JPS59150589A - Purification of service or waste water and apparatus therefor - Google Patents

Purification of service or waste water and apparatus therefor

Info

Publication number
JPS59150589A
JPS59150589A JP2384783A JP2384783A JPS59150589A JP S59150589 A JPS59150589 A JP S59150589A JP 2384783 A JP2384783 A JP 2384783A JP 2384783 A JP2384783 A JP 2384783A JP S59150589 A JPS59150589 A JP S59150589A
Authority
JP
Japan
Prior art keywords
wastewater
water
ultraviolet
lamp
irradiation lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2384783A
Other languages
Japanese (ja)
Inventor
Yoshimune Takagi
高木 恵宗
Koji Yamagata
光二 山形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RAIZAA KOGYO KK
Original Assignee
RAIZAA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RAIZAA KOGYO KK filed Critical RAIZAA KOGYO KK
Priority to JP2384783A priority Critical patent/JPS59150589A/en
Publication of JPS59150589A publication Critical patent/JPS59150589A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/328Having flow diverters (baffles)

Abstract

PURPOSE:To efficiently sterilize and purify a large amount of service or waste water, by providing stream-mixing plates at proper parts inside a meandering flow pipe to form a turbulent zone, and continuously circulating service or waste water to said turbulent zone while irradiating ultraviolet rays or the like to said water. CONSTITUTION:Main pipes 2, 3 having one ends 2a, 3a faced to each other in a predetermined distance and the other ends 2b, 3b whose central parts are connected to inlet and outlet pipes 4, 5, respectively, are provided at both sides of a pasteurizer 1 for service water. At the side where the pipes 2, 3 are faced to each other, flow pipes 6, 6 vertically meandering are arranged in predetermined gaps to the ends 2a, 3a. Said meandering flow pipe 6 is formed from a channel 6a crossing its longitudinal direction with a right angle and a parallel part 6a. The upper end of the channel 6a is projected to form a flanged part 6d, and a lamp 8 for ultraviolet irradiation is inserted through said flange 6d into the center of the channel 6a.

Description

【発明の詳細な説明】 この発明は、小容量から大容量までの広い範囲の用廃水
を効率的、連続的に殺菌浄化処理できる用廃水の浄化方
法およびその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for purifying commercial wastewater that can efficiently and continuously sterilize and purify a wide range of commercial wastewater from small volumes to large volumes.

更に詳しくは紫外線単独必要とあれば、紫外線とオゾン
とを併用した用廃水の浄化において処理すべき用廃水を
蛇行状流水管内に連続的に流し、且つ流水管内の適当箇
所に乱流域を形成し、この乱流域に紫外線エネルギーを
照射して用廃水の浄化を行なうものである。
More specifically, if ultraviolet rays alone are required, the wastewater to be treated in the purification of industrial wastewater using a combination of ultraviolet rays and ozone is continuously passed through a meandering water pipe, and a turbulent region is formed at an appropriate location within the water pipe. , this turbulent area is irradiated with ultraviolet energy to purify industrial wastewater.

従来上水、中水或いは病院、工場、護床処理場等から排
出される廃水の殺菌・浄化法として紫外線又は紫外線と
オゾンを併用した方法が知られている。
Conventionally, methods using ultraviolet rays or a combination of ultraviolet rays and ozone have been known as methods for sterilizing and purifying tap water, gray water, or wastewater discharged from hospitals, factories, bed protection plants, etc.

−3− これらの方法は、紫外線のエネルギーによって用廃水中
に懸濁する病原菌の殺菌或いは廃水中の有機物を分解す
るものであり、特にオゾンと併用することによって極め
て有効な処理を行なうことができることが知られている
-3- These methods use ultraviolet energy to sterilize pathogenic bacteria suspended in wastewater or decompose organic matter in wastewater, and can be particularly effective when used in combination with ozone. It has been known.

しかしながら、従来の紫外線による殺菌・浄化は紫外線
ランプを付設した殺菌槽内に用廃水を供給し、ここで紫
外線エネルギーを照射して用廃水の殺菌・浄化処理を行
なうものであり、この方法でも確かに長い時間を掛けれ
ば十分殺菌を行なうことができるが、大容量の水を短時
間のうちに殺菌処理しようとする場合などには十分な殺
菌処理能力が発揮されないという欠点がある。□ 一方、紫外線放射エネルギーにより用廃水の殺菌浄化を
行うに際して、紫外線放射エネルギーの殺菌線放射照度
(μシー)はランプ中心から遠ざかるに従って対数的に
減衰することが知られており、殺菌浄化を効率的に行な
わしめるには処理すべき用廃水をできるだけ頻繁にラン
プに接触させること、これは接触時間が増えることでも
あるが、重要な因子となる。また、ランプ表面では紫外
線エネルギーにより水中溶存酸素或いは必要に応じて吹
き込まれた酸素の一部がオゾン化して被膜を形成し紫外
線放射照度の減衰の一因となっている。
However, conventional sterilization and purification using ultraviolet rays involves supplying wastewater into a sterilization tank equipped with an ultraviolet lamp, and irradiating it with ultraviolet energy to sterilize and purify the wastewater, and even this method is reliable. Sufficient sterilization can be achieved by taking a long time to sterilize, but there is a drawback that sufficient sterilization ability is not exhibited when trying to sterilize a large volume of water in a short period of time. □ On the other hand, when sterilizing and purifying industrial wastewater using ultraviolet radiant energy, it is known that the germicidal irradiance (μc) of the ultraviolet radiant energy decreases logarithmically as it moves away from the center of the lamp, making sterilization and purification more efficient. In order to achieve this, the wastewater to be treated should come into contact with the lamp as often as possible, which increases the contact time, but is an important factor. Furthermore, on the surface of the lamp, dissolved oxygen in the water or a part of the oxygen blown in as necessary is converted into ozone by the ultraviolet energy, forming a film, which is one of the causes of attenuation of the ultraviolet irradiance.

これを取除くことはまた紫外線放射エネルギーの効率的
利用上極めて重要な因子である。
Removing this is also an extremely important factor in the efficient use of ultraviolet radiant energy.

勿論上記従来法においても、処理すべき用廃水を紫外線
ランプを付設した殺菌処理槽内に導入する際に導入口を
槽に対し接線方向に取付けることにより流入水に回転力
を与えたり、攪拌装置或いは混流板等を挿入して用廃水
中の懸濁物と紫外線・オゾンとの接触を高めることが行
われているが、これ等の方法では流入水に与えられた回
転運動は槽高の中間位置までの間に殆んど消滅し、槽内
全域が乱流域とならない。
Of course, in the above conventional method, when the wastewater to be treated is introduced into a sterilization treatment tank equipped with an ultraviolet lamp, the inlet is attached tangentially to the tank to give rotational force to the inflowing water, and a stirring device is installed. Alternatively, a mixed flow plate or the like is inserted to increase the contact between suspended matter in the wastewater and ultraviolet rays/ozone, but with these methods, the rotational motion given to the inflow water is only at the midpoint of the tank height. Most of the turbulence disappears before reaching the position, and the entire area inside the tank does not become a turbulent area.

また混流板は殆んどがランプに近接した位置に設けであ
るので、槽壁との間には広い空間が存在し、流水は抵抗
の少ない槽壁側を流れ易く、 5− ランプから遠ざかることになり、これまた槽内全体が乱
流域とならない。また遠心力が働き水中の比重の重い成
分に付着して槽壁に付着してランプより遠ざかるという
大きな欠点がある。
In addition, since most of the mixed flow plates are installed close to the lamp, there is a wide space between them and the tank wall, and the water flows more easily on the side of the tank wall where there is less resistance.5- Keep away from the lamp. , and the entire inside of the tank does not become a turbulent area. Another major drawback is that the centrifugal force causes components with heavy specific gravity in the water to stick to the tank wall, causing them to move away from the lamp.

更に槽内に攪拌装置を設置する場合にも、攪拌強度は装
置上制約を受けざるを得ず、槽内に死角をつくり易く、
槽内全域が乱流域とはならず、したがって従来法では処
理槽内の処理されるべき用廃水は精々層流又は低乱流状
態で流れる用廃水中での処理であり、しかも水中の菌は
絶えず繁殖と衰退を繰り返しているので、菌の増減によ
り照射紫外線に対する酌の感受性が異なり、万遍に照射
しないと十分な効果を挙げることができないが、以上の
ような処理水の流れでは紫外線を万遍なく照射すること
は困難であり、用廃水中の殺菌処理を十分効果的に行う
ことは極めて困難である。
Furthermore, even when a stirring device is installed in the tank, the stirring strength must be limited by the equipment, and blind spots can easily be created in the tank.
The entire area inside the tank is not a turbulent area, so in the conventional method, the wastewater to be treated in the treatment tank flows at best in a laminar flow or low turbulence state, and the bacteria in the water are As the bacteria are constantly multiplying and declining, the sensitivity of the cup to ultraviolet rays differs depending on the increase and decrease of bacteria, and the sufficient effect cannot be achieved unless the irradiation is done evenly. However, with the flow of treated water as described above, It is difficult to apply irradiation evenly, and it is extremely difficult to sterilize wastewater in a sufficiently effective manner.

そこで、この発明の主な目的は大容量の用廃水を短時間
に連続的、且つ効率的に殺菌浄化できる紫外線単独或い
は紫外線とオゾンを併用し 6− た用廃水の浄化法とその装置を開発することにある。
Therefore, the main purpose of this invention is to develop a method and device for purifying industrial wastewater using ultraviolet rays alone or in combination with ultraviolet rays and ozone, which can continuously and efficiently sterilize and purify large volumes of industrial wastewater in a short period of time. It's about doing.

更に、この発明の他の目的は紫外線単独或いは紫外線と
オゾンを併用した用廃水の浄化処理において、紫外線放
射エネルギーにより効率的な用廃水の殺菌浄化が行われ
るような乱流域を形成することにある。
Furthermore, another object of the present invention is to form a turbulent region where ultraviolet radiation energy can efficiently sterilize and purify wastewater in purifying wastewater using ultraviolet rays alone or in combination with ultraviolet rays and ozone. .

具体的には紫外線単独或いは紫外線とオゾンを併用した
用廃水の浄化処理において、蛇行状の流水管内に処理す
べき用廃水を連続的に流し、且つ流水管内の適当箇所に
、用廃水の流速と流水管内に設けられた混流、板により
乱流域を形成し、この乱流域に紫外線エネルギーを照射
して用廃水の浄化処理を行うものである。
Specifically, in the purification treatment of industrial wastewater using ultraviolet rays alone or in combination with ultraviolet rays and ozone, the industrial wastewater to be treated is continuously passed through a meandering water pipe, and the flow rate of the industrial wastewater is adjusted at appropriate points within the water pipe. A turbulent area is formed by a mixed flow and a plate installed in the water pipe, and this turbulent area is irradiated with ultraviolet energy to purify the wastewater.

ここで、乱流域でのレイノルズ数は1.4 X 10’
以下では十分な処理効果を発揮することができず、また
10’以上では流水管路の抵抗が高くなり十分な効果を
得ることができない。
Here, the Reynolds number in the turbulent region is 1.4 x 10'
If it is less than 10', a sufficient treatment effect cannot be obtained, and if it is more than 10', the resistance of the water flow pipe becomes high and a sufficient effect cannot be obtained.

以下、図示の実施例に基いてこの発明を説明する。The present invention will be explained below based on illustrated embodiments.

−7− 第1図は、紫外線を用いた用水の殺菌浄化方法に適用し
た実施例を示すもので、この発明に係る用水の殺菌装置
/の両端にはその一側コα。
-7- Fig. 1 shows an embodiment applied to a method for sterilizing and purifying water using ultraviolet rays, and the water sterilizing apparatus according to the present invention has a coil α on one side at both ends thereof.

3αを一定間隔を置いて対向させ、またその他側2b 
、 3b中央には入口管l及び出口管夕を接続して成る
基管−23が配置され、更に基管コ、3の対向する一側
にコα、3αには一定間隔を置いて縦方向に蛇行状の流
水管A、A・・・を配列する。
3α facing each other at a certain interval, and the other side 2b
, A base pipe 23 consisting of an inlet pipe 1 and an outlet pipe 2 connected to each other is arranged in the center of 3b, and furthermore, a base pipe 23 is arranged on one side opposite to the base pipe 3, and a base pipe 23 is provided with a base pipe 23 on one side opposite to the base pipe 3, and a base pipe 23 on the opposite side of the base pipe 3, and a base pipe 23 on the opposite side of the base pipe 3, with a longitudinal direction at regular intervals on 3a. Arrange meandering water pipes A, A, etc.

蛇行状流水管6は、その長手方向に対して直交状の流路
tα、6α・・・と平行状のAb 、 Ab・・・とか
らなり、直交状の流路6αと隣接する流路1ta、とけ
例えば曲管Acで接続する。また基管コ、3の蛇行状の
流水管A、A・・・との間には弁■、 vbを接続する
The meandering water pipe 6 consists of channels tα, 6α, etc., which are perpendicular to the longitudinal direction thereof, and Ab, Ab, etc., which are parallel to the longitudinal direction. For example, connect with a curved pipe Ac. In addition, valves ① and vb are connected between the base pipe ② and the meandering water pipes A, A, and so on in 3.

一方流路乙α、6α・・・の上端は突出させて7ランプ
部Ad 、 Ad・・・を形成し、この7ランプ部Ad
 、 Ad・・・からは流路tα、Aα・・・の中央に
紫外線照射ランプg、ざ・・・を挿入する。
On the other hand, the upper ends of the flow paths Bα, 6α... are made to protrude to form 7 lamp parts Ad, Ad..., and these 7 lamp parts Ad
, Ad..., ultraviolet irradiation lamps g, za... are inserted into the center of the channels tα, Aα....

紫外線照射ランプgは流路tαの中央に位置させるため
に、流路6α内にはその周縁部にランプガードロッド?
・・・を押通した支持板IOを流路6αに沿って複数設
け、この支持板IOの中央に設けられた通孔10αに紫
外線照射ランプざを挿通し、その先端部で流路6αの下
部に設けたランプ受は部10bに固定する。
In order to position the ultraviolet irradiation lamp g at the center of the flow path tα, a lamp guard rod is provided in the flow path 6α at its periphery.
A plurality of support plates IO with... are provided along the flow path 6α, and an ultraviolet irradiation lamp is inserted into the through hole 10α provided in the center of the support plate IO, and the tip of the lamp is inserted into the flow path 6α. The lamp holder provided at the lower part is fixed to part 10b.

なお紫外線照射ランプは特に殺菌に適した中圧及び低圧
紫外線照射ランプが好ましく、また低圧紫外線照射ラン
プは現在市販されている外部に石英管等の保護管を設け
たものを使用することができるが、石英管等の保護管は
用廃水の殺菌等に有効な低波長成分の多くを吸収してし
まうことがあるので、この実施例のように出来るだけ保
護管を取除いた裸の中圧及び低圧紫外線照射ランプざを
使用することが好ましい。
The UV irradiation lamp is preferably a medium-pressure or low-pressure UV irradiation lamp that is particularly suitable for sterilization, and currently commercially available low-pressure UV irradiation lamps equipped with an external protective tube such as a quartz tube can be used. Since protection tubes such as quartz tubes may absorb many of the low wavelength components that are effective for sterilizing industrial and wastewater, as in this example, bare medium pressure and Preferably, a low pressure UV radiation lamp is used.

l/は、乱流域を形成するため、流路乙α内に設けられ
る混流板である。
l/ is a mixed flow plate provided in the flow path O to form a turbulent region.

第3図(α)は、混流板//の最も好ましい実施態様を
示すものである。これによれば、混流板l/はその外径
が流路6αと略々同径で、その内径が紫外線照射ランプ
gの外周を囲み、且つその先−デ 一 端部/lαと後端部//bとがその板面の垂直方向に互
いに離反して菅曲状に折り曲げられた所謂リボン型螺旋
板であって、このリボン型螺旋板/lは通水に捩れを与
えるように、例えば捩れ角度22.5°、捩れピッチ4
5mmとする。
FIG. 3(α) shows the most preferred embodiment of the mixed flow plate//. According to this, the mixed flow plate l/ has an outer diameter that is approximately the same as the flow path 6α, an inner diameter that surrounds the outer periphery of the ultraviolet irradiation lamp g, and a tip end portion /lα and a rear end portion / /b is a so-called ribbon-type spiral plate which is bent in a curved shape away from each other in the vertical direction of the plate surface, and this ribbon-type spiral plate /l is twisted, for example, so as to give a twist to water flow. Angle 22.5°, twist pitch 4
The length shall be 5 mm.

以上のリボン型螺旋板//は紫外線照射ランプgに沿っ
て旋回しなから流路6αを処理水が通過するように、紫
外線照射ランプgに沿って複数設けられる。
A plurality of the above ribbon-shaped spiral plates // are provided along the ultraviolet irradiation lamp g so that the treated water passes through the flow path 6α while rotating along the ultraviolet irradiation lamp g.

その配役は、第3図(a)に示すように例えば下段と上
段の螺旋板// 、 //が互いに捩れ方向に反対にな
るようにして紫外線照射ランプざに沿って設ける。
As shown in FIG. 3(a), the arrangement is such that, for example, the lower and upper spiral plates //, // are provided along the ultraviolet irradiation lamp so that the torsion direction is opposite to each other.

また、その間隔は、下段の螺旋板1/で旋回力を与えら
れた処理水が上段の螺旋板//では反対方向の旋回力が
与えられ、これにより乱流が形成されるよう適当に選択
される。
In addition, the spacing is appropriately selected so that the treated water that is given a swirling force by the lower spiral plate 1/ is given a swirling force in the opposite direction by the upper spiral plate //, thereby creating a turbulent flow. be done.

紫外線照射ランプgに沿って旋回しなから流路6αを通
水させる混流板/lの他の実施例を第3図(b)に示す
。これによれば、混流板//は紫外線IO− 照射ランプgの外周をその水平方向に対して一定角度で
傾mlした傾斜翼10c・・・で囲む所謂傾斜翼型混流
板である。□ この傾斜翼型混流板//は、第3歯(b)に示すように
下段と上段とが傾斜翼//cの傾斜方向が互いに反対に
なるようにして紫外線照射ランプgに沿って複数配置す
る。
FIG. 3(b) shows another embodiment of the mixed flow plate/l that rotates along the ultraviolet irradiation lamp g and allows water to pass through the flow path 6α. According to this, the mixing plate// is a so-called inclined airfoil type mixing plate in which the outer periphery of the ultraviolet ray IO-irradiation lamp g is surrounded by inclined blades 10c . . . inclined at a constant angle with respect to the horizontal direction. □ As shown in the third tooth (b), this inclined vane type mixed flow plate // has a plurality of lower and upper stages arranged along the ultraviolet irradiation lamp g so that the inclined directions of the inclined wings //c are opposite to each other. Deploy.

また混流板//の他の実施例は、第3図(c)に示され
る。これによれば混流板//は紫外線照射ランプgを囲
む円盤形状であって、盤上には多数の細孔//d・・・
と一端に小円弧状の切欠部//eを有する。
Another embodiment of the mixed flow plate // is shown in FIG. 3(c). According to this, the mixed current plate // has a disk shape surrounding the ultraviolet irradiation lamp g, and there are many pores //d...
and a small arc-shaped notch //e at one end.

この混流板//は第3図(6)に示すように、上段と下
段の切欠部//e 、 //eが互いに反対方向に位置
するようにして紫外線照射ランプどの長さ方向に沿って
複数設けられる。
As shown in Fig. 3 (6), this mixed flow plate // is arranged so that the upper and lower notches //e and //e are located in opposite directions to each other, so that the ultraviolet irradiation lamp can be aligned along the length direction. Multiple locations are available.

一方紫外線照射ランプgの挿入された流路6αの入口部
分には第4図に示すようなエジェクター/s7<設けら
れ、更にエジェクターノコの吸気口/コα、/、2αに
はオゾン供給管/3及びバルブ/lを−//− 介して流路6αの上端部に接続される排気管l夕を接続
する。
On the other hand, an ejector /s7 as shown in FIG. 4 is provided at the entrance of the channel 6α into which the ultraviolet irradiation lamp g is inserted, and an ozone supply pipe /s7 is provided at the inlet of the ejector saw. 3 and the exhaust pipe 1 which is connected to the upper end of the flow path 6α via the valve 3 and the valve /1.

また、この実施例ではメンテナンス等のため停止時に装
置内の水を排出用のドレイ弁/6が下段の流路4a 、
 lsc中央に設けられる。
In addition, in this embodiment, a drain valve/6 for discharging water inside the apparatus when stopped for maintenance etc. is connected to the lower flow path 4a,
It is provided at the center of lsc.

次に、以上のように構成された装置を用いて用水の殺菌
処理を行なう実施例について説明すると、処理すべき用
水は一定流速、たとえば5崎旬で入口管ダより基管λ内
に導入され、基管コから各々の蛇行状流水管6.6・・
・内にバルブ■、 Va・・・を介して配流される。
Next, an example of sterilizing water using the apparatus configured as described above will be explained. The water to be treated is introduced from the inlet pipe into the base pipe λ at a constant flow rate, for example, at a constant flow rate. , each serpentine water pipe from the base pipe 6.6...
・Flow is distributed inside via valves ■, Va...

蛇行状流管6内では処理水は流路6αの入口部分に設け
たエジェクター/λを通って流路6α・・・内に噴入さ
れる。流路6α・・・内では処理水の流速と混流板/l
によって乱流域が形成され、これに紫外線照射ランプg
より低波長の紫外線が照射されるので、処理水の殺菌浄
化を効率的に行うことができる。
In the meandering flow pipe 6, the treated water passes through an ejector/λ provided at the inlet of the flow path 6α and is injected into the flow path 6α. In the flow path 6α..., the flow rate of the treated water and the mixed flow plate/l
A turbulent region is formed by the ultraviolet irradiation lamp g.
Since ultraviolet rays with lower wavelengths are irradiated, treated water can be sterilized and purified efficiently.

流路6α内での乱流形成を第3図(α) l (b) 
l (c)の実施例に基いて具体的に説明すると、第3
図(α)特開BH39−150589(4) においてはある流速をもって流路6α内に送り込まれた
処理水は、リボン型螺旋板//にしたがって上昇する間
に旋回力を与えられ、次に上段ではこれとは反対方向に
旋回するようにリボン型螺旋板//が配置されているの
で、処理水は逆向きの旋回力を与えられる。
Figure 3 (α) l (b) shows the formation of turbulent flow in the flow path 6α.
To explain specifically based on the example of l (c), the third
In Figure (α) JP-A-39-150589 (4), the treated water sent into the flow path 6α at a certain flow rate is given a swirling force while rising along the ribbon-shaped spiral plate //, and then Since the ribbon-shaped spiral plate // is arranged so as to rotate in the opposite direction, the treated water is given a swirling force in the opposite direction.

即ち、第3図(α)の実施例では流路Act内で複数設
けられたリボン型螺旋板l/によって互いに反対方向の
旋回力を与えられて処理水が上昇するものであり、これ
により効果的に乱流が形成されるとともに、この乱流は
紫外線照射ランプざと接触するようにその周わりを旋回
して上昇するため、紫外線照射ランプざより照射された
エネルギーが消失することなく、効果的に処理水の殺菌
浄化のために使用される。
That is, in the embodiment shown in FIG. 3 (α), the treated water rises by applying swirling forces in mutually opposite directions by a plurality of ribbon-shaped spiral plates l/ provided in the flow path Act. At the same time, a turbulent flow is formed, and this turbulent flow swirls around the UV irradiation lamp and rises, so that the energy radiated from the UV irradiation lamp does not dissipate and is effectively used for sterilization and purification of treated water.

なお上段と下段のリボン型螺旋板//とは適当な間隔を
置いて配置する必要があり、余り密着させると、乱流が
形成されず混流板//を設けなかったときに較べて殺菌
浄化効率が2〜3チ上昇するにすぎない。
Note that the upper and lower ribbon-shaped spiral plates // need to be placed at an appropriate distance; if they are too close together, turbulent flow will not be formed and the sterilization and purification will be worse than when the mixed flow plate // is not installed. Efficiency increases by only 2-3 inches.

73− 第3図(b)の実施例においては、傾斜方向に互いに反
対方向によるようにして下段より順次配置された傾斜翼
型混流板//によって上記実施例と同様な乱流が形成さ
れる。即ち、この乱流も紫外線照射ランプざと接触する
ように、その周わりを旋回して上昇するため、紫外線照
射ランプgより照射されたエネルギーが消失することな
く、効果的に処理水の殺菌浄化が行われる。
73- In the embodiment shown in FIG. 3(b), the same turbulent flow as in the above embodiment is formed by the inclined airfoil type mixing plates // arranged sequentially from the lower stage so as to be opposite to each other in the inclination direction. . In other words, this turbulent flow also swirls around and rises around the UV irradiation lamp so that it comes into contact with the UV irradiation lamp, so that the energy irradiated by the UV irradiation lamp g is not lost and the treated water is effectively sterilized and purified. It will be done.

また第3図(α) 、 (b)の実施例においては、処
理水は紫外線照射ランプgと接触するように、その周わ
りを旋回して上昇するため、紫外線照射ランプgの表面
は常に冷却、洗滌、或いはオゾン被膜の除去が行われ、
有効な紫外線エネルギーの照射が持続される。
In addition, in the embodiments shown in FIGS. 3(α) and (b), the treated water swirls around and rises around the ultraviolet irradiation lamp g so that it comes into contact with the ultraviolet irradiation lamp g, so that the surface of the ultraviolet irradiation lamp g is constantly cooled. , cleaning or removal of ozone film,
Irradiation of effective ultraviolet energy is sustained.

第3図(c)の実施例においては、互いに反対方向に切
欠部//eがあるように配置された混流板//の切欠部
//e或いは細孔//d・・・を通って処理水は流路6
α内を上昇し、この間で乱流が形成され、これに紫外線
照射ランプtより紫外線エネルギーが照射されるので、
処理水の殺菌浄化が一/lI− 行われる。
In the embodiment shown in FIG. 3(c), the flow passes through the cutout //e or the pore //d of the mixing plate // which is arranged so that the cutout //e is in opposite directions. Processed water flows through channel 6
A turbulent flow is formed between α and is irradiated with ultraviolet energy from the ultraviolet irradiation lamp t.
Sterilization and purification of the treated water is carried out at a rate of 1/1.

なお以上の説明では流路6α内で形成された乱流に紫外
線エネルギーが照射されることについて主に述べたが、
この実施例ではエジェクター72の吸気口/2αにはオ
ゾン供給管13を接続して流路6α内に処理水とともに
オゾンを供給し、内部で紫外線−オゾンによる処理水の
殺菌浄化処理を行うものであるが、このようなオゾンを
併用した紫外線処理においては紫外線単独処理に比べて
上記実施例のような乱流を形成した効果は顕著なものと
なる。
In addition, in the above explanation, we mainly talked about the irradiation of ultraviolet energy to the turbulent flow formed in the flow path 6α, but
In this embodiment, an ozone supply pipe 13 is connected to the intake port /2α of the ejector 72, and ozone is supplied together with the treated water into the flow path 6α, and the treated water is sterilized and purified using ultraviolet rays and ozone inside. However, in such ultraviolet treatment using ozone in combination, the effect of forming a turbulent flow as in the above embodiment is more significant than in treatment with ultraviolet light alone.

この実施例において流路6α内で未反応のオゾンが上端
部に溜まった場合には、バルブ/lIを開いて排気管1
5を通して未反応のオゾンをエジェクター/U内に戻す
ようにすれば、オゾンの有効利用を図ることができる〇 なお、流路6α・・・内で殺菌浄化処理の行われた処理
水は流路6の最終端に接続された基管3に送られ、その
出口管夕を通って殺菌浄化水として使用先へ送水される
In this embodiment, if unreacted ozone accumulates at the upper end of the flow path 6α, the valve /lI is opened and the exhaust pipe 1
If unreacted ozone is returned to the ejector/U through channel 5, ozone can be used effectively.In addition, the treated water that has been sterilized and purified in channel 6α... The water is sent to the base pipe 3 connected to the final end of the pipe 6, and is sent to the place of use as sterilized and purified water through its outlet pipe.

−/ター そして、この発明においては蛇行状流路内に乱流域を形
成し、ここで紫外線を照射して用水を殺菌処理するため
、従来の層流又は低乱流域での処理法に比べて大流量の
用水を効果的に殺菌浄化処理することができる。
In this invention, a turbulent region is formed in the meandering flow path, and the water is sterilized by irradiating ultraviolet rays there, so compared to the conventional treatment method using laminar flow or a low turbulence region. A large flow of water can be effectively sterilized and purified.

次に、この発明による用水の殺菌処理効果を示す。Next, the effect of sterilizing water according to the present invention will be described.

下記第1〜5表は第1,2図の実施例において蛇行状流
水管6一本のみを使用し、流水管6内には処理水を流量
5m’/時で流し、また亀乱流形成機構なし〃の場合は
Rg = 1.4 X 10’ (低乱流域)、電乱流
形成機構ありlの場合はRg=4.1×104以上とし
、処理時間(接触時間)20秒の条件で実施した場合の
殺菌処理効果を示すものである。また、第6表に示す実
施例は前述の第1〜第5表に示す実施例と同一条件下で
第3図(a)、第3図(c)に示す混流板による効果の
比較を示している。いづれの場合も99.94以上の殺
菌率で極めて効果的である。
Tables 1 to 5 below show that only one serpentine water pipe 6 is used in the embodiment shown in Figs. If there is no mechanism, Rg = 1.4 x 10' (low turbulence area), if there is an electric turbulence forming mechanism, Rg = 4.1 x 104 or more, and the processing time (contact time) is 20 seconds. This shows the sterilization effect when carried out. In addition, the examples shown in Table 6 compare the effects of the mixed flow plates shown in FIGS. 3(a) and 3(c) under the same conditions as the examples shown in Tables 1 to 5 above. ing. In either case, it is extremely effective with a sterilization rate of 99.94 or higher.

特開昭59−150589 (5) −lクー −/1− −79− 以上の結果から明らかなように、高乱流域では顕著な処
理効果が認められた。これに対してBe = 1.4 
X 10’以下の混流板なしの低乱流域又は層流域では
殆んど処理効果は認められない。勿論、紫外線照射領域
を極端に低速で、十分な時間をかけて通過させればそれ
なりの効果を挙げることができるが、時間当りの処理量
が極端に低くなる。したがって大流量の用水の処理には
不向きとなる。
JP-A-59-150589 (5) -lku-/1- -79- As is clear from the above results, a remarkable treatment effect was observed in highly turbulent areas. On the other hand, Be = 1.4
Almost no treatment effect is observed in a low turbulence region or a laminar region without a mixed flow plate of X 10' or less. Of course, if the ultraviolet rays are passed through the ultraviolet irradiation area at an extremely low speed over a sufficient period of time, a certain effect can be achieved, but the throughput per hour will be extremely low. Therefore, it is not suitable for treating large amounts of water.

なおこの実施例では蛇行状流管6を竪型に配列した場合
について説明したが、勿論横型に配列してもよい。
In this embodiment, a case has been described in which the meandering flow tubes 6 are arranged vertically, but of course they may be arranged horizontally.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す平面図、第2図は同
上n−u線矢視図、第3図(α) 、 (b) 。 (1)はこの発明に使用する混流板を示す斜視図、第4
図は乱流域流路の入口部分を示す縦断側面図。 図中、6は蛇行状流水管、ざは紫外線照射ランプ、ll
は混流板、lコはエジェクター。 の 味 区 の 綜
FIG. 1 is a plan view showing an embodiment of the present invention, FIG. 2 is a view taken along the line nu of the same as above, and FIGS. 3(α) and (b). (1) is a perspective view showing the mixed flow plate used in this invention;
The figure is a longitudinal sectional side view showing the inlet part of the turbulent flow path. In the figure, 6 is a meandering water pipe, za is an ultraviolet irradiation lamp, ll
is a mixed flow plate, and l is an ejector. Nomi-ku no Sho

Claims (4)

【特許請求の範囲】[Claims] (1)蛇行状の流水管内に処理すべき用廃水を連続的に
流し、且つ蛇行状の流水管内の適当箇所には、上記のよ
うに流された用廃水の流速と流水管内に設けられた混流
板により乱流域を形成するとともに、該乱流域には紫外
線を照射することを特徴とする紫外線単独或いはオゾン
を併用した用廃水の浄化方法。
(1) The wastewater to be treated is continuously flowed through the meandering water pipe, and at appropriate locations within the meandering water pipe there are A method for purifying wastewater using ultraviolet rays alone or in combination with ozone, characterized in that a turbulent area is formed by a mixed flow plate, and the turbulent area is irradiated with ultraviolet rays.
(2)乱流域のレイノルズ数が1.4 X 10’以上
である特許請求の範囲第1項に記載された用廃水の浄化
方法。
(2) The method for purifying industrial wastewater according to claim 1, wherein the Reynolds number in the turbulent region is 1.4 x 10' or more.
(3)処理すべき用廃水を連続的に流す蛇行状の流水管
と、該流水管内の流路に挿入された紫外線照射ランプと
、該紫外線照射ランプに沿って設けられた複数の混流板
と、紫外線照射ランプを挿入した流路の入口部分に設け
られ−コ − た用廃水の噴出手段とからなる紫外線単独或いはオゾン
を併用した用廃水の浄化装置。
(3) A meandering water pipe that continuously flows wastewater to be treated, an ultraviolet irradiation lamp inserted into a flow path within the water pipe, and a plurality of mixed flow plates installed along the ultraviolet irradiation lamp. 1. A wastewater purification device using ultraviolet rays alone or in combination with ozone, which comprises a spraying means for spraying wastewater provided at the entrance of a channel into which an ultraviolet irradiation lamp is inserted.
(4)処理すべき用廃水が紫外線照射ランプに接触しな
がらその周りを旋回するように複数の混流板が紫外線ラ
ンプに沿って設けられた特許請求の範囲第3項記載の用
廃水の浄化装置。
(4) A wastewater purification device according to claim 3, wherein a plurality of mixing plates are provided along the ultraviolet lamp so that the wastewater to be treated swirls around the ultraviolet irradiation lamp while contacting the lamp. .
JP2384783A 1983-02-17 1983-02-17 Purification of service or waste water and apparatus therefor Pending JPS59150589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2384783A JPS59150589A (en) 1983-02-17 1983-02-17 Purification of service or waste water and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2384783A JPS59150589A (en) 1983-02-17 1983-02-17 Purification of service or waste water and apparatus therefor

Publications (1)

Publication Number Publication Date
JPS59150589A true JPS59150589A (en) 1984-08-28

Family

ID=12121794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2384783A Pending JPS59150589A (en) 1983-02-17 1983-02-17 Purification of service or waste water and apparatus therefor

Country Status (1)

Country Link
JP (1) JPS59150589A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4780287A (en) * 1984-07-03 1988-10-25 Ultrox International Decomposition of volatile organic halogenated compounds contained in gases
US4941957A (en) * 1986-10-22 1990-07-17 Ultrox International Decomposition of volatile ogranic halogenated compounds contained in gases and aqueous solutions
JPH0361982U (en) * 1989-06-29 1991-06-18
WO1995015294A1 (en) * 1993-12-03 1995-06-08 Louis Szabo Uv water sterilizer with turbulence generator
US6126841A (en) * 1997-01-03 2000-10-03 Trojan Technologies Inc. Increasing turbulent mixing in a UV system
USRE36896E (en) * 1993-03-05 2000-10-03 Trojan Technologies Inc. Fluid treatment system and process
US6217834B1 (en) 1999-04-19 2001-04-17 Trojan Technologies Inc. Ultraviolet radiation lamp and source module and treatment system containing same
US6657205B1 (en) 2002-07-17 2003-12-02 Vast Light Ltd. Turbine-boosted ultraviolet-radiation sterilizing fluid processor
US6726839B2 (en) * 1998-07-31 2004-04-27 Access Business Group International Llc Point-of-use water treatment system
JP2005523760A (en) * 2002-04-30 2005-08-11 エヴァンス、ライオネル UV treatment of unwanted microorganisms
EP1857416A2 (en) * 2006-05-20 2007-11-21 Hikari Hight-tech Ind.(china)Ltd. Ultraviolet fluid purification apparatus
EP1914201A1 (en) * 2006-10-18 2008-04-23 HYDROTEC Gesellschaft Für Ökologische Verfahrenstechnik mbH Device for UV treatment of liquid media, in particular water
EP2284126A1 (en) * 2009-08-13 2011-02-16 Koninklijke Philips Electronics N.V. Device comprising flow guides and a source for emitting ultraviolet light
CN102482121A (en) * 2009-07-30 2012-05-30 西门子私人有限公司 Baffle Plates For An Ultraviolet Reactor
JP2014151300A (en) * 2013-02-13 2014-08-25 Sumitomo Electric Ind Ltd Ultraviolet irradiator for a water treatment and ballast water treatment apparatus
JP2014200731A (en) * 2013-04-04 2014-10-27 住友電気工業株式会社 Ultraviolet lamp for water treatment and ballast water treatment apparatus
US8877067B2 (en) 2011-05-26 2014-11-04 Evoqua Water Technologies Llc Method and arrangement for a water treatment
US8961798B2 (en) 2007-04-03 2015-02-24 Evoqua Water Technologies Llc Method for measuring a concentration of a compound in a liquid stream
US9725343B2 (en) 2007-04-03 2017-08-08 Evoqua Water Technologies Llc System and method for measuring and treating a liquid stream
US9764968B2 (en) 2007-04-03 2017-09-19 Evoqua Water Technologies Llc Method and system for providing ultrapure water
US10343939B2 (en) 2006-06-06 2019-07-09 Evoqua Water Technologies Llc Ultraviolet light activated oxidation process for the reduction of organic carbon in semiconductor process water
US10494281B2 (en) 2015-01-21 2019-12-03 Evoqua Water Technologies Llc Advanced oxidation process for ex-situ groundwater remediation
JP2020525281A (en) * 2017-07-05 2020-08-27 アセプトレイ リミテッド System and method for radiation treatment using a spinner
US11161762B2 (en) 2015-01-21 2021-11-02 Evoqua Water Technologies Llc Advanced oxidation process for ex-situ groundwater remediation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4837119U (en) * 1971-08-31 1973-05-07
JPS5079947A (en) * 1973-11-15 1975-06-28
US4230571A (en) * 1979-01-22 1980-10-28 Dadd Robert C Ozone/ultraviolet water purification

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4837119U (en) * 1971-08-31 1973-05-07
JPS5079947A (en) * 1973-11-15 1975-06-28
US4230571A (en) * 1979-01-22 1980-10-28 Dadd Robert C Ozone/ultraviolet water purification

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4780287A (en) * 1984-07-03 1988-10-25 Ultrox International Decomposition of volatile organic halogenated compounds contained in gases
US4941957A (en) * 1986-10-22 1990-07-17 Ultrox International Decomposition of volatile ogranic halogenated compounds contained in gases and aqueous solutions
JPH0361982U (en) * 1989-06-29 1991-06-18
USRE36896E (en) * 1993-03-05 2000-10-03 Trojan Technologies Inc. Fluid treatment system and process
WO1995015294A1 (en) * 1993-12-03 1995-06-08 Louis Szabo Uv water sterilizer with turbulence generator
US6126841A (en) * 1997-01-03 2000-10-03 Trojan Technologies Inc. Increasing turbulent mixing in a UV system
US6224759B1 (en) 1997-01-03 2001-05-01 Trojan Technologies, Inc. Increasing turbulent mixing in a UV system
US6726839B2 (en) * 1998-07-31 2004-04-27 Access Business Group International Llc Point-of-use water treatment system
US6217834B1 (en) 1999-04-19 2001-04-17 Trojan Technologies Inc. Ultraviolet radiation lamp and source module and treatment system containing same
JP2005523760A (en) * 2002-04-30 2005-08-11 エヴァンス、ライオネル UV treatment of unwanted microorganisms
US6657205B1 (en) 2002-07-17 2003-12-02 Vast Light Ltd. Turbine-boosted ultraviolet-radiation sterilizing fluid processor
EP1857416A2 (en) * 2006-05-20 2007-11-21 Hikari Hight-tech Ind.(china)Ltd. Ultraviolet fluid purification apparatus
EP1857416A3 (en) * 2006-05-20 2008-08-27 Hikari Hight Tech Ind China Lt Ultraviolet fluid purification apparatus
US10550020B2 (en) 2006-06-06 2020-02-04 Evoqua Water Technologies Llc Ultraviolet light activated oxidation process for the reduction of organic carbon in semiconductor process water
US10343939B2 (en) 2006-06-06 2019-07-09 Evoqua Water Technologies Llc Ultraviolet light activated oxidation process for the reduction of organic carbon in semiconductor process water
EP1914201A1 (en) * 2006-10-18 2008-04-23 HYDROTEC Gesellschaft Für Ökologische Verfahrenstechnik mbH Device for UV treatment of liquid media, in particular water
US8961798B2 (en) 2007-04-03 2015-02-24 Evoqua Water Technologies Llc Method for measuring a concentration of a compound in a liquid stream
US9764968B2 (en) 2007-04-03 2017-09-19 Evoqua Water Technologies Llc Method and system for providing ultrapure water
US9725343B2 (en) 2007-04-03 2017-08-08 Evoqua Water Technologies Llc System and method for measuring and treating a liquid stream
CN102482121A (en) * 2009-07-30 2012-05-30 西门子私人有限公司 Baffle Plates For An Ultraviolet Reactor
EP2284126A1 (en) * 2009-08-13 2011-02-16 Koninklijke Philips Electronics N.V. Device comprising flow guides and a source for emitting ultraviolet light
US8614424B2 (en) 2009-08-13 2013-12-24 Koninklijke Philips N.V. Device comprising means for guiding fluid from an inlet to an outlet
JP2013501612A (en) * 2009-08-13 2013-01-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Device having means for guiding fluid from inlet to outlet
CN101993130A (en) * 2009-08-13 2011-03-30 皇家飞利浦电子股份有限公司 Device comprising means for guiding fluid from inlet to outlet
WO2011018735A1 (en) * 2009-08-13 2011-02-17 Koninklijke Philips Electronics N.V. Device comprising means for guiding fluid from an inlet to an outlet
US8877067B2 (en) 2011-05-26 2014-11-04 Evoqua Water Technologies Llc Method and arrangement for a water treatment
JP2014151300A (en) * 2013-02-13 2014-08-25 Sumitomo Electric Ind Ltd Ultraviolet irradiator for a water treatment and ballast water treatment apparatus
JP2014200731A (en) * 2013-04-04 2014-10-27 住友電気工業株式会社 Ultraviolet lamp for water treatment and ballast water treatment apparatus
US10494281B2 (en) 2015-01-21 2019-12-03 Evoqua Water Technologies Llc Advanced oxidation process for ex-situ groundwater remediation
US11161762B2 (en) 2015-01-21 2021-11-02 Evoqua Water Technologies Llc Advanced oxidation process for ex-situ groundwater remediation
JP2020525281A (en) * 2017-07-05 2020-08-27 アセプトレイ リミテッド System and method for radiation treatment using a spinner

Similar Documents

Publication Publication Date Title
JPS59150589A (en) Purification of service or waste water and apparatus therefor
EP1444168B1 (en) Apparatus for disinfecting water using ultraviolet radiation
US20090145855A1 (en) Water Purifier System and Method
JPH03207364A (en) Sterilization by ultra-violet radiation and device therefor
JPH05212378A (en) Ultraviolet beam projector with current mixing plate
CN105164056A (en) Method and apparatus for liquid disinfection by light emitted from light emitting diodes
WO1983002241A1 (en) Water treatment device
JPH077967Y2 (en) UV irradiation device
US20100310433A1 (en) Device for treatment of fluids
US9624115B2 (en) Radiation reactor
RU2515315C2 (en) Method and device for application of mixers in uv effluents/reused water decontamination systems
JPH0725277Y2 (en) Rectifier plate for fluid ultraviolet irradiation device
CN107662961A (en) A kind of ultraviolet sterilizer of spiral quartz ampoule flow-guiding structure
JP2013501612A (en) Device having means for guiding fluid from inlet to outlet
KR20060053539A (en) Apparatus for sterilizing and purifying water utilizing photocatalyst bead
JPS63302940A (en) Process and apparatus for sterilizing fluid
JP2002527237A (en) Fluid purification device by light pulse
WO2006112493A1 (en) Photocatalyst module and purification equipment for gas and liquid with the same
Sobotka The efficiency of water treatment and disinfection by means of ultraviolet radiation
US3865734A (en) Irradiator apparatus
JPH1043753A (en) Liquid purifying device
JP3834735B2 (en) Fluidized water sterilizer
CN112312934A (en) Method and apparatus for improving efficiency of treating fluid supplied to a UV reactor
RU2802686C1 (en) Air recirculator
JPS59132936A (en) Ultraviolet ray irradiating apparatus