a une forme variable dans l'espace en fonction du patient, le champ opératoire doit être laissé le plus possible libre et dégagé pour ne pas gêner les manipulations du praticien,
- lors d'une même opération, il est souhaitable de pouvoir changer d'outil, par exemple en utilisant successivement un outil de centrage, un outil de perçage, un outil de mesure ou de visualisation ...
- Le mouvement de l'outil doit être contrôlé de façon extrêmement précise en ce qui concerne non seulement ses amplitudes de déplacement, mais également les forces exercées. On cherche ainsi à asservir le déplacement de l'outil en fonction des efforts subis par l'outil lors de son travail, de façon à s'assurer, par exemple, de l'arrêt automatique de l'outil si la résistance vient subitement à diminuer (par exemple au débouché d'une paroi osseuse) ou à augmenter. Or, les porte-outils connus sur des supports programmables ou des robots de l'art antérieur présentent en général un encombrement important au niveau du champ opératoire. Ils ne permettent pas un changement instantané de l'outil sans perte de la position du porte-outil dans l'espace, et un contrôle précis du mouvement de l'outil aussi bien en amplitude qu'en ce qui concerne les efforts de résistance lors de son travail.
L'invention vise donc à pallier ces inconvénients en proposant un porte-outil et un robot grâce auxquels le champ opératoire est laissé libre et dégagé pour les manipulations du praticien (c'est à dire qui n'engendrent qu'un faible encombrement au niveau et autour de l'outil) , qui permettent un déplacement et un positionnement dans l'espace extrêmement précis de l'outil, et qui autorisent un changement de l'outil instantanément au cours d'une opération sans perte de la position du porte-outil.
Egalement, l'invention a pour objet de proposer un tel porte-outil et un tel robot grâce auxquels il est possible de contrôler les déplacements de l'outil non seulement en amplitude, mais également en ce qui concerne les efforts de résistance subis par l'outil lors de son travail.
Simultanément, l'invention a pour objet de proposer un tel porte-outil et un tel robot qui peuvent être réalisés à moindre coût d'une façon extrêmement simple et fiable avec un minimum de pièces, et qui présentent simultanément des caractéristiques mécaniques, notamment en rigidité compatibles avec la précision de positionnement requise dans le domaine médical ou chirurgical et notamment en neurochirurgie.
A cet effet, l'invention concerne un porte-outil caractérisé en ce que l'outil est associé rigidement à ou est constitué d'une broche, et en ce que le porte-outil comporte un alésage cylindrique débouchant à chacune de ses deux extrémités pour recevoir la broche, l'extrémité de l'alésage opposée à l'extrémité de travail de l'outil permettant l'introduction de la broche dans l'alésage lors de son montage sur le porte-outil.
L'alésage est formé dans un tube guidé en rotation axiale par rapport à un bâti associé au support. Le porte- outil comporte des moyens d'association rigide mais amovible de la broche par rapport au tube, qui comportent des moyens formant butée axiale limitant le déplacement axial de la broche par rapport au tube dans le sens de l'extrémité de travail, et un mandrin de serrage radial du tube à l'extrémité d'introduction.
Le porte-outil, selon l'invention, comporte un moteur d'entraînement en rotation de l'outil, dont le rotor est accouplé à la broche, notamment directement accouplé en rotation au tube. Le rotor du moteur est disposé autour d'une portion du tube, notamment dans une position située au moins au voisinage de l'extrémité d'introduction. Le bâti porte le moteur monté entre le mandrin de serrage et l'extrémité de l'alésage opposée à l'extrémité d'introduction. Le bâti forme un cylindre allongé axiale ent pour le guidage du tube en rotation. Ce cylindre s'étend entre un logement de réception du moteur et l'extrémité du tube opposée à l'extrémité d'introduction, et porte à chacune de ses extrémités un palier ou roulement.
Le porte-outil comporte des moyens motorisés de guidage en translation du bâti par rapport au support selon l'axe de l'outil et de la broche.
L'invention concerne également un robot médical ou chirurgical -notamment un robot neurochirurgical-, qui comporte un tel porte-outil formant la main du robot ayant une forme générale de bras articulé. L'invention concerne également un porte-outil et un robot comportant en combinaison tout ou partie des caractéristiques susmentionnées ou décrites ci-après.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante qui se réfèrent aux figures annexées qui représentent un mode de réalisation préférentiel de l'invention et dans lesquelles :
- la figure 1 est une vue schématique en perspective générale d'un robot selon l'invention
- la figure 2 est une vue de face en coupe partielle de l'extrémité d'un robot selon l'invention portant un porte-outil selon l'invention.
- la figure 3 est une vue de face et en demi-coupe axiale d'un porte-outil selon l'invention
- les figures 4a et 4b sont des vues de face et de droite d'une broche d'un porte-outil selon l'invention
- la figure 5 est une vue de face et en demi-coupe axiale d'un tube de réception de la broche d'un porte-outil selon l'invention.
La figure 1 représente un robot médical *ou chirurgical, notamment neurochirurgical. Un tel robot permet le déplacement et le positionnement d'un outil 1 destiné à évoluer dans l'espace dans un champ opératoire, du type comprenant au moins trois degrés de liberté en série par rapport à une structure fixe 2.
Le robot comprend un bras articulé 3 porté par une de ses extrémités 4 par la structure 2 et portant à son autre extrémité 5 un porte-outil 6. Le terme "outil" est utilisé de la façon la plus générale en référence non seulement à un outil d'usinage mais également à tout autre outil médical ou chirurgical
(outil pour effectuer des biopsies, des mesures d'électro- physiologie, endoscopes, sondes, cathéters, guides optiques, micro-caméras ... ) .
Le mode de réalisation représenté sur la figure 1 est plus particulièrement destiné à la neurochirurgie. La tête 7 d'un patient est immobilisée dans un cadre stéréotaxique 8 positionné par rapport à la structure fixe 2, notamment alignée avec le premier axe 9 d'articulation du bras articulé 3 sur la structure fixe 2.
Le porte-outil 6 est plus particulièrement destiné à un outil 1 actif en rotation continue ou discontinue autour de son axe 10, et/ou en translation continue ou discontinue selon cet axe 10.
Grâce aux degrés de liberté du bras articulé 3, la position et l'orientation de l'axe 10 dans l'espace sont déterminées. Le porte-outil 6 a pour fonction de porter l'outil 1 et de le guider dans ses mouvements par rapport à l'axe 10, c'est à dire en rotation et/ou translation par rapport à un support 5 formé par l'extrémité 5 du bras 3. Au cours d'une même opération, cet axe 10 est une constante importante qu'il convient en général de pouvoir conserver avec une grande fiabilité tout en autorisant les changements d'outils.
Le porte-outil 6 forme la main du robot articulée au bras 3. Le robot comporte donc des moyens 3, 9, 11, 12, 13 pour positionner l'extrémité 5 dans l'espace. Ces moyens sont constitués du bras 3 lui-même, et dans l'exemple représenté sur la figure 1, de quatre degrés de liberté, à savoir une rotation d'axe 9, une translation d'axe 11 orthogonale à l'axe 9, et deux rotations d'axes 12, 13 parallèles à l'axe 11. Le porte-outil 6 est associé à l'extrémité 5 du bras 3 par une rotation RI d'axe 14 orthogonal à l'axe 10 et parallèle aux axes 11, 12 et 13. La rotation RI forme donc le poignet du robot. Les degrés de liberté entre l'extrémité 5 du bras 3 et l'outil 1 sont successivement : la rotation RI, une translation TI d'axe 15 parallèle à l'axe 10, et une rotation propre R2 de l'outil 1 autour de son axe 10.
L'outil 1 est monté sur un bâti 16. Le porte-outil 6 comporte des moyens 17, 18, 19, 20 motorisés de guidage en translation du bâti 16 par rapport au support 5 selon l'axe 10. Le bâti 16 est monté sur un châssis 17 grâce à une bride de serrage 22. Le châssis 17 comporte une vis 18 dont l'axe 15 est celui de translation du châssis 17. La vis 18 engrène avec un taraudage d'un écrou 19 porté par une platine 21 associée à l'extrémité 5 du bras 3. Lorsque la vis 18 tourne, l'écrou 19 et la platine 21 sont déplacés en translation TI le long de l'axe 15 et le bâti 16 et l'outil 1 déplacés en translation le long de l'axe 10. Un moteur électrique 20 porté par le châssis 17 est monté autour de la vis 18 en vue de l'entraîner en rotation. Sur la figure 2, sont représentées en traits pleins et en traits mixtes les positions extrêmes de la platine 21.
L'outil 1 a une extrémité libre de travail 23. L'outil 1 est associé rigidement à ou est constitué d'une broche 24 dont les dimensions et la forme sont connues et constantes. L'utilisateur dispose généralement d'un jeu d'outils 1 de caractéristiques de travail différentes ayant tous une broche telle que 24. Dans l'exemple représenté, l'outil 1 est une mèche associée rigidement à l'extrémité percée 25 d'une broche 24. La mèche peut être sertie ou soudée dans ce perçage. En variante, la broche 24 constitue elle-même l'outil 1.
Le porte-outil 6 comporte un alésage 26, cylindrique, débouchant à ses deux extrémités 27, 28, recevant la broche 24. L'extrémité 27 opposée à l'extrémité de travail 23 de l'outil 1 et au champ opératoire est celle par laquelle la broche 24 est introduite dans l'alésage 26 lors de son montage sur le porte-outil 6. L'alésage 26 a une section droite transversale qui correspond à celle de la broche 24, au moins au niveau des surfaces de contact. Cette section peut être circulaire (cas des figures) , ou non circulaire (par exemple polygonale) . L'alésage 26 est formé dans un tube 29 guidé en rotation axiale par rapport au bâti 16. La broche 24 est associée rigidement et de façon amovible par rapport au tube 29 grâce à des moyens d'association rigide amovible 30, 31, 32. Les moyens 30 à 32 et/ou la forme de la section non circulaire de l'alésage 26 et de la broche 24 réalisent un blocage en rotation de la broche 24 par rapport au tube 29.
La broche 24 coopère avec le tube 29 de façon que sa position, après montage dans l'alésage 26, soit prédéterminée et invariable quel que soit le type d'outil.
Le bâti 16 forme un cylindre 33 pour le guidage en rotation du tube 29. Le cylindre 33 est allongé axialement et centré sur l'axe 10. La surface externe 34 du tube 29 a une section droite transversale circulaire au moins au droit des guidages du tube 29. Le cylindre 33 porte à chacune de ses extrémités 35, 36 un palier ou roulement 37, 38. Les roulements 37, 38 ont leur cage extérieure sertie dans des logements cylindriques ménagés en creux dans la surface interne du cylindre 33 (figure 3). Le tube 29 est bloqué axialement par rapport aux roulements 37, 38 grâce à un épaulement 39 formé par une nervure périphérique circulaire 40 s'étendant radialement en saillie par rapport à la surface externe 34. A l'extrémité 35 du cylindre 33 orientée vers le champ opératoire et vers l'extrémité de travail 23, le blocage axial est réalisé par un écrou de serrage 41 et un contre-écrou de blocage 42 coopérant avec un filetage de l'extrémité 43 du tube 29.
La longueur de l'alésage 26 est suffisante pour assurer un blocage sans jeu et un centrage appropriés de la broche 24 par rapport au tube 29. Cette longueur est supérieure à la demi-longueur de la broche 24. La longueur du cylindre 33 est suffisante pour assurer un guidage et un centrage appropriés du tube 29 dans ses mouvements de rotation par rapport au bâti 16. Cette longueur est supérieure à la demi-longueur du tube 29.
La broche 24 est centrée axialement par rapport à l'alésage 26 par au moins deux portions d'alésage interne 45, 46 formant des portées de contact et de centrage, une à chaque extrémité 27, 28. Ces portions d'alésage 45, 46 sont usinées avec une grande précision et rectifiées ainsi que les portions en regard de la surface externe 47 de la broche 24.
Les moyens 30 à 32 sont ménagés au moins au voisinage de l'extrémité 27, et coopèrent avec une portion 48 de la broche 24 opposée à l'extrémité de travail 23. Cette portion 48 est située dans la demi-longueur de la broche 24 opposée à l'extrémité 25.
Les moyens 30 à 32 comportent des moyens 31, 32 formant butée axiale limitant de façon positive le déplacement axial de la broche 24 par rapport au tube 29 dans le sens de l'extrémité 23 de travail et du rapprochement du champ opératoire. Au contraire, le porte- outil 6 ne comporte aucune butée positive limitant la translation axiale de la broche 24 dans le sens de son éloignement du champ opératoire. Les moyens 31, 32 empêchent donc la broche 24 d'être déplacée axialement en translation au delà d'une position prédéterminée lors de son montage dans l'alésage 26, et assurent qu'après son montage, la broche 24 est placée dans la position prédéterminée. Les moyens 31, 32 comportent au moins une gorge longitudinale 31 ménagée dans le tube 29 à partir de l'extrémité 27, et au moins un téton 32 solidaire de la broche 24, s'étendant radiale ent en saillie par rapport à la surface externe 47 de la broche 24 et pénétrant dans la gorge 31 pour venir en butée contre l'extrémité intérieure fermée 49 de la gorge 31 située du côté de l'extrémité de travail 23. Dans la réalisation représentée, les moyens 31, 32 comportent deux gorges longitudinales 31 et deux tétons 32 placés symétriquement par rapport à l'axe 10. Les deux tétons 32 peuvent être formés par une même goupille de longueur supérieure au diamètre de la broche 24, engagée transversalement dans un perçage radial de la broche 24. Les moyens 30, 31, 32 comportent un mandrin 30 de serrage radial du tube 29 à l'extrémité 27. Ce mandrin 30 est constitué d'un filetage externe 30b ménagé à l'extrémité 44 du tube 29 opposée au champ opératoire et à l'extrémité de travail 23, et d'un écrou 30a de serrage coopérant avec le filetage 30b. L'extrémité 44 est conique ou pseudo-conique de sorte que l'écrou 30a tend à resserrer radialement vers l'intérieur, la portion 46 de l'alésage 26 venant au contact de la broche 24. Pour faciliter le serrage de l'écrou 30a, ce dernier est oleté comme l'extrémité 50 de la broche 24 opposée à l'extrémité de travail 23.
Chaque gorge longitudinale 31 est constituée d'une fente du mandrin 30. Pour permettre le serrage radial de l'extrémité 44, celle-ci comporte une série, par exemple quatre, fentes longitudinales régulièrement réparties, dont deux sont prolongées vers l'extrémité de travail 23 pour former les gorges 31.
Pour monter la broche 24 dans le porte-outil 6, on engage l'outil 1 et l'extrémité 25 de la broche 24 dans l'extrémité 27 de l'alésage 26, on positionne la broche 24 de façon que les tétons 32 pénètrent dans les gorges 31, et on introduit la broche 24 jusqu'à ce que les tétons 32 viennent en butée contre les extrémités 49. Puis on place 1'écrou 30a que l'on serre en retenant l'extrémité oletée 50 de la broche 24 jusqu'à serrage complet. Les moyens 31, 32 assurent également le blocage en rotation de la broche 24 par rapport au tube 29, les tétons 32 prenant appui sur les faces latérales des gorges 31. Pour démonter la broche 24 et l'outil 1 du porte- outil 6, on procède à l'inverse.
Le montage et le démontage de l'outil i par rapport au porte-outil 6 sont donc simples, rapides, se font par l'arrière à l'opposé du champ opératoire, avec une grande fiabilité, tout en conservant les coordonnées spatiales du porte-outil 6 et de l'outil 1. La longueur donnée à la broche 24, au tube 29 et au cylindre 33, tous d'un encombrement radial faible, permet de disposer d'un champ opératoire peu encombré ne gênant pas les manipulations du praticien.
Le porte-outil 6 comporte un moteur électrique 51 d'entraînement en rotation de l'outil l dont le rotor 52 est accouplé à la broche 24 par l'intermédiaire du tube 29 auquel il est directement accouplé en rotation. Le rotor 52 est disposé autour d'une portion 54 du tube 29 qui s'étend à partir d'un épaule ent 55 formé par la nervure 40 du côté opposé au champ opératoire et à l'extrémité de travail 23. Le rotor 52 peut être fretté autour de la portion 54. Le moteur 51 est donc monté au voisinage de l'extrémité 27, en regard radialement de la portion 48 de la broche 24 située dans sa demi-longueur opposée à l'extrémité de travail 23. Le moteur 51 est monté entre- le mandrin 30 et l'extrémité 28, et plus précisément la portion du tube 29 en regard du cylindre 33. Le stator 53 du moteur 51 est associé rigidement au bâti 16. Le cylindre 33 s'étend entre un logement 56 de réception du moteur 51, et l'extrémité 43 du tube 29. Le moteur 51, plus encombrant radialement que le cylindre 33, est repoussé vers l'arrière (vers l'extrémité d'introduction 27) et éloigné du champ opératoire. Le moteur 51 est couplé à la broche 24 et à l'outil 1 ce qui permet de mesurer le couple subi par l'outil 1 lors de sa rotation et d'asservir le fonctionnement du moteur 51 en fonction des efforts résistants qu'il subit du fait de la résistance de l'outil 1.
Le bâti 16 portant le moteur 51, le tube 29 et la broche 24 constituent un ensemble porte-outil monobloc autonome pour porter et guider en rotation un outil 1. Cet ensemble comporte un petit nombre de pièces et permet néanmoins un guidage axial et en rotation excellent. Pour procéder à son montage, on place les roulements 37, 38 dans leur logement, on insère le tube 29 du côté de l'orifice du cylindre 33 définissant le logement 56 du moteur 51, on place l'écrou 41 et le contre-écrou 42 pour bloquer le tube 29, on emmanche à force le moteur 51 autour du tube 29 jusqu'à ce qu'il vienne au contact du logement 56 formé à l'extrémité du cylindre 33 et en butée contre l'épaulement 55 du tube 29, on place un couvercle 57 autour du tube 29, on serre ce couvercle 57 sur le bâti 16 grâce à une série de vis 58 traversant le stator 53, on introduit une broche 24 dans l'extrémité 27 d'introduction de l'alésage 26 du tube 29 jusqu'au contact des tétons 32 avec le fond 49 des gorges 31 et on serre l'écrou 30a de mandrin.

Claims

REVENDICATIONS
1. Porte-outil pour porter et guider, par rapport à un support (5) , un outil (1) médical ou chirurgical ayant une extrémité libre de travail (23) caractérisé en ce qu'il comporte un alésage (26) cylindrique débouchant à ses deux extrémités (27, 28) pour recevoir une broche (24) l'outil (1) étant associé rigidement à ou constitué de cette broche (24) , l'extrémité (27) opposée à l'extrémité de travail (23) formant l'extrémité d'introduction de la broche (24) dans l'alésage (26) lors de son montage sur le porte-outil.
2. Porte-outil selon la revendication 1 caractérisé en ce que l'alésage (26) est formé dans un tube (29) guidé en rotation axiale par rapport à un bâti (16) associé au support (5), et en ce qu'il comporte des moyens (30, 31, 32) d'association rigide amovible de la broche (24) par rapport au tube (29) .
3. Porte-outil selon l'une des revendications 1 et 2 caractérisé en ce que la longueur de l'alésage (26) est supérieure à la demi-longueur de la broche (24) .
4. Porte-outil selon l'une des revendications 1 à 3 caractérisé en ce que la broche (24) est centrée axialement par rapport à l'alésage (26) par au moins deux portions d'alésage interne (45, 46) formant portées de contact et de centrage, une à chaque extrémité (27, 28) de l'alésage (26) .
5. Porte-outil selon l'une des revendications 2 à 4 caractérisé en ce que les moyens (30, 31, 32) coopèrent avec une portion (48) de la broche (24) opposée à l'extrémité de travail (23) .
6. Porte-outil selon l'une des revendications 2 à 5 caractérisé en ce que les moyens (30, 31, 32) comportent des moyens (31, 32) formant butée axiale limitant le déplacement axial de la broche (24) par rapport au tube (29) dans le sens de l'extrémité de travail (23) .
7. Porte-outil selon la revendication 6 caractérisé en ce que les moyens (31, 32) comportent au moins une gorge longitudinale (31) ménagée dans le tube (29) à partir de l'extrémité d'introduction (27) , et au moins un téton (32) s'étendant radialement en saillie par rapport à la surface externe (47) de la broche (24) pour pénétrer dans la gorge longitudinale (31) et venir en butée contre l'extrémité intérieure fermée (49) de la gorge (31) .
8. Porte-outil selon la revendication 7 caractérisé en ce que les moyens (31, 32) comportent deux gorges longitudinales (31) et deux tétons (32) en saillie disposés symétriquement par rapport à l'axe (10) .
9. Porte-outil selon l'une des revendications 2 à 8 caractérisé en ce que les moyens (30, 31, 32) comportent un mandrin (30) de serrage radial du tube (29) à l'extrémité (27).
10. Porte-outil selon la revendication 9 et l'une des revendications 7 et 8 caractérisé en ce que chaque gorge longitudinale (31) est constituée d'une fente du mandrin.
11. Porte-outil selon l'une des revendications 1 à 10 caractérisé en ce qu'il comporte un moteur (51) d'entraînement en rotation de l'outil (1) , dont le rotor (52) est accouplé à la broche (24) .
12. Porte-outil selon la revendication 11 caractérisé en ce que le rotor (52) du moteur est directement accouplé en rotation au tube (29) .
13. Porte-outil selon l'une des revendications 11 et
12 caractérisé en ce que le rotor (52) du moteur (51) est disposé autour d'une portion (54) du tube (29) .
14. Porte-outil selon l'une des revendications 11 à
13 caractérisé en ce que le moteur (51) est monté d'ans une position située au moins au voisinage de l'extrémité (27) de l'alésage (26).
15. Porte-outil selon l'une des revendications 11 à 14 caractérisé en ce que le moteur (51) est monté en regard radialement d'une portion (48) de la broche (24) située dans la demi-longueur de la broche (24) opposée à l'extrémité de travail (23) .
16. Porte-outil selon la revendication 9 et l'une des revendications 11 à 15 caractérisé en ce que le moteur (51) est monté entre le mandrin de serrage (30) et l'extrémité (28) de l'alésage (26) opposée à l'extrémité d'introduction (27) .
17. Porte-outil selon la revendication 2 et l'une des revendications 11 à 16 caractérisé en ce que le bâti (16) porte le moteur (51) qui lui-même est accouplé au tube (29) qui porte la broche (24) .
18. Porte-outil selon l'une des revendications 2 à 17 caractérisé en ce que le bâti (16) forme un cylindre (33) allongé axialement pour le guidage du tube (29) en rotation.
19. Porte-outil selon la revendication 18 caractérisé en ce que la longueur du cylindre (33) de guidage est supérieure à la demi-longueur du tube (29) .
20. Porte-outil selon l'une des revendications 18 et 19 caractérisé en ce que le cylindre (33) porte à chacune de ses extrémités (35, 36) un palier ou roulement (37, 38) .
21. Porte-outil selon l'une des revendications 11 à 17 et selon l'une des revendications 18 à 20 caractérisé en ce que le cylindre (33) s'étend entre un logement (56) de réception du moteur (51) et l'extrémité (43) du tube (29) opposée à l'extrémité d'introduction (27) de la broche (24) dans l'alésage (26) .
22. Porte-outil selon l'une des revendications 2 à 21 caractérisé en ce qu'il comporte des moyens (17, 18, 19, 20) motorisés de guidage en translation du bâti (16) par rapport au support (5) selon l'axe (10) .
23. Robot médical ou chirurgical -notamment neurochirurgical- caractérisé en ce qu'il comporte un porte-outil (6) selon l'une des revendications 1 à 22.
24. Robot selon la revendication 23 caractérisé en ce que le porte-outil (6) forme la main du robot articulée à un bras articulé (3) .
25. Robot selon l'une des revendications 23 et 24 caractérisé en ce qu'il comporte des moyens (3, 9, il, 12, 13) pour positionner une extrémité (5) de bras articulé (3) dans l'espace et en ce que le porte-outil (6) est associé à cette extrémité (5) par une rotation (RI) d'axe (14) orthogonal à l'axe (10) .
26. Robot selon l'une des revendications 23 à 25 caractérisé en ce que les degrés de liberté entre l'extrémité (5) du bras (3) et l'outil (1) sont successivement
- une rotation (RI)
- une translation (TI) d'axe (15) parallèle à l'axe (10) ; - une rotation propre (R2) de l'outil (1) autour de son axe (10) .
PCT/FR1995/000121 1994-02-02 1995-02-01 Porte-outil pour outil medical ou chirurgical et robot comportant un tel porte-outil WO1995020923A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9401164A FR2715598B1 (fr) 1994-02-02 1994-02-02 Porte-outil pour outil médical ou chirurgical et robot comportant un tel porte-outil.
FR94/01164 1994-02-02

Publications (1)

Publication Number Publication Date
WO1995020923A1 true WO1995020923A1 (fr) 1995-08-10

Family

ID=9459689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1995/000121 WO1995020923A1 (fr) 1994-02-02 1995-02-01 Porte-outil pour outil medical ou chirurgical et robot comportant un tel porte-outil

Country Status (2)

Country Link
FR (1) FR2715598B1 (fr)
WO (1) WO1995020923A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104757929A (zh) * 2014-01-02 2015-07-08 中国科学院沈阳自动化研究所 一种消化内窥镜输送机构
EP3064162A3 (fr) * 2015-02-11 2016-12-28 Engineering Services Inc. Robot chirurgical

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5702419A (en) 1994-09-21 1997-12-30 Wake Forest University Expandable, intraluminal stents
CN108309661B (zh) * 2018-02-10 2020-01-24 泉州台商投资区双艺商贸有限公司 一种基于儿童口腔手术用检查台及其使用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0207726A2 (fr) * 1985-07-03 1987-01-07 Sherwood Medical Company Appareil de biopsie
GB2239605A (en) * 1990-01-05 1991-07-10 Univ Bristol An arrangement for supporting and positioning a mobile article
US5078140A (en) * 1986-05-08 1992-01-07 Kwoh Yik S Imaging device - aided robotic stereotaxis system
EP0469966A1 (fr) * 1990-07-31 1992-02-05 Faro Medical Technologies (Us) Inc. Dispositif chirurgical assisté par ordinateur
US5093593A (en) * 1990-12-18 1992-03-03 Stryker Corporation Surgical handpiece with motor having positive sensor location
US5230623A (en) * 1991-12-10 1993-07-27 Radionics, Inc. Operating pointer with interactive computergraphics

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0207726A2 (fr) * 1985-07-03 1987-01-07 Sherwood Medical Company Appareil de biopsie
US5078140A (en) * 1986-05-08 1992-01-07 Kwoh Yik S Imaging device - aided robotic stereotaxis system
GB2239605A (en) * 1990-01-05 1991-07-10 Univ Bristol An arrangement for supporting and positioning a mobile article
EP0469966A1 (fr) * 1990-07-31 1992-02-05 Faro Medical Technologies (Us) Inc. Dispositif chirurgical assisté par ordinateur
US5093593A (en) * 1990-12-18 1992-03-03 Stryker Corporation Surgical handpiece with motor having positive sensor location
US5230623A (en) * 1991-12-10 1993-07-27 Radionics, Inc. Operating pointer with interactive computergraphics

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104757929A (zh) * 2014-01-02 2015-07-08 中国科学院沈阳自动化研究所 一种消化内窥镜输送机构
EP3064162A3 (fr) * 2015-02-11 2016-12-28 Engineering Services Inc. Robot chirurgical
US9974619B2 (en) 2015-02-11 2018-05-22 Engineering Services Inc. Surgical robot

Also Published As

Publication number Publication date
FR2715598A1 (fr) 1995-08-04
FR2715598B1 (fr) 1996-04-12

Similar Documents

Publication Publication Date Title
CA1264630A (fr) Sonde de percage pour clou intramedullaire
EP2168703B1 (fr) Porte-outil à réglage axial
FR2901465A1 (fr) Viseur pour chirurgie ligamentaire
FR2560094A1 (fr) Broche de machine-outil et porte-outil s'y adaptant
EP0219404A1 (fr) Dispositif pour l'usinage intérieur d'un tube
EP0841114B1 (fr) Dispositif de serrage d'attachements à cÔne creux
WO1995020923A1 (fr) Porte-outil pour outil medical ou chirurgical et robot comportant un tel porte-outil
FR2468428A1 (fr) Dispositif de fixation d'outil, notamment pour perceuse a main
EP1883486B1 (fr) Mandrin porte-outil pour l'équipement d'une machine tournante, notamment du type clé à choc
WO1999021686A1 (fr) Dispositif de support de mandrin avec transmission angulaire
FR2570307A1 (fr) Tourelle revolver pour un tour et avec porte-outil s'y adaptant
CA2283683A1 (fr) Implant pour dispositif d'osteosynthese et outil de montage d'un tel implant
EP0043785B1 (fr) Mandrin de fixation d'un outil sur une machine outil
EP0274932B1 (fr) Accouplement ou dispositif d'accrochage rapide pour porte-outil et dispositif de serrage
FR2534515A1 (fr) Ensemble porte-outil vibrant
EP3843922A1 (fr) Pince a tete interchangeable et outil la comportant
FR2876021A1 (fr) Dispositif de prelevement et d'implantation de greffons capillaires
CH688641A5 (fr) Tête de contre-angle pour instrument endodontique.
FR2968231A1 (fr) Bride de serrage/desserrage
EP0360947B1 (fr) Pince destinée à porter un outil notamment un outil d'usinage
BE481721A (fr)
CH657077A5 (fr) Outillage pour la fixation d'une piece ronde a usiner ou controler.
WO2005000128A1 (fr) Dispositif de positionnement de guide de coupe osseuse
WO1990005037A1 (fr) Tete d'alesage
WO2023094963A1 (fr) Dispositif de support de seringue, dispositif d'injection et installation robotisée d'intervention chirurgicale

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase