WO1995018294A1 - Miller cycle engine - Google Patents

Miller cycle engine Download PDF

Info

Publication number
WO1995018294A1
WO1995018294A1 PCT/JP1994/002215 JP9402215W WO9518294A1 WO 1995018294 A1 WO1995018294 A1 WO 1995018294A1 JP 9402215 W JP9402215 W JP 9402215W WO 9518294 A1 WO9518294 A1 WO 9518294A1
Authority
WO
WIPO (PCT)
Prior art keywords
volume
piston
chamber
cycle engine
volume chamber
Prior art date
Application number
PCT/JP1994/002215
Other languages
French (fr)
Japanese (ja)
Inventor
Takeshi Ishihara
Godou Ozawa
Original Assignee
Komatsu Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd. filed Critical Komatsu Ltd.
Priority to GB9613353A priority Critical patent/GB2300226A/en
Priority to DE4480333T priority patent/DE4480333T1/en
Publication of WO1995018294A1 publication Critical patent/WO1995018294A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B21/00Engines characterised by air-storage chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/32Miller cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a mirror cycle engine, and more particularly to a mirror cycle engine provided with a volume chamber communicating with a cylinder chamber.
  • a method of closing the intake valve early for example, see Japanese Patent Application Laid-Open No. 55-148932
  • a method of closing the intake valve late for example, Japanese Patent Application Laid-Open No. 2-123234 is disclosed.
  • the method of closing the intake valve as shown in the acupressure diagram in Fig. 11 is as follows: intake stroke (between a-b-c), compression stroke (between c-b-d), expansion stroke (e-f ) And the exhaust stroke (between g-b-a), the intake valve is closed early during the intake stroke, and the latter half of the intake stroke (between bc) is expanded.
  • the method of closing the intake valve late as shown in FIG. 12 is as follows: the intake stroke (between h, i, and j), the compression stroke (between j, i, and k), the expansion stroke (between m and n), During the intake stroke, the intake valve is closed late during the intake stroke, and the intake pressure is released early in the compression stroke (between j and i).
  • the intake valve is opened during the compression stroke to provide a stroke without compression, and as the piston rises, a part of the intake air is taken into the intake manifold. To reduce the compression ratio substantially.
  • a screw-type compressor is used on the intake side to supply sufficient air into the cylinder chamber, from which the air flows back to the intake manifold. ing.
  • the intake valve is closed early or late by using a variable valve timing device, or the rotary valve is closed. They were closed early using a blast device, but both had problems with complicated structures and poor durability. Disclosure of the invention
  • the present invention has been made in order to solve the above-mentioned drawbacks of the related art, and has as its object to provide an inexpensive mirror cycle engine with a simple structure in which a volume chamber communicating with a cylinder chamber is simply provided. Aim.
  • the mirror cycle engine according to the present invention is provided with a volume chamber communicating with the cylinder chamber at a predetermined position above the bottom dead center of the stroke of the piston. It is characterized by suppressing the pressure rise in the cylinder chamber.
  • An on-off valve may be provided in a passage connecting the cylinder chamber and the volume chamber.
  • a controller connected to the on-off valve may be provided, and the controller may control opening and closing of the on-off valve.
  • the volume of the volume chamber may be variable.
  • the volume chamber may be provided with a variable mechanism such as a solenoid, a piston or an actuator, and the variable mechanism may make the volume of the volume chamber variable.
  • a controller connected to the variable mechanism may be provided, and the controller may control the volume of the volume chamber.
  • an engine rotation sensor connected to the controller and a rack position detection sensor for the engine fuel injection pump are provided, so that the measured engine speed and rack position can be input to the controller.
  • a pressure screw ring is disposed on the piston scar section, and this pressure screw ring is used to collect fresh air accumulated in the volume chamber in the early stage of the compression stroke and the volume of the fresh air in the early stage of the exhaust stroke. It may be possible to prevent the exhaust gas accumulated in the chamber from leaking into the crankcase.
  • the volume chamber communicating with the cylinder chamber by providing the volume chamber communicating with the cylinder chamber, the pressure rise in the cylinder chamber is suppressed to be low by using the volume of the volume chamber at the beginning of the compression stroke. Moreover, when the piston rises by a predetermined stroke, the hole in the cylinder chamber communicating with the volume chamber is closed, and the pressure in the cylinder chamber is raised to a predetermined value. Therefore, the predetermined pressure is set to a low value because the volume chamber suppresses the pressure rise. It is possible to reduce the compression ratio substantially. As a result, all of the air drawn into the cylinder chamber can be utilized with a simple structure, and the engine output can be obtained with a low compression ratio and a high expansion ratio corresponding to the cylinder volume. Can be improved. In addition, by making the volume chamber variable, it is possible to control the mirror cycle according to the engine speed, and to obtain higher output.
  • FIG. 1 is a conceptual diagram of a main part of a mirror cycle engine according to a first embodiment of the present invention
  • FIG. 2 is a shiatsu diagram of a four-cycle diesel engine of a mirror one-cycle engine according to the present invention
  • FIG. 3 is a conceptual diagram of a main part of a mirror cycle engine according to a second embodiment of the present invention
  • FIG. 4 is a table showing a relationship between an engine speed R and an average effective pressure P me in the second embodiment.
  • FIG. 5 is a conceptual diagram of a main part of a mirror cycle engine according to a third embodiment of the present invention
  • FIG. 6 is a diagram illustrating an engine speed R (rpm), an average effective pressure P me, and a critical maximum explosion pressure in the third embodiment.
  • R engine speed
  • P me average effective pressure
  • P me critical maximum explosion pressure
  • FIG. 7 is a conceptual diagram of a principal part of a mirror cycle engine according to a fourth embodiment of the present invention at the top dead center of the piston.
  • Fig. 8 is a conceptual diagram of the essential parts at the bottom dead center of the piston of the mirror cycle engine according to the fourth embodiment.
  • FIG. 9 is a conceptual diagram showing the initial state of the compression stroke according to the fourth embodiment
  • FIG. 10 is a conceptual diagram showing a state in a later stage of the expansion stroke according to the fourth embodiment
  • FIG. 11 is an acupressure diagram of a 4-cycle diesel engine of a conventional technology, in which the intake valve of a mirror cycle engine is rapidly closed.
  • Fig. 12 is an acupressure diagram of a four-cycle diesel engine with slow closing of the intake valve of a mirror cycle engine according to the prior art.
  • FIG. 1 is a conceptual diagram of a part of a mirror cycle engine according to a first embodiment of the present invention.
  • a piston 2 is pivotally inserted into a cylinder liner 11, and a predetermined stroke S moves up and down by rotation of a crankshaft (not shown).
  • An engine head 3 is disposed at an upper end of the cylinder liner 11, and a cylinder chamber 4 is formed by the piston 2 and the engine head 3.
  • the engine head 3 is provided with an intake pipe 3a and an exhaust pipe 3b.
  • a mushroom-shaped intake valve 5 is provided at a communication port of the intake pipe 3a with the cylinder chamber 4, and an exhaust pipe 3b.
  • a communication hole 7 is formed at a predetermined position of the cylinder liner 1, that is, at a position above a lower dead center of the lower end of the predetermined stroke S of the piston 2, and a predetermined hole is formed in the communication hole 7.
  • Volume room 8 is provided.
  • FIG. 2 showing a four-cycle digital pressure diagram of the present invention.
  • Figure 2 shows the intake stroke (between L1 and L2), the compression stroke (between L2 and L3 and L4), the expansion stroke (between L5 and L6), and the exhaust stroke (between L2 and L1).
  • the intake stroke between L1 and L2
  • the compression stroke between L2 and L3 and L4
  • the expansion stroke between L5 and L6
  • the exhaust stroke between L2 and L1
  • the intake valve 5 is closed, and at the beginning of the compression stroke (between L 2 and L 3), the pressure rise is suppressed low by using the volume of the volume chamber 8.
  • the piston 2 rises further in the compression stroke (hereinafter referred to as the latter half of the compression stroke).
  • the air sucked into the cylinder chamber 4 does not escape to the intake side and does not expand by closing the intake valve 5 early. Therefore, fresh air accumulated in the volume chamber 8 in the early stage of the compression stroke is ejected from the volume chamber 8 to the cylinder chamber 4 in the late stage of the expansion stroke, agitating the combustion gas, promoting oxidation of the combustion gas, and exhaust gas.
  • the compression pressure Pa of the present embodiment is low similarly to the conventional compression pressure Po shown in FIG. 11, a low compression ratio can be obtained. In this case, a low compression ratio and a high expansion ratio can be obtained, and the thermal efficiency and exhaust emission of the engine can be improved.
  • FIG. 3 shows a main part of the engine of the present embodiment, in which a cylinder chamber 4 and a volume chamber 8 are connected.
  • An electromagnetic valve 12 (open / close valve) that opens and closes is disposed in the communication passage 11.
  • This electromagnetic valve 12 is connected to a controller 13.
  • the controller 13 has an engine rotation sensor 14 attached to a crankshaft (not shown) for measuring the engine rotation speed, and a rack position of an injection pump for injecting fuel into the cylinder chamber 4.
  • the rack position detection sensor 15 for detecting is connected.
  • the rack position of the fuel injection pump is set by a command from an accelerator petal or the like (not shown), and the rack position detection sensor 15 detects this rack position.
  • the engine speed is measured by the engine speed sensor 14.
  • the signals from the rack position detection sensor 15 and the engine rotation sensor 14 are sent to the controller 13, and the controller 13 calculates the average effective pressure P m e from both signals.
  • a command signal is output to close the electromagnetic valve 12.
  • FIG. 5 shows a main part of the engine of the present embodiment.
  • a variable volume volume chamber 20 is provided in a communication hole 7 formed at a predetermined position of the cylinder liner 11.
  • This volume chamber 20 is composed of a cylinder 21, a piston 22 that is pivotally inserted into the cylinder 21, and a solenoid 23 that moves the piston 22.
  • the controller 25 connected to this solenoid 23 has an engine rotation sensor 14 that measures the engine speed and a rack position detection that detects the rack position of the injection pump. Sensor 15 is connected.
  • the maximum explosion pressure P max of the conventional mirror cycle is limited by the output indicated by the one-dot chain line in the figure.
  • the output limit is equivalent to the dashed-dotted line Pmax, for example, when the piston 22 is at an intermediate position W having a predetermined volume
  • the average effective pressure Pme is represented by a solid curve.
  • the piston 22 is moved to the position V of FIG. 5 having a larger predetermined volume.
  • the Pme that can be output at the same Pmax can rise to the position indicated by the dotted curve.
  • the engine when the engine load is low, the engine is driven by a normal engine, and when the engine load is high, the piston 22 is retracted to become a mirror cycle engine, and the low compression ratio and high expansion ratio are reduced. As a result, the thermal efficiency of the engine can be improved. As described above, a mirror cycle engine can be obtained with a simple structure.
  • control of the on-off valve 12 and the variable-volume volume chamber 20 was performed using an electromagnetic solenoid, but the actuator, control valve, etc. were controlled by hydraulic pressure, pneumatic pressure, etc.
  • a variable mechanism may be used.
  • FIG. 7 shows the state of the top dead center position of the biston in the mirror cycle engine of the present embodiment.
  • the piston 10 is pivotally connected. Has been inserted.
  • the piston 10 has a pressure piston ring 31 mounted on the upper part and a pressure screw ring 32 mounted on the skirt. When the piston 10 is at the top dead center position, the pressure screw ring 32 of the scart portion is located below the lower end face 7 b of the communication hole 7.
  • Fig. 8 shows the case where piston 10 is at the bottom dead center position, and piston 10 slides up and down by a predetermined stroke S up and down due to rotation of a crankshaft (not shown). You. In addition, at the bottom dead center position, the upper end face 10a of the piston 10 is located below the lower end face 7b of the communication hole 7, and the distance from the upper end face 7a is the same as in the first embodiment. Ha.
  • the Shiatsu diagram for the four-cycle operation of the diesel engine with this configuration is basically the same as the Shiatsu diagram of the first embodiment (FIG. 2), and a description thereof will be omitted.
  • the operation of the piston ring 32 different from the first embodiment will be described.
  • Fig. 9 in the initial stage of the compression stroke of piston 10, fresh air sucked into cylinder chamber 4 rises from the top dead center 10a of piston 10 from bottom dead center. It is stored in the volume chamber 8 as indicated by the solid arrow until it passes the upper end face 7a of the communication hole 7.
  • the piston 10 rises and compresses, and then the fuel burns and expands to a later stage of the expansion stroke, and the upper end face 10 a of the piston 10 becomes the upper end face 7 a of the communication hole 7.
  • the fresh air confined in the volume chamber 8 is blown out into the cylinder chamber 4 as indicated by an arrow, and the combustion gas is stirred to promote oxidation and exhaust. It contributes to gas purification.
  • the volume chamber 8 and the crankcase 33 are shut off by the pressure piston ring 32, as shown in FIG. 7, so that fresh air in the volume chamber 8 does not leak. Therefore, a sufficient amount of fresh air is ejected into the cylinder chamber 4 in the latter half of the expansion stroke.
  • a mirror cycle engine capable of preventing an increase in the provision amount can be obtained. .
  • the explanation is that the simple structure of providing a volume chamber that communicates with the cylinder chamber achieves a low compression ratio and a high expansion ratio to improve the thermal efficiency of the engine and the emission of exhaust gas. By preventing exhaust gas from leaking, it is useful as a mirror cycle engine that can purify exhaust gas and prevent an increase in blow-by volume.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

A miller cycle engine which is simple in construction, and provides a low compression ratio and a high expansion ratio, thereby making it possible not only to improve the thermal efficiency and exhaust emissions of the engine but also to clean exhaust gas and prevent an increase in blow-bye amount. To this end, a volume chamber (8) communicating with a cylinder chamber (4) at a position a predetermined distance (Ha) above the bottom dead center of the stroke of a piston (2) is provided, and the volume chamber (8) refrains a pressure increase in the cylinder chamber (4) at the beginning of a compression stroke. In addition, a pressure piston ring (32) is disposed at the skirt portion of piston (10) for preventing fresh air and exhaust gas accumulating in said volume chamber (8) from leaking into a crank case (13).

Description

明 細 書 ミ ラーサイクルエンジン 技 術 分 野  Technical Description Mirror Cycle Engine Technology
本発明は、 ミ ラ一サイ クルエンジンに係わり、 特に、 シリ ンダ室に連通するボ リ ューム室を設ける ミ ラーサイクルエンジンに関する。 背 景 技 術  The present invention relates to a mirror cycle engine, and more particularly to a mirror cycle engine provided with a volume chamber communicating with a cylinder chamber. Background technology
従来、 ミ ラーサイ クルのエンジンについては、 吸気バルブを早く閉じて行う方 法 (例えば、 日本特開昭 5 5 - 1 4 8 9 3 2号公報参照) と、 吸気バルブを遅く 閉じて行う方法 (例えば、 日本特開平 2 - 1 2 3 2 4 4号公報参照) とが行われ ている。 図 1 1 の指圧線図に示すような吸気バルブを早く 閉じて行う方法は、 吸 気行程 ( a - b— c間) 、 圧縮行程 ( c— b— d間) 、 膨張行程 ( e - f 間) 、 および排気行程 ( g— b— a間) の間で、 吸気行程中に吸気バルブを早く 閉じて 、 吸気行程後半 (b— c間) を膨張させて行っている。  Conventionally, for a mirror cycle engine, a method of closing the intake valve early (for example, see Japanese Patent Application Laid-Open No. 55-148932) and a method of closing the intake valve late ( For example, Japanese Patent Application Laid-Open No. 2-123234 is disclosed. The method of closing the intake valve as shown in the acupressure diagram in Fig. 11 is as follows: intake stroke (between a-b-c), compression stroke (between c-b-d), expansion stroke (e-f ) And the exhaust stroke (between g-b-a), the intake valve is closed early during the intake stroke, and the latter half of the intake stroke (between bc) is expanded.
また、 図 1 2 に示すような吸気バルブを遅く 閉じて行う方法は、 吸気行程 ( h 一 i 一 j 間) 、 圧縮行程 ( j 一 i 一 k間) 、 膨張行程 (m— n間) 、 および排気 行程 ( j 一 i 一 h間) の間で、 吸気行程中に吸気バルブを遅く閉じて、 圧縮行程 初期 ( j 一 i 間) に吸気圧を逃がして行っている。 この遅く閉じて行う方法では 、 圧縮行程中に吸気バルブを開いておいて、 圧縮せずの行程を設け、 ピス ト ンの 上昇とと もに、 吸入された空気の一部を吸気マ二ホールドへ逆流させて、 実質的 に圧縮比を下げるようにしている。 さ らに、 この方法において、 吸気側にスク リ ユ ー型コンプレッサを用いて、 シリ ンダ室内に十分に空気を供給し、 その内から —部を吸気マ二ホール ドへ逆流させることが知られている。  In addition, the method of closing the intake valve late as shown in FIG. 12 is as follows: the intake stroke (between h, i, and j), the compression stroke (between j, i, and k), the expansion stroke (between m and n), During the intake stroke, the intake valve is closed late during the intake stroke, and the intake pressure is released early in the compression stroke (between j and i). In this late closing method, the intake valve is opened during the compression stroke to provide a stroke without compression, and as the piston rises, a part of the intake air is taken into the intake manifold. To reduce the compression ratio substantially. In addition, in this method, it is known that a screw-type compressor is used on the intake side to supply sufficient air into the cylinder chamber, from which the air flows back to the intake manifold. ing.
しかしながら、 上記従来のミ ラ一サイクルェンジンでは、 可変バルブタィ ミ ン グ装置を用いて、 吸気バルブを早閉じしたり、 遅閉じしたり、 又はロータ リバル ブ装置を用いて早閉じしていたが、 両者共構造が複雑で耐久性が劣る問題があつ た。 発 明 の 開 示 However, in the conventional mirror cycle engine described above, the intake valve is closed early or late by using a variable valve timing device, or the rotary valve is closed. They were closed early using a blast device, but both had problems with complicated structures and poor durability. Disclosure of the invention
本発明は、 かかる従来技術の欠点を解消するためになされたもので、 シリ ンダ 室に連通するボリ ュ一ム室を設けるだけの簡単な構造で、 安価なミ ラーサイクル エンジンを提供することを目的とする。  SUMMARY OF THE INVENTION The present invention has been made in order to solve the above-mentioned drawbacks of the related art, and has as its object to provide an inexpensive mirror cycle engine with a simple structure in which a volume chamber communicating with a cylinder chamber is simply provided. Aim.
本発明に係る ミ ラ一サイ クルェンジンは、 ピス ト ンのス トロークの下死点より 所定の上方位置でシリ ンダ室に連通するボリ ユーム室を設け、 このボリ ユーム室 力 <、 圧縮行程の初期にシリ ンダ室の圧力上昇を抑制することを特徴とする。 この シリ ンダ室とボリ ューム室とを連通する通路に、 開閉弁を設けてもよい。 しかも 、 この開閉弁に接続するコン トローラを備え、 コン トローラが開閉弁の開閉を制 御すると してもよい。 また、 ボリ ュ一ム室の容積は、 可変の容積と してもよい。 このボリ ューム室は、 ソ レノイ ド、 ピス ト ン又はァクチユエ一夕等の可変機構を 備え、 可変機構がボリ ューム室の容積を可変にしてもよい。 しかも、 この可変機 構に接続するコン トローラを備え、 コン トローラがボリ ユーム室の容積を制御し てもよい。 さ らに、 コ ン トローラに接続するエンジン回転センサーとエンジン燃 料噴射ポンプのラ ッ ク位置検出センサ一とを備え、 測定したエンジン回転数とラ ッ ク位置とをコン トローラに入力してもよい。 以上の構成において、 ピス ト ンの スカー 卜部に圧力ビス ト ンリ ングを配設し、 この圧力ビス ト ンリ ングが、 圧縮行 程初期にボリ ユーム室に溜まつた新気と排気行程初期にボリ ュ一ム室に溜まつた 排気ガスとのクランクケース内への漏洩を防止すると してもよい。  The mirror cycle engine according to the present invention is provided with a volume chamber communicating with the cylinder chamber at a predetermined position above the bottom dead center of the stroke of the piston. It is characterized by suppressing the pressure rise in the cylinder chamber. An on-off valve may be provided in a passage connecting the cylinder chamber and the volume chamber. Moreover, a controller connected to the on-off valve may be provided, and the controller may control opening and closing of the on-off valve. Further, the volume of the volume chamber may be variable. The volume chamber may be provided with a variable mechanism such as a solenoid, a piston or an actuator, and the variable mechanism may make the volume of the volume chamber variable. Moreover, a controller connected to the variable mechanism may be provided, and the controller may control the volume of the volume chamber. In addition, an engine rotation sensor connected to the controller and a rack position detection sensor for the engine fuel injection pump are provided, so that the measured engine speed and rack position can be input to the controller. Good. In the above configuration, a pressure screw ring is disposed on the piston scar section, and this pressure screw ring is used to collect fresh air accumulated in the volume chamber in the early stage of the compression stroke and the volume of the fresh air in the early stage of the exhaust stroke. It may be possible to prevent the exhaust gas accumulated in the chamber from leaking into the crankcase.
かかる構成によれば、 シリ ンダ室に連通するボリ ューム室を設けることで、 圧 縮行程初期において、 ボリ ュ一ム室の容積を用いてシリ ンダ室の圧力上昇を低く 抑える。 しかも、 ピス ト ンが所定のス トローク分を上昇すると、 ボリ ューム室に 連通するシリ ンダ室の穴を塞いで、 シリ ンダ室の圧力を所定の値に上昇させる。 従って、 ボリ ューム室が圧力上昇を抑制するので、 所定の圧力を低い値とするこ とが可能であり、 実質的に圧縮比を低く している。 これにより、 簡単な構造でシ リ ンダ室に吸入された空気が全部活用できるため、 エンジン出力は、 シリ ンダ容 積に相当する低圧縮比、 高膨張比の出力が得られて、 エンジンの熱効率を改善す ることができる。 また、 ボリ ューム室を可変にすることにより、 エンジン回転速 度に応じたミ ラーサイクルの制御が可能になるとと もに、 さ らに高出力が得られ る。 According to this configuration, by providing the volume chamber communicating with the cylinder chamber, the pressure rise in the cylinder chamber is suppressed to be low by using the volume of the volume chamber at the beginning of the compression stroke. Moreover, when the piston rises by a predetermined stroke, the hole in the cylinder chamber communicating with the volume chamber is closed, and the pressure in the cylinder chamber is raised to a predetermined value. Therefore, the predetermined pressure is set to a low value because the volume chamber suppresses the pressure rise. It is possible to reduce the compression ratio substantially. As a result, all of the air drawn into the cylinder chamber can be utilized with a simple structure, and the engine output can be obtained with a low compression ratio and a high expansion ratio corresponding to the cylinder volume. Can be improved. In addition, by making the volume chamber variable, it is possible to control the mirror cycle according to the engine speed, and to obtain higher output.
また、 ビス ト ンスカー 卜部に圧力ビス ト ンリ ングを設けたため、 圧縮行程初期 にボリ ユ ーム室に溜めた新気がクランクケースに漏れることがなく 、 膨張行程後 期に十分な量の新気がシリ ンダ室に噴出し、 燃焼ガスを攪拌して酸化を促進する 。 これにより、 排気ガスを浄化するとと もに、 新気や排気ガスがクランクケース 内に洩れることがないので、 ブローバイ量の増加を防止できる。  In addition, since the pressure screw ring is provided in the bis-trans-cart section, fresh air accumulated in the volume chamber in the early stage of the compression stroke does not leak to the crankcase, and a sufficient amount of fresh air in the later stage of the expansion stroke. Jets into the cylinder chamber and stirs the combustion gas to promote oxidation. This purifies the exhaust gas and prevents fresh air and exhaust gas from leaking into the crankcase, thereby preventing an increase in the amount of blow-by.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1 は本発明の第 1実施例に係る ミ ラーサイクルェンジンの要部概念図、 図 2 は本発明に係る ミ ラ一サイクルエンジンの 4サイクルのディ ーゼルエンジン の指圧線図、  FIG. 1 is a conceptual diagram of a main part of a mirror cycle engine according to a first embodiment of the present invention, FIG. 2 is a shiatsu diagram of a four-cycle diesel engine of a mirror one-cycle engine according to the present invention,
図 3 は本発明の第 2実施例に係る ミ ラーサイクルェンジンの要部概念図、 図 4 は第 2実施例でのエンジン回転数 Rと平均有効圧力 P m e との関係を示す図 表、 FIG. 3 is a conceptual diagram of a main part of a mirror cycle engine according to a second embodiment of the present invention, and FIG. 4 is a table showing a relationship between an engine speed R and an average effective pressure P me in the second embodiment.
図 5 は本発明の第 3実施例に係る ミ ラーサイクルェンジンの要部概念図、 図 6 は第 3実施例におけるェンジン回転数 R ( r p m ) 、 平均有効圧力 P m e及 び限界最高爆発圧力 P m a xの関係を示す図表、 FIG. 5 is a conceptual diagram of a main part of a mirror cycle engine according to a third embodiment of the present invention, and FIG. 6 is a diagram illustrating an engine speed R (rpm), an average effective pressure P me, and a critical maximum explosion pressure in the third embodiment. A chart showing the relationship of P max,
図 7 は本発明の第 4実施例に係る ミ ラーサイクルェンジンのビス ト ン上死点位置 における要部概念図、 FIG. 7 is a conceptual diagram of a principal part of a mirror cycle engine according to a fourth embodiment of the present invention at the top dead center of the piston.
図 8 は第 4実施例に係る ミ ラ一サイクルェンジンのビス ト ン下死点位置における 要部概念図、 Fig. 8 is a conceptual diagram of the essential parts at the bottom dead center of the piston of the mirror cycle engine according to the fourth embodiment.
図 9 は第 4実施例に係る圧縮行程初期の状態を示す概念図、 図 1 0 は第 4実施例に係る膨張行程後期の状態を示す概念図、 図 1 1 は従来技術に係る ミ ラ一サイ クルェンジンの吸気バルブ早閉じ式 4サイ ク ルディ ーゼルェンジンの指圧線図、 FIG. 9 is a conceptual diagram showing the initial state of the compression stroke according to the fourth embodiment, FIG. 10 is a conceptual diagram showing a state in a later stage of the expansion stroke according to the fourth embodiment, and FIG. 11 is an acupressure diagram of a 4-cycle diesel engine of a conventional technology, in which the intake valve of a mirror cycle engine is rapidly closed.
図 1 2 は従来技術に係る ミ ラーサイクルェンジンの吸気バルブ遅閉じ式 4サイ ク ルディ一ゼルェンジンの指圧線図である。 発明を実施するための最良の形態 Fig. 12 is an acupressure diagram of a four-cycle diesel engine with slow closing of the intake valve of a mirror cycle engine according to the prior art. BEST MODE FOR CARRYING OUT THE INVENTION
本発明に係る ミ ラーサイクルエンジンについて、 好ま しい実施例を添付図面に 従って以下に詳述する。  Preferred embodiments of the mirror cycle engine according to the present invention will be described below in detail with reference to the accompanying drawings.
図 1 は、 本発明のミ ラーサイクルェンジンの第 1実施例を示すェンジンの一部 の概念図である。 図 1 において、 シリ ンダライナ一 1 の中にピス ト ン 2が枢密に 揷入され、 図示しないクランクシャ フ 卜の回転により、 上下に所定のス トロ一ク Sだけ憎動する。 シリ ンダライナ一 1 の上方端にはェンジンへッ ド 3が配設され 、 ピス ト ン 2 とエンジンヘッ ド 3 とにより、 シリ ンダ室 4が形成されている。 ェ ンジンへッ ド 3には吸気管 3 a と排気管 3 bが設けられ、 吸気管 3 aのシリ ンダ 室 4 との連絡口には茸型の吸気バルブ 5が、 また、 排気管 3 bのシリ ンダ室 4 と の連絡口には茸型の排気バルブ 6力く、 夫々配設されている。 シリ ンダライナー 1 の所定の位置、 即ち、 ピス ト ン 2の所定のス トローク Sの下方端の下死点より所 定の上方の位置に、 連絡穴 7が形成され、 連絡穴 7 には所定のボリ ューム室 8が 配設されている。  FIG. 1 is a conceptual diagram of a part of a mirror cycle engine according to a first embodiment of the present invention. In FIG. 1, a piston 2 is pivotally inserted into a cylinder liner 11, and a predetermined stroke S moves up and down by rotation of a crankshaft (not shown). An engine head 3 is disposed at an upper end of the cylinder liner 11, and a cylinder chamber 4 is formed by the piston 2 and the engine head 3. The engine head 3 is provided with an intake pipe 3a and an exhaust pipe 3b. A mushroom-shaped intake valve 5 is provided at a communication port of the intake pipe 3a with the cylinder chamber 4, and an exhaust pipe 3b. There are 6 mushroom-shaped exhaust valves at the communication port with the cylinder room 4 of each, which are provided respectively. A communication hole 7 is formed at a predetermined position of the cylinder liner 1, that is, at a position above a lower dead center of the lower end of the predetermined stroke S of the piston 2, and a predetermined hole is formed in the communication hole 7. Volume room 8 is provided.
上記構成における作動について、 本発明の 4サイクルのディ 一ゼルェンジンの 指圧線図を示す図 2 により説明する。 図 2 は、 吸気行程 (L 1 一 L 2 間) 、 圧縮 行程 (L 2 - L 3 - L 4 間) 、 膨張行程 (L 5 - L 6 間) 、 および排気行程 (L 2 — L 1 間) を示し、 圧縮行程に入ると吸気バルブ 5 は閉じており、 かつ、 圧縮 行程初期 (L 2 - L 3 間) ではボリ ユ ーム室 8の容積を用いて圧力上昇を低く抑 えている。  The operation of the above configuration will be described with reference to FIG. 2 showing a four-cycle digital pressure diagram of the present invention. Figure 2 shows the intake stroke (between L1 and L2), the compression stroke (between L2 and L3 and L4), the expansion stroke (between L5 and L6), and the exhaust stroke (between L2 and L1). In the compression stroke, the intake valve 5 is closed, and at the beginning of the compression stroke (between L 2 and L 3), the pressure rise is suppressed low by using the volume of the volume chamber 8.
即ち、 図 1 に示すように、 クランクシャフ 卜の回転角度 Θにより変化 (ス ト口 一ク Sの変化) するシリ ンダ室 4の行程容積を V s ( Θ ) 、 ボリ ューム室 8の容 積を V d とすると、 圧縮開始から、 ピス ト ン 2の上端面 2 aが連絡穴 7の上端面 7 a を塞ぐ位置にく る迄の圧縮行程初期 (距離 H a ) では、 シリ ンダの行程容積 Vは、 行程容積 V s ( Θ ) とボリ ューム室 8の容積 V dと加えたものである。 次 に、 ピス ト ン 2の上端面 2 aが連絡穴 7の上端面 7 aを塞いだ後、 さ らにピス ト ン 2が上昇する圧縮行程 (以下、 圧縮行程後半という。 ) では、 シリ ンダの行程 —容積 Vは、 シリ ンダ室 4の行程容積 V s ( Θ ) のみとなる。 In other words, as shown in Fig. 1, it changes depending on the rotation angle の of the crankshaft. Assuming that Vs (室) is the stroke volume of the cylinder chamber 4 and Vd is the volume of the volume chamber 8, the upper end surface 2a of the piston 2 is a communication hole from the start of compression. In the initial stage of the compression stroke (distance H a) until the upper end face 7 a of the cylinder 7 is closed, the stroke volume V of the cylinder is calculated by adding the stroke volume V s (Θ) and the volume V d of the volume chamber 8. It is a thing. Next, after the upper end surface 2a of the piston 2 closes the upper end surface 7a of the communication hole 7, the piston 2 rises further in the compression stroke (hereinafter referred to as the latter half of the compression stroke). The cylinder stroke—the volume V is only the stroke volume V s (Θ) of the cylinder chamber 4.
従って、 圧縮行程におけるシリ ンダ室 4の圧力 Pとシリ ンダの行程容積 Vとの 積を一定とすると、 圧縮行程初期では、 シリ ンダの行程容積 V ( = V s ( Θ ) + V d ) が大きいので、 シリ ンダの行程容積 Vの変化率に対し、 圧力 Pの変化率を 小さ くできる。 これにより、 圧力上昇を低く (L 2 — L 3 間) 抑えることができ る。 一方、 圧縮行程後半では、 シリ ンダの行程容積 V ( = V s ( Θ ) ) は小さい ので、 シリ ンダの行程容積 Vの変化率に対し、 圧力 Pの変化率が大き くできる。 従って、 圧力上昇が大き く (L 3 - L 4 間) なり、 十分な圧縮圧力 P aを得るこ とができる。 このような行程では、 シリ ンダ室 4 に吸入された空気は、 吸気側に 逃がしたり、 吸気バルブ 5を早閉じして膨張させたりすることがない。 従って、 圧縮行程初期にボリ ューム室 8 に溜めた新気が、 膨張行程後期にボリ ューム室 8 よりシリ ンダ室 4 に噴出し、 燃焼ガスを攪拌し、 燃焼ガスの酸化を促進し、 排気 ガスの浄化に役立つ。 また、 上記本実施例の圧縮圧力 P aは、 図 1 1 に示す従来 の圧縮圧力 P oと同様に、 低い圧力となるので、 低い圧縮比にすることができる 以上のように、 本実施例では、 低圧縮比、 高膨張比が得られ、 エンジンの熱効 率及び排ガスエミ ッ ショ ンが改善できる。  Therefore, assuming that the product of the pressure P of the cylinder chamber 4 and the stroke volume V of the cylinder in the compression stroke is constant, the stroke volume V of the cylinder (= Vs (Θ) + Vd) is at the beginning of the compression stroke. Since it is large, the change rate of the pressure P can be made smaller than the change rate of the stroke volume V of the cylinder. As a result, the pressure rise can be kept low (between L 2 and L 3). On the other hand, in the latter half of the compression stroke, the stroke volume V (= V s (Θ)) of the cylinder is small, so that the rate of change of the pressure P can be increased relative to the rate of change of the stroke volume V of the cylinder. Therefore, the pressure rise becomes large (between L 3 and L 4), and a sufficient compression pressure Pa can be obtained. In such a stroke, the air sucked into the cylinder chamber 4 does not escape to the intake side and does not expand by closing the intake valve 5 early. Therefore, fresh air accumulated in the volume chamber 8 in the early stage of the compression stroke is ejected from the volume chamber 8 to the cylinder chamber 4 in the late stage of the expansion stroke, agitating the combustion gas, promoting oxidation of the combustion gas, and exhaust gas. Useful for purification. Further, since the compression pressure Pa of the present embodiment is low similarly to the conventional compression pressure Po shown in FIG. 11, a low compression ratio can be obtained. In this case, a low compression ratio and a high expansion ratio can be obtained, and the thermal efficiency and exhaust emission of the engine can be improved.
次に、 本発明のミ ラーサイクルェンジンに係る第 2実施例につき図面を参照し て説明する。 なお、 第 1実施例と同一部品には同一符号を付して、 説明は省略す る。  Next, a second embodiment of the mirror cycle engine of the present invention will be described with reference to the drawings. The same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
図 3 は、 本実施例のエンジン要部を示し、 シリ ンダ室 4 とボリ ユーム室 8 とを 連絡する通路 1 1 には、 開閉する電磁バルブ 1 2 (開閉弁) が配設されている。 この電磁バルブ 1 2 は、 コン トローラ 1 3 に接続される。 また、 コン トローラ 1 3 には、 図示しないクラ ンクシャ フ 卜等に付設されてェンジン回転数を測定する ェンジン回転センサ一 1 4 と、 シリ ンダ室 4 に燃料を噴射する噴射ポンプのラ ッ ク位置を検出するラ ッ ク位置検出センサー 1 5が接続されている。 FIG. 3 shows a main part of the engine of the present embodiment, in which a cylinder chamber 4 and a volume chamber 8 are connected. An electromagnetic valve 12 (open / close valve) that opens and closes is disposed in the communication passage 11. This electromagnetic valve 12 is connected to a controller 13. The controller 13 has an engine rotation sensor 14 attached to a crankshaft (not shown) for measuring the engine rotation speed, and a rack position of an injection pump for injecting fuel into the cylinder chamber 4. The rack position detection sensor 15 for detecting is connected.
上記構成における作動について、 図 4 に示すエンジン回転速度 R ( r p m ) と 平均有効圧力 P m e との関係、 及び図 3で説明する。 図示しないアクセルペタル 等からの指令により、 燃料噴射ポンプのラック位置が設定され、 このラ ッ ク位置 をラ ッ ク位置検出センサ一 1 5が検出する。 また、 エンジンの回転数を、 ェンジ ン回転センサー 1 4 により測定する。 前記のラック位置検出センサー 1 5および ェンジン回転センサ一 1 4からの信号がコン トローラ 1 3 に送られ、 コン トロー ラ 1 3 は、 両信号より平均有効圧力 P m eを演算する。 演算された平均有効圧力 P m eが所定以下のときには、 電磁バルブ 1 2を閉じるように指令信号を出力す る。 これにより、 エンジン負荷が低いときには、 通常のエンジンにて駆動し、 ェ ンジン負荷が高いときには、 ミ ラーサイクルエンジンとなり、 低圧縮比、 高膨張 比を得てェンジンの熱効率が改善できる。  The operation of the above configuration will be described with reference to the relationship between the engine speed R (rpm) and the average effective pressure Pme shown in FIG. 4 and FIG. The rack position of the fuel injection pump is set by a command from an accelerator petal or the like (not shown), and the rack position detection sensor 15 detects this rack position. The engine speed is measured by the engine speed sensor 14. The signals from the rack position detection sensor 15 and the engine rotation sensor 14 are sent to the controller 13, and the controller 13 calculates the average effective pressure P m e from both signals. When the calculated average effective pressure P m e is equal to or less than a predetermined value, a command signal is output to close the electromagnetic valve 12. As a result, when the engine load is low, the engine is driven by a normal engine, and when the engine load is high, the engine becomes a mirror cycle engine, and a low compression ratio and a high expansion ratio are obtained, thereby improving the thermal efficiency of the engine.
次に、 本発明のミ ラーサイクルェンジンに係る第 3実施例につき図面を参照し て説明する。 なお、 上記実施例と同一部品には同一符号を付して、 説明は省略す る。  Next, a third embodiment of the mirror cycle engine of the present invention will be described with reference to the drawings. The same parts as those in the above embodiment are denoted by the same reference numerals, and description thereof will be omitted.
図 5 は、 本実施例のェンジン要部であって、 シリ ンダライナ一 1 の所定の位置 に形成された連絡穴 7 には、 可変容積のボリ ユ ーム室 2 0が配設されている。 こ のボリ ューム室 2 0 は、 シリ ンダ 2 1 と、 シリ ンダ 2 1 に枢密に揷入されたビス ト ン 2 2 と、 ピス ト ン 2 2を移動するソ レノイ ド 2 3 とから構成されている。 こ のソ レノ ィ ド 2 3 と接続するコ ン トローラ 2 5 には、 ェンジンの回転数を測定す るエンジン回転センサー 1 4 と、 上記噴射ポンプのラ ック位置を検出するラ ッ ク 位置検出センサー 1 5が接続されている。  FIG. 5 shows a main part of the engine of the present embodiment. A variable volume volume chamber 20 is provided in a communication hole 7 formed at a predetermined position of the cylinder liner 11. This volume chamber 20 is composed of a cylinder 21, a piston 22 that is pivotally inserted into the cylinder 21, and a solenoid 23 that moves the piston 22. ing. The controller 25 connected to this solenoid 23 has an engine rotation sensor 14 that measures the engine speed and a rack position detection that detects the rack position of the injection pump. Sensor 15 is connected.
上記構成における作動について、 図 5及び図 6で説明する。 エンジンを高出力 化するために、 ターボチャージャゃスーパチヤ一ジャにより高過給化を図る場合The operation in the above configuration will be described with reference to FIGS. High engine output To achieve high supercharging by turbocharger
、 従来のミ ラ一サイ クルェンジンの限界最高爆発圧力 P m a Xは、 図示の一点鎖 線で示す出力の限界をうける。 本実施例では、 出力限界がこの一点鎖線の P m a x相当する場合、 例えば、 ピス ト ン 2 2が所定の容積を有する中間的な位置 Wの 場合、 平均有効圧力 P m e は、 実線の曲線になる。 さ らに、 エンジンが低圧縮比 、 高膨張比を得てエンジンの熱効率の改善を必要とするときには、 ピス ト ン 2 2 は、 さ らに大きな所定の容積をもった図 5の位置 Vまで後退させる。 これにより 、 同一 P m a Xで出しうる P m e は、 点線の曲線の位置まで上昇し得る。 However, the maximum explosion pressure P max of the conventional mirror cycle is limited by the output indicated by the one-dot chain line in the figure. In the present embodiment, when the output limit is equivalent to the dashed-dotted line Pmax, for example, when the piston 22 is at an intermediate position W having a predetermined volume, the average effective pressure Pme is represented by a solid curve. Become. Further, when the engine requires a low compression ratio and a high expansion ratio to improve the thermal efficiency of the engine, the piston 22 is moved to the position V of FIG. 5 having a larger predetermined volume. Retreat. As a result, the Pme that can be output at the same Pmax can rise to the position indicated by the dotted curve.
上記では、 ピス ト ン 2 2を後退させ出力を変更する場合を説明したが、 ピス ト ン 2 2を最前進させ、 可変の容積のボリ ューム室 2 0をゼロの容積にする位置、 即ち、 図 5の位置 Yとすることにより、 通常のエンジンと して用いることができ る。 この制御は、 第 2実施例と同様な方法であり、 燃料噴射ポンプのラックの位 置及びェンジンの回転速度をコ ン トローラ 2 5 に送り、 コン トローラ 2 5 は両信 号より平均有効圧力 p m eを演算する。 演算した平均有効圧力 P m eが所定以下 のときには、 ピス ト ン 2 2を最前進させて、 ボリ ューム室 2 0の容積をゼロにす る。 これにより、 エンジン負荷が低いときには、 通常のエンジンにて駆動し、 ェ ンジン負荷が高いときには、 ピス ト ン 2 2を後退させことでミ ラーサイクルェン ジンとなり、 低圧縮比、 高膨張比を得てエンジンの熱効率の改善ができる。 以上 のように、 簡単な構造でミ ラ一サイクルエンジンが得られる。 In the above description, the case where the output is changed by retracting the piston 22 is described.However, the position where the piston 22 is moved forward most and the volume chamber 20 having a variable volume is set to zero volume, that is, By setting it to position Y in Fig. 5, it can be used as a normal engine. This control is performed in the same manner as in the second embodiment. The position of the rack of the fuel injection pump and the rotation speed of the engine are sent to the controller 25, and the controller 25 receives the average effective pressure p from both signals. Calculate me . When the calculated average effective pressure P me is equal to or lower than a predetermined value, the piston 22 is advanced to the maximum position to make the volume of the volume chamber 20 zero. Thus, when the engine load is low, the engine is driven by a normal engine, and when the engine load is high, the piston 22 is retracted to become a mirror cycle engine, and the low compression ratio and high expansion ratio are reduced. As a result, the thermal efficiency of the engine can be improved. As described above, a mirror cycle engine can be obtained with a simple structure.
なお、 上記実施例において、 開閉弁 1 2及び可変容積のボリ ューム室 2 0の制 御は、 電磁ソレノイ ドを用いて行ったが、 ァクチユエ一タ、 制御弁等を油圧、 空 圧等により制御する可変機構を用いても良い。  In the above embodiment, the control of the on-off valve 12 and the variable-volume volume chamber 20 was performed using an electromagnetic solenoid, but the actuator, control valve, etc. were controlled by hydraulic pressure, pneumatic pressure, etc. A variable mechanism may be used.
次に、 本発明のミ ラーサイクルェンジンに係る第 4実施例につき図面を参照し て説明する。 なお、 上記実施例と同一部品には同一符号を付して、 説明は省略す る。  Next, a fourth embodiment of the mirror cycle engine of the present invention will be described with reference to the drawings. The same parts as those in the above embodiment are denoted by the same reference numerals, and description thereof will be omitted.
図 7 は、 本実施例のミ ラーサイクルエンジンのビス トン上死点位置状態を示し 、 クランクケース 3 3 と一体のシリ ンダライナ 1 の中には、 ピス トン 1 0が枢密 に挿入されている。 このピス ト ン 1 0 は、 上部には圧力ピス ト ンリ ング 3 1が装 着され、 スカ一 ト部には圧力ビス ト ンリ ング 3 2が装着されている。 そして、 ピ ス ト ン 1 0が上死点位置において、 スカー ト部の圧力ビス ト ンリ ング 3 2 は、 連 絡穴 7 の下端面 7 bより下方に位置している。 FIG. 7 shows the state of the top dead center position of the biston in the mirror cycle engine of the present embodiment. In the cylinder liner 1 integrated with the crankcase 33, the piston 10 is pivotally connected. Has been inserted. The piston 10 has a pressure piston ring 31 mounted on the upper part and a pressure screw ring 32 mounted on the skirt. When the piston 10 is at the top dead center position, the pressure screw ring 32 of the scart portion is located below the lower end face 7 b of the communication hole 7.
図 8 はピス ト ン 1 0が下死点位置にある場合を示しており、 ピス ト ン 1 0 は図 示しないクランクシャフ 卜の回転により、 上下に所定のス トロ一ク Sだけ摺動す る。 また、 下死点位置において、 ピス ト ン 1 0の上端面 1 0 aは、 連絡穴 7 の下 端面 7 bより下方に位置し、 第 1実施例と同様に、 上端面 7 a とは距離 H aであ る。  Fig. 8 shows the case where piston 10 is at the bottom dead center position, and piston 10 slides up and down by a predetermined stroke S up and down due to rotation of a crankshaft (not shown). You. In addition, at the bottom dead center position, the upper end face 10a of the piston 10 is located below the lower end face 7b of the communication hole 7, and the distance from the upper end face 7a is the same as in the first embodiment. Ha.
かかる構成による 4サイクルのディ 一ゼルェンジンの作動に関し、 指圧線図は 、 第 1 実施例の指圧線図 (図 2 ) と基本的に同様であり、 説明を省略する。 次に 、 第 1実施例とは異なるピス ト ンリ ング 3 2の作用について説明する。 図 9 に示 すように、 ピス ト ン 1 0の圧縮行程初期において、 シリ ンダ室 4 に吸い込まれた 新気は、 ピス ト ン 1 0の上端面 1 0 aが下死点から上昇して連絡穴 7の上端面 7 aを過ぎるまで、 実線の矢印のようにボリ ューム室 8 に溜められる。  The Shiatsu diagram for the four-cycle operation of the diesel engine with this configuration is basically the same as the Shiatsu diagram of the first embodiment (FIG. 2), and a description thereof will be omitted. Next, the operation of the piston ring 32 different from the first embodiment will be described. As shown in Fig. 9, in the initial stage of the compression stroke of piston 10, fresh air sucked into cylinder chamber 4 rises from the top dead center 10a of piston 10 from bottom dead center. It is stored in the volume chamber 8 as indicated by the solid arrow until it passes the upper end face 7a of the communication hole 7.
そしてピス ト ン 1 0が上昇して圧縮し、 つぎに燃料が燃焼し、 膨張して膨張行 程後期になり、 ピス ト ン 1 0の上端面 1 0 aが連絡穴 7の上端面 7 aを過ぎると 、 図 1 0 に示すように、 ボリ ューム室 8に閉じ込められていた新気は、 矢印のよ うにシリ ンダ室 4内に噴出し、 燃焼ガスを攪拌して酸化を促進し、 排気ガスの浄 化に寄与する。 この間、 ボリ ューム室 8 とクランクケース 3 3 とは、 図 7 に示し たように、 圧力ピス ト ンリ ング 3 2により遮断されているため、 ボリ ューム室 8 の新気は漏洩することない。 したがって膨張行程後期において、 十分な量の新気 がシリ ンダ室 4内に噴出する。 また、 前記の新気や、 排気行程初期にボリ ューム 室 8 に溜まった排気が、 クランクケース 3 3に漏洩することがないため、 プロ一 バイ量の増加を防止できる ミ ラーサイクルエンジンが得られる。  Then, the piston 10 rises and compresses, and then the fuel burns and expands to a later stage of the expansion stroke, and the upper end face 10 a of the piston 10 becomes the upper end face 7 a of the communication hole 7. After that, as shown in FIG. 10, the fresh air confined in the volume chamber 8 is blown out into the cylinder chamber 4 as indicated by an arrow, and the combustion gas is stirred to promote oxidation and exhaust. It contributes to gas purification. During this time, the volume chamber 8 and the crankcase 33 are shut off by the pressure piston ring 32, as shown in FIG. 7, so that fresh air in the volume chamber 8 does not leak. Therefore, a sufficient amount of fresh air is ejected into the cylinder chamber 4 in the latter half of the expansion stroke. In addition, since the fresh air and the exhaust gas accumulated in the volume chamber 8 at the beginning of the exhaust stroke do not leak to the crankcase 33, a mirror cycle engine capable of preventing an increase in the provision amount can be obtained. .
産業上の利用可能性 ¾明は、 シリ ンダ室に連通するボリ ユ ーム室を設けるという簡単な構造によ り、 低圧縮比、 高膨張比を得てエンジンの熱効率及び排ガスエミ ッ ショ ンの改善 ができ、 また排気ガス等を漏洩させないことにより、 排気ガス浄化とブローバイ 量の増加防止ができる ミ ラ一サイ クルエンジンと して有用である。 Industrial applicability The explanation is that the simple structure of providing a volume chamber that communicates with the cylinder chamber achieves a low compression ratio and a high expansion ratio to improve the thermal efficiency of the engine and the emission of exhaust gas. By preventing exhaust gas from leaking, it is useful as a mirror cycle engine that can purify exhaust gas and prevent an increase in blow-by volume.

Claims

請 求 の 範 囲 The scope of the claims
1 . ピス ト ンと、 前記ピス ト ンに接するシリ ンダ室とを備え、 前記シリ ンダ室の 圧力上昇を抑制してなる ミ ラーサイ クルェンジンにおいて、 前記ピス ト ンのス ト ロークの下死点より所定の上方位置で前記シリ ンダ室に連通するボリ ューム室を 設け、 前記ボリ ューム室が、 圧縮行程の初期に前記シリ ンダ室の圧力上昇を抑制 することを特徴とする ミ ラ一サイクルエンジン。 1. In a mirror cycle engine that includes a piston and a cylinder chamber in contact with the piston, and suppresses a pressure increase in the cylinder chamber, a lower dead center of a stroke of the piston is provided. A mirror cycle engine, wherein a volume chamber communicating with the cylinder chamber is provided at a predetermined upper position, and the volume chamber suppresses a pressure increase in the cylinder chamber at an early stage of a compression stroke.
2 . 前記シリ ンダ室と前記ボリ ューム室とを連通する通路に、 開閉弁を設けたこ とを特徴とする請求の範囲 1記載のミ ラ一サイクルエンジン。 2. The mirror cycle engine according to claim 1, wherein an on-off valve is provided in a passage communicating the cylinder chamber and the volume chamber.
3 . 前記開閉弁に接続するコン トローラを備え、 前記コ ン トローラが前記開閉弁 の開閉を制御することを特徴とする請求の範囲 2記載のミ ラーサイクルエンジン 3. The mirror cycle engine according to claim 2, further comprising a controller connected to the on-off valve, wherein the controller controls opening and closing of the on-off valve.
4 . 前記ボリ ューム室の容積は、 可変の容積であることを特徴とする請求の範囲 1記載のミ ラ一サイクルェンジン。 4. The mirror cycle engine according to claim 1, wherein the volume of the volume chamber is variable.
5 . 前記ボリ ューム室は、 ソ レノイ ド、 ピス ト ン又はァクチユエ一夕等の可変機 構を備え、 前記可変機構が前記ボリ ユ ーム室の容積を可変とすることを特徴とす る請求の範囲 4記載のミ ラ一サイクルエンジン。 5. The volume chamber is provided with a variable mechanism such as a solenoid, a piston, or an actuator, and the variable mechanism makes the volume of the volume chamber variable. The mirror cycle engine according to range 4.
6 . 前記可変機構に接続するコン トローラを備え、 前記コ ン トローラが前記ボリ ユ ーム室の容積を制御することを特徵とする請求の範囲 5記載のミ ラ一サイクル エンジン。 6. The mirror cycle engine according to claim 5, further comprising a controller connected to the variable mechanism, wherein the controller controls a volume of the volume chamber.
7 . 前記コ ン トローラに接続するェンジン回転センサ一とェンジン燃料噴射ポン プのラ ッ ク位置検出セ ンサーとを備え、 測定したェンジン回転数とラ ッ ク位置と を前記コ ン トローラに入力することを特徴とする請求の範囲 3又は 6のいずれか に記載のミ ラ一サイ クルェンジン。 7. The engine rotation sensor and engine fuel injection pump connected to the controller 7. The micom according to claim 3, further comprising: a rack position detecting sensor for the pump, wherein the measured engine speed and the rack position are input to the controller. La Sai Klujing.
8 . 前記ビス ト ンのスカー ト部に圧力ピス ト ンリ ングを配設し、 前記圧力ビス ト ンリ ングが、 前記圧縮行程初期に前記ボリ ューム室に溜まった新気と排気行程初 期に前記ボリ ユ ーム室に溜まった排気ガスとのクラ ンクケース内への漏洩を防止 することを特徴とする請求の範囲 1 ~ 7のいずれか一に記載のミ ラーサイ クルエ ンジン。 8. A pressure piston ring is provided on the scart portion of the piston, and the pressure screw ring is used for the fresh air accumulated in the volume chamber in the early stage of the compression stroke and the pressure piston ring in the early stage of the exhaust stroke. The mirror cycle engine according to any one of claims 1 to 7, wherein leakage of the exhaust gas accumulated in the volume chamber into the crankcase is prevented.
PCT/JP1994/002215 1993-12-28 1994-12-26 Miller cycle engine WO1995018294A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB9613353A GB2300226A (en) 1993-12-28 1994-12-26 Miller cycle engine
DE4480333T DE4480333T1 (en) 1993-12-28 1994-12-26 Miller engine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP35109593 1993-12-28
JP5/351095 1993-12-28
JP6/194767 1994-07-27
JP19476794 1994-07-27

Publications (1)

Publication Number Publication Date
WO1995018294A1 true WO1995018294A1 (en) 1995-07-06

Family

ID=26508723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/002215 WO1995018294A1 (en) 1993-12-28 1994-12-26 Miller cycle engine

Country Status (3)

Country Link
DE (1) DE4480333T1 (en)
GB (1) GB2300226A (en)
WO (1) WO1995018294A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7222614B2 (en) * 1996-07-17 2007-05-29 Bryant Clyde C Internal combustion engine and working cycle

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8215292B2 (en) 1996-07-17 2012-07-10 Bryant Clyde C Internal combustion engine and working cycle
NL1013811C2 (en) * 1999-12-09 2000-11-28 Prometheus Engineering B V Hydraulic valve actuation mechanism.
JP2002213244A (en) 2001-01-19 2002-07-31 Honda Motor Co Ltd Natural-intake internal combustion engine for vehicle
GR1003890B (en) * 2001-06-14 2002-05-20 Internal combustion engine of variable capacity, variable compression ratio and alternative combustible
WO2024038183A1 (en) 2022-08-18 2024-02-22 Immunocore Limited Multi-domain binding molecules

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5991436U (en) * 1982-12-14 1984-06-21 本田技研工業株式会社 Internal combustion engine with pre-chamber
JPS6360038U (en) * 1986-10-07 1988-04-21

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5991436U (en) * 1982-12-14 1984-06-21 本田技研工業株式会社 Internal combustion engine with pre-chamber
JPS6360038U (en) * 1986-10-07 1988-04-21

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7222614B2 (en) * 1996-07-17 2007-05-29 Bryant Clyde C Internal combustion engine and working cycle

Also Published As

Publication number Publication date
DE4480333T1 (en) 1997-02-27
GB9613353D0 (en) 1996-08-28
GB2300226A (en) 1996-10-30

Similar Documents

Publication Publication Date Title
US5190006A (en) Injection arrangement for improving fuel consumption
US4426985A (en) Supercharged internal combustion engine
JP4345307B2 (en) Control device for internal combustion engine with variable compression ratio mechanism
JP2843614B2 (en) Two-cycle diesel engine
ITTO20010660A1 (en) MULTI-CYLINDER DIESEL ENGINE WITH VARIABLE VALVE OPERATION.
JPH0742863B2 (en) Method for controlling the working cycle of a four-cycle internal combustion piston engine
WO2001046572A1 (en) A four stroke engine
JP2000328986A (en) Stopping device for diesel engine
WO2008013157A1 (en) Exhaust gas recirculation system for internal combustion engine
US5123388A (en) Otto-cycle engine
CN106257020B (en) Method and system for an engine
WO1995018294A1 (en) Miller cycle engine
JP2004204745A (en) System and method for controlling engine
US5230315A (en) Otto-cycle engine
EP1239130B1 (en) Dual-mode engine with controlled auto-ignition
JP2519110B2 (en) Otto-cycle engine
JP2946729B2 (en) Subchamber engine with exhaust gas recirculation system
US4945868A (en) Two cycle exhaust recycling
JP3183560B2 (en) Control device for supercharged engine
JP2004239065A (en) Reciprocating engine and its control method
WO1996001939A1 (en) A restricted induction reciprocating piston type internal combustion engine
JPH06200832A (en) Two-stroke engine
JP3257365B2 (en) Sub-chamber engine with exhaust gas recirculation system
JPH0835430A (en) Bypass manifold engine
KR820000757B1 (en) Method for improving the efficiency of internal combustion engines

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE GB JP US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 1996 666426

Country of ref document: US

Date of ref document: 19960624

Kind code of ref document: A

RET De translation (de og part 6b)

Ref document number: 4480333

Country of ref document: DE

Date of ref document: 19970227

WWE Wipo information: entry into national phase

Ref document number: 4480333

Country of ref document: DE