EP0653237B1 - Process for reducing the concentration of nitrogen oxides in the exhaust gas of combustion engines or incinerators - Google Patents
Process for reducing the concentration of nitrogen oxides in the exhaust gas of combustion engines or incinerators Download PDFInfo
- Publication number
- EP0653237B1 EP0653237B1 EP94115280A EP94115280A EP0653237B1 EP 0653237 B1 EP0653237 B1 EP 0653237B1 EP 94115280 A EP94115280 A EP 94115280A EP 94115280 A EP94115280 A EP 94115280A EP 0653237 B1 EP0653237 B1 EP 0653237B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- sensor element
- exhaust gas
- ammonia
- process according
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 title claims description 75
- 239000007789 gas Substances 0.000 title claims description 48
- 238000000034 method Methods 0.000 title claims description 23
- 238000002485 combustion reaction Methods 0.000 title claims description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 55
- 229910021529 ammonia Inorganic materials 0.000 claims description 25
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 14
- 239000004202 carbamide Substances 0.000 claims description 14
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical compound [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 claims description 14
- 239000003638 chemical reducing agent Substances 0.000 claims description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 10
- 239000003054 catalyst Substances 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 229910001868 water Inorganic materials 0.000 claims description 5
- 239000007864 aqueous solution Substances 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 238000011144 upstream manufacturing Methods 0.000 claims description 3
- 230000001419 dependent effect Effects 0.000 claims description 2
- 229910044991 metal oxide Inorganic materials 0.000 claims description 2
- 150000004706 metal oxides Chemical class 0.000 claims description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims 3
- 229910001935 vanadium oxide Inorganic materials 0.000 claims 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims 2
- 239000004411 aluminium Substances 0.000 claims 1
- 229910052742 iron Inorganic materials 0.000 claims 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 19
- 230000035945 sensitivity Effects 0.000 description 13
- OFPXSFXSNFPTHF-UHFFFAOYSA-N oxaprozin Chemical compound O1C(CCC(=O)O)=NC(C=2C=CC=CC=2)=C1C1=CC=CC=C1 OFPXSFXSNFPTHF-UHFFFAOYSA-N 0.000 description 10
- 229960002739 oxaprozin Drugs 0.000 description 10
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- 229910052697 platinum Inorganic materials 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 230000003197 catalytic effect Effects 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 238000004544 sputter deposition Methods 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910002089 NOx Inorganic materials 0.000 description 2
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 description 2
- LTPBRCUWZOMYOC-UHFFFAOYSA-N beryllium oxide Inorganic materials O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 0 **1CCCC1 Chemical compound **1CCCC1 0.000 description 1
- FRWYFWZENXDZMU-UHFFFAOYSA-N 2-iodoquinoline Chemical compound C1=CC=CC2=NC(I)=CC=C21 FRWYFWZENXDZMU-UHFFFAOYSA-N 0.000 description 1
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000010431 corundum Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000012619 stoichiometric conversion Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2066—Selective catalytic reduction [SCR]
- F01N3/208—Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/30—Controlling by gas-analysis apparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8621—Removing nitrogen compounds
- B01D53/8625—Nitrogen oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8696—Controlling the catalytic process
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9495—Controlling the catalytic process
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/206—Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/406—Cells and probes with solid electrolytes
- G01N27/407—Cells and probes with solid electrolytes for investigating or analysing gases
- G01N27/4073—Composition or fabrication of the solid electrolyte
- G01N27/4074—Composition or fabrication of the solid electrolyte for detection of gases other than oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/02—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
- F01N2560/021—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting ammonia NH3
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/02—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
- F01N2560/026—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/02—Adding substances to exhaust gases the substance being ammonia or urea
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/06—Adding substances to exhaust gases the substance being in the gaseous form
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/14—Arrangements for the supply of substances, e.g. conduits
- F01N2610/1453—Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
- F01N2610/146—Control thereof, e.g. control of injectors or injection valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B3/00—Engines characterised by air compression and subsequent fuel addition
- F02B3/06—Engines characterised by air compression and subsequent fuel addition with compression ignition
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the invention relates to methods for reducing the nitrogen oxide concentration in the exhaust gas of an internal combustion engine or an incinerator according to the preamble of claim 1.
- the nitrogen oxide and particle emissions (dust) of a diesel engine optimized for performance and consumption can only be reduced insignificantly by means of combustion technology.
- aftertreatment of the diesel engine exhaust gases is therefore essential.
- a significant reduction in NO x emissions from a diesel engine can be achieved by application of the so-called S elective- C atalytic- R eduction technique.
- gaseous ammonia NH 3 ammonia in aqueous solution or urea as a reducing agent is injected into the exhaust system, so that the chemical reactions in particular on a catalyst 4NO + 4NH 3rd + O 2nd ⁇ 4N 2nd + 6H 2nd O 2NO 2nd + 4NH 3rd + O 2nd ⁇ 3N 2nd + 6H 2nd O can expire.
- a catalyst 4NO + 4NH 3rd + O 2nd ⁇ 4N 2nd + 6H 2nd O 2NO 2nd + 4NH 3rd + O 2nd ⁇ 3N 2nd + 6H 2nd O can expire.
- 0.9 to 1.1 moles of NH 3 are required. If less ammonia NH3 is injected, the catalyst no longer works with the highest efficiency. Overdosing should also be avoided, as otherwise unused ammoni
- the SCR process known from DE-A-36 10 364 can reduce the proportion of NOx in the exhaust gas from combustion plants by more than 80% and at the same time limit the NH 3 emissions to below 5 ppm.
- the dosage of the reducing agent is monitored Computer which evaluates the output signal of an NH 3 sensor arranged in the exhaust tract behind the NO x converter and, if necessary, readjustes the supply of reducing agent by controlling a delivery unit.
- An NH 3 sensor is an electrochemical cell which contains a cup-shaped body made of stabilized zirconium dioxide as an essential component. Two electrodes are applied to the solid electrolyte, the outer electrode exposed to the exhaust gas being made, for example, of TiO 2 , Pt V 2 O 5 or V 2 O 5 and the inner electrode being exposed to a reference gas (air) made of platinum.
- the process described in DE 36 06 535 for reducing the NO x concentration uses the high temperatures of the exhaust gas to evaporate the reducing agent present in solid or liquid form and to split it into reactive components. After concentration, the reactive components are injected via a bundle of pipelines into a comparatively cool zone of the exhaust tract, where they react with the nitrogen oxides to nitrogen, water and carbon dioxide. A sensor working according to the chemiluminescence comparison method is used to measure the NO x concentration. Its output signal is fed to a controller with setpoint specification, which controls the servomotor of a metering valve.
- the aim of the invention is to provide a method with which the concentration of nitrogen oxides NO x in the exhaust gas of an internal combustion engine or an incinerator can be significantly reduced. In particular, it should be ensured that the exhaust gas contains neither nitrogen monoxide NO nor excess ammonia NH 3 . According to the invention, these objects are achieved by a method according to claim 1.
- the advantage that can be achieved with the invention consists in particular in that the amount of NH 3 required for a stoichiometric conversion of nitrogen monoxide NO to nitrogen N 2 and water H 2 O is obtained in a simple manner by measuring the electrical resistance of a sensor element exposed to the exhaust gas, preferably one Vanadate layer, can determine. An absolute measurement of the NO or NH 3 concentration is not necessary. Since the aim of the control is a maximum resistance of the metal oxide layer used as the sensor element, any resistance drift that may be present does not cause any problems.
- the exhaust system of a diesel engine 1 shown schematically in FIG. 1 is said to largely break down the nitrogen oxides NOx formed during operation and to release the remaining residual gases to the atmosphere with as little noise as possible. It consists of an SCR catalytic converter 2 described in / 1 / and / 2 /, one or more switching dampers 3 and a pipe system 4 which connects the individual components to the exhaust gas outlet openings present in the cylinder head of the diesel engine 1.
- Upstream of the SCR catalytic converter 2 is a metering device 5, which is stored in a storage container 6 Injecting reducing agent into the exhaust tract.
- the metering device 5 contains in particular a membrane pump connected to an injection nozzle 7 or an injection valve with an upstream flow meter.
- a control unit 8 ensures that a certain amount of the ammonia-containing reducing agent can be supplied to the exhaust gas.
- An aqueous urea solution (CO (NH 2 ) 2 ) is particularly suitable as a reducing agent. This is decomposed with the addition of heat to carbon dioxide CO 2 and ammonia NH 3 , the ammonia NH 3 adsorbing on the surface of the catalyst 2 and reacting with the nitrogen oxides NO and NO 2 present in the exhaust gas to form the non-toxic substances nitrogen N 2 and water H 2 O. .
- the reaction must be carried out to ensure that the diesel exhaust gas entering the environment does not contain nitrogen monoxide NO or excess ammonia NH 3 4NH 3rd + 4NO + O 2nd ⁇ 4N 2nd + 6H 2nd O run stoichiometrically.
- the NO or NH 3 concentration is therefore measured with the aid of a detector 9 arranged in the exhaust pipe 4 behind the SCR catalytic converter 2 and used to control the amount of urea injected.
- the amount of urea required for a stoichiometric reaction is then injected due to the properties of the detector to be described when the electrical resistance of a vanadate layer used as an NO or NH 3 -sensitive element passes through a maximum or its electrical conductivity goes through a minimum.
- the substrate 10 of the detector 9 shown in FIGS. 1 and 2 consists of an electrically insulating material such as glass, beryllium oxide BeO, aluminum oxide Al 2 O 3 or silicon (with Si 3 N 4 / SiO 2 insulation).
- an electrically insulating material such as glass, beryllium oxide BeO, aluminum oxide Al 2 O 3 or silicon (with Si 3 N 4 / SiO 2 insulation).
- On the substrate 10, which is between 0.1 and 2 mm thick there are two platinum electrodes 11, 11 'forming an interdigital structure, a vanadate layer 12 (AlVO 4 or FeVO 4 ) connecting these electrodes as NH 3 or NO-sensitive element and a temperature sensor 13 arranged.
- the detector 9 is actively heated with the aid of a resistance layer arranged on the rear side of the substrate 10.
- the resistance layer designated 17 in FIG. 2 consists, for example, of platinum (Pt), gold (Au) or an electrically conductive ceramic and has a meandering structure. Also shown is the approximately 10 to 100 nm thick metal layer 18 consisting of titanium (Ti), chromium (Cr), nickel (Ni) or tungsten (W), which improves the adhesion between the substrate 10 and the platinum electrodes 11, 11 ' .
- the dimensions of the comb electrodes 11 and 11 ' depend on the specific resistance of the sensor layer 12 applied over it in the desired temperature range.
- the comb structure 11, 11 ′ can have thicknesses of 0.1 to 10 ⁇ m, widths of 1 to 1000 ⁇ m and electrode spacings of 1 to 100 ⁇ m.
- electrode thickness D 1.5 ⁇ m
- length of the interdigital structure L 1 mm
- electrode spacing S 50 ⁇ m.
- FIG. 4 shows a scale representation of an interdigital structure in a top view.
- a platinum resistance layer 19 is used as the temperature sensor.
- a 1.5 ⁇ m thick platinum layer 20 is first deposited on the heated corundum substrate 10 in a sputtering system (see FIGS. 5a, b).
- the structuring of the layer 20 takes place in a positive photo step, in which the photoresist 21 is applied at the location of the electrodes to be produced and exposed through a mask 22 (see FIG. 5c, d, e).
- the developed photoresist 21 protects the platinum layer 20 during the subsequent etching step (see FIG. 5f).
- the desired comb electrodes 11 and 11 '(see FIG. 5g) are obtained, on which the gas-sensitive vanadate layer 12 is subsequently deposited (see FIG. 5h).
- the extraordinary properties of the detector are based on the sputtering method to be used in the production of the gas-sensitive layer 12 and the subsequent tempering.
- Metallic vanadium (V) and aluminum (Al) serve as starting materials, which are reactively atomized from corresponding targets in a plasma consisting of 80% argon and 20% oxygen and are deposited on the heated substrate 10.
- the sandwich structure 23 shown in FIG. 6 is built up by alternately atomizing the two targets.
- the sandwich structure 23 is annealed in air in a high-temperature furnace for about 5 to 15 hours.
- the furnace temperature has a decisive influence on the topography and the phase of the Al 2 O 3 / V 2 O 5 layers.
- Layers that have been tempered at temperatures T between 550 ° C ⁇ T ⁇ 610 ° C and consist of equal proportions of V 2 O 5 and Al 2 O 3 show an optimal sensitivity for ammonia NH 3 and nitrogen monoxide NO.
- the aluminum vanadate AlVO 4 which is responsible for the high gas sensitivity, is created by tempering.
- the maximum working temperature of the vanadate layer is around 600 ° C.
- Layers with an Al 2 O 3 content of more than 50% show a somewhat smaller measurement effect. However, they can still be used at higher temperatures of up to 680 ° C.
- the following diagrams are intended to document the sensitivity or sensitivity of the AlVO 4 thin layers produced by the described method to different gases.
- the size ⁇ / ⁇ 0 ( ⁇ 0 : conductivity of the sensitive layer in synthetic air (80% N 2 /20% O 2 )) is plotted as a function of the time t and the concentration of the respective gas.
- the specific resistance of the AlVO 4 thin film increases in the presence of nitrogen dioxide NO 2 . Since the aluminum vanadate shows a completely different behavior compared to nitrogen monoxide NO (reduction in the specific resistance, see FIG. 7), one can clearly differentiate between the two nitrogen oxides, provided only one of the two nitrogen oxides interacts with the sensitive element.
- the vanadate layer In addition to nitrogen monoxide NO and ammonia NH 3 , the vanadate layer also responds to changes in the oxygen partial pressure and hydrogen H 2 (see FIG. 9).
- the cross sensitivity to oxygen O 2 and hydrogen H 2 is, however, considerably smaller than the reaction to nitrogen monoxide NO and ammonia NH 3 .
- 500 ppm hydrogen H 2 in air results in almost the same change in conductivity as the addition of 10 ppm nitrogen monoxide NO.
- the gases carbon monoxide CO (up to 1500 ppm), methane CH 4 (up to 5000 ppm) and carbon dioxide CO 2 (up to 1%) up to the concentrations given in brackets are not detectable.
- a moist gas mixture 80 mbar H 2 O
- a clear decrease in the NH 3 sensitivity is observed; however, it still remains twice as sensitive to nitrogen monoxide NO (see the right part of FIG. 10).
- FIG. 11 shows the sensitivity of the AlVO 4 thin film in moist air (80 mbar H 2 O) at 500 ° C. and a NO content of 10 ppm. Another gas in the specified concentration was added to the moist air within the time intervals marked by a horizontal line. The air therefore contained, for example, 1500 ppm carbon monoxide CO between the 60th and the 120th minute and an additional 10 ppm of nitrogen monoxide NO between the 80th and the 100th minute.
- the NO sensitivity of the AlVO 4 layer is not influenced by the presence of carbon monoxide CO, methane CH 4 and carbon dioxide CO 2 .
- the addition of hydrogen H 2 causes no masking of the NO sensitivity, but a clear cross sensitivity can be determined. A similar effect is observed with oxygen O 2 when its concentration decreases from 20% to 2%.
- the stainless steel housing shown in FIG. 12 is used to install the detector 9 in the wall of the exhaust pipe 4.
- the housing consists of two parts, the housing head 26 having a gas inlet opening 24 and a metal web 25 on the one with a bore 27 for receiving the detector 9 provided base body 29 is attached. Before welding the two parts 26 and 29, the detector 9 is glued in the bore 27 of the base body 29. After assembly, the sensitive element is located in an S-shaped curved flow channel, which connects the gas inlet opening 24 to the gas outlet opening 30.
- the ceramic plate 31 closing the bore 27 of the lower housing part 29 is also shown. It contains several channels through which the connecting wires 32 used for contacting the detector 9 are led to the outside.
- the control unit 8 will cause the metering device 5 to first inject more urea into the exhaust gas. If this measure leads to an increase in the sensor resistance, the nitrogen monoxide NO may not yet have been completely converted to nitrogen N 2 and water H 2 O. The amount of urea injected is now increased until the sensor resistance reaches the maximum value indicated by an arrow in FIG. 14 and that the catalyst 2 leaving exhaust gas contains neither nitrogen monoxide NO nor excess ammonia NH 3 .
- the invention is of course not limited to the exemplary embodiments described.
- a second detector based on sputtered Al 2 O 3 / V 2 O 5 layers in the exhaust tract in front of the injection nozzle 7.
- This detector is then preferably used to monitor the regulation described, by measuring the NO concentration and comparing it with the amount of urea injected in each case.
- the NH 3 sensitivity of the detector does not have a disruptive effect here, since the engine exhaust gas in front of the injection nozzle 7 contains no ammonia NH 3 .
- ammonia in aqueous solution or gaseous ammonia can also be used as the reducing agent, the reducing agent also being able to be injected directly into the SCR catalytic converter 2.
- the method according to the invention can of course also be used in so-called DeNO x systems for smoke gas denitrification (see, for example, / 3 /).
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Combustion & Propulsion (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Toxicology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
- Exhaust Gas After Treatment (AREA)
Description
Die Erfindung betrifft Verfahren zur Verminderung der Stickoxidkonzentration im Abgas einer Brennkraftmaschine oder einer Verbrennungsanlage gemäß dem Oberbegriff von Anspruch 1.The invention relates to methods for reducing the nitrogen oxide concentration in the exhaust gas of an internal combustion engine or an incinerator according to the preamble of
Die Stickoxid- und Partikelemissionen (Staub) eines auf Leistung und Verbrauch optimierten Dieselmotors lassen sich durch verbrennungstechnische Maßnahmen nur noch unwesentlich verringern. Um auch die in Zukunft vom Gesetzgeber vorgeschriebenen Abgasgrenzwerte einhalten zu können, ist eine Nachbehandlung der dieselmotorischen Abgase daher unumgänglich.The nitrogen oxide and particle emissions (dust) of a diesel engine optimized for performance and consumption can only be reduced insignificantly by means of combustion technology. In order to be able to comply with the exhaust gas limit values prescribed by law in the future, aftertreatment of the diesel engine exhaust gases is therefore essential.
Eine deutliche Verringerung der NOx-Emission eines Dieselmotors läßt sich durch Anwendung des sogenannten Selective-Catalytic-Reduction-Verfahrens erreichen. Beim SCR-Verfahren wird gasförmiges Ammoniak NH3, Ammoniak in wässriger Lösung oder Harnstoff als Reduktionsmittel in das Abgassystem eingespritzt, so daß an einem Katalysator insbesondere die chemischen Reaktionen
Das aus der DE-A-36 10 364 bekannte SCR-Verfahren kann den NOx-Anteil im Abgas von Feuerungsanlagen um mehr als 80 % reduzieren und gleichzeitig den NH3-Ausstoß auf unter 5 ppm begrenzen. Die Dosierung des Reduktionsmittels überwacht ein Rechner, der das Ausgangssignal eines im Abgastrakt hinter dem NOx-Konverter angeordneten NH3-Sensors bewertet und die Reduktionsmittelzufuhr durch Ansteuerung einer Fördereinheit ggf. nachregelt. Als NH3-Sensor dient eine elektrochemische Zelle, die als wesentliche Komponente einen aus stabilisiertem Zirkondioxid gefertigten becherförmigen Körper enthält. Auf dem Festelektrolyten sind zwei Elektroden aufgebracht, wobei die dem Abgas ausgesetzte äußere Elektrode beispielsweise aus TiO2, Pt V2O5 oder V2O5 und die einem Referenzgas (Luft) ausgesetzte innere Elektrode aus Platin besteht.The SCR process known from DE-A-36 10 364 can reduce the proportion of NOx in the exhaust gas from combustion plants by more than 80% and at the same time limit the NH 3 emissions to below 5 ppm. The dosage of the reducing agent is monitored Computer which evaluates the output signal of an NH 3 sensor arranged in the exhaust tract behind the NO x converter and, if necessary, readjustes the supply of reducing agent by controlling a delivery unit. An NH 3 sensor is an electrochemical cell which contains a cup-shaped body made of stabilized zirconium dioxide as an essential component. Two electrodes are applied to the solid electrolyte, the outer electrode exposed to the exhaust gas being made, for example, of TiO 2 , Pt V 2 O 5 or V 2 O 5 and the inner electrode being exposed to a reference gas (air) made of platinum.
Das in der DE 36 06 535 beschriebene Verfahren zur Verringerung der NOx-Konzentration nutzt die hohen Temperaturen des Abgases, um das in fester oder flüssiger Form vorliegende Reduktionsmittel zu verdampfen und in reaktive Komponenten aufzuspalten. Nach erfolgter Konzentration werden die reaktiven Komponenten über ein Bündel von Rohrleitungen in eine vergleichsweise kühle Zone des Abgastraktes eingespritzt, wo sie mit den Stickoxiden zu Stickstoff, Wasser und Kohlendioxid reagieren. Ein nach dem Chemilumineszenz-Vergleichsverfahren arbeitender Sensor dient der Messung der NOx-Konzentration. Sein Ausgangssignal wird einem Regler mit Sollwertvorgabe zugeführt, der den Stellmotor eines Dosierventils ansteuert.The process described in DE 36 06 535 for reducing the NO x concentration uses the high temperatures of the exhaust gas to evaporate the reducing agent present in solid or liquid form and to split it into reactive components. After concentration, the reactive components are injected via a bundle of pipelines into a comparatively cool zone of the exhaust tract, where they react with the nitrogen oxides to nitrogen, water and carbon dioxide. A sensor working according to the chemiluminescence comparison method is used to measure the NO x concentration. Its output signal is fed to a controller with setpoint specification, which controls the servomotor of a metering valve.
Ziel der Erfindung ist die Schaffung eines Verfahrens, mit dem sich die Konzentration von Stickoxiden NOx im Abgas einer Brennkraftmaschine oder einer Verbrennungsanlage deutlich verringern läßt. Es soll insbesondere gewährleistet sein, daß das Abgas weder Stickstoffmonoxid NO noch überschüssigen Ammoniak NH3 enthält. Diese Aufgaben werden erfindungsgemäß durch ein Verfahren nach Patentanspruch 1 gelöst.The aim of the invention is to provide a method with which the concentration of nitrogen oxides NO x in the exhaust gas of an internal combustion engine or an incinerator can be significantly reduced. In particular, it should be ensured that the exhaust gas contains neither nitrogen monoxide NO nor excess ammonia NH 3 . According to the invention, these objects are achieved by a method according to
Der mit der Erfindung erzielbare Vorteil besteht insbesondere darin, daß man die für eine stöchiometrische Umsetzung von Stickstoffmonoxid NO zu Stickstoff N2 und Wasser H2O erforderliche NH3-Menge in einfacher Weise durch Messung des elektrischen Widerstands eines dem Abgas ausgesetzten Sensorelements, bevorzugt einer Vanadatschicht, bestimmen kann. Eine Absolutmessung der NO- bzw. NH3-Konzentration ist nicht erforderlich. Da Regelziel ein maximaler Widerstand der als Sensorelement verwendeten Metalloxidschicht ist, bereitet eine eventuell vorhandene Widerstandsdrift keine Probleme.The advantage that can be achieved with the invention consists in particular in that the amount of NH 3 required for a stoichiometric conversion of nitrogen monoxide NO to nitrogen N 2 and water H 2 O is obtained in a simple manner by measuring the electrical resistance of a sensor element exposed to the exhaust gas, preferably one Vanadate layer, can determine. An absolute measurement of the NO or NH 3 concentration is not necessary. Since the aim of the control is a maximum resistance of the metal oxide layer used as the sensor element, any resistance drift that may be present does not cause any problems.
Die abhängigen Ansprüche betreffen vorteilhafte Weiterbildungen und Ausgestaltungen der im folgenden anhand der Zeichnungen erläuterten Erfindung. Hierbei zeigt:
- Fig. 1
- eine mit einem SCR-Katalysator ausgestattete Abgasanlage eines Dieselmotors
- Fig. 2 und 3
- den schematischen Aufbau eines NO/NH3-Detektors
- Fig. 4
- die Kammelektroden des NO/NH3-Detektors
- Fig. 5
- Verfahrensschritte zur Herstellung der Kammelektroden
- Fig. 6
- eine auf den Kammelektroden abgeschiedene Al2O3-V2O5-Sandwich-Struktur
- Fig. 7 bis 11
- die Sensitivität einer AlVO4-Dünnschicht auf Stickstoffmonoxid NO, Ammoniak NH3 und andere Gase
- Fig. 12
- ein Ausführungsbeispiel eines Detektorgehäuses
- Fig. 13
- ein das Verfahren zur Regelung der eingespritzen Harnstoffmenge erläuternden Ablaufplan
- Fig. 14
- den elektrischen Widerstand einer Vanadatschicht in einem Stickstoffmonoxid NO und Ammoniak NH3 enthaltenden Gasgemisch in Abhängigkeit von der Menge des dem Gasgemisch zugesetzten Ammoniaks NH3
- Fig. 1
- an exhaust system of a diesel engine equipped with an SCR catalytic converter
- 2 and 3
- the schematic structure of a NO / NH 3 detector
- Fig. 4
- the comb electrodes of the NO / NH 3 detector
- Fig. 5
- Process steps for the production of the comb electrodes
- Fig. 6
- an Al 2 O 3 -V 2 O 5 sandwich structure deposited on the comb electrodes
- 7 to 11
- the sensitivity of an AlVO 4 thin film to nitrogen monoxide NO, ammonia NH 3 and other gases
- Fig. 12
- an embodiment of a detector housing
- Fig. 13
- a flow chart explaining the process for controlling the amount of urea injected
- Fig. 14
- the electrical resistance of a vanadate layer in a gas mixture containing nitrogen monoxide NO and ammonia NH 3 as a function of the amount of ammonia NH 3 added to the gas mixture
Die in Fig. 1 schematisch dargestellte Abgasanlage eines Dieselmotors 1 soll die während des Betriebs entstehenden Stickoxide NOx weitgehend abbauen und die verbleibenden Restgase möglichst geräuscharm an die Atmosphäre abgeben. Sie besteht aus einem beispielsweise in /1/ und /2/ beschriebenen SCR-Katalysator 2, einem oder mehreren Schaltdämpfern 3 und einem Rohrsystem 4, das die einzelnen Komponenten mit den im Zylinderkopf des Dieselmotors 1 vorhandenen Abgasaustrittsöffnungen verbindet. Dem SCR-Katalysator 2 vorgelagert ist eine Dosiereinrichtung 5, die das in einem Vorratsbehälter 6 gelagerte Reduktionsmittel in den Abgastrakt einspritzt. Die Dosiereinrichtung 5 enthält insbesondere eine mit einer Einspritzdüse 7 verbundene Membranpumpe oder ein Einspritzventil mit vorgeschaltetem Durchflußmesser. Eine Steuereinheit 8 sorgt dafür, daß dem Abgas eine bestimmte Menge des ammoniakhaltigen Reduktionsmittels zugeführt werden kann.The exhaust system of a
Als Reduktionsmittel kommt insbesondere eine wässrige Harnstofflösung (CO(NH2)2) in Betracht. Diese wird unter Wärmezufuhr zu Kohlendioxid CO2 und Ammoniak NH3 zerlegt, wobei das Ammoniak NH3 auf der Oberfläche des Katalysators 2 adsorbiert und mit den im Abgas vorhandenen Stickoxiden NO und NO2 zu den ungiftigen Stoffen Stickstoff N2 und Wasser H2O reagiert. Um sicherzustellen, daß das in die Umgebung gelangende Dieselabgas weder Stickstoffmonoxid NO noch überschüssiges Ammoniak NH3 enthält, muß die Reaktion
Das Substrat 10 des in den Figuren 1 und 2 dargestellten Detektors 9 besteht aus einem elektrisch isolierenden Material wie Glas, Berylliumoxid BeO, Aluminiumoxid Al2O3 oder Silizium (mit Si3N4/SiO2-Isolation). Auf dem zwischen 0,1 und 2 mm dicken Substrat 10 sind zwei eine Interdigitalstruktur bildende Platinelektroden 11, 11', eine diese Elektroden leitend verbindende Vanadatschicht 12(AlVO4 oder FeVO4) als NH3- bzw. NO- empfindliches Element sowie ein Temperaturfühler 13 angeordnet. Die mit 14 bezeichnete Passivierungsschicht aus Siliziumoxid schirmt die den beiden Kammelektroden 11, 11' und dem Temperaturfühler 13 jeweils zugeordneten Anschlußleitung 15, 15' bzw. 16, 16' vor dem im Abgas vorhandenen Sauerstoff ab.The
Um die gewünschte Betriebstemperatur von bis zu 600 °C einstellen und unabhängig von äußeren Einflüssen konstant halten zu können, wird der Detektor 9 mit Hilfe einer auf der Rückseite des Substrats 10 angeordneten Widerstandsschicht aktiv beheizt. Die in Fig. 2 mit 17 bezeichnete Widerstandsschicht besteht beispielsweise aus Platin (Pt), Gold (Au) oder einer elektrisch leitfähigen Keramik und besitzt eine mäanderförmige Struktur. Dargestellt ist auch die etwa 10 bis 100 nm dicke und aus Titan (Ti), Chrom (Cr), Nickel (Ni) oder Wolfram (W) bestehende Metallschicht 18, die die Haftung zwischen dem Substrat 10 und den Platinelektroden 11, 11' verbessert.In order to be able to set the desired operating temperature of up to 600 ° C. and to be able to keep it constant regardless of external influences, the
Die Abmessungen der Kammelektroden 11 und 11' hängen vom spezifischen Widerstand der darüber aufgebrachten Sensorschicht 12 im gewünschten Temperaturbereich ab. So kann die Kammstruktur 11, 11' beispielsweise Dicken von 0,1 bis 10 µm, Breiten von 1 bis 1000 µm und Elektrodenabstände von 1 bis 100 µm aufweisen. Für eine 1 µm dicke AlVO4-Schicht 12 führen die folgenden Abmessungen zu gut meßbaren spezifischen Widerständen im Temperaturbereich zwischen 500 und 600 °C: Elektrodendicke D = 1,5 µm, Länge der Interdigitalstruktur L = 1 mm, Elektrodenabstand S = 50 µm.The dimensions of the
Die Figur 4 zeigt eine maßstabsgetreue Abbildung einer Interdigitalstruktur in Draufsicht. Als Temperaturfühler findet bei diesem Ausführungsbeispiel eine aus Platin bestehende Widerstandsschicht 19 Verwendung. Zur Herstellung der Kammelektroden 11, 11' wird zunächst eine 1,5 µm dicke Platinschicht 20 auf dem beheizten Korundsubstrat 10 in einer Sputteranlage abgeschieden (s. Figur 5a, b). Die Strukturierung der Schicht 20 erfolgt in einem positiv-Fotoschritt, bei dem man den Fotolack 21 am Ort der zu erzeugenden Elektroden aufbringt und durch eine Maske 22 belichtet (s. Figur 5c, d, e). Der entwickelte Fotolack 21 schützt die Platinschicht 20 während des nachfolgenden Ätzschritts (s. Figur 5f). Nach dem Entfernen des Fotolacks 21 mit Azeton erhält man die gewünschten Kammelektroden 11 und 11' (s. Figur 5g) auf der anschließend die gassensitive Vanadatschicht 12 abgeschieden wird (s. Figur 5h).FIG. 4 shows a scale representation of an interdigital structure in a top view. In this embodiment, a
Die Verwendung von Gold Au anstelle von Platin Pt als Elektrodenmaterial hat keinen Einfluß auf die Gasempfindlichkeit des Al2O3/V2O5-Mischoxids.The use of gold Au instead of platinum Pt as the electrode material has no influence on the gas sensitivity of the Al 2 O 3 / V 2 O 5 mixed oxide.
Die außergewöhnlichen Eigenschaften des Detektors beruhen auf dem bei der Herstellung der gassensitiven Schicht 12 anzuwendenden Sputterverfahren und der sich daran anschließenden Temperung. Die Beschichtung der Kammelektroden 11, 11' kann man beispielsweise in der Sputteranlage Z490 von Leybold vornehmen. Als Ausgangsmaterialien dienen metallisches Vanadium (V) und Aluminium (Al), die reaktiv, d. h. in einem aus 80 % Argon und 20 % Sauerstoff bestehenden Plasma von entsprechenden Targets zerstäubt werden und sich auf dem beheizten Substrat 10 niederschlagen. Durch abwechselndes Zerstäuben der beiden Targets baut sich die in Fig. 6 dargestellte Sandwich-Struktur 23 auf. Sie hat eine Dicke von etwa 1 µm und besteht aus jeweils 60 bis 80 etwa 10 bis 15 nm dicken V2O5- bzw. Al2O3-Schichten, wobei der Al2O3-Anteil 50% bis maximal 70% beträgt. Die Sputterparameter sind in der folgenden Tabelle angegeben.
Um ein homogenes Mischoxid zu erzeugen, wird die Sandwich-Struktur 23 in einem Hochtemperaturofen an Luft etwa 5 bis 15 Stunden getempert. Die Ofentemperatur hat hierbei einen entscheidenden Einfluß auf die Topographie und die Phase der Al2O3/V2O5-Schichten. Eine optimale Sensitivität für Ammoniak NH3 und Stickstoffmonoxid NO zeigen Schichten, die bei Temperaturen T zwischen 550 °C ≦ T ≦ 610 °C getempert wurden und aus gleichen Anteilen von V2O5 und Al2O3 bestehen. Durch das Tempern entsteht das für die hohe Gasempfindlichkeit verantwortliche Aluminiumvanadat AlVO4. Die maximale Arbeitstemperatur der Vanadatschicht liegt bei etwa 600 °C. Aluminiumvanadat AlVO4 besitzt eine trikline Einheitszelle mit a = 0,6471 nm, b = 0,7742 nm, c = 0,9084 nm, α = 96,848 A, β = 105,825 A und χ = 101,399 A, deren Volumen V = 0,4219 nm3 beträgt.In order to produce a homogeneous mixed oxide, the
Schichten mit einem Al2O3-Anteil von mehr als 50 % zeigen einen etwas kleineren Meßeffekt. Man kann sie allerdings auch bei höheren Temperaturen von bis zu 680 °C noch einsetzen.Layers with an Al 2 O 3 content of more than 50% show a somewhat smaller measurement effect. However, they can still be used at higher temperatures of up to 680 ° C.
Die folgenden Diagramme sollen die Empfindlichkeit bzw. Sensitivität der nach dem beschriebenen Verfahren hergestellten AlVO4-Dünnschichten auf verschiedene Gase dokumentieren. Aufgetragen ist jeweils die Größe σ/σ0 (σ0: Leitfähigkeit der sensitiven Schicht in synthetischer Luft (80 % N2/20 % O2)) in Abhängigkeit von der Zeit t bzw. der Konzentration des jeweiligen Gases.The following diagrams are intended to document the sensitivity or sensitivity of the AlVO 4 thin layers produced by the described method to different gases. The size σ / σ 0 (σ 0 : conductivity of the sensitive layer in synthetic air (80% N 2 /20% O 2 )) is plotted as a function of the time t and the concentration of the respective gas.
Bereits die Anwesenheit kleinster Mengen von Stickstoffmonoxid NO und Ammoniak NH3 in trockener synthetischer Luft führt zu einem deutlichen Anstieg der Leitfähigkeit des Aluminiumvanadats AlVO4 (s. Fig. 7 und 8). So ändert sich die Leitfähigkeit um etwa 75 %, wenn man der Luft 10 ppm Stickstoffmonoxid NO beimischt. Die Zugabe von 10 ppm Ammoniak NH3 hat eine Erhöhung der Leitfähigkeit um mehr als ein Faktor 6 zur Folge.Even the presence of the smallest amounts of nitrogen monoxide NO and ammonia NH 3 in dry synthetic air leads to a significant increase in the conductivity of the aluminum vanadate AlVO 4 (see FIGS. 7 and 8). The conductivity changes by about 75% if you add 10 ppm nitrogen monoxide NO to the air. The addition of 10 ppm ammonia NH 3 increases the conductivity by more than a factor of 6.
Wie die Fig. 9 zeigt, erhöht sich der spezifische Widerstand der AlVO4-Dünnschicht bei Anwesenheit von Stickstoffdioxid NO2. Da das Aluminiumvanadat gegenüber Stickstoffmonoxid NO ein völlig anderes Verhalten zeigt (Verringerung des spezifischen Widerstandes, s. Fig. 7), kann man beide Stickoxide eindeutig voneinander unterscheiden, sofern nur eines der beiden Stickoxide mit dem sensitiven Element wechselwirkt.As FIG. 9 shows, the specific resistance of the AlVO 4 thin film increases in the presence of nitrogen dioxide NO 2 . Since the aluminum vanadate shows a completely different behavior compared to nitrogen monoxide NO (reduction in the specific resistance, see FIG. 7), one can clearly differentiate between the two nitrogen oxides, provided only one of the two nitrogen oxides interacts with the sensitive element.
Außer auf Stickstoffmonoxid NO und Ammoniak NH3 spricht die Vanadatschicht auch auf Änderungen des Sauerstoffpartialdrucks und Wasserstoff H2 an (s. Fig. 9). Die Querempfindlichkeit auf Sauerstoff O2 und Wasserstoff H2 ist allerdings erheblich kleiner als die Reaktion auf Stickstoffmonoxid NO und Ammoniak NH3. So haben 500 ppm Wasserstoff H2 in Luft annähernd dieselbe Änderung der Leitfähigkeit zur Folge wie die Zugabe von 10 ppm Stickstoffmonoxid NO. Nicht nachweisbar sind die Gase Kohlenmonoxid CO (bis 1500 ppm), Methan CH4 (bis 5000 ppm) und Kohlendioxid CO2 (bis 1 %) bis zu den in den Klammern jeweils angegebenen Konzentrationen. In einem feuchten Gasgemisch (80 mbar H2O) beobachtet man eine deutliche Abnahme der NH3-Sensitivität; sie bleibt aber immer noch doppelt so groß wie die Empfindlichkeit für Stickstoffmonoxid NO (s. den rechten Teil der Fig. 10).In addition to nitrogen monoxide NO and ammonia NH 3 , the vanadate layer also responds to changes in the oxygen partial pressure and hydrogen H 2 (see FIG. 9). The cross sensitivity to oxygen O 2 and hydrogen H 2 is, however, considerably smaller than the reaction to nitrogen monoxide NO and ammonia NH 3 . For example, 500 ppm hydrogen H 2 in air results in almost the same change in conductivity as the addition of 10 ppm nitrogen monoxide NO. The gases carbon monoxide CO (up to 1500 ppm), methane CH 4 (up to 5000 ppm) and carbon dioxide CO 2 (up to 1%) up to the concentrations given in brackets are not detectable. In a moist gas mixture (80 mbar H 2 O), a clear decrease in the NH 3 sensitivity is observed; however, it still remains twice as sensitive to nitrogen monoxide NO (see the right part of FIG. 10).
In Fig. 11 ist die Empfindlichkeit der AlVO4-Dünnschicht in feuchter Luft (80 mbar H2O) bei 500 °C und einem NO-Anteil von 10 ppm dargestellt. Innerhalb der jeweils durch eine waagrechte Linie markierten Zeitintervallen wurde der feuchten Luft ein weiteres Gas in der angegebenen Konzentration beigemischt. Die Luft enthielt also beispielsweise zwischen der 60. und der 120. Minute 1500 ppm Kohlenmonoxid CO und zwischen der 80. und der 100. Minute zusätzlich noch 10 ppm Stickstoffmonoxid NO. Wie die Meßergebnisse zeigen, wird die NO-Empfindlichkeit der AlVO4-Schicht durch die Anwesenheit von Kohlenmonoxid CO, Methan CH4 und Kohlendioxid CO2 nicht beeinflußt. Die Beimischung von Wasserstoff H2 bewirkt zwar keine Maskierung der NO-Sensitivität, es ist aber eine eindeutige Querempfindlichkeit festzustellen. Einen ähnlichen Effekt beobachtet man bei Sauerstoff O2, wenn sich dessen Konzentration von 20 % auf 2 % verringert.11 shows the sensitivity of the AlVO 4 thin film in moist air (80 mbar H 2 O) at 500 ° C. and a NO content of 10 ppm. Another gas in the specified concentration was added to the moist air within the time intervals marked by a horizontal line. The air therefore contained, for example, 1500 ppm carbon monoxide CO between the 60th and the 120th minute and an additional 10 ppm of nitrogen monoxide NO between the 80th and the 100th minute. As the measurement results show, the NO sensitivity of the AlVO 4 layer is not influenced by the presence of carbon monoxide CO, methane CH 4 and carbon dioxide CO 2 . The addition of hydrogen H 2 causes no masking of the NO sensitivity, but a clear cross sensitivity can be determined. A similar effect is observed with oxygen O 2 when its concentration decreases from 20% to 2%.
Das in Fig. 12 dargestellte Edelstahlgehäuse dient dem Einbau des Detektors 9 in die Wandung des Abgasrohrs 4. Das Gehäuse besteht aus zwei Teilen, wobei der eine Gaseintrittsöffnung 24 und einen Metallsteg 25 aufweisende Gehäusekopf 26 auf dem mit einer Bohrung 27 zur Aufnahme des Detektors 9 versehenen Grundkörper 29 befestigt ist. Vor dem Verschweißen der beiden Teile 26 und 29 wird der Detektor 9 in der Bohrung 27 des Grundkörpers 29 verklebt. Nach der Montage befindet sich das sensitive Element in einem S-förmig gekrümmten Strömungskanal, der die Gaseintrittsöffnung 24 mit der Gasaustrittsöffnung 30 verbindet. Im linken Teil der Fig. 12 ist zusätzlich auch die die Bohrung 27 des unteren Gehäuseteils 29 abschließende Keramikplatte 31 gezeigt. Sie enthält mehrere Kanäle, durch die man die der Kontaktierung des Detektors 9 dienenden Anschlußdrähte 32 nach außen führt.The stainless steel housing shown in FIG. 12 is used to install the
Mit Hilfe des oben beschriebenen NO/NH3-Detektors 9 läßt sich ein einfaches und effektives Verfahren zur Regelung der Harnstoffeinspritzung in den SCR-Katalysator 2 verwirklichen. Da der Detektor 9 sowohl auf Stickstoffmonoxid NO als auch auf Ammoniak NH3 mit einer Erhöhung der Leitfähigkeit reagiert (vgl. die Fig. 7 und 8) kann man zunächst nicht entscheiden, welches der beiden Gase mit der sensitiven Schicht 12 wechselwirkt. Wie anhand des in Fig. 13 dargestellten Ablaufplans zu erkennen ist, wird die Steuereinheit 8 die Dosiereinrichtung 5 veranlassen, zunächst mehr Harnstoff in das Abgas einzuspritzen. Führt diese Maßnahme zu einer Erhöhung des Sensorwiderstands, so kann das Stickstoffmonoxid NO noch nicht vollständig zu Stickstoff N2 und Wasser H2O umgesetzt worden sein. Die eingespritzte Harnstoffmenge wird nun solange erhöht, bis der Sensorwiderstand den in Fig. 14 durch einen Pfeil gekennzeichneten Maximalwert erreicht und das den Katalysator 2 verlassende Abgas weder Stickstoffmonoxid NO noch überschüssiges Ammoniak NH3 enthält.With the aid of the NO / NH 3 detector 9 described above, a simple and effective method for regulating the urea injection into the SCR
Führt die Mehreinspritzung von Harnstoff hingegen zu einem kleineren Sensorwiderstand, muß der NH3-Überschuß im Abgas durch Verringerung der Harnstoffmenge abgebaut werden (s. rechter Teil des Ablaufplans). Im Diagramm der Fig. 14 nähert man sich dem die optimale Harnstoffmenge definierenden Maximalwert des Sensorwiderstands daher von rechts.However, if the multiple injection of urea leads to a lower sensor resistance, the excess NH 3 in the exhaust gas must be reduced by reducing the amount of urea (see right part of the flow chart). In the diagram in FIG. 14, the maximum value of the sensor resistance defining the optimal amount of urea is therefore approached from the right.
Die Erfindung beschränkt sich selbstverständlich nicht auf die beschriebenen Ausführungsbeispiele. So ist es beispielsweise möglich, einen zweiten Detektor auf der Basis gesputterter Al2O3/V2O5-Schichten im Abgastrakt vor der Einspritzdüse 7 anzuordnen. Dieser Detektor dient dann vorzugsweise der Überwachung der beschriebenen Regelung, indem man die NO-Konzentration mißt und mit der jeweils eingespritzten Harnstoffmenge vergleicht. Die NH3-Empfindlichkeit des Detektors wirkt sich hierbei nicht störend aus, da das Motorabgas vor der Einspritzdüse 7 kein Ammoniak NH3 enthält.The invention is of course not limited to the exemplary embodiments described. For example, it is possible to arrange a second detector based on sputtered Al 2 O 3 / V 2 O 5 layers in the exhaust tract in front of the
Als Reduktionsmittel kommen anstelle von Harnstoff auch Ammoniak in wässriger Lösung oder gasförmiges Ammoniak in Betracht, wobei man das Reduktionsmittel auch direkt in den SCR-Katalysator 2 einspritzen kann.Instead of urea, ammonia in aqueous solution or gaseous ammonia can also be used as the reducing agent, the reducing agent also being able to be injected directly into the SCR
Das erfindungsgemäße Verfahren läßt sich selbstverständlich auch in sogenannten DeNOx-Anlagen zur Rauchgasentstickung anwenden (s. beispielsweise /3/).The method according to the invention can of course also be used in so-called DeNO x systems for smoke gas denitrification (see, for example, / 3 /).
- /1/ Motortechnische Zeitschrift 49 (1988) 1, S. 17 bis 21/ 1 / Motortechnische Zeitschrift 49 (1988) 1, pp. 17 to 21
- /2/ Motortechnische Zeitschrift 54 (1993) 6, S. 310 bis 315/ 2 / Motortechnische Zeitschrift 54 (1993) 6, pp. 310 to 315
-
/3/ Umwelt, 1986 No. 1, Fachreport Rauchgasreinigung, FR 19 bis FR 25/ 3 / Environment, 1986 No. 1, Technical report flue gas cleaning,
FR 19 toFR 25
Claims (9)
- Process for reducing the concentration of nitrogen oxides in the exhaust gas of combustion engines or incinerators, in which an ammonia-containing reducing agent is added to the exhaust gas and in which nitrogen oxides are converted to nitrogen and water in a catalyst unit (2) with exhaust gas flowing through it, characterized in- that a first sensor element (12) which reacts both to nitrogen monoxide and to ammonia with an increase in conductivity is disposed in the exhaust gas stream downstream of the catalyst unit (2),- that the resistance dependent on the nitrogen monoxide concentration and ammonia concentration or the electrical conductivity of the sensor element (12) is measured, and- that an amount of reducing agent is added to the exhaust gas which is such that the electrical resistance of the sensor element (12) is a maximum or the electrical conductivity is a minimum.
- Process according to Claim 1, characterized in that gaseous ammonia, ammonia in aqueous solution or urea is added to the exhaust gas as reducing agent.
- Process according to Claim 1 or 2, characterized in that the electrical resistance or the electrical conductivity is measured of a sensor element (12) composed of a metal oxide/vanadium oxide mixture.
- Method according to Claim 3, characterized in that the electrical resistance or the electrical conductivity is measured of a sensor element (12) composed of an aluminium oxide/vanadium oxide mixture or an iron oxide/vanadium oxide mixture.
- Process according to one of Claims 1 to 4, characterized in that the electrical resistance or the electrical conductivity is measured of a sensor element (12) composed of a vanadate MeVO4, where Me denotes a trivalent metal.
- Process according to Claim 5, characterized in that the electrical resistance or the electrical conductivity is measured of a sensor element (12) composed of aluminium vanadate or iron vanadate.
- Process according to one of Claims 1 to 6, characterized in that a sensor element (12) is used which has a layer-type structure and is contacted by an electrode pair (11, 11').
- Process according to one of Claims 1 to 7, characterized in that the sensor element (12) is actively heated and kept at a constant temperature.
- Process according to one of Claims 1 to 8, characterized in that a second sensor element corresponding to the first sensor element (12) is disposed in the exhaust gas stream upstream of the catalyst unit (2) and is used to measure the nitrogen monoxide concentration.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4334071A DE4334071C1 (en) | 1993-10-06 | 1993-10-06 | Process for reducing the nitrogen oxide concentration in the exhaust gas of an internal combustion engine or a combustion plant |
DE4334071 | 1993-10-06 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0653237A1 EP0653237A1 (en) | 1995-05-17 |
EP0653237B1 true EP0653237B1 (en) | 1996-12-27 |
Family
ID=6499545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94115280A Expired - Lifetime EP0653237B1 (en) | 1993-10-06 | 1994-09-28 | Process for reducing the concentration of nitrogen oxides in the exhaust gas of combustion engines or incinerators |
Country Status (3)
Country | Link |
---|---|
US (1) | US5540047A (en) |
EP (1) | EP0653237B1 (en) |
DE (2) | DE4334071C1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102027212B (en) * | 2008-05-16 | 2014-01-29 | 标致·雪铁龙汽车公司 | Method for correcting nitrogen oxide emission models |
US9439862B2 (en) | 2000-05-10 | 2016-09-13 | Novartis Ag | Phospholipid-based powders for drug delivery |
EP3477068B1 (en) * | 2016-06-23 | 2023-01-25 | NGK Insulators, Ltd. | Exhaust gas purification system and exhaust gas purification method |
Families Citing this family (83)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK0652500T3 (en) * | 1993-11-04 | 1999-04-26 | Siemens Ag | Method and apparatus for dosing a reactant in a flow medium |
DE19529835A1 (en) * | 1995-08-12 | 1997-02-13 | Opel Adam Ag | Exhaust system of a gasoline engine |
US6345496B1 (en) | 1995-11-09 | 2002-02-12 | Toyota Jidosha Kabushiki Kaisha | Method and device for purifying exhaust gas of an engine |
CN1229568C (en) * | 1995-11-17 | 2005-11-30 | 丰田自动车株式会社 | Exhaust emission control device for IC engines |
JP3713831B2 (en) * | 1996-04-19 | 2005-11-09 | トヨタ自動車株式会社 | Exhaust gas purification device for internal combustion engine |
EP0904482B2 (en) * | 1996-06-10 | 2010-01-20 | Hitachi, Ltd. | Exhaust gas purification apparatus of an internal combustion engine and catalyst for purifying exhaust gas of an internal combustion engine |
JP3454334B2 (en) * | 1996-06-18 | 2003-10-06 | トヨタ自動車株式会社 | Exhaust gas purification method and device |
JP4087914B2 (en) | 1996-07-25 | 2008-05-21 | 日本碍子株式会社 | Denitration system and denitration method |
HUP9800244A2 (en) * | 1997-03-21 | 1999-06-28 | Von Roll Umwelttechnik Aktiengesellschaft | Method and apparatus for regulation of operating-agents feed for reduction of no content of exhaust gas coming from combustion |
US6361754B1 (en) * | 1997-03-27 | 2002-03-26 | Clean Diesel Technologies, Inc. | Reducing no emissions from an engine by on-demand generation of ammonia for selective catalytic reduction |
US5809775A (en) * | 1997-04-02 | 1998-09-22 | Clean Diesel Technologies, Inc. | Reducing NOx emissions from an engine by selective catalytic reduction utilizing solid reagents |
DE59805940D1 (en) | 1997-05-30 | 2002-11-21 | Volkswagen Ag | Catalytic converter system for the denitrification of exhaust gases in diesel engines |
DE19727268C1 (en) * | 1997-06-26 | 1999-01-14 | Siemens Ag | Validation of reductant dosing unit for hot diesel exhaust gas selective catalytic reducer |
DE19736384A1 (en) * | 1997-08-21 | 1999-02-25 | Man Nutzfahrzeuge Ag | Method for metering a reducing agent into nitrogen oxide-containing exhaust gas from an internal combustion engine |
DE19749400C2 (en) * | 1997-11-07 | 2001-11-29 | Siemens Ag | Process for reducing the NOX content in the exhaust gas of a diesel engine |
DE19756251C1 (en) * | 1997-12-17 | 1999-07-22 | Siemens Ag | Method and device for reducing nitrogen oxides in the exhaust gas of an incineration plant |
DE19807935C1 (en) * | 1998-02-25 | 1999-08-26 | Siemens Ag | Device for reducing the NO¶x¶ content in the exhaust gas of an internal combustion engine |
DE19808382A1 (en) * | 1998-02-27 | 1999-09-02 | Volkswagen Ag | Control of a NOx absorber catalytic converter |
DE19823923C2 (en) * | 1998-05-28 | 2003-04-17 | Siemens Ag | Process for nitrogen oxide reduction in the exhaust gas of an internal combustion engine |
DE19846487C5 (en) * | 1998-10-09 | 2004-12-30 | Basf Ag | Measuring probe for the detection of the instantaneous concentrations of several gas components of a gas |
DE19852244C1 (en) * | 1998-11-12 | 1999-12-30 | Siemens Ag | Controlling NOx emission in exhaust gases passing through three-way catalyst followed by lambda sensor |
DE19856369C2 (en) * | 1998-12-07 | 2000-12-07 | Siemens Ag | Resistive gas sensor and method for its production |
DE19901915C1 (en) * | 1999-01-19 | 2000-04-20 | Siemens Ag | Catalytic conversion of nitrogen oxides in exhaust gases using urea reductant is controlled by time differentiation of engine operational parameter, adjusting reductant excess more swiftly as a function of the result |
DE19907669C1 (en) * | 1999-02-23 | 2000-11-30 | Daimler Chrysler Ag | Method for correcting the influence of water on the signal from a sensor for detecting the reducing agent concentration in the exhaust gas of an internal combustion engine |
DE19919472C2 (en) | 1999-04-29 | 2001-04-19 | Bosch Gmbh Robert | Device and method for the detection of ammonia |
US6295809B1 (en) | 1999-07-12 | 2001-10-02 | Ford Global Technologies, Inc. | Emission control system with a catalyst |
US6305160B1 (en) | 1999-07-12 | 2001-10-23 | Ford Global Technologies, Inc. | Emission control system |
US6266955B1 (en) | 1999-08-20 | 2001-07-31 | Caterpillar Inc. | Diagnostic system for an emissions control on an engine |
US6440382B1 (en) * | 1999-08-31 | 2002-08-27 | Micron Technology, Inc. | Method for producing water for use in manufacturing semiconductors |
EP1164266B1 (en) * | 2000-06-13 | 2009-10-07 | Ford Global Technologies, Inc. | Method of optimizing reductant addition to an SCR catalyst coupled to an internal combustion engine |
US6427439B1 (en) | 2000-07-13 | 2002-08-06 | Ford Global Technologies, Inc. | Method and system for NOx reduction |
US6526746B1 (en) * | 2000-08-02 | 2003-03-04 | Ford Global Technologies, Inc. | On-board reductant delivery assembly |
US6740597B1 (en) * | 2000-08-31 | 2004-05-25 | Micron Technology, Inc. | Methods of removing at least some of a material from a semiconductor substrate |
EP1209120A3 (en) * | 2000-11-24 | 2004-02-04 | Herbert Wancura | Process and apparatus for the production of fuel gas |
US6625977B2 (en) | 2000-12-20 | 2003-09-30 | Caterpillar Inc | Method and a system for removing particulates and toxic substances from an exhaust of an engine that use hydrocarbons as a fuel |
DE10102237A1 (en) * | 2001-01-19 | 2002-08-08 | Bosch Gmbh Robert | Device for dosing a urea solution |
US6449945B1 (en) | 2001-04-18 | 2002-09-17 | Ford Global Technologies, Inc. | Emission control system |
US6594985B2 (en) * | 2001-06-19 | 2003-07-22 | Ford Global Technologies, Inc. | Exhaust gas aftertreatment device efficiency estimation |
US6650991B2 (en) * | 2001-06-19 | 2003-11-18 | Ford Global Technologies, Llc | Closed-loop method and system for purging a vehicle emission control |
US6698191B2 (en) | 2001-08-09 | 2004-03-02 | Ford Global Technologies, Llc | High efficiency conversion of nitrogen oxides in an exhaust aftertreatment device at low temperature |
US6421599B1 (en) * | 2001-08-09 | 2002-07-16 | Ford Global Technologies, Inc. | Control strategy for an internal combustion engine in a hybrid vehicle |
US6928359B2 (en) | 2001-08-09 | 2005-08-09 | Ford Global Technologies, Llc | High efficiency conversion of nitrogen oxides in an exhaust aftertreatment device at low temperature |
US6742326B2 (en) | 2001-08-09 | 2004-06-01 | Ford Global Technologies, Llc | High efficiency conversion of nitrogen oxides in an exhaust aftertreatment device at low temperature |
DE10142236A1 (en) * | 2001-08-29 | 2003-04-10 | Conti Temic Microelectronic | Method for determining the reducing agent concentration (NH3) in the exhaust gas stream of an internal combustion engine |
US6546720B2 (en) | 2001-09-04 | 2003-04-15 | Ford Global Technologies, Inc. | Method and apparatus for controlling the amount of reactant to be added to a substance using a sensor which is responsive to both the reactant and the substance |
US6487852B1 (en) | 2001-09-04 | 2002-12-03 | Ford Global Technologies, Inc. | Method and apparatus for controlling reactant injection into an active lean NOx catalyst |
US7121085B2 (en) | 2001-09-04 | 2006-10-17 | Ford Global Technologies, Llc | Method and apparatus for controlling hydrocarbon injection into engine exhaust to reduce NOx |
GB2382657A (en) * | 2001-09-04 | 2003-06-04 | Ford Global Tech Inc | A method and apparatus for determining if a sensor is responding to a first substance or a second substance |
DE10207984A1 (en) * | 2002-02-25 | 2003-10-23 | Daimler Chrysler Ag | A catalytic reduction system for purification of exhaust gases containing nitrogen oxides, from a vehicle internal combustion engine, is dosed with ammonia gas from a pressure vessel located in a pressure-monitored, gas-tight compartment |
US7497076B2 (en) * | 2002-05-07 | 2009-03-03 | Extengine Transport Systems | Emission control system |
US7065958B2 (en) * | 2002-05-07 | 2006-06-27 | Extengine Transport Systems | Emission control system |
US7575931B2 (en) | 2002-06-19 | 2009-08-18 | E.I. Du Pont De Nemours And Company | Method and apparatus for reducing a nitrogen oxide, and control thereof |
US20040126286A1 (en) * | 2002-06-19 | 2004-07-01 | Deruyter John C. | Method and apparatus for reducing a nitrogen oxide |
US6887284B2 (en) * | 2002-07-12 | 2005-05-03 | Dannie B. Hudson | Dual homogenization system and process for fuel oil |
US6941746B2 (en) * | 2002-11-21 | 2005-09-13 | Combustion Components Associates, Inc. | Mobile diesel selective catalytic reduction systems and methods |
US6862879B2 (en) | 2002-11-21 | 2005-03-08 | Ford Global Technologies, Llc | Diesel aftertreatment system |
US6834498B2 (en) * | 2002-11-21 | 2004-12-28 | Ford Global Technologies, Llc | Diesel aftertreatment systems |
US6895747B2 (en) | 2002-11-21 | 2005-05-24 | Ford Global Technologies, Llc | Diesel aftertreatment systems |
US6761025B1 (en) | 2002-12-19 | 2004-07-13 | Caterpillar Inc. | Enhanced ammonia feed control for selective catalytic reduction |
SE0303201D0 (en) | 2003-09-09 | 2003-11-25 | Volvo Lastvagnar Ab | Piston-type internal combustion engine and method of controlling the same |
US7776265B2 (en) * | 2004-03-18 | 2010-08-17 | Cummins Filtration Ip, Inc. | System for diagnosing reagent solution quality |
DE102004046639A1 (en) * | 2004-09-25 | 2006-03-30 | Robert Bosch Gmbh | Method for operating an internal combustion engine and device for carrying out the method |
SE0402499L (en) | 2004-10-13 | 2006-02-21 | Volvo Lastvagnar Ab | Motor-driven vehicle and method with fragmented hydrocarbon injection for optimized oxidation of nitrogen monoxide in exhaust after-treatment systems |
NL1028497C2 (en) * | 2005-03-09 | 2006-09-12 | Dsm Ip Assets Bv | Process for the preparation of a urea-containing aqueous stream. |
US20060248876A1 (en) * | 2005-05-04 | 2006-11-09 | Taxon Morse N | Selective catalytic reduction exhaust after-treatment |
DE102006021089B4 (en) * | 2006-05-05 | 2009-11-12 | Continental Automotive Gmbh | Method and device for operating an internal combustion engine |
US7426825B2 (en) * | 2006-07-25 | 2008-09-23 | Gm Global Technology Operations, Inc. | Method and apparatus for urea injection in an exhaust aftertreatment system |
EP1884772A1 (en) * | 2006-08-02 | 2008-02-06 | Nederlandse Organisatie voor Toegepast-Natuuurwetenschappelijk Onderzoek TNO | Quality control of selective catalytic reduction reagents |
WO2009036780A1 (en) * | 2007-09-18 | 2009-03-26 | Fev Motorentechnik Gmbh | Nh3-monitoring of an scr catalytic converter |
DE102007044610B4 (en) * | 2007-09-19 | 2010-04-08 | Continental Automotive Gmbh | A method of detecting the minimum opening time of a reductant delivery device in an exhaust aftertreatment system with an SCR catalyst |
US7736608B2 (en) * | 2007-11-29 | 2010-06-15 | General Electric Company | Methods and systems for reducing the emissions from combustion gases |
FR2926592B1 (en) * | 2008-01-18 | 2012-07-13 | Peugeot Citroen Automobiles Sa | METHOD OF INJECTING REDUCING AGENT IN AN EXHAUST LINE |
US7856807B2 (en) * | 2008-03-17 | 2010-12-28 | Cummins Filtration Ip, Inc. | Flow reversal chambers for increased residence time |
US8071037B2 (en) | 2008-06-25 | 2011-12-06 | Cummins Filtration Ip, Inc. | Catalytic devices for converting urea to ammonia |
DE102008064606B4 (en) * | 2008-12-19 | 2020-03-05 | Volkswagen Ag | Functional adaptation of an exhaust gas cleaning device |
FR2949812B1 (en) * | 2009-09-10 | 2012-03-30 | Peugeot Citroen Automobiles Sa | DEVICE AND METHOD FOR REGULATING THE INJECTION OF A GAS PHASE REDUCER QUANTITY |
WO2011127505A1 (en) | 2010-04-16 | 2011-10-20 | Treibacher Industrie Ag | Catalyst composition for selective catalytic reduction of exhaust gases |
EP2665902B1 (en) * | 2011-01-18 | 2018-11-07 | Stant USA Corp. | Diesel exhaust fluid tank venting system |
DE102013108505A1 (en) * | 2013-08-07 | 2015-03-05 | Emitec Denmark A/S | Method for determining the quality of reducing agent |
US9695727B2 (en) | 2015-09-02 | 2017-07-04 | Deere & Company | System and method for adaptive aftertreatment control of NOx |
JP6730069B2 (en) * | 2016-04-14 | 2020-07-29 | ローム株式会社 | Nitrogen oxide gas sensor and oxygen pump |
JP7074014B2 (en) * | 2018-10-17 | 2022-05-24 | トヨタ自動車株式会社 | Gas separation system |
US11732628B1 (en) | 2020-08-12 | 2023-08-22 | Old World Industries, Llc | Diesel exhaust fluid |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53129098A (en) * | 1977-04-18 | 1978-11-10 | Hitachi Ltd | Gas sensor material |
JPS6219229A (en) * | 1985-07-16 | 1987-01-28 | Babcock Hitachi Kk | Control device for amount of ammonia to be injected |
DE3606535A1 (en) * | 1986-02-28 | 1987-09-03 | Kloeckner Humboldt Deutz Ag | Process and apparatus for decreasing nitrogen oxides in exhaust gases |
DE3610364A1 (en) * | 1986-03-27 | 1987-10-01 | Kernforschungsz Karlsruhe | METHOD FOR REDUCING THE NO (ARROW DOWN) X (ARROW DOWN) CONTENT IN GASES TO WHICH NH (ARROW DOWN) 3 (ARROW DOWN) IS CONTINUOUSLY ADDED TO THE GAS FLOW |
JPH06100565B2 (en) * | 1986-09-29 | 1994-12-12 | 株式会社東芝 | Gas sensor |
DE3825206A1 (en) * | 1988-07-25 | 1990-02-01 | Degussa | METHOD FOR CATALYTIC NICKELING OF EXHAUST GASES BY MEANS OF A REDUCING AGENT |
JP2921032B2 (en) * | 1990-05-25 | 1999-07-19 | 東陶機器株式会社 | Ammonia gas sensor |
BR9106548A (en) * | 1990-06-12 | 1993-06-01 | Catalytica Inc | AUTONOMOUS DEVICE FOR MEASURING NOX CONCENTRATION IN A FLUENT GAS CHAIN |
JP3375645B2 (en) * | 1991-05-14 | 2003-02-10 | 株式会社日立製作所 | Control device for internal combustion engine |
EP0683311A1 (en) * | 1991-06-03 | 1995-11-22 | Isuzu Motors Limited | DEVICE FOR REDUCING NO x? |
DE4217552C1 (en) * | 1992-05-27 | 1993-08-19 | Mercedes-Benz Aktiengesellschaft, 7000 Stuttgart, De | |
DE4227741A1 (en) * | 1992-08-21 | 1994-02-24 | Bayerische Motoren Werke Ag | Catalytic denitrification of engine exhaust gas with reducing agent - in amt. controlled according to nitrogen oxide concn. before and/or after redn. and pref. residual reducing agent content |
US5367875A (en) * | 1992-12-07 | 1994-11-29 | Coltec Industries Inc | Automated catalytic reduction system |
-
1993
- 1993-10-06 DE DE4334071A patent/DE4334071C1/en not_active Expired - Fee Related
-
1994
- 1994-09-28 DE DE59401394T patent/DE59401394D1/en not_active Expired - Fee Related
- 1994-09-28 EP EP94115280A patent/EP0653237B1/en not_active Expired - Lifetime
- 1994-10-06 US US08/319,290 patent/US5540047A/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9439862B2 (en) | 2000-05-10 | 2016-09-13 | Novartis Ag | Phospholipid-based powders for drug delivery |
CN102027212B (en) * | 2008-05-16 | 2014-01-29 | 标致·雪铁龙汽车公司 | Method for correcting nitrogen oxide emission models |
EP3477068B1 (en) * | 2016-06-23 | 2023-01-25 | NGK Insulators, Ltd. | Exhaust gas purification system and exhaust gas purification method |
Also Published As
Publication number | Publication date |
---|---|
US5540047A (en) | 1996-07-30 |
DE59401394D1 (en) | 1997-02-06 |
EP0653237A1 (en) | 1995-05-17 |
DE4334071C1 (en) | 1995-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0653237B1 (en) | Process for reducing the concentration of nitrogen oxides in the exhaust gas of combustion engines or incinerators | |
EP2226480B1 (en) | Method for setting the dosage amount of a reduction agent for selective catalytic reduction | |
EP0604468B1 (en) | Exhaust gas sensor | |
EP2226482B1 (en) | Method for adjusting the dosage amount of a reducing agent for selective catalytic reduction | |
DE19931007C2 (en) | Method and device for determining the storage state of an ammonia-storing SCR catalytic converter | |
EP2568137B1 (en) | Heated injection system for exhaust gas systems of Diesel engines | |
EP2307676B1 (en) | Method for operating an exhaust gas treatment system having a scr catalytic converter | |
EP1338770A2 (en) | Exhaust gas purification device for an internal combustion engine | |
DE102013215891B4 (en) | Method and device for monitoring a reducing agent solution composition in the exhaust system of an internal combustion engine | |
WO2007110258A1 (en) | Ammonia sensor | |
DE19846487C2 (en) | Measuring probe for the detection of the instantaneous concentrations of several gas components of a gas | |
EP0652435A2 (en) | Sensor for determining the gradient of a concentration | |
EP1259308A1 (en) | Method and emission control system for catalytically reducing nitrogen oxides in the exhaust gas of a combustion system | |
DE19856369C2 (en) | Resistive gas sensor and method for its production | |
EP0779096A1 (en) | Process and device for catalytic gas purification | |
WO1995009361A1 (en) | Nitrogen monoxide no and ammonia nh3 detector | |
DE102019114997A1 (en) | METHOD AND SYSTEM FOR CONTROLLING THE INJECTION OF A REDUCING AGENT IN AN EXHAUST FLOW | |
EP2313181B1 (en) | Method for the controlled feeding of a reducing agent | |
DE112014007102T5 (en) | HIGHEST SELECTIVE NOX SENSOR IN THE PRESENCE OF NH3 | |
EP3814763A1 (en) | Method for measuring nitrogen oxides and device for carrying out said method | |
DE10124550B4 (en) | Sensor and method for monitoring and controlling catalysts, in particular of motor vehicle catalysts | |
EP2184601A2 (en) | Sensor device for measuring an ammoniac concentration | |
DE102008039687B4 (en) | Process for the aftertreatment of an exhaust gas stream of an internal combustion engine | |
DE202007018423U1 (en) | Device for purifying exhaust gases with targeted use of nitrogen dioxide | |
DE112019006347T5 (en) | AMMONIA SENSOR |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE FR IT LI NL SE |
|
17P | Request for examination filed |
Effective date: 19950607 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 19960206 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR IT LI NL SE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SIEMENS SCHWEIZ AG |
|
REF | Corresponds to: |
Ref document number: 59401394 Country of ref document: DE Date of ref document: 19970206 |
|
ET | Fr: translation filed | ||
ITF | It: translation for a ep patent filed | ||
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
26 | Opposition filed |
Opponent name: HERAEUS SENSOR GMBH Effective date: 19970925 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: HERAEUS SENSOR GMBH |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PLBO | Opposition rejected |
Free format text: ORIGINAL CODE: EPIDOS REJO |
|
PLBN | Opposition rejected |
Free format text: ORIGINAL CODE: 0009273 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: OPPOSITION REJECTED |
|
27O | Opposition rejected |
Effective date: 19980412 |
|
NLR2 | Nl: decision of opposition | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20030923 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040930 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20080915 Year of fee payment: 15 Ref country code: IT Payment date: 20080922 Year of fee payment: 15 Ref country code: FR Payment date: 20080912 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20080919 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20080912 Year of fee payment: 15 |
|
EUG | Se: european patent has lapsed | ||
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20100401 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20100531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090930 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090928 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090929 |