WO1995016646A1 - Method of producing one or more cavities in or under the coating of a substrate - Google Patents

Method of producing one or more cavities in or under the coating of a substrate Download PDF

Info

Publication number
WO1995016646A1
WO1995016646A1 PCT/DE1994/001483 DE9401483W WO9516646A1 WO 1995016646 A1 WO1995016646 A1 WO 1995016646A1 DE 9401483 W DE9401483 W DE 9401483W WO 9516646 A1 WO9516646 A1 WO 9516646A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
under
cavities
forming
glassy carbon
Prior art date
Application number
PCT/DE1994/001483
Other languages
German (de)
French (fr)
Inventor
Karl-Hermann Friese
Werner Gruenwald
Claudio De La Prieta
Gerhard Schneider
Harald Neumann
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO1995016646A1 publication Critical patent/WO1995016646A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/068Carbonaceous materials, e.g. coal, carbon, graphite, hydrocarbons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00991Uses not provided for elsewhere in C04B2111/00 for testing

Definitions

  • the invention relates to a method for forming one or more cavities in or under a coating of a base body according to the preamble of the main claim.
  • Such methods are known in principle, for example for producing a self-supporting structure for a bladder pressure sensor, as described in ISHM Proceedings, Bournemouth 1987, page 421ff.
  • Picein paste is used as a void former in this known process.
  • the process according to the invention with the characterizing features of claim 1 has the advantage that glassy carbon only burns out at relatively high temperatures in the range from approximately 600 ° C. At this temperature, a self-supporting ceramic structure or a self-supporting body has already formed from the paste and solidified to such an extent that no more displacements take place. A defined porosity or a defined bubble shape is thus obtained.
  • the method according to the invention has proven particularly useful when used to form pores in a coating of a ceramic paste, in particular for the production of planar probes for determining the oxygen content in gas mixtures.
  • the grain diameter of the glassy carbon particles determines the size of the pores in a particularly simple manner, the maximum grain size of the glassy carbon being based on the desired pore size or the thickness of the layer applied. To avoid continuous pores, the grain diameter must be chosen smaller than the layer thickness.
  • a further advantageous use of the method according to the invention lies in the formation of bubble-shaped cavities under a self-supporting structure, for example for the production of so-called bubble pressure sensors, a single larger cavity being created under the coating.
  • a particularly simple and advantageous way of processing the hollow space for such a bubble pressure sensor results from the fact that the glassy carbon particles are dispersed in an organic carrier and form with it a printable paste which can be printed in the form of the bubble to be formed.
  • FIG. 1 shows a first exemplary embodiment with a porous coating of a base body
  • FIG. 2 shows an arrangement with a bubble-shaped cavity between a coating and a base body. Description of the embodiments
  • 10 denotes a coating on a base body 11, which has pores 12. These arise when the glass-carbon-containing, layered paste is heated to a temperature of -ca. 600 ° C, at which the glassy carbon evaporates almost without residue and leaves the pores 12 in the coating 10.
  • FIG. 2 shows an arrangement in which a paste containing glassy carbon particles and volatilizing overall when heated was applied to the base body 11 below a coating 10. After heating to a temperature of approximately 600 ° C., the substrate containing the glassy carbon has evaporated here practically without residue and left a cavity 13 under a self-supporting layer 14.
  • the process according to the invention makes it possible to produce one or more cavities in or under a coating of a base body in a particularly simple and economical manner by adding glass carbon particles to thick-film pastes or ceramic molding compositions which are applied to a base body in a known manner .
  • the glassy carbon burns out and leaves defined cavities.
  • Such cavity formers are used advantageously, for example, for the production of exhaust gas sensors, there for example for the formation of the diffusion channel, the air reference channel or a porous cover, or alternatively for the production of pressure sensors in bubble technology.
  • the claimed method can therefore be used both for the production of self-supporting thick-film structures and for the production of porous thick films and ceramic molded parts.
  • the production of metallic, porous sintered bodies also appears with the method according to the invention possible.
  • the glassy carbon used is generally known, for example from the article by R. Dübgen in "Plastverarbeiter” 41 (1990) 6, pages 16 to 21.
  • the glassy carbon used is a special modification of the carbon obtained by pyrolysis of resins.
  • the final size of the pores results from the grain diameter of the glassy carbon minus the shrinkage during the sintering process.
  • the particle size of the glassy carbon must therefore be chosen larger in accordance with the shrinkage than the desired pore size. This gives a defined and reproducible porosity, which can be produced particularly advantageously.

Abstract

Proposed is a method for the production of one or more cavities in or under the coating of a substrate, in particular for the production of pores in said coating or for the production of a blister-like cavity under this coating. In an advantageous embodiment of the invention, the method is used to produce pores in a coating made of a ceramic compound or to produce a blister-like cavity under a self-supporting structure. The pores or the blister are obtained by mixing in vitreous carbon to give a paste which, when heated to about 600 °C, burns off virtually without leaving residues, and produces the required cavities.

Description

Verfahren zum Ausbilden eines oder mehrerer Hohlräume in oder unter einer Beschichtunσ eines Grundkb'rpersA method for forming one or more cavities in or under a Beschichtunσ a Grundkb 'rpers
Stand der TechnikState of the art
Die Erfindung betrifft ein Verfahren zum Ausbilden eines oder mehrerer Hohlräume in oder unter einer Beschichtung eines Grundkörpers nach der Gattung des Hauptanspruchs. Derartige Verfahren sind grundsätzlich bekannt, beispielsweise zur Herstellung einer freitragenden Struktur für einen Blasendrucksensor, wie er in ISHM-Proceedings, Bournemouth 1987, Seite 421ff beschrieben ist. Als Hohlraumbildner ist bei diesem bekannten Verfahren Picein-Paste verwendet.The invention relates to a method for forming one or more cavities in or under a coating of a base body according to the preamble of the main claim. Such methods are known in principle, for example for producing a self-supporting structure for a bladder pressure sensor, as described in ISHM Proceedings, Bournemouth 1987, page 421ff. Picein paste is used as a void former in this known process.
Vorteile der ErfindungAdvantages of the invention
Das erfindungsgemäße Verfahren mit den kennzeichnenden Merkmalen des Anspruchs 1 hat den Vorteil, daß Glaskohle erst bei relativ hohen Temperaturen im Bereich ab ca. 600° C ausbrennt. Bei dieser Temperatur hat sich aus der Paste bereits eine freitragende Keramikstruktur, beziehungsweise ein freitragender Körper gebildet und soweit verfestigt, daß keine Verschiebungen mehr erfolgen. Man erhält somit eine definierte Porosität oder eine definierte Blasenform. Besonders bewährt hat sich das erfindungsgemäße Verfahren bei der Verwendung zur Bildung von Poren in einer Beschichtung aus einer keramischen Paste, insbesondere für die Herstellung planarer Sonden zur Bestimmung des Sauerstoffgehaltes in Gasgemischen. Der Korndurchmesser der Glaskohlepartikel bestimmt hierbei in besonders einfacher Weise die Größe der Poren, wobei die maximale Korngröße der Glaskohle sich nach der gewünschten Porengröße, beziehungsweise der Dicke der aufgebrachten Schicht richtet. Zur Vermeidung durchgehender Poren muß dabei der Korndurchmesser kleiner gewählt werden als die Schichtdicke.The process according to the invention with the characterizing features of claim 1 has the advantage that glassy carbon only burns out at relatively high temperatures in the range from approximately 600 ° C. At this temperature, a self-supporting ceramic structure or a self-supporting body has already formed from the paste and solidified to such an extent that no more displacements take place. A defined porosity or a defined bubble shape is thus obtained. The method according to the invention has proven particularly useful when used to form pores in a coating of a ceramic paste, in particular for the production of planar probes for determining the oxygen content in gas mixtures. The grain diameter of the glassy carbon particles determines the size of the pores in a particularly simple manner, the maximum grain size of the glassy carbon being based on the desired pore size or the thickness of the layer applied. To avoid continuous pores, the grain diameter must be chosen smaller than the layer thickness.
Eine weitere vorteilhafte Verwendung des erfindungsgemäßen Verfahrens liegt bei der Ausbildung blasenförmiger Hohlräume unter einer freitragenden Struktur, zum Beispiel für die Herstellung sogenannter Blasen-Drucksensoren, wobei ein einzelner größerer Hohlraum unter der Beschichtung erzeugt wird. Für diese Anwendung wird zweckmäßigerweise Glaskohle mit einem Korndurchmesser im Bereich zwischen 1 und 150 A^m, vorzugsweise im Bereich zwischen 1 und 100 U.m benutzt. Eine besonders einfache und vorteilhafte Verarbeitungsweise bei der Herstellung des Hohlraumes für einen derartigen Blasen--Drucksensor ergibt sich dadurch, daß die Glaskohlepartikel in einem organischen Träger dispergiert sind und mit diesem eine druckfähige Paste bilden, welche in Form der auszubildenden Blase aufgedruckt werden kann.A further advantageous use of the method according to the invention lies in the formation of bubble-shaped cavities under a self-supporting structure, for example for the production of so-called bubble pressure sensors, a single larger cavity being created under the coating. Glass coal with a grain diameter in the range between 1 and 150 μm, preferably in the range between 1 and 100 rpm, is expediently used for this application. A particularly simple and advantageous way of processing the hollow space for such a bubble pressure sensor results from the fact that the glassy carbon particles are dispersed in an organic carrier and form with it a printable paste which can be printed in the form of the bubble to be formed.
Zeichnungdrawing
Zwei Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 ein erstes Ausführungsbeispiel mit einer porösen Beschichtung eines Grundkörpers und Figur 2 eine Anordnung mit einem blasenförmigen Hohlraum zwischen einer Beschichtung und einem Grundkörper. Beschreibung der AusführungsbeispieleTwo embodiments of the invention are shown in the drawing and explained in more detail in the following description. FIG. 1 shows a first exemplary embodiment with a porous coating of a base body, and FIG. 2 shows an arrangement with a bubble-shaped cavity between a coating and a base body. Description of the embodiments
In Figur 1 ist mit 10 eine Beschichtung auf einem Grundkörper 11 bezeichnet, welche Poren 12 aufweist. Diese entstehen beim Erhitzen der Glaskohle-Partikel enthaltenden, schichtför ig aufgetragenen Paste auf eine Temperatur von -ca. 600° C, bei welcher die Glaskohle sich nahezu rückstandslos verflüchtigt und die Poren 12 in der Beschichtung 10 hinterläßt.In FIG. 1, 10 denotes a coating on a base body 11, which has pores 12. These arise when the glass-carbon-containing, layered paste is heated to a temperature of -ca. 600 ° C, at which the glassy carbon evaporates almost without residue and leaves the pores 12 in the coating 10.
Figur 2 zeigt eine Anordnung, bei der eine Glaskohle-Partikel enthaltende, sich insgesamt bei Erhitzung verflüchtigende Paste auf den Grundkörper 11 unterhalb einer Beschichtung 10 aufgetragen wurde. Nach dem Erhitzen auf eine Temperatur von ca. 600° C hat sich hier die die Glaskohle enthaltende Unterlage praktisch rückstandslos verflüchtigt und einen Hohlraum 13 unter einer freitragenden Schicht 14 hinterlassen.FIG. 2 shows an arrangement in which a paste containing glassy carbon particles and volatilizing overall when heated was applied to the base body 11 below a coating 10. After heating to a temperature of approximately 600 ° C., the substrate containing the glassy carbon has evaporated here practically without residue and left a cavity 13 under a self-supporting layer 14.
Durch das erfindungsgemäße Verfahren ist es möglich, in besonders einfacher und wirtschaftlicher Weise einen oder mehrere Hohlräume in oder unter einer Beschichtung eines Grundkörpers zu erzeugen durch den Zusatz von Glaskohle-Partikeln zu Dickschichtpasten, beziehungsweise keramischen Formmassen, die in bekannter Weise auf einen Grundkörper aufgebracht werden. Während eines Sintervorgangs bei ca. 600° C brennt die Glaskohle aus und hinterläßt definierte Hohlräume. Derartige Hohlraumbildner werden zum Beispiel vorteilhaft angewendet für die Herstellung von Abgassensoren, dort zum Beispiel für die Ausbildung des Diffusionskanals, des Luftreferenzkanals oder einer porösen Abdeckung, oder alternativ zum Beispiel für die Herstellung von Drucksensoren in Blasentechnologie. Das beanspruchte Verfahren kann demzufolge sowohl benutzt werden zur Herstellung von freitragenden Dickschichtstrukturen wie auch zur Herstellung poröser Dickschichten und keramischer Formteile. Auch die Herstellung metallischer, poröser Sinterkörper erscheint mit dem erfindungsgemäßen Verfahren möglich. Die verwendete Glaskohle ist grundsätzlich bekannt, zum Beispiel aus dem Artikel von R. Dübgen in "Plastverarbeiter" 41 (1990) 6, Seite 16 bis 21. Bei der verwendeten Glaskohle handelt es sich um eine durch Pyrolyse von Harzen gewonnene besondere Modifikation des Kohlenstoffes.The process according to the invention makes it possible to produce one or more cavities in or under a coating of a base body in a particularly simple and economical manner by adding glass carbon particles to thick-film pastes or ceramic molding compositions which are applied to a base body in a known manner . During a sintering process at approx. 600 ° C, the glassy carbon burns out and leaves defined cavities. Such cavity formers are used advantageously, for example, for the production of exhaust gas sensors, there for example for the formation of the diffusion channel, the air reference channel or a porous cover, or alternatively for the production of pressure sensors in bubble technology. The claimed method can therefore be used both for the production of self-supporting thick-film structures and for the production of porous thick films and ceramic molded parts. The production of metallic, porous sintered bodies also appears with the method according to the invention possible. The glassy carbon used is generally known, for example from the article by R. Dübgen in "Plastverarbeiter" 41 (1990) 6, pages 16 to 21. The glassy carbon used is a special modification of the carbon obtained by pyrolysis of resins.
Bei der Ausbildung von Poren ist zu berücksichtigen, daß sich die endgültige Größe der Poren ergibt durch den Korndurchmesser der Glaskohle abzüglich der Schwindung während des Sinterprozesses. Die Partikelgröße der Glaskohle muß also entsprechend der Schwindung größer gewählt werden als die erwünschte Porengröße. Man erhält so eine definierte und reproduzierbare Porosität, welche sich besonders vorteilhaft herstellen läßt. When forming pores, it must be taken into account that the final size of the pores results from the grain diameter of the glassy carbon minus the shrinkage during the sintering process. The particle size of the glassy carbon must therefore be chosen larger in accordance with the shrinkage than the desired pore size. This gives a defined and reproducible porosity, which can be produced particularly advantageously.

Claims

Ansprüche Expectations
1. Verfahren zum Ausbilden eines oder mehrerer Hohlräume in oder unter einer Beschichtung eines Grundkörpers, insbesondere zum Ausbilden von Poren in einer Beschichtung oder eines blasenartigen Hohlraumes unter einer Beschichtung', vorzugsweise auf Keramikteilen, wobei der Beschichtungsmasse Teilchen beigemengt oder unterlegt werden, welche sich bei Erhitzung vorzugsweise rückstandsfrei verflüchtigen und die gewünschten Hohlräume hinterlassen, dadurch gekennzeichnet, daß als hohlraumbildende Substanz Glaskohle verwendet wird.1. A method for forming one or more cavities in or under a coating of a base body, in particular for forming pores in a coating or a bubble-like cavity under a coating ', preferably on ceramic parts, the coating material being admixed or underlaid with particles which accumulate Volatilize the heating preferably without leaving any residue and leave the desired cavities, characterized in that glass carbon is used as the cavity-forming substance.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Verflüchtigung der hohlraumbildenden Substanz durch Erhitzen auf eine Temperatur bei oder oberhalb von 600° C erfolgt.2. The method according to claim 1, characterized in that the volatilization of the void-forming substance is carried out by heating to a temperature at or above 600 ° C.
3. Verfahren nach Anspruch 1 oder 2, gekennzeichnet durch die Verwendung zur Bildung von Poren (12) in einer Beschichtung (10) aus einer keramischen Paste (Figur 1), insbesondere für die Herstellung planarer Sonden zur Bestimmung des Sauerstoffgehaltes in Gasgemischen.3. The method according to claim 1 or 2, characterized by the use for forming pores (12) in a coating (10) made of a ceramic paste (Figure 1), in particular for the production of planar probes for determining the oxygen content in gas mixtures.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß der maximale Korndurchmesser der Glaskohlepartikel kleiner als die Schichtdicke der aufgebrachten Schicht (10) ist. 4. The method according to claim 3, characterized in that the maximum grain diameter of the glassy carbon particles is smaller than the layer thickness of the applied layer (10).
5. Verfahren nach Anspruch 1 oder 2, gekennzeichnet durch die Verwendung zur Ausbildung eines blasenformigen Hohlraumes (13) unter einer freitragenden Schicht (14).5. The method according to claim 1 or 2, characterized by the use for forming a bubble-shaped cavity (13) under a self-supporting layer (14).
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Glaskohle einen Korndurchmesser von 1 bis 150 Λ*m, vorzugsweise von6. The method according to claim 5, characterized in that the glassy carbon has a grain diameter of 1 to 150 Λ * m, preferably of
1 bis 100 Mm aufweist.1 to 100 mm.
7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß die Glaskohlepartikel in einem organischen Träger dispergiert sind und mit diesem eine druckfähige Paste bilden. 7. The method according to claim 5 or 6, characterized in that the glassy carbon particles are dispersed in an organic carrier and form a printable paste with this.
PCT/DE1994/001483 1993-12-18 1994-12-14 Method of producing one or more cavities in or under the coating of a substrate WO1995016646A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4343315.4 1993-12-18
DE19934343315 DE4343315C2 (en) 1993-12-18 1993-12-18 Method for forming one or more cavities or pores in or under a coating of a ceramic body and use of the method for the production of planar probes

Publications (1)

Publication Number Publication Date
WO1995016646A1 true WO1995016646A1 (en) 1995-06-22

Family

ID=6505419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1994/001483 WO1995016646A1 (en) 1993-12-18 1994-12-14 Method of producing one or more cavities in or under the coating of a substrate

Country Status (2)

Country Link
DE (1) DE4343315C2 (en)
WO (1) WO1995016646A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998038138A1 (en) * 1997-02-28 1998-09-03 Robert Bosch Gmbh Ceramic composition, method for the production and use thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19825094C1 (en) * 1998-06-05 1999-11-25 Heraeus Electro Nite Int Production of ceramic, diffusion-limiting coating used as diffusion and/or oxygen ion conducting layer in oxygen probe
DE19834276A1 (en) * 1998-07-30 2000-02-10 Bosch Gmbh Robert Flue gas probe
DE10015614B4 (en) * 2000-03-29 2009-02-19 Ceramtec Ag Porous sintered body with porous layer on the surface and process for its preparation and its uses
DE10122271B4 (en) * 2001-05-08 2006-06-29 Robert Bosch Gmbh sensor elements
US20090291224A1 (en) * 2005-11-21 2009-11-26 Eidgenossische Technische Hochschule Zurich Porous Ceramic Thin Film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6165151A (en) * 1984-09-07 1986-04-03 Shinkosumosu Denki Kk Gas detecting element
JPS6399958A (en) * 1986-05-09 1988-05-02 Nec Corp Material for formation of pores
WO1994001514A1 (en) * 1992-07-10 1994-01-20 Bergwerksverband Gmbh Continuous flow reactor for producing pyrolysis coke

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8200087A (en) * 1981-01-19 1982-08-16 Mitsubishi Chem Ind PROCESS FOR PREPARING A POROUS FIRE-RESISTANT INORGANIC OXIDE.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6165151A (en) * 1984-09-07 1986-04-03 Shinkosumosu Denki Kk Gas detecting element
JPS6399958A (en) * 1986-05-09 1988-05-02 Nec Corp Material for formation of pores
WO1994001514A1 (en) * 1992-07-10 1994-01-20 Bergwerksverband Gmbh Continuous flow reactor for producing pyrolysis coke

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 2086, Derwent World Patents Index; Class J04, AN 86-127832 *
PATENT ABSTRACTS OF JAPAN vol. 012, no. 340 (M - 740) 13 September 1988 (1988-09-13) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998038138A1 (en) * 1997-02-28 1998-09-03 Robert Bosch Gmbh Ceramic composition, method for the production and use thereof

Also Published As

Publication number Publication date
DE4343315C2 (en) 1995-11-02
DE4343315A1 (en) 1995-06-22

Similar Documents

Publication Publication Date Title
DE19621638C2 (en) Open cell foam ceramic with high strength and process for its production
DE2745581A1 (en) METHOD FOR MANUFACTURING MULTI-LAYER CERAMIC SUBSTRATES
DE2208250B2 (en) Process for the production of an isostatically pressure-sintered body
EP0651698B1 (en) Composites with at least two inorganic ceramic layers, and method of producing them
DE3148809C2 (en) Ceramic carrier plate for fine-line electrical circuits and processes for their production
WO1995016646A1 (en) Method of producing one or more cavities in or under the coating of a substrate
WO2005121647A1 (en) Glow plug and methods for the production thereof
DE3736660C2 (en)
DE102012209620A1 (en) Making sensor support comprises crushing and/or homogenizing powder mixture, forming compact body from powder mixture, applying electrically conductive structures on body, and sintering compact body to form sensor support from cordierite
DE3403917C1 (en) Process for compacting porous ceramic components for hot isostatic pressing
DE10034508A1 (en) Process for producing a near-net-shape shaping tool and shaping tool produced thereafter
DE19809657B4 (en) Process for producing a ceramic component
DE2242907C3 (en) Process for the production of catalyst carriers or catalysts with open porosity
DE4405331C2 (en) Method of manufacturing a ceramic component
DE2458682A1 (en) METHOD OF MANUFACTURING A MOLDED BODY FROM SILICON NITRIDE
EP0810982B1 (en) Process for producing ceramic, metallic or ceramo-metallic shaped bodies
DE2420546A1 (en) Graphite tubes for flameless atomic absorption spectroscopy - impregnated with coal tar to seal pores and cracks
DE1794241A1 (en) Porous plastic moldings and a process for their production
DE2643930B2 (en) Process for the manufacture of products from hexagonal boron nitride
EP4194168A1 (en) Method and apparatus for producing variable geometry ceramic fiber composites
DE2328815C3 (en) Process for the production of a ceramic body with at least two layers of different porosity
DE3440346A1 (en) MATERIAL FROM PARTICLES CONTAINING REACTION-RESISTANT FROM CARBON, ELEMENTAL SILICON AND METHOD FOR THE PRODUCTION THEREOF
DE1646405C3 (en) Process for the production of asbestos felt moldings with elastic properties
DE2462008B2 (en) Multi-layer circuit structure and method for making the same
DE2132441C3 (en) Screen printing process

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CZ JP RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase