WO1995010416A1 - Ink jet head, method for producing the same and method for driving the same - Google Patents

Ink jet head, method for producing the same and method for driving the same Download PDF

Info

Publication number
WO1995010416A1
WO1995010416A1 PCT/JP1994/001730 JP9401730W WO9510416A1 WO 1995010416 A1 WO1995010416 A1 WO 1995010416A1 JP 9401730 W JP9401730 W JP 9401730W WO 9510416 A1 WO9510416 A1 WO 9510416A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminated piezoelectric
ink
substrate
plate
piezoelectric
Prior art date
Application number
PCT/JP1994/001730
Other languages
French (fr)
Japanese (ja)
Inventor
Seiichi Osawa
Original Assignee
Citizen Watch Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co., Ltd. filed Critical Citizen Watch Co., Ltd.
Priority to EP94929664A priority Critical patent/EP0723866A4/en
Publication of WO1995010416A1 publication Critical patent/WO1995010416A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1607Production of print heads with piezoelectric elements
    • B41J2/1612Production of print heads with piezoelectric elements of stacked structure type, deformed by compression/extension and disposed on a diaphragm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • B41J2/14274Structure of print heads with piezoelectric elements of stacked structure type, deformed by compression/extension and disposed on a diaphragm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1623Manufacturing processes bonding and adhesion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1632Manufacturing processes machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1632Manufacturing processes machining
    • B41J2/1634Manufacturing processes machining laser machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/164Manufacturing processes thin film formation
    • B41J2/1642Manufacturing processes thin film formation thin film formation by CVD [chemical vapor deposition]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14387Front shooter

Definitions

  • the present invention relates to an ink jet head, a method of manufacturing the same, and a method of driving the same.
  • the present invention relates to an ink head for selectively adhering an ink droplet onto an image recording medium, a manufacturing method thereof, and a driving method thereof.
  • the Kaiser-type ink jet jet described in Japanese Patent Publication No. 53-112138 is difficult to miniaturize, and the Kaiser-type ink jet jet described in Japanese Patent Publication No. 6-59914 is difficult.
  • the thermal jet-type ink jet head had a difficult problem in that high heat was applied to the ink, causing the ink to scorch.
  • the d 3 3 mode type I Nkujietsu Bokue' de uses strips of piezoelectric material (the piezoelectric element), and one surface of the piezoelectric strain element, to form a respective electrode on a surface against countercurrent By polarizing this piezoelectric strain element in the same direction as the direction of the electric field between the electrodes, the piezoelectric strain constant d a 3
  • a plurality of ink flow paths are formed as grooves on the surface of an upper plate 201 made of polysulfone, and the upper plate 201 formed with these ink flow paths is formed into a diaphragm made of thin polysulfone.
  • a plurality of pressure chambers 202 are formed by being covered with 203.
  • a plurality of electrode patterns 208 are formed on the diaphragm 203.
  • a plurality of electrodes 206 are provided on the piezoelectric element 204 divided by the slits 207.
  • the piezoelectric element 204 is disposed adjacent to the pressure chamber 202 with the electrodes 206 bonded to the plurality of electrode patterns 208 on the vibration plate 203, respectively. .
  • An electrode 205 is formed on the surface of the piezoelectric element 204 opposite to the electrode 206.
  • a U-shaped rigid member 209 on which the common electrode 210 is formed is laminated. Further, the rigid member 209 is joined to the edge portion of the upper plate 201 where the ink flow path is not formed via the diaphragm 203.
  • Each electrode pattern 208 formed on the vibration plate 203 is electrically connected to each electrode 206 provided at one end of the piezoelectric element 204, while the common electrode 210 is It is electrically connected to an electrode 205 provided at the other end of the piezoelectric element 204.
  • the piezoelectric element 204 extends in the direction of the electric field.
  • the piezoelectric element 2 Numeral 04 deflects the diaphragm 203 and pressurizes the ink filling the pressure chamber 202. As a result, ink can be ejected from the nozzle 211.
  • the second 0 figure shows another conventional example of d 3 3 mode one de type b Nkujietsu Toe' de.
  • the piezoelectric element 204 in the ink jet head shown in FIG. 19 is replaced by a plate-shaped piezoelectric material 212 and an internal electrode 21 made of a conductive material. 3 and a laminated piezoelectric actuator 214 which is alternately laminated.
  • the deformation of the plate-shaped piezoelectric material 212 is added by the number of layers, so that even if the driving voltage is set low, the thickness direction (d 3 modification of a direction) is obtained in the laminated piezoelectric Akuchiyue over motor 2 1 4.
  • the laminated piezoelectric actuator 2 14 also deforms in a direction perpendicular to the polarization direction (d 31 direction). However, it is possible to deformation amount is more modifications to d 3 3 direction are added by lamination number of sheets is to generate a large pressure in the pressure chamber 2 0 2.
  • the second 1 figure of d 3 3 mode type b Nkuje'Tohe' de illustrates the structure of those EkishitsuShin condensation type.
  • a small piece of piezoelectric material such as PZT (lead zirconate titanate) is used as a piezoelectric element 222, which is placed in parallel between the conductive support substrate 222 and the insulating lid 222. It is stuck.
  • a large number of elongated channels are formed between the piezoelectric elements 222. These channels have an ink channel 225 filled with ink and an ink channel 225 serving as an ink flow path, and a dummy channel 226 forming an air gap are alternately provided. ing.
  • One end of the ink channel 2 25 has a common ink reservoir.
  • the piezoelectric element 222 is polarized in a direction perpendicular to the support substrate 221 as shown by an arrow 230, and an electrode 222 is provided on the upper surface of the lid 222 side. It is provided corresponding to 25.
  • the electrodes 224 are provided for each set of two piezoelectric elements.
  • the piezoelectric elements 22 placed on both sides of the ink channel 2 25 extend in the thickness direction and in the width direction. Shrink. Due to this deformation, the capacity of the ink channel 225 increases.
  • the two piezoelectric elements 222 return to the original shape, so that the passage volume rapidly decreases. As a result, the ink droplet 228 is discharged from the print nozzle formed at the end of the passage.
  • the piezoelectric strain constant d 3 3 have allowed construction of I Nkuje'Tohe' de polarized strips of piezoelectric material in the direction of the electric field as described above, that is, d 3 3 mode type b Nkujietsu Bokue' It tries to solve the following problems.
  • the first problem is that it is difficult to reduce the size by increasing the arrangement density and the degree of integration of print nozzles due to the structure.
  • the liquid chamber separation type shown in FIG. 19 In the ink jet head, since the piezoelectric elements 204 are arranged in a line in the arrangement direction of the slits 207 separating each piezoelectric element 204, the processing limit of the slit 207 is limited. Therefore, the pitch dimension of the print nozzles 211 is determined, and the nozzle pitch cannot be increased in density.
  • the limit of the slit machining is about 150 to 200 per inch according to wire-source electric discharge machining.
  • the arrangement pitch of the piezoelectric elements 222 has an eye field, and the dummy channel 222 which does not discharge ink is formed. Since it is necessary for every other column,
  • the second problem is that electrical connection for driving the piezoelectric element is difficult, which requires more man-hours for manufacturing and lower reliability of the electrical connection.
  • the electrodes 205 and 206 are connected to the surface of the piezoelectric element 204 facing the vibration plate 203 and the rigid member 20. 9 must be manufactured separately on the side opposite to.
  • the position of the electrode pattern 208 on the diaphragm 203 and the position of the common electrode 210 are different, so it is necessary to individually make electrical connections. is there.
  • the material of the diaphragm 203 is limited to a non-conductive material.
  • the electrode 224 and the conductive support substrate 221 serving as a common electrode must be electrically connected separately.
  • a third problem is that there is a risk of clogging of ink and leakage of ink at a nozzle hole portion for discharging ink droplets.
  • both the liquid chamber separation type and the liquid chamber expansion / contraction type have nozzles that eject ink at the ends of the piezoelectric elements arranged at high density, so that the meniscus that is the ink liquid level of the nozzle holes It is not possible to secure a space for installing a cap mechanism to prevent evaporation of water and a suction mechanism to be used when the nozzle hole is clogged.
  • the fourth problem is that energy loss and interference between the pressure chambers are liable to occur, resulting in insufficient or uneven ink ejection force and poor head performance.
  • the diaphragm 203 bends due to the unimorph deformation. Therefore, a loss is generated in the displacement of the piezoelectric element 204 in the thickness direction, and extra energy is required for the ink ejection.
  • the unimorph deformation causes the supporting substrate 22 1 and the insulating lid 22 3 to bend, causing interference between the ink channels.
  • the fifth issue is that high assembly accuracy is required and head manufacturing is difficult.
  • the piezoelectric element 204 and the rigid member 204 are required. 9 must be joined to the diaphragm 203 by high-precision positioning without steps.
  • the rigid portion is not provided.
  • the joining portion of the material 209 and the piezoelectric element 204 to the diaphragm 203 cannot be exposed by processing such as surface grinding. For this reason, high-precision joining was difficult.
  • the present invention is to solve the problems as described above in d 3 3 mode type Inkujietsu Toe' de, energy loss is small can be efficiently driven, can be fabricated in by Ri low cost Bok configured simply, moreover
  • An object of the present invention is to provide a small, high-density inkjet head with high reliability, and a method of manufacturing and driving such an inkjet head. Disclosure of the invention
  • the inkjet head of the present invention employs the following configuration.
  • the first i Nkuje'Tohe' de a substrate and a pair having a piezoelectric strain constant d 3 3 which are arranged on the substrate so as to face each other to form a collecting electrode on both end surfaces laminated piezoelectric Akuchiyue Ichita
  • a multi-row multilayer piezoelectric actuator unit a common electrode formed by coupling between the collector electrodes formed on opposing end faces in the center of the substrate of each multilayer piezoelectric actuator; and a multilayer piezoelectric actuator
  • a driving electrode formed of a collecting electrode formed on the other end surface of the piezoelectric actuator, and the ink in the pressure chamber is ejected by driving each of the laminated piezoelectric actuators.
  • a mounting density can be provided and a high-density and small ink jet head can be provided.
  • the above-described first inkjet head according to the present invention includes a multilayer piezoelectric element block disposed on the upper surface of the substrate, a first slit for separating a central portion of the multilayer piezoelectric element block, and This first slit
  • the multilayer piezoelectric element unit can be easily formed by the plurality of second slits, which are notched and cut out the multilayer piezoelectric element block in a direction substantially perpendicular to the slit.
  • the laminated piezoelectric actuator is small and has high rigidity, the limit of the slit processing is improved, and as a result, the arrangement pitch can be reduced, and the nozzle pitch can be reduced.
  • the first inkjet head according to the present invention can be a dummy layer that does not drive the uppermost layer and the lowermost layer of each laminated piezoelectric actuator.
  • the upper surface of the multilayer piezoelectric actuator can be positioned with high precision by grinding or the like, so that the assembly and manufacturing quality is stable and an inexpensive inkjet head with a small number of steps can be provided.
  • unnecessary deformation in the direction perpendicular to the thickness direction of the laminated piezoelectric actuator does not need to be propagated to other members, so that energy loss and interference between pressure chambers can be prevented.
  • a plurality of drive electrodes electrically connected to the drive electrodes of the respective laminated piezoelectric actuators can be formed on the substrate.
  • Second Inkujietsu Bokue' de of the present invention includes a substrate and, stacked pair having a piezoelectric strain constant d 3 3 which are arranged on the substrate so as to face each other to form a collecting electrode on both end surfaces piezoelectric Akuchiyue Ichita
  • a stacked piezoelectric actuator unit consisting of a plurality of rows, a common electrode formed by coupling between collector electrodes formed on opposing end faces in the center of the substrate of each stacked piezoelectric actuator, and A drive electrode consisting of a current collector formed on the other end face of the piezoelectric actuator, a diaphragm joined to the upper end face of the multilayer piezoelectric actuator, a plurality of pressure chambers corresponding to the individual piezoelectric actuators, A flow path plate that has an ink supply path and is bonded to the diaphragm, and has a plurality of nozzle holes corresponding to the pressure chambers and is bonded to the upper surface of the flow path plate Nozzle
  • the size can be easily reduced, the area of the nozzle plate can be increased, the capping mechanism that prevents the meniscus in the nozzle hole from drying, and ink clogging can be recovered.
  • the maintenance mechanism to be used can be easily attached.
  • the second inkjet head of the present invention is characterized in that the laminated piezoelectric actuators located in the front row and the last row of the laminated piezoelectric actuator unit are inactive bodies that are not driven, and these laminated piezoelectric actuators are not driven. Both ends of the flow path plate can be supported by the upper end surface of the writer.
  • the multilayer piezoelectric actuator unit and the pressure chamber can be firmly connected. For this reason, it is possible to reliably transmit the displacement of the laminated piezoelectric actuator to the pressure chamber. Therefore, an ink jet head having a high ink ejection force can be provided.
  • a third inkjet head includes a substrate and a plurality of a pair of laminated piezoelectric actuators having a piezoelectric strain constant d3a arranged on the substrate so that current collectors are formed on both end surfaces thereof and opposed to each other.
  • a laminated piezoelectric actuator unit consisting of a row, supporting columns provided on the upper surface of the substrate and on both sides of the laminated piezoelectric actuator unit, and a diaphragm bonded to the upper end surface of the laminated piezoelectric actuator unit and the supporting column
  • a flow path plate having a plurality of pressure chambers and an ink supply path corresponding to each of the laminated piezoelectric actuators and joined to the vibration plate, and a flow path having a plurality of nozzle holes corresponding to the pressure chambers.
  • a nozzle plate joined to the upper surface of the road plate.
  • a flow path plate can be fixed firmly by a support
  • the third ink jet head of the present invention is configured such that a common electrode is formed by coupling between the collector electrodes formed on opposing end surfaces in the central portion of the substrate of each multilayer piezoelectric actuator and forming a common electrode.
  • a common electrode is formed by coupling between the collector electrodes formed on opposing end surfaces in the central portion of the substrate of each multilayer piezoelectric actuator and forming a common electrode.
  • Acti Yueichi The collector electrode formed on the other end face of the electrode can be used as a drive electrode. With this configuration, the number of external electrical contacts can be reduced, and the multilayer piezoelectric actuator can be mounted on the substrate with high density.
  • both ends of the diaphragm may be sandwiched between the support and the flow path plate.
  • a second support for supporting the diaphragm may be provided at the center of the upper surface of the substrate.
  • the outer side end faces of the respective laminated piezoelectric actuators may be elastically supported by the columns.
  • the fourth ink jet head is composed of a plurality of rows of a pair of laminated piezoelectric actuators having a piezoelectric strain constant da3 arranged on the substrate so that collector electrodes are formed on both end surfaces thereof and opposed to each other.
  • a nozzle plate having a plurality of nozzle holes corresponding to each of the pressure chambers, wherein the multi-layer piezoelectric actuator is a drive actuator in every other row, a non-drive actuator that does not drive the other multi-layer piezoelectric actuators, and a non-drive actuator.
  • the diaphragm is sandwiched between the rotor and the flow path plate, and the nozzle plate is joined to the flow path plate.
  • the diaphragm can be supported under more stable conditions, and stable ink ejection performance can be maintained.
  • the second, third, and fourth inkjet heads of the present invention are arranged such that each laminated piezoelectric actuator and each pressure chamber are inclined with respect to an axis orthogonal to an axis passing through the nozzle hole, and A nozzle hole may be formed corresponding to the pressure chamber.
  • the laminated piezoelectric actuator, the diaphragm, the flow path plate, and the nozzle plate have substantially the same linear expansion coefficient.
  • At least the laminated piezoelectric body, the vibration plate, the flow path plate, and the nozzle plate expand and contract evenly due to the temperature change, so that undesired stress does not occur between members.
  • step (3) a voltage is applied in the polarization direction of the multilayer piezoelectric actuator to stretch the multilayer piezoelectric actuator in the thickness direction, and the second step is performed.
  • step (3) the applied voltage is gradually lowered to fill the pressure chamber with ink, and in step (3), the applied voltage is rapidly increased again to expand the laminated piezoelectric actuator in the thickness direction, thereby increasing the pressure.
  • the driving method that is so as to inject room Inku
  • the laminated piezoelectric Akuchiyue Ichita the electric field in the same direction is applied to constantly polarization direction
  • to weaken the polarization of the laminated piezoelectric Akuchiyue one data Not only does it cause no reverse polarization, but also the vibration that occurs on the liquid surface (meniscus) of the nozzle hole due to the vibration of the ink liquid that occurs in the pressure chamber is supplied to the loose ink supply in the second operation process. Therefore, the speed and diameter of the ejected ink droplets do not vary even when driven at various frequencies.
  • a first slit is formed in a central portion of a multilayer piezoelectric body in a first step, and both ends of the multilayer piezoelectric body and a first slit are formed in a second step.
  • An electrode is formed on the slit, and in the third step, the electrode is substantially perpendicular to the first slit and shallower than the first slit.
  • Corrected paper A plurality of second slits are formed at a constant pitch to form a plurality of laminated piezoelectric actuators on a substrate, and the upper surface of the laminated piezoelectric actuator is flattened in a fourth step.
  • a small-sized laminated piezoelectric actuator can be manufactured simply and at low cost.
  • the first slit is formed in the center of the multilayer piezoelectric body in the first step, and both ends of the multilayer piezoelectric body and the second slit are formed in the second step.
  • An electrode is formed on the first slit, the upper surface of the laminated piezoelectric body is flattened in the third step, and in the fourth step the direction is almost perpendicular to the first slit and shallower than the first slit.
  • a fourth inkjet head includes: a substrate; a plurality of partition walls, a lid, and a sealing member formed by laminating a plurality of plate-shaped piezoelectric materials polarized in the thickness direction via a conductive material; Are arranged on the substrate with a certain gap therebetween, and the upper part of the gap is closed with the lid, and the side of the gap is closed with the sealing member to make the gap a pressure chamber. And a nozzle hole is opened in a part of the pressure chamber.
  • partition walls may be configured as a laminated piezoelectric ⁇ Kuchiyueta be transformed into I Li thickness direction to the voltage application has a pressure electrostrictive constant d 3 3.
  • a fifth inkjet head includes a substrate, a plurality of partition walls each formed by laminating a plurality of plate-like piezoelectric materials polarized in a thickness direction via a conductive material, a lid, and a sealing member. Are arranged in a matrix with a certain gap on the substrate, the top of the gap is closed with a lid, and the side of the gap is closed with a sealing member to pressurize the gap. Formed as a room
  • a nozzle hole that opens to the pressure chamber is provided in either the substrate or the lid, and an ink supply port is provided in either the substrate, the sealing member, or the lid, and the thickness of the partition wall is increased by applying a voltage to the conductive material. It deforms in the direction to change the volume of the pressure chamber filled with ink, and ejects ink droplets from the nozzle holes.
  • the gap formed between the partition walls alternately forms a pressure chamber for supplying ink in the arrangement direction and a dummy space for not supplying ink. You may do so.
  • the lids can independently close the individual pressure chambers. Thus, interference between the pressure chambers can be reduced.
  • the gap forming the dummy space can have a width narrower than the gap forming the pressure chamber. This makes it possible to further increase the arrangement pitch of the nozzle holes.
  • an insulating coating film is formed on the surface of the partition wall in contact with the pressure chamber. It may be provided. As a result, it is possible to secure the insulating property of the electrode of the conductive material exposed on the partition wall surface, so that the water-based ink can be used.
  • FIG. 1 is a front sectional view showing the structure of an ink jet head according to a first embodiment of the present invention.
  • FIG. 2 is a side sectional view showing a configuration of the inkjet head according to the first embodiment of the present invention.
  • FIG. 3 (a) is a perspective view showing a method of manufacturing a multilayer piezoelectric element block constituting an ink jet head according to the first embodiment of the present invention.
  • FIG. 3 (b) is a perspective view, following the previous figure, showing the method of manufacturing the laminated piezoelectric element block constituting the ink jet head in the first embodiment of the present invention.
  • FIG. 3 (c) is a perspective view showing the method of manufacturing the laminated piezoelectric element block constituting the ink jet head in the first embodiment of the present invention, following the front surface.
  • FIG. 4 is a perspective view showing a method for manufacturing a laminated piezoelectric actuator constituting an ink jet head according to the first embodiment of the present invention.
  • FIG. 5 is an ink jet printer according to the second embodiment of the present invention.
  • FIG. 3 is an exploded perspective view showing the configuration of the head.
  • FIG. 6 is a front sectional view showing a configuration of an inkjet head according to a second embodiment of the present invention.
  • FIG. 7 is a perspective view showing a method of manufacturing a laminated piezoelectric actuator constituting an ink jet head according to the second embodiment of the present invention.
  • FIG. 8 is a plan view of a part of an ink jet head according to a third embodiment of the present invention, which is cut away.
  • FIG. 9 is a front sectional view showing a configuration of an inkjet head according to a fourth embodiment of the present invention.
  • FIG. 10 is an enlarged front sectional view showing the structure of an ink jet head according to a fifth embodiment of the present invention.
  • FIG. 11 is a perspective view showing a configuration of an ink jet head according to a sixth embodiment of the present invention.
  • FIG. 12 is a front sectional view showing a structure of an ink head according to a sixth embodiment of the present invention.
  • FIG. 13 (a) is a perspective view showing a manufacturing method for forming a piezoelectric element block of an ink head according to the sixth embodiment of the present invention.
  • FIG. 13 (b) is a drawing of the sixth embodiment of the present invention following the previous drawing.
  • FIG. 4 is a perspective view showing a manufacturing method for forming a piezoelectric element block of an ink jet head.
  • FIG. 13 (c) is a perspective view, following the previous figure, showing a manufacturing method for forming a piezoelectric element block of an injector head in the sixth embodiment of the present invention.
  • FIG. 14 is a perspective view showing a manufacturing method for forming a piezoelectric element block of an ink head according to the sixth embodiment of the present invention, following the previous figure.
  • FIG. 15 is a perspective view showing a manufacturing method for forming a multilayer piezoelectric actuator of an ink head according to a sixth embodiment of the present invention.
  • FIG. 16 is a perspective view showing a configuration of an injector head according to a seventh embodiment of the present invention.
  • FIG. 17 is a side sectional view showing the configuration of an inkjet head according to the seventh embodiment of the present invention.
  • FIG. 18 is a sectional view showing a modification of the sixth and seventh embodiments of the present invention.
  • FIG. 19 is a perspective view showing the structure of a conventional ink jet head.
  • FIG. 20 is a cross-sectional view showing the structure of another conventional ink jet head.
  • FIG. 21 is a perspective view showing the configuration of another conventional ink jet head. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 and 2 show an ink jet head according to a first embodiment of the present invention.
  • FIG. 1 is a front sectional view
  • FIG. 2 is a side sectional view.
  • the ink jet head of this embodiment includes a pair of laminated piezoelectric actuators 11 1 and 11 1.
  • the pair of laminated piezoelectric actuators 111 and 111 are composed of a plate-shaped piezoelectric material 130 made of a piezoelectric ceramic composed of a mixture of lead-based zirconium and lead-based titanium, and silver-palladium.
  • conductive materials 13 1 are alternately laminated so that the conductive materials 13 1 are exposed from the end faces.
  • a pair of laminated piezoelectric actuators 11 1 and 11 1 are arranged in series on a substrate 11 such as a ceramic or the like, and a plurality of such rows are arranged in a direction perpendicular to the paper surface (see FIG. 2). Thus, a matrix-shaped laminated piezoelectric actuator unit 112 is formed.
  • the exposed outer end surface of the conductive material 131 is formed as an electrode film to form a drive collector 113a to which a voltage can be externally input.
  • a common collector electrode 1 1 3b which is the common electrode of No. 1, is formed.
  • the common collector 113 b serving as the common electrode is a common electric wire of the pair of laminated piezoelectric actuators 111 (see FIG. 1).
  • each laminated piezoelectric actuator 1 11 1 applies a voltage between each drive electrode 113 a and the common electrode 113 b which is a common electrode. Can be driven.
  • the electrode films of the driving collector 113a and the common collector 113b also extend to the substrate 110 side, so that electrical The connection is made easy.
  • a metal diaphragm 115 On the upper surface of the laminated piezoelectric actuator 111, a metal diaphragm 115 is adhered. A plurality of pressure chambers 1 16 and a metal flow path plate 1 18 forming a common ink passage 1 17 communicating with an external ink tank (not shown) are joined to the upper surface of the vibration plate 1 15. I have.
  • the pressure chambers 116 filled with the ink are formed at positions adjacent to the respective laminated piezoelectric actuators 111 via the vibration plate 115.
  • flow path plate 118 and the vibration plate 115 may not be formed as separate members but may be manufactured as an integral member.
  • a metal nozzle plate 120 having a plurality of nozzle holes 1 19 is adhered to the upper surface of the flow path plate 118. Each nozzle hole 1 19 is arranged at a position communicating with each pressure chamber 1 16.
  • the laminated piezoelectric actuators 126, 126 located in the front row and the last row are driven. There is no inactive substance.
  • These non-driven multilayer piezoelectric actuators 126 and 126 have a sufficiently large width dimension and high rigidity as compared with the driven multilayer piezoelectric actuator 111.
  • the substrate 110 and the flow path plate 118 in which the pressure chambers 116 are formed are firmly joined via laminated piezoelectric actuators 126 and 126 which are not driven.
  • the diaphragm 115 is not interposed between the inactive multilayer piezoelectric actuator 126 that is not driven and the flow path plate 118, and therefore, the multilayer piezoelectric actuator 126 is not interposed. And is not glued.
  • the deformed diaphragm 115 is formed into a flow path. It is supported by the partition wall 118a of the plate 118. If the material of the partition wall 1 18a is hard and is joined to the diaphragm 1 15 with sufficient width, the support of the diaphragm 1 15
  • the holding condition can be regarded as a fixed beam at both ends, and a firm support is provided.
  • the partition wall 118a of the flow path plate 118 can only secure a width of several 10 ⁇ m, and cannot have sufficient rigidity. Therefore, it is inevitable that the diaphragm 1 15 is supported somewhat elastically.
  • the flow path plate 118 is formed of a material having low rigidity such as plastic, the support of the vibration plate 115 becomes more elastic.
  • the diaphragm 1 15 is extended to the undriven piezoelectric actuators 126, 126 with sufficient width and high rigidity, and the actuators 1, 26, 1 26
  • the support condition of the diaphragm 1 15 becomes strong at both ends even though it is elastic in the middle.
  • the transmission state of the vibration changes depending on the location.
  • the state of pressurization of the pressure chambers 116 also varies depending on the location, and a phenomenon occurs in which the ejection characteristics of the ink droplets become uneven throughout the ink jet head.
  • the flow path plate 118 is made of a highly rigid metal material, the nozzle hole 119 in the center and the non-driven laminated piezoelectric actuators 126, 126 The ejection speed of the ink droplet was different by 10% or more from the nozzle hole 1 19 of FIG. Furthermore, when the flow path plate 118 was formed of plastic such as PSF having low rigidity, the ejection speed of the ink droplet was different by about 30%.
  • the ink droplets reach the recording medium paper. Time shifts. As a result, the positions of the pixels formed by the ink droplets adhering to the paper are displaced, resulting in deterioration of print quality.
  • the non-driven multilayer piezoelectric actuator 1 26 and the diaphragm If the structure is not joined, the support condition between the diaphragm 1 15 and the flow path plate 1 18 will be the same everywhere, so the multilayer piezoelectric actuator 1 1 1 is driven and the pressure is increased.
  • ink is ejected from the chamber 1 16, a uniform ink droplet ejection speed can be obtained over the entire ink jet head.
  • the pressure chamber 1 16 near the non-driven multilayer piezoelectric actuator 1 26 is used as a dummy and ink is not ejected from it, the unevenness of the ink droplet ejection speed as described above will be almost uniform. Can be resolved. However, providing such dummy pressure chambers 116 is a waste of space, and is not preferable for miniaturization.
  • FIGS. 3 (a), 3 (b), 3 (c), and 4 are perspective views showing a method of manufacturing the laminated piezoelectric actuator unit 112 described above in the order of manufacturing steps. is there.
  • a first conductive material 131 is formed by a printing method on a first green sheet which is formed of piezoelectric ceramic and becomes a plate-like piezoelectric material 130. I do. At this time, the central portion of the plate-shaped piezoelectric material 130 is not covered with the first conductive material 131, but is formed as a first exposed portion 130a.
  • a second green sheet that becomes a plate-like piezoelectric material 140 is stacked on the first conductive material 131, and the plate-like piezoelectric material 140 is further stacked.
  • a second conductive material 141 is formed on the upper surface of the material 140 by a printing method. At this time, both end surfaces of the plate-shaped piezoelectric material 140 are not covered with the second conductive material 141 so as to be the second exposed portions 140a.
  • the piezoelectric element block 150 shown in FIG. 3 (c) is formed. Form.
  • a first slit 160 reaching the substrate 110 is formed by using a diamond cutter or the like with a cutting tool.
  • a gold (Au) thin film is formed on the entire surface of the piezoelectric element block 150 and the substrate 110 by thin film forming means such as vacuum evaporation, and the upper surface of the substrate 110 and the piezoelectric element block 150 are formed.
  • An electrode film 161 is formed on the end face and the inner face of the first slit 160.
  • the second slit 163 shown in FIG. 2 (not shown in FIG. 4) is placed in the laminated piezoelectric actuator block 162 thus formed. It is formed almost perpendicular to 60 with diamond cutter. The second slit 163 reaches the substrate 110 but has a depth smaller than that of the first slit 160. By sequentially forming the second slits 163 at a constant pitch, the laminated piezoelectric actuator 1111 is completed.
  • the electrode film 161 shown in FIG. 4 is divided into a plurality of patterns by the above-described steps, and each laminated piezoelectric actuator 1111 can be driven individually.
  • the multilayer piezoelectric actuator 11 1 is subjected to polarization processing in the thickness direction by applying a sufficient voltage via the electrode film 16 1.
  • the present inventor uses the above-described manufacturing method to use 22 plate-like piezoelectric materials 130 with a thickness of 20 ⁇ and 21 conductive materials 131, and alternately laminate them. Thus, a laminated piezoelectric actuator 111 having a thickness of about 0.5 mm was formed.
  • the laminated piezoelectric actuator 111 has a small dimension in the thickness direction of 0.5 mm, and the bottom is firmly joined to the substrate 110.
  • the rigidity of the joint is high. There was no concern that the laminated piezoelectric actuators 111 arranged in the area would fall down due to processing or the like. For this reason, the arrangement pitch of the laminated piezoelectric actuators 1 1 1 is 1 I could do more than a book.
  • the electrodes for driving the multilayer piezoelectric actuator 111 are a common electrode at the center and the individual driving electrodes on the outer side, the distance between a pair of opposing multilayer piezoelectric actuators 111 is 0.5. mm or less. In this way, a piezoelectric actuator having a high planar mounting density can be formed by a simple processing method.
  • the upper surface of the uppermost plate-like piezoelectric material 130 of the multilayer piezoelectric actuator 111 and the lowermost plate-like piezoelectric material No conductive material 13 1 is formed on the lower surface of 130. Therefore, the uppermost and lowermost plate-like piezoelectric materials 130 of the multilayer piezoelectric actuator 111 are dummy layers that do not cover the electric field.
  • the length of the multilayer piezoelectric actuator 111 can be reduced.
  • the deformation can be absorbed inside the laminated piezoelectric actuator 111, which is a relatively soft member, and the diaphragm 115 and the substrate 110 bonded thereto can be prevented from being deformed.
  • the laminated piezoelectric actuator 1 12, the vibration plate 1 15, the flow path plate 1 18, and the nozzle plate 120 are sequentially laminated and bonded, so that simple and high The inkjet head can be manufactured with high accuracy.
  • a nozzle plate 120 having a large area can be easily formed, and a capping mechanism can be installed to prevent evaporation of water from the meniscus, which is the ink surface of the nozzle hole 119, and the nozzle hole 119 can be easily observed.
  • the space for installing the suction mechanism used when clogging can be secured.
  • the nozzle plate 120 and the flow passage plate 118 can be bonded to each other on a relatively large surface, a seal that does not leak ink can be easily formed.
  • a voltage is applied between the driving collector 113a and the common collector 113b to generate an electric field in the polarization direction of the plate-like piezoelectric material 130, Stretch the laminated piezoelectric actuator 1 1 1 loosely in the thickness direction (da 3 direction).
  • a part of the diaphragm 1 15 is pushed into the pressure chamber 1 16 to reduce the internal volume.
  • the laminated piezoelectric actuator 11 1 is driven by a sufficiently slow operation so that the ink in the pressure chamber 1 16 does not jump out of the nozzle hole 1 19.
  • This amount of deformation reduces the internal volume of the pressure chamber 116 by an amount comparable to the amount of ink droplets discharged almost once.
  • a third operation rapidly generates an electric field in the polarization direction of the plate-shaped piezoelectric material 1 3 0, it extends the laminated piezoelectric Akuchiyueta 1 1 1 in the thickness direction (d 3 3 direction). At this time, the pressure in the pressure chamber 116 increases rapidly, and the ink filled in the pressure chamber 116 is ejected from the nozzle hole 119.
  • a voltage at the same level as in the first operation is applied to the multilayer piezoelectric actuator 111. The fourth operation may be omitted by setting the applied voltage in the first operation and the applied voltage in the third operation to be the same.
  • the multilayer piezoelectric actuator 111 is constantly applied with an electric field in the same direction as the polarization direction, the occurrence of reverse polarization that weakens the polarization of the multilayer piezoelectric actuator 111 is generated. Can be prevented. Also, the vibration on the liquid surface (meniscus) of the mezzle hole 1 19 caused by the vibration of the ink liquid generated in the pressure chamber 116 can be reduced by the loose ink supply by the second operation. However, even when driven at various frequencies, the speed and diameter of the ejected ink droplets can be made uniform.
  • FIGS. 5 and 6 show an ink jet head according to a second embodiment of the present invention.
  • FIG. 5 is an exploded perspective view
  • FIG. 6 is a front sectional view.
  • a second embodiment of the present invention will be described with reference to FIGS. 5 and 6 alternately.
  • a pair of laminated piezoelectric actuators 111 are arranged in series on a substrate 110 made of ceramic or the like.
  • a plurality of pairs of the laminated piezoelectric actuators 111 are further arranged in the front-rear direction, thereby forming a laminated piezoelectric actuator unit 112 in the form of a retrix.
  • the laminated piezoelectric actuator 111 is composed of a mixture of lead-based zirconium and lead-based titanium. It is formed by alternately laminating plate-shaped piezoelectric materials made of piezoelectric ceramics and conductive materials made of silver-palladium, and firing them.
  • a driving collector 113a made of a thin film of gold (Au) or the like formed by thin film forming means such as evaporation. Are formed, and the common collector 113 b is formed on the other end surface in the same manner.
  • ceramic pillars 114a are provided at both ends of the substrate 110, and the upper surface thereof is flush with the upper surface of the multilayer piezoelectric actuator 111. Adhere so that In addition, between the pair of laminated piezoelectric actuators 111, a ceramic support pillar 114b is formed in the same manner.
  • a metal diaphragm 1 15 is joined to the upper surface of the laminated piezoelectric actuator 111 and the upper surfaces of the columns 114a and 114b.
  • a metal flow path plate 1 18 is bonded onto the diaphragm 1 15.
  • a plurality of pressure chambers 116 and a common ink passage 117 communicating with an external ink tank (not shown) are formed in the passage plate 118.
  • Each of the pressure chambers is disposed so as to be vertically adjacent to each of the laminated piezoelectric actuators 111 through the diaphragm 115.
  • the diaphragm 1 15 is sandwiched between the columns 111 a and 114 b of the laminated piezoelectric actuator unit 112 and the partition wall 118 a of the flow path plate 118. , It is firmly fixed.
  • a metal nozzle plate 120 having a nozzle hole 119 is adhered to the upper surface of the channel plate 118.
  • Each nozzle hole 1 19 communicates with each pressure chamber 1 16 respectively.
  • electric wire patterns 123 are formed at the same pitch as the arrangement pitch of the laminated piezoelectric actuators 111.
  • an electric wire pattern 122 that is electrically connected to the driving collector 113a and the common collector 113b is formed on the substrate 110. These electric wire patterns 123 and 122 are adhered by a conductive adhesive.
  • a driving IC 125 for applying a voltage to the multilayer piezoelectric actuator 111 to drive it is mounted on the circuit board 121.
  • This drive IC 125 is connected to each wire pattern on the circuit board 121.
  • the drive IC 1 2 5 When a signal is externally input to the electrodes 1 2 4, the drive IC 1 2 5 is activated, and the drive electrodes 1 1 3 a of the laminated piezoelectric actuator 1 1 1 via the wire pattern 1 2 3 and the wire pattern 1 2 2 And common collector electrode 1
  • a voltage is applied between 13b and an electric field is generated in the plate-like piezoelectric material in the actuator 111.
  • This electric field, in advance direction of the electric field to a polarized piezoelectric plate material was Teatsu is deforms in the thickness direction (d 3 3 direction).
  • the laminated piezoelectric Akuchiyueta 1 1 1 extends in the thickness direction (d 3 3 direction).
  • the laminated piezoelectric Akuchiyue Ichita 1 1 even shrinkage occurs in the thickness direction perpendicular to the direction (d al direction). Therefore, the laminated piezoelectric actuator 1 11 1 and the support 1 1 4 are separated by a force to leave a slight gap between the laminated piezoelectric actuator 1 1 1 and the adjacent support 1 1 4a, or by an elastic adhesive. It is preferable that a is joined. With such a configuration, the multilayer piezoelectric actuator 111 is not restrained in the direction perpendicular to the thickness, and no loss occurs in the deformation in the thickness direction.
  • the laminated piezoelectric actuator 126 located at the outer end in the front-rear direction in FIG. 5 is not used for driving, and the common collector electrode shown in FIG. 1 1 3b is electrically connected to the electric wire pattern 1 2 2 on the substrate 1 1 0.Therefore, a common collector electrode 1 1 2 is provided inside the laminated piezoelectric actuator 1 2 6 An internal electrode that conducts with 3b is formed.
  • each member is not limited to the materials described above.
  • the substrate 110 and the columns 114a and 114b may be insulating members, for example, glass.
  • the diaphragm 115, the channel plate 118, and the nozzle plate 120 may be formed of plastic or the like.
  • the substrate 110 the laminated piezoelectric actuator 111, the diaphragm
  • the substrate 110 and the support columns 114a and 114b may be integrally formed using a part of the piezoelectric material of the laminated piezoelectric actuator.
  • the strut 1 14 b has a function of firmly fixing the diaphragm 1 15 and the flow path plate 1 18, but if the rigidity of the flow path plate 1 18 is sufficiently high. It may be omitted.
  • the vibrating plate 1 15 is supported by a jig or the like from the pressure chamber 1 16 formed through the flow path plate 1 18 and the laminated piezoelectric actuator 1 1 1 Can be pressed.
  • the structure may be such that 14a and the flow path plate 1 18 are directly joined without the interposition of the diaphragm 1 15.
  • the nozzle plate 120 When the nozzle plate 120 is laminated on the flow path plate 118 as described above, the nozzle plate 120 and the flow path plate 118 are joined on a large surface, so that the nozzle hole There is no problem even if the adhesive material protrudes in the vicinity of 119, so there is no need to strictly pursue the bonding quality
  • the nozzle plate 120 can secure a large area, a capping mechanism to ensure the quality of the meniscus, which is the liquid level of the nozzle hole 1 19, sucks the clogged ink in the nozzle hole 1 19 It is easy to attach a mechanism that performs this.
  • the laminated piezoelectric actuator 111 has a small length of about 3 mm and a thickness of about 0.5 mm, and the rigidity of the laminated piezoelectric actuator 111 itself is high. A high natural frequency could be provided. As a result, the ink continuous injection performance was improved.
  • the central part of the multilayer piezoelectric actuator is used as a common electrode and the outer end face is used as a drive electrode, so that electrical connection can be easily made in a minimum space. Accordingly, the planar mounting density of the multilayer piezoelectric actuator 111 can be further increased.
  • a column 114a is disposed on the end face of the multilayer piezoelectric actuator 111, and the substrate 110 and the flow path plate 118 are connected via the column 114a. Even when each multilayer piezoelectric actuator 111 is driven independently, the substrate is not affected by the reaction force and the pressure generated in the pressure chamber 116.
  • the pressure between the 110 and the flow path plate 1 18 changes, causing pressure loss in the pressure chamber 1 16 or the deformation of the substrate 110 and the flow path plate 1 18 resulting in the pressure chamber 1 16 There is no interference between them.
  • the diaphragm 1 15 is fixed so as to be sandwiched between the columns 1 1 14a and 1 1 4b and the partition 1 1 8a of the flow path plate 1 1 8 so that the diaphragm 1
  • the vibration system of 115 is stable, and even if the pressure chamber 116 is strongly pushed by the laminated piezoelectric actuator 111, extra vibration is not generated in the diaphragm 115, so that the efficiency is high and the vibration plate is adjacent. Interference between the pressure chambers 1 16 is also small ( details are not described in the above configuration, but the multilayer piezoelectric actuator
  • the laminated piezoelectric actuator 111 and pillars 114a and 114b are exposed by plane grinding or the like. Diaphragm with high precision without gaps 1 1 5 can be joined.
  • an electric field is generated between the driving collector 113a and the common collector 113b to generate an electric field in the polarization direction of the plate-like piezoelectric material, and the lamination is performed.
  • the diaphragm 1 15 is pushed into the pressure chamber 1 16 to reduce the internal volume.
  • the multilayer piezoelectric actuator 111 is driven with a sufficiently loose operation so that the ink in the pressure chamber 116 does not jump out of the nozzle hole 119.
  • a third operation an electric field is rapidly generated in the polarization direction of the plate-shaped piezoelectric material, and the laminated piezoelectric actuator 111 is vigorously stretched in the thickness direction.
  • the pressure in the pressure chamber 116 increases rapidly, and the ink filled in the pressure chamber 116 is jetted from the nozzle hole 119.
  • the fourth operation the voltage applied to the multilayer piezoelectric actuator 111 is reduced so that the voltage becomes the same level as in the first operation. Note that the fourth operation may be omitted by setting the applied voltage in the first operation and the applied voltage in the third operation to be the same.
  • the multilayer piezoelectric actuator 1 1 1 is constantly applied with an electric field in the same direction as the polarization direction. There is no inversion polarization that weakens the polarization of the piezoelectric actuator 1 1 1.
  • the vibration on the liquid surface (meniscus) of the nozzle hole 119 caused by the vibration of the ink liquid generated in the pressure chamber 116 is reduced by the loose ink supply in the second operation. Therefore, even if the laminated piezoelectric actuator 111 is driven at various frequencies, the ejection speed and the diameter of the ink droplets can be made uniform.
  • FIGS. 3 (a), 3 (b), 3 (c), and 7 show a method of manufacturing the laminated piezoelectric actuator unit 112 in the above-mentioned inkjet head. This will be described with reference to FIG.
  • the manufacture of the piezoelectric element block 150 shown in FIGS. 3 (a) to 3 (c) is substantially the same as the method of manufacturing the multilayer piezoelectric actuator unit 112 in the first embodiment. is there.
  • a first conductive material 1331 is applied to a first green sheet formed of piezoelectric ceramic to become a plate-like piezoelectric material 130 by a printing method. It forms well. At this time, the central portion of the plate-shaped piezoelectric material 130 is not covered with the first conductive material 131, and is made to be the first exposed portion 130a.
  • a second green sheet that becomes a plate-like piezoelectric material 140 is stacked on the first conductive material 131, and the plate-like piezoelectric material 140 is further stacked.
  • a second conductive material 141 is formed on the upper surface of the material 140 by a printing method. At this time, both end surfaces of the plate-shaped piezoelectric material 140 are not covered with the second conductive material 141 so as to be the second exposed portions 140a.
  • the green sheet and the conductive material forming the plate-like piezoelectric material are alternately stacked in this manner, and then subjected to a pressure sintering process to obtain a piezoelectric element block 150 as shown in FIG. 3 (c).
  • the piezoelectric element block 150 is bonded to the substrate 110, and a diamond cutter or the like is used to cut the first slit reaching the substrate 110 using a cutting tool. 16a and 16b are formed.
  • a gold (Au) thin film is formed by thin film forming means such as vacuum evaporation, and the upper surface of the substrate 110, the end surface of the piezoelectric element block 150, and the first slits 160a and 160b are formed.
  • An electrode film 16 1 is formed on the inner surface.
  • the second slit 163 shown in FIG. 5 (not shown in FIG. 7) is added to the laminated piezoelectric actuator block 162 thus formed.
  • the first slit 1 It is formed almost perpendicularly to 600a and 160b with a diamond cutter or the like.
  • This second slit 163 reaches the substrate 110 but has a shallower depth than the first slit 160.
  • the multilayer piezoelectric actuator 111 is completed.
  • the electrode film 161 shown in FIG. 7 is separated into a plurality of patterns, and each laminated piezoelectric actuator 111 can be individually driven.
  • the pillars 114a are bonded to the substrate 110, and the upper surfaces of the multilayer piezoelectric actuator 111 and the pillars 114b, 114a are ground simultaneously. I do.
  • the order of the surface grinding step and the step of forming the second slit 163 may be reversed.
  • the electrical connection structure for driving the multilayer piezoelectric actuator 111 is formed by thin film forming means and grinding. Easy to form.
  • the protrusion of the laminated piezoelectric actuator 111 is small, and defects such as chipping are unlikely to occur. Furthermore, since there is no difficult manufacturing process, each component can be formed with high precision, and since each component can be easily assembled by stacking and bonding, the manufacturing cost is low.
  • an ink jet head according to a third embodiment of the present invention will be described. Will be described.
  • the ink jet head according to the third embodiment differs from the ink jet head shown in the first and second embodiments in the arrangement structure of the nozzle holes 119 and the multilayer piezoelectric actuator 1. This is a configuration in which the arrangement structure of 11 is changed. Therefore, portions other than the above-described arrangement structure are substantially the same as those of the first and second embodiments, and description of the common portions will be omitted as appropriate.
  • FIG. 8 is a plan view of the nozzle plate 120, the flow channel plate 118, the vibration plate 115, and a part of the multilayer piezoelectric actuator and etaunit 112, which are cut away.
  • the axis X 1 and the axis X 2 are axes passing through the nozzle holes 119 provided in the nozzle plate 120 and indicate the arrangement direction of the nozzle holes 119.
  • the axis Y is an axis orthogonal to the axis XI and the axis X2 on the nozzle plate 120 (in this embodiment, a pair of laminated piezoelectric actuators 111, polarized in the direction perpendicular to the plane of FIG. 8).
  • 1 1 1 are arranged in series on the axis Y and the axis Z inclined at a small angle.
  • a plurality of pairs of the laminated piezoelectric actuators 111 are arranged along the axis XI and the axis X2 at an arrangement interval of P1.
  • the plurality of pressure chambers 1 16 formed in the flow path plate 1 18 are also formed in parallel with the axis Y and the axis Z inclined at a slight angle, corresponding to the laminated piezoelectric actuators 111 respectively.
  • a nozzle hole 119 is formed so as to communicate with each pressure chamber 116.
  • the nozzle holes 1-9 on the axis XI and the nozzle holes 119 on the axis X2 are both arranged at the pitch of P1 in the coaxial direction. Then, assuming that the distance between the adjacent nozzle holes 1 and 19 on the axis X 1 and the axis X 2 is P 2, and the distance between the axis X 1 and the axis X 2 is S,
  • the laminated piezoelectric body adhered to the substrate 110 is grooved at a pitch of 150 dpi, and the arrangement pitch of the nozzle holes 119 is set to a high density of 300 dpi.
  • the inclination ⁇ ⁇ is a very small inclination of about 0.33 radians, the shape of the laminated piezoelectric actuator 111 and the pressure chamber 111 is actually changed to an extreme parallelogram as shown in FIG. It did not take shape.
  • the configuration other than the laminated piezoelectric actuator unit 170 described later is the same as that of the above-described second embodiment.
  • the laminated piezoelectric unit 170 of this embodiment will be described along with the manufacturing process. '
  • the laminated piezoelectric block 17 1 is formed by alternately laminating a plate-shaped piezoelectric material and a conductive material and subjecting them to a pressure sintering process.
  • the center of the laminated piezoelectric block 17 1 In this case, the first slits 17 2a and 17 2b are formed, and the drive current collectors 17 3a and the first slit 17 A common collector electrode 173b is formed in each of 2a and 172b.
  • a second slit similar to the second slit 163 (see FIG. 5) in the second embodiment is provided on the laminated piezoelectric block 17 1 thus formed by the first slit.
  • the slits are formed at a constant pitch almost perpendicular to the slits 17a and 17b. As a result, a multilayer piezoelectric actuator unit 170 is completed.
  • the drive collector electrode 173a is separated by another slit processing at the same pitch as the second slit, and is separated into each laminated piezoelectric block 1771. Another drive electrode is formed.
  • the diaphragm 1 15, the flow path plate 1 18, and the nozzle plate 120 are overlapped and joined to complete an ink jet head.
  • the base plate 110 and the columns 114a and 114b in the ink jet head of the second embodiment are not formed as separate members but are formed by the laminated piezoelectric actuator itself. It is in the point which did.
  • the bottom of the laminated piezoelectric block 171, and the vicinity of the outer end and the center of the block 171, are connected to each other to drive the plate-shaped piezoelectric materials 130, 140 one by one.
  • One of the opposing conductive materials 13 1 and 14 1 does not exist. Therefore, these portions do not deform even when a voltage is applied to the laminated piezoelectric block 17 1. Therefore, the bottom part of the laminated piezoelectric block 171 is used as a substrate, and the outer end and the center of the block 171 are used as pillars, thereby reducing the number of parts.
  • the cost of parts can be reduced, the number of manufacturing steps can be reduced, and the manufacturing can be simplified.
  • the configuration of the eject head of the present embodiment is the same as that of the above-described first to fourth embodiments, except for the laminated piezoelectric actuator unit 180 described later.
  • This embodiment is a modification of the bonding structure of the laminated piezoelectric actuator, the diaphragm, and the flow path plate in the above-described first to fourth embodiments. That is, as shown in FIG. A plurality of stacked piezoelectric actuator units 180 arranged in each case are alternately divided into a driving actuator 183 and a non-driving actuator 184 in each row. The non-driving actuators 184 provided in every other row are used as pillars.
  • the diaphragm 18 1 is joined to the upper end surface of the driving actuator 18 3 and the non-driving actuator 18 4 as a support, and the flow path plate 18 2 is joined to the upper surface of the diaphragm 18 1. I have. Here, diaphragm 18 1 is sandwiched between non-driven actuator 18 and partition wall of flow path plate 18 2.
  • a nozzle plate 120 is connected to the upper end surface of the flow path plate 18. .
  • the supporting condition of the diaphragm 18 1 is constant, so that a variation in the ink discharge performance can be prevented, and interference between adjacent pressure chambers can be prevented.
  • FIG. 11 An ink jet head according to a sixth embodiment of the present invention will be described with reference to FIGS. 11 and 12.
  • FIG. 11 An ink jet head according to a sixth embodiment of the present invention will be described with reference to FIGS. 11 and 12.
  • the ink jet head according to the sixth and subsequent embodiments of the present invention has substantially the same configuration as the ink jet head according to the fifth embodiment described so far, with respect to the laminated piezoelectric actuator unit.
  • the configuration of the pressure chamber and the principle of ink ejection are essentially different.
  • the structure in which the pressure chamber is pushed by the laminated piezoelectric actuator provided outside the pressure chamber to discharge the ink is used.
  • a pressure chamber is formed inside the laminated piezoelectric actuator.
  • the first plate-shaped piezoelectric material 1a is bonded to the second plate-shaped piezoelectric material 1b via the first conductive material 2a.
  • the second plate-shaped piezoelectric material 1b is bonded to the third plate-shaped piezoelectric material 1c via the second conductive material 2b.
  • the first plate-shaped piezoelectric material 1a is polarized in the thickness direction
  • the second plate-shaped piezoelectric material 1b is polarized in the opposite direction to the first plate-shaped piezoelectric material 1a.
  • the third plate-shaped piezoelectric material 1c is polarized in the opposite direction to the second plate-shaped piezoelectric material 1b.
  • the partition 10 is formed by sequentially laminating a necessary number of conductive materials and plate-like piezoelectric materials in the same configuration.
  • a first collector electrode 3a made of a gold (Au) thin film or the like formed by a thin film forming means such as a vacuum evaporation method is provided.
  • the first conductive material 2a, the third conductive material 2c, and the like are electrically connected to the first collector electrode 3a.
  • a second collector electrode 3b is provided on the other end surface of the partition wall 10 by the same method as the first collector electrode 3a, and the second conductive material 2b and the fourth conductive material 2d and the like are electrically connected to the second collector electrode 3b.
  • the partition wall 10 functions as a piezoelectric element block.
  • a plurality of the partition walls 10 are arranged in a matrix on the substrate 11 where the ink supply port 13 is opened. These partition walls 10 are fixed to the substrate 11 with an adhesive, forming vertical gaps 20 and 21 and a horizontal gap 29 between the partition walls 10.
  • a sealing member 22 is adhesively fixed on the substrate 11 so as to be in contact with the outer end surface of the partition wall 10 in the longitudinal direction.
  • a lid 14 is provided so as to cover the vertical gaps 20 and 21 and the upper surface of the sealing member 22, and is surrounded by the partition wall 10, the sealing member 22 and the lid 14.
  • a plurality of pressure chambers 15 are formed.
  • the lid 14 is formed with a plurality of ink jet ports 23 communicating with the respective pressure chambers 15.
  • a wiring pattern 25 electrically connected to the collecting electrodes 3a and 3b of the partition wall 10 is provided on the upper surface of the substrate 11.
  • the wiring pattern 25 is connected to the flexible wiring board 26, and an external driving voltage is applied to the collecting electrode of the partition wall 10 via the flexible wiring board 26 and the wiring pattern 25.
  • 3a, 3b I have.
  • the ink supply port 13 can be supplied with ink from a common ink reservoir of an ink cartridge.
  • the ink supply port 13 is formed on the substrate 11 in this embodiment, it may be formed on the sealing member 22 or the lid 14.
  • the partitions 10 which are laminated piezoelectric actuators, are arranged in two rows, and the ink ejection ports 23 are opened in the thickness direction. I did it.
  • the partition walls 10 may be arranged in a single row depending on the application.
  • This second plate-shaped piezoelectric material 1b is polarized in the thickness direction opposite to the electric field. Therefore, the second plate-shaped piezoelectric material 1 b is contracted in the thickness direction (d 3 3-way direction).
  • Each of the laminated plate-shaped piezoelectric materials undergoes the same deformation as the second plate-shaped piezoelectric material 1b, and the deformation in the entire thickness direction is caused by the lamination of the plate-shaped piezoelectric material having electrodes formed on both sides.
  • m X ⁇ t In proportion to the number m, m X ⁇ t
  • the partition 1 0 is a piezoelectric material, occurred elongation in length direction (d 3 I direction), by the deformation can also reduce the volume of the pressure chamber 1 5, the force that occurs due to the deformation in the thickness direction of the above-mentioned plate-shaped piezoelectric material (d 3 3 direction) is large, thereby the cross-sectional area of the pressure chamber 1 5 S Then, the volume of only SX m X ⁇ t contracts. Due to the contraction of the volume, that is, the change in the volume, a pressure is generated in the pressure chamber 15, and the ink droplet 17 can be ejected from the ink ejection port 23.
  • the amount of change in the volume of the pressure chamber 15 needs a certain amount to form the ink droplet 17.
  • a single piezoelectric element block is used. With this configuration, a sufficiently large volume change can be obtained. Therefore, a stable ink droplet 17 can be formed.
  • the cross-sectional area S of the pressure chamber is one step when the piezoelectric element block is constituted by one piezoelectric element block. m, and the pressure chamber can be downsized.
  • the length of the pressure chamber 15 can be reduced. This is advantageous for ink supply, as described below.
  • the same amount of ink as the discharged ink droplets 17 is quickly supplied from the ink supply port 13 into the pressure chamber 15. There must be.
  • the ink supply port 13 opens to the pressure chamber 15 at the end opposite to the ink injection port 23.
  • the duct resistance of the ink flow path formed in the length direction of the pressure chamber 15 is small and short.
  • the laminated piezoelectric element The thickness direction of the partition wall 10 composed of blocks, that is, the height dimension of the pressure chamber 15 depends on the thickness and the number of laminated piezoelectric materials. By increasing the number of plate-shaped piezoelectric materials, the height of the pressure chamber 15 can be increased, and the volume change can be increased.
  • the generated pressure is proportional to the volume change Z pressure chamber volume. For this reason, the increase in the volume of the pressure chamber can be compensated for by the volume change, so that the discharge force does not decrease.
  • the sectional area of the pressure chamber 15 can be increased. For this reason, the pipe resistance of the ink flow path formed in the pressure chamber 15 can be reduced, and the length of the ink flow path can be shortened. Therefore, the ink supply capacity is improved. Thus, a stable ink droplet 17 can be formed continuously. For this reason, the characteristics when ink droplets 17 are continuously ejected are improved.
  • the volume change of the pressure chamber does not change, but the volume increases by the increase in the thickness of the pressure chamber, and the generated pressure decreases.
  • the applied voltage may be increased.
  • the piezoelectric element block is configured by laminating a plurality of plate-shaped piezoelectric materials, the amount of deformation of the piezoelectric element block can be amplified in proportion to the number of laminated layers. . Therefore, the applied voltage required to obtain a certain amount of deformation can be made lower than that of a piezoelectric element block formed of a single piezoelectric material, and low-voltage driving of 50 V or less can be performed.
  • the most characteristic feature of the ink jet head according to the present embodiment is that a plurality of pressure chambers 15 can be arranged in a matrix on the substrate 11. As a result, as shown in FIG. 11, independent pressure chambers 15a and 15b can be formed on the vertical gap 21.
  • the independent pressure chambers 15 on the substrate 11 are formed in a matrix.
  • partition wall 10 is composed of the laminated plate-like piezoelectric materials and that a large amount of deformation can be obtained by driving this, that is, a large amount of deformation can be obtained.
  • 5 can be made smaller, and accordingly, a plurality of independent pressure chambers 15 can be arranged in a matrix on the substrate 11.
  • the ink is ejected by the contraction of the piezoelectric element block.
  • the direction of the electric field to be generated and the polarization direction of the plate-shaped piezoelectric material are set to the same direction, and the thickness of the plate-shaped piezoelectric material is increased.
  • the vertical gap 20 shown in FIG. 11 is filled with ink as a pressure chamber 15, and the adjacent vertical gap 21 forms a gap-free space filled with ink. .
  • the pressure chambers 15 formed by the adjacent vertical gaps 20 and 20a can be individually driven.
  • the partition wall 10 between the adjacent pressure chambers 15 is shared for driving the pressure chambers 15. Therefore, it is necessary to set conditions so that when one of the pressure chambers 15 is driven, the ink droplets do not fly out of the adjacent pressure chambers.
  • Complicated settings such as selecting a drive timing that prevents the ink from popping out according to the liquid level vibration of the meniscus of the injection port are required.
  • the vertical gap 21 serving as the dummy space is formed only for the function of making the partition wall 10 of the adjacent pressure chamber 15 independent, it is sufficient that the width is such that the adjacent partition wall 10 does not contact. .
  • FIGS. 13 (a), 13 (b), 14 (c), 14 and 15 show a method of manufacturing the above-described inkjet head according to the present embodiment. It will be described with reference to FIG.
  • the first conductive material 2a is placed on the upper surface of a first green sheet made of piezoelectric ceramic, which is the first plate-like piezoelectric material 1a. Is formed by a printing method. At this time, the surface central part 41a of the first plate-shaped piezoelectric material 1a is exposed without being covered with the first conductive material 2a.
  • a new second green sheet to be the second plate-like piezoelectric material 1b is stacked on the first conductive material 2a, and the A second conductive material 2b is formed on the surface by a printing method. At this time, both edge portions of the second plate-shaped piezoelectric material 1b are exposed without being covered with the second conductive material 2b.
  • a piezoelectric element block 6 as shown in FIG. 13 (c) is obtained. 0 can be formed. ⁇ Next, as shown in FIG. 14, a piezoelectric element block 60 is bonded to the upper surface of a substrate 11 made of a glass material or the like.
  • a part of the piezoelectric element block 60 and a part of the substrate 11 are re-cut with a cutting tool such as a diamond cutter to form a lateral gap 29. Further, while the upper surface 61 of the piezoelectric element block 60 is masked, a thin film made of a conductive material such as gold (Au) is applied to the entire surface of the piezoelectric element block 60 and the substrate 11 by a vacuum deposition method or the like. The electrode 70 is formed.
  • a cutting tool such as a diamond cutter
  • the first conductive material 2a, the second conductive material 2b, and the like in the piezoelectric element block 60 are applied to the electrodes 70a and 70b formed on the wall surfaces 70a and 70b of the piezoelectric element block 60, respectively. Is electrically connected to the
  • the piezoelectric element block 60 and a part of the substrate 11 are cut by a cutting tool such as a diamond cutter in a direction perpendicular to the lateral gap 29.
  • a cutting tool such as a diamond cutter
  • a partition 10 a vertical gap 20, and a vertical gap 21 are formed, and the piezoelectric elements 0, 0, and 0 are separated from the electrode 70.
  • a sealing member 22 is adhered to the end of the partition 10, and a lid 14 made of a glass material or the like in which the ink ejection port 23 is formed is adhered to the partition 10.
  • a plurality of pressure chambers 15 can be formed.
  • the first current collector 80a and the second current collector each electrically connected to a conductive material for driving the piezoelectric element block.
  • 80 b and the third collector electrode 80 c can be easily formed at both ends of the partition wall 10.
  • a first current collector 80a and a second current collector 80b are provided at both ends of the first row of partition walls 10a, and By arranging the second collector electrode 80b and the third collector electrode 80c at both ends of the second row of partition walls 10b, connection with an external drive line is facilitated. So effective.
  • a wiring pattern 81 for supplying power to the first collecting electrode 80a can be formed on the substrate 11;
  • the wiring pattern 82 for supplying power to the second collecting electrode 80b and the wiring pattern 83 for supplying power to the third collecting electrode 80c can be formed simultaneously.
  • the wiring patterns 81, 82, and 83 shown in FIG. 15 are formed on the substrate 11, electrical connection with the flexible wiring board 26 shown in FIG. It has an effect.
  • the second collecting electrode 80b is a common electrode that drives the first row of partitions 1Oa and the second row of partitions 10b.
  • the manufacturing method for forming the structure of the ink jet head in the sixth embodiment has been described above, but the present invention is not limited to this structure.
  • the substrate 11 is not limited to a glass material, but may be formed of a material such as ceramic or plastic.
  • lid 14 ceramic, plastic, metal material, etc. can be applied in addition to glass material.
  • piezoelectric ceramic is used as the plate-like piezoelectric material
  • an organic high molecular weight piezoelectric film can be used.
  • No electrode is formed on the bonding surface between the partition wall 10 and the substrate 11 and between the partition wall 10 and the lid 14.
  • a plate-like piezoelectric material adjacent to the substrate and the lid can be driven by providing a conductive material on the surface of the substrate and the lid of the piezoelectric element block 60 and forming electrodes.
  • an electrode may be formed on the end face of the piezoelectric element block using a conductive coating. Then, a flexible wiring board may be directly connected from the collector electrode on the piezoelectric element block.
  • FIG. 16 An ink jet head according to a seventh embodiment of the present invention will be described with reference to FIGS. 16 and 17.
  • FIG. 16 An ink jet head according to a seventh embodiment of the present invention will be described with reference to FIGS. 16 and 17.
  • t partition wall 1 0 that is bonded by disposing a plurality of partition walls 1 0 in a row has the same structure as the sixth embodiment. That is, the partition 10 is made of the first plate-shaped piezoelectric material 1 a and the first conductive material 2. a, and the second plate-shaped piezoelectric material 1 b is bonded to the second plate-shaped piezoelectric material 1 b via the second conductive material 2 b. Are formed so as to be bonded to each other, thereby forming a laminated piezoelectric actuator.
  • the first plate-shaped piezoelectric material 1a is polarized in the thickness direction
  • the second plate-shaped piezoelectric material 1b is polarized in the opposite direction to the first plate-shaped piezoelectric material 1a.
  • the third plate-shaped piezoelectric material 1c is polarized in the opposite direction to the second plate-shaped piezoelectric material 1b.
  • a first collector electrode 3a made of a gold (Au) thin film or the like formed by a thin film forming means such as a vacuum evaporation method is provided.
  • the first conductive material 2a and the like are electrically connected to the first collector electrode 3a.
  • a second collector electrode 3b is provided on the other end surface of the partition wall 10 by the same method as the first collector electrode 3a, and the second conductive material 2b and the like are provided in the second collector electrode 3b. Is electrically connected to the collector electrode 3b.
  • the partition wall 10 functions as a laminated piezoelectric actuator.
  • the gaps 20 and 21 formed between the partition walls 10 are closed at one end surface in the length direction by the sealing member 22.
  • a nozzle plate 24 having a nozzle hole 23 is provided on the other end surface of the gaps 20 and 21.
  • the nozzle plate 24 also functions as a sealing member for the gaps 20 and 21.
  • a cover 14 is provided so as to cover the upper portions of the gaps 20 and 21.
  • the lid 14 is bonded and fixed to the upper surface of the partition 10.
  • the gap 20 forms the pressure chamber 15.
  • the gap 21 adjacent to the gap 20 is a dummy space to which no ink is supplied, as in the sixth embodiment.
  • the lid 14 has an ink supply port 13 formed therein.
  • the ink supplied from the ink supply port 13 into the pressure chamber 15 is discharged from the nozzle hole 23 in the length direction.
  • a stable ink droplet 17 can be formed as in the sixth embodiment.
  • FIG. 18 shows a modification of the sixth and seventh embodiments described above.
  • the plurality of vertical gaps 20 filled with ink may be covered with independent lids 30 respectively.
  • a coating film 40 is formed on the inner surface of the partition wall 10 forming the pressure chamber 15 shown in FIG. 18 by chemical vapor deposition using a polyparaxylene resin or the like.
  • a drive electrode that is electrically connected to the conductive material is exposed on the inner surface of the partition wall 10 that forms the pressure chamber 15. Therefore, there is a disadvantage that the usable ink is limited, for example, a water-based ink cannot be used with the structure as it is. Therefore, by forming the coating film 40 having high electrical insulation on the partition wall 10 in the pressure chamber 15, it is possible to prevent the drive electrode from coming into contact with the ink.
  • the drive electrode does not corrode or generate gas due to the chemical change of the ink, and it is possible to use any of an aqueous ink and an oily (non-aqueous) ink.
  • the conductive material is used in advance in the partition 10 that forms the pressure chamber 15 in advance.
  • ADVANTAGE OF THE INVENTION According to this invention, it can drive efficiently with little energy loss, can be manufactured at low cost by a simple structure, and can provide a small, high-density ink jet head with high reliability. Becomes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

A plurality of layers of a pair of laminated piezoelectric actuators (111) are laid on a substrate (110) so as to form a laminated piezoelectric unit. A diaphragm (115) is bonded to the upper end surface of the laminated piezoelectric actuator unit, and a flow path plate (118) is bonded to the upper surface of the diaphragm (115). Here, a plurality of pressurizing chambers (116) and ink flow paths (117) are formed in the flow path plate (118), and the pressurizing chambers (116) are disposed such that they confront the laminated piezoelectric actuators (111), respectively. Furthermore, a nozzle plate (120) having a nozzle hole (119) is bonded to the upper surface of the flow path plate (118), and ink inside the pressurizing chambers (116) is ejected via the nozzle hole (119) in a direction perpendicular to the base plate (110) by deforming the laminated piezoelectric actuators (111) widthwise by applying voltage.

Description

明 細 書 イ ンクジェッ 卜へッ ドとその製造方法及びその駆動方法 技術分野  TECHNICAL FIELD The present invention relates to an ink jet head, a method of manufacturing the same, and a method of driving the same.
この発明は、 ィ ンク液滴を画像記録媒体上へ選択的に付着させる イ ンクジェッ トヘッ ド、 その製造方法及びその駆動方法に関する。 背景技術  The present invention relates to an ink head for selectively adhering an ink droplet onto an image recording medium, a manufacturing method thereof, and a driving method thereof. Background art
今日、 その市場を大きく拡大しつつあるノ ンイ ンパク ト · プリ ン ターの内で、 原理が最も単純で、 かつカラ一印刷に好適なものと し てイ ンクジェッ ト · プリ ンタ一がある。 そのうちでも、 ドッ ト形成 時にのみィ ンク液滴を吐出する、 いわゆる ドロップ · オン · デマン ド ( D〇 D ) 型のインクジェッ ト · プリンタが主流となっている。  Today, among the non-impact printers whose markets are expanding significantly, there is an ink jet printer which is the simplest in principle and suitable for color printing. Among them, the so-called drop-on-demand (D〇D) type ink-jet printer, which ejects ink droplets only at the time of dot formation, has become mainstream.
D〇 D型のイ ンクジエツ 卜 · プリ ンタにおける代表的なへッ ド方 式としては、 例えば、 特公昭 5 3— 1 2 1 3 8号公報に開^されて いるカイザー型のものや、 特公昭 6 ' 1 — 5 9 9 1 4号公報に開示さ れているサーマルジエツ ト型のものがある。  As typical head methods in a D〇D type ink jet printer, there are, for example, a Kaiser type disclosed in Japanese Patent Publication No. 53-121838 and a special head method. There is a thermal jet type disclosed in Japanese Patent Publication No. 6'1-599914.
このうち、 特公昭 5 3— 1 2 1 3 8号公報に記載のカイザー型の イ ンクへッ ドジェッ 卜は、 小型化が難しく、 また特公昭 6 1 — 5 9 9 1 4号公報に記載のサ一マルジエツ 卜型のインクジエツ 卜へッ ド は、 高熱をインクに加えるためにイ ンクが焦げ付く という困難な問 題を抱えていた。  Of these, the Kaiser-type ink jet jet described in Japanese Patent Publication No. 53-112138 is difficult to miniaturize, and the Kaiser-type ink jet jet described in Japanese Patent Publication No. 6-59914 is difficult. The thermal jet-type ink jet head had a difficult problem in that high heat was applied to the ink, causing the ink to scorch.
以上のような欠陥を同時に解決するインクジエツ トへッ ドとして. 圧電歪定数 d 3 3を有する圧電素子を用いたもの (以下、 「 d 3 3モー ド型」 ともいう) がある。 As Inkujietsu Toe' de resolve defects as described above at the same time. One using a piezoelectric element having a piezoelectric strain constant d 3 3 (hereinafter, also referred to as "d 3 3 mode type") is.
この d 3 3モー ド型のィ ンクジエツ 卜へッ ドは、 圧電性素材の細片 (圧電素子) を使用し、 この圧電歪素子における一面と、 それに対 向する面にそれぞれ電極を形成するとともに、 この圧電歪素子を電 極間の電界方向と同じ方向に分極させることによ リ圧電歪定数 d a 3 The d 3 3 mode type I Nkujietsu Bokue' de uses strips of piezoelectric material (the piezoelectric element), and one surface of the piezoelectric strain element, to form a respective electrode on a surface against countercurrent By polarizing this piezoelectric strain element in the same direction as the direction of the electric field between the electrodes, the piezoelectric strain constant d a 3
訂正された用紙 ¾ 91) を持たせた概略構造となっている。 そして、 この圧電歪素子が電極 間に電界を発生して、 d 3 3方向に伸縮することによ り、 イ ンク圧力 室を加圧するようになっている。 Corrected form ¾ 91) It has a schematic structure with. Then, the piezoelectric strain element to generate an electric field between the electrodes, Ri by to stretch the d 3 3 direction, so as to pressurize the Lee ink pressure chamber.
この d 3 3モー ド型のイ ンクジェッ トヘッ ドとしては、 従来、 特公 平 4 — 5 2 2 1 3号公報に開示されている液室分離型のものや、 特 公平 4— 4 8 6 2 2号公報に開示されている液室伸縮型のものなど が既に公知となっている。 The Lee Nkuje'Tohe' de of the d 3 3 mode type, conventionally, Tokuoyake flat 4 - 5 2 2 1 3 No. liquid chamber separation type disclosed in Japanese ones and, Kokoku 4 4 8 6 2 The liquid chamber telescopic type disclosed in Japanese Patent Publication No. 2 has already been known.
d 3 aモー ド型ィ ンクジエツ 卜へッ ドのうち、 液室分離型のものの 構造を、 第 1 9 図に示す。 Of d 3 a mode type I Nkujietsu Bokue' de, the structure of those of the liquid chamber separation type, shown in the first 9 FIG.
すなわち、 ポリサルフォンからなる上板 2 0 1 の表面に複数のィ ンク流路を溝と して形成し、 これらィンク流路を形成した上板 2 0 1 を、 薄い板厚のポリサルフォンからなる振動板 2 0 3で覆うこと によ り、 複数の圧力室 2 0 2 を形成してある。 振動板 2 0 3には、 複数の電極パターン 2 0 8が形成してある。  That is, a plurality of ink flow paths are formed as grooves on the surface of an upper plate 201 made of polysulfone, and the upper plate 201 formed with these ink flow paths is formed into a diaphragm made of thin polysulfone. A plurality of pressure chambers 202 are formed by being covered with 203. A plurality of electrode patterns 208 are formed on the diaphragm 203.
一方、 スリッ ト 2 0 7 によ り分割された圧電素子 2 0 4には、 複 数の電極 2 0 6が設けてある。 そして、 この圧電素子 2 0 4は、 振 動板 2 0 3上の複数の電極パターン 2 0 8にそれぞれ電極 2 0 6 を 接合した状態で、 圧力室 2 0 2に隣接して設置されている。  On the other hand, a plurality of electrodes 206 are provided on the piezoelectric element 204 divided by the slits 207. The piezoelectric element 204 is disposed adjacent to the pressure chamber 202 with the electrodes 206 bonded to the plurality of electrode patterns 208 on the vibration plate 203, respectively. .
圧電素子 2 0 4 における電極 2 0 6 と反対側の面には電極 2 0 5 が形成してある。 この電極 2 0 5 を形成した面上には、 共通電極 2 1 0 を形成したコの字形状の剛性部材 2 0 9が積層してある。 さら に剛性部材 2 0 9 は、 上板 2 0 1 のイ ンク流路を形成していない端 縁部分に振動板 2 0 3 を介して接合してある。  An electrode 205 is formed on the surface of the piezoelectric element 204 opposite to the electrode 206. On the surface on which the electrode 205 is formed, a U-shaped rigid member 209 on which the common electrode 210 is formed is laminated. Further, the rigid member 209 is joined to the edge portion of the upper plate 201 where the ink flow path is not formed via the diaphragm 203.
振動板 2 0 3上に形成した各電極パターン 2 0 8は、 圧電素子 2 0 4の一端に設けた各電極 2 0 6 と電気的に接続されており、 一方、 共通電極 2 1 0は、 圧電素子 2 0 4の他端に設けた電極 2 0 5 と電 気的接続されている。  Each electrode pattern 208 formed on the vibration plate 203 is electrically connected to each electrode 206 provided at one end of the piezoelectric element 204, while the common electrode 210 is It is electrically connected to an electrode 205 provided at the other end of the piezoelectric element 204.
振動板 2 0 3上に形成した個々の電極パターン 2 0 8 と共通電極 2 1 0 との間に、 圧電素子 2 0 4の分極と同じ方向に電界が生じる ように、 外部から電圧を印加すると、 スリ ッ ト 2 0 7 によって分割  When a voltage is applied from the outside so that an electric field is generated between the individual electrode patterns 208 formed on the vibration plate 203 and the common electrode 210 in the same direction as the polarization of the piezoelectric element 204. Divided by slit 207
瞧丁正された用紙 (¾¾|IJ91) された圧電素子 2 0 4は、 電界方向に伸びる。 瞧 Sheet paper (¾¾ | IJ91) The piezoelectric element 204 extends in the direction of the electric field.
そこで、 剛性部材 2 0 9 と上板 2 0 1 とを強固に結合し、 かつ剛 性部材 2 0 9に圧電素子 2 0 4の変形力に耐えられるような剛性を もたせれば、 圧電素子 2 0 4は、 振動板 2 0 3 をたわませ、 圧力室 2 0 2内に充填するイ ンクを加圧する。 その結果、 ノズル 2 1 1 か らイ ンク を噴射させることができる。  Therefore, if the rigid member 209 and the upper plate 201 are firmly connected to each other and the rigid member 209 has rigidity enough to withstand the deformation force of the piezoelectric element 204, the piezoelectric element 2 Numeral 04 deflects the diaphragm 203 and pressurizes the ink filling the pressure chamber 202. As a result, ink can be ejected from the nozzle 211.
第 2 0図は d 3 3モ一 ド型イ ンクジエツ トへッ ドの他の従来例を示 している。 The second 0 figure shows another conventional example of d 3 3 mode one de type b Nkujietsu Toe' de.
この図に示すイ ンクジエツ 卜へッ ドは、 第 1 9図に示したイ ンク ジェッ 卜へッ ドにおける圧電素子 2 0 4 を、 板状圧電材料 2 1 2 と 導電材料からなる内部電極 2 1 3 とを交互に積層してなる積層圧電 ァクチユエータ 2 1 4で構成したものである。  In the ink jet head shown in this figure, the piezoelectric element 204 in the ink jet head shown in FIG. 19 is replaced by a plate-shaped piezoelectric material 212 and an internal electrode 21 made of a conductive material. 3 and a laminated piezoelectric actuator 214 which is alternately laminated.
この構成によれば、 板状圧電材料 2 1 2の変形が積層枚数だけ加 算されるので、 駆動電圧を低く設定しても、 インク液滴を噴射させ るのに充分な厚さ方向 ( d 3 a方向) の変形が、 積層圧電ァクチユエ ータ 2 1 4に得られる。 According to this configuration, the deformation of the plate-shaped piezoelectric material 212 is added by the number of layers, so that even if the driving voltage is set low, the thickness direction (d 3 modification of a direction) is obtained in the laminated piezoelectric Akuchiyue over motor 2 1 4.
このとき、 積層圧電ァクチユエータ 2 1 4は、 分極方向と垂直な 方向 (d3 1方向) へも変形を生じる。 しかし、 変形量が積層枚数分 だけ加算される d 3 3方向への変形の方が、 圧力室 2 0 2に大きな圧 力を発生させることができる。 At this time, the laminated piezoelectric actuator 2 14 also deforms in a direction perpendicular to the polarization direction (d 31 direction). However, it is possible to deformation amount is more modifications to d 3 3 direction are added by lamination number of sheets is to generate a large pressure in the pressure chamber 2 0 2.
第 2 1 図は、 d 3 3モー ド型イ ンクジェッ トヘッ ドのうち、 液室伸 縮型のものの構造を示している。 The second 1 figure of d 3 3 mode type b Nkuje'Tohe' de illustrates the structure of those EkishitsuShin condensation type.
P Z T (チタン酸ジルコン酸鉛) のような圧電性素材の細片を圧 電素子 2 2 2 とし、 これを導電性の支持基板 2 2 1 と絶縁性の蓋 2 2 3 との間に平行に固着してある。  A small piece of piezoelectric material such as PZT (lead zirconate titanate) is used as a piezoelectric element 222, which is placed in parallel between the conductive support substrate 222 and the insulating lid 222. It is stuck.
この圧電素子 2 2 2間には、 多数の細長いチャネルが形成してあ る。 これらのチャネルは、 それぞれイ ンクが充填されるイ ンク室兼 イ ンク流路としてのイ ンクチャネル 2 2 5 と、 空隙を形成するダミ —チャネル 2 2 6 とを、 交互に設けた構成となっている。  A large number of elongated channels are formed between the piezoelectric elements 222. These channels have an ink channel 225 filled with ink and an ink channel 225 serving as an ink flow path, and a dummy channel 226 forming an air gap are alternately provided. ing.
そして、 インクチャネル 2 2 5は、 一方の端部が共通のインク溜  One end of the ink channel 2 25 has a common ink reservoir.
訂正された用紙 (MJ91) 2 2 7に接続されており、 このインク溜 2 2 7からインクを供給さ れる。 また、 他方の開放端は、 印字ノズルになっている。 Corrected form (MJ91) It is connected to 227, and ink is supplied from this ink reservoir 227. The other open end is a print nozzle.
圧電素子 2 2 2は、 矢印 2 3 0で示すように、 支持基板 2 2 1 と 垂直な方向に分極されており、 蓋 2 2 3側の上面部に電極 2 2 4が. イ ンクチャネル 2 2 5に対応して設けてある。 この電極 2 2 4は、 圧電素子二個を一組にして、 各組毎に設けられている。  The piezoelectric element 222 is polarized in a direction perpendicular to the support substrate 221 as shown by an arrow 230, and an electrode 222 is provided on the upper surface of the lid 222 side. It is provided corresponding to 25. The electrodes 224 are provided for each set of two piezoelectric elements.
電極 2 2 4 と導電性の支持基板 2 2 1 との間に電圧を印加すると. インクチャネル 2 2 5の両側のおかれた圧電素子 2 2 2が、 厚さ方 向に伸びるとともに幅方向に縮む。 この変形によ り、 イ ンクチヤネ ル 2 2 5の容量が増加する。  When a voltage is applied between the electrode 2 24 and the conductive support substrate 2 21. The piezoelectric elements 22 placed on both sides of the ink channel 2 25 extend in the thickness direction and in the width direction. Shrink. Due to this deformation, the capacity of the ink channel 225 increases.
電極 2 2 4への電圧の印加を停止すると、 2個の圧電素子 2 2 2 は、 もとの形状に戻るので通路容積は急激に縮小する。 その結果、 その通路の端部に形成された印字ノズルからィンク液滴 2 2 8が放 出される。  When the application of the voltage to the electrodes 224 is stopped, the two piezoelectric elements 222 return to the original shape, so that the passage volume rapidly decreases. As a result, the ink droplet 228 is discharged from the print nozzle formed at the end of the passage.
本発明は、 上述したように圧電性素材の細片を電界方向に分極し て圧電歪定数 d 3 3持たせた構造のィ ンクジェッ トヘッ ド、 すなわち d 3 3モー ド型イ ンクジエツ 卜へッ がかかえる、 次のような問題を 解決しようとするものである。 The present invention, the piezoelectric strain constant d 3 3 have allowed construction of I Nkuje'Tohe' de polarized strips of piezoelectric material in the direction of the electric field as described above, that is, d 3 3 mode type b Nkujietsu Bokue' It tries to solve the following problems.
すなわち、 第 1 の課題として、 構造上、 印字ノズルの配列密度お よび集積度を大きく して小形化を図るのが困難なことが挙げられる 例えば、 第 1 9図に示した液室分離型のィ ンクジエツ 卜へッ ドで は、 各々の圧電素子 2 0 4 を分離するスリ ッ 卜 2 0 7の配列方向に 圧電素子 2 0 4 を一列に並べるため、 スリ ツ 卜 2 0 7の加工限界に よって印字ノズル 2 1 1 のピッチ寸法が決まつてしまい、 ノズルピ ツチを高密度化できない。 なお、 スリ ッ ト加工の限界は、 ワイヤソ ゥ放電加工によれば、 1 インチあたり 1 5 0から 2 0 0本程度であ る。  That is, the first problem is that it is difficult to reduce the size by increasing the arrangement density and the degree of integration of print nozzles due to the structure.For example, the liquid chamber separation type shown in FIG. 19 In the ink jet head, since the piezoelectric elements 204 are arranged in a line in the arrangement direction of the slits 207 separating each piezoelectric element 204, the processing limit of the slit 207 is limited. Therefore, the pitch dimension of the print nozzles 211 is determined, and the nozzle pitch cannot be increased in density. The limit of the slit machining is about 150 to 200 per inch according to wire-source electric discharge machining.
また、 第 2 1 図に示した液室伸縮型のィ ンクジェッ トへッ ドでも、 同様に圧電素子 2 2 2の配列ピッチに眼界があるとともに、 イ ンク を吐出しないダミーチャネル 2 2 6がー列おきに必要なため、 なお  Similarly, in the ink jet head of the liquid chamber expansion and contraction type shown in FIG. 21, the arrangement pitch of the piezoelectric elements 222 has an eye field, and the dummy channel 222 which does not discharge ink is formed. Since it is necessary for every other column,
瞧丁正された用紙 ¾目、1 1) 一層ノズルを高密度に配列することが困難である。 瞧 Traded paper 用紙 Item, 1 1) It is difficult to arrange the nozzles at a higher density.
第 2の課題と しては、 圧電性素子を駆動するための電気的接続が 難しく、 製作工数がかかるとともに電気的接続の信頼性も悪いとい うことが挙げられる。  The second problem is that electrical connection for driving the piezoelectric element is difficult, which requires more man-hours for manufacturing and lower reliability of the electrical connection.
例えば、 第 1 9 図に示した液室分離型のものでは、 電極 2 0 5お よび 2 0 6 を、 圧電素子 2 0 4における振動板 2 0 3に対向する面 側と、 剛性部材 2 0 9 に対向する面側とに別々に製作しなければな らない。  For example, in the liquid chamber separation type shown in FIG. 19, the electrodes 205 and 206 are connected to the surface of the piezoelectric element 204 facing the vibration plate 203 and the rigid member 20. 9 must be manufactured separately on the side opposite to.
また、 これらの電極 2 0 5、 2 0 6だけで圧電素子 2 0 4 を駆動 する場合は、 圧電素子 2 0 4 と電極 2 0 5および 2 0 6間で隙間の ない接合が必要であリ、 この隙間なく接合する加工技術に非常な困 難が伴っていた。  Further, when the piezoelectric element 204 is driven only by these electrodes 205 and 206, it is necessary to form a joint without any gap between the piezoelectric element 204 and the electrodes 205 and 206. However, the processing technology for joining without gaps was accompanied by great difficulty.
さらにまた、 圧電素子 2 0 4上に別の電極を形成する場合には、 製作コス トが高価格となる欠点があった。  Furthermore, when another electrode is formed on the piezoelectric element 204, there is a disadvantage that the manufacturing cost is high.
さらに、 外部からの信号線を電極に接続するに際し、 振動板 2 0 3上の電極パターン 2 0 8 と共通電極 2 1 0 との位置が異なるため, 個別に電気的接続をとる手間が必要である。  Furthermore, when connecting external signal lines to the electrodes, the position of the electrode pattern 208 on the diaphragm 203 and the position of the common electrode 210 are different, so it is necessary to individually make electrical connections. is there.
また、 振動板 2 0 3にはあらかじめ電極パタ一ン 2 0 8 を製作し ておく必要があり、 しかも振動板 2 0 3の材料は非導電性材料に限 定される。  Further, it is necessary to form an electrode pattern 208 on the diaphragm 203 in advance, and the material of the diaphragm 203 is limited to a non-conductive material.
第 2 1 図に示した液室伸縮型のものでも、 同様に電極 2 2 4 と共 通電極となる導電性の支持基板 2 2 1 とを別々に電気的に接続しな ければならない。  In the case of the liquid chamber expansion / contraction type shown in FIG. 21 as well, the electrode 224 and the conductive support substrate 221 serving as a common electrode must be electrically connected separately.
第 3の課題としては、 インク滴を吐出するノズル孔部分について. インクの目詰ま りゃィ ンク漏れ等のおそれがある点が挙げられる。 すなわち、 液室分離型、 液室伸縮型ともに、 高密度に配列した圧 電性素子の端部にィンクを噴射するノズルを形成しているので、 ノ ズル孔のィ ンク液面であるメニスカスからの水分蒸発を防ぐための キャップ機構や、 ノズル孔が目詰ま リ したとき行う吸引機構を取り 付けるスペースを確保することができない。  A third problem is that there is a risk of clogging of ink and leakage of ink at a nozzle hole portion for discharging ink droplets. In other words, both the liquid chamber separation type and the liquid chamber expansion / contraction type have nozzles that eject ink at the ends of the piezoelectric elements arranged at high density, so that the meniscus that is the ink liquid level of the nozzle holes It is not possible to secure a space for installing a cap mechanism to prevent evaporation of water and a suction mechanism to be used when the nozzle hole is clogged.
訂正された用紙 (MM91) また仮に、 圧電性素子の端部にノズル孔を形成した比較的面積の 広いノズル板を使用した構造と しても、 基板、 圧電素子、 振動板な ど非常に薄い厚さの部材との間でノズル板を接合しなければならな いので、 ィ ンクが漏れないようにノズル板をシールすることが困難 である。 Corrected form (MM91) Even if a relatively large nozzle plate with a nozzle hole formed at the end of the piezoelectric element is used, it can be used between a very thin member such as a substrate, a piezoelectric element, and a diaphragm. Since it is necessary to join the nozzle plate with the nozzle, it is difficult to seal the nozzle plate so that the ink does not leak.
金属性のノズル板を使用した場合にも、 ポリサルフォンからなる 上板 2 0 1 と振動板 2 0 3 とは線膨張係数が異なるため、 温度変化 によって部材の変形が起こ り、 構造破壊を生じてしまう。  Even when a metallic nozzle plate is used, since the upper plate 201 made of polysulfone and the diaphragm 203 have different linear expansion coefficients, the members are deformed due to a temperature change, resulting in structural destruction. I will.
第 4の課題と しては、 エネルギー損失や各圧力室間の干渉が生じ やすく、 そのためインクの吐出力不足やばらつきなどを生じ、 へッ ド性能が悪い点が挙げられる。  The fourth problem is that energy loss and interference between the pressure chambers are liable to occur, resulting in insufficient or uneven ink ejection force and poor head performance.
圧電素子が厚さ方向 ( d 3 a方向) に変位するときに、 その垂直方 向 (d3 1方向) にも変位が発生する。 When the piezoelectric element is displaced in the thickness direction (d 3 a direction), even displacement occurs in the vertical Direction (d 3 1 direction).
圧電素子と振動板または基板とは、 電極を介して接合されている ので、 圧電素子の d3 1方向の変位により、 振動板との間にュニモル フ変形が発生する。 The piezoelectric element and the diaphragm or the substrate, since it is bonded via the electrode, by d 3 1 the direction of displacement of a piezoelectric element, Yunimoru full deformation occurs between the diaphragm.
このため液室分離型では、 このュニモルフ変形によって振動板 2 0 3がたわみを生じる。 そのため、 圧電素子 2 0 4の厚さ方向の変 位に損失を生じ、 ィンク噴射には余分なエネルギーを必要とする。  For this reason, in the liquid chamber separation type, the diaphragm 203 bends due to the unimorph deformation. Therefore, a loss is generated in the displacement of the piezoelectric element 204 in the thickness direction, and extra energy is required for the ink ejection.
また、 液室伸縮型では、 ュニモルフ変形が支持基板 2 2 1 と絶縁 性の蓋 2 2 3 とをたわませ、 各イ ンクチャネル間の干渉を引き起こ す。  In the liquid chamber expansion / contraction type, the unimorph deformation causes the supporting substrate 22 1 and the insulating lid 22 3 to bend, causing interference between the ink channels.
第 5の課題は、 高い組立精度が必要でありへッ ド製作が困難な点 が挙げられる。  The fifth issue is that high assembly accuracy is required and head manufacturing is difficult.
第 1 9 図に示した液室分離型のィ ンクジェッ トヘッ ドでは、 圧電 素子 2 0 4の微小な変形を振動板 2 0 3に伝達するために、 圧電素 子 2 0 4 と剛性部材 2 0 9 とは、 段差のない高精度な位置決めによ つて、 振動板 2 0 3上に接合しなければならない。  In the ink jet head of the liquid chamber separation type shown in FIG. 19, in order to transmit the minute deformation of the piezoelectric element 204 to the diaphragm 203, the piezoelectric element 204 and the rigid member 204 are required. 9 must be joined to the diaphragm 203 by high-precision positioning without steps.
しかしながら、 圧電素子 2 0 4の一端に電極 2 0 6 を形成し、 こ の電極 2 0 6 を振動板 2 0 3に接触させる従来の構成では、 剛性部 材 2 0 9および圧電素子 2 0 4における振動板 2 0 3への接合部分 を、 平面研削などの加工によって面だしすることができない。 この ため、 精度の高い接合は困難であった。 However, in the conventional configuration in which the electrode 206 is formed at one end of the piezoelectric element 204 and the electrode 206 is brought into contact with the diaphragm 203, the rigid portion is not provided. The joining portion of the material 209 and the piezoelectric element 204 to the diaphragm 203 cannot be exposed by processing such as surface grinding. For this reason, high-precision joining was difficult.
この接合精度が悪いと、 それぞれの圧力室 2 0 2に発生する圧力 にばらつきを生じるため、 それがィ ンク噴射特性のばらつきとなつ てしまう。  If the joining accuracy is poor, the pressure generated in each of the pressure chambers 202 will vary, which will result in variations in the ink injection characteristics.
本発明は、 d 3 3モー ド型インクジエツ トへッ ドにおける上述した ような問題を解決し、 エネルギー損失が少なく効率的に駆動でき、 簡単な構成によ り低コス 卜で製作可能で、 そのうえ信頼性の高い小 形で高密度なイ ンクジェッ トヘッ ドを提供するとともに、 そのよう なイ ンクジエツ 卜へッ ドの製造方法および駆動方法を提供するもの である。 発明の開示 The present invention is to solve the problems as described above in d 3 3 mode type Inkujietsu Toe' de, energy loss is small can be efficiently driven, can be fabricated in by Ri low cost Bok configured simply, moreover An object of the present invention is to provide a small, high-density inkjet head with high reliability, and a method of manufacturing and driving such an inkjet head. Disclosure of the invention
上記目的を達成するため本発明のイ ンクジェッ トヘッ ドは、 次ぎ の構成を採用する。  In order to achieve the above object, the inkjet head of the present invention employs the following configuration.
すなわち、 本発明による第 1 のイ ンクジェッ トヘッ ドは、 基板と, 両端面に集電極を形成し互いに対向するように基板上に並べた圧電 歪定数 d 3 3を有する一対の積層圧電ァクチユエ一タの複数列からな る積層圧電ァクチユエータユニッ トと、 各積層圧電ァクチユエータ の基板中央部にある対向する端面に形成した集電極の相互間を結合 してなるコモン電極と、 各積層圧電ァクチユエータの他方の端面に 形成した集電極からなる駆動電極とを備えており、 各積層圧電ァク チユエータの駆動によって圧力室内のインクを噴射させるようにし ている。 That is, the first i Nkuje'Tohe' de according to the present invention, a substrate and a pair having a piezoelectric strain constant d 3 3 which are arranged on the substrate so as to face each other to form a collecting electrode on both end surfaces laminated piezoelectric Akuchiyue Ichita A multi-row multilayer piezoelectric actuator unit; a common electrode formed by coupling between the collector electrodes formed on opposing end faces in the center of the substrate of each multilayer piezoelectric actuator; and a multilayer piezoelectric actuator And a driving electrode formed of a collecting electrode formed on the other end surface of the piezoelectric actuator, and the ink in the pressure chamber is ejected by driving each of the laminated piezoelectric actuators.
この発明の構成によれば、 実装密度が高く高密度で小型のィ ンク ジエツ 卜へッ ドを提供できる。  ADVANTAGE OF THE INVENTION According to the structure of this invention, a mounting density can be provided and a high-density and small ink jet head can be provided.
また、 上記の本発明による第 1 のイ ンクジェッ トヘッ ドは、 基板 の上面に配設した積層圧電素子プロックと、 この積層圧電素子プロ ックの中央部を分離する第 1 のスリ ッ トと、 この第 1 のスリッ トよ リ浅くかつ同スリ ッ トとほぼ直行する方向に積層圧電素子プロック を切り欠く複数本の第 2のスリ ッ トとによ り、 積層圧電ァクチユエ 一タュニッ 卜を簡単に形成することができる。 Further, the above-described first inkjet head according to the present invention includes a multilayer piezoelectric element block disposed on the upper surface of the substrate, a first slit for separating a central portion of the multilayer piezoelectric element block, and This first slit The multilayer piezoelectric element unit can be easily formed by the plurality of second slits, which are notched and cut out the multilayer piezoelectric element block in a direction substantially perpendicular to the slit.
ここで、 積層圧電ァクチユエ一タは小形で高い剛性を有するので スリ ッ ト加工の限界が向上し、 その結果、 配列ピッチを細かく して. ノズルピッチの短縮を図ることができる。  Here, since the laminated piezoelectric actuator is small and has high rigidity, the limit of the slit processing is improved, and as a result, the arrangement pitch can be reduced, and the nozzle pitch can be reduced.
さらに、 上記の本発明による第 1 のインクジェッ トヘッ ドは、 各 積層圧電ァクチユエータの最上層および最下層を駆動しないダミー 層とすることができる。  Further, the first inkjet head according to the present invention can be a dummy layer that does not drive the uppermost layer and the lowermost layer of each laminated piezoelectric actuator.
この構成によ り、 積層圧電ァクチユエータの上面を研削等で高精 度に位置出しできるので組立製造品質が安定するとともに、 工数の 少ない安価なイ ンクジェッ トヘッ ドを提供できる。 また、 積層圧電 ァクチユエータの厚さ方向と垂直な方向への不用な変形を、 他の部 材に伝搬せずにすむので、 エネルギー損失や圧力室間の干渉を防止 できる。  With this configuration, the upper surface of the multilayer piezoelectric actuator can be positioned with high precision by grinding or the like, so that the assembly and manufacturing quality is stable and an inexpensive inkjet head with a small number of steps can be provided. In addition, unnecessary deformation in the direction perpendicular to the thickness direction of the laminated piezoelectric actuator does not need to be propagated to other members, so that energy loss and interference between pressure chambers can be prevented.
また、 上記の本発明による第 1 のイ ンクジェッ トヘッ ドは、 基板 上に各積層圧電ァクチユエータの駆動電極とそれぞれ電気的に導通 する複数の駆動電極を形成することができる。  Further, in the above-described first inkjet head according to the present invention, a plurality of drive electrodes electrically connected to the drive electrodes of the respective laminated piezoelectric actuators can be formed on the substrate.
このように基板上に駆動電極を形成することで、 外部との電気的 接続が容易となる。  By forming the drive electrodes on the substrate in this manner, electrical connection with the outside is facilitated.
本発明の第 2のインクジエツ 卜へッ ドは、 基板と、 両端面に集電 極を形成し互いに対向するように基板上に並べた圧電歪定数 d 3 3を 有する一対の積層圧電ァクチユエ一タの複数列からなる積層圧電ァ クチユエータユニッ トと、 各積層圧電ァクチユエ一タの基板中央部 にある対向する端面に形成した集電極の相互間を結合してなるコモ ン電極と、 各積層圧電ァクチユエータの他方の端面に形成した集電 極からなる駆動電極と、 積層圧電ァクチユエータュニッ 卜の上端面 に接合された振動板と、 個々の積層圧電ァクチユエータに対応した 複数の圧力室およびィ ンク供給路を有し振動板上に接合された流路 板と、 圧力室に対応した複数のノズル孔を有し流路板の上面に接合 されたノズル板とを備えている。 Second Inkujietsu Bokue' de of the present invention includes a substrate and, stacked pair having a piezoelectric strain constant d 3 3 which are arranged on the substrate so as to face each other to form a collecting electrode on both end surfaces piezoelectric Akuchiyue Ichita A stacked piezoelectric actuator unit consisting of a plurality of rows, a common electrode formed by coupling between collector electrodes formed on opposing end faces in the center of the substrate of each stacked piezoelectric actuator, and A drive electrode consisting of a current collector formed on the other end face of the piezoelectric actuator, a diaphragm joined to the upper end face of the multilayer piezoelectric actuator, a plurality of pressure chambers corresponding to the individual piezoelectric actuators, A flow path plate that has an ink supply path and is bonded to the diaphragm, and has a plurality of nozzle holes corresponding to the pressure chambers and is bonded to the upper surface of the flow path plate Nozzle plate.
このような構成によリ、 容易に小型化を図ることができるととも に、 ノズル板の面積を広げることができ、 ノズル孔のメニスカスの 乾燥を防ぐキヤップ機構や、 イ ンク 目詰ま りを回復させるメンテナ ンス機構を容易に取り付けることができる。  With this configuration, the size can be easily reduced, the area of the nozzle plate can be increased, the capping mechanism that prevents the meniscus in the nozzle hole from drying, and ink clogging can be recovered. The maintenance mechanism to be used can be easily attached.
また、 上記本発明の第 2のイ ンクジェッ トヘッ ドは、 積層圧電ァ クチユエ一タュニッ 卜の最前列および最後列に位置する積層圧電ァ クチユエ一タを、 駆動しない不活性体とし、 これら積層圧電ァクチ ユエータの上端面で前記流路板の両端部を支持することができる。  Further, the second inkjet head of the present invention is characterized in that the laminated piezoelectric actuators located in the front row and the last row of the laminated piezoelectric actuator unit are inactive bodies that are not driven, and these laminated piezoelectric actuators are not driven. Both ends of the flow path plate can be supported by the upper end surface of the writer.
この構成によ り、 積層圧電ァクチユエータユニッ トと圧力室とを 強固に結合できる。 このため、 積層圧電ァクチユエ一タの変位を圧 力室へ確実に伝達することが可能となる。 よって、 インク吐出力の 高いインクジエツ 卜へッ ドが提供できる。  With this configuration, the multilayer piezoelectric actuator unit and the pressure chamber can be firmly connected. For this reason, it is possible to reliably transmit the displacement of the laminated piezoelectric actuator to the pressure chamber. Therefore, an ink jet head having a high ink ejection force can be provided.
本発明の第 3のインクジェッ トヘッ ドは、 基板と、 両端面に集電 極を形成し互いに対向するように基板上に並べた圧電歪定数 d 3 aを 有する一対の積層圧電ァクチユエ一タの複数列からなる積層圧電ァ クチユエ一タュニッ 卜と、 基板の上面でかつ積層圧電ァクチユエ一 タュニッ 卜の両側方に設けた支柱と、 積層圧電ァクチユエ一タュニ ッ トおよび支柱の上端面に接合された振動板と、 個々の積層圧電ァ クチユエ一タに対応した複数の圧力室およびィンク供給路を有し振 動板上に接合された流路板と、 圧力室に対応した複数のノズル孔を 有し流路板の上面に接合されたノズル板とを備えている。 A third inkjet head according to the present invention includes a substrate and a plurality of a pair of laminated piezoelectric actuators having a piezoelectric strain constant d3a arranged on the substrate so that current collectors are formed on both end surfaces thereof and opposed to each other. A laminated piezoelectric actuator unit consisting of a row, supporting columns provided on the upper surface of the substrate and on both sides of the laminated piezoelectric actuator unit, and a diaphragm bonded to the upper end surface of the laminated piezoelectric actuator unit and the supporting column And a flow path plate having a plurality of pressure chambers and an ink supply path corresponding to each of the laminated piezoelectric actuators and joined to the vibration plate, and a flow path having a plurality of nozzle holes corresponding to the pressure chambers. A nozzle plate joined to the upper surface of the road plate.
この発明の構成によれば、 支柱によって流路板を強固に固定でき. 積層圧電ァクチユエータの変位を圧力室へ確実に伝達できるように なり、 イ ンク吐出力の高いイ ンクジエツ トへッ ドを提供できるとと もに、 隣接する積層圧電ァクチユエータの干渉を最小限度とするこ とができる。  ADVANTAGE OF THE INVENTION According to the structure of this invention, a flow path plate can be fixed firmly by a support | pillar. Displacement of a laminated piezoelectric actuator can be transmitted reliably to a pressure chamber, and the ink head with a high ink discharge force is provided. As much as possible, interference between adjacent laminated piezoelectric actuators can be minimized.
上記本発明の第 3のィ ンクジエツ 卜へッ ドは、 各積層圧電ァクチ ユエータの基板中央部にある対向する端面に形成した集電極の相互 間を結合してコモン電極とするとともに、 各積層圧電ァクチユエ一 タの他方の端面に形成した集電極を駆動電極とすることができる。 この構成によ り、 外部からの電気的接続の接点を少なくできると ともに、 積層圧電ァクチユエ一タを基板上に高密度に実装できる。 また、 上記本発明の第 3のイ ンクジェッ トヘッ ドは、 振動板の両 側端部を、 支柱と流路板とによ り挾持してもよい。 The third ink jet head of the present invention is configured such that a common electrode is formed by coupling between the collector electrodes formed on opposing end surfaces in the central portion of the substrate of each multilayer piezoelectric actuator and forming a common electrode. Acti Yueichi The collector electrode formed on the other end face of the electrode can be used as a drive electrode. With this configuration, the number of external electrical contacts can be reduced, and the multilayer piezoelectric actuator can be mounted on the substrate with high density. In the third inkjet head according to the present invention, both ends of the diaphragm may be sandwiched between the support and the flow path plate.
この構成によ リ、 振動板が支柱と流路板とによリ強固に固定され るので、 支持条件が安定し、 各圧力室相互の吐出性能を均一化でき る。  According to this configuration, since the diaphragm is firmly fixed to the column and the flow path plate, the supporting conditions are stabilized, and the discharge performance between the pressure chambers can be made uniform.
さらに、 上記本発明の第 3のインクジェッ 卜へッ ドは、 基板の上 面中央部に振動板を支持する第 2の支柱を配設してもよい。  Furthermore, in the third inkjet head of the present invention, a second support for supporting the diaphragm may be provided at the center of the upper surface of the substrate.
この構成によ り、 振動板の支持条件がさらに安定する。  With this configuration, the support conditions of the diaphragm are further stabilized.
上記本発明の第 3のイ ンクジヱッ 卜ヘッ ドは、 支柱によ り各積層 圧電ァクチユエ一タの外側の側端面を弾性的に支持してもよい。  In the third ink head of the present invention, the outer side end faces of the respective laminated piezoelectric actuators may be elastically supported by the columns.
この構成によ り、 積層圧電ァクチユエータの厚み方向と垂直方向 の変形を支柱によ り拘束することがなく、 積層圧電ァクチユエータ の厚さ方向の変形損失が生じない。 このため高いインク吐出性能を 維持することができる。  With this configuration, the deformation of the laminated piezoelectric actuator in the direction perpendicular to the thickness direction is not restrained by the pillar, and the laminated piezoelectric actuator does not lose its deformation loss in the thickness direction. Therefore, high ink ejection performance can be maintained.
本発明の第 4のインクジエツ 卜へッ ドは、 両端面に集電極を形成 し対向するように基板上に並べた圧電歪定数 d a 3を有する一対の積 層圧電ァクチユエ一タの複数列からなる積層圧電ァクチユエータュ ニッ 卜と、 積層圧電ァクチユエ一タュニッ 卜の上端面に接合された 振動板と、 個々の駆動ァクチユエータに対応した複数の圧力室およ びィ ンク流路を有する流路板と、 各圧力室に対応した複数のノズル 孔を有するノズル板とを備え、 積層圧電ァクチユエータ を一列おき に駆動ァクチユエータ とし、 他の積層圧電ァクチユエータ を駆動さ せない非駆動ァクチユエータ とするとともに、 非駆動ァクチユエ一 タ と前記流路板とで前記振動板を挟み込み、 かつ前記流路板上に前 記ノズル板を接合した構成となっている。 The fourth ink jet head according to the present invention is composed of a plurality of rows of a pair of laminated piezoelectric actuators having a piezoelectric strain constant da3 arranged on the substrate so that collector electrodes are formed on both end surfaces thereof and opposed to each other. A multi-layer piezoelectric actuator unit, a diaphragm bonded to the upper end surface of the multi-layer piezoelectric actuator unit, a flow plate having a plurality of pressure chambers and an ink channel corresponding to each drive actuator. A nozzle plate having a plurality of nozzle holes corresponding to each of the pressure chambers, wherein the multi-layer piezoelectric actuator is a drive actuator in every other row, a non-drive actuator that does not drive the other multi-layer piezoelectric actuators, and a non-drive actuator. The diaphragm is sandwiched between the rotor and the flow path plate, and the nozzle plate is joined to the flow path plate.
このような構成によ り、 振動板をよ り安定した条件で支持でき、 安定したイ ンクの吐出性能を維持することができる。 ここで、 上記本発明の第 2, 3, 4のイ ンクジェッ トヘッ ドは、 ノズル孔を通る軸線に直交する軸に対して各積層圧電ァクチユエ一 タおよび各圧力室を傾斜して配置し、 かつ該圧力室に対応してノズ ル孔を形成してもよい。 With such a configuration, the diaphragm can be supported under more stable conditions, and stable ink ejection performance can be maintained. Here, the second, third, and fourth inkjet heads of the present invention are arranged such that each laminated piezoelectric actuator and each pressure chamber are inclined with respect to an axis orthogonal to an axis passing through the nozzle hole, and A nozzle hole may be formed corresponding to the pressure chamber.
この構成によ り、 積層圧電ァクチユエ一タの配列ピッチの 1 2 のピッチでノズルを配列することが可能となリ、 高密度な印字性能 を実現できる。 。  With this configuration, it is possible to arrange the nozzles at a pitch of 12 which is the arrangement pitch of the laminated piezoelectric actuators, and it is possible to realize high-density printing performance. .
また、 上記本発明の第 2, 3 , 4のイ ンクジェッ トヘッ ドは、 少 なく とも積層圧電ァクチユエータ、 振動板、 流路板、 およびノズル 板を、 ほぼ同一の線膨張係数とすることが好ましい。  In the second, third, and fourth inkjet heads of the present invention, it is preferable that at least the laminated piezoelectric actuator, the diaphragm, the flow path plate, and the nozzle plate have substantially the same linear expansion coefficient.
このようにすれば、 少なく とも積層圧電体、 振動板、 流路板、 ノ ズル板が、 温度変化によ り均等に伸縮し、 よって部材間に不都合な 応力が生じることがない。  With this configuration, at least the laminated piezoelectric body, the vibration plate, the flow path plate, and the nozzle plate expand and contract evenly due to the temperature change, so that undesired stress does not occur between members.
次に、 本発明のインクジェッ トへッ ドの駆動方法は、 第 1 の工程 で積層圧電ァクチユエ一タの分極方向に電圧を印加して同積層圧電 ァクチユエ一タ を厚さ方向に伸ばし、 第 2の工程で印加電圧を徐々 に低下させて圧力室内にインク を ¾填し、 第 3の工程で再び印加電 圧を急激に上昇させることによって積層圧電ァクチユエ一タを厚さ 方向に伸ばして前記圧力室内のィンクを噴射させるようにしてある c この駆動方法によると、 積層圧電ァクチユエ一タはたえず分極方 向に対して同方向の電界が印加されるので、 積層圧電ァクチユエ一 タの分極を弱めるような反転分極が生じないばかリでなく、 圧力室 内で生じるィンク液体の振動によるノズル孔の液面 (メニスカス) 上に生じる振動を、 第 2の動作工程のゆつく り したインク供給によ つて和らげることができるので、 種々の周波数で駆動しても噴射す るィ ンク液滴の速度や液滴径がばらっかない。 Next, in the method for driving an inkjet head according to the present invention, in the first step, a voltage is applied in the polarization direction of the multilayer piezoelectric actuator to stretch the multilayer piezoelectric actuator in the thickness direction, and the second step is performed. In step (3), the applied voltage is gradually lowered to fill the pressure chamber with ink, and in step (3), the applied voltage is rapidly increased again to expand the laminated piezoelectric actuator in the thickness direction, thereby increasing the pressure. According to c the driving method that is so as to inject room Inku, since the laminated piezoelectric Akuchiyue Ichita the electric field in the same direction is applied to constantly polarization direction, to weaken the polarization of the laminated piezoelectric Akuchiyue one data Not only does it cause no reverse polarization, but also the vibration that occurs on the liquid surface (meniscus) of the nozzle hole due to the vibration of the ink liquid that occurs in the pressure chamber is supplied to the loose ink supply in the second operation process. Therefore, the speed and diameter of the ejected ink droplets do not vary even when driven at various frequencies.
本発明の第 1 のインクジェッ トヘッ ドの製造方法は、 第 1 の工程 で積層圧電体の中央部に第 1 のスリ ッ トを施し、 第 2の工程で積層 圧電体の両端部および第 1 のスリッ トに電極を形成し、 第 3の工程 で第 1 のスリ ッ トとほぼ直角方向でかつ第 1 のスリ ッ トよ り浅く一  According to a first method of manufacturing an inkjet head of the present invention, a first slit is formed in a central portion of a multilayer piezoelectric body in a first step, and both ends of the multilayer piezoelectric body and a first slit are formed in a second step. An electrode is formed on the slit, and in the third step, the electrode is substantially perpendicular to the first slit and shallower than the first slit.
訂正された用紙 定ピッチで複数の第 2のスリ ツ 卜を形成して基板上に複数の積層圧 電ァクチユエータ を形成し、 かつ第 4の工程で積層圧電ァクチユエ ―タの上面を平坦化している。 Corrected paper A plurality of second slits are formed at a constant pitch to form a plurality of laminated piezoelectric actuators on a substrate, and the upper surface of the laminated piezoelectric actuator is flattened in a fourth step.
このような製造方法により、 簡単かつ低コス トで小形の積層圧電 ァクチユエータュニッ 卜を製作できる。  By such a manufacturing method, a small-sized laminated piezoelectric actuator can be manufactured simply and at low cost.
また、 本発明の第 1 のインクジェッ トヘッ ドの製造方法は、 第 1 の工程で積層圧電体の中央部に第 1 のスリ ッ トを施し、 第 2の工程 で積層圧電体の両端部および第 1 のスリッ トに電極を形成し、 第 3 の工程で積層圧電体の上面を平坦化し、 第 4の工程で第 1 のスリ ッ 卜とほぼ直角方向でかつ第 1 のスリ ッ トよ り浅く一定ピッチで多数 の第 2のスリツ 卜を施すことによつて基板上に複数の積層圧電ァク チュエータ を形成する。  Further, in the first method for manufacturing an inkjet head according to the present invention, the first slit is formed in the center of the multilayer piezoelectric body in the first step, and both ends of the multilayer piezoelectric body and the second slit are formed in the second step. An electrode is formed on the first slit, the upper surface of the laminated piezoelectric body is flattened in the third step, and in the fourth step the direction is almost perpendicular to the first slit and shallower than the first slit. By applying a large number of second slits at a constant pitch, a plurality of laminated piezoelectric actuators are formed on the substrate.
このような製造方法によっても、 簡単かつ低コス トで小形の積層 圧電ァクチユエータュニッ 卜を製作できる。  Even with such a manufacturing method, a small-sized laminated piezoelectric actuator can be manufactured easily and at low cost.
本発明の第 4のインクジェッ トヘッ ドは、 基板、 厚さ方向に分極 させた板状圧電材料を導電材料を介して複数枚積層してなる複数の 隔壁、 蓋、 および封止部材を備え、 複数の隔壁を前記基板上に一定 の間隙をあけて配列し、 この間隙の上部を前記蓋で閉塞するととも に、 該間隙の側部を前記封止部材で閉塞して該間隙を圧力室と して 形成し、 かつ、 この圧力室の一部にノズル孔を開口 してある。  A fourth inkjet head according to the present invention includes: a substrate; a plurality of partition walls, a lid, and a sealing member formed by laminating a plurality of plate-shaped piezoelectric materials polarized in the thickness direction via a conductive material; Are arranged on the substrate with a certain gap therebetween, and the upper part of the gap is closed with the lid, and the side of the gap is closed with the sealing member to make the gap a pressure chamber. And a nozzle hole is opened in a part of the pressure chamber.
このような構成によ り、 部品点数が少なく、 イ ンク吐出性能の良 いイ ンクジエツ トへッ ドを提供できる。  With such a configuration, it is possible to provide an ink jet head having a small number of parts and excellent ink discharge performance.
なお、 上記本発明の第 4のイ ンクジェッ トヘッ ドは、 隔壁を、 圧 電歪定数 d 3 3を有し電圧印加によリ厚さ方向に変形する積層圧電ァ クチユエータとして構成することができる。 The fourth Lee Nkuje'Tohe' de of the present invention, partition walls may be configured as a laminated piezoelectric § Kuchiyueta be transformed into I Li thickness direction to the voltage application has a pressure electrostrictive constant d 3 3.
本発明の第 5のインクジェッ トヘッ ドは、 基板、 厚さ方向に分極 させた板状圧電材料を導電材料を介して複数枚積層してなる複数の 隔壁、 蓋、 および封止部材を備え、 複数の隔壁を基板上に一定の間 隙をあけてマ卜 リ クス状に配列し、 間隙の上部を蓋で閉塞するとと もに、 間隙の側部を封止部材で閉塞して該間隙を圧力室と して形成  A fifth inkjet head according to the present invention includes a substrate, a plurality of partition walls each formed by laminating a plurality of plate-like piezoelectric materials polarized in a thickness direction via a conductive material, a lid, and a sealing member. Are arranged in a matrix with a certain gap on the substrate, the top of the gap is closed with a lid, and the side of the gap is closed with a sealing member to pressurize the gap. Formed as a room
訂正された用紙 ( 目、 U91) し、 基板または蓋のいずれかに圧力室に開口するノズル孔を設け、 かつ基板、 封止部材または蓋のいずれかにイ ンク供給口を設け、 導 電材料への電圧印加によって隔壁を厚さ方向に変形させてインクの 充填された圧力室の容積を変化させ、 ノズル孔からィンク液滴を噴 射させる。 Corrected paper (Eye, U91) Then, a nozzle hole that opens to the pressure chamber is provided in either the substrate or the lid, and an ink supply port is provided in either the substrate, the sealing member, or the lid, and the thickness of the partition wall is increased by applying a voltage to the conductive material. It deforms in the direction to change the volume of the pressure chamber filled with ink, and ejects ink droplets from the nozzle holes.
このような構成によっても、 部品点数が少なく、 インク吐出性能 の良いイ ンクジエツ トへッ ドが提供できる。  Even with such a configuration, it is possible to provide an ink jet head having a small number of components and excellent ink ejection performance.
上記本発明の第 4, 5のイ ンクジェッ トヘッ ドは、 隔壁の間に形 成された間隙が、 配列方向にィ ンクを供給する圧力室とィ ンク供給 しないダミ一空間とを交互に形成するようにしてもよい。  In the fourth and fifth ink heads of the present invention, the gap formed between the partition walls alternately forms a pressure chamber for supplying ink in the arrangement direction and a dummy space for not supplying ink. You may do so.
これによ り、 隣接するノズルから同時にイ ンクを吐出することが できる。  This makes it possible to simultaneously discharge ink from adjacent nozzles.
上記本発明の第 4, 5のイ ンクジェッ トヘッ ドは、 蓋が個々の圧 力室を独立して閉塞するようにすることもできる。 これにより、 圧 力室間の干渉を少なくすることができる。  In the fourth and fifth inkjet heads of the present invention, the lids can independently close the individual pressure chambers. Thus, interference between the pressure chambers can be reduced.
上記本発明の第 4, 5のイ ンクジェッ トヘッ ドは、 ダミー空間を 形成する間隙が、 圧力室を形成する間隙よリ狭い幅寸法とすること ができる。 これによリノズル孔の配設ピッチをよ り高密度化できる c 上記本発明の第 4, 5のイ ンクジェッ トヘッ ドは、 圧力室に接す る隔壁の表面に、 絶縁性のコーティ ング膜を設けてもよい。 これに よ り、 隔壁面に露出する導電材料の電極に関し、 絶縁性が確保でき るので、 水系イ ンクの使用が可能となる。 図面の簡単な説明 In the fourth and fifth inkjet heads of the present invention, the gap forming the dummy space can have a width narrower than the gap forming the pressure chamber. This makes it possible to further increase the arrangement pitch of the nozzle holes. C In the fourth and fifth ink heads of the present invention, an insulating coating film is formed on the surface of the partition wall in contact with the pressure chamber. It may be provided. As a result, it is possible to secure the insulating property of the electrode of the conductive material exposed on the partition wall surface, so that the water-based ink can be used. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は、 本発明の第 1 の実施例におけるィンクジェッ 卜へッ ド の構成を示す正面断面図である。  FIG. 1 is a front sectional view showing the structure of an ink jet head according to a first embodiment of the present invention.
第 2図は、 本発明の第 1 の実施例におけるインクジェッ トヘッ ド の構成を示す側面断面図である。  FIG. 2 is a side sectional view showing a configuration of the inkjet head according to the first embodiment of the present invention.
第 3図 ( a ) は、 本発明の第 1 の実施例におけるインクジエツ ト へッ ドを構成する積層圧電素子プロックの製造方法を示す斜視図で 第 3図 ( b ) は、 前図に続く、 本発明の第 1 の実施例におけるィ ンクジエツ 卜へッ ドを構成する積層圧電素子ブロックの製造方法を 示す斜視図である。 FIG. 3 (a) is a perspective view showing a method of manufacturing a multilayer piezoelectric element block constituting an ink jet head according to the first embodiment of the present invention. FIG. 3 (b) is a perspective view, following the previous figure, showing the method of manufacturing the laminated piezoelectric element block constituting the ink jet head in the first embodiment of the present invention.
第 3図 ( c ) は、 前面に続く、 本発明の第 1 の実施例におけるィ ンクジエツ トへッ ドを構成する積層圧電素子ブロックの製造方法を 示す斜視図である。  FIG. 3 (c) is a perspective view showing the method of manufacturing the laminated piezoelectric element block constituting the ink jet head in the first embodiment of the present invention, following the front surface.
第 4図は、 本発明の第 1 の実施例におけるインクジエツ 卜へッ ド を構成する積層圧電ァクチユエータの製造方法を示す斜視図である, 第 5図は、 本発明の第 2の実施例におけるィンクジエツ 卜へッ ド の構成を示す分解斜視図である。  FIG. 4 is a perspective view showing a method for manufacturing a laminated piezoelectric actuator constituting an ink jet head according to the first embodiment of the present invention. FIG. 5 is an ink jet printer according to the second embodiment of the present invention. FIG. 3 is an exploded perspective view showing the configuration of the head.
第 6図は、 本発明の第 2の実施例におけるインクジェッ トヘッ ド の構成を示す正面断面図である。  FIG. 6 is a front sectional view showing a configuration of an inkjet head according to a second embodiment of the present invention.
第 7図は、 本発明の第 2の実施例におけるィ ンクジエツ 卜へッ ドを 構成する積層圧電ァクチユエータの製造方法を示す斜視図である。 第 8図は、 本発明の第 3の実施例におけるィンクジエツ 卜へッ ド の一部を破断して示す平面図である。 FIG. 7 is a perspective view showing a method of manufacturing a laminated piezoelectric actuator constituting an ink jet head according to the second embodiment of the present invention. FIG. 8 is a plan view of a part of an ink jet head according to a third embodiment of the present invention, which is cut away.
第 9図は、 本発明の第 4の実施例におけるインクジェッ トヘッ ド の構成を示す正面断面図である。  FIG. 9 is a front sectional view showing a configuration of an inkjet head according to a fourth embodiment of the present invention.
第 1 0図は、 本発明の第 5の実施例におけるィ ンクジエツ 卜へッ ドの構成を拡大して示す正面断面図である。  FIG. 10 is an enlarged front sectional view showing the structure of an ink jet head according to a fifth embodiment of the present invention.
第 1 1 図は、 本発明の第 6の実施例におけるィ ンクジェッ 卜へッ ドの構成を示す斜視図である。  FIG. 11 is a perspective view showing a configuration of an ink jet head according to a sixth embodiment of the present invention.
第 1 2図は、 本発明の第 6の実施例におけるィ ンクジェッ トへッ ドの構成を示す正面断面図である。  FIG. 12 is a front sectional view showing a structure of an ink head according to a sixth embodiment of the present invention.
第 1 3図 ( a ) は、 本発明の第 6の実施例におけるィ ンクジェッ トへッ ドの圧電素子プロックを形成するための製造方法を示す斜視 図である。  FIG. 13 (a) is a perspective view showing a manufacturing method for forming a piezoelectric element block of an ink head according to the sixth embodiment of the present invention.
第 1 3図 ( b ) は、 前図に続く、 本発明の第 6の実施例における イ ンクジエツ 卜へッ ドの圧電素子ブロックを形成するための製造方 法を示す斜視図である。 FIG. 13 (b) is a drawing of the sixth embodiment of the present invention following the previous drawing. FIG. 4 is a perspective view showing a manufacturing method for forming a piezoelectric element block of an ink jet head.
第 1 3図 ( c ) は、 前図に続く、 本発明の第 6の実施例における イ ンクジェッ トへッ ドの圧電素子プロック を形成するための製造方 法を示す斜視図である。  FIG. 13 (c) is a perspective view, following the previous figure, showing a manufacturing method for forming a piezoelectric element block of an injector head in the sixth embodiment of the present invention.
第 1 4図は、 前図に続く、 本発明の第 6の実施例におけるイ ンク ジェッ トへッ ドの圧電素子プロックを形成するための製造方法を示 す斜視図である。  FIG. 14 is a perspective view showing a manufacturing method for forming a piezoelectric element block of an ink head according to the sixth embodiment of the present invention, following the previous figure.
第 1 5図は、 本発明の第 6の実施例におけるィ ンクジェッ トへッ ドの積層圧電ァクチユエータ を形成するための製造方法を示す斜視 図である。  FIG. 15 is a perspective view showing a manufacturing method for forming a multilayer piezoelectric actuator of an ink head according to a sixth embodiment of the present invention.
第 1 6図は、 本発明の第 7の実施例におけるイ ンクジェッ トへッ ドの構成を示す斜視図である。  FIG. 16 is a perspective view showing a configuration of an injector head according to a seventh embodiment of the present invention.
第 1 7 図は、 本発明の第 7の実施例におけるインクジェッ トへッ ドの構成を示す側面断面図である。  FIG. 17 is a side sectional view showing the configuration of an inkjet head according to the seventh embodiment of the present invention.
第 1 8図は、 本発明の第 6, 第 7の実施例に関する変形例を示す 断面図である。  FIG. 18 is a sectional view showing a modification of the sixth and seventh embodiments of the present invention.
第 1 9図は、 従来技術によるィンクジエツ トへッ ドの構成を示す 斜視図である。  FIG. 19 is a perspective view showing the structure of a conventional ink jet head.
第 2 0図は、 他の従来技術によるィ ンクジエツ 卜へッ ドの構成を 示す断面図である。  FIG. 20 is a cross-sectional view showing the structure of another conventional ink jet head.
第 2 1 図は、 さらに他の従来技術によるィ ンクジエツ 卜へッ ドの 構成を示す斜視図である。 発明を実施するための最良の形態  FIG. 21 is a perspective view showing the configuration of another conventional ink jet head. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施例におけるィ ンクジエツ トへッ ドの構成を、 図面を基に説明する。  Hereinafter, the configuration of the ink jet head in the embodiment of the present invention will be described with reference to the drawings.
第 1 図および第 2図は、 本発明の第 1 の実施例によるイ ンクジェ ッ トヘッ ドを示しており、 第 1 図は正面断面図、 第 2図は側面断面 図である。 第 1 図に示すように、 この実施例のイ ンクジェッ トヘッ ドは、 一 対の積層圧電ァクチユエータ 1 1 1, 1 1 1 を備えている。 これら の一対の積層圧電ァクチユエータ 1 1 1, 1 1 1 は、 鉛系ジルコ二 ァと鉛系のチタ ンの混合物よ り構成された圧電セラミックからなる 板状圧電材料 1 3 0 と、 銀—パラジウムからなる導電材料 1 3 1 と を、 この導電材料 1 3 1 が端面から露出するように交互に積層して 形成してある。 1 and 2 show an ink jet head according to a first embodiment of the present invention. FIG. 1 is a front sectional view, and FIG. 2 is a side sectional view. As shown in FIG. 1, the ink jet head of this embodiment includes a pair of laminated piezoelectric actuators 11 1 and 11 1. The pair of laminated piezoelectric actuators 111 and 111 are composed of a plate-shaped piezoelectric material 130 made of a piezoelectric ceramic composed of a mixture of lead-based zirconium and lead-based titanium, and silver-palladium. And conductive materials 13 1 are alternately laminated so that the conductive materials 13 1 are exposed from the end faces.
一対の積層圧電ァクチユエ一タ 1 1 1, 1 1 1 は、 セラミ ック等 の基板 1 1 0上に直列的に並べてあり、 この列を紙面垂直方向に複 数配列し (第 2図参照) 、 マ 卜 リックス状の積層圧電ァクチユエ一 タユニッ ト 1 1 2 を形成している。  A pair of laminated piezoelectric actuators 11 1 and 11 1 are arranged in series on a substrate 11 such as a ceramic or the like, and a plurality of such rows are arranged in a direction perpendicular to the paper surface (see FIG. 2). Thus, a matrix-shaped laminated piezoelectric actuator unit 112 is formed.
積層圧電ァクチユエータ 1 1 1 において、 導電材料 1 3 1 の露出 した外側の端面は、 電極膜を形成することにより、 外部から電圧を 入力できる駆動集電極 1 1 3 a としてある。  In the multilayer piezoelectric actuator 111, the exposed outer end surface of the conductive material 131 is formed as an electrode film to form a drive collector 113a to which a voltage can be externally input.
一方、 一対の積層圧電ァクチユエ一タ 1 1 1 における各中央部側 の端面は互いに対向しているため、 これら端面間に連続する電極膜 を形成することにより、 該端面に露出する導電材料 1 3 1 のコモン 電極となる共通集電極 1 1 3 b を形成してある。 このように、 コモ ン電極となる共通集電極 1 1 3 bは一対の積層圧電ァクチユエータ 1 1 1 の共通電線となっている (第 1 図参照) 。  On the other hand, since the end faces on the central portion side of the pair of laminated piezoelectric actuators 11 are opposed to each other, by forming a continuous electrode film between these end faces, the conductive material 13 exposed on the end faces is formed. A common collector electrode 1 1 3b, which is the common electrode of No. 1, is formed. As described above, the common collector 113 b serving as the common electrode is a common electric wire of the pair of laminated piezoelectric actuators 111 (see FIG. 1).
上述のように構成すると、 個々の積層圧電ァクチユエ一タ 1 1 1 は、 個々の駆動集電極 1 1 3 a と、 共用コモン電極である共通集電 極 1 1 3 b との間に電圧を印加することによ り駆動できる。  When configured as described above, each laminated piezoelectric actuator 1 11 1 applies a voltage between each drive electrode 113 a and the common electrode 113 b which is a common electrode. Can be driven.
なお、 第 1 図に示すように、 駆動集電極 1 1 3 a、 共通集電極 1 1 3 bの電極膜は、 基板 1 1 0側にも延長して形成してあり、 外部 からの電気的接続を容易にとれるようにしてある。  As shown in FIG. 1, the electrode films of the driving collector 113a and the common collector 113b also extend to the substrate 110 side, so that electrical The connection is made easy.
このように一対の積層圧電ァクチユエ一タ 1 1 1 の互いに対向す る中央部側の端面をコモン電極とすることにより、 一対の積層圧電 ァクチユエータ 1 1 1 間の寸法を縮小でき、 積層圧電ァクチユエ一 タ 1 1 1 を高密度に実装することができる。 また、 外部との電気的  In this way, by using the common electrode at the end faces of the pair of laminated piezoelectric actuators 111 facing each other at the central portion, the dimension between the pair of laminated piezoelectric actuators 111 can be reduced, and the laminated piezoelectric actuator 111 can be reduced. 1 1 1 can be mounted at high density. In addition, electrical
丁正された用紙 (HIJ91) 接続のための接点の数を少なくできるという利点もある。 Corrected paper (HIJ91) There is also an advantage that the number of contacts for connection can be reduced.
積層圧電ァクチユエータ 1 1 1 の上面には、 金属製の振動板 1 1 5が接着してある。 この振動板 1 1 5の上面には、 複数の圧力室 1 1 6、 および図示しない外部のインクタンク と連通する共通イ ンク 通路 1 1 7 を形成する金属製の流路板 1 1 8が接合してある。  On the upper surface of the laminated piezoelectric actuator 111, a metal diaphragm 115 is adhered. A plurality of pressure chambers 1 16 and a metal flow path plate 1 18 forming a common ink passage 1 17 communicating with an external ink tank (not shown) are joined to the upper surface of the vibration plate 1 15. I have.
ここで、 ィンクの充填される各圧力室 1 1 6は、 振動板 1 1 5 を 介して各積層圧電ァクチユエータ 1 1 1 とそれぞれ隣接する位置に 形成してある。  Here, the pressure chambers 116 filled with the ink are formed at positions adjacent to the respective laminated piezoelectric actuators 111 via the vibration plate 115.
なお、 流路板 1 1 8 と振動板 1 1 5は別部材とせず、 一体の部材 として製作してもよい。  Note that the flow path plate 118 and the vibration plate 115 may not be formed as separate members but may be manufactured as an integral member.
流路板 1 1 8の上面には複数のノズル孔 1 1 9 を有する金属製の ノズル板 1 2 0が接着してある。 各ノズル孔 1 1 9は、 各圧力室 1 1 6 と連通する位置に配置されている。  A metal nozzle plate 120 having a plurality of nozzle holes 1 19 is adhered to the upper surface of the flow path plate 118. Each nozzle hole 1 19 is arranged at a position communicating with each pressure chamber 1 16.
第 2図に示すように、 基板 1 1 0上に配列した複数の積層圧電ァ クチユエータ 1 1 1のうち、 最前列および最後列に位置する積層圧 電ァクチユエータ 1 2 6、 1 2 6は、 駆動しない不活性体としてあ る。 これら駆動しない積層圧電ァクチユエータ 1 2 6、 1 2 6は、 駆動する積層圧電ァクチユエ一タ 1 1 1 に比べ幅寸法を充分に確保 してあり、 高い剛性を有している。  As shown in FIG. 2, among the plurality of laminated piezoelectric actuators 111 arranged on the substrate 110, the laminated piezoelectric actuators 126, 126 located in the front row and the last row are driven. There is no inactive substance. These non-driven multilayer piezoelectric actuators 126 and 126 have a sufficiently large width dimension and high rigidity as compared with the driven multilayer piezoelectric actuator 111.
基板 1 1 0 と圧力室 1 1 6の形成された流路板 1 1 8 とは、 これ ら駆動しない積層圧電ァクチユエータ 1 2 6、 1 2 6 を介して強固 に接合されている。  The substrate 110 and the flow path plate 118 in which the pressure chambers 116 are formed are firmly joined via laminated piezoelectric actuators 126 and 126 which are not driven.
ここで、 振動板 1 1 5は、 駆動しない不活性な積層圧電ァクチュ エータ 1 2 6 と流路板 1 1 8 との間に介在しておらず、 したがって, それら積層圧電ァクチユエ一タ 1 2 6 とは接着されていない。  Here, the diaphragm 115 is not interposed between the inactive multilayer piezoelectric actuator 126 that is not driven and the flow path plate 118, and therefore, the multilayer piezoelectric actuator 126 is not interposed. And is not glued.
さて、 積層圧電ァクチユエータ 1 1 1 を駆動し、 同ァクチユエ一 タ 1 1 1 の変形により振動板 1 1 5 を圧力室 1 1 6側に押し込むと き、 変形した振動板 1 1 5は、 流路板 1 1 8の隔壁 1 1 8 aによつ て支持されている。 この隔壁 1 1 8 aの材質が硬く、 充分な幅寸法 をもって振動板 1 1 5に接合されているならば、 振動板 1 1 5の支 持条件は、 両端固定はり とみなすことができ、 強固な支持状態とな る。 Now, when the laminated piezoelectric actuator 111 is driven and the diaphragm 115 is pushed into the pressure chamber 116 due to the deformation of the actuator 111, the deformed diaphragm 115 is formed into a flow path. It is supported by the partition wall 118a of the plate 118. If the material of the partition wall 1 18a is hard and is joined to the diaphragm 1 15 with sufficient width, the support of the diaphragm 1 15 The holding condition can be regarded as a fixed beam at both ends, and a firm support is provided.
しかし、 高密度実装の都合上、 流路板 1 1 8の隔壁 1 1 8 aは数 1 0 μ mの幅寸法しか確保できず、 充分な剛性を備えることはでき ない。 したがって、 やや弾性的に振動板 1 1 5 を支持することにな るのは避けられない。 特に、 流路板 1 1 8 をプラスチック等の剛性 の低い材料で形成した場合には、 振動板 1 1 5の支持が一層弾性的 となってしまう。  However, due to high-density mounting, the partition wall 118a of the flow path plate 118 can only secure a width of several 10 μm, and cannot have sufficient rigidity. Therefore, it is inevitable that the diaphragm 1 15 is supported somewhat elastically. In particular, when the flow path plate 118 is formed of a material having low rigidity such as plastic, the support of the vibration plate 115 becomes more elastic.
したがって、 充分な幅寸法が確保されているとともに、 高い剛性 を有した駆動しない積層圧電ァクチユエータ 1 2 6, 1 2 6 まで、 振動板 1 1 5 を延長し、 同ァクチユエータ 1 2 6, 1 2 6 と流路板 1 1 8 との間でその振動板 1 1 5 を挟み込んで支持すると、 振動板 1 1 5の支持条件が、 中間部では弾性的なものにもかかわらず、 両 端では強固となり、 場所によって振動の伝達状態が変わってしまう ことになる。  Therefore, the diaphragm 1 15 is extended to the undriven piezoelectric actuators 126, 126 with sufficient width and high rigidity, and the actuators 1, 26, 1 26 When the diaphragm 1 15 is sandwiched and supported between the diaphragm and the flow path plate 1 18, the support condition of the diaphragm 1 15 becomes strong at both ends even though it is elastic in the middle. However, the transmission state of the vibration changes depending on the location.
その結果、 圧力室 1 1 6への加圧状態も場所によって異なり、 ィ ンク液滴の吐出特性がィ ンクジエツ 卜へッ ド全体で不均一となる現 象が生じる。  As a result, the state of pressurization of the pressure chambers 116 also varies depending on the location, and a phenomenon occurs in which the ejection characteristics of the ink droplets become uneven throughout the ink jet head.
実際、 そのような構造では、 流路板 1 1 8 を剛性の高い金属材料 で形成しても、 中央部のノズル孔 1 1 9 と、 駆動しない積層圧電ァ クチユエータ 1 2 6, 1 2 6近くのノズル孔 1 1 9 とでは、 イ ンク 液滴の吐出速度が 1 0数%異なっていた。 さらに、 剛性の低い P S F等のプラスチックで流路板 1 1 8 を形成した場合には、 同イ ンク 液滴の吐出速度は 3 0 %程度異なっていた。  In fact, in such a structure, even if the flow path plate 118 is made of a highly rigid metal material, the nozzle hole 119 in the center and the non-driven laminated piezoelectric actuators 126, 126 The ejection speed of the ink droplet was different by 10% or more from the nozzle hole 1 19 of FIG. Furthermore, when the flow path plate 118 was formed of plastic such as PSF having low rigidity, the ejection speed of the ink droplet was different by about 30%.
ィ ンク液滴の吐出速度がこのように場所によって異なると、 印字 へッ ドを走査して文字や画像を形成するいわゆるシリアルプリ ンタ の場合、 記録媒体である紙にィ ンク液滴が到達するまでの時間にず れを生じる。 その結果、 インク液滴が紙に付着して形成される画素 の位置がずれ、 印字品質の劣化をまねく。  If the ejection speed of the ink droplets varies in this way, in the case of a so-called serial printer that scans the print head to form characters and images, the ink droplets reach the recording medium paper. Time shifts. As a result, the positions of the pixels formed by the ink droplets adhering to the paper are displaced, resulting in deterioration of print quality.
これに対し、 駆動しない積層圧電ァクチユエータ 1 2 6 と振動板 1 1 5 とを接合しない構成とすると、 振動板 1 1 5 と流路板 1 1 8 との間の支持条件がどの場所でも同じとなるので、 積層圧電ァクチ ユエータ 1 1 1 を駆動して圧力室 1 1 6からインクを吐出させたと き、 インクジエツ 卜へッ ドの全体で均一なイ ンク液滴の吐出速度が 得られる。 In contrast, the non-driven multilayer piezoelectric actuator 1 26 and the diaphragm If the structure is not joined, the support condition between the diaphragm 1 15 and the flow path plate 1 18 will be the same everywhere, so the multilayer piezoelectric actuator 1 1 1 is driven and the pressure is increased. When ink is ejected from the chamber 1 16, a uniform ink droplet ejection speed can be obtained over the entire ink jet head.
なお、 駆動しない積層圧電ァクチユエータ 1 2 6近くの圧力室 1 1 6 をダミーと し、 そこからはインクを吐出しないようにすれば、 上述したようなィ ンク液滴の吐出速度の不均一は概ね解消できる。 しかし、 このようなダミーの圧力室 1 1 6 を設けることはスペース の無駄であり、 小型化を図る上で好ま しくない。  If the pressure chamber 1 16 near the non-driven multilayer piezoelectric actuator 1 26 is used as a dummy and ink is not ejected from it, the unevenness of the ink droplet ejection speed as described above will be almost uniform. Can be resolved. However, providing such dummy pressure chambers 116 is a waste of space, and is not preferable for miniaturization.
次に、 上述したィ ンクジェッ 卜へッ ドにおける積層圧電ァクチュ エータユニッ ト 1 1 2の製造方法について説明する。  Next, a method of manufacturing the laminated piezoelectric actuator unit 112 in the above-described ink jet head will be described.
第 3図 ( a ) 、 第 3図 ( b ) 、 第 3図 ( c ) 、 および第 4図は、 上述した積層圧電ァクチユエ一タュニッ 卜 1 1 2の製造方法を製造 工程順に示した斜視図である。  FIGS. 3 (a), 3 (b), 3 (c), and 4 are perspective views showing a method of manufacturing the laminated piezoelectric actuator unit 112 described above in the order of manufacturing steps. is there.
第 3図 ( a ) に示すように、 圧電セラミ ックで形成され板状圧電 材料 1 3 0 となる第 1 のグリーンシー トに、 第 1 の導電材料 1 3 1 を印刷法によリ形成する。 このとき、 板状圧電材料 1 3 0の中央部 分が第 1 の導電材料 1 3 1 に被覆されず、 第 1 の露出部 1 3 0 a と なるようにする。  As shown in FIG. 3 (a), a first conductive material 131 is formed by a printing method on a first green sheet which is formed of piezoelectric ceramic and becomes a plate-like piezoelectric material 130. I do. At this time, the central portion of the plate-shaped piezoelectric material 130 is not covered with the first conductive material 131, but is formed as a first exposed portion 130a.
次に、 第 3図 ( b ) に示すように、 第 1 の導電材料 1 3 1 の上に, 板状圧電材料 1 4 0 となる第 2のグリーンシー トを積み重ね、 さら にこの板状圧電材料 1 4 0の上面に、 第 2の導電材料 1 4 1 を印刷 法によって形成する。 このときは、 板状圧電材料 1 4 0の両端面が 第 2の導電材料 1 4 1 に被覆されず、 第 2の露出部 1 4 0 a となる ようにする。  Next, as shown in FIG. 3 (b), a second green sheet that becomes a plate-like piezoelectric material 140 is stacked on the first conductive material 131, and the plate-like piezoelectric material 140 is further stacked. A second conductive material 141 is formed on the upper surface of the material 140 by a printing method. At this time, both end surfaces of the plate-shaped piezoelectric material 140 are not covered with the second conductive material 141 so as to be the second exposed portions 140a.
このように板状圧電材料を形成するグリーンシー トと導電材料と を交互に積み重ねた後、 加圧焼結処理することで、 第 3図 ( c ) に 示すような圧電素子ブロック 1 5 0 を形成する。  After alternately stacking the green sheets forming the plate-like piezoelectric material and the conductive material in this manner, and performing pressure sintering, the piezoelectric element block 150 shown in FIG. 3 (c) is formed. Form.
次に、 第 4図に示すように、 圧電素子ブロック 1 5 0 を基板 1 1 0に接着し、 続いてダイヤモン ドカッター等を切削工具を使い、 基 板 1 1 0に達する第 1 のスリ ツ 卜 1 6 0 を形成する。 Next, as shown in FIG. 4, the piezoelectric element block 150 is Then, a first slit 160 reaching the substrate 110 is formed by using a diamond cutter or the like with a cutting tool.
そして、 圧電素子ブロック 1 5 0および基板 1 1 0の全面に、 真 空蒸着等の薄膜形成手段によって金 (A u ) 薄膜を形成し、 基板 1 1 0の上面、 圧電素子ブロック 1 5 0の端面および第 1 のスリ ツ ト 1 6 0の内面に電極膜 1 6 1 を形成する。  Then, a gold (Au) thin film is formed on the entire surface of the piezoelectric element block 150 and the substrate 110 by thin film forming means such as vacuum evaporation, and the upper surface of the substrate 110 and the piezoelectric element block 150 are formed. An electrode film 161 is formed on the end face and the inner face of the first slit 160.
その後、 圧電素子ブロック 1 5 0の上面や、 その他不要な面の電 極膜 1 6 1 を平面研削等で除去し、 第 4図で示すような積層圧電ァ クチユエ一タブロック 1 6 2 を形成する。  After that, the upper surface of the piezoelectric element block 150 and the electrode film 161 on other unnecessary surfaces are removed by surface grinding or the like to form a laminated piezoelectric actuator block 162 as shown in FIG. I do.
このようにして形成した積層圧電ァクチユエータブロック 1 6 2 に、 第 2図に示した第 2のスリ ッ ト 1 6 3 (第 4図には示さず) を、 第 1 のスリッ ト 1 6 0 とほぼ垂直にダイャモン ドカツタ一等で形成 する。 この第 2のスリ ッ ト 1 6 3は、 基板 1 1 0に達するが、 第 1 のスリツ 卜 1 6 0よりも浅い深さとする。 この第 2のスリ ツ 卜 1 6 3 を一定のピッチで順次形成することで、 積層圧電ァクチユエータ 1 1 1 が完成する。  The second slit 163 shown in FIG. 2 (not shown in FIG. 4) is placed in the laminated piezoelectric actuator block 162 thus formed. It is formed almost perpendicular to 60 with diamond cutter. The second slit 163 reaches the substrate 110 but has a depth smaller than that of the first slit 160. By sequentially forming the second slits 163 at a constant pitch, the laminated piezoelectric actuator 1111 is completed.
上述した工程によって第 4図に示す電極膜 1 6 1 は、 複数パター ンに分離され、 各積層圧電ァクチユエータ 1 1 1 を個別に駆動可能 な状態となる。 なお、 積層圧電ァクチユエータ 1 1 1 は、 電極膜 1 6 1 を介して充分な電圧を印加することによ り、 厚さ方向の分極処 理をしておく。  The electrode film 161 shown in FIG. 4 is divided into a plurality of patterns by the above-described steps, and each laminated piezoelectric actuator 1111 can be driven individually. The multilayer piezoelectric actuator 11 1 is subjected to polarization processing in the thickness direction by applying a sufficient voltage via the electrode film 16 1.
本発明者は、 上述の製造方法によ り、 厚さ 2 0 μ πιの板状圧電材 料 1 3 0 を 2 2枚、 導電材料 1 3 1 を 2 1枚使用し、 これらを交互 に積層して、 厚さ約 0 . 5 m mの積層圧電ァクチユエ一タ 1 1 1 を 構成した。  The present inventor uses the above-described manufacturing method to use 22 plate-like piezoelectric materials 130 with a thickness of 20 μππ and 21 conductive materials 131, and alternately laminate them. Thus, a laminated piezoelectric actuator 111 having a thickness of about 0.5 mm was formed.
その積層圧電ァクチユエータ 1 1 1 の厚さ方向の寸法は 0 . 5 m mと小さく、 その底部は基板 1 1 0 と強固に接合されており、 その 接合部の剛性は高いので、 基板 1 1 0上に配列した積層圧電ァクチ ユエータ 1 1 1 が加工等で倒れる心配はなかった。 このため、 積層 圧電ァクチユエ一タ 1 1 1 の配列ピッチは、 1 イ ンチあたり 1 5 0 本以上にすることができた。 The laminated piezoelectric actuator 111 has a small dimension in the thickness direction of 0.5 mm, and the bottom is firmly joined to the substrate 110. The rigidity of the joint is high. There was no concern that the laminated piezoelectric actuators 111 arranged in the area would fall down due to processing or the like. For this reason, the arrangement pitch of the laminated piezoelectric actuators 1 1 1 is 1 I could do more than a book.
また、 駆動するための電極は、 積層圧電ァクチユエータ 1 1 1 の 中央部をコモン電極、 外側を個別の駆動電極としているので、 対向 する 1 対の積層圧電ァクチユエータ 1 1 1 間の距離は 0 . 5 m m以 下にすることが可能となる。 このように簡単な加工法によって平面 実装密度の高い圧電ァクチユエータが構成できる。  In addition, since the electrodes for driving the multilayer piezoelectric actuator 111 are a common electrode at the center and the individual driving electrodes on the outer side, the distance between a pair of opposing multilayer piezoelectric actuators 111 is 0.5. mm or less. In this way, a piezoelectric actuator having a high planar mounting density can be formed by a simple processing method.
さらに、 上述した積層圧電ァクチユエータユニッ ト 1 1 2の構成 および製造方法では、 積層圧電ァクチユエータ 1 1 1 の最上段の板 状圧電材料 1 3 0の上面、 および最下段の板状圧電材料 1 3 0の下 面には、 導電材料 1 3 1 が形成されていない。 このため積層圧電ァ クチユエータ 1 1 1 の最上段と最下段の板状圧電材料 1 3 0は、 電 界のかからないダミー層となっている。  Further, in the configuration and manufacturing method of the multilayer piezoelectric actuator unit 112 described above, the upper surface of the uppermost plate-like piezoelectric material 130 of the multilayer piezoelectric actuator 111 and the lowermost plate-like piezoelectric material No conductive material 13 1 is formed on the lower surface of 130. Therefore, the uppermost and lowermost plate-like piezoelectric materials 130 of the multilayer piezoelectric actuator 111 are dummy layers that do not cover the electric field.
厚さ方向に分極した積層圧電ァクチユエ一タ 1 1 1 に電圧を印加 すると厚さ方向 ( d 3 a方向) の伸びが生じる。 それとともに、 個々 の板状圧電材料 1 3 0は、 これと垂直な長さ方向 (d3 1方向) に収 縮が生じる。 しかし、 上記のように最上段と最下段の板状圧電材料 1 3 0 をダミー層とすることにより、 同板状圧電材料 1 3 0にはこ のような変形が生ぜず、 よつて同板状圧電材料 1 3 0の上下面に接 合される振動板 1 1 5および基板 1 1 0に対し、 無理な変形力を及 ぼさないですむ。 Elongation of the thickness of the laminated piezoelectric Akuchiyue polarized in a direction Ichita 1 1 1 applies a voltage to the result the thickness direction (d 3 a direction) occurs. Same time, the individual plate-shaped piezoelectric material 1 3 0, shrinkage occurs to perpendicular longitudinal (d 3 1 direction). However, as described above, by using the uppermost and lowermost plate-like piezoelectric materials 130 as the dummy layers, such deformation does not occur in the plate-like piezoelectric material 130, so that It is not necessary to apply an excessive deformation force to the vibration plate 1 15 and the substrate 1 10 which are connected to the upper and lower surfaces of the piezoelectric material 13.
すなわち、 積層圧電ァクチユエ一タ 1 1 1 における最上段と最下 段の板状圧電材料 1 3 0 をダミー層とすることによ り、 積層圧電ァ クチユエ一タ 1 1 1 の長さ方向への変形を、 比較的柔らかい部材で ある積層圧電ァクチユエ一タ 1 1 1 の内部で吸収でき、 それと接合 する振動板 1 1 5および基板 1 1 0 を変形させないようにすること ができる。  In other words, by using the uppermost and lowermost plate-like piezoelectric materials 130 of the multilayer piezoelectric actuator 111 as dummy layers, the length of the multilayer piezoelectric actuator 111 can be reduced. The deformation can be absorbed inside the laminated piezoelectric actuator 111, which is a relatively soft member, and the diaphragm 115 and the substrate 110 bonded thereto can be prevented from being deformed.
このため、 振動板 1 1 5の長さ方向の変形によるエネルギーの口 スゃ、 基板 1 1 0の変形による各積層圧電ァクチユエータ 1 1 1 の 相互間のクロス トークが防止できる。  For this reason, it is possible to prevent the energy gap due to the deformation in the length direction of the diaphragm 115 and the crosstalk between the laminated piezoelectric actuators 111 due to the deformation of the substrate 110.
さらに、 上述した積層圧電ァクチユエ一タユニッ ト 1 1 2の構成 訂正された用紙^ および製造方法によると、 積層圧電ァクチユエータュニッ 卜 1 1 2 振動板 1 1 5、 流路板 1 1 8、 およびノズル板 1 2 0を、 順次積層 して接着することで、 簡単かつ高精度にイ ンクジエツ 卜へッ ドを製 作することができる。 Further, the configuration of the above-described laminated piezoelectric actuator unit 1 1 2 According to the method and the manufacturing method, the laminated piezoelectric actuator 1 12, the vibration plate 1 15, the flow path plate 1 18, and the nozzle plate 120 are sequentially laminated and bonded, so that simple and high The inkjet head can be manufactured with high accuracy.
そして、 面積の広いノズル板 1 2 0 を容易に形成でき、 ノズル孔 1 1 9のイ ンク液面であるメニスカスからの水分蒸発を防ぐために キヤップ機構を設置したり、 ノズル孔 1 1 9が目詰ま り したとき使 用する吸引機構を設置するスペースが充分に確保できる。 また、 ノ ズル板 1 2 0 と流路板 1 1 8 とを比較的広い面で接着できるので、 イ ンクの漏れを生じないシールを簡単に形成することができる。 次に、 上述したイ ンクジエツ トヘッ ドのイ ンク噴射動作を説明す る。  A nozzle plate 120 having a large area can be easily formed, and a capping mechanism can be installed to prevent evaporation of water from the meniscus, which is the ink surface of the nozzle hole 119, and the nozzle hole 119 can be easily observed. The space for installing the suction mechanism used when clogging can be secured. In addition, since the nozzle plate 120 and the flow passage plate 118 can be bonded to each other on a relatively large surface, a seal that does not leak ink can be easily formed. Next, the ink jetting operation of the above-described ink jet head will be described.
まず第 1 の動作では、 駆動集電極 1 1 3 a と共通集電極 1 1 3 b との間に電圧を印加して、 板状圧電材料 1 3 0の分極方向に電界を 発生させることにより、 積層圧電ァクチユエ一タ 1 1 1 を厚さ方向 ( d a 3方向) にゆつく リ伸ばす。 この動作によって振動板 1 1 5の 一部を圧力室 1 1 6内に押し込み、 '内部の体積を減少させておく。 なお、 このとき圧力室 1 1 6 内のイ ンクがノズル孔 1 1 9から飛び 出さないように、 十分にゆっく り した動作で積層圧電ァクチユエ一 タ 1 1 1 を駆動する。 First, in the first operation, a voltage is applied between the driving collector 113a and the common collector 113b to generate an electric field in the polarization direction of the plate-like piezoelectric material 130, Stretch the laminated piezoelectric actuator 1 1 1 loosely in the thickness direction (da 3 direction). By this operation, a part of the diaphragm 1 15 is pushed into the pressure chamber 1 16 to reduce the internal volume. At this time, the laminated piezoelectric actuator 11 1 is driven by a sufficiently slow operation so that the ink in the pressure chamber 1 16 does not jump out of the nozzle hole 1 19.
本発明者の実施例では、 積層圧電ァクチユエータ 1 1 1 の圧電歪 定数 d 33を 4 5 0 X 1 0 1 2 m/V, ダミー層を除いた板状圧電材 料 1 3 0の枚数は 2 0枚とした。 そして、 駆動集電極 1 1 3 a と共 通集電極 1 1 3 b との間に 3 0 Vの電圧を印加すると、 1枚の板状 圧電材料 1 3 0は厚さ方向に約 0. 0 1 4 μ πι伸び、 積層圧電ァク チユエータ 1 1 1 全体で 2 0枚分を加算した変形量 0. 2 Ί 11 mの 伸びを示した。 In our embodiment example, the number of laminated piezoelectric Akuchiyueta 1 1 1 of the piezoelectric strain constant d 33 to 4 5 0 X 1 0 1 2 m / V, the piezoelectric plate materials 1 3 0 except the dummy layer 2 It was set to 0 sheets. Then, when a voltage of 30 V is applied between the driving collector 113a and the common collector 113b, one plate-like piezoelectric material 130 becomes approximately 0.0 in the thickness direction. It showed an elongation of 14 μππ, and an elongation of 0.2 Ί 11 m, which is the total deformation of the laminated piezoelectric actuator 11 1 plus 20 sheets.
この変形量は、 圧力室 1 1 6の内容積を、 ほぼ 1 回のイ ンク液滴 の吐出量に匹敵する分だけ減少させる。  This amount of deformation reduces the internal volume of the pressure chamber 116 by an amount comparable to the amount of ink droplets discharged almost once.
次に、 第 2の動作に移り、 前動作で発生した電界をゆっく り弱め.  Next, move to the second operation, and slowly weaken the electric field generated in the previous operation.
訂正された用紙 ( 目、|J91) 積層圧電ァクチユエータ 1 1 1 の変位を減少させる。 これによ り圧 力室 1 1 6内の体積は第 1 の動作時に比べて増加し、 第 1 図に示す 共通インク通路 1 1 7 を経由して圧力室 1 1 6内にインクが供給さ れる。 Corrected form (eyes, | J91) The displacement of the laminated piezoelectric actuator 1 1 1 is reduced. As a result, the volume in the pressure chamber 116 increases from that in the first operation, and ink is supplied into the pressure chamber 116 via the common ink passage 117 shown in FIG. It is.
第 3の動作では、 板状圧電材料 1 3 0の分極方向に急激に電界を 発生させ、 積層圧電ァクチユエータ 1 1 1 を厚さ方向 ( d 3 3方向) に伸ばす。 このとき、 圧力室 1 1 6内の圧力は急激に高くなり、 圧 力室 1 1 6内に充填されたイ ンクがノズル孔 1 1 9から噴射する。 最後に第 4の動作で、 第 1 の動作と同一レベルの電圧を積層圧電 ァクチユエータ 1 1 1 に印加する。 なお、 第 1 の動作での印加電圧 と第 3の動作での印加電圧を同じにすることによ り、 第 4の動作を 省略してもよい。 In a third operation, rapidly generates an electric field in the polarization direction of the plate-shaped piezoelectric material 1 3 0, it extends the laminated piezoelectric Akuchiyueta 1 1 1 in the thickness direction (d 3 3 direction). At this time, the pressure in the pressure chamber 116 increases rapidly, and the ink filled in the pressure chamber 116 is ejected from the nozzle hole 119. Finally, in a fourth operation, a voltage at the same level as in the first operation is applied to the multilayer piezoelectric actuator 111. The fourth operation may be omitted by setting the applied voltage in the first operation and the applied voltage in the third operation to be the same.
このような駆動方法によると、 積層圧電ァクチユエータ 1 1 1 は たえず分極方向に対し同方向の電界を印加されるので、 積層圧電ァ クチユエ一タ 1 1 1の分極を弱めるような反転分極の発生を防止で きる。 また、 圧力室 1 1 6内で生じるインク液体の振動に伴うメズ ル孔 1 1 9の液面 (メニスカス) 上の振動を、 第 2の動作によるゆ つく り したインク供給によって和らげることができるので、 種々の 周波数で駆動しても、 噴射するィンク液滴の速度や液滴径を均一に することができる。  According to such a driving method, since the multilayer piezoelectric actuator 111 is constantly applied with an electric field in the same direction as the polarization direction, the occurrence of reverse polarization that weakens the polarization of the multilayer piezoelectric actuator 111 is generated. Can be prevented. Also, the vibration on the liquid surface (meniscus) of the mezzle hole 1 19 caused by the vibration of the ink liquid generated in the pressure chamber 116 can be reduced by the loose ink supply by the second operation. However, even when driven at various frequencies, the speed and diameter of the ejected ink droplets can be made uniform.
第 5図および第 6図は、 本発明の第 2の実施例に係るィ ンクジェ ッ 卜ヘッ ドを示しており、 第 5図は分解斜視図、 第 6図は正面断面 図である。 以下、 第 5図と第 6図とを交互に参照して本発明の第 2 の実施例について説明する。  5 and 6 show an ink jet head according to a second embodiment of the present invention. FIG. 5 is an exploded perspective view, and FIG. 6 is a front sectional view. Hereinafter, a second embodiment of the present invention will be described with reference to FIGS. 5 and 6 alternately.
第 5図, 第 6図に示すように、 セラミック等の基板 1 1 0上には, 一対の積層圧電ァクチユエータ 1 1 1 を直列的に並べて配置してあ る。 この一対の積層圧電ァクチユエ一タ 1 1 1 は、 さらに前後方向 に複数組並べて配置してあり、 これによリマ 卜リ ックス状の積層圧 電ァクチユエータユニッ ト 1 1 2 を形成している。 積層圧電ァクチ ユエータ 1 1 1 は、 鉛系ジルコ二ァと鉛系のチタ ンの混合物より構 成された圧電セラミックからなる板状圧電材料と、 銀一パラジウム からなる導電材料とを交互に積層し、 かつ焼成することによって形 成してある。 As shown in FIGS. 5 and 6, a pair of laminated piezoelectric actuators 111 are arranged in series on a substrate 110 made of ceramic or the like. A plurality of pairs of the laminated piezoelectric actuators 111 are further arranged in the front-rear direction, thereby forming a laminated piezoelectric actuator unit 112 in the form of a retrix. I have. The laminated piezoelectric actuator 111 is composed of a mixture of lead-based zirconium and lead-based titanium. It is formed by alternately laminating plate-shaped piezoelectric materials made of piezoelectric ceramics and conductive materials made of silver-palladium, and firing them.
なお、 第 6図に示すように、 積層圧電ァクチユエータ 1 1 1 の外 側の端面には、 蒸着などの薄膜形成手段によって形成した金 (A u ) 等の薄膜からなる駆動集電極 1 1 3 aが形成してあり、 他端面にも 共通集電極 1 1 3 bが同様な方法で形成してある。  As shown in FIG. 6, on the outer end face of the multilayer piezoelectric actuator 111, a driving collector 113a made of a thin film of gold (Au) or the like formed by thin film forming means such as evaporation. Are formed, and the common collector 113 b is formed on the other end surface in the same manner.
第 5図、 第 6 図に示すように、 基板 1 1 0上の両端部にセラミ ツ ク製の支柱 1 1 4 aを、 その上面が積層圧電ァクチユエ一タ 1 1 1 の上面と同一平面となるように接着する。 また、 一対の積層圧電ァ クチユエータ 1 1 1 の間には、 セラミ ック製の支柱 1 1 4 b を同様 にして形成する。  As shown in FIGS. 5 and 6, ceramic pillars 114a are provided at both ends of the substrate 110, and the upper surface thereof is flush with the upper surface of the multilayer piezoelectric actuator 111. Adhere so that In addition, between the pair of laminated piezoelectric actuators 111, a ceramic support pillar 114b is formed in the same manner.
積層圧電ァクチユエータ 1 1 1 の上面および支柱 1 1 4 a, 1 1 4 bの上面に対し、 金属製の振動板 1 1 5 を接合する。  A metal diaphragm 1 15 is joined to the upper surface of the laminated piezoelectric actuator 111 and the upper surfaces of the columns 114a and 114b.
さらに、 金属製の流路板 1 1 8 を振動板 1 1 5上に接着する。 流 路板 1 1 8には、 複数の圧力室 1 1 6 と、 図示しない外部のィ ンク タ ンクに連通する共通ィ ンク通路 1 1 7 とが形成してある。 そして、 各圧力室が振動板 1 1 5 を介して各積層圧電ァクチユエ一タ 1 1 1 と上下に隣接するように配置されている。  Further, a metal flow path plate 1 18 is bonded onto the diaphragm 1 15. A plurality of pressure chambers 116 and a common ink passage 117 communicating with an external ink tank (not shown) are formed in the passage plate 118. Each of the pressure chambers is disposed so as to be vertically adjacent to each of the laminated piezoelectric actuators 111 through the diaphragm 115.
ここで、 振動板 1 1 5は、 積層圧電ァクチユエ一タユニッ ト 1 1 2の支柱 1 1 4 a, 1 1 4 b と、 流路板 1 1 8の隔壁 1 1 8 a とに よ り挟み込まれ、 強固に固定されている。  Here, the diaphragm 1 15 is sandwiched between the columns 111 a and 114 b of the laminated piezoelectric actuator unit 112 and the partition wall 118 a of the flow path plate 118. , It is firmly fixed.
さらに、 流路板 1 1 8の上面には、 ノズル孔 1 1 9 を有する金属 製のノズル板 1 2 0が接着してある。 各ノズル孔 1 1 9 は、 それぞ れ各圧力室 1 1 6 に連通している。  Further, a metal nozzle plate 120 having a nozzle hole 119 is adhered to the upper surface of the channel plate 118. Each nozzle hole 1 19 communicates with each pressure chamber 1 16 respectively.
回路基板 1 2 1 上には、 積層圧電ァクチユエータ 1 1 1 の配列ピ ツチと同じピッチで電線パターン 1 2 3が形成してある。 一方、 基 板 1 1 0上には、 駆動集電極 1 1 3 aおよび共通集電極 1 1 3 b と 導通する電線バターン 1 2 2が形成してある。 これら電線パタ一ン 1 2 3 と 1 2 2 とは、 導電性接着材で接着してある。  On the circuit board 121, electric wire patterns 123 are formed at the same pitch as the arrangement pitch of the laminated piezoelectric actuators 111. On the other hand, on the substrate 110, an electric wire pattern 122 that is electrically connected to the driving collector 113a and the common collector 113b is formed. These electric wire patterns 123 and 122 are adhered by a conductive adhesive.
訂正された用紙 (HU91) さらに、 回路基板 1 2 1上には、 積層圧電ァクチユエ一タ 1 1 1 に電圧を印加してそれを駆動するための駆動 I C 1 2 5が実装して ある。 この駆動 I C 1 2 5は、 回路基板 1 2 1上の各電線バタ一ンCorrected form (HU91) Further, on the circuit board 121, a driving IC 125 for applying a voltage to the multilayer piezoelectric actuator 111 to drive it is mounted. This drive IC 125 is connected to each wire pattern on the circuit board 121.
1 2 3および電線 1 2 と導通している。 Conducted with 1 2 3 and electric wire 1 2.
電極 1 2 4に外部から信号を入力すると、 駆動 I C 1 2 5が作動 し、 電線バターン 1 2 3および電線パターン 1 2 2 を介して積層圧 電ァクチユエータ 1 1 1 の駆動集電極 1 1 3 aおよび共通集電極 1 When a signal is externally input to the electrodes 1 2 4, the drive IC 1 2 5 is activated, and the drive electrodes 1 1 3 a of the laminated piezoelectric actuator 1 1 1 via the wire pattern 1 2 3 and the wire pattern 1 2 2 And common collector electrode 1
1 3 bの間に電圧が印加され、 同ァクチユエータ 1 1 1 内の板状圧 電材料に電界が生じる。 この電界によって、 予め電界方向に分極し てあつた板状圧電材料は厚み方向 ( d 3 3方向) の変形を起こす。 A voltage is applied between 13b and an electric field is generated in the plate-like piezoelectric material in the actuator 111. This electric field, in advance direction of the electric field to a polarized piezoelectric plate material was Teatsu is deforms in the thickness direction (d 3 3 direction).
このようにして積層圧電ァクチユエータ 1 1 1 が厚さ方向 ( d 3 3 方向) に伸びる。 同時に、 積層圧電ァクチユエ一タ 1 1 1 は、 厚さ 方向と垂直な方向 ( d a l方向) にも収縮が生じる。 そこで、 積層圧 電ァクチユエータ 1 1 1 とそれに隣接する支柱 1 1 4 a との間に、 若干の隙間を空けておく力、、 または弾性接着材によって積層圧電ァ クチユエータ 1 1 1 と支柱 1 1 4 a とを接合することが好ましい。 このような構成により、 積層圧電ァクチユエ一タ 1 1 1 は厚さと垂 直な方向に拘束がなくなり、 厚さ方向の変形に損失を生じることが なくなる。 Thus the laminated piezoelectric Akuchiyueta 1 1 1 extends in the thickness direction (d 3 3 direction). At the same time, the laminated piezoelectric Akuchiyue Ichita 1 1 1, even shrinkage occurs in the thickness direction perpendicular to the direction (d al direction). Therefore, the laminated piezoelectric actuator 1 11 1 and the support 1 1 4 are separated by a force to leave a slight gap between the laminated piezoelectric actuator 1 1 1 and the adjacent support 1 1 4a, or by an elastic adhesive. It is preferable that a is joined. With such a configuration, the multilayer piezoelectric actuator 111 is not restrained in the direction perpendicular to the thickness, and no loss occurs in the deformation in the thickness direction.
なお、 図では詳細に描いていないが、 第 5図の前後方向の外端部 に位置する積層圧電ァクチユエ一タ 1 2 6 は駆動するためのもので はなく、 第 2図で示す共通集電極 1 1 3 b を基板 1 1 0上の電線パ ターン 1 2 2に電気的に接合するためのもので、 このため、 積層圧 電ァクチユエ一タ 1 2 6の内部には、 共通集電極 1 1 3 b と導通す る内部電極が形成してある。  Although not shown in detail in the figure, the laminated piezoelectric actuator 126 located at the outer end in the front-rear direction in FIG. 5 is not used for driving, and the common collector electrode shown in FIG. 1 1 3b is electrically connected to the electric wire pattern 1 2 2 on the substrate 1 1 0.Therefore, a common collector electrode 1 1 2 is provided inside the laminated piezoelectric actuator 1 2 6 An internal electrode that conducts with 3b is formed.
各部材を形成する材料は、 前述の材料に限定されない。 すなわち, 基板 1 1 0、 支柱 1 1 4 a, 1 1 4 bは絶縁部材であればよく、 例 えば、 ガラスでもよい。 また、 振動板 1 1 5、 流路板 1 1 8、 ノズ ル板 1 2 0は、 プラスチック等で形成してもかまわない。  The material forming each member is not limited to the materials described above. In other words, the substrate 110 and the columns 114a and 114b may be insulating members, for example, glass. Further, the diaphragm 115, the channel plate 118, and the nozzle plate 120 may be formed of plastic or the like.
このように基板 1 1 0、 積層圧電ァクチユエ一タ 1 1 1 、 振動板  Thus, the substrate 110, the laminated piezoelectric actuator 111, the diaphragm
訂正された甩紙 (^!!191) 1 1 5、 流路板 1 1 8、 ノズル板 1 2 0を形成する材料は、 任意に 選択することができるが、 上述した材料で構成すると線膨張係数が ほぼ同等なので、 温度変化によって生じる伸張差による部材変形を 最小限度に抑制することができ、 温度が変化してもインクジエツ ト へッ ドの吐出性能を一定に保つことができる。 Corrected paper (^ !! 191) Materials for forming 115, flow path plate 1 18 and nozzle plate 120 can be selected arbitrarily, but if they are made of the above-mentioned materials, their linear expansion coefficients are almost the same, so expansion caused by temperature changes The member deformation due to the difference can be suppressed to a minimum, and the ejection performance of the ink jet head can be kept constant even when the temperature changes.
また、 基板 1 1 0、 支柱 1 1 4 a, 1 1 4 bは、 積層圧電ァクチ ユエ一タの圧電材料の一部を利用して一体に形成してもよい。  Further, the substrate 110 and the support columns 114a and 114b may be integrally formed using a part of the piezoelectric material of the laminated piezoelectric actuator.
さらに、 支柱 1 1 4 bは、 振動板 1 1 5 と流路板 1 1 8 とを強固 に固定する機能を有しているが、 流路板 1 1 8の剛性が充分に高け れば省略してもかまわない。  Furthermore, the strut 1 14 b has a function of firmly fixing the diaphragm 1 15 and the flow path plate 1 18, but if the rigidity of the flow path plate 1 18 is sufficiently high. It may be omitted.
流路板 1 1 8において隣接する圧力室 1 1 6の間に存在する隔壁 Partition wall existing between adjacent pressure chambers 1 16 in flow path plate 1 18
1 1 8 aは、 振動板 1 1 5の上面と接合されるが、 振動板 1 1 5の 反対面 (下面) は、 積層圧電ァクチユエ一タ 1 1 1 間に形成された 溝に接する。 そこで、 接着等により振動板 1 1 5 と流路板 1 1 8 と を接合する場合は、 先に振動板 1 1 5 と流路板 1 1 8 を接着してお き、 その後、 これを積層圧電ァクチユエータ 1 1 1 と支柱 1 1 4 a ,118 a is joined to the upper surface of diaphragm 115, but the opposite surface (lower surface) of diaphragm 115 is in contact with the groove formed between laminated piezoelectric actuators 111. Therefore, when the diaphragm 115 and the flow path plate 118 are joined by bonding or the like, the vibration plate 115 and the flow path plate 118 are bonded first, and then they are laminated. Piezoelectric actuator 1 1 1 and support 1 1 4 a,
1 1 4 b とを押すようにして接合するとよい。 このようにすれば、 流路板 1 1 8 をく リ貫いて形成してある圧力室 1 1 6の部分から治 具等で振動板 1 1 5 を支持して、 積層圧電ァクチユエータ 1 1 1 を 押圧することができる。 It is good to join by pressing 1 1 4 b. In this way, the vibrating plate 1 15 is supported by a jig or the like from the pressure chamber 1 16 formed through the flow path plate 1 18 and the laminated piezoelectric actuator 1 1 1 Can be pressed.
また、 振動板 1 1 5 を流路板 1 1 8の隔壁 1 1 8 a と支柱 1 1 4 a とで挟み込むと、 強固な固定が実現でき、 振動板 1 1 5は弾性体 と して安定に機能するようになる。 なお、 振動板 i 1 5 と流路板 1 In addition, when the diaphragm 1 15 is sandwiched between the partition wall 1 18 a of the flow path plate 1 18 and the support 1 1 4 a, a strong fixation can be realized, and the diaphragm 1 15 is stable as an elastic body. Will work. The diaphragm i 15 and the flow path 1
1 8 との間を強固に接合し、 安定した支持を実現できれば、 支柱 1If a stable connection can be realized by firmly joining between
1 4 a と流路板 1 1 8 とを振動板 1 1 5 を介さず直接接合する構造 としてもよい。 The structure may be such that 14a and the flow path plate 1 18 are directly joined without the interposition of the diaphragm 1 15.
このように流路板 1 1 8上にノズル板 1 2 0を積層する構成にす ると、 ノズル板 1 2 0 と流路板 1 1 8 とが大きな面で接合されるの で、 ノズル孔 1 1 9の近傍において接着材のはみ出し等があっても 支障がなく、 そのため接合品質を厳しく追求する必要がなくなり製  When the nozzle plate 120 is laminated on the flow path plate 118 as described above, the nozzle plate 120 and the flow path plate 118 are joined on a large surface, so that the nozzle hole There is no problem even if the adhesive material protrudes in the vicinity of 119, so there is no need to strictly pursue the bonding quality
訂正された用紙 作が容易となる。 Corrected paper Easy to make.
さらに、 ノズル板 1 2 0は大きな面積が確保できるので、'ノズル 孔 1 1 9の液面であるメニスカスの品質を確保するためのキヤップ 機構、 ノズル孔 1 1 9の目詰ま りイ ンクを吸引する機構を取り付け ることが容易である。  Furthermore, since the nozzle plate 120 can secure a large area, a capping mechanism to ensure the quality of the meniscus, which is the liquid level of the nozzle hole 1 19, sucks the clogged ink in the nozzle hole 1 19 It is easy to attach a mechanism that performs this.
本発明者の実施例では、 積層圧電ァクチユエータ 1 1 1 の長さを 3 m m , 厚さ 0 . 5 m m程度の小さいもので、 しかも積層圧電ァク チユエ一タ 1 1 1 自体の剛性が高く、 高い固有振動数を備えること ができた。 このため、 イ ンクの連続噴射性能が向上した。  In the embodiment of the present inventor, the laminated piezoelectric actuator 111 has a small length of about 3 mm and a thickness of about 0.5 mm, and the rigidity of the laminated piezoelectric actuator 111 itself is high. A high natural frequency could be provided. As a result, the ink continuous injection performance was improved.
また、 積層圧電ァクチユエータ 1 1 1 の剛性が高く折れにく いこ とに加え、 その中央部を共通電極とし外側端面を駆動電極としてい るので、 最小スペースで容易に電気的接続がとれるようになつてお リ、 積層圧電ァクチユエ一タ 1 1 1 の平面実装密度をよ り高くする ことができる。  In addition to the high rigidity of the multilayer piezoelectric actuator 111 and its difficulty in breaking, the central part of the multilayer piezoelectric actuator is used as a common electrode and the outer end face is used as a drive electrode, so that electrical connection can be easily made in a minimum space. Accordingly, the planar mounting density of the multilayer piezoelectric actuator 111 can be further increased.
さらに、 積層圧電ァクチユエ一タ 1 1 1 の端面に支柱 1 1 4 a を 配設し、 この支柱 1 1 4 aを介して基板 1 1 0と流路板 1 1 8 とを 結合しているで、 各々の積層圧電ァクチユエータ 1 1 1独自に駆動 しても、 その反力および圧力室 1 1 6 に発生する圧力によって基板 Further, a column 114a is disposed on the end face of the multilayer piezoelectric actuator 111, and the substrate 110 and the flow path plate 118 are connected via the column 114a. Even when each multilayer piezoelectric actuator 111 is driven independently, the substrate is not affected by the reaction force and the pressure generated in the pressure chamber 116.
1 1 0 と流路板 1 1 8 との距離が変化して圧力室 1 1 6内に圧力損 失が生じたり、 基板 1 1 0および流路板 1 1 8の変形によって圧力 室 1 1 6間の干渉が生じたりすることがない。 The pressure between the 110 and the flow path plate 1 18 changes, causing pressure loss in the pressure chamber 1 16 or the deformation of the substrate 110 and the flow path plate 1 18 resulting in the pressure chamber 1 16 There is no interference between them.
また、 振動板 1 1 5 を支柱 1 1 4 a, 1 1 4 b と流路板 1 1 8の 隔壁 1 1 8 a部分で挟み込むようにして固定しているので、 振動板 In addition, the diaphragm 1 15 is fixed so as to be sandwiched between the columns 1 1 14a and 1 1 4b and the partition 1 1 8a of the flow path plate 1 1 8 so that the diaphragm 1
1 1 5の振動系が安定するとともに、 圧力室 1 1 6 を積層圧電ァク チユエータ 1 1 1 で強く押しても、 振動板 1 1 5に余分な振動が発 生しないので効率がよく、 隣接する圧力室 1 1 6間の干渉も少ない ( 上述の構成では詳細は述べていないが、 積層圧電ァクチユエータThe vibration system of 115 is stable, and even if the pressure chamber 116 is strongly pushed by the laminated piezoelectric actuator 111, extra vibration is not generated in the diaphragm 115, so that the efficiency is high and the vibration plate is adjacent. Interference between the pressure chambers 1 16 is also small ( details are not described in the above configuration, but the multilayer piezoelectric actuator
1 1 1 の最上段の板状圧電材料を機能しないダミー層とすると、 積 層圧電ァクチユエ一タ 1 1 1 と支柱 1 1 4 a, 1 1 4 b とを平面研 削等によ り面出しすることが可能となリ、 隙間なく高精度に振動板 1 1 5 を接合することができる。 Assuming that the uppermost plate-like piezoelectric material of 111 is a non-functioning dummy layer, the laminated piezoelectric actuator 111 and pillars 114a and 114b are exposed by plane grinding or the like. Diaphragm with high precision without gaps 1 1 5 can be joined.
さらに、'積層圧電ァクチユエータ 1 1 1 の最下段の板状圧電材料 を機能しないダミー層とすると、 積層圧電ァクチユエータ 1 1 1 に da l方向の変形が生じても、 このダミー層でその変形を吸収するこ とができ、 基板 1 1 0 との間の接合面のス ト レスを緩和できる。 次に、 上述したインクジエツ 卜へッ ドのイ ンク噴射動作について. 第 6 図を主に参照して説明する。 Furthermore, 'absorption when a stacked piezoelectric Akuchiyueta 1 1 1 dummy layer that does not function the lowermost plate-shaped piezoelectric material, to the laminated piezoelectric Akuchiyueta 1 1 1 occurs deformation of d al direction, the deformation in this dummy layer Therefore, stress at the joint surface with the substrate 110 can be reduced. Next, the ink jetting operation of the above-described ink jet head will be described with reference mainly to FIG.
まず、 第 1 の動作では、 駆動集電極 1 1 3 a と共通集電極 1 1 3 b との間に電圧を印加することによ り、 板状圧電材料の分極方向に 電界を発生させ、 積層圧電ァクチユエータ 1 1 1 を厚さ方向 ( d 3 3 方向) にゆつく リ伸ばす。 First, in the first operation, an electric field is generated between the driving collector 113a and the common collector 113b to generate an electric field in the polarization direction of the plate-like piezoelectric material, and the lamination is performed. piezoelectric Akuchiyueta 1 1 1 in the thickness direction (d 3 3 direction) stretching Niyutsuku Li.
この動作によって、 振動板 1 1 5 を圧力室 1 1 6 内に押し込み、 内部の体積を減少させておく。 なお、 このときは圧力室 1 1 6 内の イ ンクがノズル孔 1 1 9から飛び出さないように、 十分にゆつく り と した動作で積層圧電ァクチユエ一タ 1 1 1 を駆動する。  By this operation, the diaphragm 1 15 is pushed into the pressure chamber 1 16 to reduce the internal volume. In this case, the multilayer piezoelectric actuator 111 is driven with a sufficiently loose operation so that the ink in the pressure chamber 116 does not jump out of the nozzle hole 119.
次いで、 第 2の動作に移行し、 前動作で発生させた電界をゆつく り弱めていき、 積層圧電ァクチユエ一タ 1 1 1 の変位を減少させる t この動作によって、 圧力室 1 1 6内の体積が第 1 の動作時に比べ増 加し、 第 5図に示す共通インク通路 1 1 7から圧力室 1 1 6内へと イ ンクが供給される。 Then, the process proceeds to the second operation, before the operation will weaken Ri Yutsuku the electric field generated by, with t the operation of reducing the displacement of the laminated piezoelectric Akuchiyue Ichita 1 1 1, the pressure chamber 1 1 6 The volume increases as compared to the first operation, and ink is supplied from the common ink passage 1 17 shown in FIG. 5 into the pressure chamber 1 16.
続いて、 第 3の動作で、 板状圧電材料の分極方向に急激に電界を 発生させ、 積層圧電ァクチユエータ 1 1 1 を厚さ方向に勢いよく伸 ばす。 このとき、 圧力室 1 1 6内の圧力は急激に高くなり、 圧力室 1 1 6内に充填されていたイ ンクがノズル孔 1 1 9から噴射する。 最後に第 4の動作で、 第 1 の動作と同一レベルの電圧となるよう に、 積層圧電ァクチユエータ 1 1 1 に印加している電圧を下げてい く。 なお、 第 1 の動作での印加電圧と第 3の動作での印加電圧とを 同一にすることにより、 第 4の動作を省略してもよい。  Subsequently, in a third operation, an electric field is rapidly generated in the polarization direction of the plate-shaped piezoelectric material, and the laminated piezoelectric actuator 111 is vigorously stretched in the thickness direction. At this time, the pressure in the pressure chamber 116 increases rapidly, and the ink filled in the pressure chamber 116 is jetted from the nozzle hole 119. Finally, in the fourth operation, the voltage applied to the multilayer piezoelectric actuator 111 is reduced so that the voltage becomes the same level as in the first operation. Note that the fourth operation may be omitted by setting the applied voltage in the first operation and the applied voltage in the third operation to be the same.
このような駆動方法によると、 積層圧電ァクチユエ一タ 1 1 1 は たえず分極方向に対して同方向の電界が印加されているので、 積層 圧電ァクチユエータ 1 1 1 の分極を弱めるような反転分極が生じな い。 加えて、 圧力室 1 1 6内で生じたインク液体の振動に伴うノズ ル孔 1 1 9の液面 (メニスカス) 上の振動を、 第 2の動作における ゆつく り したイ ンク供給によって和らげることができるので、 種々 の周波数で積層圧電ァクチユエータ 1 1 1 を駆動しても、 インク液 滴の噴射速度や液滴径を均一にすることができる。 According to such a driving method, the multilayer piezoelectric actuator 1 1 1 is constantly applied with an electric field in the same direction as the polarization direction. There is no inversion polarization that weakens the polarization of the piezoelectric actuator 1 1 1. In addition, the vibration on the liquid surface (meniscus) of the nozzle hole 119 caused by the vibration of the ink liquid generated in the pressure chamber 116 is reduced by the loose ink supply in the second operation. Therefore, even if the laminated piezoelectric actuator 111 is driven at various frequencies, the ejection speed and the diameter of the ink droplets can be made uniform.
次に、 上述したインクジェッ トへッ ドにおける積層圧電ァクチュ エータユニッ ト 1 1 2の製造方法について、 第 3図 ( a ) 、 第 3図 ( b ) 、 第 3図 ( c ) .、 および第 7図を参照して説明する。  Next, FIGS. 3 (a), 3 (b), 3 (c), and 7 show a method of manufacturing the laminated piezoelectric actuator unit 112 in the above-mentioned inkjet head. This will be described with reference to FIG.
第 3図 ( a ) 〜第 3図 ( c ) に示した圧電素子ブロック 1 5 0の 製造については、 前記第 1 の実施例における積層圧電ァクチユエ一 タユニッ ト 1 1 2の製造方法とほぼ同様である。  The manufacture of the piezoelectric element block 150 shown in FIGS. 3 (a) to 3 (c) is substantially the same as the method of manufacturing the multilayer piezoelectric actuator unit 112 in the first embodiment. is there.
すなわち、 第 3図 ( a ) に示すように、 圧電セラミ ックで形成さ れ板状圧電材料 1 3 0 となる第 1のグリーンシー トに、 第 1 の導電 材料 1 3 1 を印刷法によ リ形成する。 このとき、 板状圧電材料 1 3 0の中央部分が第 1 の導電材料 1 3 1 に被覆されず、 第 1 の露出部 1 3 0 a となるようにする。 '  That is, as shown in FIG. 3 (a), a first conductive material 1331 is applied to a first green sheet formed of piezoelectric ceramic to become a plate-like piezoelectric material 130 by a printing method. It forms well. At this time, the central portion of the plate-shaped piezoelectric material 130 is not covered with the first conductive material 131, and is made to be the first exposed portion 130a. '
次に、 第 3図 ( b ) に示すように、 第 1 の導電材料 1 3 1 の上に, 板状圧電材料 1 4 0となる第 2のグリーンシー トを積み重ね、 さら にこの板状圧電材料 1 4 0の上面に、 第 2の導電材料 1 4 1 を印刷 法によって形成する。 このときは、 板状圧電材料 1 4 0の両端面が 第 2の導電材料 1 4 1 に被覆されず、 第 2の露出部 1 4 0 a となる ようにする。  Next, as shown in FIG. 3 (b), a second green sheet that becomes a plate-like piezoelectric material 140 is stacked on the first conductive material 131, and the plate-like piezoelectric material 140 is further stacked. A second conductive material 141 is formed on the upper surface of the material 140 by a printing method. At this time, both end surfaces of the plate-shaped piezoelectric material 140 are not covered with the second conductive material 141 so as to be the second exposed portions 140a.
このように板状圧電材料を形成するグリ一ンシー トと導電材料と を交互に積み重ねた後、 加圧焼結処理することで、 第 3図 ( c ) に 示すような圧電素子ブロック 1 5 0 を形成する。  The green sheet and the conductive material forming the plate-like piezoelectric material are alternately stacked in this manner, and then subjected to a pressure sintering process to obtain a piezoelectric element block 150 as shown in FIG. 3 (c). To form
次に、 第 Ί図に示すように、 圧電素子プロック 1 5 0 を基板 1 1 0に接着し、 続いてダイヤモン ドカッター等を切削工具を使い、 基 板 1 1 0に達する第 1 のスリ ッ ト 1 6 0 a, 1 6 0 b を形成する。  Next, as shown in FIG. 5, the piezoelectric element block 150 is bonded to the substrate 110, and a diamond cutter or the like is used to cut the first slit reaching the substrate 110 using a cutting tool. 16a and 16b are formed.
そして、 圧電素子ブロック 1 5 0および基板 1 1 0の全面に、 真 空蒸着等の薄膜形成手段によって金 (A u ) 薄膜を形成し、 基板 1 1 0の上面、 圧電素子ブロック 1 5 0の端面および第 1 のスリ ツ 卜 1 6 0 a , 1 6 0 bの内面に電極膜 1 6 1 を形成する。 Then, the entire surface of the piezoelectric element block 150 and the substrate 110 is A gold (Au) thin film is formed by thin film forming means such as vacuum evaporation, and the upper surface of the substrate 110, the end surface of the piezoelectric element block 150, and the first slits 160a and 160b are formed. An electrode film 16 1 is formed on the inner surface.
その後、 圧電素子ブロック 1 5 0の上面や、 その他不要な面の電 極膜 1 6 1 を平面研削等で除去し、 第 4図で示すような積層圧電ァ クチユエ一タブロック 1 6 2 を形成する。  After that, the upper surface of the piezoelectric element block 150 and the electrode film 161 on other unnecessary surfaces are removed by surface grinding or the like to form a laminated piezoelectric actuator block 162 as shown in FIG. I do.
このようにして形成した積層圧電ァクチユエ一タブロック 1 6 2 に、 第 5図に示した第 2のスリ ッ ト 1 6 3 (第 7 図には示さず) を. 第 1 のスリ ッ ト 1 6 0 a, 1 6 0 b とほぼ垂直にダイヤモン ドカツ ター等で形成する。 この第 2のスリ ッ ト 1 6 3は、 基板 1 1 0に達 するが、 第 1 のスリ ッ ト 1 6 0よりも浅い深さとする。 この第 2の スリ ッ ト 1 6 3 を一定のピッチで順次形成することで、 積層圧電ァ クチユエータ 1 1 1 が完成する。  The second slit 163 shown in FIG. 5 (not shown in FIG. 7) is added to the laminated piezoelectric actuator block 162 thus formed. The first slit 1 It is formed almost perpendicularly to 600a and 160b with a diamond cutter or the like. This second slit 163 reaches the substrate 110 but has a shallower depth than the first slit 160. By forming the second slits 163 sequentially at a constant pitch, the multilayer piezoelectric actuator 111 is completed.
上述した工程によって第 7図に示す電極膜 1 6 1 は、 複数パター ンに分離され、 各積層圧電ァクチユエ一タ 1 1 1 を個別に駆動可能 な状態となる。  By the above-described steps, the electrode film 161 shown in FIG. 7 is separated into a plurality of patterns, and each laminated piezoelectric actuator 111 can be individually driven.
次に、 第 5図に示すように支柱 1 1 4 a を基板 1 1 0上に接着す るとともに、 積層圧電ァクチユエータ 1 1 1 および支柱 1 1 4 b, 1 1 4 aの上面を同時に平面研削する。  Next, as shown in Fig. 5, the pillars 114a are bonded to the substrate 110, and the upper surfaces of the multilayer piezoelectric actuator 111 and the pillars 114b, 114a are ground simultaneously. I do.
なお、 この平面研削工程と前記第 2のスリ ッ ト 1 6 3の形成工程 とは、 順序を逆にしてもよい。  The order of the surface grinding step and the step of forming the second slit 163 may be reversed.
上述したインクジエツ トへッ ドの構成および積層圧電ァクチユエ ータ 1 1 1 の製造方法によれば、 積層圧電ァクチユエータ 1 1 1 を 駆動するための電気的な接続構造を、 薄膜形成手段および研削加工 によって簡単に形成できる。  According to the above-described structure of the ink jet head and the method of manufacturing the multilayer piezoelectric actuator 111, the electrical connection structure for driving the multilayer piezoelectric actuator 111 is formed by thin film forming means and grinding. Easy to form.
また、 構造上、 積層圧電ァクチユエ一タ 1 1 1 の突起部分が小さ く、 欠け等の不良が発生しにくい。 さらに、 困難な製造工程がない ので、 各部品を高精度に形成でき、 かつ各部品を積み重ねて接着す ることによ り簡単に組立られるので、 製作コス 卜が安価である。 次に、 この発明の第 3の実施例に係るィ ンクジェッ トへッ ドにつ いて説明する。 Also, due to its structure, the protrusion of the laminated piezoelectric actuator 111 is small, and defects such as chipping are unlikely to occur. Furthermore, since there is no difficult manufacturing process, each component can be formed with high precision, and since each component can be easily assembled by stacking and bonding, the manufacturing cost is low. Next, an ink jet head according to a third embodiment of the present invention will be described. Will be described.
第 3の実施例に係るイ ンクジエツ 卜へッ ドは、 前述した第 1 およ び第 2の実施例で示したインクジエツ トへッ ドにおいて、 ノズル孔 1 1 9の配置構造および積層圧電ァクチユエータ 1 1 1 の配置構造 を変更した構成となっている。 したがって、 上記配置構造以外の部 分は第 1 および第 2の実施例とほぼ同じであるため、 その共通部分 の説明は適宜省略する。  The ink jet head according to the third embodiment differs from the ink jet head shown in the first and second embodiments in the arrangement structure of the nozzle holes 119 and the multilayer piezoelectric actuator 1. This is a configuration in which the arrangement structure of 11 is changed. Therefore, portions other than the above-described arrangement structure are substantially the same as those of the first and second embodiments, and description of the common portions will be omitted as appropriate.
第 8図は、 ノズル板 1 2 0、 流路板 1 1 8、 振動板 1 1 5および 積層圧電ァクチュ,エータュニッ ト 1 1 2の一部を破断して示す平面 図である。  FIG. 8 is a plan view of the nozzle plate 120, the flow channel plate 118, the vibration plate 115, and a part of the multilayer piezoelectric actuator and etaunit 112, which are cut away.
第 8図において、 軸 X 1 , 軸 X 2は、 ノズル板 1 2 0に設けたノ ズル孔 1 1 9 を通る軸線で、 ノズル孔 1 1 9の配列方向を示してい る。 軸 Yはノズル板 1 2 0上で軸 X I 、 軸 X 2 と直交する軸である ( この実施例では、 第 8図の紙面垂直方向に分極した一対の積層圧 電ァクチユエ一タ 1 1 1, 1 1 1 を、 軸 Yと Θ度傾斜した軸 Z上に 直列的に並べて配置してある。  In FIG. 8, the axis X 1 and the axis X 2 are axes passing through the nozzle holes 119 provided in the nozzle plate 120 and indicate the arrangement direction of the nozzle holes 119. The axis Y is an axis orthogonal to the axis XI and the axis X2 on the nozzle plate 120 (in this embodiment, a pair of laminated piezoelectric actuators 111, polarized in the direction perpendicular to the plane of FIG. 8). 1 1 1 are arranged in series on the axis Y and the axis Z inclined at a small angle.
さらに、 この一対の積層圧電ァクチユエータ 1 1 1 は、 軸 X I, 軸 X 2に沿って P 1 の配列間隔で複数組並べて設けられている。 流路板 1 1 8 に形成した複数の圧力室 1 1 6 も、 それぞれ積層圧 電ァクチユエータ 1 1 1 に対応して、 軸 Yと Θ度傾斜した軸 Z と平 行に形成してある。  Further, a plurality of pairs of the laminated piezoelectric actuators 111 are arranged along the axis XI and the axis X2 at an arrangement interval of P1. The plurality of pressure chambers 1 16 formed in the flow path plate 1 18 are also formed in parallel with the axis Y and the axis Z inclined at a slight angle, corresponding to the laminated piezoelectric actuators 111 respectively.
そして、 各ノズル板 1 2 0には、 各圧力室 1 1 6 と連通するように ノズル孔 1 1 9が形成してある。 And, in each nozzle plate 120, a nozzle hole 119 is formed so as to communicate with each pressure chamber 116.
ここで、 軸 X I上のノズル孔 1 Γ 9および軸 X 2上のノズル孔 1 1 9 は、 ともに同軸方向に P 1 のピッチで配列してある。 そして、 軸 X 1 と軸 X 2上の隣接するノズル孔 1 1 9間の距離を P 2、 軸 X 1 , 軸 X 2間の距離を S とすると、  Here, the nozzle holes 1-9 on the axis XI and the nozzle holes 119 on the axis X2 are both arranged at the pitch of P1 in the coaxial direction. Then, assuming that the distance between the adjacent nozzle holes 1 and 19 on the axis X 1 and the axis X 2 is P 2, and the distance between the axis X 1 and the axis X 2 is S,
P 2 = S X t a η Θ = P 1 / 2  P 2 = S X t a η Θ = P 1/2
となるように設定されている。 It is set to be.
盯正された用紙 (¾E lj91) このように構成したィ ンクジエツ 卜へッ ドを、 紙等の印字媒体に 対し、 第 8図の軸 Y方向に相対移動して印字動作させた場合、 軸 X 1 (軸 X 2 ) 方向のノズル孔 1 1 9の配列ピッチが、 第 1 , 第 2の 実施例に比べ 1 2 となるため、 その結果、 印字された画素は 2倍 の高密度になり、 きわめて高品質の画像を得ることができる。 用紙 Corrected paper (¾E lj91) When the ink jet head configured as described above is moved relative to the printing medium such as paper in the direction of the axis Y in FIG. 8 to perform a printing operation, the nozzle in the direction of the axis X1 (axis X2) is obtained. Since the arrangement pitch of the holes 1 19 is 12 compared to the first and second embodiments, the number of printed pixels is twice as high and an extremely high quality image can be obtained. it can.
本発明者の実施例では、 基板 1 1 0に接着した積層圧電体を 1 5 0 d p i のピッチで溝加工し、 ノズル孔 1 1 9の配列ピッチを 3 0 0 d p i の高密度に設定することができた。 このとき、 傾斜 Θ は 0 0 3 ラジアン程度の非常に小さな傾きであるので、 実際は積層圧電 ァクチユエ一タ 1 1 1 や圧力室 1 1 6の形状が、 第 8図の描いたよ うな極端な平行四辺形とはならなかった。  In the embodiment of the present inventor, the laminated piezoelectric body adhered to the substrate 110 is grooved at a pitch of 150 dpi, and the arrangement pitch of the nozzle holes 119 is set to a high density of 300 dpi. Was completed. At this time, since the inclination で あ is a very small inclination of about 0.33 radians, the shape of the laminated piezoelectric actuator 111 and the pressure chamber 111 is actually changed to an extreme parallelogram as shown in FIG. It did not take shape.
次に、 本発明の第 4の実施例について、 第 9図を主に参照して説 明する。  Next, a fourth embodiment of the present invention will be described mainly with reference to FIG.
なお、 後述する積層圧電ァクチユエータュニッ 卜 1 7 0以外の構 成は、 前述した第 2の実施例と同様である。  The configuration other than the laminated piezoelectric actuator unit 170 described later is the same as that of the above-described second embodiment.
本実施例の積層圧電ァクチユエ一タュニッ 卜 1 7 0 を製造工程に 沿って説明する。 '  The laminated piezoelectric unit 170 of this embodiment will be described along with the manufacturing process. '
積層圧電ブロック 1 7 1 は、 第 2の実施例と同様、 板状圧電材料 と導電材料を交互に積層して加圧焼結処理することによ り形成する, 積層圧電ブロック 1 7 1 の中央には、 第 1 のスリ ッ ト 1 7 2 a、 1 7 2 b を形成し、 さらに、 同ブロック 1 7 1 の両端面に駆動集電 極 1 7 3 a、 第 1 のスリ ッ ト 1 7 2 a, 1 7 2 b内に共通集電極 1 7 3 bをそれぞれ形成する。  As in the second embodiment, the laminated piezoelectric block 17 1 is formed by alternately laminating a plate-shaped piezoelectric material and a conductive material and subjecting them to a pressure sintering process. The center of the laminated piezoelectric block 17 1 In this case, the first slits 17 2a and 17 2b are formed, and the drive current collectors 17 3a and the first slit 17 A common collector electrode 173b is formed in each of 2a and 172b.
このようにして形成した積層圧電ブロック 1 7 1 に、 第 2の実施 例における第 2のスリ ッ ト 1 6 3 (第 5図参照) と同様の第 2のス リ ッ トを、 第 1 のスリ ッ ト 1 7 2 a , 1 7 2 b とほぼ垂直に一定ピ ツチで形成していく。 これによ リ積層圧電ァクチユエ一タュニッ ト 1 7 0が完成する。  A second slit similar to the second slit 163 (see FIG. 5) in the second embodiment is provided on the laminated piezoelectric block 17 1 thus formed by the first slit. The slits are formed at a constant pitch almost perpendicular to the slits 17a and 17b. As a result, a multilayer piezoelectric actuator unit 170 is completed.
また、 駆動集電極 1 7 3 a を別のスリッ 卜加工によって前記第 2 のスリツ 卜と同じピッチで分離し、 各積層圧電ブロック 1 7 1 に個 別の駆動電極を形成する。 In addition, the drive collector electrode 173a is separated by another slit processing at the same pitch as the second slit, and is separated into each laminated piezoelectric block 1771. Another drive electrode is formed.
その後、 第 2の実施例と同様に、 振動板 1 1 5、 流路板 1 1 8、 ノズル板 1 2 0 を重ね合わせて接合することによって、 イ ンクジェ ッ 卜へッ ドが出来上がる。  After that, as in the second embodiment, the diaphragm 1 15, the flow path plate 1 18, and the nozzle plate 120 are overlapped and joined to complete an ink jet head.
本実施例では、 第 2の実施例のイ ンクジエツ トへッ ドにおける基 板 1 1 0および支柱 1 1 4 a , 1 1 4 b を、 別部材としてではなく . 積層圧電ァクチユエ一タそのもので形成した点にある。  In this embodiment, the base plate 110 and the columns 114a and 114b in the ink jet head of the second embodiment are not formed as separate members but are formed by the laminated piezoelectric actuator itself. It is in the point which did.
すなわち、 積層圧電ブロック 1 7 1 の底部と、 同プロック 1 7 1 の外端部および中央部付近には、 一枚一枚の板状圧電材料 1 3 0, 1 4 0を駆動するために対となって対向している導電材料 1 3 1 , 1 4 1 の一方が存在していない。 したがって、 これらの部分は、 積 層圧電ブロック 1 7 1 に電圧を印加しても変形しない。 そこで、 積 層圧電ブロック 1 7 1 の底部を基板として活用し、 同ブロック 1 7 1 の外端部および中央部付近を支柱として活用することにより、 部 品点数の削減を図っている。  In other words, the bottom of the laminated piezoelectric block 171, and the vicinity of the outer end and the center of the block 171, are connected to each other to drive the plate-shaped piezoelectric materials 130, 140 one by one. One of the opposing conductive materials 13 1 and 14 1 does not exist. Therefore, these portions do not deform even when a voltage is applied to the laminated piezoelectric block 17 1. Therefore, the bottom part of the laminated piezoelectric block 171 is used as a substrate, and the outer end and the center of the block 171 are used as pillars, thereby reducing the number of parts.
したがって、 この第 4の実施例によれば、 部品コス トが安価にす むとともに、 製作工数が削減され、 簡易に製造することが可能とな る。  Therefore, according to the fourth embodiment, the cost of parts can be reduced, the number of manufacturing steps can be reduced, and the manufacturing can be simplified.
次に、 本発明の第 5の実施例について、 第 1 0図を参照して説明 する。  Next, a fifth embodiment of the present invention will be described with reference to FIG.
なお、 本実施例のイ ンクジェッ トヘッ ドも、 後述する積層圧電 ァクチユエータュニッ 卜 1 8 0以外の構成は、 前述した第 1 〜 4の 実施例と同様である。  The configuration of the eject head of the present embodiment is the same as that of the above-described first to fourth embodiments, except for the laminated piezoelectric actuator unit 180 described later.
本実施例は、 前述した第 1 〜 4の実施例における積層圧電ァクチ ユエータ、 振動板、 および流路板の接合構造を変更したものである, すなわち、 第 1 0図に示すように、 一定ピッチ毎に配列された複 数組の積層圧電ァクチユエ一タユニッ ト 1 8 0を、 一列ごと交互に 駆動ァクチユエ一タ 1 8 3および非駆動ァクチユエータ 1 8 4に分 けて構成してある。 そして、 一列おきに設けられた非駆動ァクチュ エータ 1 8 4 を支柱として活用している。  This embodiment is a modification of the bonding structure of the laminated piezoelectric actuator, the diaphragm, and the flow path plate in the above-described first to fourth embodiments. That is, as shown in FIG. A plurality of stacked piezoelectric actuator units 180 arranged in each case are alternately divided into a driving actuator 183 and a non-driving actuator 184 in each row. The non-driving actuators 184 provided in every other row are used as pillars.
訂正された用紙 そして、 駆動ァクチユエ一タ 1 8 3 と支柱としての非駆動ァクチ ユエータ 1 8 4の上端面に振動板 1 8 1 を接合し、 さらに振動板 1 8 1 の上面に流路板 1 8 2 を接合してある。 ここで、 振動板 1 8 1 は、 非駆動ァクチユエータ 1 8 と流路板 1 8 2の隔壁とで挟み込 まれている。 Corrected paper Then, the diaphragm 18 1 is joined to the upper end surface of the driving actuator 18 3 and the non-driving actuator 18 4 as a support, and the flow path plate 18 2 is joined to the upper surface of the diaphragm 18 1. I have. Here, diaphragm 18 1 is sandwiched between non-driven actuator 18 and partition wall of flow path plate 18 2.
さらに、 流路板 1 8 2の上端面に、 ノズル板 1 2 0 をそれぞれ接 合した構成となっている。 。  Further, a nozzle plate 120 is connected to the upper end surface of the flow path plate 18. .
このような構成にすると、 振動板 1 8 1 の支持条件が一定となり イ ンク吐出性能のバラツキを防げるとともに、 隣接する圧力室間の 干渉を防止することができる。  With such a configuration, the supporting condition of the diaphragm 18 1 is constant, so that a variation in the ink discharge performance can be prevented, and interference between adjacent pressure chambers can be prevented.
次に、 本発明の第 6の実施例に係るィンクジェッ トへッ ドついて, 第 1 1 図, 第 1 2図を参照して説明する。  Next, an ink jet head according to a sixth embodiment of the present invention will be described with reference to FIGS. 11 and 12. FIG.
本発明の第 6の実施例以降のィンクジェッ トへッ ドは、 今まで説 明してきた第 5の実施例までのイ ンクジエツ トへッ ドと、 積層圧電 ァクチユエータュニッ 卜についてほぼ同じ構成を備えているが、 圧 力室の構成およびインクの吐出原理が本質的に異なつている。  The ink jet head according to the sixth and subsequent embodiments of the present invention has substantially the same configuration as the ink jet head according to the fifth embodiment described so far, with respect to the laminated piezoelectric actuator unit. However, the configuration of the pressure chamber and the principle of ink ejection are essentially different.
すなわち、 第 1 〜第 5の実施例までは、 圧力室の外部に設けた積 層圧電ァクチユエータによって圧力室を押し、 イ ンクを吐出する構 造であつたが、 第 6の実施例以降のイ ンクジェッ トヘッ ドでは、 積 層圧電ァクチユエータの内部に圧力室を形成してある。  That is, up to the first to fifth embodiments, the structure in which the pressure chamber is pushed by the laminated piezoelectric actuator provided outside the pressure chamber to discharge the ink is used. In the inkjet head, a pressure chamber is formed inside the laminated piezoelectric actuator.
そこで、 第 6の実施例以降を示す図面 (第 1 1 図〜第 1 8図) に ついては、 新たな符号を付して説明していく。  Therefore, drawings (FIGS. 11 to 18) showing the sixth and subsequent embodiments will be described with new reference numerals.
第 1 1 図および第 1 2図に示すように、 第 1 の板状圧電材料 1 a は、 第 1 の導電材料 2 a を介して、 第 2の板状圧電材料 1 b と貼り 合わしてある。 さらに、 第 2の板状圧電材料 1 bは、 第 2の導電材 料 2 b を介して、 第 3の板状圧電材料 1 c と貼り合わしてある。  As shown in FIGS. 11 and 12, the first plate-shaped piezoelectric material 1a is bonded to the second plate-shaped piezoelectric material 1b via the first conductive material 2a. . Furthermore, the second plate-shaped piezoelectric material 1b is bonded to the third plate-shaped piezoelectric material 1c via the second conductive material 2b.
ここで、 第 1 の板状圧電材料 1 aは、 厚さ方向に分極しておリ、 第 2の板状圧電材料 1 bは、 第 1 の板状圧電材料 1 aと反対方向に 分極している。 また、 第 3の板状圧電材料 1 cは、 第 2の板状圧電 材料 1 b と反対方向に分極している。  Here, the first plate-shaped piezoelectric material 1a is polarized in the thickness direction, and the second plate-shaped piezoelectric material 1b is polarized in the opposite direction to the first plate-shaped piezoelectric material 1a. ing. The third plate-shaped piezoelectric material 1c is polarized in the opposite direction to the second plate-shaped piezoelectric material 1b.
正された甩紙 (細 !]91) 同様な構成で必要な枚数だけ導電材料と板状圧電材料とを順次積 層することで、 隔壁 1 0が形成してある。 Corrected paper (thin!) 91 The partition 10 is formed by sequentially laminating a necessary number of conductive materials and plate-like piezoelectric materials in the same configuration.
隔壁 1 0の一方の端面上には、 真空蒸着法などの薄膜形成手段で 形成された金 (A u ) 薄膜等からなる第 1 の集電極 3 aが設けてあ る。 そして、 第 1 の導電材料 2 a、 第 3の導電材料 2 c等は、 この 第 1 の集電極 3 a と電気的に導通している。  On one end face of the partition wall 10, a first collector electrode 3a made of a gold (Au) thin film or the like formed by a thin film forming means such as a vacuum evaporation method is provided. The first conductive material 2a, the third conductive material 2c, and the like are electrically connected to the first collector electrode 3a.
一方、 隔壁 1 0の他方の端面には、 第 1 の集電極 3 a と同様な手 段によって第 2の集電極 3 bが設けてあり、 第 2の導電材料 2 b、 第 4の導電材料 2 d等が、 この第 2の集電極 3 b と電気的に導通し てある。  On the other hand, a second collector electrode 3b is provided on the other end surface of the partition wall 10 by the same method as the first collector electrode 3a, and the second conductive material 2b and the fourth conductive material 2d and the like are electrically connected to the second collector electrode 3b.
このような構成によ り、 第 1 の集電極 3 a と第 2の集電極 3 と の間に電圧を印加すると、 各導電材料間に電位差が生じ、 板状圧電 材料の厚さ方向に電界が発生する。 このため、 隔壁 1 0は圧電素子 プロックと して機能する。  With such a configuration, when a voltage is applied between the first collector electrode 3a and the second collector electrode 3, a potential difference is generated between the conductive materials, and an electric field is generated in the thickness direction of the plate-like piezoelectric material. Occurs. For this reason, the partition wall 10 functions as a piezoelectric element block.
この隔壁 1 0は、 ィ ンク供給口 1 3が開口する基板 1 1上に複数 個、 マ ト リ ツクス状に配列してある。 これらの隔壁 1 0は、 接着剤 で基板 1 1 に固定してあり、 隔壁 1 0の間に縦方向の間隙 2 0, 2 1 と横方向の間隙 2 9 とを形成している。  A plurality of the partition walls 10 are arranged in a matrix on the substrate 11 where the ink supply port 13 is opened. These partition walls 10 are fixed to the substrate 11 with an adhesive, forming vertical gaps 20 and 21 and a horizontal gap 29 between the partition walls 10.
さらに、 基板 1 1上には、 隔壁 1 0の長さ方向の外端面に接する ように封止部材 2 2が接着固定してある。 そして、 縦方向の間隙 2 0 , 2 1 および封止部材 2 2の上面を覆うように、 蓋 1 4が設けて あり、 これら隔壁 1 0、 封止部材 2 2、 蓋 1 4に囲まれて複数の圧 力室 1 5が形成してある。  Further, a sealing member 22 is adhesively fixed on the substrate 11 so as to be in contact with the outer end surface of the partition wall 10 in the longitudinal direction. A lid 14 is provided so as to cover the vertical gaps 20 and 21 and the upper surface of the sealing member 22, and is surrounded by the partition wall 10, the sealing member 22 and the lid 14. A plurality of pressure chambers 15 are formed.
蓋 1 4には、 各圧力室 1 5に連通する複数のィ ンク噴射口 2 3が 形成してある。  The lid 14 is formed with a plurality of ink jet ports 23 communicating with the respective pressure chambers 15.
また、 基板 1 1 の上面には、 隔壁 1 0の集電極 3 a、 3 b と電気 的に接続された配線パターン 2 5が配設してある。 この配線バタ一 ン 2 5は、 フレキシブル配線板 2 6 と接続されており、 これらフレ キシブル配線板 2 6および配線パタ一ン 2 5 を介して、 外部からの 駆動電圧が隔壁 1 0の集電極 3 a、 3 bに印加されるようになつて いる。 On the upper surface of the substrate 11, a wiring pattern 25 electrically connected to the collecting electrodes 3a and 3b of the partition wall 10 is provided. The wiring pattern 25 is connected to the flexible wiring board 26, and an external driving voltage is applied to the collecting electrode of the partition wall 10 via the flexible wiring board 26 and the wiring pattern 25. 3a, 3b I have.
また第 1 1 図、 第 1 2図では示していないが、 イ ンク供給口 1 3 には、 インクカー トリ ツジの共通ィ ンク溜からィ ンクが供給できる ようになつている。  Although not shown in FIGS. 11 and 12, the ink supply port 13 can be supplied with ink from a common ink reservoir of an ink cartridge.
なお、 この実施例でィ ンク供給口 1 3は、 基板 1 1上に形成した が、 封止部材 2 2や蓋 1 4等に形成してもよい。  Although the ink supply port 13 is formed on the substrate 11 in this embodiment, it may be formed on the sealing member 22 or the lid 14.
上述したインクジェッ トヘッ ドは、 隔壁 1 0の高密度実装を実現 するために、 積層圧電ァクチユエ一タである隔壁 1 0 を 2列配置と し、 厚さ方向にイ ンク噴射口 2 3 を開口するようにした。 なお、 用 途に応じて隔壁 1 0を一列配置としてもよい。  In the above-described inkjet head, in order to realize high-density mounting of the partitions 10, the partitions 10, which are laminated piezoelectric actuators, are arranged in two rows, and the ink ejection ports 23 are opened in the thickness direction. I did it. Note that the partition walls 10 may be arranged in a single row depending on the application.
次に、 上述した実施例に係るインクジェッ トヘッ ドの動作を、 第 1 1 図, 第 1 2図を参照して説明する。  Next, the operation of the inkjet head according to the above-described embodiment will be described with reference to FIG. 11 and FIG.
第 1 の集電極 3 aおよび第 2の集電極 3 bに、 配線バタ一ン 2 5 を介して接続されたフレキシブル配線板 2 6から電力を供給すると, 第 1 の導電材料 2 a, 第 2の導電材料 2 bの間に電圧が発生する。 そして、 第 2の板状圧電材料 1 bには、 厚さ方向に電界が生じる。  When power is supplied to the first collector electrode 3a and the second collector electrode 3b from the flexible wiring board 26 connected via the wiring pattern 25, the first conductive material 2a, A voltage is generated between the conductive materials 2b. Then, an electric field is generated in the thickness direction in the second plate-shaped piezoelectric material 1b.
この第 2の板状圧電材料 1 bは、 電界と反対の厚さ方向に分極さ れている。 このため、 第 2の板状圧電材料 1 bは厚さ方向 ( d 3 3方 向) に縮む。 This second plate-shaped piezoelectric material 1b is polarized in the thickness direction opposite to the electric field. Therefore, the second plate-shaped piezoelectric material 1 b is contracted in the thickness direction (d 3 3-way direction).
ここで、 板状圧電材料 1 bの厚さを t、 変形量を δ t、 印加電圧 を V、 厚さ方向の圧電定数を d33とすると、 歪は電界強度に比例し、 δ t / t = d 33 V/ t , Here, the thickness t of the plate-shaped piezoelectric material 1 b, deformation amount [delta] t, the applied voltage V, and the piezoelectric constant in the thickness direction when the d 33, the strain is proportional to the field strength, [delta] t / t = d 33 V / t,
つま り、 5 t = d 33 Vとなる。 すなわち、 上式は、 変形量は電圧に比例し、 圧電材料の厚さに依 存じないことを意味する。 That is, 5 t = d 33 V. That is, the above equation means that the amount of deformation is proportional to the voltage and does not depend on the thickness of the piezoelectric material.
積層された各々の板状圧電材料は、 第 2の板状圧電材料 1 b と同 様の変形が発生し、 全厚さ方向の変形は、 両面に電極が形成された 板状圧電材料の積層枚数 mと比例し、 m X δ t となり、 一枚に比べ  Each of the laminated plate-shaped piezoelectric materials undergoes the same deformation as the second plate-shaped piezoelectric material 1b, and the deformation in the entire thickness direction is caused by the lamination of the plate-shaped piezoelectric material having electrodes formed on both sides. In proportion to the number m, m X δ t
訂正された用紙 HIJ91) て m倍の大きな変形量が得られる。 Corrected form HIJ91) Therefore, a large amount of deformation can be obtained.
さらに、 上述した厚さ方向 ( d 3 3方向) の変形量より小さいが、 圧電材料である隔壁 1 0には、 長さ方向 ( d 3 I方向) にも伸びが発 生し、 この変形によっても圧力室 1 5の容積を減じることができる, 上述した板状圧電材料の厚さ方向 ( d 3 3方向) の変形によって発 生する力は大きく、 これにより圧力室 1 5の断面積を S とすると、 S X m X δ tだけの容積が収縮する。 この容積の収縮、 つま り体積 変化量によ り圧力室 1 5内に圧力が発生し、 インク噴射口 2 3から ィ ンク液滴 1 7 を噴射することができる。 Further, although smaller than the deformation amount in the thickness direction as described above (d 3 3 direction), the partition 1 0 is a piezoelectric material, occurred elongation in length direction (d 3 I direction), by the deformation can also reduce the volume of the pressure chamber 1 5, the force that occurs due to the deformation in the thickness direction of the above-mentioned plate-shaped piezoelectric material (d 3 3 direction) is large, thereby the cross-sectional area of the pressure chamber 1 5 S Then, the volume of only SX m X δ t contracts. Due to the contraction of the volume, that is, the change in the volume, a pressure is generated in the pressure chamber 15, and the ink droplet 17 can be ejected from the ink ejection port 23.
圧力室 1 5の体積変化量は、 インク液滴 1 7 を形成するために一 定量を必要とするが、 上述の実施例に係るイ ンクジエツ トへッ ドで は、 圧電素子ブロックを一枚で構成することによ り、 充分に大きな 体積変化量を得ることができる。 このため、 安定したイ ンク液滴 1 7 を形成することができる。  The amount of change in the volume of the pressure chamber 15 needs a certain amount to form the ink droplet 17. However, in the ink jet head according to the above-described embodiment, a single piezoelectric element block is used. With this configuration, a sufficiently large volume change can be obtained. Therefore, a stable ink droplet 17 can be formed.
さらに、 上述の実施例に係るインクジェッ トヘッ ドでは、 一枚の 圧電素子ブロックの変形量を m倍に増幅できるので、 圧力室の断面 積 Sは一枚の圧電素子ブロックで構成した場合の 1ノ mにすること が可能となリ、 圧力室の小形化を図ることができる。  Further, in the ink jet head according to the above-described embodiment, since the deformation amount of one piezoelectric element block can be amplified to m times, the cross-sectional area S of the pressure chamber is one step when the piezoelectric element block is constituted by one piezoelectric element block. m, and the pressure chamber can be downsized.
このため、 圧力室 1 5の長さを短くすることが可能である。 これ はつぎに述べるように、 インクの供給に対して有利である。  For this reason, the length of the pressure chamber 15 can be reduced. This is advantageous for ink supply, as described below.
イ ンク液滴 1 7 を連続して生成するためには、 吐出したインク液 滴 1 7 と同量のイ ンクが、 イ ンク供給口 1 3から圧力室 1 5内に速 やかに供給されなければならない。 上述の実施例では、 イ ンク供給 口 1 3は、 ィ ンク噴射口 2 3 と反対側の端部で圧力室 1 5に開口 し ている。  In order to generate ink droplets 17 continuously, the same amount of ink as the discharged ink droplets 17 is quickly supplied from the ink supply port 13 into the pressure chamber 15. There must be. In the above-described embodiment, the ink supply port 13 opens to the pressure chamber 15 at the end opposite to the ink injection port 23.
したがって、 連続してィンク液滴 1 Ί を形成するためには、 圧力 室 1 5の長さ方向に形成されるィンク流路の管路抵抗が小さくかつ 短い方がよい。  Therefore, in order to continuously form the ink droplet 1 Ί, it is preferable that the duct resistance of the ink flow path formed in the length direction of the pressure chamber 15 is small and short.
この実施例のイ ンクジェッ トヘッ ドによると、 積層した圧電素子 ブロックからなる隔壁 1 0の厚さ方向、 つま り圧力室 1 5の高さ寸 法は、 板状圧電材料の厚さと積層枚数に依存している。 そして、 板 状圧電材料の枚数を増やすことでこの圧力室 1 5の高さ寸法を増加 でき、 その体積変化量を大きくすることができる。 According to the inkjet head of this embodiment, the laminated piezoelectric element The thickness direction of the partition wall 10 composed of blocks, that is, the height dimension of the pressure chamber 15 depends on the thickness and the number of laminated piezoelectric materials. By increasing the number of plate-shaped piezoelectric materials, the height of the pressure chamber 15 can be increased, and the volume change can be increased.
基本的に発生圧力は、 体積変化量 Z圧力室体積に比例する。 この ため、 圧力室の体積増加分は体積変化量で補えるので、 吐出力の低 下はない。  Basically, the generated pressure is proportional to the volume change Z pressure chamber volume. For this reason, the increase in the volume of the pressure chamber can be compensated for by the volume change, so that the discharge force does not decrease.
隔壁 1 0の高さ寸法を増せば、 圧力室 1 5の断面積は大きくでき る。 このため圧力室 1 5内に形成されるイ ンク流路の管路抵抗は小 さくでき、 かつそのイ ンク流路の長さも短く構成することができる, したがって、 イ ンク供給能力が向上するので、 連続して安定したィ ンク液滴 1 7 を形成することができる。 このためイ ンク液滴 1 7 を 連続して噴射する際の特性が向上する。  If the height of the partition 10 is increased, the sectional area of the pressure chamber 15 can be increased. For this reason, the pipe resistance of the ink flow path formed in the pressure chamber 15 can be reduced, and the length of the ink flow path can be shortened. Therefore, the ink supply capacity is improved. Thus, a stable ink droplet 17 can be formed continuously. For this reason, the characteristics when ink droplets 17 are continuously ejected are improved.
同様なことを単層型の隔壁構造で実施しても、 圧力室の体積変化 量は変わらず、 かえって圧力室の厚さが増えた分だけ体積が増加し, 発生圧力は低下してしまう。  Even if the same operation is performed with a single-layer partition structure, the volume change of the pressure chamber does not change, but the volume increases by the increase in the thickness of the pressure chamber, and the generated pressure decreases.
発生圧力を高くするために、 印加する電圧を上げればよいが、 例 えば印加電圧を 1 5 0 Vよりさらに上げることは、 実用的でない。  In order to increase the generated pressure, the applied voltage may be increased. For example, it is not practical to increase the applied voltage further than 150 V.
また、 本実施例に係るインクジェッ トヘッ ドにおいては、 複数の 板状圧電材料を積層することにより圧電素子ブロックを構成してい るので、 その積層枚数に比例して圧電素子ブロックの変形量を増幅 できる。 このため、 一定の変形量を得るため必要な印加電圧を、 一 枚の圧電材料で形成した圧電素子プロックに比べて低くすることが でき、 5 0 V以下の低電圧駆動が可能となる。  Further, in the inkjet head according to the present embodiment, since the piezoelectric element block is configured by laminating a plurality of plate-shaped piezoelectric materials, the amount of deformation of the piezoelectric element block can be amplified in proportion to the number of laminated layers. . Therefore, the applied voltage required to obtain a certain amount of deformation can be made lower than that of a piezoelectric element block formed of a single piezoelectric material, and low-voltage driving of 50 V or less can be performed.
さらに、 本実施例に係るイ ンクジェッ トヘッ ドにおいて、 最も特 徴的なのは、 基板 1 1上に複数の圧力室 1 5 をマ ト リックス状に面 配置できることである。 これによリ第 1 1 図に示すように、 縦方向 の間隙 2 1上に独立した圧力室 1 5 a と圧力室 1 5 bとが形成でき る。  The most characteristic feature of the ink jet head according to the present embodiment is that a plurality of pressure chambers 15 can be arranged in a matrix on the substrate 11. As a result, as shown in FIG. 11, independent pressure chambers 15a and 15b can be formed on the vertical gap 21.
このように、 基板 1 1 上に独立した圧力室 1 5 をマ 卜 リ ックス状  Thus, the independent pressure chambers 15 on the substrate 11 are formed in a matrix.
盯正された用紙 (^ |J91) に配置し、 それぞれの圧力室 1 5に対応したィンク噴射口 2 3 をそ れぞれ設けることによ り、 ィ ンク噴射口 2 3の列が複数列形成でき る。 したがって、 インクジェッ トヘッ ドのマルチノズル化が可能と なる。 用紙 Corrected paper (^ | J 91 ) By arranging the ink jets 23 corresponding to the respective pressure chambers 15, a plurality of rows of the ink jets 23 can be formed. Therefore, it is possible to make the inkjet head a multi-nozzle.
この特徴は、 積層した板状圧電材料によって隔壁 1 0 を構成し、 これを駆動することで大きな変形量を得られることに起因している, すなわち、 大きな変形量を得られる結果、 圧力室 1 5 を小さくする ことができ、 それに伴い基板 1 1上に独立した圧力室 1 5 をマ ト リ ックス状に複数配置することが可能となった。  This feature is attributed to the fact that the partition wall 10 is composed of the laminated plate-like piezoelectric materials and that a large amount of deformation can be obtained by driving this, that is, a large amount of deformation can be obtained. 5 can be made smaller, and accordingly, a plurality of independent pressure chambers 15 can be arranged in a matrix on the substrate 11.
上述の実施例では、 圧電素子ブロックの縮みによ りイ ンクを噴射 するようにしたが、 発生させる電界の方向と板状圧電材料の分極方 向とを同方向とし、 板状圧電材料を厚さ方向に伸ばして圧力室 1 5 の容積を増加させ、 その後、 電圧印加を停止することによ リ圧電素 子ブロックを元の状態に戻したとき圧力を発生させ、 この圧力によ つてインクを噴射させることも可能である。  In the above-described embodiment, the ink is ejected by the contraction of the piezoelectric element block. However, the direction of the electric field to be generated and the polarization direction of the plate-shaped piezoelectric material are set to the same direction, and the thickness of the plate-shaped piezoelectric material is increased. To increase the volume of the pressure chamber 15 and then stop applying voltage to generate pressure when the piezoelectric element block is returned to its original state. Injection is also possible.
第 1 1 図に示す縦方向の間隙 2 0は、 圧力室 1 5 としてインクを 充填し、 それに隣接する縦方向の 隙 2 1 は、 イ ンクが充填されな ぃダミ一空間を形成している。  The vertical gap 20 shown in FIG. 11 is filled with ink as a pressure chamber 15, and the adjacent vertical gap 21 forms a gap-free space filled with ink. .
このイ ンクを充填しないダミー空間を形成することによって、 隣 接する縦方向の間隙 2 0、 2 0 aが形成する圧力室 1 5 を個別に駆 動することができる。  By forming the dummy space not filled with the ink, the pressure chambers 15 formed by the adjacent vertical gaps 20 and 20a can be individually driven.
このため時間的に自由な駆動が可能となり、 たとえば、 隣接する 圧力室 1 5のイ ンクを同時に噴射したり、 または一方を遅延させて 噴射したりすることも可能となる。  Therefore, it is possible to freely drive in terms of time. For example, it is possible to simultaneously inject the ink in the adjacent pressure chambers 15 or to inject one of them with a delay.
縦方向の間隙 2 1 をイ ンクを充填しないダミ一空間と しない場合 には、 隣接する圧力室 1 5の間の隔壁 1 0は各圧力室 1 5の駆動に 共用される。 このため、 一方の圧力室 1 5 を駆動したとき、 隣合 つた圧力室からィ ンク液滴が飛び出さないような条件設定が必要で ある。  In the case where the vertical gap 21 is not a dummy space that is not filled with ink, the partition wall 10 between the adjacent pressure chambers 15 is shared for driving the pressure chambers 15. Therefore, it is necessary to set conditions so that when one of the pressure chambers 15 is driven, the ink droplets do not fly out of the adjacent pressure chambers.
具体的には一定量以上の変位を行わないようにするとか、 イ ンク 噴射口のメニスカスの液面振動に合わせてィ ンクが飛び出さないよ うな駆動タイ ミ ングを選ぶ等の煩雑な設定が必要となる。 Specifically, it is necessary not to displace more than a certain amount. Complicated settings such as selecting a drive timing that prevents the ink from popping out according to the liquid level vibration of the meniscus of the injection port are required.
ダミー空間となる縦方向の間隙 2 1 は、 隣接する圧力室 1 5の隔 壁 1 0を独立させる機能だけに形成されているので、 隣接する隔壁 1 0が接触しない程度の幅があればよい。  Since the vertical gap 21 serving as the dummy space is formed only for the function of making the partition wall 10 of the adjacent pressure chamber 15 independent, it is sufficient that the width is such that the adjacent partition wall 10 does not contact. .
このダミ一空間を形成する縦方向の間隙 2 1 の幅寸法を、 加工限 界の幅まで狭くすると、 圧力室 1 5の配列ピッチ密度を上げるのに 効果的である。 したがって、 よ り高密度なノズルピッチを持った小 形のへッ ドを得ることができる。  It is effective to increase the arrangement pitch density of the pressure chambers 15 by reducing the width of the vertical gap 21 forming the dummy space to the width of the processing limit. Therefore, it is possible to obtain a small head having a higher nozzle pitch.
次に、 上述した本実施例に係るイ ンクジェッ トヘッ ドの製造方法 について、 第 1 3図 ( a ) , 同図 ( b ) , 同図 ( c ) 、 第 1 4図お よび第 1 5図を参照して説明する。  Next, FIGS. 13 (a), 13 (b), 14 (c), 14 and 15 show a method of manufacturing the above-described inkjet head according to the present embodiment. It will be described with reference to FIG.
まず、 第 1 3図 ( a ) に示すように、 第 1 の板状圧電材料 1 a と なる圧電セラミ ック製の第 1 のグリーンシ一 卜の上面に、 第 1 の導 電材料 2 a を印刷法によ り形成する。 このとき、 第 1 の板状圧電材 料 1 aの表面中央部 4 1 aは、 第 1 の導電材料 2 aに被覆されず露 出した状態となるようにする。  First, as shown in FIG. 13 (a), the first conductive material 2a is placed on the upper surface of a first green sheet made of piezoelectric ceramic, which is the first plate-like piezoelectric material 1a. Is formed by a printing method. At this time, the surface central part 41a of the first plate-shaped piezoelectric material 1a is exposed without being covered with the first conductive material 2a.
次に、 第 1 3図 ( b ) に示すように、 第 1 の導電材料 2 aの上に, 第 2の板状圧電材料 1 b となる新たな第 2のグリーンシー トを積み 重ね、 その表面に第 2の導電材料 2 b を印刷法によ り形成する。 こ のとき、 第 2の板状圧電材料 1 bの両端縁部は、 第 2の導電材料 2 bに被覆されず露出した状態となるようにする。  Next, as shown in FIG. 13 (b), a new second green sheet to be the second plate-like piezoelectric material 1b is stacked on the first conductive material 2a, and the A second conductive material 2b is formed on the surface by a printing method. At this time, both edge portions of the second plate-shaped piezoelectric material 1b are exposed without being covered with the second conductive material 2b.
このように板状圧電材料となるグリーンシー トと導電材料とを、 所定数交互に積み重ねた後に、 加圧焼結処理することで、 第 1 3図 ( c ) に示すような圧電素子ブロック 6 0 を形成することができる < 次いで、 第 1 4図に示すように、 ガラス材等からなる基板 1 1 の 上面に圧電素子プロック 6 0 を接着する。  After a predetermined number of green sheets and conductive materials, which are to be plate-like piezoelectric materials, are alternately stacked and subjected to pressure sintering, a piezoelectric element block 6 as shown in FIG. 13 (c) is obtained. 0 can be formed. <Next, as shown in FIG. 14, a piezoelectric element block 60 is bonded to the upper surface of a substrate 11 made of a glass material or the like.
そして、 圧電素子ブロック 6 0および基板 1 1 の一部を、 ダイャ モン ドカツタなどの切削工具によリ切削し、 横方向の間隙 2 9 を形 成する。 さらに、 圧電素子プロック 6 0の上面 6 1 をマスキングした状態 で、 真空蒸着法等によ り、 金 (A u ) 等の導電材料からなる薄膜を 圧電素子ブロック 6 0および基板 1 1 の全面に形成して電極 7 0 を 形成する。 Then, a part of the piezoelectric element block 60 and a part of the substrate 11 are re-cut with a cutting tool such as a diamond cutter to form a lateral gap 29. Further, while the upper surface 61 of the piezoelectric element block 60 is masked, a thin film made of a conductive material such as gold (Au) is applied to the entire surface of the piezoelectric element block 60 and the substrate 11 by a vacuum deposition method or the like. The electrode 70 is formed.
このとき、 圧電素子ブロック 6 0内の第 1 の導電材料 2 a、 第 2 の導電材料 2 b等は、 それぞれ圧電素子プロック 6 0の壁面 7 0 a . 7 0 bに形成された電極 7 0 と電気的に導通する。  At this time, the first conductive material 2a, the second conductive material 2b, and the like in the piezoelectric element block 60 are applied to the electrodes 70a and 70b formed on the wall surfaces 70a and 70b of the piezoelectric element block 60, respectively. Is electrically connected to the
続いて、 第 1 5図に示すように、 圧電素子ブロック 6 0 と基板 1 1 の一部とをダイヤモン ドカツタ等の切削工具より、 横方向の間隙 2 9 と直角方向にカツ 卜をする。 この結果、 隔壁 1 0、 縦方向の間 隙 2 0および縦方向の間隙 2 1 が形成され、 圧電素子プロ、リ、 ク ら 0 と電極 7 0 とが分離される。  Subsequently, as shown in FIG. 15, the piezoelectric element block 60 and a part of the substrate 11 are cut by a cutting tool such as a diamond cutter in a direction perpendicular to the lateral gap 29. As a result, a partition 10, a vertical gap 20, and a vertical gap 21 are formed, and the piezoelectric elements 0, 0, and 0 are separated from the electrode 70.
そして、 第 1 1 図に示すように、 封止部材 2 2 を隔壁 1 0の端部 に接着し、 インク噴射口 2 3 を形成したガラス材等からなる蓋 1 4 を隔壁 1 0上に接着することにより、 複数の圧力室 1 5 を形成する ことができる。  Then, as shown in FIG. 11, a sealing member 22 is adhered to the end of the partition 10, and a lid 14 made of a glass material or the like in which the ink ejection port 23 is formed is adhered to the partition 10. Thus, a plurality of pressure chambers 15 can be formed.
上述した製造方法によれば、 第 1 5図に示すように、 圧電素子ブ ロックを駆動する導電材料の各々が電気的に接続された第 1 の集電 極 8 0 a、 第 2の集電極 8 0 b、 第 3の集電極 8 0 c を、 隔壁 1 0 の両端部に容易に形成することができる。  According to the above-described manufacturing method, as shown in FIG. 15, the first current collector 80a and the second current collector each electrically connected to a conductive material for driving the piezoelectric element block. 80 b and the third collector electrode 80 c can be easily formed at both ends of the partition wall 10.
また、 第 1 5図に示すように、 第 1 の集電極 8 0 a と第 2の集電 極 8 0 b とを、 第 1列の隔壁 1 0 aの両端部に配設するとともに、 第 2の集電極 8 0 b と、 第 3の集電極 8 0 c とを第 2列の隔壁 1 0 bの両端部に配設することによ り、 外部の駆動線との接続が容易と なるので効果的である。  Further, as shown in FIG. 15, a first current collector 80a and a second current collector 80b are provided at both ends of the first row of partition walls 10a, and By arranging the second collector electrode 80b and the third collector electrode 80c at both ends of the second row of partition walls 10b, connection with an external drive line is facilitated. So effective.
さらに、 上述した製造方法によれば、 第 1 5図に示すように、 第 1 の集電極 8 0 aに電力を供給するための配線バタ一ン 8 1 を基板 1 1上に形成できるとともに、 第 2の集電極 8 0 bに電力を供給す るための配線パターン 8 2 と、 第 3の集電極 8 0 cに電力を供給す るための配線パターン 8 3 とを同時に形成することができる。 この第 1 5図に示す配線バターン 8 1 、 8 2、 8 3 を基板 1 1 上 に形成した構成によれば、 第 1 1 図で示したフレキシブル配線板 2 6 との電気的接続が容易となる効果を有する。 Further, according to the above-described manufacturing method, as shown in FIG. 15, a wiring pattern 81 for supplying power to the first collecting electrode 80a can be formed on the substrate 11; The wiring pattern 82 for supplying power to the second collecting electrode 80b and the wiring pattern 83 for supplying power to the third collecting electrode 80c can be formed simultaneously. . According to the configuration in which the wiring patterns 81, 82, and 83 shown in FIG. 15 are formed on the substrate 11, electrical connection with the flexible wiring board 26 shown in FIG. It has an effect.
ここで、 第 2の集電極 8 0 bは、 第 1列の隔壁 1 O a と第 2列の 隔壁 1 0 b とを駆動する共通電極となっている。 この結果、 全ての 隔壁 1 0は基板上の配線パタ一ン 8 2 を共通電極と しているので、 フレキシブル配線板 2 6 との電気的接続点の数を少なくすることが できる。  Here, the second collecting electrode 80b is a common electrode that drives the first row of partitions 1Oa and the second row of partitions 10b. As a result, since all the partition walls 10 use the wiring pattern 82 on the substrate as a common electrode, the number of electrical connection points with the flexible wiring board 26 can be reduced.
以上、 第 6の実施例におけるィンクジェッ トへッ ドの構成を形成 するための製造方法について述べてきたが、 本発明は、 この構成に 限定されるものではない。  The manufacturing method for forming the structure of the ink jet head in the sixth embodiment has been described above, but the present invention is not limited to this structure.
例えば、 基板 1 1 はガラス材に限らず、 セラミ ック, プラスチッ ク等の材料で形成してもよい。  For example, the substrate 11 is not limited to a glass material, but may be formed of a material such as ceramic or plastic.
また、 蓋 1 4についてもガラス材の他、 セラミ ック, プラスチッ ク, 金属材などを適用することができる。  In addition, as for the lid 14, ceramic, plastic, metal material, etc. can be applied in addition to glass material.
また、 板状圧電材料として、 圧電セラミ ックを用いたが、 有機高 分子圧電フイルムを用いることも可能である。  In addition, although a piezoelectric ceramic is used as the plate-like piezoelectric material, an organic high molecular weight piezoelectric film can be used.
上述の隔壁 1 0 と基板 1 1 、 隔壁 1 0 と蓋 1 4 との間の接着面に は電極を形成していない。 しかしながら、 圧電素子ブロック 6 0の 基板、 および蓋の接触する面に導電材料を設けて電極を形成するこ とで、 基板および蓋に隣接する板状圧電材料も駆動可能である。 さらに、 集電極の形成に真空蒸着法を用いたが、 導電塗装を用い て圧電素子ブロックの端面に電極を形成してもよい。 そして、 圧電 素子プロック上の集電極から直接、 フレキシブル配線板を接続して もよい。  No electrode is formed on the bonding surface between the partition wall 10 and the substrate 11 and between the partition wall 10 and the lid 14. However, a plate-like piezoelectric material adjacent to the substrate and the lid can be driven by providing a conductive material on the surface of the substrate and the lid of the piezoelectric element block 60 and forming electrodes. Furthermore, although the vacuum deposition method was used to form the collector electrode, an electrode may be formed on the end face of the piezoelectric element block using a conductive coating. Then, a flexible wiring board may be directly connected from the collector electrode on the piezoelectric element block.
次に、 本発明の第 7の実施例に係るインクジエツ 卜へッ ドについ て、 第 1 6図, 第 1 7 図を参照して説明する。  Next, an ink jet head according to a seventh embodiment of the present invention will be described with reference to FIGS. 16 and 17. FIG.
基板 1 1上には、 複数の隔壁 1 0 を一列に配置して接着してある t この隔壁 1 0は、 第 6の実施例と同様の構造となっている。 すな わち、 隔壁 1 0は、 第 1 の板状圧電材料 1 a を、 第 1の導電材料 2 a を介して、 第 2の板状圧電材料 l b と貼り合わせ、 さらに、 第 2 の板状圧電材料 1 b を、 第 2の導電材料 2 b を介して、 第 3の板状 圧電材料 1 c と貼り合わせるようにして形成してあり、 これによ り 積層圧電ァクチユエータ を構成している。 On the substrate 1 1, t partition wall 1 0 that is bonded by disposing a plurality of partition walls 1 0 in a row has the same structure as the sixth embodiment. That is, the partition 10 is made of the first plate-shaped piezoelectric material 1 a and the first conductive material 2. a, and the second plate-shaped piezoelectric material 1 b is bonded to the second plate-shaped piezoelectric material 1 b via the second conductive material 2 b. Are formed so as to be bonded to each other, thereby forming a laminated piezoelectric actuator.
ここで、 第 1 の板状圧電材料 1 aは、 厚さ方向に分極しており、 第 2の板状圧電材料 1 bは、 第 1 の板状圧電材料 1 a と反対方向に 分極している。 また、 第 3の板状圧電材料 1 cは、 第 2の板状圧電 材料 1 b と反対方向に分極している。  Here, the first plate-shaped piezoelectric material 1a is polarized in the thickness direction, and the second plate-shaped piezoelectric material 1b is polarized in the opposite direction to the first plate-shaped piezoelectric material 1a. I have. The third plate-shaped piezoelectric material 1c is polarized in the opposite direction to the second plate-shaped piezoelectric material 1b.
隔壁 1 0の一方の端面上には、 真空蒸着法などの薄膜形成手段で 形成された金 (A u ) 薄膜等からなる第 1 の集電極 3 aが設けてあ る。 そして、 第 1 の導電材料 2 a等は、 この第 1 の集電極 3 a と電 気的に導通している。  On one end face of the partition wall 10, a first collector electrode 3a made of a gold (Au) thin film or the like formed by a thin film forming means such as a vacuum evaporation method is provided. The first conductive material 2a and the like are electrically connected to the first collector electrode 3a.
一方、 隔壁 1 0の他方の端面には、 第 1 の集電極 3 a と同様な手 段によって第 2の集電極 3 bが設けてあり、 第 2の導電材料 2 b等 が、 この第 2の集電極 3 b と電気的に導通してある。  On the other hand, a second collector electrode 3b is provided on the other end surface of the partition wall 10 by the same method as the first collector electrode 3a, and the second conductive material 2b and the like are provided in the second collector electrode 3b. Is electrically connected to the collector electrode 3b.
このような構成によ リ、 第 1 の集電極 3 a と第 2の集電極 3 b と の間に電圧を印加すると、 各導電材料間に電位差が生じ、 板状圧電 材料の厚さ方向に電界が発生する。 このため、 隔壁 1 0は積層圧電 ァクチユエ一タ と して機能する。  With such a configuration, when a voltage is applied between the first collector electrode 3a and the second collector electrode 3b, a potential difference is generated between the conductive materials, and the potential difference occurs in the thickness direction of the plate-like piezoelectric material. An electric field is generated. For this reason, the partition wall 10 functions as a laminated piezoelectric actuator.
これらの隔壁 1 0の間に形成された間隙 2 0, 2 1 は、 封止部材 2 2によ り長さ方向の一端面で閉塞してある。 また、 間隙 2 0, 2 1 の他端面には、 ノズル孔 2 3 を有するノズル板 2 4が配設してあ る。 このノズル板 2 4は、 間隙 2 0, 2 1 の封止部材と しても機能 している。  The gaps 20 and 21 formed between the partition walls 10 are closed at one end surface in the length direction by the sealing member 22. A nozzle plate 24 having a nozzle hole 23 is provided on the other end surface of the gaps 20 and 21. The nozzle plate 24 also functions as a sealing member for the gaps 20 and 21.
さらに、 間隙 2 0, 2 1 の上部を被覆するように、 蓋 1 4が配設 してある。 この蓋 1 4は、 隔壁 1 0の上面に接着固定してある。 以上の構成によ り、 間隙 2 0は圧力室 1 5 を形成している。 なお. 間隙 2 0に隣接する間隙 2 1 は、 前記第 6の実施例と同様、 イ ンク の供給されないダミ一空間となっている。  Further, a cover 14 is provided so as to cover the upper portions of the gaps 20 and 21. The lid 14 is bonded and fixed to the upper surface of the partition 10. With the above configuration, the gap 20 forms the pressure chamber 15. The gap 21 adjacent to the gap 20 is a dummy space to which no ink is supplied, as in the sixth embodiment.
また、 蓋 1 4 にはイ ンク供給口 1 3が形成してあり、 このイ ンク  The lid 14 has an ink supply port 13 formed therein.
訂正きれた用紙 (規則 91) 供給口 1 3から圧力室 1 5内にィンクが供給される。 Corrected form (Rule 91) An ink is supplied from the supply port 13 into the pressure chamber 15.
本実施例のィ ンクジェッ トへッ ドでは、 ィ ンク供給口 1 3から圧 力室 1 5内に供給されたインクが、 ノズル孔 2 3から長さ方向に吐 出される。 この実施例においても、 前記第 6の実施例と同様に、 安 定したイ ンク液滴 1 7 を形成することができる。  In the ink jet head of the present embodiment, the ink supplied from the ink supply port 13 into the pressure chamber 15 is discharged from the nozzle hole 23 in the length direction. Also in this embodiment, a stable ink droplet 17 can be formed as in the sixth embodiment.
第 1 8図は上述した第 6の実施例および第 7の実施例に関する変 形例を示している。  FIG. 18 shows a modification of the sixth and seventh embodiments described above.
すなわち、 第 6 または第 7の実施例に係るインクジエツ 卜へッ ド において、 インクを充填する複数の縦方向の間隙 2 0 を、 それぞれ 独立した蓋 3 0で被覆してもよい。  That is, in the ink jet head according to the sixth or seventh embodiment, the plurality of vertical gaps 20 filled with ink may be covered with independent lids 30 respectively.
このような構成にすれば、 イ ンク液滴を噴射するための隔壁 1 0 の変位や蓋 3 0の変形による振動伝達などの機械的影響を、 隣接す る圧力室 1 5に及ぼすことがない。 したがって、 各圧力室 1 5間の 干渉を完全に防止することができる。  With such a configuration, there is no mechanical effect such as displacement of the partition wall 10 for ejecting ink droplets or vibration transmission due to deformation of the lid 30 on the adjacent pressure chamber 15. . Therefore, interference between the pressure chambers 15 can be completely prevented.
また、 上述した第 6 および第 7の実施例に係るイ ンクジエツ 卜へ ッ ドにおいて、 圧力室を形成する内面には、 絶縁性のコ一ティ ング 膜を形成するのが好ましい。  In the inkjet heads according to the sixth and seventh embodiments, it is preferable to form an insulating coating film on the inner surface where the pressure chamber is formed.
例えば、 第 1 8図で示した圧力室 1 5 を形成する隔壁 1 0の内面 に、 ポリパラキシレン樹脂等を使用した化学蒸着によりコ一ティ ン グ膜 4 0 を形成する。  For example, a coating film 40 is formed on the inner surface of the partition wall 10 forming the pressure chamber 15 shown in FIG. 18 by chemical vapor deposition using a polyparaxylene resin or the like.
圧力室 1 5 を形成する隔壁 1 0の内面には、 導電材料に導通する 駆動電極が露出している。 したがって、 このままの構造では水性ィ ンク等は使用できない等、 使用できるインクが限定される不都合が ある。 そこで、 高い電気絶縁性を有するコ一ティ ング膜 4 0を圧力 室 1 5内の隔壁 1 0に形成することで、 駆動電極がインクに接触す ることを防止できる。  A drive electrode that is electrically connected to the conductive material is exposed on the inner surface of the partition wall 10 that forms the pressure chamber 15. Therefore, there is a disadvantage that the usable ink is limited, for example, a water-based ink cannot be used with the structure as it is. Therefore, by forming the coating film 40 having high electrical insulation on the partition wall 10 in the pressure chamber 15, it is possible to prevent the drive electrode from coming into contact with the ink.
このため、 イ ンクの化学的変化で駆動電極が腐食したり、 気体が 発生したりすることがなく、 水性イ ンク · 油性 (非水性) イ ンクの いずれでも使用可能となる。  Therefore, the drive electrode does not corrode or generate gas due to the chemical change of the ink, and it is possible to use any of an aqueous ink and an oily (non-aqueous) ink.
なお、 導電材料をあらかじめ圧力室 1 5 を形成する隔壁 1 0の内  In addition, the conductive material is used in advance in the partition 10 that forms the pressure chamber 15 in advance.
震丁正された用紙 部に埋設するようにして圧電素子ブロックを形成すれば、 コーティ ング膜を形成することなく、 種々のイ ンクを使用可能となる。 産業上の利用可能性 Sharpened paper If the piezoelectric element block is formed so as to be embedded in the portion, various inks can be used without forming a coating film. Industrial applicability
この発明は、 各種のイ ンクジエツ 卜 · プリ ンタ一のへッ ドとして 利用することができる。  INDUSTRIAL APPLICATION This invention can be utilized as a head of various ink jet printers.
この発明によ り、 エネルギー損失が少なく効率的に駆動でき、 簡 単な構成により低コス 卜で製作可能で、 そのうえ信頼性の高い小形 で高密度なインクジエツ トへッ ドを提供することが可能となる。  ADVANTAGE OF THE INVENTION According to this invention, it can drive efficiently with little energy loss, can be manufactured at low cost by a simple structure, and can provide a small, high-density ink jet head with high reliability. Becomes

Claims

請 求 の 範 囲 The scope of the claims
1 . 基板と、 両端面に集電極を形成し互いに対向するように基板上 に並べた圧電歪定数 d 3 3を有する一対の積層圧電ァクチユエータの 複数列からなる積層圧電ァクチユエータュニッ 卜と、 前記各積層圧 電ァクチユエータの基板中央部にある対向する端面に形成した集電 極の相互間を結合してなるコモン電極と、 前記各積層圧電ァクチュ エータの他方の端面に形成した集電極からなる駆動電極とを備え 前記各積層圧電ァクチユエ一タの駆動によって圧力室内のイ ンク を噴射させるようにしたことを特徴とするイ ンクジエツ 卜へッ ド。 1. Substrate and a pair of laminated piezoelectric Akuchiyueta laminated piezoelectric § Chi Yu eta Interview Stevenage comprising a plurality rows of Bok having piezoelectric strain constant d 3 3 which are arranged on the substrate so as to form opposite each other collectors to both end surfaces A common electrode formed by coupling between collector electrodes formed on opposing end faces in the center of the substrate of each of the laminated piezoelectric actuators; and a collector electrode formed on the other end face of each of the laminated piezoelectric actuators. An ink jet head comprising: a drive electrode comprising: a plurality of piezoelectric actuators;
2 . 前記基板の上面に配設した積層圧電素子ブロックと、 この積層 圧電素子プロックの中央部を分離する第 1 のスリ ッ トと、 この第 1 のスリツ 卜より浅くかつ同スリ ツ 卜とほぼ直行する方向に前記積層 圧電素子ブロックを切り欠く複数本の第 2のスリ ッ トとにより、 前 記積層圧電ァクチユエータュニッ 卜を形成したことを特徴とする請 求の範囲第 1項に記載のインクジエツ 卜へッ ド。 2. A laminated piezoelectric element block disposed on the upper surface of the substrate, a first slit separating a central portion of the laminated piezoelectric element block, and shallower than the first slit and substantially equal to the slit. The claim 1 characterized in that the multilayer piezoelectric actuator unit is formed by a plurality of second slits which cut out the multilayer piezoelectric element block in a direction perpendicular to the multilayer piezoelectric element block. The described ink jet head.
3 . 前記各積層圧電ァクチユエータの最上層および最下層を駆動し ないダミー層としたことを特徴とする請求の範囲第 1項に記載のィ ンクジエツ 卜へッ ド。 3. The ink jet head according to claim 1, wherein the uppermost layer and the lowermost layer of each of said laminated piezoelectric actuators are non-driving dummy layers.
4 . 前記基板上に前記各積層圧電ァクチユエータの駆動電極とそれ ぞれ電気的に導通する複数の駆動電極を形成したことを特徴とする 請求の範囲第 1項に記載のイ ンクジエツ 卜へッ ド。 4. The inkjet head according to claim 1, wherein a plurality of drive electrodes electrically connected to the drive electrodes of each of the laminated piezoelectric actuators are formed on the substrate. .
5 . 基板と、 両端面に集電極を形成し互いに対向するように基板上 に並べた圧電歪定数 d 3 3を有する一対の積層圧電ァクチユエータの 複数列からなる積層圧電ァクチユエータュニッ 卜と、 前記各積層圧 電ァクチユエータの基板中央部にある対向する端面に形成した集電 極の相互間を結合してなるコモン電極と、 前記各積層圧電ァクチュ エータの他方の端面に形成した集電極からなる駆動電極と、 前記積 層圧電ァクチユエ一タュニッ 卜の上端面に接合された振動板と、 個 々の積層圧電ァクチユエータに対応した複数の圧力室およびィ ンク 供給路を有し前記振動板上に接合された流路板と、 前記圧力室に対 応した複数のノズル孔を有し前記流路板の上面に接合されたノズル 板とを備えたことを特徴とするインクジエツ 卜へッ ド。 5. Board and a pair of laminated piezoelectric Akuchiyueta laminated piezoelectric § Chi Yu eta Interview Stevenage comprising a plurality rows of Bok having piezoelectric strain constant d 3 3 which are arranged on the substrate so as to form opposite each other collectors to both end surfaces Current collectors formed on opposing end faces in the center of the substrate of each of the laminated piezoelectric actuators. A common electrode formed by coupling the poles, a driving electrode formed of a collector electrode formed on the other end surface of each of the laminated piezoelectric actuators, and a vibration bonded to an upper end surface of the laminated piezoelectric actuator unit A plate, a plurality of pressure chambers corresponding to the respective laminated piezoelectric actuators, a flow path plate having an ink supply path, and joined to the diaphragm, and a plurality of nozzle holes corresponding to the pressure chambers. An ink jet head comprising: a nozzle plate joined to an upper surface of the flow path plate.
6 . 前記積層圧電ァクチユエータュニッ 卜の最前列および最後列に 位置する積層圧電ァクチユエータを、 駆動しない不活性体とし、 こ れら積層圧電ァクチユエータの上端面で前記流路板の両端部を支持 したことを特徴とする請求の範囲第 5項に記載のイ ンクジエツ 卜へ 、リ ド、。 6. The laminated piezoelectric actuators located in the front row and the last row of the laminated piezoelectric actuator unit are inactive bodies that are not driven, and both ends of the flow path plate are connected to the upper end surface of these laminated piezoelectric actuator units. 6. The ink jet according to claim 5, wherein the lid is supported.
7 . 基板と、 両端面に集電極を形成し互いに対向するように基板上 に並べた圧電歪定数 d 3 3を有する一対の積層圧電ァクチユエ一タの 複数列からなる積層圧電ァクチユエータュニッ 卜と、 前記基板の上 面でかつ前記積層圧電ァクチユエータュニッ 卜の両側方に設けた支 柱と、 前記積層圧電ァクチユエ一タュニッ トおよび前記支柱の上端 面に接合された振動板と、 個々の積層圧電ァクチユエータに対応し た複数の圧力室およびィ ンク供給路を有し前記振動板上に接合され た流路板と、 前記圧力室に対応した複数のノズル孔を有し前記流路 板の上面に接合されたノズル板とを備えたことを特徵とするィ ンク ジエツ トへッ ド。 7. Substrate and, laminated piezoelectric § Chi Yu eta Interview Knitting comprising a plurality rows of the pair of laminated piezoelectric Akuchiyue Ichita having a piezoelectric strain constant d 3 3 which are arranged on the substrate so as to face each other to form a collecting electrode on both end faces A support provided on an upper surface of the substrate and on both sides of the laminated piezoelectric actuator; and a diaphragm bonded to an upper end surface of the laminated piezoelectric actuator and the support. A flow path plate having a plurality of pressure chambers and an ink supply path corresponding to each laminated piezoelectric actuator and joined to the diaphragm, and a flow path having a plurality of nozzle holes corresponding to the pressure chambers; An ink jet head comprising a nozzle plate bonded to an upper surface of the plate.
8 . 前記各積層圧電ァクチユエータの基板中央部にある対向する端 面に形成した集電極の相互間を結合してコモン電極とするとともに. 前記各積層圧電ァクチユエータの他方の端面に形成した集電極を駆 動電極としたことを特徴とする請求の範囲第 7項に記載のィンクジ エツ 卜へッ ド。 8. The collector electrodes formed on the opposite end faces in the center of the substrate of each of the multilayer piezoelectric actuators are connected to each other to form a common electrode. The collector electrodes formed on the other end faces of the multilayer piezoelectric actuators are connected to each other. 8. The ink jet head according to claim 7, wherein the drive electrode is a driving electrode.
9 . 前記振動板の両側端部を、 前記支柱と前記流路板とにより挾持 したことを特徴とする請求の範囲第 7項に記載のィ ンクジエツ 卜へ ッ ド、。 9. The ink jet head according to claim 7, wherein both end portions of said diaphragm are sandwiched between said column and said flow path plate.
1 0 . 前記基板の上面中央部に前記振動板を支持する第 2の支柱を 配したことを特徵とする請求項 9に記載のィ ンクジエツ トへッ ド。 10. The ink jet head according to claim 9, wherein a second support for supporting the vibration plate is arranged at a central portion of the upper surface of the substrate.
1 1 . 前記支柱は、 前記各積層圧電ァクチユエータの外側の側端面 を弾性的に支持していることを特徴とする請求の範囲第 7 、 8 、 9 または 1 0項に記載のイ ンクジエツ 卜へッ ド。 11. The ink jet as set forth in claim 7, 8, 9 or 10, wherein said support column elastically supports an outer side end face of each of said laminated piezoelectric actuators. Good.
1 2 . 両端面に集電極を形成し対向するように基板上に並べた圧電 歪定数 d a 3を有する一対の積層圧電ァクチユエ一タの複数列からな る積層圧電ァクチユエータユニッ トと、 前記積層圧電ァクチユエ一 タュニッ 卜の上端面に接合された振動板と、 個々の駆動ァクチユエ ータに対応した複数の圧力室およびィ ンク流路を有する流路板と、 前記各圧力室に対応した複数のノズル孔を有するノズル板とを備え、 前記積層圧電ァクチユエータ を一列おきに駆動ァクチユエータ とし、 他の積層圧電ァクチユエ一タ を駆動させない非駆動ァクチユエ一タ とするとともに、 前記非駆動ァクチユエータ と前記流路板とで前記 振動板を挟み込み、 かつ前記流路板上に前記ノズル板を接合したこ とを特徴とするイ ンクジエツ トへッ ド。 12. A multilayered piezoelectric actuator unit consisting of a plurality of rows of a pair of multilayered piezoelectric actuators having a piezoelectric strain constant da3 arranged on the substrate so that collector electrodes are formed on both end surfaces thereof and opposed to each other. A vibration plate joined to the upper end surface of the laminated piezoelectric actuator unit, a flow path plate having a plurality of pressure chambers and an ink flow path corresponding to each drive actuator, and a pressure plate corresponding to each of the pressure chambers. A nozzle plate having a plurality of nozzle holes, wherein the laminated piezoelectric actuators are arranged as drive actuators in every other row, and the non-driven actuators which do not drive other laminated piezoelectric actuators are provided. An ink jet head characterized in that the diaphragm is sandwiched between a flow path plate and the nozzle plate is bonded on the flow path plate.
1 3 . 前記ノズル孔を通る軸線に直交する軸に対して前記各積層圧 電ァクチユエ一タおよび前記各圧力室を傾斜して配置し、 かつ該圧 力室に対応して前記ノズル孔を形成したことを特徴とする請求の範 囲第 5、 7 または 1 2項に記載のイ ンクジェッ トヘッ ド。 13. Each of the laminated piezoelectric actuators and each of the pressure chambers are arranged obliquely with respect to an axis orthogonal to an axis passing through the nozzle holes, and the nozzle holes are formed corresponding to the pressure chambers. The inkjet head according to claim 5, 7 or 12, wherein the inkjet head has been manufactured.
1 4 . 少なく とも前記積層圧電ァクチユエ一タ、 振動板、 流路板、 およびノズル板が、 ほぼ同一の線膨張係数であることを特徴とする 請求の範囲第 5、 7 または 1 2項に記載のィ ンクジエツ 卜へッ ド。 14. At least the laminated piezoelectric actuator, the vibration plate, the flow path plate, and the nozzle plate have substantially the same linear expansion coefficient. An ink jet head according to claim 5, 7, or 12.
1 5 . 基板と、 両端面に集電極を形成し互いに対向するように基板 上に並べた圧電歪定数 d 3 3を有する一対の積層圧電ァクチユエータ の複数列からなる積層圧電ァクチユエ一タュニッ 卜圧力室内のイン クを噴射させるようにしたィ ンクジエツ トへッ ドの駆動方法であつ て、 1 5. Substrate and, laminated piezoelectric Akuchiyue one Tayuni' Bok pressure chamber comprising a plurality of rows of the pair of laminated piezoelectric Akuchiyueta having a piezoelectric strain constant d 3 3 which are arranged on the substrate so as to face each other to form a collecting electrode on both end faces This is a method of driving an ink jet head that injects the ink of
第 1 の工程で前記積層圧電ァクチユエータの分極方向に電圧を印 加して同積層圧電ァクチユエータ を厚さ方向に伸ばし、 第 2の工程 で前記印加電圧を徐々に低下させて前記圧力室内にィンクを充填し、 第 3の工程で再び前記印加電圧を急激に上昇させることによりて前 記積層圧電ァクチユエータを厚さ方向に伸ばして前記圧力室内のィ ンクを噴射させるようにしたことを特徴とするイ ンクジェッ トへッ ドの駆動方法。  In a first step, a voltage is applied in the polarization direction of the multilayer piezoelectric actuator to extend the multilayer piezoelectric actuator in the thickness direction, and in a second step, the applied voltage is gradually reduced to cause an ink to enter the pressure chamber. In the third step, the laminated piezoelectric actuator is stretched in the thickness direction by rapidly increasing the applied voltage again in the third step to eject the ink in the pressure chamber. The method of driving the inkjet head.
1 6 . 基板と、 両端面に集電極を形成し互いに対向するように基板 上に並べた圧電歪定数 d 3 3を有する一対の積層圧電ァクチユエータ の複数列からなる積層圧電ァクチユエータュニッ ト圧力室内のィ ン クを噴射させるようにしたイ ンクジエツ トへッ ドの製造方法であつ て、 1 6. Substrate and both end faces to the laminated piezoelectric § Chi Yu eta Interview Knitting bets composed of a plurality rows of the pair of laminated piezoelectric Akuchiyueta having a piezoelectric strain constant d 3 3 which are arranged on the substrate so as to face each other to form a collecting electrode A method for manufacturing an ink jet head in which ink in a pressure chamber is jetted, comprising:
第 1 の工程で積層圧電体の中央部に第 1 のスリ ッ トを施し、 第 2 の工程で前記積層圧電体の両端部および前記第 1 のスリ ッ 卜に電極 を形成し、 第 3の工程で前記第 1 のスリッ トとほぼ直角方向でかつ 第 1 のスリ ツ 卜よ り浅く一定ピッチで複数の第 2のスリ ツ 卜を形成 して前記基板上に前記複数の積層圧電ァクチユエ一タを形成し、 か つ第 4の工程で前記積層圧電ァクチユエータの上面を平坦化するこ とを特徴とするイ ンクジエツ 卜へッ ドの製造方法。  In a first step, a first slit is applied to a central portion of the laminated piezoelectric body, and in a second step, electrodes are formed on both ends of the laminated piezoelectric body and the first slit, and a third slit is formed. Forming a plurality of second slits at a constant pitch in a direction substantially perpendicular to the first slits and shallower than the first slits in the step, and forming the plurality of laminated piezoelectric actuators on the substrate; And manufacturing an ink jet head by flattening the upper surface of the multilayer piezoelectric actuator in a fourth step.
1 7 . 基板と、 両端面に集電極を形成し互いに対向するように基板 上に並べた圧電歪定数 d 3 3を有する一対の積層圧電ァクチユエータ の複数列からなる積層圧電ァクチユエータュニッ ト圧力室内のィ ン クを噴射させるようにしたイ ンクジエツ トへッ ドの製造方法であつ て、 1 7. Substrate and a pair having a piezoelectric strain constant d 3 3 which are arranged on the substrate so as to face each other to form a collecting electrode on both end surfaces laminated piezoelectric Akuchiyueta A method of manufacturing an ink jet head in which an ink in a pressure chamber of a multilayer piezoelectric actuator unit comprising a plurality of rows is jetted.
第 1 の工程で積層圧電体の中央部に第 1 のスリ ッ トを施し、 第 2 の工程で前記積層圧電体の両端部および前記第 1 のスリ ッ トに電極 を形成し、 第 3の工程で前記積層圧電体の上面を平坦化し、 第 4の 工程で前記第 1 のスリ ツ 卜とほぼ直角方向でかつ第 1 のスリツ 卜よ り浅く一定ピッチで多数の第 2のスリ ツ 卜を施すことよって前記基 板上に前記複数の積層圧電ァクチユエータ を形成することを特徴と するインクジエツ 卜へッ ドの製造方法。  In a first step, a first slit is formed in the center of the laminated piezoelectric body, and in a second step, electrodes are formed on both ends of the laminated piezoelectric body and the first slit, and a third slit is formed. In a step, the upper surface of the laminated piezoelectric body is flattened, and in a fourth step, a large number of second slits are formed in a direction substantially perpendicular to the first slits and at a constant pitch smaller than the first slits. Forming a plurality of the laminated piezoelectric actuators on the substrate by applying the method.
1 8 . 基板、 厚さ方向に分極させた板状圧電材料を導電材料を介し て複数枚積層してなる複数の隔壁、 蓋、 および封止部材を備え、 前 記複数の隔壁を前記基板上に一定の間隙をあけて配列し、 この間隙 の上部を前記蓋で閉塞するとともに、 該間隙の側部を前記封止部材 で閉塞して該間隙を圧力室として形成し、 かつ、 この圧力室の一部 にノズル孔を開口したことを特徴と'するイ ンクジエツ トへッ ド。 18. A substrate, comprising a plurality of partitions, a lid, and a sealing member formed by laminating a plurality of plate-like piezoelectric materials polarized in the thickness direction via a conductive material, and the plurality of partitions are provided on the substrate. The gap is formed as a pressure chamber by closing an upper portion of the gap with the lid, and closing a side portion of the gap with the sealing member, and forming the pressure chamber as a pressure chamber. An ink jet head characterized in that a nozzle hole is opened in a part of the ink jet head.
1 9 . 前記隔壁は、 圧電歪定数 d a 3を有し電圧印加によ り厚さ方向 に変形する積層圧電ァクチユエータであることを特徴とする請求の 範囲第 1 8項に記載のィンクジエツ 卜へッ ド。 19. The ink jet unit according to claim 18, wherein the partition wall is a laminated piezoelectric actuator having a piezoelectric strain constant da3 and deforming in a thickness direction by applying a voltage. Good.
2 0 . 基板、 厚さ方向に分極させた板状圧電材料を導電材料を介し て複数枚積層してなる複数の隔壁、 蓋、 および封止部材を備え、 前 記複数の隔壁を前記基板上に一定の間隙をあけてマ 卜リクス状に配 列し、 前記間隙の上部を前記蓋で閉塞するとともに、 前記間隙の側 部を前記封止部材で閉塞して該間隙を圧力室として形成し、 前記基 板または蓋のいずれかに前記圧力室に開口するノズル孔を設け、 か つ前記基板、 封止部材または蓋のいずれかにィンク供給口を設け、 前記導電材料への電圧印加によって前記隔壁を厚さ方向に変形させ てィ ンクの充填された前記圧力室の容積を変化させ、 前記ノズル孔 からインク液滴を噴射させることを特徴とするイ ンクジエツ 卜へヅ ド、。 20. A substrate, comprising: a plurality of partitions, a lid, and a sealing member formed by laminating a plurality of plate-like piezoelectric materials polarized in the thickness direction via a conductive material; The gap is formed as a pressure chamber by closing the upper part of the gap with the lid and closing the side of the gap with the sealing member. A nozzle hole that opens into the pressure chamber is provided in one of the base plate and the lid, and an ink supply port is provided in one of the substrate, the sealing member, and the lid, and the voltage is applied to the conductive material. Deform the bulkhead in the thickness direction A volume of the pressure chamber filled with ink, and ejecting an ink droplet from the nozzle hole.
2 1 . 前記隔壁の間に形成された間隙は、 配列方向にイ ンクを供給 する圧力室とィ ンク供給しないダミ一空間とを交互に形成すること を特徴とする請求の範囲第 1 8または 2 0項に記載のィ ンクジェッ 卜へッ ド、。 21. The gap defined between the partition walls, wherein a pressure chamber for supplying ink and a dummy space for not supplying ink are alternately formed in the arrangement direction. 20. The ink head described in paragraph 20.
2 2 . 前記蓋が個々の圧力室を独立して閉塞することを特徴とする 請求の範囲第 1 8 または 2 0項に記載のイ ンクジエツ トへッ ド。 22. The inkjet head according to claim 18 or 20, wherein the lid independently closes each pressure chamber.
2 3 . 前記ダミー空間を形成する間隙は、 前記圧力室を形成する間 隙よ リ幅寸法が狭いこと特徴とする請求の範囲第 2 1項に記載のィ ンクジエツ 卜へッ ド。 23. The ink jet head according to claim 21, wherein the gap forming the dummy space has a narrower width dimension than the gap forming the pressure chamber.
2 4 . 前記圧力室に接する前記隔壁の表面に、 絶縁性のコーティ ン グ膜を設けたこと特徴とする請求の範囲第 1 8または 2 0項記載の ィ ンクジエツ 卜へッ ド。 24. The ink jet head according to claim 18 or 20, wherein an insulating coating film is provided on a surface of said partition wall in contact with said pressure chamber.
PCT/JP1994/001730 1993-10-14 1994-10-14 Ink jet head, method for producing the same and method for driving the same WO1995010416A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP94929664A EP0723866A4 (en) 1993-10-14 1994-10-14 Ink jet head, method for producing the same and method for driving the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP28037193 1993-10-14
JP5/280371 1993-10-14
JP11131294 1994-05-25
JP6/111312 1994-05-25

Publications (1)

Publication Number Publication Date
WO1995010416A1 true WO1995010416A1 (en) 1995-04-20

Family

ID=26450734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/001730 WO1995010416A1 (en) 1993-10-14 1994-10-14 Ink jet head, method for producing the same and method for driving the same

Country Status (3)

Country Link
EP (3) EP0723866A4 (en)
DE (2) DE69427926T2 (en)
WO (1) WO1995010416A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0987111A2 (en) * 1995-11-10 2000-03-22 Seiko Epson Corporation Actuator unit
JP2002292864A (en) * 2001-03-30 2002-10-09 Brother Ind Ltd Liquid drop ejector and its manufacturing method
JP2006150813A (en) * 2004-11-30 2006-06-15 Brother Ind Ltd Liquid transfer device
JP2006341508A (en) * 2005-06-09 2006-12-21 Brother Ind Ltd Inkjet head
US7249816B2 (en) 2001-09-20 2007-07-31 Ricoh Company, Ltd. Image recording apparatus and head driving control apparatus
US7537321B2 (en) 2003-10-28 2009-05-26 Fujifilm Corporation Droplet discharge head and manufacturing method thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19742233C2 (en) * 1996-12-17 1999-12-16 Fujitsu Ltd Ink jet head using a piezoelectric element
DE19758552C2 (en) * 1996-12-17 2002-08-01 Fujitsu Ltd A method of manufacturing an ink jet head using a piezoelectric element
JP3257960B2 (en) 1996-12-17 2002-02-18 富士通株式会社 Inkjet head
US6190006B1 (en) * 1997-11-06 2001-02-20 Seiko Epson Corporation Ink-jet recording head
EP0931653B1 (en) * 1998-01-23 2004-04-14 Océ-Technologies B.V. Piezoelectric actuator for ink jet printhead
DE69916344T2 (en) 1998-01-23 2005-05-12 Océ-Technologies B.V. Pizoelectric actuator for inkjet printhead
JPH11254670A (en) 1998-03-10 1999-09-21 Nec Corp Ink jet head
JP3248486B2 (en) * 1998-06-02 2002-01-21 日本電気株式会社 Ink jet recording head and method of manufacturing the same
US6505917B1 (en) * 2001-07-13 2003-01-14 Illinois Tool Works Inc. Electrode patterns for piezo-electric ink jet printer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5941272A (en) * 1982-09-01 1984-03-07 Konishiroku Photo Ind Co Ltd Recording head for ink jet recording apparatus
JPH041052A (en) * 1990-02-23 1992-01-06 Seiko Epson Corp On-demand type ink-jet printing head
JPH0441248A (en) * 1990-06-07 1992-02-12 Seiko Epson Corp Ink jet head

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912828B2 (en) 1976-07-19 1984-03-26 株式会社大林組 Column/beam joint of reinforced concrete structural frame
JPS5559978A (en) * 1978-10-31 1980-05-06 Canon Inc Liquid injector
DE3331488A1 (en) * 1982-09-01 1984-03-01 Konishiroku Photo Industry Co., Ltd., Tokyo HEAD PIECE FOR A PAINT SPRAY PRINTING DEVICE
JPS6159914A (en) 1984-08-31 1986-03-27 Fujitsu Ltd Digital compressor
EP0372521B1 (en) * 1988-12-07 1993-04-14 Seiko Epson Corporation On-demand type ink jet print head
US5260723A (en) * 1989-05-12 1993-11-09 Ricoh Company, Ltd. Liquid jet recording head
JPH0373348A (en) * 1989-05-12 1991-03-28 Ricoh Co Ltd Ink-jet recording device
JPH0733087B2 (en) * 1989-06-09 1995-04-12 シャープ株式会社 Inkjet printer
JP2823920B2 (en) * 1990-01-24 1998-11-11 株式会社リコー Ink jet recording device
JP2596629B2 (en) * 1990-03-23 1997-04-02 シャープ株式会社 Inkjet recording head
JPH0448622A (en) 1990-06-14 1992-02-18 Sanyo Electric Co Ltd Method for doping iii-iv compound semiconductor layer with carbon
JP2959056B2 (en) * 1990-06-18 1999-10-06 セイコーエプソン株式会社 Inkjet print head
JP2913778B2 (en) 1990-06-19 1999-06-28 大同特殊鋼株式会社 Vacuum furnace
JP2977872B2 (en) * 1990-07-31 1999-11-15 株式会社リコー Ink jet head and processing method thereof
JPH04163053A (en) * 1990-10-23 1992-06-08 Ricoh Co Ltd Ink jet recording device
JPH04220349A (en) * 1990-12-20 1992-08-11 Ricoh Co Ltd Ink jet head
JP3215147B2 (en) * 1991-04-05 2001-10-02 株式会社リコー Driving method of liquid jet recording head
JP3262141B2 (en) * 1991-12-26 2002-03-04 セイコーエプソン株式会社 Drive circuit for inkjet recording head

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5941272A (en) * 1982-09-01 1984-03-07 Konishiroku Photo Ind Co Ltd Recording head for ink jet recording apparatus
JPH041052A (en) * 1990-02-23 1992-01-06 Seiko Epson Corp On-demand type ink-jet printing head
JPH0441248A (en) * 1990-06-07 1992-02-12 Seiko Epson Corp Ink jet head

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0723866A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0987111A2 (en) * 1995-11-10 2000-03-22 Seiko Epson Corporation Actuator unit
EP0987111A3 (en) * 1995-11-10 2000-04-12 Seiko Epson Corporation Actuator unit
JP2002292864A (en) * 2001-03-30 2002-10-09 Brother Ind Ltd Liquid drop ejector and its manufacturing method
US7249816B2 (en) 2001-09-20 2007-07-31 Ricoh Company, Ltd. Image recording apparatus and head driving control apparatus
US7537321B2 (en) 2003-10-28 2009-05-26 Fujifilm Corporation Droplet discharge head and manufacturing method thereof
JP2006150813A (en) * 2004-11-30 2006-06-15 Brother Ind Ltd Liquid transfer device
JP4682603B2 (en) * 2004-11-30 2011-05-11 ブラザー工業株式会社 Liquid transfer device
JP2006341508A (en) * 2005-06-09 2006-12-21 Brother Ind Ltd Inkjet head

Also Published As

Publication number Publication date
EP0897803A3 (en) 1999-03-10
EP0897802A3 (en) 1999-03-10
EP0723866A1 (en) 1996-07-31
EP0723866A4 (en) 1997-03-26
EP0897803B1 (en) 2001-07-25
EP0897803A2 (en) 1999-02-24
EP0897802A2 (en) 1999-02-24
DE69427837D1 (en) 2001-08-30
DE69427837T2 (en) 2002-04-04
DE69427926T2 (en) 2001-12-06
DE69427926D1 (en) 2001-09-13
EP0897802B1 (en) 2001-08-08

Similar Documents

Publication Publication Date Title
US5983471A (en) Method of manufacturing an ink-jet head
US6971738B2 (en) Piezoelectric actuator
JP3801057B2 (en) Piezoelectric transducer and liquid droplet ejecting apparatus using the same
WO1995026271A1 (en) Ink jet head and method of manufacturing the same
EP1815991B1 (en) Piezoelectric inkjet printhead
JP2007168319A (en) Droplet discharge head, droplet discharge device and process for manufacturing droplet discharge head
WO1995010416A1 (en) Ink jet head, method for producing the same and method for driving the same
US7434918B2 (en) Liquid transporting apparatus and method for producing liquid transporting apparatus
JP2002292869A (en) Piezoelectric transducer and liquid drop jet apparatus
US6695439B2 (en) Piezoelectric transducer and liquid droplet ejection device
US6050679A (en) Ink jet printer transducer array with stacked or single flat plate element
US7524041B2 (en) Pressure producing apparatus
WO1996000151A1 (en) Piezoelectric actuator for ink jet head and method of manufacturing same
JP4135448B2 (en) Method for manufacturing droplet ejecting apparatus
JP3231523B2 (en) On-demand type inkjet head
JPH0757545B2 (en) INKJET HEAD AND METHOD OF MANUFACTURING THE SAME
JP2008044296A (en) Liquid jetting head
JP4603762B2 (en) Inkjet head manufacturing method
JP6193727B2 (en) Liquid discharge head and recording apparatus using the same
JP2003237078A (en) Ink-jet head
JP4306611B2 (en) Inkjet head manufacturing method
JP4670356B2 (en) Inkjet head
JP4433037B2 (en) Liquid pressure generating mechanism and droplet ejecting apparatus
JP3298755B2 (en) Method of manufacturing inkjet head
JP6169948B2 (en) Liquid discharge head, recording apparatus using the same, and method of manufacturing liquid discharge head

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: US

Ref document number: 1996 619627

Date of ref document: 19960410

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1994929664

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1994929664

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1994929664

Country of ref document: EP