WO1995015294A1 - Uv water sterilizer with turbulence generator - Google Patents

Uv water sterilizer with turbulence generator Download PDF

Info

Publication number
WO1995015294A1
WO1995015294A1 PCT/CA1994/000565 CA9400565W WO9515294A1 WO 1995015294 A1 WO1995015294 A1 WO 1995015294A1 CA 9400565 W CA9400565 W CA 9400565W WO 9515294 A1 WO9515294 A1 WO 9515294A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
fluid
baffles
baffle
source
Prior art date
Application number
PCT/CA1994/000565
Other languages
French (fr)
Inventor
Louis Szabo
Original Assignee
Louis Szabo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Louis Szabo filed Critical Louis Szabo
Priority to AU78501/94A priority Critical patent/AU7850194A/en
Publication of WO1995015294A1 publication Critical patent/WO1995015294A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/123Ultra-violet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/328Having flow diverters (baffles)

Definitions

  • the present invention relates to a water sterilizer that employs a source of ionizing radiation, such as UV, for the sterilization of a fluid.
  • the sterilizer may comprise a "dual mode" sterilizer that utilizes a single UV lamp to simultaneously irradiate the contaminated water and generate ozone from air exposed to the radiation.
  • Ultra-violet-based sterilizers enjoy a variety of uses, including purification of effluent from industrial processes and portable facilities, such as are found on boats, as well as sterilization of circulating water in hot tubs and swimming pools.
  • Such sterilizers typically comprise an exposure chamber, within which an ultraviolet lamp or other source of ionizing radiation is positioned. Alternately, the lamp may be positioned outside the chamber, with radiation entering through a quartz window. A stream of contaminated liquid is channelled through the chamber, therein to be exposed to UV radiation on a continuous basis, and discharged. The efficacy of such devices depends in part on ensuring that most of the water entering the device is thoroughly exposed to radiation.
  • the object of the present invention is to provide a water purifier that maximizes the portion of water exposed to the ionizing radiation generated by the UV lamp or other radiation source of the device.
  • the present invention comprises a sterilizer for water and other fluids employing ionizing radiation as an antimicrobial agent.
  • the sterilizer is housed within an elongate exposure chamber having an entry and exit at opposing ends thereof, with the fluid passing through the device being exposed therein to ionizing radiation.
  • An array of generally flat baffles is positioned within the chamber, each of which partly blocks the passage of fluid along the elongate axis of the chamber.
  • Each baffle is configured to provide a channel to allow the passage of fluid past the baffle, with the channels of neighbouring baffles being offset from each other to generate a sinuous and turbulent flow of fluid as it traverses the length of the chamber.
  • the baffles may be coated with rhodium to increase the reflectivity thereof.
  • the radiation source may comprise a UV tube positioned coaxially within the interior of the chamber, with the baffles comprising an array of generally flat toroidal disks.
  • the channel is positioned between the between the rim of each baffle and the wall of the chamber, and comprises a flattened portion of the rim of the baffle.
  • the UV tube in this arrangement may be housed within a cylindrical quartz housing sealingly isolated from the chamber, with an air stream being channelled through the housing for the continuous generation of ozone by the operation of the UV light.
  • the ozone may then be combined with the contaminated water for the further purification thereof.
  • This type of sterilizer is referred to herein as a "dual mode" sterilizer.
  • Figure 1 is a side elevational view, in section, of a sterilizing apparatus according to the present invention
  • Figure 2 is a perspective view, partly cut away, of the invention.
  • a dual mode sterilizer is housed within a stainless steel cylindrical housing 1.
  • the housing may be positioned with its longitudinal axis oriented vertically, although it will be understood that any orientation is possible.
  • the directional references herein refer to the device in its usual vertical orientation.
  • the ends of the housing l are sealed with upper and lower caps 2 and 4, respectively.
  • a tubular air chamber 6 is positioned coaxially within the interior of the housing and extends the length thereof. The air chamber is sealingly engaged to the upper and lower caps by way of o-ring seals 10.
  • the air chamber 6 houses a source of ionizing radiation comprising a cylindrical UV lamp 12 that extends the length of the chamber and positioned coaxially therewith, with its upper and lower ends extending from the housing for connection to a power source, not shown.
  • the wall 14 of the air chamber is fabricated from quartz, to allow the lamp to expose the interior of the housing.
  • An air current may be channelled through the air chamber, for the co- production of ozone, the ozone may in turn be reacted with the contaminated water either prior or subsequent to the treatment of the water with UV radiation by the device.
  • An air supply tube 16 provides a current of air within the air chamber, which exits the chamber through an air vent tube 18 for later combination with the contaminated water to provide additional antimicrobial action.
  • An external ozone reaction chamber may be provided to combine the ozonated air with contaminated water, either before or after the water passes through the present device.
  • the space between the air chamber and the interior wall of the housing comprises a water jacket 20, that forms an elongate exposure chamber for the exposure of a stream of water passing through the chamber to ionizing radiation generated by the UV lamp.
  • the jacket is provided with an entry and exit at opposing ends thereof: contaminated water enters the water jacket 20 by way of an entry pipe 24, extending horizontally from adjacent the lower end of the housing 1, and exits the chamber by way of exit pipe 26, positioned adjacent the upper end of the housing.
  • the entry pipe is linked to a source of contaminated water, not shown.
  • the water may be driven through the device by means of a pump, not shown.
  • the flow of water through the water jacket is impeded by a series of toroidal disks 30 positioned coaxially within the interior of the housing and spanning the width of the housing, that together form an array of baffles that each partly blocks the passage of fluid through the jacket.
  • the edges of the disks substantially contact the interior walls of the housing and the exterior of the air chamber.
  • the disk each comprise a metal plate, that may be coated with rhodium to improve the UV reflectivity thereof.
  • the outside edge of each disk is provided with a channel portion 32 to permit the passage of water past the disk.
  • the channel portion 32 is shown here as comprising a flattened portion, whereby a gap is maintained between the rim of the disk and the interior chamber wall.
  • any type of recessed portion, or other type of channel through the baffle adjacent the edge thereof, may be employed.
  • the channel portions of neighbouring disks are positioned on opposing sides of the housing, with the array of disks thereby serving as a series of baffles to force the water to follow a sinuous path as it travels the length of the housing.
  • the sinuous nature of the path of the water stream results in the fluid being sequentially diverted towards and away from the UV lamp as the water flows through the jacket. As the water is diverted into close proximity of the wall of the inner chamber, it receives a relatively high dose of radiation. As well, the disks generate a degree of turbulence within the water stream, to further increase the contact of the water with the wall of the air chamber. As a result, substantially all of the water passing through the jacket passes close to the UV lamp to receive exposure to UV radiation.

Abstract

The present invention comprises a sterilizer for water and other fluids, that employs ionizing radiation as an antimicrobial agent. The sterilizer is housed within an elongate exposure chamber (20), which houses a radiation source (12) such as UV lamp. An array of flat baffles (30) spans the interior of the chamber, with each baffle partly blocking the passage of fluid as it flows through the chamber along its elongate axis. Each baffle is provided with a channel (32) to permit fluid to flow past the baffle, with the channels of neighbouring baffles being offset from each other to generate a sinuous and turbulent flow of fluid as it traverses the length of the chamber. The fluid stream is sequentially diverted towards and away from the radiation source.

Description

UV WATER STERILIZER WITH TURBULENCE GENERATOR FIELD OF THE INVENTION
The present invention relates to a water sterilizer that employs a source of ionizing radiation, such as UV, for the sterilization of a fluid. The sterilizer may comprise a "dual mode" sterilizer that utilizes a single UV lamp to simultaneously irradiate the contaminated water and generate ozone from air exposed to the radiation.
BACKGROUND OF THE INVENTION
Ultra-violet-based sterilizers enjoy a variety of uses, including purification of effluent from industrial processes and portable facilities, such as are found on boats, as well as sterilization of circulating water in hot tubs and swimming pools. Such sterilizers typically comprise an exposure chamber, within which an ultraviolet lamp or other source of ionizing radiation is positioned. Alternately, the lamp may be positioned outside the chamber, with radiation entering through a quartz window. A stream of contaminated liquid is channelled through the chamber, therein to be exposed to UV radiation on a continuous basis, and discharged. The efficacy of such devices depends in part on ensuring that most of the water entering the device is thoroughly exposed to radiation. This may be accomplished by a sequential exposure means, for example with the exposure chamber comprising a tube, with the water entering one end and exiting the other. Means may be provided to maximize the amount of water passing directly in front of the UV lamp or quartz window. This may be accomplished by generating turbulence within the stream or by channelling the stream to maximize such contact. The object of the present invention is to provide a water purifier that maximizes the portion of water exposed to the ionizing radiation generated by the UV lamp or other radiation source of the device.
SUMMARY OF THE INVENTION
The present invention comprises a sterilizer for water and other fluids employing ionizing radiation as an antimicrobial agent. The sterilizer is housed within an elongate exposure chamber having an entry and exit at opposing ends thereof, with the fluid passing through the device being exposed therein to ionizing radiation. An array of generally flat baffles is positioned within the chamber, each of which partly blocks the passage of fluid along the elongate axis of the chamber. Each baffle is configured to provide a channel to allow the passage of fluid past the baffle, with the channels of neighbouring baffles being offset from each other to generate a sinuous and turbulent flow of fluid as it traverses the length of the chamber. This ensures that the flow is repeatedly brought within close proximity of the radiation source as the flow traverses the length of the chamber. The baffles may be coated with rhodium to increase the reflectivity thereof. The radiation source may comprise a UV tube positioned coaxially within the interior of the chamber, with the baffles comprising an array of generally flat toroidal disks. The channel is positioned between the between the rim of each baffle and the wall of the chamber, and comprises a flattened portion of the rim of the baffle. The UV tube in this arrangement may be housed within a cylindrical quartz housing sealingly isolated from the chamber, with an air stream being channelled through the housing for the continuous generation of ozone by the operation of the UV light. The ozone may then be combined with the contaminated water for the further purification thereof. This type of sterilizer is referred to herein as a "dual mode" sterilizer.
BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a side elevational view, in section, of a sterilizing apparatus according to the present invention;
Figure 2 is a perspective view, partly cut away, of the invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring to Figures 1 and 2, a dual mode sterilizer according to the present invention is housed within a stainless steel cylindrical housing 1. The housing may be positioned with its longitudinal axis oriented vertically, although it will be understood that any orientation is possible. The directional references herein refer to the device in its usual vertical orientation. The ends of the housing l are sealed with upper and lower caps 2 and 4, respectively. A tubular air chamber 6 is positioned coaxially within the interior of the housing and extends the length thereof. The air chamber is sealingly engaged to the upper and lower caps by way of o-ring seals 10. The air chamber 6 houses a source of ionizing radiation comprising a cylindrical UV lamp 12 that extends the length of the chamber and positioned coaxially therewith, with its upper and lower ends extending from the housing for connection to a power source, not shown. The wall 14 of the air chamber is fabricated from quartz, to allow the lamp to expose the interior of the housing. An air current may be channelled through the air chamber, for the co- production of ozone, the ozone may in turn be reacted with the contaminated water either prior or subsequent to the treatment of the water with UV radiation by the device. An air supply tube 16 provides a current of air within the air chamber, which exits the chamber through an air vent tube 18 for later combination with the contaminated water to provide additional antimicrobial action. An external ozone reaction chamber, not shown, may be provided to combine the ozonated air with contaminated water, either before or after the water passes through the present device.
The space between the air chamber and the interior wall of the housing comprises a water jacket 20, that forms an elongate exposure chamber for the exposure of a stream of water passing through the chamber to ionizing radiation generated by the UV lamp. the jacket is provided with an entry and exit at opposing ends thereof: contaminated water enters the water jacket 20 by way of an entry pipe 24, extending horizontally from adjacent the lower end of the housing 1, and exits the chamber by way of exit pipe 26, positioned adjacent the upper end of the housing. The entry pipe is linked to a source of contaminated water, not shown. The water may be driven through the device by means of a pump, not shown.
The flow of water through the water jacket is impeded by a series of toroidal disks 30 positioned coaxially within the interior of the housing and spanning the width of the housing, that together form an array of baffles that each partly blocks the passage of fluid through the jacket. The edges of the disks substantially contact the interior walls of the housing and the exterior of the air chamber. The disk each comprise a metal plate, that may be coated with rhodium to improve the UV reflectivity thereof. The outside edge of each disk is provided with a channel portion 32 to permit the passage of water past the disk. The channel portion 32 is shown here as comprising a flattened portion, whereby a gap is maintained between the rim of the disk and the interior chamber wall. It will be understood that any type of recessed portion, or other type of channel through the baffle adjacent the edge thereof, may be employed. The channel portions of neighbouring disks are positioned on opposing sides of the housing, with the array of disks thereby serving as a series of baffles to force the water to follow a sinuous path as it travels the length of the housing.
The sinuous nature of the path of the water stream results in the fluid being sequentially diverted towards and away from the UV lamp as the water flows through the jacket. As the water is diverted into close proximity of the wall of the inner chamber, it receives a relatively high dose of radiation. As well, the disks generate a degree of turbulence within the water stream, to further increase the contact of the water with the wall of the air chamber. As a result, substantially all of the water passing through the jacket passes close to the UV lamp to receive exposure to UV radiation.
Although the present invention has been described by way of a preferred embodiment thereof, it will be seen by those skilled in the art to which this invention relates that modifications and alternate variations may be made to the invention, without departing from the spirit and scope thereof as defined by the appended claims.

Claims

1. An apparatus for sterilizing a contaminated fluid, of the type comprising: a) a source of ionizing radiation (12); and b) an elongate exposure chamber (20) having an entry and exit at opposing ends thereof for the exposure of a stream of fluid passing through said chamber to ionizing radiation generated by said source; wherein the improvement resides in the provision of an array of baffles (30) positioned within the exposure chamber, each of said baffles partly blocking the passage of fluid along the elongate axis of the chamber and having a channel to allow the passage of fluid past the baffle, with the channels of neighbouring baffles being offset from each other to generate a sinuous and turbulent flow of fluid sequentially diverted towards and away from the source of radiation as the fluid traverses the length of the chamber.
2. An apparatus as claimed in claim 1, wherein said radiation source comprises an ultraviolet lamp positioned within the interior of the chamber.
3. An apparatus as claimed in claim 2, wherein said ultraviolet lamp is tubular and is positioned coaxially with and along substantially the full length of said chamber.
4. An apparatus as claimed in claim 3 wherein said lamp is housed within an elongate air chamber, having air channels entering and exiting said air chamber for the coproduction of ozone.
5. An apparatus as claimed in claim 1, wherein said radiation source is tubular and positioned coaxially within said chamber, and said baffles each comprise a toroidal disk.
6. An apparatus as claimed in claim 5, wherein said channel comprises a recessed portion (32) at the outside rim of said disk, to provide a channel between the rim of the disk and the interior wall of the chamber.
7. An apparatus as claimed in claim l, wherein at least one of said channels is positioned adjacent the rim of said baffle.
8. An apparatus as claimed in claim l, wherein at least one of said baffles is provided with a rhodium coating.
PCT/CA1994/000565 1993-12-03 1994-10-17 Uv water sterilizer with turbulence generator WO1995015294A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU78501/94A AU7850194A (en) 1993-12-03 1994-10-17 Uv water sterilizer with turbulence generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16077193A 1993-12-03 1993-12-03
US08/160,771 1993-12-03

Publications (1)

Publication Number Publication Date
WO1995015294A1 true WO1995015294A1 (en) 1995-06-08

Family

ID=22578370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA1994/000565 WO1995015294A1 (en) 1993-12-03 1994-10-17 Uv water sterilizer with turbulence generator

Country Status (3)

Country Link
AU (1) AU7850194A (en)
CA (1) CA2132930A1 (en)
WO (1) WO1995015294A1 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003024873A1 (en) * 2001-09-18 2003-03-27 Photoscience Japan Corporation Ultraviolet water treatment apparatus with dome-shaped baffle
EP1914201A1 (en) * 2006-10-18 2008-04-23 HYDROTEC Gesellschaft Für Ökologische Verfahrenstechnik mbH Device for UV treatment of liquid media, in particular water
US7695675B2 (en) * 2000-11-13 2010-04-13 Bayer Healthcare Llc Method of inactivating microorganisms in a fluid using ultraviolet radiation
EP2284126A1 (en) * 2009-08-13 2011-02-16 Koninklijke Philips Electronics N.V. Device comprising flow guides and a source for emitting ultraviolet light
WO2011156281A1 (en) * 2010-06-07 2011-12-15 Genzyme Corporation Device for viral inactivation of liquid media
US20110318237A1 (en) * 2010-06-26 2011-12-29 Richard Woodling Ultraviolet reactor baffle design for advanced oxidation process and ultraviolet disinfection
US8877067B2 (en) 2011-05-26 2014-11-04 Evoqua Water Technologies Llc Method and arrangement for a water treatment
US8961798B2 (en) 2007-04-03 2015-02-24 Evoqua Water Technologies Llc Method for measuring a concentration of a compound in a liquid stream
US9365435B2 (en) 2007-04-03 2016-06-14 Evoqua Water Technologies Llc Actinic radiation reactor
US9365436B2 (en) 2007-04-03 2016-06-14 Evoqua Water Technologies Llc Method of irradiating a liquid
CN105967271A (en) * 2016-07-06 2016-09-28 圆融健康科技(深圳)有限公司 Waterflow sterilization device
WO2017001567A1 (en) * 2015-07-02 2017-01-05 Vetco Gray Scandinavia As Method and system for water injection into an oil and/or gas containing subterranean formation
US9725343B2 (en) 2007-04-03 2017-08-08 Evoqua Water Technologies Llc System and method for measuring and treating a liquid stream
US9764968B2 (en) 2007-04-03 2017-09-19 Evoqua Water Technologies Llc Method and system for providing ultrapure water
GB2548379A (en) * 2016-03-16 2017-09-20 Cathelco Ltd UV Reactor
JP2017176994A (en) * 2016-03-30 2017-10-05 ウシオ電機株式会社 Water treatment apparatus
WO2018153827A1 (en) 2017-02-23 2018-08-30 Merck Patent Gmbh Flow-through fluid purification device and means for accommodating a radiation source
WO2018153823A1 (en) 2017-02-23 2018-08-30 Merck Patent Gmbh Flow-through fluid purification device
WO2018158313A1 (en) * 2017-03-01 2018-09-07 Eta Plus Electronic Gmbh Device for irradiating a flowing medium with uv radiation
US10343939B2 (en) 2006-06-06 2019-07-09 Evoqua Water Technologies Llc Ultraviolet light activated oxidation process for the reduction of organic carbon in semiconductor process water
US10494281B2 (en) 2015-01-21 2019-12-03 Evoqua Water Technologies Llc Advanced oxidation process for ex-situ groundwater remediation
US11161762B2 (en) 2015-01-21 2021-11-02 Evoqua Water Technologies Llc Advanced oxidation process for ex-situ groundwater remediation
EP4039894A1 (en) * 2021-02-08 2022-08-10 WS Produktentwicklung GmbH & Co. KG Device for sterilizing drinking water

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1916540A1 (en) * 1968-04-03 1969-11-13 Erex Hydro Engineering Pty Ltd Process for the sterilization of liquid and gaseous media by means of ultraviolet radiation and equipment for carrying out this process
JPS5212378A (en) * 1975-07-19 1977-01-29 Yoshida Kogyo Kk Structure of connecting net
EP0023892A1 (en) * 1979-07-31 1981-02-11 Temistocle Vighi Process and apparatus for sterilizing liquids by ultraviolet radiation
JPS59150589A (en) * 1983-02-17 1984-08-28 Raizaa Kogyo Kk Purification of service or waste water and apparatus therefor
WO1990002606A1 (en) * 1988-09-13 1990-03-22 Peroxidation Systems, Inc. Oxidation chamber
US5352359A (en) * 1992-02-05 1994-10-04 Ebara Corporation Ultraviolet reactor with mixing baffle plates

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1916540A1 (en) * 1968-04-03 1969-11-13 Erex Hydro Engineering Pty Ltd Process for the sterilization of liquid and gaseous media by means of ultraviolet radiation and equipment for carrying out this process
JPS5212378A (en) * 1975-07-19 1977-01-29 Yoshida Kogyo Kk Structure of connecting net
EP0023892A1 (en) * 1979-07-31 1981-02-11 Temistocle Vighi Process and apparatus for sterilizing liquids by ultraviolet radiation
JPS59150589A (en) * 1983-02-17 1984-08-28 Raizaa Kogyo Kk Purification of service or waste water and apparatus therefor
WO1990002606A1 (en) * 1988-09-13 1990-03-22 Peroxidation Systems, Inc. Oxidation chamber
US5352359A (en) * 1992-02-05 1994-10-04 Ebara Corporation Ultraviolet reactor with mixing baffle plates

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 8440, Derwent World Patents Index; Class D15, AN 84-247847 *
DATABASE WPI Section Ch Week 9439, Derwent World Patents Index; Class D15, AN 93-299082 *
PATENT ABSTRACTS OF JAPAN vol. 17, no. 659 (C - 1137) 7 December 1993 (1993-12-07) *
PATENT ABSTRACTS OF JAPAN vol. 8, no. 283 (C - 258) 25 December 1984 (1984-12-25) *

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7695675B2 (en) * 2000-11-13 2010-04-13 Bayer Healthcare Llc Method of inactivating microorganisms in a fluid using ultraviolet radiation
WO2003024873A1 (en) * 2001-09-18 2003-03-27 Photoscience Japan Corporation Ultraviolet water treatment apparatus with dome-shaped baffle
US10343939B2 (en) 2006-06-06 2019-07-09 Evoqua Water Technologies Llc Ultraviolet light activated oxidation process for the reduction of organic carbon in semiconductor process water
US10550020B2 (en) 2006-06-06 2020-02-04 Evoqua Water Technologies Llc Ultraviolet light activated oxidation process for the reduction of organic carbon in semiconductor process water
EP1914201A1 (en) * 2006-10-18 2008-04-23 HYDROTEC Gesellschaft Für Ökologische Verfahrenstechnik mbH Device for UV treatment of liquid media, in particular water
US9365435B2 (en) 2007-04-03 2016-06-14 Evoqua Water Technologies Llc Actinic radiation reactor
US9764968B2 (en) 2007-04-03 2017-09-19 Evoqua Water Technologies Llc Method and system for providing ultrapure water
US9725343B2 (en) 2007-04-03 2017-08-08 Evoqua Water Technologies Llc System and method for measuring and treating a liquid stream
US9365436B2 (en) 2007-04-03 2016-06-14 Evoqua Water Technologies Llc Method of irradiating a liquid
US8961798B2 (en) 2007-04-03 2015-02-24 Evoqua Water Technologies Llc Method for measuring a concentration of a compound in a liquid stream
WO2011018735A1 (en) * 2009-08-13 2011-02-17 Koninklijke Philips Electronics N.V. Device comprising means for guiding fluid from an inlet to an outlet
US8614424B2 (en) 2009-08-13 2013-12-24 Koninklijke Philips N.V. Device comprising means for guiding fluid from an inlet to an outlet
EP2284126A1 (en) * 2009-08-13 2011-02-16 Koninklijke Philips Electronics N.V. Device comprising flow guides and a source for emitting ultraviolet light
AU2011265099B2 (en) * 2010-06-07 2015-09-17 Genzyme Corporation Device for viral inactivation of liquid media
US9441196B2 (en) 2010-06-07 2016-09-13 Genzyme Corporation Device for viral inactivation of liquid media
WO2011156281A1 (en) * 2010-06-07 2011-12-15 Genzyme Corporation Device for viral inactivation of liquid media
US20110318237A1 (en) * 2010-06-26 2011-12-29 Richard Woodling Ultraviolet reactor baffle design for advanced oxidation process and ultraviolet disinfection
US8877067B2 (en) 2011-05-26 2014-11-04 Evoqua Water Technologies Llc Method and arrangement for a water treatment
US10494281B2 (en) 2015-01-21 2019-12-03 Evoqua Water Technologies Llc Advanced oxidation process for ex-situ groundwater remediation
US11161762B2 (en) 2015-01-21 2021-11-02 Evoqua Water Technologies Llc Advanced oxidation process for ex-situ groundwater remediation
WO2017001567A1 (en) * 2015-07-02 2017-01-05 Vetco Gray Scandinavia As Method and system for water injection into an oil and/or gas containing subterranean formation
GB2557026B (en) * 2015-07-02 2021-07-28 Vetco Gray Scandinavia As Method and system for water injection into an oil and/or gas containing subterranean formation
US11912601B2 (en) 2015-07-02 2024-02-27 Vetco Gray Scandinavia As Method and system for water injection into an oil and/or gas containing subterranean formation
GB2557026A (en) * 2015-07-02 2018-06-13 Vetco Gray Scandinavia As Method and system for a water injection into an oil and/or gas containing subterranean formation
AU2016286361B2 (en) * 2015-07-02 2020-09-10 Vetco Gray Scandinavia As Method and system for water injection into an oil and/or gas containing subterranean formation
GB2548379B (en) * 2016-03-16 2019-06-05 Cathelco Ltd UV Reactor
GB2548379A (en) * 2016-03-16 2017-09-20 Cathelco Ltd UV Reactor
JP2017176994A (en) * 2016-03-30 2017-10-05 ウシオ電機株式会社 Water treatment apparatus
CN105967271A (en) * 2016-07-06 2016-09-28 圆融健康科技(深圳)有限公司 Waterflow sterilization device
CN110300733A (en) * 2017-02-23 2019-10-01 默克专利股份公司 Flow type fluid purification
WO2018153823A1 (en) 2017-02-23 2018-08-30 Merck Patent Gmbh Flow-through fluid purification device
WO2018153827A1 (en) 2017-02-23 2018-08-30 Merck Patent Gmbh Flow-through fluid purification device and means for accommodating a radiation source
US11286179B2 (en) 2017-02-23 2022-03-29 Merck Patent Gmbh Flow-through fluid purification device and means for accommodating a radiation source
CN110300733B (en) * 2017-02-23 2022-11-01 默克专利股份公司 Flow-through fluid purification device
US11565949B2 (en) 2017-02-23 2023-01-31 Merck Patent Gmbh Flow-through fluid purification device
WO2018158313A1 (en) * 2017-03-01 2018-09-07 Eta Plus Electronic Gmbh Device for irradiating a flowing medium with uv radiation
EP4039894A1 (en) * 2021-02-08 2022-08-10 WS Produktentwicklung GmbH & Co. KG Device for sterilizing drinking water

Also Published As

Publication number Publication date
CA2132930A1 (en) 1995-06-04
AU7850194A (en) 1995-06-19

Similar Documents

Publication Publication Date Title
WO1995015294A1 (en) Uv water sterilizer with turbulence generator
US4230571A (en) Ozone/ultraviolet water purification
US4323810A (en) Irradiation apparatus including a low-pressure mercury lamp with fluid medium duct means
EP2234926B1 (en) Ultraviolet light treatment chamber
ES2337286T3 (en) WATER DISINFECTION APPLIANCE.
JP4355315B2 (en) Fluid purification device
US20100178201A1 (en) In-line treatment of liquids and gases by light irradiation
JPS6140480B2 (en)
EP2855365B1 (en) Sanitizer system
JPH0899082A (en) Treating device for flowable body by ultraviolet ray
US5536400A (en) Apparatus for purifying fluids with UV radiation and ozone
US20060108293A1 (en) Method and apparatus for liquid purification
EP1345631B1 (en) Apparatus for generating ultraviolet radiation and ozone by using microwave
KR100854139B1 (en) Ozonolysis appratus
KR200399286Y1 (en) Sterilizer using uv rays and fine gas drops
KR100641065B1 (en) Sterilizer using uv rays and fine gas drops
KR100348413B1 (en) Uv and ozone producing aop chamber and water-cleaning apparatus using same
JP2007029817A (en) Ultraviolet irradiation device
RU2177452C2 (en) Device for treatment of liquid by ultra-violet radiation
JPH07328619A (en) Sterilizing device
JPS62114694A (en) Ultraviolet sterilizing apparatus
RU2216520C2 (en) Apparatus for disinfecting liquids
RU2773339C1 (en) Method for adjusting the level of ozone production by a low-pressure uv lamp
KR100509981B1 (en) Device for sterilizing and purifying water using ultraviolet rays
JPH07328661A (en) Sterilizing device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AT AU BB BG BR BY CH CN CZ DE DK ES FI GB HU JP KP KR KZ LK LU LV MG MN MW NL NO NZ PL PT RO RU SD SE SK UA UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase