WO1995009361A1 - Nitrogen monoxide no and ammonia nh3 detector - Google Patents

Nitrogen monoxide no and ammonia nh3 detector Download PDF

Info

Publication number
WO1995009361A1
WO1995009361A1 PCT/DE1994/001115 DE9401115W WO9509361A1 WO 1995009361 A1 WO1995009361 A1 WO 1995009361A1 DE 9401115 W DE9401115 W DE 9401115W WO 9509361 A1 WO9509361 A1 WO 9509361A1
Authority
WO
WIPO (PCT)
Prior art keywords
detector
metal oxide
layer
electrodes
sensor
Prior art date
Application number
PCT/DE1994/001115
Other languages
German (de)
French (fr)
Inventor
Matthias Peschke
Hans Meixner
Helmut Schmelz
Asbjörn RAMSTETTER
Monika Seidl
Bertrand Lemire
Maximilian Fleischer
Christian Dahlheim
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP94927487A priority Critical patent/EP0721584A1/en
Priority to KR1019960701597A priority patent/KR960705206A/en
Priority to JP7510055A priority patent/JPH09503062A/en
Publication of WO1995009361A1 publication Critical patent/WO1995009361A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036Specially adapted to detect a particular component
    • G01N33/0054Specially adapted to detect a particular component for ammonia
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036Specially adapted to detect a particular component
    • G01N33/0037Specially adapted to detect a particular component for NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the nitrogen oxide and particle emissions (dust) of a diesel engine optimized for performance and consumption can only be reduced insignificantly by means of combustion technology.
  • post-treatment of the diesel engine exhaust gases is therefore unavoidable.
  • a significant reduction in the NO x emission of an engine with excess air can be achieved by using the so-called “selective" atalytic eduction method.
  • gaseous ammonia NH3, ammonia in aqueous solution or urea as a reducing agent is injected into the exhaust system, so that the chemical reactions in particular on a catalyst
  • a NO x detector is known from / l /, the sensitive element of which consists of a mixture of the metal oxides Al2O3 and V2O5.
  • the known detector does not respond to ammonia NH3.
  • the aim of the invention is to create a detector with which both ammonia NH3 and nitrogen monoxide NO can be detected in a gas mixture. A detection of these gases should also be guaranteed if their concentration is in the ppm range.
  • a method is to be specified with which highly sensitive vanadate layers can be produced. According to the invention, these objects are achieved by a detector according to patent claim 1 and a method according to patent claim 9.
  • the advantage that can be achieved with the invention is, in particular, that the detector can still be operated without problems even at the temperatures of 500 to 600.degree Cross sensitivity to oxygen O2 and hydrogen H2 is.
  • the detector does not respond to methane CH4, carbon monoxide CO and carbon dioxide CO2.
  • methane CH4 carbon monoxide CO and carbon dioxide CO2.
  • Fig. 3 shows the comb electrodes of the detector
  • FIG. 5 the AI2O3-V2O5 sandwich structure deposited on the comb electrodes
  • FIG. 6 to 10 the sensitivity of the AIVO ⁇ thin layer of the detector produced according to the invention to nitrogen monoxide NO, ammonia NH3 and others Gases
  • Figures 1 and 2 show a detector according to the invention
  • the substrate 1 consists of a very good electrical insulating material such as glass, beryllium oxide BeO, aluminum oxide Al2O3 or silicon (with Si3N4 SiO2 insulation).
  • a vanadate layer (AIVO4 or
  • FeV ⁇ 4 as NH3 or. NO-sensitive element and a temperature sensor 4 are arranged.
  • the passivation layer made of silicon oxide denoted by 5 shields the connecting lines 6, 6 'and 7, 7' respectively assigned to the two comb electrodes 2, 2 'and the temperature sensor 4 from the oxygen present in the measuring gas.
  • the detector is actively heated with the aid of a resistance layer arranged on the back of the substrate 1.
  • the resistance layer designated 8 in FIG. 2 consists for example of platinum Pt, gold Au or an electrically conductive ceramic and has a meandering structure. Also shown is the approximately 10 to 100 nm thick and made of titanium Ti, chromium Cr, nickel Ni or tungsten W metal layer 9, which improves the adhesion between the substrate 1 and the platinum electrodes 2, 2 '.
  • the dimensions of the comb electrodes 2 and 2 ' depend on the specific resistance of the sensor layer 3 applied above them in the desired temperature range.
  • the comb structure 2, 2 ′ can have thicknesses of 0.1 to 10 ⁇ m, widths of 1 to 1000 ⁇ m and electrode spacings of 1 to 100 ⁇ m.
  • electrode thickness D 1.5 ⁇ m
  • length of the interdigital structure L 1 mm
  • electrode spacing S 50 ⁇ m.
  • FIG. 3 shows a true-to-scale illustration of an interdigital structure in a top view.
  • a resistance layer 10 made of platinum is used as the temperature sensor.
  • a 1.5 ⁇ m thick platinum layer 11 is first deposited on the heated corundum substrate 1 in a sputtering system (see FIGS. 4a, b). The structuring of this
  • Layer 11 takes place in a positive photo step, in which the photoresist 12 is applied at the location of the electrodes to be produced and exposed through a mask 13 (see FIG. 4c, d, e).
  • the developed photoresist 12 protects the platinum layer 11 during the subsequent etching step (see FIG. 4f).
  • the desired comb electrodes 2 and 2 '(see FIG. 4g) are obtained, on which the sensitive vanadate layer 3 is subsequently deposited (see FIG. 4h).
  • the use of gold Au instead of platinum Pt as the electrode material has no influence on the gas sensitivity of the vanadate layer 3.
  • the extraordinary properties of the detector according to the invention are based on the method for producing the gas-sensitive layer.
  • the sensitive layer is applied in a special sputtering process and then annealed for several hours.
  • the comb electrodes can be coated, for example, in the Leybold Z490 sputtering system.
  • Metallic vanadium V and aluminum Al serve as starting materials; H. are atomized in a plasma consisting of 80% argon and 20% oxygen from appropriate targets and are deposited on the heated substrate.
  • the sandwich structure 14 shown in FIG. 5 is built up by alternately atomizing the two targets.
  • It has a thickness of approximately 1 ⁇ m and consists of 60 to 80 V2O5 and AI2O3 layers approximately 10 to 15 nm thick, the Al2 ⁇ 3 content being 50% to a maximum of 70%.
  • the sputtering parameters are given in the table below.
  • V target 225 V.
  • the sandwich structure 14 is annealed in air in a high-temperature furnace for about 5 to 15 hours.
  • the furnace temperature has a decisive influence on the topography and the phase of the Al2O3 V2O5 layers.
  • Layers which have been annealed at temperatures T between 550 ° C. T T ⁇ 610 ° C. show an optimal sensitivity for ammonia NH3 and nitrogen monoxide NO consist of equal proportions of V2O5 and AI2O3.
  • the aluminum vanadate AIVO4 which is responsible for the high gas sensitivity, results from the tempering.
  • the maximum working temperature of the vanadate layer is about 600 ° C.
  • Layers with an Al2O3 content of more than 50% show a somewhat smaller measuring effect. However, they can also be used at higher temperatures of up to 680 ° C.
  • the following diagrams are intended to document the sensitivity or sensitivity of the AIVO4 thin films produced by the described method to different gases.
  • the size o / o (tfo: conductivity of the sensitive layer in synthetic air (80% N2 20% O2)) is plotted as a function of the time t or the concentration of the respective gas.
  • the specific resistance of the AIVO4 thin film increases in the presence of nitrogen dioxide NO2. Since the vanadate shows a completely different behavior compared to nitrogen monoxide NO (reduction in specific resistance, see FIG. 6), one can clearly distinguish the two nitrogen oxides from one another. In addition to nitrogen monoxide NO and ammonia NH3, the vanadate layer also responds to changes in the oxygen partial pressure and hydrogen H2 (see Fig. 9). The cross sensitivity to oxygen O2 and hydrogen H2 is, however, considerably less than the reaction to nitrogen monoxide NO and ammonia NH3. For example, 500 ppm hydrogen H2 in air results in almost the same change in conductivity as the addition of 10 ppm nitrogen monoxide NO.
  • FIG. 10 shows the sensitivity of the AIVO4 thin layer in moist air (80 mbar H2O) at 500 ° C. and an NO content of 10 ppm. Another gas in the specified concentration was added to the moist air within the time intervals marked by a horizontal line. Between the 80th minute and the 110th minute, for example, the air also contained 1500 ppm carbon monoxide CO in addition to the 10 ppm nitrogen monoxide NO.
  • the NO sensitivity of the AIVO4 layer is not influenced by the presence of carbon monoxide CO, methane CH4 and carbon dioxide CO2.
  • the admixture of hydrogen H2 does not mask the NO sensitivity, but a clear cross-sensitivity can be determined. A similar effect is observed with oxygen O2 when its concentration decreases from 20% to 2%.
  • the detector according to the invention can be used, for example, as an air quality sensor in a motor vehicle. Its cross-sensitivity to oxygen O2 and hydrogen H2 is not a disadvantage here, since car exhaust gases do not contain quantities of oxygen and the oxygen concentration of the exhaust gases diluted in air remains almost constant.

Abstract

The Nox emission of a Diesel engine may be substantially reduced by applying the SCR process. In this process, NH3 is injected into a catalyst through which the exhaust fumes are made to flow and in which the injected NH3 reacts with NO or NO2, forming nitrogen and water. As the exhaust fumes should not contain NO nor excess NH3, appropriate detectors are required to control NH3 leaks or to monitor or regulate the NH3 dosage. For that purpose, a nitrogen monoxide and ammonia detector contains an AlVO4 or FeVO4 thin layer as gas-sensitive element. The sensitivity to NO or NH3 of a vanadate layer produced by a special sputtering process is higher by several orders of magnitude than the transverse sensitivity to oxygen and hydrogen. The detector is not sensitive to methane, carbon monoxide and carbon dioxide. No masking effects occur, i.e. the sensitivity to NO and NH3 of the detector is not affected by the presence of other gasses. The invention is suitable as an air quality sensor, as a NH3 leak monitor and as a sensor for regulating a DENOx catalyst.

Description

Detektor zum Nachweis von Stickstoffmonoxid NO und Ammoniak NH3 Detector for the detection of nitrogen monoxide NO and ammonia NH 3
Die Stickoxid- und Partikelemission (Staub) eines auf Lei¬ stung und Verbrauch optimierten Dieselmotors laßt sich durch verbrennungstechnische Maßnahmen nur noch unwesentlich ver- ringern. Um auch die in Zukunft vom Gesetzgeber vorgeschrie¬ benen Abgaswerte einhalten zu können, ist daher eine Nachbe¬ handlung der dieselmotorischen Abgase unumgänglich.The nitrogen oxide and particle emissions (dust) of a diesel engine optimized for performance and consumption can only be reduced insignificantly by means of combustion technology. In order to also be able to comply with the exhaust gas values prescribed by law in the future, post-treatment of the diesel engine exhaust gases is therefore unavoidable.
Eine deutliche Verringerung der NOx-Emission eines Motors mit Luftüberschuß läßt sich durch Anwendung des sogenannten £e- lective-£atalytic-Eeduction-Verfahrens erreichen. Beim SCR- Verfahren wird gasförmiges Ammoniak NH3, Ammoniak in wässri- ger Lösung oder Harnstoff als Reduktionsmittel in das Abgas¬ system eingespritzt, so daß an einem Katalysator insbesondere die chemischen ReaktionenA significant reduction in the NO x emission of an engine with excess air can be achieved by using the so-called "selective" atalytic eduction method. In the SCR process, gaseous ammonia NH3, ammonia in aqueous solution or urea as a reducing agent is injected into the exhaust system, so that the chemical reactions in particular on a catalyst
4NO + 4NH3 + O2 → 4N2 + 6H2O 2N02 + NH3 + O2 → 3N2 + 6H2O4NO + 4NH3 + O2 → 4N2 + 6H2O 2N02 + NH3 + O2 → 3N2 + 6H2O
ablaufen können. Zur vollständigen Reduktion von 1 Mol NOx im dieselmotorischen Abgas benötigt man etwa 0,9 biscan expire. About 0.9 to is required to completely reduce 1 mol of NO x in the diesel engine exhaust gas
1,1 Mol NH3. Wird weniger Ammoniak NH3 eingespritzt, arbeitet der Katalysator nicht mehr mit dem höchsten Wirkungsgrad.1.1 moles of NH3. If less ammonia NH3 is injected, the catalyst no longer works with the highest efficiency.
Eine Überdosierung ist ebenfalls zu vermeiden, da ansonsten unverbrauchtes Ammoniak NH3 in die Atmosphäre gelangt. Von Vorteil wären daher Sensoren, mit denen man den NH3~Schlupf messen bzw. die NH3-Dosierung kontrollieren oder regeln könn- te. Seitens der Automobilindustrie besteht der Wunsch, Klimaanla¬ gen und Lüf ungssysteme so zu steuern, daß die Schadstoffkon¬ zentration in der Fahrgas zelle eines PKW immer unterhalb ei¬ ner für die Gesundheit des Menschen unbedenklichen Schwelle bleib . Hierfür benötigt, man beispielsweise einen Sensor für Stickoxide N0X, der die Frischluftzufuhr ab einer bestimmten NOx-Konzentration reduziert bzw. unterbricht und das Lüfungs- εyste in den Umluftbetrieb umschaltet. Ähnlich wie ein NH3- Sensor könnte ein auf Stickoxide ansprechender Detektor auch zur Regelung eines Dieselkatalysators herangezogen werden.Overdosing should also be avoided, as otherwise unused ammonia NH3 will get into the atmosphere. Sensors with which one could measure the NH3 slip or check or regulate the NH3 dosage would therefore be advantageous. There is a desire on the part of the automotive industry to control air conditioning systems and ventilation systems in such a way that the concentration of pollutants in the gas cell of a car always remains below a threshold which is harmless to human health. This requires, for example, a sensor for nitrogen oxides N0 X , which reduces or interrupts the fresh air supply from a certain NO x concentration and switches the ventilation system to air recirculation mode. Similar to an NH3 sensor, a detector that responds to nitrogen oxides could also be used to control a diesel catalytic converter.
Aus /l/ ist ein NOx-Detektor bekannt, dessen sensitives Ele¬ ment aus einer Mischung der Metalloxide AI2O3 und V2O5 be¬ steht. Der bekannte Detektor spricht allerdings nicht auf Am- moniak NH3 an. Außerdem bereitet es erhebliche Schwierigkei¬ ten, die Stickoxide NO und NO2 zu unterscheiden.A NO x detector is known from / l /, the sensitive element of which consists of a mixture of the metal oxides Al2O3 and V2O5. However, the known detector does not respond to ammonia NH3. In addition, there are considerable difficulties in distinguishing the nitrogen oxides NO and NO2.
Ziel der Erfindung ist die Schaffung eines Detektors, mit dem sich sowohl Ammoniak NH3 als auch Stickstoffmonoxid NO in ei- ne Gasgemisch nachweisen lassen. Ein Nachweis dieser Gase soll auch dann noch gewährleistet sein, wenn deren Konzentra¬ tion im ppm-Bereich liegt. Außerdem soll ein Verfahren ange¬ geben werden, mit dem sich hochempfindliche Vanadatschichten herstellen lassen. Diese Aufgaben werden erfindungsgemäß durch einen Detektor nach Patentanspruch 1 und ein Verfahren nach Patentanspruch 9 gelöst.The aim of the invention is to create a detector with which both ammonia NH3 and nitrogen monoxide NO can be detected in a gas mixture. A detection of these gases should also be guaranteed if their concentration is in the ppm range. In addition, a method is to be specified with which highly sensitive vanadate layers can be produced. According to the invention, these objects are achieved by a detector according to patent claim 1 and a method according to patent claim 9.
Der mit der Erfindung erzielbare Vorteil besteht insbesondere darin, daß man den Detektor auch bei den im Abgastrakt eines Dieselmotors herrschenden Temperaturen von 500 bis 600 °C noch problemlos betreiben kann, wobei die Empfindlichkeit der Sensorschicht auf Stickstoffmonoxid NO und Ammoniak NH3 um einige Größenordnungen über der Querempfindlichkeit auf Sau¬ erstoff O2 und Wasserstoff H2 liegt. Auf Methan CH4, Kohlen- monoxid CO und Kohlendioxid CO2 spricht der Detektor nicht an. Es treten auch keine Maskierungseffekte auf, d. h. die Empfindlichkeit des Detektors auf NO und NH3 wird durch die Anwesenheit der anderen Gase nicht verändert. Außerdem kann man zwischen den Stickoxiden NO und NO2 unterscheiden, sofern nur eines der beiden Gase im Meßgas vorhanden ist.The advantage that can be achieved with the invention is, in particular, that the detector can still be operated without problems even at the temperatures of 500 to 600.degree Cross sensitivity to oxygen O2 and hydrogen H2 is. The detector does not respond to methane CH4, carbon monoxide CO and carbon dioxide CO2. There are also no masking effects, ie the sensitivity of the detector to NO and NH3 is affected by Presence of other gases not changed. A distinction can also be made between nitrogen oxides NO and NO2, provided that only one of the two gases is present in the sample gas.
Die abhängigen Ansprüche betreffen vorteilhafte Weiterbildun¬ gen Ausgestaltungen der im folgenden anhand der Zeichnungen erläuterten Erfindung. Hierbeit zeigt:The dependent claims relate to advantageous further developments of the invention explained below with reference to the drawings. This shows:
Fig. 1 und 2 den schematischen Aufbau des erfindungsgemäßen Detektors1 and 2 the schematic structure of the detector according to the invention
Fig. 3 die Kammelektroden des DetektorsFig. 3 shows the comb electrodes of the detector
Fig. 4 Verfahrensschritte zur Herstellung der Kammelektroden Fig. 5 die auf den Kammelektroden abgeschiedene AI2O3-V2O5- Sandwich-Struktur Fig. 6 bis 10 die Sensitivität der erfindungsgemäß herge¬ stellten AIVOψ-Dünnschicht des Detektors auf Stick¬ stoffmonoxid NO, Ammoniak NH3 und andere Gase4 process steps for the production of the comb electrodes FIG. 5 the AI2O3-V2O5 sandwich structure deposited on the comb electrodes FIG. 6 to 10 the sensitivity of the AIVOψ thin layer of the detector produced according to the invention to nitrogen monoxide NO, ammonia NH3 and others Gases
Die Figuren 1 und 2 zeigen einen erfindungsgemäßen Detektor, dessen Substrat 1 aus einem sehr gut elektrisch isolierenden Material wie Glas, Berylliumoxid BeO, Aluminiumoxid AI2O3 oder Silizium (mit Si3N4 Siθ2-Isolation) besteht. Auf dem zwischen 0,1 und 2 mm dicken Substrat 1 sind zwei eine Inter- digitalstruktur bildende Platinelektroden 2, 2', eine diese Elektroden leitend verbindende Vanadatschicht (AIVO4 oderFigures 1 and 2 show a detector according to the invention, the substrate 1 consists of a very good electrical insulating material such as glass, beryllium oxide BeO, aluminum oxide Al2O3 or silicon (with Si3N4 SiO2 insulation). On the substrate 1, which is between 0.1 and 2 mm thick, there are two platinum electrodes 2, 2 'forming an interdigital structure, a vanadate layer (AIVO4 or
FeVθ4) als NH3-bzw. NO-empfindliches Element sowie ein Tem¬ peraturfühler 4 angeordnet. Die mit 5 bezeichnete Passivie- rungsschicht aus Siliziumoxid schirmt die den beiden Kamm¬ elektroden 2, 2' und dem Temperaturfühler 4 jeweils zugeord- neten Anschlußleitung 6, 6' bzw. 7, 7' vor dem im Meßgas vor¬ handenen Sauerstoff ab.FeVθ4) as NH3 or. NO-sensitive element and a temperature sensor 4 are arranged. The passivation layer made of silicon oxide denoted by 5 shields the connecting lines 6, 6 'and 7, 7' respectively assigned to the two comb electrodes 2, 2 'and the temperature sensor 4 from the oxygen present in the measuring gas.
Um die gewünschte Betriebstemperatur von bis zu 600 °C ein¬ stellen und unabhängig von äußeren Einflüssen konstant halten zu können, wird der Detektor mit Hilfe einer auf der Rück¬ seite des Substrats 1 angeordneten Widerstandsschicht aktiv beheizt. Die in Fig. 2 mit 8 bezeichnete Widerstandsschicht besteht beispielsweise aus Platin Pt, Gold Au oder einer elektrisch leitfähigen Keramik und besitzt eine mäanderförmi- ge Struktur. Dargestellt ist auch die etwa 10 bis 100 nm dicke und aus Titan Ti, Chrom Cr, Nickel Ni oder Wolfram W bestehende Metallschicht 9, die die Haftung zwischen dem Substrat 1 und den Platinelektroden 2, 2' verbessert.In order to be able to set the desired operating temperature of up to 600 ° C. and to be able to keep it constant regardless of external influences, the detector is actively heated with the aid of a resistance layer arranged on the back of the substrate 1. The resistance layer designated 8 in FIG. 2 consists for example of platinum Pt, gold Au or an electrically conductive ceramic and has a meandering structure. Also shown is the approximately 10 to 100 nm thick and made of titanium Ti, chromium Cr, nickel Ni or tungsten W metal layer 9, which improves the adhesion between the substrate 1 and the platinum electrodes 2, 2 '.
Die Abmessungen der Kammelektroden 2 und 2 ' hängen vom spezi¬ fischen Widerstand der darüber aufgebrachten Sensorschicht 3 im gewünschten Temperaturbereich ab. So kann die Kammstruktur 2, 2' beispielsweise Dicken von 0,1 bis 10 um, Breiten von 1 bis 1000 um und Elektrodenabstände von 1 bis 100 μm aufwei¬ sen. Für eine 1 μm dicke AIVO4-Schicht 3 führen die folgenden Abmessungen zu gut meßbaren spezifischen Widerständen im Tem- peraturbereich zwischen 500 und 600 °C: Elektrodendicke D = 1,5 μm, Länge der Interdigitalstruktur L = 1 mm, Elektroden¬ abstand S = 50 μm.The dimensions of the comb electrodes 2 and 2 'depend on the specific resistance of the sensor layer 3 applied above them in the desired temperature range. For example, the comb structure 2, 2 ′ can have thicknesses of 0.1 to 10 μm, widths of 1 to 1000 μm and electrode spacings of 1 to 100 μm. For a 1 μm thick AIVO4 layer 3, the following dimensions lead to well-measurable specific resistances in the temperature range between 500 and 600 ° C.: electrode thickness D = 1.5 μm, length of the interdigital structure L = 1 mm, electrode spacing S = 50 μm.
Die Figur 3 zeigt eine maßstabsgetreue Abbildung einer Inter- digitalstruktur in Draufsicht. Als Temperaturfühler findet bei diesem Ausführungsbeispiel eine aus Platin bestehende Wi¬ derstandsschicht 10 Verwendung. Zur Herstellung der Kammelek¬ troden 2, 2' wird zunächst eine 1,5 μm dicke Platinschicht 11 auf dem beheizten Korundsubstrat 1 in einer Sputteranlage ab- geschieden (s. Figur 4a, b) . Die Strukturierung dieserFIG. 3 shows a true-to-scale illustration of an interdigital structure in a top view. In this exemplary embodiment, a resistance layer 10 made of platinum is used as the temperature sensor. To produce the comb electrodes 2, 2 ', a 1.5 μm thick platinum layer 11 is first deposited on the heated corundum substrate 1 in a sputtering system (see FIGS. 4a, b). The structuring of this
Schicht 11 erfolgt in einem positiv-Fotoschritt, bei dem man den Fotolack 12 am Ort der zu erzeugenden Elektroden auf¬ bringt und durch eine Maske 13 belichtet (s. Figur 4c, d, e) . Der entwickelte Fotolack 12 schützt die Platinschicht 11 wäh- rend des nachfolgenden Ätzschritts (s. Figur 4f) . Nach dem Entfernen des Fotolacks 12 mit Azeton erhält man die ge¬ wünschten Kammelektroden 2 und 2' (s. Figur 4g) auf der an¬ schließend die sensitive Vanadatschicht 3 abgeschieden wird (s. Figur 4h) . Die Verwendung von Gold Au anstelle von Platin Pt als Elek¬ trodenmaterial hat keinen Einfluß auf die Gasempfindlichkeit der Vanadatschicht 3.Layer 11 takes place in a positive photo step, in which the photoresist 12 is applied at the location of the electrodes to be produced and exposed through a mask 13 (see FIG. 4c, d, e). The developed photoresist 12 protects the platinum layer 11 during the subsequent etching step (see FIG. 4f). After removal of the photoresist 12 with acetone, the desired comb electrodes 2 and 2 '(see FIG. 4g) are obtained, on which the sensitive vanadate layer 3 is subsequently deposited (see FIG. 4h). The use of gold Au instead of platinum Pt as the electrode material has no influence on the gas sensitivity of the vanadate layer 3.
Die außergewöhnlichen Eigenschaften des erfindungsgemäßen De¬ tektors beruhen auf dem Verfahren zur Herstellung der gassen¬ sitiven Schicht. Im Unterschied zu dem aus /!/ bekannten Calcinierungsverfahren wird die sensitive Schicht in einem speziellen Sputterverfahren aufgebracht und anschließend meh¬ rere Stunden lang getempert. Die Beschichtung der Kammelek¬ troden kann man beispielsweise in der Sputteranlage Z490 von Leybold vornehmen. Als Ausgangsmaterialien dienen metalli¬ sches Vanadium V und Aluminium AI, die reaktiv, d. h. in ei¬ nem aus 80 % Argon und 20 % Sauerstoff bestehenden Plasma von entsprechenden Targets zerstäubt werden und sich auf dem be¬ heizten Substrat niederschlagen. Durch abwechselndes Zerstäu¬ ben der beiden Targets baut sich die in Fig. 5 dargestellte Sandwich-Struktur 14 auf. Sie hat eine Dicke von etwa 1 μm und besteht aus jeweils 60 bis 80 etwa 10 bis 15 nm dicken V2O5- bzw. AI2O3-Schichten, wobei der Al2θ3-Anteil bei 50 % bis maximal 70 % liegt. Die Sputterparameter sind in der fol¬ genden Tabelle angegeben.The extraordinary properties of the detector according to the invention are based on the method for producing the gas-sensitive layer. In contrast to the calcination process known from /! /, The sensitive layer is applied in a special sputtering process and then annealed for several hours. The comb electrodes can be coated, for example, in the Leybold Z490 sputtering system. Metallic vanadium V and aluminum Al serve as starting materials; H. are atomized in a plasma consisting of 80% argon and 20% oxygen from appropriate targets and are deposited on the heated substrate. The sandwich structure 14 shown in FIG. 5 is built up by alternately atomizing the two targets. It has a thickness of approximately 1 μm and consists of 60 to 80 V2O5 and AI2O3 layers approximately 10 to 15 nm thick, the Al2θ3 content being 50% to a maximum of 70%. The sputtering parameters are given in the table below.
Restgasdruck ca. 2 - 4 x 10~6 mbarResidual gas pressure approx. 2 - 4 x 10 ~ 6 mbar
Sputtergasdruck 4,2 x 10-***-" mbarSputtering gas pressure 4.2 x 10 - *** - "mbar
Sputtergas 20% O2/80% ArSputter gas 20% O 2 /80% Ar
DC-Potential AI-Target: 155 VDC potential AI target: 155 V
V-Target : 225 VV target: 225 V.
Substrattemperatur ca. 250°CSubstrate temperature approx. 250 ° C
Um ein homogenes Mischoxid zu erzeugen, wird die Sandwich- Struktur 14 in einem Hochtemperaturofen an Luft etwa 5 bis 15 Stunden getempert. Die Ofentemperatur hat hierbei einen ent¬ scheidenden Einfluß auf die Topographie und die Phase der Al2θ3 V2θ5-Schichten. Eine optimale Sensitivität für Ammoniak NH3 und Stickstoffmonoxid NO zeigen Schichten, die bei Tempe¬ raturen T zwischen 550 °C ≤ T < 610 °C getempert wurden und aus gleichen Anteilen von V2O5 und AI2O3 bestehen. Durch das Tempern entsteht das für die hohe Gasempfindlichkeit verant¬ wortliche Aluminiu vanadat AIVO4. Die maximale Arbeitstempe¬ ratur der Vanadatschicht liegt bei etwa 600 °C. Aluminium¬ vanadat AIVO4 besitzt eine trikline Einheitszelle mit c a = 0,6471 nm, b = 0,7742 n , c = 0,9084 nm, α = 96,848 A, ß = 105,825 A und χ = 101,399 A, deren Volumen V = 0,4219 nm3 beträgt.In order to produce a homogeneous mixed oxide, the sandwich structure 14 is annealed in air in a high-temperature furnace for about 5 to 15 hours. The furnace temperature has a decisive influence on the topography and the phase of the Al2O3 V2O5 layers. Layers which have been annealed at temperatures T between 550 ° C. T T <610 ° C. show an optimal sensitivity for ammonia NH3 and nitrogen monoxide NO consist of equal proportions of V2O5 and AI2O3. The aluminum vanadate AIVO4, which is responsible for the high gas sensitivity, results from the tempering. The maximum working temperature of the vanadate layer is about 600 ° C. Aluminum vanadate AIVO4 has a triclinic unit cell with ca = 0.6471 nm, b = 0.7742 n, c = 0.9084 nm, α = 96.848 A, ß = 105.825 A and χ = 101.399 A, the volume of which is V = 0 , 4219 nm 3 .
Schichten mit einem AI2O3-Anteil von mehr als 50 % zeigen ei¬ nen etwas kleineren Meßeffekt. Man kann sie allerdings auch noch bei höheren Temperaturen von bis zu 680 °C einsetzen.Layers with an Al2O3 content of more than 50% show a somewhat smaller measuring effect. However, they can also be used at higher temperatures of up to 680 ° C.
Die folgenden Diagramme sollen die Empfindlichkeit bzw. Sen- sitivität der nach dem beschriebenen Verfahren hergestellten AIVO4-Dünnschichten auf verschiedene Gase dokumentieren. Auf¬ getragen ist jeweils die Größe ö/ o (tfo: Leitfähigkeit der sensitiven Schicht in synthetischer Luft (80 % N2 20 % O2)) in Abhängigkeit von der Zeit t bzw. der Konzentration des je- weiligen Gases.The following diagrams are intended to document the sensitivity or sensitivity of the AIVO4 thin films produced by the described method to different gases. The size o / o (tfo: conductivity of the sensitive layer in synthetic air (80% N2 20% O2)) is plotted as a function of the time t or the concentration of the respective gas.
Bereits die Anwesenheit kleinster Mengen von Stickstoffmon¬ oxid NO und Ammoniak NH3 in trockener synthetischer Luft führt zu einem deutlichen Anstieg der Leitfähigkeit des Alu- miniumvanadats AIVO4 (s. Fig. 6 und 7) . So ändert sich die Leitfähigkeit um ewta 75 %, wenn man der Luft 10 ppm Stick¬ stoffmonoxid NO beimischt. Die Zugabe von 10 ppm Ammoniak NH3 hat eine Erhöhung der Leitfähigkeit um mehr als ein Faktor 6 zur Folge.Even the presence of very small amounts of nitrogen monoxide NO and ammonia NH3 in dry synthetic air leads to a significant increase in the conductivity of the aluminum vanadate AIVO4 (see FIGS. 6 and 7). The conductivity changes by about 75% when 10 ppm nitrogen monoxide NO is added to the air. The addition of 10 ppm ammonia NH3 increases the conductivity by more than a factor of 6.
Wie die Fig. 8 zeigt, erhöht sich der spezifische Widerstand der AIVO4-Dünnschicht bei Anwesenheit von Stickstoffdioxid NO2• Da das Vanadat gegenüber Stickstoffmonoxid NO ein völlig anderes Verhalten zeigt (Verringerung des spezifischen Wider- Standes, s. Fig. 6), kann man beide Stickoxide eindeutig von¬ einander unterscheiden. Außer auf Stickstoffmonoxid NO und Ammoniak NH3 spricht die Vanadatschicht auch auf Änderungen des Sauerstoffpar- tialdrucks und Wasserstoff H2 an (s. Fig. 9). Die Queremp¬ findlichkeit auf Sauerstoff O2 und Wasserstoff H2 ist aller- dings erheblich kleiner als die Reaktion auf Stickstoffmon¬ oxid NO und Ammoniak NH3. So haben 500 ppm Wasserstoff H2 in Luft annähernd dieselbe Änderung der Leitfähigkeit zur Folge wie die Zugabe von 10 ppm Stickstoffmonoxid NO. Nicht nach¬ weisbar sind die Gase Kohlenmonoxid CO (bis 1500 ppm) , Methan CH4 (bis 5000 ppm) und Kohlendioxid CO2 (bis 1 %) bis zu den in den Klammern jeweils angegebenen Konzentrationen. In feuchter Luft (80 mbar H2O) beobachtet man eine deutliche Ab¬ nahme der NH3-Sensitivität; sie bleibt aber immer noch dop¬ pelt so groß wie die Empfindlichkeit für Stickstoffmonoxid NO (s. den rechten Teil der Fig. 9).As shown in FIG. 8, the specific resistance of the AIVO4 thin film increases in the presence of nitrogen dioxide NO2. Since the vanadate shows a completely different behavior compared to nitrogen monoxide NO (reduction in specific resistance, see FIG. 6), one can clearly distinguish the two nitrogen oxides from one another. In addition to nitrogen monoxide NO and ammonia NH3, the vanadate layer also responds to changes in the oxygen partial pressure and hydrogen H2 (see Fig. 9). The cross sensitivity to oxygen O2 and hydrogen H2 is, however, considerably less than the reaction to nitrogen monoxide NO and ammonia NH3. For example, 500 ppm hydrogen H2 in air results in almost the same change in conductivity as the addition of 10 ppm nitrogen monoxide NO. The gases carbon monoxide CO (up to 1500 ppm), methane CH4 (up to 5000 ppm) and carbon dioxide CO2 (up to 1%) up to the concentrations indicated in brackets are not detectable. In humid air (80 mbar H2O), a clear decrease in the NH3 sensitivity is observed; however, it still remains twice as large as the sensitivity to nitrogen monoxide NO (see the right part of FIG. 9).
In Fig. 10 ist die Empfindlichkeit der AIVO4-Dünnschicht in feuchter Luft (80 mbar H2O) bei 500 °C und einem NO-Anteil von 10 ppm dargestellt. Innerhalb der jeweils durch eine waagrechte Linie markierten Zeitintervallen wurde der feuch¬ ten Luft ein weiteres Gas in der angegebenen Konzentration beigemischt. Die Luft enthielt also beispielsweise zwischen der 80. Minute und der 110. Minute neben den 10 ppm Stick¬ stoffmonoxid NO noch 1500 ppm Kohlenmonoxid CO. Wie die Meß- ergebnisse zeigen, wird die NO-Empfindlichkeit der AIVO4- Schicht durch die Anwesenheit von Kohlenmonoxid CO, Methan CH4 und Kohlendioxid CO2 nicht beeinflußt. Die Beimischung von Wasserstoff H2 bewirkt zwar keine Maskierung der NO-Sen- sitivität, es ist aber eine eindeutige Querempfindlichkeit festzustellen. Einen ähnlichen Effekt beobachtet man bei Sau¬ erstoff O2, wenn sich dessen Konzentration von 20 % auf 2 % verringert.10 shows the sensitivity of the AIVO4 thin layer in moist air (80 mbar H2O) at 500 ° C. and an NO content of 10 ppm. Another gas in the specified concentration was added to the moist air within the time intervals marked by a horizontal line. Between the 80th minute and the 110th minute, for example, the air also contained 1500 ppm carbon monoxide CO in addition to the 10 ppm nitrogen monoxide NO. As the measurement results show, the NO sensitivity of the AIVO4 layer is not influenced by the presence of carbon monoxide CO, methane CH4 and carbon dioxide CO2. The admixture of hydrogen H2 does not mask the NO sensitivity, but a clear cross-sensitivity can be determined. A similar effect is observed with oxygen O2 when its concentration decreases from 20% to 2%.
Der erfindungsgemäße Detektor läßt sich beispielsweise als Luftgütesensor in einem Kraftfahrzeug verwenden. Seine Quer¬ empfindlichkeit auf Sauerstoff O2 und Wasserstoff H2 ist hierbei nicht von Nachteil, da Autoabgase keine größeren Was- serstoffmengen enthalten und die Sauerstoffkonzentration der in Luft verdünnten Abgase nahezu konstant bleibt.The detector according to the invention can be used, for example, as an air quality sensor in a motor vehicle. Its cross-sensitivity to oxygen O2 and hydrogen H2 is not a disadvantage here, since car exhaust gases do not contain quantities of oxygen and the oxygen concentration of the exhaust gases diluted in air remains almost constant.
/!/ Sensors and Actuators 19 (1989) 259 - 265 /! / Sensors and Actuators 19 (1989) 259-265

Claims

Patentansprüche: Claims:
1. Detektor zum Nachweis von Stickstoffmonoxid und Ammoniak mit einer auf einem isolierenden Grundkörper (1) angeordneten Sensorschicht (3) und einem die Sensorschicht (3) kon¬ taktierenden Elektrodenpaar (2, 2'), d a d u r c h g e k e n n z e i c h n e t , daß die Sensorschicht (3) aus einem Vanadat eVθ4 oder einem Beimischungen eines Metalloxids Me2θ3 enthaltenden Vanadat eVθ4 besteht.1. Detector for detecting nitrogen monoxide and ammonia with a sensor layer (3) arranged on an insulating base body (1) and a pair of electrodes (2, 2 ') contacting the sensor layer (3), characterized in that the sensor layer (3) consists of a vanadate eVθ4 or an admixture of a metal oxide Me2θ3 containing vanadate eVθ4.
2. Detektor nach Anspruch 1, mit einer durch folgendes Ver¬ fahren hergestellten Sensorschicht:2. Detector according to claim 1, with a sensor layer produced by the following method:
- Abdecken des Elektrodenpaares (2, 2') und der dazwischen- liegenden Oberfläche des Grundkörpers (1) mit mehreren- Cover the pair of electrodes (2, 2 ') and the surface of the base body (1) between them with several
Metalloxidschichten, so daß eine SchichtenfolgeMetal oxide layers, so that a layer sequence
Me203~v2°5~Me203"v2°5~usw- Me 2 0 3 ~ v 2 ° 5 ~ Me 2 0 3 "v 2 ° 5 ~ etc -
entsteht undarises and
- Tempern der Metalloxidschichten.- Annealing the metal oxide layers.
3. Detektor nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t , daß der Anteil des Metalloxids e2θ3 bei 50% bis maximal 70% liegt.3. Detector according to claim 2, so that the proportion of the metal oxide e2θ3 is 50% to a maximum of 70%.
4. Detektor nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t , daß die Sensorschicht (3) eine Dicke d < 10 μm aufweist.4. Detector according to one of claims 1 to 3, that the sensor layer (3) has a thickness d <10 μm.
5. Detektor nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t , daß das dreiwertige Metall Me Aluminium oder Eisen ist. 5. Detector according to one of claims 1 to 4, characterized in that the trivalent metal Me is aluminum or iron.
6. Detektor nach einem der Ansprüche 1 bis 5 , d a d u r c h g e k e n n z e i c h n e t , daß das Elektrodenpaar (2, 2*) als InterdigitalStruktur aus¬ gebildet ist.6. Detector according to one of claims 1 to 5, so that the pair of electrodes (2, 2 *) is designed as an interdigital structure.
7. Detektor nach einem der Ansprüche 1 bis 6, d a d u r c h g e k e n n z e i c h n e t , daß ein Temperaturfühler (4, 10) und/oder ein Heizelement (8) auf dem Grundkörper (1) angeordnet sind.7. Detector according to any one of claims 1 to 6, that a temperature sensor (4, 10) and / or a heating element (8) are arranged on the base body (1).
8. Verfahren zur Herstellung eines Detektors zum Nachweis von Stickstoffmonoxid und Ammoniak bei dem - eine aus einem elektrisch leitenden Material bestehende8. Method for producing a detector for the detection of nitrogen monoxide and ammonia in the - one consisting of an electrically conductive material
Schicht (11) auf einem isolierenden Grundkörper (1) abge¬ schieden wird,Layer (11) is deposited on an insulating base body (1),
- mindestens ein nicht leitend miteinander verbundenes Elek¬ trodenpaar (2, 2') durch Strukturierung der Schicht (11) erzeugt wird,at least one pair of electrodes (2, 2 ') which is not conductively connected to one another is produced by structuring the layer (11),
- auf dem Elektrodenpaar (2, 2') und der dazwischenliegenden Oberfläche des Grundkörpers (1) mehrere Metalloxidschichten derart abgeschieden werden, daß eine Schichtenfolge- Several metal oxide layers are deposited on the pair of electrodes (2, 2 ') and the intermediate surface of the base body (1) such that a layer sequence
e2θ - V2O5 - e2θ3 - V2O5 - USW.e2θ - V2O5 - e2θ3 - V2O5 - ETC.
entsteht, wobei Me ein dreiwertiges Metall bezeichnet undarises, where Me denotes a trivalent metal and
- die Metalloxidschichten mehrere Stunden lang getempert werden, wobei die Temperatur so gewählt ist, daß sich Vanadat MeV04 bildet.- The metal oxide layers are annealed for several hours, the temperature being selected so that vanadate MeV0 4 is formed.
9. Verfahren nach Anspruch 8, d a d u r c h g e k e n n z e i c h n e t , daß die Metalloxidschichten durch reaktive Kathodenzerstäu- bung in einer Argon-Sauerstoffatmosphare oder durch reaktive Elektronenstrahlverdampfung erzeugt werden. 9. The method according to claim 8, characterized in that the metal oxide layers are generated by reactive sputtering in an argon-oxygen atmosphere or by reactive electron beam evaporation.
10. Verfahren nach Anspruch 8 oder 9, d a d u r c h g e k e n n z e i c h n e t , daß jeweils mehr als 50 Me 03- oder V205-Schichten abgeschie¬ den werden.10. The method according to claim 8 or 9, characterized in that more than 50 Me 0 3 - or V 2 0 5 layers are deposited.
11. Verfahren nach einem der Ansprüche 8 bis 10, d a d u r c h g e k e n n z e i c h n e t , daß jeweils nur Schichten mit einer Dicke d < 20 nm erzeugt werden.11. The method according to any one of claims 8 to 10, so that only layers with a thickness d <20 nm are generated in each case.
12. Verfahren nach einem der Ansprüche 8 bis 11, d a d u r c h g e k e n n z e i c h n e t , daß der Metalloxid-Anteil im Bereich zwischen 50 % und 70 % liegt.12. The method according to any one of claims 8 to 11, that the metal oxide content is in the range between 50% and 70%.
13. Verfahren nach einem der Ansprüche 8 bis 12, d a d u r c h g e k e n n z e i c h n e t , daß eine Schichtenfolge13. The method according to any one of claims 8 to 12, d a d u r c h g e k e n n z e i c h n e t that a layer sequence
AI2O3 - V205 - I2O3 - V2O5 - usw.AI2O3 - V 2 0 5 - I2O3 - V2O5 - etc.
erzeugt und bei einer im Bereich zwischen 550 °C und 640 °C liegenden Temperatur getempert wird..generated and annealed at a temperature between 550 ° C and 640 ° C ..
14. Verwendung eines Detektors nach einem oder mehreren der Ansprüche 1 bis 7 als Luftgütesensor oder NH3-SchlupfWächter. 14. Use of a detector according to one or more of claims 1 to 7 as an air quality sensor or NH3 slip monitor.
PCT/DE1994/001115 1993-09-28 1994-09-23 Nitrogen monoxide no and ammonia nh3 detector WO1995009361A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP94927487A EP0721584A1 (en) 1993-09-28 1994-09-23 Nitrogen monoxide no and ammonia nh 3? detector
KR1019960701597A KR960705206A (en) 1993-09-28 1994-09-23 NITROGEN MONOXIDE NO AND AMMONIA NH_3 DETECTOR
JP7510055A JPH09503062A (en) 1993-09-28 1994-09-23 Detector for detecting nitric oxide NO and ammonia NH (3)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4333006A DE4333006C2 (en) 1993-09-28 1993-09-28 Detector for detection of nitric oxide NO and ammonia NH3
DEP4333006.1 1993-09-28

Publications (1)

Publication Number Publication Date
WO1995009361A1 true WO1995009361A1 (en) 1995-04-06

Family

ID=6498850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1994/001115 WO1995009361A1 (en) 1993-09-28 1994-09-23 Nitrogen monoxide no and ammonia nh3 detector

Country Status (5)

Country Link
EP (1) EP0721584A1 (en)
JP (1) JPH09503062A (en)
KR (1) KR960705206A (en)
DE (1) DE4333006C2 (en)
WO (1) WO1995009361A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6592823B1 (en) 1998-10-09 2003-07-15 Basf Aktiengesellschaft Sensor for detecting the instantaneous concentrations of a plurality of gas constituents in a gas
WO2004029607A1 (en) * 2002-09-30 2004-04-08 Mitsui Mining & Smelting Co., Ltd. Alcohol concentration detector, method of detecting alcohol concentration therewith and process for producing alcohol concentration detection sensor
US7074319B2 (en) * 2002-12-11 2006-07-11 Delphi Technologies, Inc. Ammonia gas sensors

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0851222A1 (en) * 1996-12-31 1998-07-01 Corning Incorporated Metal oxide semiconductor catalyst hydrocarbon sensor
DE19919472C2 (en) * 1999-04-29 2001-04-19 Bosch Gmbh Robert Device and method for the detection of ammonia
KR100534561B1 (en) * 2002-11-28 2005-12-07 주식회사아리랑비앤에스 Measurement Device of Temperature/Humidity/Ammonia Gas for Cattle Pen
AT501921B1 (en) * 2006-05-09 2007-08-15 Avl List Gmbh Exhaust system for use in e.g. diesel engine, has nitrogen oxide removal unit arranged downstream from oxidizing catalyst, and another oxidizing catalyst placed upstream from unit, where catalysts are designed for different activities
DE102006013698A1 (en) * 2006-03-24 2007-09-27 Robert Bosch Gmbh Gas sensor e.g. ammonia sensor, for e.g. diesel combustion engine, has measuring electrode covered with catalyst e.g. selective catalytic-reduction catalyst, for chemical reaction of nitrogen oxides
DE102006021089B4 (en) * 2006-05-05 2009-11-12 Continental Automotive Gmbh Method and device for operating an internal combustion engine
DE102006026739B4 (en) * 2006-06-08 2008-11-27 Continental Automotive Gmbh Method and device for operating an internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4259292A (en) * 1977-01-31 1981-03-31 Tokyo Shibaura Electric Co., Ltd. Gas detecting element
JPH0545319A (en) * 1991-08-21 1993-02-23 New Cosmos Electric Corp Semiconductor type ammonia gas sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4259292A (en) * 1977-01-31 1981-03-31 Tokyo Shibaura Electric Co., Ltd. Gas detecting element
JPH0545319A (en) * 1991-08-21 1993-02-23 New Cosmos Electric Corp Semiconductor type ammonia gas sensor

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
D.GUORUI: "a study of gas sensing properties of oxide multilayer thin films", JOURNAL DE PHYSIQUE IV , COLLOQUE C2 ,SUPP. AU JOURNAL DE PHYSIQUE II ,VOL I , SEPTEMBRE 1991, vol. 2, September 1991 (1991-09-01), FRANCE, pages C-2963 - C2-968 *
PATENT ABSTRACTS OF JAPAN vol. 17, no. 338 (P - 1564) 25 June 1993 (1993-06-25) *
T.ISHIHARA ET AL: "the mixed oxide Al2O3 -V2=5 as a semiconductor gas sensor for NO and NO2", SENSORS AND ACTUATORS, vol. 19, no. 3, September 1989 (1989-09-01), LAUSANNE CH, pages 259 - 265 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6592823B1 (en) 1998-10-09 2003-07-15 Basf Aktiengesellschaft Sensor for detecting the instantaneous concentrations of a plurality of gas constituents in a gas
DE19846487C5 (en) * 1998-10-09 2004-12-30 Basf Ag Measuring probe for the detection of the instantaneous concentrations of several gas components of a gas
WO2004029607A1 (en) * 2002-09-30 2004-04-08 Mitsui Mining & Smelting Co., Ltd. Alcohol concentration detector, method of detecting alcohol concentration therewith and process for producing alcohol concentration detection sensor
US7074319B2 (en) * 2002-12-11 2006-07-11 Delphi Technologies, Inc. Ammonia gas sensors

Also Published As

Publication number Publication date
EP0721584A1 (en) 1996-07-17
JPH09503062A (en) 1997-03-25
DE4333006A1 (en) 1995-03-30
KR960705206A (en) 1996-10-09
DE4333006C2 (en) 1996-06-13

Similar Documents

Publication Publication Date Title
EP0653237B1 (en) Process for reducing the concentration of nitrogen oxides in the exhaust gas of combustion engines or incinerators
EP0604468B1 (en) Exhaust gas sensor
EP0723662B1 (en) Sensor for detecting nitrogen oxide
WO2005121761A1 (en) Gas sensor for determining ammonia
DE19708770C1 (en) Gas sensor for detecting methane
EP0806656A2 (en) Gas sensor and method for manufacturing a gas sensor
EP0743515A1 (en) Method for detection of methane in a gaseous mixture
WO1995009361A1 (en) Nitrogen monoxide no and ammonia nh3 detector
EP0652435A2 (en) Sensor for determining the gradient of a concentration
EP2396650A1 (en) Sensor element of a gas sensor and method for operating the same
WO2007110258A1 (en) Ammonia sensor
WO1996019725A1 (en) Sensor for detecting flammable gases
DE19846487C2 (en) Measuring probe for the detection of the instantaneous concentrations of several gas components of a gas
WO1999014586A1 (en) Gas sensor
DE19856369C2 (en) Resistive gas sensor and method for its production
DE102007050119A1 (en) Storage device, sensor element and method for the qualitative and / or quantitative determination of at least one gas component, in particular of nitrogen oxides, in a gas
EP0643827B1 (en) Methane sensor
DE102018115623A1 (en) Method for measuring nitrogen oxides and device for carrying out the method
DE19924083C2 (en) Conductivity sensor for the detection of ozone
DE19714364C2 (en) NO detection method in fluid media
DE19806308A1 (en) Oxygen gas sensor and measurement system for carbon dioxide
EP1452860A1 (en) Sensing element for measuring ammonia and corresponding method
DE102012110481A1 (en) Nitrogen oxide sensor used in automobile industry for sensing nitrogen oxide in exhaust gas of diesel engine vehicle, has heater which is connected with the substrate carrier
DE10332519A1 (en) Electrochemical pump cell for gas sensors
DE102005056831B3 (en) Resistive gas sensor for measuring gaseous impurities in the air has a gas-sensitive layer on a carrier, a measuring electrode structure and a heating element

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1994927487

Country of ref document: EP

ENP Entry into the national phase

Ref country code: US

Ref document number: 1996 615296

Date of ref document: 19960327

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1994927487

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1994927487

Country of ref document: EP