WO1995018077A1 - Concrete compositions and method of manufacturing concrete - Google Patents

Concrete compositions and method of manufacturing concrete Download PDF

Info

Publication number
WO1995018077A1
WO1995018077A1 PCT/JP1994/002250 JP9402250W WO9518077A1 WO 1995018077 A1 WO1995018077 A1 WO 1995018077A1 JP 9402250 W JP9402250 W JP 9402250W WO 9518077 A1 WO9518077 A1 WO 9518077A1
Authority
WO
WIPO (PCT)
Prior art keywords
aggregate
concrete
mineral
powder
fine
Prior art date
Application number
PCT/JP1994/002250
Other languages
French (fr)
Japanese (ja)
Inventor
Hajime Okamura
Tokuaki Sone
Kouichi Tanigawa
Akihiro Koyanaka
Masahiro Kato
Original Assignee
Chichibu Onoda Cement Co.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP8252194A external-priority patent/JP3099166B2/en
Priority claimed from JP33065294A external-priority patent/JPH07232955A/en
Application filed by Chichibu Onoda Cement Co. filed Critical Chichibu Onoda Cement Co.
Priority to AU12822/95A priority Critical patent/AU1282295A/en
Publication of WO1995018077A1 publication Critical patent/WO1995018077A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0076Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials characterised by the grain distribution

Definitions

  • the present invention provides a concrete composition that is rich in fluidity and has good strength by mixing an appropriate amount of fine mineral powder and adjusting the mixing ratio of concrete, even if aggregate having a discontinuous particle size distribution is used. And a method for producing a concrete.
  • Fine aggregates are aggregates that pass through 5% or less of particles, specifically, 85% or more through a sieve with a sieve of 5mm.Coarse aggregates are defined as particles of 5mm or more.
  • an appropriate particle size distribution as a concrete material according to the maximum size of the particles is determined by, for example, the Japan Society of Civil Engineers or the Architectural Institute of Japan.
  • the appropriate particle size distribution is a particle size in which fine particles and coarse particles are appropriately contained.
  • the index of the particle size is indicated by the sum of the weight of the particles remaining on the specified sieve, and this L, which is fine aggregate, is called the fineness module of coarse aggregate. . More specifically, 10 types of sieves with sieve sizes of 80, 40, 20, 10, 5, 2.5, 1.2, 0.6, 0.3, and 0.15 mm were used. The value obtained by dividing the sum of the weight percentage of the sample remaining in the sample by 100. The larger the particle size, the higher the coarse particle ratio. In general, the coarse grain ratio of fine aggregate is about 2.3 to 3.0, and the coarse grain rate of coarse aggregate varies depending on the maximum dimension. For example, when the maximum dimension is 2 O mm, the coarse grain rate is 6.3. ⁇ 7.0 Range.
  • Concrete is manufactured based on the mixing design of the above materials.
  • the formulation of the concrete is to determine the composition ratio of each of the above materials so that the desired performance can be obtained in fresh and hardened concrete.
  • the fine aggregate volume (S) with respect to the total aggregate volume in concrete (A) is called the fine aggregate ratio (S / A: sand percentage). It indicates that there are many.
  • the fine aggregate ratio takes into account the particle size distribution of fine aggregate and coarse aggregate, and the particle size distribution of the total aggregate of fine aggregate and coarse aggregate is suitable for obtaining the specified performance for concrete. It is determined appropriately so that If the fine aggregate ratio is smaller than the predetermined value, the unitary water volume required to obtain the required slump value increases because the specificity of concrete deteriorates, and the fine aggregate ratio is set lower than the predetermined value. Increasing the value increases the surface area of the total aggregate, and in this case also increases the unit water required to obtain the required slump value. That is, usually, the fine aggregate ratio is determined so that the unit water volume is minimized within a range where an appropriate power
  • the coarse grain ratio of the total aggregate is, for example, in the range of 4.5 to 5.5 in the case of the maximum dimension of the coarse aggregate of 20 mm, and the coarse grain ratio of only the coarse aggregate. Is in the range of 0.70 to 0.80, and this ratio does not change even if the maximum size of the coarse aggregate changes.
  • the particle size distribution becomes discontinuous, that is, the particle size balance between the coarse aggregate and the fine aggregate is poor, and it is not possible to obtain an appropriate concrete mixture.
  • the ability to adjust the fine aggregate ratio by combining fine and coarse aggregates so that the particle size distribution in the aggregates is appropriate. Since the aggregate or coarse aggregate itself has a discontinuous particle size distribution, that is, the amount of distribution of each particle size is not appropriate in the particle size distribution curve, the limit is naturally limited even if the fine aggregate ratio is significantly changed. Yes, it is difficult to obtain an ideal particle size distribution for the entire aggregate. In addition, it is difficult to obtain aggregates having an appropriate grain size composition, and there is a natural limit to permanently obtaining such aggregates as concrete materials.
  • the amount of water required to obtain the required fluidity increases. Concrete with increased water content increases the shrinkage due to drying, which increases the possibility of cracking, and also decreases the strength of concrete due to the decrease in the concentration of cement paste. Furthermore, if the cement paste concentration is reduced, the separation tendency of the materials is large and the uniformity of the concrete is impaired.
  • the ability to increase the amount of cement to maintain the cement paste concentration is not only economical, but also impairs the performance of the concrete, such as the risk of temperature cracks due to the heat of hardening of the concrete and the increase in drying shrinkage.
  • the object of the present invention is to use L ⁇ aggregate suitable as a concrete material, which does not have a suitable particle size distribution as a concrete aggregate as described above, by mixing with a mineral fine powder. Is to make it possible.
  • Another object of the present invention is to enable the use of fine mineral powder in concrete compositions by replacing a part of ordinary aggregate with fine mineral powder.
  • Mineral fine powder has been used as a concrete material in the past, for example, it is preliminarily mixed into cement as a mixed cement, or water, cement, fine bone is used as an admixture for concrete during the production of concrete. Some are used simultaneously with wood and coarse aggregate.
  • the former mixed cement includes blast furnace slag fine powder, fly ash and siliceous fine powder, and the cement mixed with these is specified in the JIS standard as blast furnace cement, fly ash cement and silica cement, respectively.
  • admixtures such as silica fume, rice husk ash, and natural pozzolans.
  • the properties of concrete can be improved.
  • the fly ash particles are smooth and spherical, thereby improving the single-strength viability of the concrete.
  • the unit water volume for obtaining the required consistency is reduced by fly ash. It can be reduced from unused ones, and the water-cement ratio can be reduced.
  • the pozzolanic reaction of fly ash is excited, and the reaction product densifies the concrete structure, increases long-term strength, and improves water tightness, resistance to chemicals, etc. I do.
  • the mixing of fly ash mitigates the heat of hydration of cement.
  • the present invention has been made by mixing an appropriate amount of a fine mineral substance powder into an aggregate which has not been conventionally used as a concrete material because of an inappropriate particle size composition and a low quality. Aggregates can be used as concrete materials. Also, the present invention provides a concrete composition having excellent strength, even if the aggregate has an appropriate particle size distribution, by replacing a part of the fine aggregate with mineral fine powder within a range that does not impair the particle size distribution. Based on this finding, it is possible to use a large amount of fine mineral powder. Furthermore, the present invention uses fly ash as a mineral fine powder in combination with other mineral fine powders, so that it can be used for replacement with the above-mentioned aggregate, and also for replacement with part of cement.
  • the present invention adjusts the mix of concrete by mixing an appropriate amount of fine mineral powder into aggregates that were not conventionally used for concrete because of the inadequate particle size composition and low quality. By doing so, it is possible to provide a concrete composition and a concrete production method which are rich in fluidity and exhibit good strength.
  • the present invention reduces the unit aggregate amount in concrete by replacing mineral oil with fine mineral powder to replace it and reduce the amount of unit aggregate in concrete. It provides a concrete composition and a method of producing concrete with excellent strength while reducing the amount of fine aggregate.
  • practically large quantities of industrial by-products such as fly ash and blast furnace slag powder are effective. It can be used.
  • a concrete composition containing cement, aggregate, mineral fine powder and water, and the particle size distribution of the aggregate is RFM (the ratio of the coarse aggregate ratio to the coarse aggregate ratio of the coarse aggregate). (Ratio) 0.80 or more, wherein the ratio (FZA) of the mineral powder (F) to the aggregate (A) is 10% by volume or more.
  • the coarse aggregate in the aggregate is an artificial aggregate, preferably an artificial aggregate mainly composed of fly ash, an artificial aggregate mainly composed of anti-firestone, or an artificial aggregate mainly composed of expanded shale.
  • Concrete concrete characterized by mixing fine mineral powder (F) with at least 0.80 aggregate so that the ratio (F / A) to the aggregate (A) becomes 10% by volume or more. Production method.
  • a method for producing concrete comprising replacing fine mineral powder with a part of aggregate and mixing fine mineral powder.
  • the blending amount of mineral fine powder in the hydraulic component is 30 to 50% by weight (in percentage), and the mineral powder is Concrete composition mainly composed of fly ash, part of which is replaced by other fine mineral powder.
  • the other mineral powder to be replaced by fly ash is gypsum powder having a plain surface area of 5000c or more, and the content of the gypsum powder is fry.
  • FIG. 1 is a graph showing the relationship between FZA and compressive strength in Example 1 of the present invention
  • FIG. 2 is a graph showing the relationship between FZS and compressive strength in Example 1 of the present invention
  • FIG. 3 is a graph showing an example of the particle size distribution of the total aggregate in Example 1
  • FIG. 4 is a graph showing the relationship between the age and the compressive strength in the 30 ° C. water curing in Example 3 of the present invention
  • FIG. Is a graph showing the compressive strength per unit weight of concrete using various artificial aggregates in Example 4 of the present invention.
  • the particle size distribution of RFM ratio of total aggregate coarse grain ratio to coarse aggregate coarse grain ratio 0.80
  • To the aggregate (A) (FZA) is at least 10% by volume.
  • the present invention relates to a concrete containing cement, aggregate, mineral fine powder and water, wherein the ratio of fine mineral powder (F) to fine aggregate (S) in the aggregate (FZ S ) Is at least 30% by volume or more, preferably 45% by volume or more, characterized in that the mineral fine powder is replaced by a part of the aggregate.
  • the present invention relates to a hydraulic component composed of cement and mineral fine powder in concrete, wherein the blending amount of the mineral fine powder in the hydraulic component is 30 to 50% by weight (inner percentage). Yes, and minerals It is characterized in that the fine powder mainly consists of fly ash, and a part of the fine powder is replaced by other fine powder of mineral substances.
  • any of various portland cements such as ordinary, fast-strength, ultra-fast, moderate heat, sulfate-resistant, and white can be used.
  • aggregates include ordinary aggregates such as sand, gravel, and crushed stones used in ordinary concrete, as well as metal aggregates such as iron and stainless steel, and ceramic aggregates made from alumina and the like.
  • aggregates such as artificial aggregates mainly made of fly ash, anti-firestone, expansive shale, etc.
  • Aggregates having a discontinuous particle size distribution as described above, which are not suitable as ordinary concrete aggregates, can be suitably used as the aggregates of the present invention, and are difficult to obtain year by year. It can contribute to securing good quality aggregate resources in the situation.
  • a high-strength lightweight concrete having a long-term strength equal to or higher than that of ordinary concrete can be obtained.
  • Mineral fine powder is used in addition to conventional concrete materials, and if it has a particle composition approximately the same as cement, natural minerals such as various rock powders, diatomaceous earth, and natural pozzolans Either fine powder or fine powder of artificial mineral such as blast furnace slag or fly ash may be used. Above all, the use of fly ash, which is largely disposed of by landfill, is preferably used from the viewpoint of recycling unused resources.
  • the above mineral powder is
  • the mineral fine powder preferably contains at least fly ash.
  • Fly ash means, in general, coal ash in a broad sense, including fly ash specified by JIS and fly ash, which is usually referred to as raw powder, and cinder ash. The degree of hydration activity of the mineral powder in concrete does not matter.
  • the mineral fine powder is used in place of a part of the aggregate.
  • the ratio of the amount of fine mineral powder to the amount of aggregate is described as follows. That is, the ratio of the volume of fine mineral powder (F) to the total aggregate volume (A: the sum of the volume of fine aggregate and coarse aggregate) is FZA, and the volume of fine aggregate in the aggregate (S The ratio of the volume (F) of the mineral matter powder to) is expressed as FZS.
  • FZA TFMZGFM
  • the FZA should be 10% or more.
  • the present invention sets FZS to 30% or more, preferably 45% or more, regardless of the value of RFM.
  • the initial strength and long-term strength of the concrete can be increased.
  • the initial strength and long-term strength increase proportionally with F / or F / S, but especially with respect to long-term strength, when a fine mineral powder containing a large amount of amorphous siliceous material is used. Due to the pozzolanic activity of the fine mineral powder, it is possible to increase the compressive strength standard concrete at 91 days of age (concrete without fine mineral powder) to about 1.5 times.
  • FZA or F / S is further increased, the volume of fine powder in concrete (sum of the volume of cement and mineral fine powder) increases, and even if the amount of the high-performance AE water reducing agent described later is increased, concrete increases. The fluidity of the concrete is lost, making it impossible to mix the concrete. In this case, a method of adding a large amount of a high-performance water reducing agent is also conceivable, but the excessive addition of the agent greatly impairs concrete hardening and causes a serious adverse effect, which is not practical.
  • the maximum value of FZA depends on the amount of cement, unit water, mineral powder, or specific composition of mineral powder in him 3 or concrete composition. The FZA when using is approximately 40 to 50%. Therefore, there is a maximum value of FA or a maximum value of fine powder volume from the viewpoint of concrete mixing. The same can be said for FZS. For fly ash, the maximum value is about 250-370%.
  • the present invention by replacing the fine mineral powder with a part of the aggregate as described above, it is possible to easily produce ultra-high strength concrete.
  • the use of a large amount of mineral powder is excellent in workability, even in concrete with an increased amount of cement, combined with the action of a high-performance water reducing agent described later, and it is extremely easy to use 100 OKgf / cm.
  • Ultra-high-strength concrete exceeding 2 can be achieved, and the heat of hydration of concrete can be relatively suppressed.
  • concrete is manufactured by using artificial aggregates mainly composed of fly ash, anti-firestone, expansive shale, etc. as coarse aggregates, and replacing a part of ordinary fine aggregates with fine mineral powder. By doing so, it is possible to obtain high-strength lightweight concrete that can be suitably used for lightweight slabs and the like.
  • artificial aggregates include those described in Japanese Patent Application No. 5-304046 previously filed by the present applicant, as well as commercially available artificial aggregates and Various artificial aggregates such as 400365 can be used.
  • a high-performance water reducing agent not only eliminates disadvantages such as a decrease in initial strength and an increase in drying shrinkage due to an increase in the unit water volume, but also a large amount of fine mineral powder mixed with concrete.
  • a large amount of fine mineral powder can be mixed, and the production of concrete having better initial and long-term strength than concrete without fine mineral powder can be achieved.
  • any one having an alkylaryl-based, naphthalene-based, melamine-based, or triazine-based chemical composition can be used.
  • a polycarboxylate-based admixture is preferably used.
  • it is also possible to apply a high-performance A E water reducer with air entrainment performance Commercially available admixtures of this type include Leobuild SP-8S (product name), Mighty-1 2000WHS (product name, Kao, product name), Tupole HP-8 (product name, Takemoto Yushi) , Trade name) and the like.
  • the air entraining agent which has been conventionally used as an air entraining agent for concrete, for example, has a chemical composition of a nonionic type, an anionic type, an oxyethylene type, a higher fatty acid salt type, or a natural resinate type.
  • a nonionic type for example, an anionic type, an oxyethylene type, a higher fatty acid salt type, or a natural resinate type.
  • the air entrainment amount of the concrete is adjusted to 4.5 to 5.5% by adjusting the addition ratio of the air entraining agent. Is desirable.
  • the present invention relates to various concrete admixture materials such as quick-hardening and quick-setting materials, high-strength admixtures, hydration accelerators, setting modifiers and the like which are usually used in concrete.
  • various fibers, steel, etc. can be used as the strong material.
  • various curing methods can be applied to the curing after placing concrete, and any of normal temperature curing, high temperature curing, normal pressure steam curing, and high temperature and high pressure curing can be used. It is possible to make a high-strength concrete hardened body by performing the combination.
  • the concrete according to the present invention can be used by replacing mineral fine powder with a part of the aggregate to use a large amount of the mineral
  • the initial strength and the long-term strength are improved as compared with the concrete that does not use mineral fine powder under the same water-cement ratio (the ratio of water to cement in the concrete).
  • fly ash in combination with other mineral fine powders as the mineral fine powder used in the above concrete of the present invention, it is possible to obtain concrete with even higher strength by replacing and using a part of the above-mentioned aggregate.
  • aggregate In addition to the use of aggregate, it is possible to obtain concrete with excellent strength by replacing it with part of cement instead of using it with aggregate.
  • fly ash itself has no hydraulic properties, but when used as a mixture with cement, pozzolan, which gradually reacts with the hydroxylating power generated during the hydration process to form stable compounds such as calcium gayate It has been used as a cement admixture and a concrete admixture to show a reaction.
  • a mixture of fly ash in an appropriate amount can (1) have good workability because fly ash is spherical particles, and can reduce the unit water content of concrete. (2) improve long-term strength, water tightness and durability. It has the advantages of improved chemical properties, (3) reduced calorific value of concrete, increased resistance to temperature cracks caused by heat of curing, and (4) greater effect of suppressing reaction to alkaline aggregate. ing.
  • fly ash has low reactivity
  • mixing it in cement in a large amount causes (1) delay in setting, (2) lower initial strength, and (3) strength in a low temperature environment.
  • the mixing amount of fly ash in fly ash cement is limited to a maximum of 30% by weight (inner percentage).
  • the compounding amount of the mineral fine powder in the hydraulic component is 30 to 50% by weight (inner percentage), and Concrete composition in which the fine powder is mainly fly ash, part of which is replaced by other mineral fine powder.
  • the lower limit of the mixing amount (internal ratio) of the mineral powder in the hydraulic component is 30% by weight, and the upper limit of the mixing amount is 50% by weight. . If the mixing amount is less than 30% by weight, there is not much difference from the conventional fly ash cement. If the mixing amount exceeds 50% by weight, even if a part thereof is replaced with a fine mineral substance powder, the initial strength is greatly reduced, which is not preferable.
  • the amount of fly ash mixed in the product can be increased.
  • mineral powders examples include silica fume, blast furnace slag powder, limestone powder, classified fly ash obtained by adjusting the particle size of existing fly ash, and gypsum powder. These mineral powders may be used as a mixture of two or more kinds.
  • these mineral fine powders When used together with fly ash, these mineral fine powders have the effect of promoting the hydration of the cement itself, and form various hydrates between the cement and these fine powders. It is presumed that the effect of suppressing the decrease in the initial strength due to the high mixing amount is given.
  • cement enters the cement or concrete stiffener to promote densification of the structure, and enters the floc structure of the cement particles to form a space in which hydrates can be precipitated. Acceleration of sum curing.
  • silica fume, blast furnace slag powder, limestone powder, and gypsum powder various hydrate forces are formed between the fine powder and cement in addition to these effects. Suppress the decrease in initial strength due to the mixing amount.
  • Mixing amount of other mineral fine powder to be replaced by fly ash (Breakdown substitution ratio: ratio of mineral fine powder replaced to total amount of fly ash and other mineral fine powder to be replaced) dependss on the type and fineness of the fine powder. Specifically, plain specific surface area mineral fine powders 1 5 0 0 0 0 cm 2 / g or more silica fume, Blaine specific surface area 4 0 0 0 cm 2 / g or more blast furnace slag powder, the Blaine specific surface area 5 0 For limestone powder of 0 cm 2 or more, or classified fly ash with a maximum particle size of 20 ⁇ or less, it is appropriate that the content is 20% by weight or less (inner percentage) or less. For gypsum powder with a specific surface area of 50,000 cm ⁇ / g or more, 6% by weight (inner percentage) or less is appropriate.
  • the particle size of silica fume generally has an average particle size of around 0.1 and a specific surface area.
  • the fineness of the mineral substance powder is out of the above range, the effect as the fine powder is low, and the effect of suppressing the reduction of the initial strength becomes insufficient, which is not preferable.
  • the ratio of the fine powder of mineral matter to the fly ash is higher than the above range, the amount of the fly ash used is relatively reduced, which is not preferred because the object of the present invention is not met and the cost is increased.
  • the mineral fine powder suppresses the decrease in the initial strength. If it is less than 10% by weight, an initial strength suitable for practical use can be obtained.
  • the method of using the hydraulic composition of the present invention is the same as that of ordinary cement, and the unit hydraulic composition amount, the unit water amount, the water-Z hydraulic composition ratio, the amount of aggregate, etc. are the same as those when using ordinary cement. Is determined.
  • fly ash has mainly been described as being replaced with cement.
  • the unit hydraulic composition amount is increased, that is, as described above, a part of the aggregate is replaced according to the increased fly ash amount, and the strength is further increased. It is possible to obtain an improved concrete.
  • Example 1-Concrete was prepared according to the materials shown below and the concrete mix shown in Table 1, and its compressive strength was measured.
  • Coarse aggregate used was the maximum dimension is 2 0 mm, Sotsuburitsu GFM 6.
  • a 7 5 particle size distribution of the total aggregates not The mixing ratio of fine aggregate and coarse aggregate was changed so as to be continuous, and RFM (ratio of coarse aggregate to coarse aggregate) was changed.
  • Test Nos. 1 and 2 are reference concretes showing comparative examples using ordinary Portland cement.
  • Test Nos. 3 to 6 were tests using fly ash A as a mineral powder, tests Nos. 7 to 20 were tests using fly ash B, and tests Nos. If 5%, test No.
  • Test Nos. 12 to 18 indicate the case where the water-cement ratio of the concrete is 60%
  • Test Nos. 9 and 20 indicate the case where the unit cement amount is reduced, respectively.
  • Test Nos. 21 to 23 are examples using early-strength Portland cement (No. 21 is a reference concrete showing a comparative example)
  • Test No. 24 is a concrete test result without using a high-performance admixture.
  • blast furnace slag C Test Nos. 25 and 26
  • stone powder D Treatment Nos. 27 and 28
  • silica powder E Treatment No. 29, Here is an example using each of them.
  • Figures 1 and 2 show the relationship between FZA and FZS using fly ash B as a mineral powder and the compressive strength, respectively. Examples of particle size distributions of aggregates used in Test Nos. 1 and 7 (Comparative Example) and Test Nos. 9 and 11 (Example) are shown.
  • Mineral powder-A Fly ash, specific gravity 2.23, brane specific surface area 3350cm 2 / g
  • B Fly ash, specific gravity 2.23, Blaine specific surface area 3750cm 2 / g C: Blast furnace slag (from NKK Fukuyama), specific gravity 2.89,
  • Fine aggregate land sand (from Shizuoka) Specific gravity 2.59, FM 2.75
  • Coarse aggregate crushed stone (from Ibaraki) Maximum dimensions 20 recitations, specific gravity 2.64, GFM 6.66 High-performance A E water reducer: NEM'B-Leobuild SP-8S
  • Air entraining agent A'E-775S manufactured by Nu'em'B
  • the concrete slump was adjusted to 12 to 19 cm and the air volume to 4.5 to 5.5, 5%, and the mixing time was 150 seconds.
  • the compressive strength was carried out in accordance with JIS-A-11 08, and the curing conditions were curing in water at 20 ° C.
  • Test Nos. 6 and 18 are examples where kneading was not possible. It can be seen that it is desirable to set an upper limit on the amount of mineral matter powder used depending on the mixing conditions of concrete.
  • fly ash F1 shown below as mineral fine powder prepare ultra-high-strength concrete with slump target 2 l cni ⁇ 2.5, as in Example 1. The compressive strength was measured. The results are shown in Table 2.
  • Each of the samples of the present invention was an ultra-hard concrete having excellent strength, particularly excellent long-term strength.
  • Coarse aggregate crushed stone (from Ibaraki) Maximum dimension 20 mm, specific gravity 2.64, GFM 6.66 High-performance water reducing agent: Mighty 2000WHZ manufactured by Kao Corporation Example 3
  • F 2 Fly ash, specific gravity 2.23, Blaine specific surface area 3220cm 2 / g Fine aggregate: land sand (from Shizuoka) Specific gravity 2.59, FM 2.75
  • Coarse aggregate crushed stone (from Ibaraki) Maximum dimension 20 im Specific gravity 2.64, G F M 6.66 High performance water reducing agent: Leobuild SP-8S manufactured by N'em'B
  • Example 2 The same fly ash F1 as in Example 2 was used as the fine mineral powder, and the three types of artificial aggregates shown below were used as coarse aggregates in the aggregates.
  • Lightweight concrete was prepared and subjected to a compressive strength test. The results are shown in Table 4. According to the present invention, all exhibit excellent strength properties, but exhibit particularly remarkable strength in concrete using aggregates mainly made of fly ash, and also aggregates made of ultra low specific gravity anti-firestone. On the other hand, the long-term strength shows more strength characteristics than ordinary concrete. As shown in Fig. 5, it can be seen that the compressive strength per unit weight of concrete is extremely high.
  • F 1 Fly ash, specific gravity 2.20, Blaine specific surface area 3220cm 2 / g Fine aggregate: land sand (from Shizuoka) Specific gravity 2.59, FM 2.75 Coarse aggregate
  • Crushed stone Crushed stone for comparison (from Ibaraki) Maximum dimension 20mm, specific gravity 2.64, GFM6.66 FA: Fly ash as the main raw material, a small amount of bentonite added thereto, granulated and fired after granulation to prepare artificial aggregate (specific gravity) 1.87, GF M6.84)
  • ML Commercially available expanded shale artificial raw material
  • Air entraining agent AE-775S, manufactured by ⁇ NU ⁇ ⁇ -M-Bee, Inc.
  • Example 5 Air entraining agent: AE-775S, manufactured by ⁇ NU ⁇ ⁇ -M-Bee, Inc.
  • Samples A11 to A56 had an FA content of 30%
  • samples B11 to B56 had an FA content of 40%
  • samples C11 to C56 had an FA content of 50%
  • samples D11 to D56 had an FA content of 60%.
  • the numerical values in Table 5 are the constituent weights (kg) of C, FA, and M in 300 kg of the hydraulic composition.
  • Fine aggregate land sand (from Shizuoka) Specific gravity 2.59, F M 2.75
  • Coarse aggregate crushed stone (from Ibaraki) Maximum size 20 Marauder, specific gravity 2.64, F M6.66 A E Water reducer: N.M.
  • the unit amount of concrete was 30 O Kg / m 3 , water 1 65 g / m u , coarse aggregate 104 4 Kg / m 3 , water / hydraulic composition
  • the fine aggregate is 732 Kg / m J , 7 when the fine mineral powder in the hydraulic composition is 30%, 40%, 50%, and 60%, respectively. 22 Kg / m 3 , 71 Kg / m 3 and 70 2 Kg / m 3 .
  • the effect can be recognized even with a substitution rate of about 1 to 2% for all mineral fine powders.
  • the content of the mineral fine powder in the hydraulic composition is 60% by weight, the initial strength is greatly reduced even when the other mineral fine powder is replaced, and reaches a strength suitable for practical use. do not do.
  • N ⁇ 5 ⁇ cement
  • H early strength cement
  • Type Replacement% Charge C ⁇ ⁇ FA Sample C HFA Not used 0 ⁇ 00 210 0.0 90.0 BOO 180 0.0 120.0 Gypsum 2 All 210 1.8 88.2 Bll 180 2.4 117.6 Powder 4 A12 210 3.6 86.4 B12 180 4.8 115.2
  • Compressed 3 ⁇ 4S ratio is the value when mineral powder other than fly ash is not used.
  • Compressed 3 ⁇ 4s ratio is a relative value when 3 ⁇ 4e is set to 100 when L is used without using mineral fine powder other than fly ash.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

In concrete containing cement, aggregate, fine mineral powder and water, a ratio (F/A) or fine mineral powder F to aggregate A of grain size distribution RFM (a ratio of fineness modulus of total aggregate to that of coarse aggregate) of not less than 0.80 is set to not less than 10 vol.%, or a ratio (F/S) of fine mineral powder F to fine aggregate S contained in the aggreate to not less than 30 vol.% and preferably to at least not less than 45 vol.%, whereby even aggregate of unsuitable grain size distribution is rendered usable as a concrete material and aggregate of suitable grain size distribution is improved in its strength.

Description

明 細 書  Specification
コンクリート組成物およびコンクリートの製造方法 技 術 分 野  Concrete composition and concrete manufacturing method
- 本発明は、 粒度分布が不連続な骨材を用いても鉱物質微粉末を適量混用 し、 コンクリートの配合を調整することによって流動性に富み、 かつ強度 発現の良好なコンクリ一ト組成物及びコンクリ一トの製造方法に関する。  -The present invention provides a concrete composition that is rich in fluidity and has good strength by mixing an appropriate amount of fine mineral powder and adjusting the mixing ratio of concrete, even if aggregate having a discontinuous particle size distribution is used. And a method for producing a concrete.
背 景 技 術 コンクリートはセメント、 骨材、 混和材料等の各材料を混練して製造さ れ、 これらの各材料のうち、 骨材は細骨材 (fine aggregate). 粗骨材 (coa rse aggregate)に分類される。 細骨材とは 5 mm以下の粒子、 具体的には 篩目 5 mmの篩を 8 5 %以上通過する骨材であり、 また、 粗骨材は 5 mm 以上の粒子と定義され、 細骨材、 粗骨材にはそれぞれ、 粒子の最大大きさ に応じてコンクリ一ト材料として適切な粒度分布が、 例えば日本土木学会、 日本建築学会等によって定められている。 ここで、 適切な粒度分布とは細 粒子及び粗粒子が適切に含まれた粒度のことである。 コンクリート用の骨 材の場合、 粒度の指標としては所定の篩に残留した粒子の重量の和で表示 され、 これを細骨材ある L、は粗骨材の粗粒率(fineness modules)と呼ぶ。 具体的には、 篩目の寸法が 80、 40、 20、 10、 5、 2. 5、 1. 2、 0. 6、 0. 3、 0. 15mmの 1 0種類の篩を用い、 各篩に残留する試料の重量百分率の和を 100 で割った値をいい、 粒径が大きいほど粗粒率は大きくなる。 一般に、 細骨材の粗粒率は 2 . 3〜3 . 0程度、 また、 粗骨材の粗粒率は最大寸法 によって異なる力く、 例えば、 最大寸法 2 O mmの場合には 6 . 3〜7. 0 程度の範囲である。 Background technology Concrete is manufactured by kneading various materials such as cement, aggregate, and admixture. Among these materials, aggregate is fine aggregate. Coarse aggregate )are categorized. Fine aggregates are aggregates that pass through 5% or less of particles, specifically, 85% or more through a sieve with a sieve of 5mm.Coarse aggregates are defined as particles of 5mm or more. For each of the aggregate and coarse aggregate, an appropriate particle size distribution as a concrete material according to the maximum size of the particles is determined by, for example, the Japan Society of Civil Engineers or the Architectural Institute of Japan. Here, the appropriate particle size distribution is a particle size in which fine particles and coarse particles are appropriately contained. In the case of aggregate for concrete, the index of the particle size is indicated by the sum of the weight of the particles remaining on the specified sieve, and this L, which is fine aggregate, is called the fineness module of coarse aggregate. . More specifically, 10 types of sieves with sieve sizes of 80, 40, 20, 10, 5, 2.5, 1.2, 0.6, 0.3, and 0.15 mm were used. The value obtained by dividing the sum of the weight percentage of the sample remaining in the sample by 100. The larger the particle size, the higher the coarse particle ratio. In general, the coarse grain ratio of fine aggregate is about 2.3 to 3.0, and the coarse grain rate of coarse aggregate varies depending on the maximum dimension. For example, when the maximum dimension is 2 O mm, the coarse grain rate is 6.3. ~ 7.0 Range.
コンクリートは上記各材料の配合設計に基づいて製造される。 このコン クリー卜の配合設計とはフレッシュ及び硬化コンクリートに所定の性能が 得られるように上記の各材料の構成割合を定めることである。 ここで、 コ ンクリート中の総骨材体積.(A) に対する細骨材体積 (S ) を細骨材率 ( S /A: sand percentage ) と呼び、 数値の大きいほど細骨材の構成割 合が多いことを示す。 細骨材率は細骨材及び粗骨材、 それぞれの粒度分布 を勘案し、 細骨材と粗骨材を合わせた総骨材の粒度分布がコンクリートに 所定の性能を得るために適したものとなるように適切に定められる。 細骨 材率を所定の値より小さくするとコンクリートのヮ一力ピリティーが悪く なるので所要のスランプ値を得るために必要となる単位水量が増加し、 ま た、 細骨材率を所定の値より大きくすると総骨材の表面積が増加するので、 この場合も所要のスランプ値を得るのに必要な単位水量が増加する。 即ち、 通常は適切なヮ一力ピリティ一が得られる範囲で単位水量が最小になるよ うに細骨材率が定められる。  Concrete is manufactured based on the mixing design of the above materials. The formulation of the concrete is to determine the composition ratio of each of the above materials so that the desired performance can be obtained in fresh and hardened concrete. Here, the fine aggregate volume (S) with respect to the total aggregate volume in concrete (A) is called the fine aggregate ratio (S / A: sand percentage). It indicates that there are many. The fine aggregate ratio takes into account the particle size distribution of fine aggregate and coarse aggregate, and the particle size distribution of the total aggregate of fine aggregate and coarse aggregate is suitable for obtaining the specified performance for concrete. It is determined appropriately so that If the fine aggregate ratio is smaller than the predetermined value, the unitary water volume required to obtain the required slump value increases because the specificity of concrete deteriorates, and the fine aggregate ratio is set lower than the predetermined value. Increasing the value increases the surface area of the total aggregate, and in this case also increases the unit water required to obtain the required slump value. That is, usually, the fine aggregate ratio is determined so that the unit water volume is minimized within a range where an appropriate power level can be obtained.
一般のコンクリ一トでは総骨材の粗粒率は例えば、 粗骨材の最大寸法 2 0 mmの場合には 4. 5〜5. 5の範囲であり、 また粗骨材のみの粗粒率 は 0. 7 0〜0. 8 0の範囲であって、 この割合は粗骨材の最大寸法が変 わっても変化しない。 この値から外れた範囲の骨材では粒度分布が不連続 となり、 即ち、 粗骨材と細骨材との粒度バランスが悪く、 適切なコンクリ 一トの配合を得ることができない。  In ordinary concrete, the coarse grain ratio of the total aggregate is, for example, in the range of 4.5 to 5.5 in the case of the maximum dimension of the coarse aggregate of 20 mm, and the coarse grain ratio of only the coarse aggregate. Is in the range of 0.70 to 0.80, and this ratio does not change even if the maximum size of the coarse aggregate changes. When the aggregate is out of this range, the particle size distribution becomes discontinuous, that is, the particle size balance between the coarse aggregate and the fine aggregate is poor, and it is not possible to obtain an appropriate concrete mixture.
従来から、 コンクリート用の骨材には、 一般に細骨材としては川砂、 陸 砂、 海砂等が、 また、 粗骨材としては川砂利、 砕石等が用いられてきた。 しかし、 良質天然骨材資源の枯渴に伴い、 粒子構成が良好な骨材の入手が 困難な状況にある。 これらは細粒部分が不足するあるいは逆に粗粒子部分 が不足する等、不連続な粒度分布を持ち、 即ち、 粗骨材もしくは細骨材あ るいはこれら両者の粒度バランスが悪く、 コンクリート用骨材として適切 でない。 なお、 コンクリートには天然骨材の他に高炉スラグ、 人工軽量骨 材などの人工骨材も用いられるが骨材全体に対する使用量は極く僅かであ る。 Conventionally, as aggregate for concrete, river sand, land sand, sea sand and the like have been generally used as fine aggregate, and river gravel and crushed stone have been used as coarse aggregate. However, with the depletion of high quality natural aggregate resources, it is difficult to obtain aggregates with good particle composition. These have a discontinuous particle size distribution, such as a lack of fine-grained parts or conversely a coarse-grained part. Or, the grain size balance of these two is not good and it is not suitable as aggregate for concrete. In addition to artificial aggregate, artificial aggregate such as blast furnace slag and artificial lightweight aggregate is also used for concrete, but the amount used for the aggregate is extremely small.
細骨材および粗骨材をコンクリートに使用する場合には、 骨材中の粒度 分布が適切になるように細骨材と粗骨材を組み合わせて上記細骨材率を調 整する力 細骨材あるいは粗骨材自体が不連続な粒度分布であるため、 す なわち粒度分布曲線において、各粒径の分布量が適切ではないため、 細骨 材率を大幅に変更しても自ずと限界があり、 骨材全体につ L、て理想的な粒 度分布が得られ難い。 また、 適切な粒度構成を有した骨材は入手が困難で あり、 このような骨材をコンクリート材料として恒久的に求めるのには自 ずと限度がある。  When fine and coarse aggregates are used for concrete, the ability to adjust the fine aggregate ratio by combining fine and coarse aggregates so that the particle size distribution in the aggregates is appropriate. Since the aggregate or coarse aggregate itself has a discontinuous particle size distribution, that is, the amount of distribution of each particle size is not appropriate in the particle size distribution curve, the limit is naturally limited even if the fine aggregate ratio is significantly changed. Yes, it is difficult to obtain an ideal particle size distribution for the entire aggregate. In addition, it is difficult to obtain aggregates having an appropriate grain size composition, and there is a natural limit to permanently obtaining such aggregates as concrete materials.
このような不連続な粒度分布を持つ骨材をコンクリートに用いた場合に はコンクリートに所要の流動性 (一般にスランプ値として表される) を得 るための水量が増加する。 水量が増加したコンクリ一トは乾燥に因る収縮 が増大し、 ひび割れが発生する可能性が大きいばかりか、 セメントペース トの濃度が低下するためコンクリートの強度も減少する。 さらに、 セメン トペースト濃度が低下すれば材料の分離傾向力く大きくコンクリー卜の均質 性が損なわれる。 セメント量を増加してセメントペースト濃度を保持する ことも考えられる力 経済的でないばかりかコンクリートの硬化熱に因る 温度ひび割れの危険性、 乾燥収縮の増大などコンクリ一トの性能が損なわ れ 。  When aggregates having such a discontinuous particle size distribution are used for concrete, the amount of water required to obtain the required fluidity (generally expressed as a slump value) increases. Concrete with increased water content increases the shrinkage due to drying, which increases the possibility of cracking, and also decreases the strength of concrete due to the decrease in the concentration of cement paste. Furthermore, if the cement paste concentration is reduced, the separation tendency of the materials is large and the uniformity of the concrete is impaired. The ability to increase the amount of cement to maintain the cement paste concentration is not only economical, but also impairs the performance of the concrete, such as the risk of temperature cracks due to the heat of hardening of the concrete and the increase in drying shrinkage.
従来、 このようなコンクリート用として適切な粒度分布を有していない 骨材に他の細粒子ある L、は粗粒子を加えて粒度構成を調整する場合もある が、 調整に多大の労力と費用を要する。 従って、 このような不連続な粒度 構成の骨材の多くは廃棄処理されており、 貴重な資源が有効活用されてい ないのが実情である。 発 明 の 目 的 本発明の目的は、 以上のようなコンクリート用骨材として適切な粒度分 布を有せず、 コンクリート材料として適さな Lヽ骨材を鉱物質微粉末と混用 することによって使用可能にすることにある。 また、 通常の骨材の一部を 鉱物質微粉末に置き換える事によりコンクリート組成物において鉱物質微 粉末の ^使用を可能とすることにある。 Conventionally, aggregates that do not have a suitable particle size distribution for concrete such as L, which has other fine particles, may be adjusted to the particle size composition by adding coarse particles. Cost. Therefore, many of the aggregates having such a discontinuous particle size composition are discarded, and valuable resources are used effectively. There is no fact. Purpose of the invention The object of the present invention is to use L ヽ aggregate suitable as a concrete material, which does not have a suitable particle size distribution as a concrete aggregate as described above, by mixing with a mineral fine powder. Is to make it possible. Another object of the present invention is to enable the use of fine mineral powder in concrete compositions by replacing a part of ordinary aggregate with fine mineral powder.
鉱物質微粉末は、 従来からコンクリート材料として用いられており、 例 えば、 混合セメントとして予めセメント中に混合するもの、 あるいはコン クリ一ト用混和材としてコンクリ一ト製造時に水、 セメント、 細骨材、 粗 骨材等と同時に使用されるものもある。 前者の混合セメントには高炉スラ グ微粉末、 フライアッシュ及びシリカ質微粉末があり、 これらを混合した セメントはそれぞれ、 高炉セメント、 フライアッシュセメント及びシリカ セメントとして J I S規格に定められている。 後者の混和材には、上述の 他、 シリカフューム、籾殻灰、 天然ポゾラン等、 多岐に亘る。  Mineral fine powder has been used as a concrete material in the past, for example, it is preliminarily mixed into cement as a mixed cement, or water, cement, fine bone is used as an admixture for concrete during the production of concrete. Some are used simultaneously with wood and coarse aggregate. The former mixed cement includes blast furnace slag fine powder, fly ash and siliceous fine powder, and the cement mixed with these is specified in the JIS standard as blast furnace cement, fly ash cement and silica cement, respectively. In addition to the above, there are a wide variety of admixtures such as silica fume, rice husk ash, and natural pozzolans.
この鉱物微粉末を混合することにより、 コンクリートの性状を改善する ことができる。 例えば、 フライアッシュを用いたコンクリートでは、 第一 にフライアッシュ粒子が平滑かつ球状であるためコンクリートのヮ一力ビ リティーが向上し、 従って、 所要のコンシステンシーを得るための単位水 量をフライアッシュ不使用のものより減少でき、 水セメント比を減少する ことができる。 第二に充分な養生を行うことによりフライアッシュのポゾ ラン反応が励起され、 反応生成物によってコンクリ一ト組織が緻密化し、 長期強度が増大するとともに、 水密性、 化学薬品に対する抵抗性等が向上 する。 第三にフライアッシュの混入によってセメントの水和発熱が緩和さ れるため自己発熱による温度ひび割れが問題となるマスコンクリート構造 物に適している。 第四にアルカリ骨材反応に対する抑制効果も有している c 以上のように鉱物質微粉末を混合することにより種々の利点が得られる が、 その反面、 鉱物質微粉末の多くは本来、 コンクリート中にあっては極 めて反応性が小さいかあるいは不活性であるため、 これらをコンクリート に多量に混合した場合には凝結の遅延、 初期強度の低下、 低温環境下にお ける強度発現の遅れ等々の問題点があり、 自ずとその混合量に制限がある c 例えば、 フライアッシュについて例を挙げれば J I S規格に規定されてい るフライアツシュセメントはフライアツシュの置換割合の最大値 (上限) をセメントの 3割に制限している。 By mixing this mineral powder, the properties of concrete can be improved. For example, in the case of concrete using fly ash, firstly, the fly ash particles are smooth and spherical, thereby improving the single-strength viability of the concrete.Thus, the unit water volume for obtaining the required consistency is reduced by fly ash. It can be reduced from unused ones, and the water-cement ratio can be reduced. Second, by performing sufficient curing, the pozzolanic reaction of fly ash is excited, and the reaction product densifies the concrete structure, increases long-term strength, and improves water tightness, resistance to chemicals, etc. I do. Third, the mixing of fly ash mitigates the heat of hydration of cement. Therefore, it is suitable for mass concrete structures where temperature cracking due to self-heating is a problem. Original Various advantages are obtained by mixing the mineral fine powder as described above c which also has inhibitory effect on the alkali-aggregate reaction Fourth, on the other hand, many of the fine mineral fines, concrete Since they have extremely low reactivity or are inactive, mixing them in concrete in a large amount delays setting, lowers initial strength, and delays strength development in low-temperature environments. For example, fly ash cement specified in the JIS standard has the maximum value (upper limit) of the replacement ratio of fly ash in the case of fly ash. Limited to 30%.
一方、鉱物質微粉末には天然系と人工系があり、 とりわけフライアツシ ュ、 高炉スラグ微粉末を初めとする人工系の鉱物質微粉末は工業副産品と して近年の工業隆盛に因って産出量が増大する趨勢にあり、 これら貴重な リサイクル資源の有効な活用方法として種々検討されている。 すなわち、 例えば H V F C (High Volume Flyash Concrete) と呼ばれるコンクリート においては、 コンクリートにおけるセメントの一部をフライアツシュに置 き換え、 大量活用を試みているが置き換え割合が多くなると前述の種々の 欠点が顕在化し、 未だ実用的な大量活用技術を確立するまでには至ってい ない。  On the other hand, there are natural mineral powders and artificial mineral powders, and especially artificial mineral powders such as fly ash and blast furnace slag fine powder are industrial by-products due to the recent rise of industry. The output is on the rise, and various studies are being conducted on how to effectively use these precious recycled resources. That is, for example, in concrete called HVFC (High Volume Flyash Concrete), a part of the cement in the concrete is replaced with fly ash, and mass use is attempted, but when the replacement ratio increases, the above-mentioned various drawbacks become apparent. Practical mass utilization technology has not yet been established.
本発明は、 以上の点に鑑み、 粒度構成が適切でなく低品位であるために 従来はコンクリ一ト材料としては利用されなかった骨材に、 鉱物質微粉末 を適量混用することにより、 上記骨材をコンクリート材料として使用可能 にするものである。 また本発明は、 適切な粒度分布を有する骨材について も、 その粒度分布を損なわない範囲で細骨材の一部を鉱物質微粉末に置換 すれば強度の優れたコンクリート組成物力得られることを見い出し、 この 知見に基づき鉱物質微粉末の大量使用を可能にするものである。 さらに、 本発明は、鉱物質微粉末としてフライアッシュと他の鉱物質微 粉末とを併用することにより、上記骨材との置換使用はむろんのこと、 セ メントの一部との置き換え使用においても、 フライアツシュの^!:使用を 可能にするものである。 発 明 の 開 示 本発明は、 粒度構成が適切でなく、 低品位であるため従来はコンクリー ト用としては利用されなかった骨材に鉱物質微粉末を適量混用し、 コンク リートの配合を調整することによつて流動性に富み、 かつ強度発現の良好 なコンクリート組成物とコンクリートの製法を提供するものである。 また、 本発明は、 良質の骨材についても、 これを節約し有効に活用するために、 これと置き換えて鉱物質微粉末を混和することにより、 コンクリート中の 単位骨材量を減じ、 少なくとも単位細骨材量を減じながらも強度の優れた コンクリート組成物とコンクリートの製法を提供するものであって、 本発 明によれば、 フライアッシュ、 高炉スラグ粉末等、 工業副産品の実用的な 大量有効活用が可能である。 In view of the above, the present invention has been made by mixing an appropriate amount of a fine mineral substance powder into an aggregate which has not been conventionally used as a concrete material because of an inappropriate particle size composition and a low quality. Aggregates can be used as concrete materials. Also, the present invention provides a concrete composition having excellent strength, even if the aggregate has an appropriate particle size distribution, by replacing a part of the fine aggregate with mineral fine powder within a range that does not impair the particle size distribution. Based on this finding, it is possible to use a large amount of fine mineral powder. Furthermore, the present invention uses fly ash as a mineral fine powder in combination with other mineral fine powders, so that it can be used for replacement with the above-mentioned aggregate, and also for replacement with part of cement. ^^ of fly ash : Enables use. DISCLOSURE OF THE INVENTION The present invention adjusts the mix of concrete by mixing an appropriate amount of fine mineral powder into aggregates that were not conventionally used for concrete because of the inadequate particle size composition and low quality. By doing so, it is possible to provide a concrete composition and a concrete production method which are rich in fluidity and exhibit good strength. In addition, the present invention reduces the unit aggregate amount in concrete by replacing mineral oil with fine mineral powder to replace it and reduce the amount of unit aggregate in concrete. It provides a concrete composition and a method of producing concrete with excellent strength while reducing the amount of fine aggregate.According to the present invention, practically large quantities of industrial by-products such as fly ash and blast furnace slag powder are effective. It can be used.
すなわち、 本発明よれば以下の構成からなるコンクリート組成物とコン クリートの製法が提供される。  That is, according to the present invention, a method for producing a concrete composition and a concrete having the following constitutions is provided.
( 1 ) セメント、 骨材、 鉱物質微粉末および水を含むコンクリ一ト組 成物であって、 骨材の粒度分布が R F M (粗骨材の粗粒率に対する総骨材 の粗粒率の割合) 0. 8 0以上であり、 鉱物質微粉末 (F) の骨材 (A) に対する比率 (FZA) が 1 0体積%以上であることを特徴とするコンク リート組成物。  (1) A concrete composition containing cement, aggregate, mineral fine powder and water, and the particle size distribution of the aggregate is RFM (the ratio of the coarse aggregate ratio to the coarse aggregate ratio of the coarse aggregate). (Ratio) 0.80 or more, wherein the ratio (FZA) of the mineral powder (F) to the aggregate (A) is 10% by volume or more.
(2 ) セメント、 骨材、 鉱物質微粉末、 及び水を含むコンクリ一ト組 成物であって、 鉱物質微粉末 (F) の骨材中に占める細骨材 ( S) に対す る比率 (FZ S ) が少なくとも 3 0体積%以上、 好ましくは少なくとも 4 5体積%以上となるように鉱物質微粉末を骨材の一部に置き換えてなるこ とを特徴とするコンクリ一ト組成物。 (2) A concrete composition containing cement, aggregate, mineral powder, and water, which is equivalent to fine aggregate (S) in the aggregate of mineral powder (F). Concrete composition characterized in that the mineral fine powder is replaced by a part of aggregate so that the ratio (FZS) is at least 30% by volume or more, preferably at least 45% by volume or more. object.
( 3 ) 高性能減水剤をさらに含むことを特徴とする上記 (1) または (2) I、ずれか記載のコンクリー.ト組成物。  (3) The concrete composition according to the above (1) or (2), further comprising a high-performance water reducing agent.
(4) セメントが普通ポルトランドセメント又は早強ポルトランドセ メントであることを特徵とする上記 (1) 〜(3) いずれか記載のコンクリー 卜組成物。  (4) The concrete composition according to any one of the above (1) to (3), wherein the cement is ordinary Portland cement or early-strength Portland cement.
( 5 ) 鉱物質微粉末が、 天然鉱物質微粉末または人工鉱物質微粉末、 好ましくは、 少なくともフライアッシュを含むものであることを特徴とす る上記 (1) 〜(4) いずれか記載のコンクリート組成物。  (5) The concrete composition according to any one of the above (1) to (4), wherein the mineral substance fine powder contains a natural mineral substance fine powder or an artificial mineral substance fine powder, preferably at least fly ash. object.
( 6 ) コンクリート組成物が超高強度コンクリ一ト用組成物または暑中 コンクリート用組成物であることを特徴とする上記 (1) 〜(5) いずれか記 載のコンクリート組成物。  (6) The concrete composition according to any one of the above (1) to (5), wherein the concrete composition is a composition for an ultra-high-strength concrete or a composition for hot concrete.
( 7 ) 骨材中の粗骨材が人工骨材であり、 好ましくはフライアッシュ を主原料とする人工骨材、 抗火石を主原料とする人工骨材または膨張頁岩 を主 とする人工骨材であることを特徴とする上記 (1) 〜(6) いずれか 記載のコンクリート組成物。  (7) The coarse aggregate in the aggregate is an artificial aggregate, preferably an artificial aggregate mainly composed of fly ash, an artificial aggregate mainly composed of anti-firestone, or an artificial aggregate mainly composed of expanded shale. The concrete composition according to any one of the above (1) to (6), wherein
( 8 ) セメント、骨材、 鉱物質微粉末に水を配合してコンクリートを 製造する方法であって、 粒度分布が R F M (粗骨材の粗粒率に対する総骨 材の粗粒率の割合) 0. 8 0以上の骨材に鉱物質微粉末 (F) を、 骨材 (A) に対する比率 (F/A) が 1 0体積%以上になるように混合するこ とを特徴とするコンクリートの製造方法。  (8) A method for producing concrete by mixing water with cement, aggregate, or mineral fine powder, wherein the particle size distribution is RFM (ratio of coarse aggregate to coarse aggregate). Concrete concrete characterized by mixing fine mineral powder (F) with at least 0.80 aggregate so that the ratio (F / A) to the aggregate (A) becomes 10% by volume or more. Production method.
( 9 ) セメント、 骨材、 鉱物質微粉末に水を配合してコンクリートを 製造する方法であって、 骨材中の細骨材 (S ) に対する鉱物質微粉末 (F) の比率 (F S) が少なくとも 3 0体積%以上、 好ましくは 4 5体積%以 上となるように、 鉱物質微粉末を骨材の一部に置き換えて鉱物質微粉末を 混和することを特徴とするコンクリートの製造方法。 (9) A method for producing concrete by mixing water with cement, aggregate, and mineral fine powder, and the ratio of fine mineral powder (F) to fine aggregate (S) in the aggregate (FS) At least 30% by volume, preferably 45% by volume or less As described above, a method for producing concrete, comprising replacing fine mineral powder with a part of aggregate and mixing fine mineral powder.
(10) 鉱物質微粉末としてフライアッシュを混和することを特徴とす る上記 (8) または (9) いずれか記載のコンクリートの製造方法。  (10) The method for producing concrete according to any one of the above (8) or (9), wherein fly ash is mixed as a fine mineral substance powder.
(11) 高性能減水剤.をさらに配合することを特徴とする上記 (8) 〜 (10) I、ずれか記載のコンクリートの製造方法。  (11) The method for producing concrete as described in (8) to (10) I above, further comprising a high-performance water reducing agent.
(12) セメントとして ¾Sポルトランドセメントまたは早強ポルト ランドセメントを用いることを特徴とする上記 (8) 〜(11)いずれか記載の コンクリートの製造方法。 また、本発明によれば、 上記骨材との置換使用はむろんのこと、 骨材と の置換使用ではなくてもセメントの一部と置き換えて、 フライアツシュの 大量使用を可能にするものであり、 以下の構成からなるコンクリート組成 物が提供される。  (12) The method for producing concrete according to any one of the above (8) to (11), wherein ΔS Portland cement or early-strength Portland cement is used as the cement. Further, according to the present invention, the above-mentioned replacement with the aggregate is, of course, not limited to the replacement with the aggregate, but by replacing a part of the cement, thereby enabling mass use of fly ash. A concrete composition having the following constitution is provided.
(13) コンクリート中のセメントと鉱物質微粉末からなる水硬性成分 において、 水硬性成分中の鉱物質微粉末の配合量が 30〜50重量% (内 割) であり、 かつ鉱物質微粉末がフライアッシュを主体とし、 その一部が 他の鉱物質微粉末により置換されているコンクリート組成物。  (13) In the hydraulic component consisting of cement and mineral fine powder in concrete, the blending amount of mineral fine powder in the hydraulic component is 30 to 50% by weight (in percentage), and the mineral powder is Concrete composition mainly composed of fly ash, part of which is replaced by other fine mineral powder.
(14) フライアッシュに置換される他の鉱物質微粉末力、 プレーン比 表面積 150000cm" /g以上のシリカフユ一ム、 プレーン比表面積 40 00cm2 /g以上の高炉スラグ粉末、 ブレーン比表面積 5000cm2 /g以上 の石灰石粉末、 または最大粒径 20 以下の分級フライアツシュであり、 鉱物質微粉末の含有量がフライアッシュとの合計量の 20重量% (内割) 以下である上記 (13)のコンクリート組成物。 (14) other mineral fine powders force substituted fly ash, plain specific surface area 150000cm "/ g or more Shirikafuyu Ichimu plain specific surface area 40 00cm 2 / g or more blast furnace slag powder, the Blaine specific surface area of 5000 cm 2 / g or more limestone powder or classified fly ash with a maximum particle size of 20 or less, and the content of mineral powder is 20% by weight or less of the total amount of fly ash and concrete composition (13) above object.
(15) フライアッシュに置換される他の鉱物質微粉末がプレーン比表 面積 5000c 以上の石膏粉末であり、 該石膏粉末の含有量がフライ アッシュとの合計量の 6重量% (内割) 以下である上記 (13)のコンクリ一 卜組成物。 図面の簡単な説明 (15) The other mineral powder to be replaced by fly ash is gypsum powder having a plain surface area of 5000c or more, and the content of the gypsum powder is fry. The concrete composition according to the above (13), which is not more than 6% by weight (inner part) of the total amount with ash. BRIEF DESCRIPTION OF THE FIGURES
- 図 1は本発明の実施例 1における FZAと圧縮強度の関係を示すグラフ であり、 図 2は本発明の実施例 1における FZSと圧縮強度の関係を示す グラフである。 また図 3は実施例 1における総骨材の粒度分布の例を示す グラフ、 図 4は本発明の実施例 3における 3 0 °C水中養生における材令と 圧縮強度の関係を示すグラフ、 図 5は本発明の実施例 4における各種人工 骨材を用いたコンクリートの単位容積重量当たりの圧縮強度を示すグラフ る 0 発明の詳細な説明 本発明は、 第 1に、 セメント、 骨材、 鉱物質微粉末および水を含むコン クリートにおいて、 粒度分布が R F M (粗骨材の粗粒率に対する総骨材の 粗粒率の割合) 0. 8 0以上の骨材に対して、 鉱物質微粉末 (F) の骨材 (A) に対する比率 (FZA) を 1 0体積%以上とすることを特徴とする ものである。 また本発明は、 第 2に、 セメント、 骨材、 鉱物質微粉末およ び水を含むコンクリートにおいて、 骨材中の細骨材 (S) に対する鉱物質 微粉末 (F) の比率 (FZ S ) を少なくとも 3 0体積%以上、 好ましくは 4 5体積%以上とするように、 鉱物質微粉末を骨材の一部に置き換えてな ることを特徴とするものである。 さらに本発明は、 第 3に、 コンクリート 中のセメントと鉱物質微粉末からなる水硬性成分において、 水硬性成分中 の鉱物質微粉末の配合量が 3 0〜 5 0重量% (内割) であり、 かつ鉱物質 微粉末がフライアツシュを主体とし、 その一部が他の鉱物質微粉末により 置換されていることを特徴とするものである。 -FIG. 1 is a graph showing the relationship between FZA and compressive strength in Example 1 of the present invention, and FIG. 2 is a graph showing the relationship between FZS and compressive strength in Example 1 of the present invention. FIG. 3 is a graph showing an example of the particle size distribution of the total aggregate in Example 1, FIG. 4 is a graph showing the relationship between the age and the compressive strength in the 30 ° C. water curing in Example 3 of the present invention, and FIG. Is a graph showing the compressive strength per unit weight of concrete using various artificial aggregates in Example 4 of the present invention. 0 DETAILED DESCRIPTION OF THE INVENTION First, the present invention provides cement, aggregate, and fine minerals. In the concrete containing powder and water, the particle size distribution of RFM (ratio of total aggregate coarse grain ratio to coarse aggregate coarse grain ratio) 0.80 ) To the aggregate (A) (FZA) is at least 10% by volume. Secondly, the present invention relates to a concrete containing cement, aggregate, mineral fine powder and water, wherein the ratio of fine mineral powder (F) to fine aggregate (S) in the aggregate (FZ S ) Is at least 30% by volume or more, preferably 45% by volume or more, characterized in that the mineral fine powder is replaced by a part of the aggregate. Thirdly, the present invention relates to a hydraulic component composed of cement and mineral fine powder in concrete, wherein the blending amount of the mineral fine powder in the hydraulic component is 30 to 50% by weight (inner percentage). Yes, and minerals It is characterized in that the fine powder mainly consists of fly ash, and a part of the fine powder is replaced by other fine powder of mineral substances.
以下に本発明を詳しく説明する。  Hereinafter, the present invention will be described in detail.
( 1 ) コンクリート材料  (1) Concrete material
本発明において使用するセメントは、 普通、 早強、 超早強、 中庸熱、 耐 硫酸塩、 白色などの各種ポルトランドセメントをいずれも使用できるが、 初期および長期強度発現性の改善に大きな効果を発揮するためには、普通 ポルトランドセメントあるいは早強ポルトランドセメントを使用するのが 好ましい。  As the cement used in the present invention, any of various portland cements such as ordinary, fast-strength, ultra-fast, moderate heat, sulfate-resistant, and white can be used. For this purpose, it is preferable to use ordinary Portland cement or early-strength Portland cement.
次に骨材は、 通常のコンクリ一トに使用されている砂、 砂利、 砕石等の 普通骨材をはじめとして、 鉄、 ステンレス等の金属骨材、 アルミナ等を原 料とするセラミ ックス骨材、 フライアッシュ、 抗火石、 膨張頁岩等を主原 料とする人工骨材等、 各種骨材の種類を問う事なく利用可能であるが、 後 述するように鉱物質微粉末の大量使用により、 前述したような骨材の粒度 分布が不連続であり、 通常のコンクリート用骨材としては適切でないとさ れるものについても、 この発明の骨材として好適に使用でき、 また、 年々 入手が困難な状況にある良質骨材資源の確保に貢献することができる。 さ らに、 前記人工骨材を用いて製造するこの発明のコンクリートにあっては、 長期強度が普通コンクリートと同等若しくはそれ以上の高強度軽量コンク リートとすることができる。  Next, aggregates include ordinary aggregates such as sand, gravel, and crushed stones used in ordinary concrete, as well as metal aggregates such as iron and stainless steel, and ceramic aggregates made from alumina and the like. However, it can be used regardless of the types of aggregates, such as artificial aggregates mainly made of fly ash, anti-firestone, expansive shale, etc. Aggregates having a discontinuous particle size distribution as described above, which are not suitable as ordinary concrete aggregates, can be suitably used as the aggregates of the present invention, and are difficult to obtain year by year. It can contribute to securing good quality aggregate resources in the situation. Further, in the concrete of the present invention produced using the artificial aggregate, a high-strength lightweight concrete having a long-term strength equal to or higher than that of ordinary concrete can be obtained.
鉱物質微粉末は、 従来のコンクリ一トの材料に加えて追加使用するもの であり、 セメントと略々同程度の粒子構成を具備していれば各種岩石粉末、 珪藻土、天然ポゾラン等の天然鉱物質微粉末あるいは、 高炉スラグ微粉末、 フライアツシュ等の人工鉱物質微粉末のいずれでも構わない。 中でも大部 分が埋立て等の廃棄処分されるフライアッシュの使用は、 未利用資源リサ ィクルの面からも好適に使用される。 ここで、 上記鉱物質微粉末はこれら  Mineral fine powder is used in addition to conventional concrete materials, and if it has a particle composition approximately the same as cement, natural minerals such as various rock powders, diatomaceous earth, and natural pozzolans Either fine powder or fine powder of artificial mineral such as blast furnace slag or fly ash may be used. Above all, the use of fly ash, which is largely disposed of by landfill, is preferably used from the viewpoint of recycling unused resources. Here, the above mineral powder is
0 を単独あるいは 2種以上を混合して使用することもでき、 この場合、 鉱物 質微粉末は少なくともフライアッシュを含むものが好ましい。 フライアツ シュは、 J I Sで規定されるフライアッシュは無論、 原粉と通常称される フライアッシュ、 及びシンダーアッシュをも含めた、 いわゆる広い意味で の石炭灰全般を意味するものである。 また、 鉱物質微粉末のコンクリート 中における水和活性の程度は問題とはならない。 0 Can be used alone or in combination of two or more. In this case, the mineral fine powder preferably contains at least fly ash. Fly ash means, in general, coal ash in a broad sense, including fly ash specified by JIS and fly ash, which is usually referred to as raw powder, and cinder ash. The degree of hydration activity of the mineral powder in concrete does not matter.
(2)骨材と鉱物質微粉末との配合比  (2) Mixing ratio of aggregate and mineral powder
本発明は鉱物質微粉末を前記骨材の一部に置き換えて使用する。 なお、 以下の説明において、 骨材量に対する鉱物質微粉末量の割合を以下のよう に表記する。 すなわち、 総骨材体積 (A:細骨材と粗骨材の体積の和) に 対する鉱物質微粉末の体積 (F) の比を FZAとし、 骨材中の細骨材の体 積 (S) に対する鉱物質微粉末の体積 (F) の比を FZSとして表記する。 本発明は、 第一に、 粗骨材の粗粒率 (GFM) に対する、 細骨材と粗骨 材を合わせた総骨材の粗粒率 (TFM) の割合 (RFM=TFMZGFM) が 0. 80以上の骨材について、 前記 FZAを 10%以上とする。 また本 発明は、 第二に、 RFMの値に拘らず、 FZSを 30%以上好ましくは 4 5%以上とする。  In the present invention, the mineral fine powder is used in place of a part of the aggregate. In the following description, the ratio of the amount of fine mineral powder to the amount of aggregate is described as follows. That is, the ratio of the volume of fine mineral powder (F) to the total aggregate volume (A: the sum of the volume of fine aggregate and coarse aggregate) is FZA, and the volume of fine aggregate in the aggregate (S The ratio of the volume (F) of the mineral matter powder to) is expressed as FZS. In the present invention, first, the ratio (RFM = TFMZGFM) of the coarse aggregate ratio (TFM) of the total aggregate of the fine aggregate and the coarse aggregate to the coarse aggregate ratio (GFM) of the coarse aggregate is 0.1%. For 80 or more aggregates, the FZA should be 10% or more. Second, the present invention sets FZS to 30% or more, preferably 45% or more, regardless of the value of RFM.
FZA、 または F Sを増すことにより、 前述した粒度分布が不連続で ある (粗骨材と細骨材の粒度バランスの悪い) 骨材の利用を可能とし、 ま た、 良質骨材の使用を大幅に減じることが可能であり、 しかもコンクリー トの初期強度並びに長期強度が増大する。 初期強度並びに長期強度は、 F / あるいは F/Sに応じて比例的に増大するが、 特に長期強度に関し ては多量の無定形シリ力質分を含有する鉱物質微粉末を使用した場合には 鉱物質微粉末のポゾラン活性により材令 91日における圧縮強度力基準コ ンクリート (鉱物質微粉末を用いないコンクリート) の約 1. 5倍とする ことも可能である。 FZAあるいは F/Sをさらに増加すると、 コンクリート中の微粉末体 積 (セメントと鉱物質微粉末の体積の総和) 力く増加し、 後述する高性能 A E減水剤の添加量を増加してもコンクリートの流動性が失われコンクリ一 トの練混ぜが不可能となる。 この場合、 高性能減水剤を多量に添加する方 法も考えられるが、 過剰な添加によってコンクリートの硬化が著しく遅延 するなど悪影響が顕著となり実用的ではない。 FZAの最大値はコンクリ — h i m3 中の単位セメント量、 単位水量、 鉱物質微粉末量あるいは、 鉱 物質微粉末の比表面積、 粒度分布等の粒子組成に依存するが、 鉱物質微粉 末としてフライアツシュを使用する場合の FZAは、 略々 4 0〜5 0 %程 度であつた。 したがつて、 コンクリートの練混ぜの観点から F Aの最大 値、 あるいは微粉末体積の最大値が存在する。 FZ Sについても同様のこ と力言いえ、 フライアッシュでは、 最大値は略々 2 5 0〜3 7 0 %程度で あ 。 By increasing FZA or FS, it is possible to use aggregates with a discontinuous particle size distribution as described above (coarse and fine aggregates have an unbalanced particle size), and greatly increase the use of good quality aggregates. The initial strength and long-term strength of the concrete can be increased. The initial strength and long-term strength increase proportionally with F / or F / S, but especially with respect to long-term strength, when a fine mineral powder containing a large amount of amorphous siliceous material is used. Due to the pozzolanic activity of the fine mineral powder, it is possible to increase the compressive strength standard concrete at 91 days of age (concrete without fine mineral powder) to about 1.5 times. If FZA or F / S is further increased, the volume of fine powder in concrete (sum of the volume of cement and mineral fine powder) increases, and even if the amount of the high-performance AE water reducing agent described later is increased, concrete increases. The fluidity of the concrete is lost, making it impossible to mix the concrete. In this case, a method of adding a large amount of a high-performance water reducing agent is also conceivable, but the excessive addition of the agent greatly impairs concrete hardening and causes a serious adverse effect, which is not practical. The maximum value of FZA depends on the amount of cement, unit water, mineral powder, or specific composition of mineral powder in him 3 or concrete composition. The FZA when using is approximately 40 to 50%. Therefore, there is a maximum value of FA or a maximum value of fine powder volume from the viewpoint of concrete mixing. The same can be said for FZS. For fly ash, the maximum value is about 250-370%.
( 3) コンクリートの性状および混和剤等  (3) Concrete properties and admixtures
本発明において、 鉱物質微粉末を前述したように骨材の一部と置換えて 使用することにより、容易に超高強度コンクリートを製造することが可能 となる。 即ち、 鉱物質微粉末の大量使用は、 単位セメント量を増加させた コンクリートにおいても、 後述する高性能減水剤の作用と相俟って施工性 にも優れ、 極めて容易に 1 0 0 OKgf/cm2 を越える超高強度コンクリート とすることができ、 しかも、 コンクリートの水和熱を相対的に抑制するこ とができる。 In the present invention, by replacing the fine mineral powder with a part of the aggregate as described above, it is possible to easily produce ultra-high strength concrete. In other words, the use of a large amount of mineral powder is excellent in workability, even in concrete with an increased amount of cement, combined with the action of a high-performance water reducing agent described later, and it is extremely easy to use 100 OKgf / cm. Ultra-high-strength concrete exceeding 2 can be achieved, and the heat of hydration of concrete can be relatively suppressed.
また、 通常のコンクリートが高温環境下において、 初期に水和が促進さ れ密な組織を形成するために、 長期強度増進が阻害されるのに対し、 本発 明では、夏期に打設する暑中コンクリート用に適用すれば、 長期の順当な ポゾラン反応により、 高温環境下において強度増進が大きいコンクリート とすることができる。 さらに、 本発明では、 フライアッシュ、 抗火石、 膨張頁岩等を主原料と する人工骨材を粗骨材として使用すると共に、 普通細骨材の一部を鉱物質 微粉末に置き換えてコンクリートを製造することにより、 軽量スラブ等に 好適に使用できる高強度軽量コンクリートとすることができる。 このよう な人工骨材としては、 本出願人が先に特許出願した特願平 5— 3 0 0 4 4 6号に記載したもののほか、 市販の人工骨材や、 特開昭 5 8 - 1 4 0 3 6 5号等、 各種の人工骨材を使用することができる。 In addition, in the high-temperature environment, hydration is promoted in the early stage to form a dense structure, which hinders the increase in long-term strength. If applied to concrete, it can be converted into concrete with a large increase in strength under high-temperature environments due to a long-term proper pozzolanic reaction. Further, in the present invention, concrete is manufactured by using artificial aggregates mainly composed of fly ash, anti-firestone, expansive shale, etc. as coarse aggregates, and replacing a part of ordinary fine aggregates with fine mineral powder. By doing so, it is possible to obtain high-strength lightweight concrete that can be suitably used for lightweight slabs and the like. Examples of such artificial aggregates include those described in Japanese Patent Application No. 5-304046 previously filed by the present applicant, as well as commercially available artificial aggregates and Various artificial aggregates such as 400365 can be used.
以上のほかに、 高性能減水剤を併用することにより、 単位水量の増加に 起因する初期強度の低下および乾燥収縮の増大等の欠点を排除できるばか りか、 鉱物質微粉末のコンクリートへの大量混合を達成することができ、 さらに、 鉱物質微粉末の大量混合によつて鉱物質微粉末を用いないコンク リートよりも初期 ·長期強度の発現が一層良好なコンクリートの製造を実 現できる。  In addition to the above, combined use of a high-performance water reducing agent not only eliminates disadvantages such as a decrease in initial strength and an increase in drying shrinkage due to an increase in the unit water volume, but also a large amount of fine mineral powder mixed with concrete. In addition, a large amount of fine mineral powder can be mixed, and the production of concrete having better initial and long-term strength than concrete without fine mineral powder can be achieved.
上記高性能減水剤としては、 従来よりコンクリート用混和剤として用い られているものを使用できる。 例えば、 アルキルァリル系、 ナフタリン系、 メラミン系、 トリァジン系の化学組成を有するものであればいずれも使用 できる力^ 望ましくは、 ポリカルボン酸塩系の混和剤力く良好である。 もち ろん、 空気連行性能を有する高性能 A E減水剤の適用も可能である。 この 種の混和剤として、 市販品にはレオビルド SP- 8S (ェヌ 'ェム 'ビ -製、 商品名) 、 マイティ一 2000WHS (花王製、 商品名) 、 チューポール HP- 8 (竹本油脂製、 商品名) 等を挙げることができる。 コンクリート Ι π^ 当たりの単位セメ ント量を所定量に保持しつつ、前記鉱物質微粉末を増加していくとコンク リート中の微粉体が占める体積が増大し、 コンクリートの流動性が損なわ れるが、上記高性能減水剤の添加量を適切に調整することによりコンクリ 一トに所定の!^ (スランプ値) を得ることができる。 高性能減水剤の添 加量は、 使用するポルトランドセメント、 骨材、鉱物質微粉末及び所用の  As the above-mentioned high-performance water reducing agent, those which have been conventionally used as admixtures for concrete can be used. For example, any one having an alkylaryl-based, naphthalene-based, melamine-based, or triazine-based chemical composition can be used. Desirably, a polycarboxylate-based admixture is preferably used. Of course, it is also possible to apply a high-performance A E water reducer with air entrainment performance. Commercially available admixtures of this type include Leobuild SP-8S (product name), Mighty-1 2000WHS (product name, Kao, product name), Tupole HP-8 (product name, Takemoto Yushi) , Trade name) and the like. Increasing the amount of the fine mineral powder while maintaining the unit cement amount per Ιπ ^ at a predetermined amount increases the volume occupied by the fine powder in the concrete, and impairs the fluidity of the concrete. By properly adjusting the amount of the above-mentioned high-performance water reducing agent, it is possible to provide a concrete! ^ (Slump value) can be obtained. The amount of the superplasticizer added depends on the Portland cement, aggregate, mineral
3 減水効果などを勘案して調整されるが、 ~¾には、 ポルトランドセメント 1 0 0重量部に対して、 0. 1〜1 0重量%添加する。 これが 0. 1重量 %未満では減水効果が実質上無く、 またこれを 1 0重量%越えて添加して も減水性、 流動性の改善効果が頭打ちとなるばかりか、 コンクリートの凝 結遅延などの悪 響が大きい。 . Three It is adjusted in consideration of the water reduction effect, etc., but for ~ ¾, 0.1 to 10% by weight is added to 100 parts by weight of Portland cement. If it is less than 0.1% by weight, there is virtually no water reducing effect, and even if it is added in excess of 10% by weight, not only does the effect of reducing water and improve fluidity reach a plateau, but there is also a delay in setting of concrete. The effect is large. .
本発明において空気連行剤は、 従来よりコンクリ一ト用空気連行剤とし て用いられている、 例えばノニオン系、 ァニオン系、 ォキシエチレン系、 高級脂肪酸塩系、 天然樹脂酸塩系の化学組成を有するものはいずれも使用 できる。 例えば、 アルキルカルボン酸化合物を主成分とする A E -775S In the present invention, the air entraining agent which has been conventionally used as an air entraining agent for concrete, for example, has a chemical composition of a nonionic type, an anionic type, an oxyethylene type, a higher fatty acid salt type, or a natural resinate type. Can be used. For example, A E -775S containing an alkyl carboxylic acid compound as a main component
(ェヌ 'ェム 'ビ-製、 商品名) 、 天然樹脂酸系のヴィンソル (山宗化学製、 商 名) 、 アルキルフヱノール系のシ一力 A E R (日本シ一力、 商品名) 等を 挙げることができる。 本発明においては、 前述した超硬強度コンクリート 配合の場合を除いて、上記空気連行剤の添加割合を調整して、 コンクリ一 トの空気連行量を 4. 5〜5. 5 %に調整することが望ましい。 (Made by N'M'B) (trade name), natural resin acid-based Vinsol (trade name, manufactured by Yamamune Chemical), alkylphenol-based AER (Nippon Shi-Ichiri, trade name) And the like. In the present invention, except for the case of the above-described cemented cement concrete, the air entrainment amount of the concrete is adjusted to 4.5 to 5.5% by adjusting the addition ratio of the air entraining agent. Is desirable.
尚、 以上説明した配合成分のほかに、 本発明は、 コンクリートにおいて 通常用いられる急硬 ·急結材、 高強度混和剤、 水和促進剤、 凝結調整剤な どの各種コンクリ一ト混和材料や捕強材としての各種繊維、 鋼等も使用で また、 前記各成分の混合及び混練方法に制限は無く、 均一に混合混練で きれば良く、 配合成分の添加 11酵にも特に制限されるものではない。 更に、 コンクリート打設後の養生は、 各種の養生方法が適用可能であり、 常温養 生、 高温養生、 常圧蒸気養生、 高温高圧養生のいずれの方法も採用でき、 必要ならば、 これらの組合わせを行って高強度コンクリート硬化体とする ことができる。  In addition to the above-described components, the present invention relates to various concrete admixture materials such as quick-hardening and quick-setting materials, high-strength admixtures, hydration accelerators, setting modifiers and the like which are usually used in concrete. Various fibers, steel, etc. can be used as the strong material.There is no limitation on the method of mixing and kneading the above-mentioned components, as long as they can be uniformly mixed and kneaded. Absent. Furthermore, various curing methods can be applied to the curing after placing concrete, and any of normal temperature curing, high temperature curing, normal pressure steam curing, and high temperature and high pressure curing can be used. It is possible to make a high-strength concrete hardened body by performing the combination.
本発明に係わるコンクリートは、 鉱物質微粉末を骨材の一部に置き換え て使用することにより、 低品質の骨材を用いても、 大量に使用する鉱物質  The concrete according to the present invention can be used by replacing mineral fine powder with a part of the aggregate to use a large amount of the mineral
4 微粉末の作用により、 水セメント比 (コンクリート中のセメントに対する 水の割合) を同一とした条件下で鉱物質微粉末を混用しないコンクリート に較べ初期強 びに長期強度発現が良好となる。 Four By the action of the fine powder, the initial strength and the long-term strength are improved as compared with the concrete that does not use mineral fine powder under the same water-cement ratio (the ratio of water to cement in the concrete).
( 4 ) フライアッシュと他の鉱物質微粉末の併用  (4) Combined use of fly ash and other mineral fines
本発明の上記コンクリートにおいて使用する鉱物質微粉末として、 フラ ィアッシュと他の鉱物質微粉末を併用することにより、 上記した骨材の一 部との置換使用によってさらに強度の優れたコンクリートを得ることがで きるほか、 骨材との置換使用ではなくても、 セメントの一部との置き換え 使用により、 強度の優れたコンクリートとすることができる。  By using fly ash in combination with other mineral fine powders as the mineral fine powder used in the above concrete of the present invention, it is possible to obtain concrete with even higher strength by replacing and using a part of the above-mentioned aggregate. In addition to the use of aggregate, it is possible to obtain concrete with excellent strength by replacing it with part of cement instead of using it with aggregate.
以下、 主としてセメントの一部との置き換え使用を例として説明する。 フライアッシュは、 それ自身は水硬性を有しないが、 セメントに混合し て使用すると、 水和過程で生じた水酸化力ルシゥムと徐々に反応して安定 なゲイ酸カルシウムなどの化合物を形成するポゾラン反応を示すため、 従 来からセメント混和材およびコンクリ一ト用混和材として使用されている。 フライアッシュを適量混合したものは、 (1) フライアッシュが球状粒子で あるために作業性が良く、 コンクリートの単位水量を減少することができ る、 (2) 長期強度の向上、 水密性および耐薬品性が向上する、 (3) コンク リートの発熱量が低減され、 硬化熱に起因する温度ひび割れに対する抵抗 性が増大する、 (4) アルカリ性骨材に対する反応抑制効果が大きいなどの 利点を有している。 In the following, description will be made mainly on the example of replacing and using a part of cement. Fly ash itself has no hydraulic properties, but when used as a mixture with cement, pozzolan, which gradually reacts with the hydroxylating power generated during the hydration process to form stable compounds such as calcium gayate It has been used as a cement admixture and a concrete admixture to show a reaction. A mixture of fly ash in an appropriate amount can (1) have good workability because fly ash is spherical particles, and can reduce the unit water content of concrete. (2) improve long-term strength, water tightness and durability. It has the advantages of improved chemical properties, (3) reduced calorific value of concrete, increased resistance to temperature cracks caused by heat of curing, and (4) greater effect of suppressing reaction to alkaline aggregate. ing.
一方、 フライアッシュの反応性は小さいために、 これをセメント中に多 量に混合すると、 (1) 凝結が遅延する、 (2) 初期強度が低下する、 (3) 低 温環境下での強度発現が遅れるなどの問題があり、 特に、 初期強度の低下 はフライアツシュの大量使用に対する大きな障害となっている。 このため J I S規格において、 フライアッシュセメントにおけるフライアッシュの 混合量は最大 3 0重量% (内割) に制限されている。  On the other hand, because fly ash has low reactivity, mixing it in cement in a large amount causes (1) delay in setting, (2) lower initial strength, and (3) strength in a low temperature environment. There are problems such as delayed onset, and in particular, the decrease in initial strength is a major obstacle to mass use of fly ash. For this reason, in the JIS standard, the mixing amount of fly ash in fly ash cement is limited to a maximum of 30% by weight (inner percentage).
5 ところが、 フライアッシュの一部を他の鉱物質微粉末によつて置換する ことにより、 従来の限界量を大幅に上回る多量のフライアッシュをセメン トに混合しても、 初期強度の低下が少ないコンクリートが得られる。 従つ て、 本発明によれば、 近年、 発電量の増大によって多量に排出されるフラ ィアッシュを有効に活用することができる。 Five However, by replacing a part of fly ash with other fine powder of minerals, even if a large amount of fly ash, which greatly exceeds the conventional limit amount, is mixed with cement, the decrease in initial strength is small. Is obtained. Therefore, according to the present invention, in recent years, a large amount of fly ash discharged due to an increase in power generation can be effectively used.
具体的には、以下のとおりである。  Specifically, it is as follows.
(1)コンクリート中のセメントと鉱物質微粉末からなる水硬性成分にお いて、 水硬性成分中の鉱物質微粉末の配合量が 3 0〜5 0重量% (内割) であり、 かつ鉱物質微粉末がフライアッシュを主体とし、 その一部が他の 鉱物質微粉末により置換されているコンクリート組成物。  (1) In the hydraulic component composed of cement and mineral fine powder in concrete, the compounding amount of the mineral fine powder in the hydraulic component is 30 to 50% by weight (inner percentage), and Concrete composition in which the fine powder is mainly fly ash, part of which is replaced by other mineral fine powder.
(2)フライアッシュに置換される他の鉱物質微粉末力、 プレーン比表面 積 1 5 0 0 0 0 cm2 /g以上のシリカフューム、 ブレーン比表面積 4 0 0 0 cm2 /g以上の高炉スラグ粉末、 ブレーン比表面積 5 0 0 0 cm2 /g以上の石 灰石粉末、 または最大粒径 2 O ^m以下の分級フライアッシュであり、 鉱 物質微粉末の含有量がフライアッシュとの合計量の 2 0重量% (内割) 以 下であるコンクリート組成物、 あるいは、 フライアッシュに置換される他 の鉱物質微粉末がブレーン比表面積 5 0 0 0 cm2 /g以上の石膏粉末であり、 該石膏粉末の含有量がフライアッシュとの合計量の 6重量% (内割) 以下 であるコンクリート組成物。 (2) other mineral fine powders force substituted fly ash, plane ratio surface area 1 5 0 0 0 0 cm 2 / g or more silica fume, Blaine specific surface area 4 0 0 0 cm 2 / g or more blast furnace slag Powder, limestone powder with a specific surface area of 500 cm 2 / g or more, or classified fly ash with a maximum particle size of 2 O ^ m or less, and the content of mineral fine powder is the total amount with fly ash 20% by weight or less of the concrete composition, or the other fine mineral powder to be replaced by fly ash is a gypsum powder having a specific surface area of 50,000 cm 2 / g or more, A concrete composition wherein the content of the gypsum powder is not more than 6% by weight (inner portion) of the total amount with fly ash.
セメントと鉱物質微粉末からなる水硬性成分において、 水硬性成分中の 鉱物質微粉末の混合量 (内割) の下限は 3 0重量%であり、 混合量の上限 は 5 0重量%である。 混合量が 3 0重量%未満では従来のフライアッシュ セメントと大差なく、 5 0重量%を上回ると、 その一部を鉱物質微粉末で 置換しても初期強度の低下が大きくなるので好ましくない。  In the hydraulic component consisting of cement and mineral fine powder, the lower limit of the mixing amount (internal ratio) of the mineral powder in the hydraulic component is 30% by weight, and the upper limit of the mixing amount is 50% by weight. . If the mixing amount is less than 30% by weight, there is not much difference from the conventional fly ash cement. If the mixing amount exceeds 50% by weight, even if a part thereof is replaced with a fine mineral substance powder, the initial strength is greatly reduced, which is not preferable.
フライアッシュと共に他の鉱物質微粉末を所定量併用することにより、 コンクリート等における初期強度の低下を抑制することができ、 水硬性組  By using a predetermined amount of other mineral substance powder together with fly ash, it is possible to suppress the decrease in the initial strength of concrete, etc.
6 成物中のフライアツシュの混合量を増すことができる。 6 The amount of fly ash mixed in the product can be increased.
他の鉱物質微粉末としては、 シリカフューム、 高炉スラグ粉末、 石灰石 粉末、 既存のフライアッシュを粒度調整した分級フライアッシュ、 または 石膏粉末等を挙げることができる。 これらの鉱物質微粉末は 2種以上混合 して使用しても良い。  Examples of other mineral powders include silica fume, blast furnace slag powder, limestone powder, classified fly ash obtained by adjusting the particle size of existing fly ash, and gypsum powder. These mineral powders may be used as a mixture of two or more kinds.
これらの鉱物質微粉末は、 フライアッシュと共に使用することによりセ メント自体の水和を促進する効果を発揮する共にセメントとこれらの微粉 末との間に種々の水和物を形成し、 これがフライアツシュ高混合量による 初期強度の低下を抑制する効果を与えるものと推察される。 例えば、 分級 フライアッシュの場合、 セメントあるいはコンクリート硬ィ匕体に入り込ん で組織の緻密化を促し、 またセメント粒子のフロック構造に侵入して水和 物が析出できる空間を形成するため、 セメントの水和硬化が促進する。 ま た、 シリカフューム、 高炉スラグ粉末、 石灰石粉末および石膏粉末の場合 は、 これらの効果に加えて微粉末とセメントとの間に種々の水和物力形成 されるのでこれらの相乗的な効果によりフライアツシュ高混合量による初 期強度の低下を抑制する。  When used together with fly ash, these mineral fine powders have the effect of promoting the hydration of the cement itself, and form various hydrates between the cement and these fine powders. It is presumed that the effect of suppressing the decrease in the initial strength due to the high mixing amount is given. For example, in the case of classified fly ash, cement enters the cement or concrete stiffener to promote densification of the structure, and enters the floc structure of the cement particles to form a space in which hydrates can be precipitated. Acceleration of sum curing. In addition, in the case of silica fume, blast furnace slag powder, limestone powder, and gypsum powder, various hydrate forces are formed between the fine powder and cement in addition to these effects. Suppress the decrease in initial strength due to the mixing amount.
フライアッシュに置換される他の鉱物質微粉末の混合量 (内割置換率: フライアッシュとこれに置換される他の鉱物質微粉末の合計量に対する置 換される鉱物質微粉末の割合) は、 微粉末の種類および粉末度によって異 なる。 具体的には、 鉱物質微粉末がプレーン比表面積 1 5 0 0 0 0 cm2 /g 以上のシリカフューム、 ブレーン比表面積 4 0 0 0 cm2 /g以上の高炉スラ グ粉末、 ブレーン比表面積 5 0 0 0 cm2 以上の石灰石粉末、 または最大 粒径 2 0 β 以下の分級フライアッシュについては 2 0重量% (内割) 以 下が適当である。 またブレーン比表面積 5 0 0 0 cm^ /g以上の石膏粉末に ついては 6重量 (内割) %以下が適当である。 Mixing amount of other mineral fine powder to be replaced by fly ash (Breakdown substitution ratio: ratio of mineral fine powder replaced to total amount of fly ash and other mineral fine powder to be replaced) Depends on the type and fineness of the fine powder. Specifically, plain specific surface area mineral fine powders 1 5 0 0 0 0 cm 2 / g or more silica fume, Blaine specific surface area 4 0 0 0 cm 2 / g or more blast furnace slag powder, the Blaine specific surface area 5 0 For limestone powder of 0 cm 2 or more, or classified fly ash with a maximum particle size of 20 β or less, it is appropriate that the content is 20% by weight or less (inner percentage) or less. For gypsum powder with a specific surface area of 50,000 cm ^ / g or more, 6% by weight (inner percentage) or less is appropriate.
シリカフュームの粒度は、 一般に、 平均粒径 0 . 1 前後、 比表面積  The particle size of silica fume generally has an average particle size of around 0.1 and a specific surface area.
7 1 5 0 0 0 0〜 2 5 0 0 0 0 cm2 /gの超微粉末であり、 市販のものを用い ることができる。 また高炉スラグ粉末は使用目的により比表面積 4 0 0 0 〜8 0 0 O cm^ /gのものがコンクリート混和材として通常使用されている ので、 これを用いることができる。一方、 フライアッシュについては、 J I S規格の粉末度はブレーン比表面積 2 4 0 O cm^ /g以上であり、 鉱物質 微粉末の主体としてはこれを分級せずに使用できるが、 これに置換される 他の鉱物質微粉末としては最大粒径 2 0 m以下に分級されたものを用い る。 また、 石灰石粉末および石膏粉末については上記粉末度にしたものを 用い o 7 It is an ultrafine powder having a size of 1500 to 20000 cm 2 / g, and a commercially available product can be used. Further, blast furnace slag powder having a specific surface area of 400 to 800 O cm ^ / g is usually used as a concrete admixture depending on the purpose of use, and thus can be used. On the other hand, fly ash has a fineness of JIS standard of more than 240 Ocm ^ / g of Blaine specific surface area, and it can be used as a main component of mineral fine powder without classifying it. Other mineral powders that have been classified to a maximum particle size of 20 m or less should be used. Use limestone powder and gypsum powder with the above fineness.
鉱物質微粉末の粉末度が上記値から外れると微粉末としての効果が低く、 初期強度の低下抑制効果が不十分となるので好ましくない。 またフライァ ッシュに対する鉱物質微粉末の内割置換率が上記範囲より高いと相対的に フライアツシュの使用量が減少するので本発明の目的に沿わず、 またコス ト高になるので好ましくない。  If the fineness of the mineral substance powder is out of the above range, the effect as the fine powder is low, and the effect of suppressing the reduction of the initial strength becomes insufficient, which is not preferable. On the other hand, if the ratio of the fine powder of mineral matter to the fly ash is higher than the above range, the amount of the fly ash used is relatively reduced, which is not preferred because the object of the present invention is not met and the cost is increased.
上記水硬性組成物は、 フライアッシュの混合量が多いにも拘らず、 鉱物 質微粉末が初期強度の低下を抑制し、 セメントに対してフライアッシュを 3 0重量%以上混合しても 5 0重量%以下であれば、 実用に適する初期強 度を得ることができる。  In the above hydraulic composition, despite the large amount of fly ash mixed, the mineral fine powder suppresses the decrease in the initial strength. If it is less than 10% by weight, an initial strength suitable for practical use can be obtained.
本発明の水硬性組成物の使用方法は通常のセメントと同様であり、 単位 水硬性組成物量、 単位水量、 水 Z水硬性組成物比、 骨材量などは通常のセ メントを用いる場合と同様に定められる。  The method of using the hydraulic composition of the present invention is the same as that of ordinary cement, and the unit hydraulic composition amount, the unit water amount, the water-Z hydraulic composition ratio, the amount of aggregate, etc. are the same as those when using ordinary cement. Is determined.
以上、主としてフライアッシュをセメントとの置き換え使用により説明 したが、 単位水硬性組成物量を増大させる、 すなわち、 増大したフライア ッシュ量に応じて前述したように骨材の一部と置き換えて、 さらに強度の 向上したコンクリートを得ることができる。  As mentioned above, fly ash has mainly been described as being replaced with cement. However, the unit hydraulic composition amount is increased, that is, as described above, a part of the aggregate is replaced according to the increased fly ash amount, and the strength is further increased. It is possible to obtain an improved concrete.
8 発明を実施するための最良の形態 以下、 本発明の実施例を示す。 なお本実施例は例示であり、 発明の範囲 を限定するものではない。 8 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, examples of the present invention will be described. This embodiment is an exemplification, and does not limit the scope of the invention.
実施例 1 - 下記に示す材料および表 1に示すコンクリートの配合に従ってコンクリ ートを調製し、 その圧縮強度を測定した。 使用した粗骨材は最大寸法は 2 0 mm、 粗粒率 G F M 6. 6 6であり、 細骨材の粗粒率は 2. 7 5である c 各試料は総骨材の粒度分布が不連続となるように細骨材と粗骨材の混合割 合を変え、 R F M (粗骨材の粗粒率に対する総骨材の粗粒率の割合) を変 化させた。 Example 1-Concrete was prepared according to the materials shown below and the concrete mix shown in Table 1, and its compressive strength was measured. Coarse aggregate used was the maximum dimension is 2 0 mm, Sotsuburitsu GFM 6. a 6 6, c each sample fineness modulus of fine aggregate 2. a 7 5 particle size distribution of the total aggregates not The mixing ratio of fine aggregate and coarse aggregate was changed so as to be continuous, and RFM (ratio of coarse aggregate to coarse aggregate) was changed.
試験 No 1、 2は普通ポルトランドセメントを用いた比較例を示す基準コ ンクリートである。 また試験 No 3〜 6は鉱物質微粉末としてフライアツシ ュ Aを用いた試験、 試験 No 7〜2 0はフライアツシュ Bを用いたものであ り、 試験 No 7〜l 1はコンクリートの水セメント比 5 5 %の場合、 試験 No Test Nos. 1 and 2 are reference concretes showing comparative examples using ordinary Portland cement. Test Nos. 3 to 6 were tests using fly ash A as a mineral powder, tests Nos. 7 to 20 were tests using fly ash B, and tests Nos. If 5%, test No.
1 2〜1 8はコンクリートの水セメント比 6 0 %の場合、 試験 No l 9、 2 0は単位セメント量を減少させた場合をそれぞれ示す。 さらに試験 No2 1 〜2 3は早強ポルトランドセメントを用いた例 (No2 1は比較例を示す基 準コンクリート) であり、 試験 No 2 4は高性能混和剤を用いないコンクリ —ト試験結果である。 なお試験 No 2 4〜 3 0は、 鉱物質微粉末として、 高 炉スラグ C (試験 No. 25, 26) 、 石粉 D (試験 No. 27, 28) 、 珪石粉末 E (試 験 No. 29, 30) をそれぞれ用いた例を示す。 12 to 18 indicate the case where the water-cement ratio of the concrete is 60%, and Test Nos. 9 and 20 indicate the case where the unit cement amount is reduced, respectively. Furthermore, Test Nos. 21 to 23 are examples using early-strength Portland cement (No. 21 is a reference concrete showing a comparative example), and Test No. 24 is a concrete test result without using a high-performance admixture. . In Test Nos. 24 to 30, blast furnace slag C (Test Nos. 25 and 26), stone powder D (Test Nos. 27 and 28), and silica powder E (Test No. 29, Here is an example using each of them.
試験結果を表 1に併せて示すと共に、 図 1および図 2に鉱物質微粉末と してフライアツシュ Bを用いた FZAおよび FZ Sと圧縮強度の関係をそ れぞれ示し、 図 3に試験 No 1、 7 (比較例) 、 試験 No 9、 1 1 (実施例) に用 L、た骨材の粒度分布の例を示す。  The test results are also shown in Table 1.Figures 1 and 2 show the relationship between FZA and FZS using fly ash B as a mineral powder and the compressive strength, respectively. Examples of particle size distributions of aggregates used in Test Nos. 1 and 7 (Comparative Example) and Test Nos. 9 and 11 (Example) are shown.
9 (I) 使用材料 9 (I) Materials used
セメント  Cement
N:小野田セメント社製普通ポルトランドセメント  N: Onoda Cement Ordinary Portland Cement
H:小野田セメント社製早強ポルトランドセメント  H: Portland cement made by Onoda Cement Co., Ltd.
鉱物質微粉末 - A: フライアッシュ、 比重 2.23 、 ブレーン比表面積 3350cm2 /gMineral powder-A: Fly ash, specific gravity 2.23, brane specific surface area 3350cm 2 / g
B : フライアッシュ、 比重 2.23 、 ブレーン比表面積 3750cm2 /g C :高炉スラグ (NKK福山産) 、比重 2.89 、 B: Fly ash, specific gravity 2.23, Blaine specific surface area 3750cm 2 / g C: Blast furnace slag (from NKK Fukuyama), specific gravity 2.89,
ブレーン比表面積 3500cn^ / g  Brain specific surface area 3500cn ^ / g
D :石粉 (津久見産石灰石) 、 比重 2.70 D : Stone powder (lime from Tsukumi), specific gravity 2.70
ブレーン比表面積 4050cm2 Iも Brain specific surface area 4050cm 2 I
E :珪石粉末 (大分四浦産珪石) 、比重 2.64  E: Silica powder (silica from Oita Shiura), specific gravity 2.64
ブレーン比表面積 3550cm2 /g Brain specific surface area 3550cm 2 / g
細骨材:陸砂 (静岡産) 比重 2.59 、 FM 2.75  Fine aggregate: land sand (from Shizuoka) Specific gravity 2.59, FM 2.75
粗骨材:砕石 (茨城産) 最大寸法 20誦、 比重 2.64、 GFM 6.66 高性能 A E減水剤:ェヌ ·ェム'ビ-社製 レオビルド SP- 8S  Coarse aggregate: crushed stone (from Ibaraki) Maximum dimensions 20 recitations, specific gravity 2.64, GFM 6.66 High-performance A E water reducer: NEM'B-Leobuild SP-8S
空気連行剤 :ヱヌ'ェム'ビ-社製 A E— 775S  Air entraining agent: A'E-775S manufactured by Nu'em'B
(Π) 試験方法  (Π) Test method
コンクリートのスランプは 12〜19cm、 空気量 4. 5〜5, 5%とな るように調整し、 練混ぜ時間は 150秒とした。 圧縮強度は JIS— A-11 08に準拠して実施し、 養生条件は 20°C水中養生とした。  The concrete slump was adjusted to 12 to 19 cm and the air volume to 4.5 to 5.5, 5%, and the mixing time was 150 seconds. The compressive strength was carried out in accordance with JIS-A-11 08, and the curing conditions were curing in water at 20 ° C.
(M) 試験結果  (M) Test results
表 1から明らかなように、 鉱物質微粉末を使用しない試験 No.1,2, 21 お よび、 FZA若しくは FZSが本発明の範囲以下である試験 No.7, 12 の各 比較試料と比べて、 本発明のものは、 施工性に優れ、 極めて高強度である こと力く分かる。 なお試験 No.6, 18 は練混ぜが不可能であった例であり、 コ ンクリートの配合条件によって、 鉱物質微粉末使用量の上限を設けること が望ましいことがわかる。 実施例 2 As is evident from Table 1, compared with the comparative samples in Test Nos. 1, 2, and 21, which do not use fine mineral powder, and in Test Nos. 7 and 12, in which FZA or FZS is below the scope of the present invention. However, it can be clearly seen that the present invention has excellent workability and extremely high strength. Tests Nos. 6 and 18 are examples where kneading was not possible. It can be seen that it is desirable to set an upper limit on the amount of mineral matter powder used depending on the mixing conditions of concrete. Example 2
鉱物質微粉末として下記に示すフラィアッシュ F 1を使用し、 表 2に示 すコンクリートの配合に従い、 スランプ目標 2 l cni± 2. 5、 として超高 強度コンクリ一トを調製し、 例 1と同様に圧縮強度を測定した。 結果 を表 2に併せて示す。 本発明の試料はいずれも優れた強度、 特に長期強度 の優れた超硬強度コンクリ一トであった。  Using fly ash F1 shown below as mineral fine powder, according to the concrete composition shown in Table 2, prepare ultra-high-strength concrete with slump target 2 l cni ± 2.5, as in Example 1. The compressive strength was measured. The results are shown in Table 2. Each of the samples of the present invention was an ultra-hard concrete having excellent strength, particularly excellent long-term strength.
使用材料  Materials used
セメント  Cement
N:小野田セメントネ土製普通ポルトランドセメント  N: Onoda Cemented clay ordinary Portland cement
鉱物質微粉末  Mineral fine powder
フライアッシュ、 比重 2. 20、 ブレーン比表面積 3220cm2 /g 細骨材 陸砂 (静岡産) 比重 2. 59、 F M 2. 75 Fly ash, specific gravity 2.20, Blaine specific surface area 3220cm 2 / g Fine aggregate Land sand (from Shizuoka) Specific gravity 2.59, FM 2.75
粗骨材 砕石 (茨城産) 最大寸法 20 mm、 比重 2. 64、 G F M 6. 66 高性能減水剤:花王社製 マイティ 2000WHZ 実施例 3  Coarse aggregate crushed stone (from Ibaraki) Maximum dimension 20 mm, specific gravity 2.64, GFM 6.66 High-performance water reducing agent: Mighty 2000WHZ manufactured by Kao Corporation Example 3
鉱物質微粉末として下記に示すフラィアッシュ F 2を使用し、 表 3に示 すコンクリートの配合によって、 コンクリートを調整し、 コンクリートの 練り混ぜ温度及び養生温度変化による圧縮強度試験を行つた。 結果を表 3 に併せて示す。 表 3から明らかなように、 この発明は、 低温及び高温のい ずれの温度においても優れた強度特性を示すが、 特に図 4に示すように 3 0 °C水中養生においても、 長期強度の伸びが続いており、 夏期、 すなわち 暑中に打設するコンクリートとして極めて優れていることがわかる。 使用材料 Concrete was prepared by using fly ash F2 shown below as the fine powder of mineral matter and by mixing the concrete shown in Table 3, and a compressive strength test was conducted by changing the mixing temperature and curing temperature of the concrete. The results are shown in Table 3. As is evident from Table 3, the present invention exhibits excellent strength characteristics at both low and high temperatures. This indicates that it is extremely excellent as concrete to be poured in the summer, that is, in the heat. Materials used
セメント  Cement
N:小野田セメント社製普通ポルトランドセメント  N: Onoda Cement Ordinary Portland Cement
鉱物質微粉末  Mineral fine powder
F 2 : フライアッシュ、比重 2. 23、 ブレーン比表面積 3220cm2 /g 細骨材:陸砂 (静岡産) 比重 2. 59、 F M 2. 75 F 2: Fly ash, specific gravity 2.23, Blaine specific surface area 3220cm 2 / g Fine aggregate: land sand (from Shizuoka) Specific gravity 2.59, FM 2.75
粗骨材:砕石 (茨城産) 最大寸法 20 im 比重 2. 64、 G F M 6. 66 高性能減水剤:ヱヌ'ェム'ビ-社製 レオビルド SP - 8S  Coarse aggregate: crushed stone (from Ibaraki) Maximum dimension 20 im Specific gravity 2.64, G F M 6.66 High performance water reducing agent: Leobuild SP-8S manufactured by N'em'B
空気連行剤 :ェヌ · ム 'ビ-社製 A E -775S 実施例 4  Air entraining agent: N-M'B A-775S Example 4
鉱物質微粉末として実施例 2と同じフライアッシュ F 1を使用すると共 に、 骨材中の粗骨材を下記に示す 3種類の人工骨材を使用し、 表 4に示す コンクリートの配合によって、 軽量コンクリートを調整し、 圧縮強度試験 を行った。 結果を表 4に併せて示す。 この発明によれば、 いずれも優れた 強度特性を示すが、 特にフライアツシュを主要原料とした骨材使用のコン クリートにおいて顕著な強度を示すほか、 超低比重の抗火石を原料とした 骨材でも、 長期強度では普通コンクリート以上の強度特性を示し、 図 5に 示すようにコンクリートの単位容重量当たりの圧縮強度が極めて高いこと が分かる。  The same fly ash F1 as in Example 2 was used as the fine mineral powder, and the three types of artificial aggregates shown below were used as coarse aggregates in the aggregates. Lightweight concrete was prepared and subjected to a compressive strength test. The results are shown in Table 4. According to the present invention, all exhibit excellent strength properties, but exhibit particularly remarkable strength in concrete using aggregates mainly made of fly ash, and also aggregates made of ultra low specific gravity anti-firestone. On the other hand, the long-term strength shows more strength characteristics than ordinary concrete. As shown in Fig. 5, it can be seen that the compressive strength per unit weight of concrete is extremely high.
使用材料  Materials used
セメント  Cement
Ν:小野田セメント社製普通ポルトランドセメント  Ν: Onoda Cement Ordinary Portland Cement
鉱物質微粉末  Mineral fine powder
F 1 : フライアッシュ、 比重 2. 20、 ブレーン比表面積 3220cm2 /g 細骨材:陸砂 (静岡産) 比重 2. 59、 F M 2. 75 粗骨材 F 1: Fly ash, specific gravity 2.20, Blaine specific surface area 3220cm 2 / g Fine aggregate: land sand (from Shizuoka) Specific gravity 2.59, FM 2.75 Coarse aggregate
砕石:比較用砕石 (茨城産) 最大寸法 20mm、 比重 2.64、 GFM6.66 FA :フライアッシュを主原料とし、 これにべントナイトを少量添加 し、 造粒後焼成して調整した人工骨材 (比重 1.87、 G F M6.84) ML :市販の膨張頁岩を主原料とする人工骨材  Crushed stone: Crushed stone for comparison (from Ibaraki) Maximum dimension 20mm, specific gravity 2.64, GFM6.66 FA: Fly ash as the main raw material, a small amount of bentonite added thereto, granulated and fired after granulation to prepare artificial aggregate (specific gravity) 1.87, GF M6.84) ML: Commercially available expanded shale artificial raw material
商品名メサライト 1505 (比重 1.55、 GFM6.40)  Product name Mesalite 1505 (specific gravity 1.55, GFM6.40)
NL :抗火石粉末を主原料とし、 これにベントナイトおよび発泡剤と して炭化珪素粉末を少量添加し、 造粒後焼成して調整した人工 骨材 (比重 0.80、 GFM6.40)  NL: Artificial aggregate made mainly of anti-firestone powder, with a small amount of silicon carbide powder added as bentonite and foaming agent, granulated and fired (specific gravity 0.80, GFM 6.40)
高性能減水剤:ヱヌ'ェム'ビ-社製 レオビルド SP- 8S  High-performance water reducing agent: Leobuild SP-8S manufactured by Nuem B
空気連行剤 :ヱヌ ·ιム'ビ-社製 AE-775S 実施例 5  Air entraining agent: AE-775S, manufactured by ヱ NU · ι-M-Bee, Inc. Example 5
表 5に示す配合量の水硬性組成物を用い、 コンクリートを調製し、常温 で養生後、 鉱物質微粉末としてフライアツシュ単独 (他の鉱物質微粉末を 未使用) の強度を 100として、 材令 3日、 7日および 28日の強度比 (圧縮強度比) を求めた。 この結果を表 6に纏めて示した。 表中、 C :セ メント、 F A: フライアツシュ、 M: フライアツシュ以外の鉱物質微粉末 であり、 セメント重量比: C/(C+M+FA)、 鉱物質微粉末重量比:(FA+M)/(C+ M+FA) 、 フライアツシュ以外の鉱物質微 末の内割置換率: M/(FA+M)であ る。 なお、 試料 A11〜A56は FA含有率 30%、試料 B11〜B56は F A含 有率 40%、 試料 C11〜C56は F A含有率 50 %および試料 D11〜D56は FA含有率 60%である。 また表 5の数値は水硬性組成物 300kg中の C, FA, Mの構成重量 (kg)である。  Concrete was prepared using the hydraulic composition of the blending amount shown in Table 5, cured at room temperature, and the strength of fly ash alone (no other mineral powder was used) as mineral powder was set to 100 The strength ratio (compression strength ratio) on days 3, 7, and 28 was determined. The results are summarized in Table 6. In the table, C: Cement, FA: Fly ash, M: Mineral fine powder other than fly ash, Cement weight ratio: C / (C + M + FA), Mineral fine powder weight ratio: (FA + M) / (C + M + FA), the percentage replacement ratio of mineral powder other than fly ash: M / (FA + M). Samples A11 to A56 had an FA content of 30%, samples B11 to B56 had an FA content of 40%, samples C11 to C56 had an FA content of 50%, and samples D11 to D56 had an FA content of 60%. The numerical values in Table 5 are the constituent weights (kg) of C, FA, and M in 300 kg of the hydraulic composition.
使用材料  Materials used
セメント :小野田セメントネ土製普通ポルトランドセメント フライアッシュ:比重 2. 23、 ブレーン比表面積 2750cm2 /g Cement: Onoda cement Fly ash: specific gravity 2.23, Blaine specific surface area 2750cm 2 / g
細骨材:陸砂 (静岡産) 比重 2. 59、 F M2. 75  Fine aggregate: land sand (from Shizuoka) Specific gravity 2.59, F M 2.75
粗骨材:砕石 (茨城産) 最大寸法 20 匪、 比重 2. 64、 F M6. 66 A E減水剤:ェヌ · ム'ビ-社製 ポゾリス No. 70  Coarse aggregate: crushed stone (from Ibaraki) Maximum size 20 Marauder, specific gravity 2.64, F M6.66 A E Water reducer: N.M.
A E調製剤:ェヌ 'ェム 'ビ-社製 3 0 3 A  A E preparation: N 3 '3 A
なおコンクリートの単位量は何れの試料についても、 水硬性組成物 3 0 O Kg/m3、 水 1 6 5 g/mu、 粗骨材 1 0 4 4 Kg/m3、 水 /水硬性組成物比 5 5 %であり、 細骨材は水硬性組成物中の鉱物質微粉末が 3 0 %、 4 0 %、 5 0 %、 6 0 %のとき各々 7 3 2 Kg/mJ 、 7 2 2 Kg/m3 、 7 1 2 Kg/m3 、 7 0 2 Kg/m3 である。 The unit amount of concrete was 30 O Kg / m 3 , water 1 65 g / m u , coarse aggregate 104 4 Kg / m 3 , water / hydraulic composition The fine aggregate is 732 Kg / m J , 7 when the fine mineral powder in the hydraulic composition is 30%, 40%, 50%, and 60%, respectively. 22 Kg / m 3 , 71 Kg / m 3 and 70 2 Kg / m 3 .
表 6に示すように、水硬性組成物中の鉱物質微粉末含有量が 3 0〜5 0 重量%において、 フライアツシュの一部を他の鉱物質微粉末によって置換 したものは、 フライアツシュの単独使用に比べて初期強度の低下力少ない。 具体的なフライアッシュに対する内割置換率は鉱物質微粉末の種類によつ て異なり、 石膏粉末は 6重量%以下が適当であり、 その他の微粉末は 2 0 重量%以下が適当である。 石膏粉末については置換率が 6重量%を越える と 3日および 7日の初期強度が置換率 0 % (鉱物質微粉末未使用) の場合 よりも低くなり、 初期強度の改善効果が認められない。 その他の鉱物質微 粉末は、 内割置換率が 2 0重量%以上でも、 混合量に比例して初期強度が 向上する力 内割置換率が 2 0重量%を越えると相対的にフライアッシュ の含有量が低下し、 コスト高になると共にシリカフユ一ムの場合は超微粉 末であるため混練作業が困難になるので好ましくない。  As shown in Table 6, when the content of fine mineral powder in the hydraulic composition is 30 to 50% by weight, the fly ash in which part of fly ash is replaced by other fine powder of mineral is used alone. Less decrease in initial strength compared to. The specific substitution rate for fly ash varies depending on the type of mineral fine powder. Gypsum powder is less than 6% by weight and other fine powder is less than 20% by weight. For gypsum powder, when the replacement ratio exceeds 6% by weight, the initial strength on days 3 and 7 becomes lower than when the replacement ratio is 0% (without using mineral fine powder), and no improvement effect on the initial strength is observed. . Other mineral fine powders have the ability to increase initial strength in proportion to the mixing amount, even if the internal substitution rate is more than 20% by weight. It is not preferable because the content is reduced, the cost is increased, and the kneading work becomes difficult in the case of silica film because it is an ultrafine powder.
いずれの鉱物質微粉末についても 1〜 2 %程度の置換率でも効果が認め られる。 一方、 水硬性組成物中の鉱物質微粉末含有量が 6 0重量%のもの は、 他の鉱物質微粉末を置換しても初期強度が大幅に低下しており、 実用 に適う強度に達しない。
Figure imgf000027_0001
The effect can be recognized even with a substitution rate of about 1 to 2% for all mineral fine powders. On the other hand, in the case where the content of the mineral fine powder in the hydraulic composition is 60% by weight, the initial strength is greatly reduced even when the other mineral fine powder is replaced, and reaches a strength suitable for practical use. do not do.
Figure imgf000027_0001
注) N; ¾5ϋセメント、 H;早強セメント  Note) N: {5} cement, H: early strength cement
A B:フライアツシュ、 C:髙炉スラグ、 D;石粉、 E;珪石粉末 W/C;水/セメント重 Sit F/A;鉱物 ffi¾r粉末 /総骨材職 F/S:ぉ物赚粉末 細骨材蹄、 TF ;総骨材の粗粒率 RFM;粗骨材の粗拉率に対する総骨材の粗粒率  AB: Fly ash, C: Furnace slag, D: Stone powder, E: Silica powder W / C; Water / cement weight Sit F / A; Mineral ffi¾r powder / Total aggregate profession F / S: Mineral powder Fine aggregate Hoof, TF; Coarse-grain ratio of total aggregate RFM; Coarse-grain ratio of coarse aggregate to coarse aggregate
W :水、 C;セメント、 S;細骨材、 G;粗骨材、 F;お物 末 表 2W : Water, C: Cement, S: Fine aggregate, G: Coarse aggregate, F: Material Table 2
Figure imgf000028_0001
Figure imgf000028_0001
注) F1 ;フライアッシュを示し、 その他の記号は丧 1と同じ„  Note) F1; Indicates fly ash, and other symbols are the same as 丧 1.
表 3Table 3
Figure imgf000028_0002
Figure imgf000028_0002
S ;コンクリートの練り混ぜ及び水中接生 fi¾を示し、 その他の記号は表 1と同じ。 表 4 S: Indicates concrete mixing and underwater regenerated fi¾, and other symbols are the same as in Table 1. Table 4
Figure imgf000029_0001
Figure imgf000029_0002
Figure imgf000029_0001
Figure imgf000029_0002
)砕:砕石、 FA; フライアッシュを ¾ 料とした ΛΙ骨材  ) Crushing: crushed stone, FA; ア made with fly ash ΛΙ aggregate
ML;膨? 岩を 料とした人工骨材 NL;抗火石を^料とした人工骨材 その他の記号は表 1と同じ ML: Artificial aggregate using expansive rock NL: Artificial aggregate using anti-firestone ^ Other symbols are the same as Table 1.
表 5 フライアッシュ以 鉱物 粉末の含有率 Table 5 Mineral powder content after fly ash
外の鉱物難粉末 30 重量% 40 重量% Outer mineral powder 30% by weight 40% by weight
種類 置換% 料 C · Η FA 試料 C H FA 未使用 0 Α00 210 0.0 90.0 BOO 180 0.0 120.0 石膏 2 All 210 1.8 88.2 Bll 180 2.4 117.6 粉末 4 A12 210 3.6 86.4 B12 180 4.8 115.2  Type Replacement% Charge C · Η FA Sample C HFA Not used 0 Α00 210 0.0 90.0 BOO 180 0.0 120.0 Gypsum 2 All 210 1.8 88.2 Bll 180 2.4 117.6 Powder 4 A12 210 3.6 86.4 B12 180 4.8 115.2
6 A13 210 5.4 84.6 B13 180 7.2 112.8 6 A13 210 5.4 84.6 B13 180 7.2 112.8
10 A14 210 9.0 81.0 B14 180 12.0 108.010 A14 210 9.0 81.0 B14 180 12.0 108.0
14 A15 210 12.6 77.4 B15 180 16.8 103.214 A15 210 12.6 77.4 B15 180 16.8 103.2
20 A16 210 18.0 72.0 B16 180 24.0 96.0 シリカ 2 A21 210 1.8 88.2 B21 180 2.4 117.6 フュー 4 A22 210 3.6 86.4 Β22 180 4.8 115.2 ム 6 A23 210 5.4 84.6 Β23 180 7.2 112.8 20 A16 210 18.0 72.0 B16 180 24.0 96.0 Silica 2 A21 210 1.8 88.2 B21 180 2.4 117.6 Fuse 4 A22 210 3.6 86.4 Β22 180 4.8 115.2 6 6 A23 210 5.4 84.6 Β23 180 7.2 112.8
10 A24 210 9.0 81.0 Β24 180 12.0 108.0 10 A24 210 9.0 81.0 Β24 180 12.0 108.0
14 A25 210 12.6 77.4 Β25 180 16.8 103.214 A25 210 12.6 77.4 Β25 180 16.8 103.2
20 A26 210 18.0 72.0 Β26 180 24.0 96.0 高炉ス 2 A31 210 1.8 88.2 B31 180 2.4 117.6 ラグ粉 4 A32 210 3.6 86.4 Β32 180 4.8 115.2 末 6 A33 210 5.4 84.6 Β33 180 7.2 112.8 20 A26 210 18.0 72.0 Β26 180 24.0 96.0 Blast furnace 2 A31 210 1.8 88.2 B31 180 2.4 117.6 Lag powder 4 A32 210 3.6 86.4 Β32 180 4.8 115.2 End 6 A33 210 5.4 84.6 Β33 180 7.2 112.8
10 A34 210 9.0 81.0 Β34 180 12.0 108.0 10 A34 210 9.0 81.0 Β34 180 12.0 108.0
14 A35 210 12.6 77.4 Β35 180 16.8 103.214 A35 210 12.6 77.4 Β35 180 16.8 103.2
20 A36 210 18.0 72.0 Β36 180 24.0 96.0 石灰石 2 A41 210 1.8 88.2 B41 180 2.4 117.6 粉末 4 A42 210 3.6 86.4 Β42 180 4.8 115.2 20 A36 210 18.0 72.0 Β36 180 24.0 96.0 Limestone 2 A41 210 1.8 88.2 B41 180 2.4 117.6 Powder 4 A42 210 3.6 86.4 Β42 180 4.8 115.2
6 A43. 210 5.4 84.6 Β43 180 7.2 112.8 6 A43. 210 5.4 84.6 Β43 180 7.2 112.8
10 A44 210 9.0 81.0 Β44 180 12.0 108.010 A44 210 9.0 81.0 Β44 180 12.0 108.0
14 A45 210 12.6 77.4 Β45 180 16.8 103.214 A45 210 12.6 77.4 Β45 180 16.8 103.2
20 A46 210 18.0 72.0 Β46 180 24.0 96.0 分級フ 2 A51 210 1.8 88.2 B51 180 2.4 117.6 ライア 4 A52 210 3.6 86.4 Β52 180 4.8 115.2 ッシュ 6 A53 210 5.4 84.6 Β53 180 7.2 112.8 20 A46 210 18.0 72.0 Β46 180 24.0 96.0 Classification 2 A51 210 1.8 88.2 B51 180 2.4 117.6 Lia 4 A52 210 3.6 86.4 Β52 180 4.8 115.2 ash 6 A53 210 5.4 84.6 Β53 180 7.2 112.8
10 A54 210 9.0 81.0 Β54 180 12.0 108.0 10 A54 210 9.0 81.0 Β54 180 12.0 108.0
14 A55 210 12.6 77.4 Β55 180 16.8 103.214 A55 210 12.6 77.4 Β55 180 16.8 103.2
20 A56 210 18.0 72.0 Β56 180 24.0 96.0 表 5の続き フライアッシュ以 鉱物質微粉末の含有率 20 A56 210 18.0 72.0 Β56 180 24.0 96.0 Continuation of Table 5 Content of fine powder after fly ash
外の鉱物 粉末 50 重量% 60 重暈% Mineral powder outside 50% by weight 60
種類 置換 ¾ C H FA 試料 C M FA 未使用 0 coo 1-50 0.0 150.0 D00 120 0.0 180.0 石膏 2 Cll 150 3.0 147.0 Dll 120 3.6 176.4 粉末 4 C12 150 6.0 144.0 D12 120 7.2 172.8  Type Substitution ¾ C H FA sample C M FA Not used 0 coo 1-50 0.0 150.0 D00 120 0.0 180.0 Gypsum 2 Cll 150 3.0 147.0 Dll 120 3.6 176.4 Powder 4 C12 150 6.0 144.0 D12 120 7.2 172.8
6 C13 150 9.0 141.0 D13 120 10.8 169.2 6 C13 150 9.0 141.0 D13 120 10.8 169.2
10 C14 150 15.0 135.0 D14 120 18.0 162.010 C14 150 15.0 135.0 D14 120 18.0 162.0
14 C15 150 21.0 129.0 D15 120 25.2 154.814 C15 150 21.0 129.0 D15 120 25.2 154.8
20 C16 150 30.0 120.0 D16 120 36.0 144.0 シリカ 2 C21 150 3.0 147.0 D21 120 3.6 176.4 フュー 4 C22 150 6.0 144.0 D22 120 7.2 172.8 ム 6 C23 150 9.0 141.0 D23 120 10.8 169.2 20 C16 150 30.0 120.0 D16 120 36.0 144.0 Silica 2 C21 150 3.0 147.0 D21 120 3.6 176.4 Fuse 4 C22 150 6.0 144.0 D22 120 7.2 172.8 6 C23 150 9.0 141.0 D23 120 10.8 169.2
10 C24 150 15.0 135.0 D24 120 18.0 162.0 10 C24 150 15.0 135.0 D24 120 18.0 162.0
14 C25 150 21.0 129.0 D25 120 25.2 154.814 C25 150 21.0 129.0 D25 120 25.2 154.8
20 C26 150 30.0 120.0 D26 120 36.0 144.0 高炉ス 2 C31 150 3.0 147.0 D31 120 3.6 176.4 ラグ粉 4 C32 150 6.0 144.0 D32 120 7.2 172.8 末 6 C33 150 9.0 141.0 D33 120 10.8 169.2 20 C26 150 30.0 120.0 D26 120 36.0 144.0 Blast furnace 2 C31 150 3.0 147.0 D31 120 3.6 176.4 Lag powder 4 C32 150 6.0 144.0 D32 120 7.2 172.8 End 6 C33 150 9.0 141.0 D33 120 10.8 169.2
10 C34 150 15.0 135.0 D34 120 18.0 162.0 10 C34 150 15.0 135.0 D34 120 18.0 162.0
14 C35 150 21.0 129.0 D35 120 25.2 154.814 C35 150 21.0 129.0 D35 120 25.2 154.8
20 C36 150 30.0 120.0 D36 120 36.0 144.0 石灰石 2 C41 150 3.0 147.0 D41 120 3.6 176.4 粉末 4 C42 150 6.0 144.0 D42 120 7.2 172.8 20 C36 150 30.0 120.0 D36 120 36.0 144.0 Limestone 2 C41 150 3.0 147.0 D41 120 3.6 176.4 Powder 4 C42 150 6.0 144.0 D42 120 7.2 172.8
6 C43 150 9.0 141.0 D43 120 10.8 169.2 6 C43 150 9.0 141.0 D43 120 10.8 169.2
10 C44 150 15.0 135.0 D44 120 18.0 162.010 C44 150 15.0 135.0 D44 120 18.0 162.0
14 C45 150 21.0 129.0 D45 120 25.2 154.814 C45 150 21.0 129.0 D45 120 25.2 154.8
20 C46 150 30.0 120.0 D46 120 36.0 144.0 分級フ 2 C51 150 3.0 147.0 D51 120 3.6 176.4 ライア 4 C52 150 6.0 144.0 D52 120 7.2 172.820 C46 150 30.0 120.0 D46 120 36.0 144.0 Classification 2 C51 150 3.0 147.0 D51 120 3.6 176.4 Lia 4 C52 150 6.0 144.0 D52 120 7.2 172.8
、リソュ 6 C53 150 9.0 141.0 D53 120 10.8 169.2 , Reso 6 C53 150 9.0 141.0 D53 120 10.8 169.2
10 C54 150 15.0 135.0 D54 120 18.0 162.0 10 C54 150 15.0 135.0 D54 120 18.0 162.0
14 C55 150 21.0 129.0 D55 120 25.2 154.814 C55 150 21.0 129.0 D55 120 25.2 154.8
20 C56 150 30.0 120.0 D56 120 36.0 144.0 表 6 20 C56 150 30.0 120.0 D56 120 36.0 144.0 Table 6
Figure imgf000032_0001
Figure imgf000032_0001
(注) 圧縮 ¾S比はフラィアツシュ以外の鉱物質微粉末を使用しない場合の を  (Note) Compressed ¾S ratio is the value when mineral powder other than fly ash is not used.
1 0 0とした場合の相対値 表 6の続き Relative value assuming 1 0 0 Table 6 continued
Figure imgf000033_0001
Figure imgf000033_0001
(注) 圧縮 ¾s比はフライアッシュ以外の鉱物質微粉末を使用しな L、場合の ¾eを 1 0 0とした場合の相対値  (Note) Compressed ¾s ratio is a relative value when ¾e is set to 100 when L is used without using mineral fine powder other than fly ash.
* は "硬化せず" を示す。 '  * Indicates "not cured". '
3 Three

Claims

請 求 の 範 囲 The scope of the claims
( 1 ) セメント、 骨材、 鉱物質微粉末および水を含むコンクリート組 成物であって、 骨材の粒度分布が R F M (粗骨材の粗粒率に対する総骨材 の粗粒率の割合) 0. 8 0以上であり、 鉱物質微粉末 (F) の骨材 (A) に対する比率 (FZA) が 1 0体積%以上であることを特徴とするコンク リート組成物。 (1) Concrete composition containing cement, aggregate, mineral powder and water, and the particle size distribution of the aggregate is RFM (ratio of coarse aggregate to coarse aggregate) A concrete composition characterized by being at least 0.80, and having a ratio (FZA) of mineral powder (F) to aggregate (A) of at least 10% by volume.
(2 ) セメント、 骨材、 鉱物質微粉末および水を含むコンクリ一ト組 成物であって、 鉱物質微粉末 (F) の骨材中に占める細骨材 (S) に対す る比率 (FZ S) が少なくとも 3 0体積%以上、 好ましくは少なくとも 4 5体積%以上となるように鉱物質微粉末を骨材の一部に置き換えてなるこ とを特徴とするコンクリート組成物。  (2) A concrete composition containing cement, aggregate, mineral fine powder and water, and the ratio of the fine mineral powder (F) to the fine aggregate (S) in the aggregate (S) Concrete composition characterized by replacing mineral fine powder with a part of aggregate so that FZS) is at least 30% by volume or more, preferably at least 45% by volume or more.
( 3 ) 高性能減水剤をさらに含むことを特徴とする請求の範囲第 1また は 2項いずれか記載のコンクリ一ト組成物。  (3) The concrete composition according to any one of claims 1 and 2, further comprising a high-performance water reducing agent.
(4 ) セメントが普通ポルトランドセメント又は早強ポルトランドセ メントであることを特徴とする請求の範囲第 1〜3項いずれか記載のコン クリート組成物。  (4) The concrete composition according to any one of claims 1 to 3, wherein the cement is ordinary Portland cement or early strength Portland cement.
( 5 ) 鉱物質微粉末が、 天然鉱物質微粉末または Λ 鉱物質微粉末、 好ましくは、 少なくともフライアッシュを含むものであることを特徴とす る請求の範囲第 1〜 4項いずれか記載のコンクリート組成物。  (5) The concrete composition according to any one of claims 1 to 4, wherein the mineral substance fine powder contains natural mineral substance fine powder or 鉱 mineral substance fine powder, preferably at least fly ash. object.
( 6 ) コンクリート組成物が超高強度コンクリート用組成物または暑中 コンクリート用組成物であることを特徵とする請求の範囲第 1〜5項いず れか記載のコンクリート組成物。  (6) The concrete composition according to any one of claims 1 to 5, wherein the concrete composition is an ultra-high strength concrete composition or a hot concrete composition.
( 7 ) 骨材中の粗骨材が人工骨材であり、 好ましくはフライアッシュ を主原料とする人工骨材、 抗火石を主原料とする人工骨材または膨張頁岩 を主原料とする人工骨材であることを特徴とする請求の範囲第 1〜 6項い ずれか記載のコンクリート組成物。 (7) The coarse aggregate in the aggregate is an artificial aggregate, preferably an artificial aggregate mainly composed of fly ash, an artificial aggregate mainly composed of anti-firestone or an artificial bone mainly composed of expanded shale. Claims 1 to 6 characterized by being a material A concrete composition according to any of the preceding claims.
(8) セメント、 骨材、 鉱物質微粉末に水を配合してコンクリートを 製造する方法であって、 粒度分布が RFM (粗骨材の粗粒率に対する総骨 材の粗粒率の割合) 0. 80以上の骨材に鉱物質微粉末 (F) を、 骨材 (A) に対する比率 (FZA)が 10体積%以上になるように混合するこ とを特徴とするコンクリートの製造方法。  (8) A method for producing concrete by mixing water with cement, aggregate, or fine mineral powder, and the particle size distribution is RFM (ratio of coarse aggregate to coarse aggregate). A method for producing concrete, comprising mixing fine mineral powder (F) with at least 80 aggregate in such a manner that the ratio (FZA) to aggregate (A) is at least 10% by volume.
(9) セメント、骨材、 鉱物質微粉末に水を配合してコンクリートを 製造する方法であって、 骨材中の細骨材 (S) に対する鉱物質微粉末 (F) の比率 (F/S) が少なくとも 30体積%以上、 好ましくは 45体積%以 上となるように、 鉱物質微粉末を骨材の一部に置き換えて鉱物質微粉末を 混和することを特徴とするコンクリ一トの製造方法。  (9) A method of producing concrete by mixing water with cement, aggregate, and mineral fine powder. The ratio of fine mineral powder (F) to fine aggregate (S) in the aggregate (F / The concrete is characterized in that the mineral fine powder is replaced with a part of the aggregate and mixed with the mineral fine powder so that S) is at least 30% by volume or more, preferably 45% by volume or more. Production method.
(10)鉱物質微粉末としてフライアッシュを混和することを特徴とす る請求の範囲第 8または 9項記載のコンクリートの製造方法。  (10) The method for producing concrete according to claim 8 or 9, wherein fly ash is mixed as the fine powder of mineral matter.
(11) 高性能減水剤をさらに配合することを特徴とする請求の範囲 第 8〜 10項 L、ずれか記載のコンクリートの製造方法。  (11) The method for producing concrete according to claim 8, wherein a high-performance water reducing agent is further added.
(12) セメントとして^ 1ポルトランドセメントまたは早強ポルト ランドセメントを用いることを特徴とする請求の範囲第 8〜11項いずれ か記載のコンクリー卜の製造方法。  (12) The method for producing concrete according to any one of claims 8 to 11, wherein ^ 1 Portland cement or early-strength Portland cement is used as the cement.
(13) コンクリート中のセメントと鉱物質微粉末からなる水硬性成分 において、 水硬性成分中の鉱物質微粉末の配合量が 30〜50重量% (内 割) であり、 かつ鉱物質微粉末がフライアッシュを主体とし、 その一部が 他の鉱物質微粉末により置換されているコンクリート組成物。  (13) In the hydraulic component consisting of cement and mineral fine powder in concrete, the blending amount of mineral fine powder in the hydraulic component is 30 to 50% by weight (in percentage), and the mineral powder is Concrete composition mainly composed of fly ash, part of which is replaced by other fine mineral powder.
(14) フライアッシュに置換される他の鉱物質微粉末力 ブレーン比 表面積 150000cm2 /g以上のシリカフューム、 プレーン比表面積 40 00cm2 /g以上の高炉スラグ粉末、 プレーン比表面積 5000cm" /g以上 の石灰石粉末、 または最大粒径 20 以下の分級フライアツシュであり、 鉱物質微粉末の含有量がフライアッシュとの合計量の 2 0重量% (内割) 以下である請求の範囲第 1 3項のコンクリ一ト組成物。 (14) other mineral fine powders force substituted fly ash Blaine specific surface area 150000cm 2 / g or more silica fume, the above plain specific surface area 40 00cm 2 / g blast furnace slag powder, plain specific surface area 5000 cm "/ g or more Limestone powder or classified fly ash with a maximum particle size of 20 or less, 14. The concrete composition according to claim 13, wherein the content of the mineral fine powder is 20% by weight or less of the total amount with the fly ash.
( 1 5 ) フライアッシュに置換される他の鉱物質微粉末がブレーン比表 面積 5 0 0 0 cm2 /g以上の石膏粉末であり、 該石膏粉末の含有量がフライ アッシュとの合計量の 6重量% (内割) 以下である請求の範囲第 1 3項の コンクリート組成物 0 (15) The other mineral fine powder to be replaced with fly ash is a gypsum powder having a Blaine ratio table area of 500 cm 2 / g or more, and the content of the gypsum powder is the total amount of the gypsum and the fly ash. The concrete composition according to claim 13, which is not more than 6% by weight (inner percentage) 0
PCT/JP1994/002250 1993-12-28 1994-12-27 Concrete compositions and method of manufacturing concrete WO1995018077A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU12822/95A AU1282295A (en) 1993-12-28 1994-12-27 Concrete compositions and method of manufacturing concrete

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP35518393 1993-12-28
JP5/355183 1993-12-28
JP6/82521 1994-03-29
JP8252194A JP3099166B2 (en) 1994-03-29 1994-03-29 Hydraulic composition
JP33065294A JPH07232955A (en) 1993-12-28 1994-12-07 Production of concrete composition and concrete
JP6/330652 1994-12-07

Publications (1)

Publication Number Publication Date
WO1995018077A1 true WO1995018077A1 (en) 1995-07-06

Family

ID=27303944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/002250 WO1995018077A1 (en) 1993-12-28 1994-12-27 Concrete compositions and method of manufacturing concrete

Country Status (2)

Country Link
AU (1) AU1282295A (en)
WO (1) WO1995018077A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102173685A (en) * 2011-02-14 2011-09-07 中国铁道科学研究院铁道建筑研究所 Cast-in-place beam concrete composition for quick tensioning
CN111312344A (en) * 2020-02-12 2020-06-19 河北钢铁集团矿业有限公司 Optimization method of full-solid waste cementing material and mixed aggregate filling slurry
CN115583812A (en) * 2022-10-08 2023-01-10 江西申洪新型材料有限公司 Composite modified bentonite and application thereof in concrete preparation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51143019A (en) * 1975-06-05 1976-12-09 Nihon Cement Manufactring of light concrete products
JPS5735143B2 (en) * 1977-05-13 1982-07-27
JPH0558688A (en) * 1991-09-02 1993-03-09 Ohbayashi Corp Placing of mortal-concrete

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51143019A (en) * 1975-06-05 1976-12-09 Nihon Cement Manufactring of light concrete products
JPS5735143B2 (en) * 1977-05-13 1982-07-27
JPH0558688A (en) * 1991-09-02 1993-03-09 Ohbayashi Corp Placing of mortal-concrete

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102173685A (en) * 2011-02-14 2011-09-07 中国铁道科学研究院铁道建筑研究所 Cast-in-place beam concrete composition for quick tensioning
CN102173685B (en) * 2011-02-14 2013-02-06 中国铁道科学研究院铁道建筑研究所 Cast-in-place beam concrete composition for quick tensioning
CN111312344A (en) * 2020-02-12 2020-06-19 河北钢铁集团矿业有限公司 Optimization method of full-solid waste cementing material and mixed aggregate filling slurry
CN111312344B (en) * 2020-02-12 2023-10-27 河北钢铁集团矿业有限公司 Optimization method of full-solid waste cementing material and mixed aggregate filling slurry
CN115583812A (en) * 2022-10-08 2023-01-10 江西申洪新型材料有限公司 Composite modified bentonite and application thereof in concrete preparation
CN115583812B (en) * 2022-10-08 2024-01-23 江西申洪新型材料有限公司 Composite modified bentonite and application thereof in preparing concrete

Also Published As

Publication number Publication date
AU1282295A (en) 1995-07-17

Similar Documents

Publication Publication Date Title
EP1876153B1 (en) Ultrahigh-strength cement composition, ultrahigh-strength fiber-reinforced mortar or concrete, and ultrahigh-strength cement admixture
JP3397775B2 (en) Hydraulic composition
Droll Influence of additions on ultra high performance concretes–grain size optimisation
JPH04124054A (en) Superhigh-strength concrete
JP3099166B2 (en) Hydraulic composition
CN112552000B (en) Surface wear-resistant hydrophobic enhanced self-leveling mortar and preparation method thereof
JP4298247B2 (en) High fluidity concrete
JP2002003249A (en) Cement admixture, cement composition and cement concrete with high flowability
JPH0952744A (en) Mortar and concrete composition
JPH07232955A (en) Production of concrete composition and concrete
JP3974970B2 (en) Concrete production method
WO1995018077A1 (en) Concrete compositions and method of manufacturing concrete
JPH08277153A (en) Light-weight high-strength concrete
JP2003137618A (en) Blast furnace slag fine powder containing inorganic admixture, blast furnace cement, and method of producing them
JP2004284865A (en) Hydraulic composition, and concrete or mortar having excellent pump forced-feeding property
JP2004284873A (en) Hydraulic complex material
Prem et al. Sustainable production of high performance concrete
Kumar et al. A review on wider application of supplementary cementitious materials on the development of high-performance concrete
CN114873980B (en) Design method of high-doping inert material cementing material based on concrete principle
JP2003321262A (en) Cement admixture and cement composition using the same
JP2001019529A (en) Cement hardened product
JPH01242445A (en) Hydraulic cement composition
JPH08277157A (en) Concrete composition
JPH08277154A (en) Concrete composition
JP3662049B2 (en) Concrete composition

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 94194924.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN KR NO NZ US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): CH DE DK ES FR GB IE IT NL SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 1996 669285

Country of ref document: US

Date of ref document: 19960628

Kind code of ref document: A

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA