WO1995012748A1 - Brake actuator having tamper-resistant housing and method for making same - Google Patents

Brake actuator having tamper-resistant housing and method for making same Download PDF

Info

Publication number
WO1995012748A1
WO1995012748A1 PCT/US1993/010556 US9310556W WO9512748A1 WO 1995012748 A1 WO1995012748 A1 WO 1995012748A1 US 9310556 W US9310556 W US 9310556W WO 9512748 A1 WO9512748 A1 WO 9512748A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
actuator
ledge
lip
cylindrical flange
Prior art date
Application number
PCT/US1993/010556
Other languages
French (fr)
Inventor
Laurence Dale Thompson
Original Assignee
Tse Brakes, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tse Brakes, Inc. filed Critical Tse Brakes, Inc.
Priority to AU55471/94A priority Critical patent/AU5547194A/en
Priority to PCT/US1993/010556 priority patent/WO1995012748A1/en
Publication of WO1995012748A1 publication Critical patent/WO1995012748A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/08Brake cylinders other than ultimate actuators
    • B60T17/083Combination of service brake actuators with spring loaded brake actuators

Definitions

  • the present invention relates generally to brake actuators in a vehicle's air-operated service brake system, and more particularly to spring brake actuators which cause a substantial braking force to be applied to the brakes of the vehicle in the event of a loss of pressurized air in the vehicle's service brake system.
  • a common type of spring-operated brake actuator used on heavy trucks and other commercial vehicles utilizes a powerful compression spring to provide the required braking force when the air pressure inside a pressurized chamber falls below a predetermined minimum, for example when the vehicle is parked or there is a malfunction in the air-operated service brake system.
  • the spring is located between an end wall of a brake head housing and the pressurized chamber, with a flexible diaphragm extending across the interior of the housing and dividing it into an unpressurized spring chamber and a pressurized air chamber. The force exerted on the diaphragm by the pressurized air exerts a counter-force on the spring, which holds it in a compressed position inside the spring chamber.
  • a service brake housing is provided in line with the spring brake housing, and a second diaphragm inside the service brake housing transits a modulated force to the actuator rod during normal operation of the service brake system.
  • the spring brake assembly is a critical safety system, it has to be designed and manufactured for exceptional reliability. Moreover, because the compression spring inside the spring actuator must exert a sufficient force to apply a maximum braking force to the vehicle independent of any external air pressure assistance from the service brake system, the spring in its compressed state stores sufficient kinetic energy to be lethal if the spring brake housing is opened without first taking adequate precautions to secure the spring in its compressed state or to release the stored energy in a controlled manner.
  • the spring brake housing containing the compression spring and diaphragm in two opposing sections (an adapter housing and a cap) separated by the periphery of the diaphragm, with the two opposing sections being clamped together with sufficient force to maintain an air-tight seal between the diaphragm and the housing.
  • the steel adapter case is of a relatively simple design that has an inherent tendency to flex in various modes during operation and accordingly must be fabricated from a relatively thick steel to avoid eventual failure of the seal of the diaphragm and/or fatigue fracture within the steel, thereby resulting in undesirable weight and cost.
  • a previously crimped or welded portion of a female coupling member may be cut off prior to remanufacturing and subsequently welded to a newly exposed portion of the male coupling member.
  • the weld is performed in such a way that a diaphragm trapped between two opposing portions of the respective coupling members is not burnt or otherwise damaged by the welding process.
  • the coupling is a cylindrical coupling and the opposing portions are an inwardly extending lip of a male coupling member and an inner circumferential ledge of a female coupling member, which cooperate with each other to trap the periphery of the diaphragm at an end of the coupling remote from the weld.
  • the inwardly extending lip of the male coupling member is rolled or curled to guide the diaphragm and to provide additional strength and rigidity in the vicinity of the coupling.
  • Fig 1 is a cross sectional view of a double diaphragm spring brake actuator constructed in accordance with the present invention.
  • Fig 2 is an exploded cut away of view of a peripheral portion of the spring brake diaphragm of Fig 1 and the adjoining portions of the coupling between the two subhousings.
  • Fig 3 shows the components of Fig 2 in their assembled configuration, with a peripheral weld securing the two coupling portions to each other.
  • Fig 4 corresponds generally to Fig 3, but shows an alternate embodiment in which the open end of the outer coupling is provided with an extension which may be crimped around the closed end of the inner coupling.
  • Fig 4a shows the extension of Fig 4 after it has been crimped around the closed end of the inner coupling.
  • Fig 5 corresponds generally to Fig 4 and shows how the crimped extension may be cut off for remanufacture, while still leaving sufficient material for a subsequent peripheral weld similar to that shown in
  • a double diaphragm spring brake actuator 10 constructed in accordance with the present invention shares many components and constructional details with prior brake actuators.
  • it includes a spring actuator portion 12 and an adjacent service brake actuator portion 14 mounted coaxially with respect to an actuator rod 16.
  • compression spring 18 At the end of spring actuator portion 12 remote from service brake actuator portion 14 is compression spring 18 which is normally held in a compressed state by retainer 20 which is in contact with the upper surface of diaphragm 22.
  • Upper diaphragm 22 in turn divides the spring actuator portion 12 into a pressurized air chamber 24 and a unpressurized spring chamber 26. Air pressure, introduced via upper inlet 28, forces the upper diaphragm 22 against retainer 20 which in turn presses against the free end of compression spring 18.
  • compression spring 18 Normally, the air pressure inside pressurized air chamber 24 is maintained at the full operating pressure of the vehicle's service brake system, and as a result, compression spring 18 is free to expand to an extended position only when the vehicle is parked, or as a result of a malfunction within the service brake system. It will be appreciated, in either event, compression spring 18 must exert a sufficient force on actuator rod 16 to operate the vehicle's brake (not shown) without any assistance from the air pressure that normally operates the service braking system. As a result, it is extremely hazardous to inspect or replace upper diaphragm 22 without first securing compression spring 18 and retainer 20 in their compressed state in which the vehicle's brake is fully released.
  • upper housing 30 of double diaphragm spring brake actuator 10 is conventionally fabricated from two opposing subhousings, including a cap portion 32 and a base portion 34.
  • Base portion 34 conventionally also functions as the cover portion for service subhousing 36, and cooperates therewith to form service brake actuator portion 14, which is also divided into an upper pressurized service chamber 38 and a lower unpressurized service chamber 40 by a lower diaphragm 42.
  • the service brake actuator portion 14 is not an essential part of the present invention, and its function and fabrication will not be described in further detail, except to mention that lower diaphragm 42 is clamped in conventional fashion between outwardly flanged opposing surfaces of base portion 34 and service subhousing 36, using a conventional clamping means 44.
  • spring actuator portion 12 and more particularly to the periphery of upper diaphragm 22 where cap portion 32 meets base portion 34, which is shown in greater detail in Figs 2 and 3.
  • cap portion 32 and base portion 34 are each fabricated using conventional sheet metal forming techniques from steel having appropriate specifications and dimensions for the intended application, for example, 11-12 gauge steel conforming to ASTM A-569-91A and having a thickness of approximately 0.125" (3 mm).
  • base portion 34 preferably includes integrally formed ribs 34a which extend radially outwardly the central axis.
  • Cap portion 32 is terminated at its open lower end by an integrally formed female coupling portion 46 and base portion 34 is terminated at its open upper end by an integrally formed male coupling portion 48, which matingly fits inside female coupling portion 46.
  • Female coupling portion 46 includes an outwardly extending circumferential ledge 50 from which further extends in the longitudinal direction (relative to the axis defined by actuator rod 16) an outer cylinder 52.
  • Male coupling portion 48 includes an inner cylinder 54 which is terminated by an inwardly extending lip 56.
  • the inwardly extending lip 56 is preferably rolled or curled during the fabrication of base portion 34, to provide a rounded guide for upper diaphragm 22, which avoids the possibility of the lower surface of upper diaphragm 22 coming into contact with a sharp edge when pressure is released from pressurized air chamber 24 and the central portion of upper diaphragm 22 is pushed downward in the direction of actuator rod 16 by the energy stored in compression spring 18.
  • the rounded shape also provides additional strength and rigidity to the base portion 34, permitting a lighter gauge of steel to be used in the construction of spring actuator portion 12.
  • This novel welded construction not only secures spring actuator portion 12 against unauthorized access to its inner components, but also maintains a sufficient pressure on the enlarged periphery of upper diaphragm 22 to conform its original cross section to the generally key-shaped space 60 defined by the opposing surfaces of outwardly extending circumferential ledge 50, outer cylinder 52 and inwardly extending lip 56, so as to maintain an air-tight seal between the upper diaphragm 22 and the base portion 34 which together cooperate to define the normally pressurized air chamber 24.
  • upper diaphragm 22 is typically formed of NBR rubber from Goodyear or other resilient impermeable organic polymer which has a relatively low melting point and is easily damaged by excess heat in excess of 300°F (150°C) , in accordance with an important aspect of the invention, as indicated symbolically in Fig 3 by curly arrows H, heat from peripheral weld 58 is removed the female coupling portion 46 and male coupling portion 48 before it can reach the upper diaphragm 22 via the relatively conductive steel forming the outer cylinder 52 and inner cylinder 54.
  • the lengths of outer cylinder 52 and inner cylinder 54 are preferably such that peripheral weld 58 is at least 0.5" (12 mm) from upper diaphragm 22, and a suitable water-chilled cooling fixture (not shown) is placed in intimate contact with the outer surface of outer cylinder 52 to draw away heat from the vicinity of the periphery of upper diaphragm 22.
  • a compression force of approximately 5000 pounds (2400 kg) is applied between the two subassemblies during the formation of peripheral weld 58 until cap portion 32 has been welded to base portion 34, to maintain the periphery of upper diaphragm 22 in a distorted shape conforming to the generally key-shaped space 60 and thereby maintain the required air-tight seal between upper diaphragm 22 and base portion 34.
  • pressurized air introduced into pressurized air chamber 24 through upper inlet 28 is the same dried and filtered air as is used to operate the service brake actuator portion 14.
  • the resultant circulation will dry and purge the interior of pressurized air chamber 24, preventing any rust formation on unprotected inner surfaces, particularly in the vicinity of peripheral weld 58.
  • base portion 34 By forming base portion 34 of two welded together steel stampings which together replace the unitary aluminum center section used in conventional double diaphragm spring brake actuators, an improved part results which is less likely to "explode”, crack or degrade from road salts.
  • peripheral weld 58 permanently secures pressurized air chamber 24 against unauthorized access, it is a relatively simple task for a well-equipped machine shop to grind away the welded joint, or to separate the weld from outer cylinder 52, for example by means of a lathe, after compression spring 18 has been secured in its fully compressed condition. In that event, both cap portion 32 and base portion 34 may be recycled, and assembled into a fully reconditioned double diaphragm spring brake actuator 10.
  • the outer cylinder 52 of female coupling portion 46 is provided with an extension 52a which permits the female coupling portion 46 to be crimped about the outer surface of inner cylinder 54 by means of crimping force C, thereby providing an all-steel spring brake which has the rigidity of the welded embodiment of Fig 1.
  • the end of the crimped extension 52a may also be welded by weld 58a at the juncture of its lower edge with the lower surface of the at the male coupling portion 48, thereby imparting such a crimped construction with the additional advantages of the welded construction.
  • the crimped extension 52a has the advantage that it can be readily removed by conventional machining operations, as shown at location 52b of Fig 5, whereupon the remaining portion will be identical to cap portion 32 previously shown and described above with respect to Fig 1.
  • the remaining portion of cap portion 32 may be re-secured to the base portion 34, as described above with respect to Figs 1 through 3, to provide a spring brake actuator remanufactured to its original specification, except that the crimped connection of Fig 4a has been replaced by the welded connection of Fig 3.
  • the invention finds special utility in the spring chamber of a dual diaphragm spring brake actuator, certain aspects of the invention will also be applicable to a diaphragm type remote spring brake actuator or to a diaphragm type service brake chamber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Braking Arrangements (AREA)

Abstract

Disclosed is an improved brake actuator, and a method for making same, which is particularly resistant to unauthorized disassembly and its consequent hazards. A diaphragm (22) is locked between two opposing portions (32, 34) of a housing. The two opposing portions of the housing are both made of steel and are crimped or welded to one another. The opposing portions are configured as a cylindrical coupling between a male member (48) having a rolled or curled inwardly extending lip (56), and a female member (46) preferably having an inner circumferential ledge (50), which cooperate to trap the periphery of the diaphragm at an end of the coupling remote from the crimped or welded portion. During remanufacture, the crimped or welded portion of the female member is cut off and the newly exposed end of the female member is subsequently welded to a newly exposed portion of the male member. The weld (58, 58a) is performed in such a way that the diaphragm is not burnt or otherwise damaged by the welding process. The invention is particularly applicable to the spring member (26) of a dual diaphragm spring brake actuator.

Description

BRAKE ACTUATOR
HAVING TAMPER-RESISTANT HOUSING
AND METHOD FOR MAKING SAME
Technical Field
The present invention relates generally to brake actuators in a vehicle's air-operated service brake system, and more particularly to spring brake actuators which cause a substantial braking force to be applied to the brakes of the vehicle in the event of a loss of pressurized air in the vehicle's service brake system.
Background Art
A common type of spring-operated brake actuator used on heavy trucks and other commercial vehicles utilizes a powerful compression spring to provide the required braking force when the air pressure inside a pressurized chamber falls below a predetermined minimum, for example when the vehicle is parked or there is a malfunction in the air-operated service brake system. The spring is located between an end wall of a brake head housing and the pressurized chamber, with a flexible diaphragm extending across the interior of the housing and dividing it into an unpressurized spring chamber and a pressurized air chamber. The force exerted on the diaphragm by the pressurized air exerts a counter-force on the spring, which holds it in a compressed position inside the spring chamber. When the pressure inside the air chamber drops, the unbalanced force exerted by the compression spring is transmitted through the diaphragm to an actuator rod that extends from the pressurized side of the diaphragm to the exterior of the actuator. In a so-called "double diaphragm" spring brake actuator, a service brake housing is provided in line with the spring brake housing, and a second diaphragm inside the service brake housing transits a modulated force to the actuator rod during normal operation of the service brake system.
Because the spring brake assembly is a critical safety system, it has to be designed and manufactured for exceptional reliability. Moreover, because the compression spring inside the spring actuator must exert a sufficient force to apply a maximum braking force to the vehicle independent of any external air pressure assistance from the service brake system, the spring in its compressed state stores sufficient kinetic energy to be lethal if the spring brake housing is opened without first taking adequate precautions to secure the spring in its compressed state or to release the stored energy in a controlled manner.
It is conventional to fabricate the spring brake housing containing the compression spring and diaphragm in two opposing sections (an adapter housing and a cap) separated by the periphery of the diaphragm, with the two opposing sections being clamped together with sufficient force to maintain an air-tight seal between the diaphragm and the housing. Since unauthorized opening of the housing is potentially dangerous to the inexperienced mechanic, and since unauthorized re- sealing using defective seals or improper procedures could result in a poor diaphragm seal or other internal defect, it is also conventional to discourage unauthorized access, disassembly, and reassembly of the housing by appending a warning label to the housing and using a clamping means which is tamper-resistant or at least tamper-evident, so that a new clamping means, not readily available to unauthorized personnel, is required before the housing can be reassembled. Nevertheless, such separate clamping means can be removed by simple handtools and the warning labels are exposed to dirt and road hazards and are thus effective only when the assembly is relatively new and not likely to require inspection or repair.
As an alternative to a separate conventional clamping means, it is also known from a type of known tamper-resistant spring brake actuator such as is disclosed in US patent 4,850,263 assigned to Overland Brakes, Inc. and marketed under the trademark Black-Max, to form the adapter case and the cap from steel with a skirt extending axially downwards from the cap which is crimped under an annular flange extending radially outwards from the top of the adapter case. However, such an alternative construction does not permit a major structural component of the spring brake assembly (the steel cap) to be reused, and is thus relatively expensive and environmentally undesirable. Moreover, the steel adapter case is of a relatively simple design that has an inherent tendency to flex in various modes during operation and accordingly must be fabricated from a relatively thick steel to avoid eventual failure of the seal of the diaphragm and/or fatigue fracture within the steel, thereby resulting in undesirable weight and cost.
Thus, there is a need for an improved spring brake housing that is even less prone to unauthorized disassembly and its consequent hazards.
Another disadvantage of the clamping means used in the prior art is that they present cavities and crevices in which moisture and debris can accumulate, which may eventually cause corrosion of the housing in the vicinity of the seal between the housing and the diaphragm, which in turn may lead to premature failure of the seal, or even of the diaphragm itself, requiring early replacement or rebuilding of the entire spring brake assembly. Disclosure of Invention
Accordingly, it is an overall object of the present invention to provide an improved spring brake assembly, and a method for making same, which is particularly resistant to corrosion as well as to unauthorized disassembly and its consequent hazards. More specifically, this and other related objects are achieved by a novel construction of a brake actuator in which the two opposing portions of the housing both made of steel and are adapted to be either welded or crimped to one another.
In accordance with one method aspect of the invention, a previously crimped or welded portion of a female coupling member may be cut off prior to remanufacturing and subsequently welded to a newly exposed portion of the male coupling member. In accordance with another method aspect of the invention, the weld is performed in such a way that a diaphragm trapped between two opposing portions of the respective coupling members is not burnt or otherwise damaged by the welding process.
In accordance with one structural aspect of the invention, the coupling is a cylindrical coupling and the opposing portions are an inwardly extending lip of a male coupling member and an inner circumferential ledge of a female coupling member, which cooperate with each other to trap the periphery of the diaphragm at an end of the coupling remote from the weld. In accordance with another structural aspect, the inwardly extending lip of the male coupling member is rolled or curled to guide the diaphragm and to provide additional strength and rigidity in the vicinity of the coupling.
Although the invention finds special utility in the spring chamber of a dual diaphragm spring brake actuator, it is also applicable to a diaphragm type remote spring brake actuator or to a diaphragm type service brake chamber. Brief Description of the Drawings
Fig 1 is a cross sectional view of a double diaphragm spring brake actuator constructed in accordance with the present invention. Fig 2 is an exploded cut away of view of a peripheral portion of the spring brake diaphragm of Fig 1 and the adjoining portions of the coupling between the two subhousings. Fig 3 shows the components of Fig 2 in their assembled configuration, with a peripheral weld securing the two coupling portions to each other. Fig 4 corresponds generally to Fig 3, but shows an alternate embodiment in which the open end of the outer coupling is provided with an extension which may be crimped around the closed end of the inner coupling. Fig 4a shows the extension of Fig 4 after it has been crimped around the closed end of the inner coupling. Fig 5 corresponds generally to Fig 4 and shows how the crimped extension may be cut off for remanufacture, while still leaving sufficient material for a subsequent peripheral weld similar to that shown in
Fig 3.
Best Mode for Carrying Out the Invention
Referring now to Fig 1, it will be seen that a double diaphragm spring brake actuator 10 constructed in accordance with the present invention shares many components and constructional details with prior brake actuators. In particular, it includes a spring actuator portion 12 and an adjacent service brake actuator portion 14 mounted coaxially with respect to an actuator rod 16. At the end of spring actuator portion 12 remote from service brake actuator portion 14 is compression spring 18 which is normally held in a compressed state by retainer 20 which is in contact with the upper surface of diaphragm 22. Upper diaphragm 22 in turn divides the spring actuator portion 12 into a pressurized air chamber 24 and a unpressurized spring chamber 26. Air pressure, introduced via upper inlet 28, forces the upper diaphragm 22 against retainer 20 which in turn presses against the free end of compression spring 18.
Normally, the air pressure inside pressurized air chamber 24 is maintained at the full operating pressure of the vehicle's service brake system, and as a result, compression spring 18 is free to expand to an extended position only when the vehicle is parked, or as a result of a malfunction within the service brake system. It will be appreciated, in either event, compression spring 18 must exert a sufficient force on actuator rod 16 to operate the vehicle's brake (not shown) without any assistance from the air pressure that normally operates the service braking system. As a result, it is extremely hazardous to inspect or replace upper diaphragm 22 without first securing compression spring 18 and retainer 20 in their compressed state in which the vehicle's brake is fully released.
For ease of fabrication, upper housing 30 of double diaphragm spring brake actuator 10 is conventionally fabricated from two opposing subhousings, including a cap portion 32 and a base portion 34. Base portion 34 conventionally also functions as the cover portion for service subhousing 36, and cooperates therewith to form service brake actuator portion 14, which is also divided into an upper pressurized service chamber 38 and a lower unpressurized service chamber 40 by a lower diaphragm 42.
The service brake actuator portion 14 is not an essential part of the present invention, and its function and fabrication will not be described in further detail, except to mention that lower diaphragm 42 is clamped in conventional fashion between outwardly flanged opposing surfaces of base portion 34 and service subhousing 36, using a conventional clamping means 44. Reference should now be made to spring actuator portion 12, and more particularly to the periphery of upper diaphragm 22 where cap portion 32 meets base portion 34, which is shown in greater detail in Figs 2 and 3. In particular, in accordance with the present invention, cap portion 32 and base portion 34 are each fabricated using conventional sheet metal forming techniques from steel having appropriate specifications and dimensions for the intended application, for example, 11-12 gauge steel conforming to ASTM A-569-91A and having a thickness of approximately 0.125" (3 mm). In order to reduce the tendency to flex as pressurized air chamber 24 is repeatedly pressurized and unpressurized, base portion 34 preferably includes integrally formed ribs 34a which extend radially outwardly the central axis. Cap portion 32 is terminated at its open lower end by an integrally formed female coupling portion 46 and base portion 34 is terminated at its open upper end by an integrally formed male coupling portion 48, which matingly fits inside female coupling portion 46. Female coupling portion 46 includes an outwardly extending circumferential ledge 50 from which further extends in the longitudinal direction (relative to the axis defined by actuator rod 16) an outer cylinder 52. Male coupling portion 48 includes an inner cylinder 54 which is terminated by an inwardly extending lip 56. The inwardly extending lip 56 is preferably rolled or curled during the fabrication of base portion 34, to provide a rounded guide for upper diaphragm 22, which avoids the possibility of the lower surface of upper diaphragm 22 coming into contact with a sharp edge when pressure is released from pressurized air chamber 24 and the central portion of upper diaphragm 22 is pushed downward in the direction of actuator rod 16 by the energy stored in compression spring 18. The rounded shape also provides additional strength and rigidity to the base portion 34, permitting a lighter gauge of steel to be used in the construction of spring actuator portion 12. When inner cylinder 54 is inserted into outer cylinder 52 with the periphery of upper diaphragm 22 secured between outwardly extending circumferential ledge 50 and inwardly extending lip 56, cap portion 32 is secured to base portion 34 by means of a full or partial peripheral MIG weld 58 located at the juncture between the open end of outer cylinder 52 and a corresponding outer surface of inner cylinder 54. This novel welded construction not only secures spring actuator portion 12 against unauthorized access to its inner components, but also maintains a sufficient pressure on the enlarged periphery of upper diaphragm 22 to conform its original cross section to the generally key-shaped space 60 defined by the opposing surfaces of outwardly extending circumferential ledge 50, outer cylinder 52 and inwardly extending lip 56, so as to maintain an air-tight seal between the upper diaphragm 22 and the base portion 34 which together cooperate to define the normally pressurized air chamber 24.
Since upper diaphragm 22 is typically formed of NBR rubber from Goodyear or other resilient impermeable organic polymer which has a relatively low melting point and is easily damaged by excess heat in excess of 300°F (150°C) , in accordance with an important aspect of the invention, as indicated symbolically in Fig 3 by curly arrows H, heat from peripheral weld 58 is removed the female coupling portion 46 and male coupling portion 48 before it can reach the upper diaphragm 22 via the relatively conductive steel forming the outer cylinder 52 and inner cylinder 54. To further facilitate the desired transfer of heat, the lengths of outer cylinder 52 and inner cylinder 54 are preferably such that peripheral weld 58 is at least 0.5" (12 mm) from upper diaphragm 22, and a suitable water-chilled cooling fixture (not shown) is placed in intimate contact with the outer surface of outer cylinder 52 to draw away heat from the vicinity of the periphery of upper diaphragm 22. At the same time, as shown symbolically by the straight arrows F, a compression force of approximately 5000 pounds (2400 kg) is applied between the two subassemblies during the formation of peripheral weld 58 until cap portion 32 has been welded to base portion 34, to maintain the periphery of upper diaphragm 22 in a distorted shape conforming to the generally key-shaped space 60 and thereby maintain the required air-tight seal between upper diaphragm 22 and base portion 34.
Preferably the pressurized air introduced into pressurized air chamber 24 through upper inlet 28 is the same dried and filtered air as is used to operate the service brake actuator portion 14. When the air is exhausted, the resultant circulation will dry and purge the interior of pressurized air chamber 24, preventing any rust formation on unprotected inner surfaces, particularly in the vicinity of peripheral weld 58.
By forming base portion 34 of two welded together steel stampings which together replace the unitary aluminum center section used in conventional double diaphragm spring brake actuators, an improved part results which is less likely to "explode", crack or degrade from road salts.
Although peripheral weld 58 permanently secures pressurized air chamber 24 against unauthorized access, it is a relatively simple task for a well-equipped machine shop to grind away the welded joint, or to separate the weld from outer cylinder 52, for example by means of a lathe, after compression spring 18 has been secured in its fully compressed condition. In that event, both cap portion 32 and base portion 34 may be recycled, and assembled into a fully reconditioned double diaphragm spring brake actuator 10.
In the alternate embodiment of Figs 4 and 4a, the outer cylinder 52 of female coupling portion 46 is provided with an extension 52a which permits the female coupling portion 46 to be crimped about the outer surface of inner cylinder 54 by means of crimping force C, thereby providing an all-steel spring brake which has the rigidity of the welded embodiment of Fig 1. If desired, as shown in Fig 4a, the end of the crimped extension 52a may also be welded by weld 58a at the juncture of its lower edge with the lower surface of the at the male coupling portion 48, thereby imparting such a crimped construction with the additional advantages of the welded construction.
In any event, the crimped extension 52a has the advantage that it can be readily removed by conventional machining operations, as shown at location 52b of Fig 5, whereupon the remaining portion will be identical to cap portion 32 previously shown and described above with respect to Fig 1. Thus, after the interior components of spring actuator portion 12 have been removed, inspected and repaired or replaced and the spring brake actuator remanufactured to its original condition, the remaining portion of cap portion 32 may be re-secured to the base portion 34, as described above with respect to Figs 1 through 3, to provide a spring brake actuator remanufactured to its original specification, except that the crimped connection of Fig 4a has been replaced by the welded connection of Fig 3.
Although the invention finds special utility in the spring chamber of a dual diaphragm spring brake actuator, certain aspects of the invention will also be applicable to a diaphragm type remote spring brake actuator or to a diaphragm type service brake chamber.

Claims

What is claimed is;
1. (Amended) A method for making a brake actuator having an actuator housing containing an actuator chamber, a flexible diaphragm extending across said actuator chamber to define a first region and a second region, and means inside said second region between said housing and said diaphragm for exerting an actuation force on said diaphragm in the direction of said first region, said method comprising the steps: terminating a lower peripheral portion of a first subhousing with a radially outwardly extending ledge from which downwardly extends a first cylindrical flange, a lower surface of said outwardly extending ledge and an inner surface of said first cylindrical flange cooperating to define an inside surface of a female coupling; terminating an upper peripheral portion of a second subhousing with a radially inwardly extending lip at an upper end of a second cylindrical flange, an outer surface of said second cylindrical flange and an upper surface of said inwardly extending lip cooperating to define an outside surface of a male coupling adapted to fit within said inside surface of said female coupling; positioning said first and second subhousings coaxially about an axis with the outside surface of the male coupling entering the inside surface of the female coupling and with a periphery of said diaphragm located between the upper surface of said lip and the lower surface of said ledge; pressing said male coupling into said female coupling until the periphery of the diaphragm is squeezed between the upper surface of the lip and the lower surface of the ledge; and permanently connecting a lower end of the female coupling remote from said lip to an exposed lower portion of the male coupling remote from said ledge, while the periphery of the diaphragm remains squeezed between said ledge and said lip.
2. (Amended) The method of claim 1 wherein said step of permanently connecting comprises a welding step performed at a distance sufficiently remote from said ledge and said lip to avoid heating the peripheral region of the diaphragm above a predetermined temperature.
3. (Amended) The method of claim 2, where said predetermined temperature is the temperature at which the diaphragm material is permanently deformed.
4. The method of claim 2 wherein said welding step further comprises removing heat from the female coupling at a point intermediate the weld and the periphery of the diaphragm.
5. (Amended) The method of claim 4 wherein said welding step further comprises MIG welding the exposed peripheral portion of the male coupling to the lower end of the female coupling.
6. The method of claim 2, wherein said distance is determined by the thickness of the periphery of the diaphragm and the length of said first cylindrical flange between said exposed end and said ledge.
7. The method of claim 2, wherein said distance is at least 3/8", and preferably about 1/2".
8. The method of claim 2, wherein said first and second subhousings are steel and said welding step utilizes MIG welding.
9. The method of claim 1, wherein said lip is formed with a rounded profile extending inwardly and downwardly away from said diaphragm.
10. (Amended) The method of claim 1, wherein said step of permanently connecting comprises crimping a lower extension of said first cylindrical flange under a lower end of said second cylindrical flange.
11. The method of claim 10, further comprising the steps: removing said lower extension from said first cylindrical flange to thereby form a new lower end of the female coupling and to thereby uncover a new exposed lower portion of the male coupling, and welding said new lower end of the female coupling to said new exposed lower portion of the male coupling, whereby said brake actuator may be during a subsequent remanufacturing operation.
12. (Amended) A brake actuator comprising: a subhousing having a first peripheral portion surrounding an axis and terminated by an outwardly extending circumferential ledge from which longitudinally extends a first cylindrical flange to thereby define an inside surface of a female coupling; a second subhousing having a second peripheral portion also surrounding said axis and terminated by a second cylindrical flange from which extends an inwardly extending lip to thereby define an outside surface of a male coupling adapted to fit inside said inside surface of the female coupling, said first and second subhousings being positioned coaxially about said axis with the male and female couplings matingly engaged to thereby form an actuator housing containing an actuator chamber; a diaphragm extending across said actuator chamber and secured between said ledge and said lip to thereby separate said chamber into a first region and a second region; actuation means inside said first second between said actuator housing and said diaphragm for exerting an actuation force on said diaphragm in the direction of said first region; and connection means for maintaining said male and female couplings in permanent engagement with each other with the periphery of the diaphragm trapped between said ledge and said lip.
13. (Amended) The actuator of claim 12, wherein said actuation means is a compression spring and said actuator is a spring actuator part of a double diaphragm actuator; said two diaphragm actuator also includes a service actuator having a second diaphragm contained within a second chamber; said second chamber is defined by respective surfaces of a third subhousing and a selected one of said first and second subhousings; and said third subhousing is permanently connected to said selected subhousing.
14. (Amended) The actuator of claim 12, wherein the periphery of the diaphragm has an enlarged cross section and respective portions of said lip, said ledge and said outer cylindrical flange cooperate to define a key-shaped space for accommodating the periphery of the diaphragm.
15. The actuator of claim 14, wherein said lip has a rounded profile extending inwardly and downwardly away from said diaphragm.
16. The actuator of claim 12, wherein said connection means is a circumferential weld between an exposed end of said first cylindrical flange longitudinally spaced from said ledge and an adjacent portion of the outside surface of said second cylindrical flange.
17. The actuator of claim 16, wherein said diaphragm is formed of a polymeric material which would be permanently distorted if subjected to temperatures above 300°F.
18. (Amended) The actuator of claim 17, wherein the periphery of the diaphragm is separated from said circumferential weld by a predetermined minimum distance.
19. The actuator of claim 18, wherein said distance is at least 3/8", and preferably about 1/2".
20. The actuator of claim 12, wherein said connection means is an extension of said first cylindrical flange which is crimped around an adjacent portion of said second cylindrical flange.
PCT/US1993/010556 1993-11-01 1993-11-01 Brake actuator having tamper-resistant housing and method for making same WO1995012748A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU55471/94A AU5547194A (en) 1993-11-01 1993-11-01 Brake actuator having tamper-resistant housing and method for making same
PCT/US1993/010556 WO1995012748A1 (en) 1993-11-01 1993-11-01 Brake actuator having tamper-resistant housing and method for making same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1993/010556 WO1995012748A1 (en) 1993-11-01 1993-11-01 Brake actuator having tamper-resistant housing and method for making same

Publications (1)

Publication Number Publication Date
WO1995012748A1 true WO1995012748A1 (en) 1995-05-11

Family

ID=22237134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1993/010556 WO1995012748A1 (en) 1993-11-01 1993-11-01 Brake actuator having tamper-resistant housing and method for making same

Country Status (2)

Country Link
AU (1) AU5547194A (en)
WO (1) WO1995012748A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997006041A1 (en) * 1995-08-09 1997-02-20 Nai Anchorlok, Inc. Tamper-resistant brake actuator
WO1997022506A1 (en) * 1995-12-19 1997-06-26 Nai Anchorlok, Inc. Spring brake actuator with corrosion fuses
US5664478A (en) * 1996-10-08 1997-09-09 Nai Anchorlok, Inc. Spring brake actuator with corrosion fuses
US6003433A (en) * 1998-02-10 1999-12-21 Holland Neway International, Inc. Tamper-resistant brake actuator
EP1889768B1 (en) * 2006-08-17 2012-11-07 TSE Brakes, Inc. Reduced profile brake actuator
WO2017151077A1 (en) * 2016-03-03 2017-09-08 Arfesan Arkan Fren Elemanlari Sanayi Ve Ticaret Anonim Sirketi An internal ventilated diaphragm-piston spring brake actuator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3696711A (en) * 1970-12-28 1972-10-10 Berg Manufacturing Co Roll diaphragm brake
US3800668A (en) * 1972-04-03 1974-04-02 Bendix Corp Breathing and failure detection system for spring brakes
US4117769A (en) * 1975-12-10 1978-10-03 The Bendix Corporation Vacuum booster
US4850263A (en) * 1988-01-07 1989-07-25 Overland Brakes, Inc. Spring brake construction and method of manufacture thereof
US5067391A (en) * 1987-11-06 1991-11-26 Indian Head Industries, Inc. Tamper-resistant brake actuator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3696711A (en) * 1970-12-28 1972-10-10 Berg Manufacturing Co Roll diaphragm brake
US3800668A (en) * 1972-04-03 1974-04-02 Bendix Corp Breathing and failure detection system for spring brakes
US4117769A (en) * 1975-12-10 1978-10-03 The Bendix Corporation Vacuum booster
US5067391A (en) * 1987-11-06 1991-11-26 Indian Head Industries, Inc. Tamper-resistant brake actuator
US4850263A (en) * 1988-01-07 1989-07-25 Overland Brakes, Inc. Spring brake construction and method of manufacture thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997006041A1 (en) * 1995-08-09 1997-02-20 Nai Anchorlok, Inc. Tamper-resistant brake actuator
WO1997022506A1 (en) * 1995-12-19 1997-06-26 Nai Anchorlok, Inc. Spring brake actuator with corrosion fuses
US5664478A (en) * 1996-10-08 1997-09-09 Nai Anchorlok, Inc. Spring brake actuator with corrosion fuses
US6003433A (en) * 1998-02-10 1999-12-21 Holland Neway International, Inc. Tamper-resistant brake actuator
EP1889768B1 (en) * 2006-08-17 2012-11-07 TSE Brakes, Inc. Reduced profile brake actuator
WO2017151077A1 (en) * 2016-03-03 2017-09-08 Arfesan Arkan Fren Elemanlari Sanayi Ve Ticaret Anonim Sirketi An internal ventilated diaphragm-piston spring brake actuator

Also Published As

Publication number Publication date
AU5547194A (en) 1995-05-23

Similar Documents

Publication Publication Date Title
US5285716A (en) Spring brake assembly having tamper-resistant welded housing and method for making same
CN1789750B (en) Spring brake actuator with mid-located spring
JP2778963B2 (en) Anti-tamper brake actuator
US5315918A (en) Tamper-resistant brake actuator
EP0575830B1 (en) Tamper-resistant brake actuator
US5105727A (en) Spring brake actuator with an annular edge of a diaphragm sealed between a tubular part of a pressure plate and an actuator rod
EP0812749B1 (en) Brake actuator and method for manufacture
EP2760720B1 (en) Parking brake piston for a parking brake chamber
KR101261651B1 (en) Method for producing metal housings, which are comprised of at least two housing parts, of units mounted in vehicles
US5205205A (en) Tamper resistant brake actuator
US5623862A (en) Long stroke spring brake actuator
WO1995012748A1 (en) Brake actuator having tamper-resistant housing and method for making same
US5433138A (en) Tamper-resistant brake actuator
US6536329B2 (en) Brake actuator having tamper resistant riveted spring chamber
US6405635B1 (en) Brake actuator
CA2278611A1 (en) Brake actuator with self-centering diaphragm
US6526867B2 (en) Brake actuator having tamper resistant clamp closing spring chamber
US5640894A (en) Method of assembly for tamper-resistant brake actuator
US6223647B1 (en) Brake actuator and method of forming same
US6405636B1 (en) Brake actuation having snap-fit tamper resistant spring chamber
KR100347233B1 (en) Brake actuator having tamper-resistant housing and method for making same
US6003433A (en) Tamper-resistant brake actuator
CN110319130A (en) Brake assembly
US5664478A (en) Spring brake actuator with corrosion fuses
EP1197411B1 (en) Brake actuator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AT AU BB BG BR BY CA CH CZ DE DK ES FI GB HU JP KP KR KZ LK LU LV MG MN MW NL NO NZ PL PT RO RU SD SE SK UA US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642