WO1994027138A1 - Process for establishing the apparent density over the thickness of a board - Google Patents

Process for establishing the apparent density over the thickness of a board Download PDF

Info

Publication number
WO1994027138A1
WO1994027138A1 PCT/EP1994/001540 EP9401540W WO9427138A1 WO 1994027138 A1 WO1994027138 A1 WO 1994027138A1 EP 9401540 W EP9401540 W EP 9401540W WO 9427138 A1 WO9427138 A1 WO 9427138A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
workpiece
bulk density
thickness
density profile
Prior art date
Application number
PCT/EP1994/001540
Other languages
German (de)
French (fr)
Inventor
Thomas Warnecke
Original Assignee
Fagus-Grecon Greten Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fagus-Grecon Greten Gmbh & Co. Kg filed Critical Fagus-Grecon Greten Gmbh & Co. Kg
Priority to EP94916230A priority Critical patent/EP0650592A1/en
Publication of WO1994027138A1 publication Critical patent/WO1994027138A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/16Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the material being a moving sheet or film
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/24Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by observing the transmission of wave or particle radiation through the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02818Density, viscosity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Definitions

  • the invention relates to a device according to the preamble of claim 1.
  • a sample cut from a particle board or fibreboard is moved through a gamma ray of a measuring device (p. 1367, Fig. 2).
  • the gamma ray runs at right angles to a narrow surface of the sample and penetrates the sample over its entire length.
  • This is a laboratory device.
  • the samples are taken from the ongoing plate production and measured. Disadvantages are the destruction of plates for sampling and the long time until the bulk density profile is available. The production can only be readjusted with a corresponding delay.
  • Another disadvantage is that the bulk density profile only results as an average over the entire length of the sample.
  • the object of the invention is to create the bulk density profile of the workpiece faster and more precisely.
  • Electromagnetic radiation for example X-ray or gamma radiation or microwaves, is suitable as radiation, but also corpuscular rays such as Alpha, beta or neutron radiation as well as radiation from accelerated electrons, but also ultrasonic waves. In any case, the scattering of this radiation is detected. If the bulk density of the workpiece is greater, the spread is greater and vice versa.
  • the determination of the bulk density is no longer restricted to the narrow surfaces of the plate.
  • non-destructive measurements can be carried out at any point on the plate.
  • the workpiece itself can be both the known sample cut out of a plate and the entire plate itself. In the latter case, an entire plate can be branched off from the manufacturing process and examined non-destructively to create one or more bulk density profiles.
  • the raw density profile it is also particularly advantageous for the raw density profile to be created on the plates themselves in a non-destructive manner and also at any number of locations on a plate, that is to say during the production process. In all of these cases, the density profile is comparatively quickly and reliably created. In this way, error tendencies in the manufacturing process can be located and eliminated at an early stage. This leads to a considerable improvement in the quality of the workpieces while reducing the number of rejects.
  • the radiation sources according to claim 3 preferably have increasing energy in the order in which they act on the target location. In this case, the creation of a bulk density profile is facilitated by forming the difference.
  • the radiation sources can be set relatively easily on the associated detector.
  • the radiation source can be controlled continuously or in stages. In all cases, the bulk density profile is obtained very quickly and reliably. All types of radiation are suitable for this, with the exception of gamma radiation.
  • the intensity and / or frequency of the ultrasound transmitter can be controllable.
  • FIG. 1 shows a schematic representation of a first embodiment of the device
  • Fig. 3 is a schematic view of yet another embodiment of the device.
  • Fig. 4 shows a typical bulk density profile.
  • FIG. 1 schematically shows a device 1 for creating a bulk density profile over the thickness 2 of a plate-shaped workpiece 3, e.g. a chipboard or fibreboard.
  • the workpiece 3 is moved through the device 1 in a direction of movement 4.
  • a first radiation is generated by a first radiation source 5 6 directed at a first target location 7 on the surface of the workpiece 3.
  • the first radiation 6 is of low energy so that it penetrates into the workpiece 3 essentially to a relatively small first depth 8.
  • a first backscatter 9 is collected by a first detector 10 and converted into an electrical signal, which is fed via a first line 11 to a device 12 for creating the bulk density profile.
  • the first radiation is shown as a line in FIG. 1.
  • the cross-sectional area of the first radiation 6 and the second radiation 13 and third radiation 14 to be described below can be designed in a punctiform, slit-shaped or flat manner in any way.
  • the device 1 In the direction of movement 4, the device 1 has a second radiation source 15 behind the first detector 10, which directs the second radiation 13 to a second target location 16 on the surface of the workpiece 3.
  • the second radiation 13 is of higher energy than the first radiation 6 and therefore penetrates into the workpiece 3 to a greater second depth 17.
  • a second backscatter 18 is captured by a second detector 19 and converted into an electrical signal which is fed into the device 12 via a second line 20.
  • the second target location 16 was previously located at the location at which the first target location 7 is arranged in FIG. 1.
  • the backscatter signal obtained there has been stored in the device 12 and is now available for difference formation with that from the second Backscattering 18 obtained signal available.
  • a statement about the bulk density in the second depth 17 can then be obtained from this difference formation.
  • the device 1 In the direction of movement 4 after the second detector 19, the device 1 has a third radiation source 21 which directs the third radiation 14 to a third target location 22 on the surface of the workpiece 3.
  • the third radiation 14 is again of greater energy than the second radiation 13 and therefore penetrates to an even greater third depth 23 in the workpiece 3.
  • the third target location 22 has previously been checked at the position at which the second target location 16 is located in FIG. 1.
  • the backscatter signal from the second backscatter 18 created there was again stored in the device 12 and can now be used to form the difference with the signal that results from the third backscatter 24 in FIG. 1. In this way too, the difference in density can be used to infer the bulk density value in the third depth 23.
  • the device 12 is in a known manner, not shown, with peripheral devices such as a viewing screen or a plotter, so that the desired density profile over the thickness 2 of the workpiece 3 can be determined successively point by point and made visible or printed out.
  • peripheral devices such as a viewing screen or a plotter
  • four radiation sources 27 to 30 are arranged on a turret 31, which can be pivoted about a longitudinal axis 33 in the direction of an arrow 32.
  • the radiation sources 27 to 30 send radiation of increasing energy to a target location 34 on the surface of the workpiece 3 in this order. Depending on their energy, this radiation penetrates the workpiece 3 more or less deeply to depths 35 to 38.
  • the associated backscatter is collected by assigned detectors 39 to 42 and converted into electrical signals in the manner described above and fed to the device 12 according to FIG. 1.
  • the radiation source 28 In the operating position shown in FIG. 2, the radiation source 28 is active and sends its radiation 43 down to the depth 36 of the workpiece 3.
  • the backscatter 44 is picked up by the detector 40 and converted into an electrical signal in the manner mentioned.
  • the turret 31 is pivoted further by one division until the radiation source 29, which is hidden behind the radiation source 27 in FIG. 2, is in the lower operating position and can then transmit its radiation down to the depth 37.
  • All depths 35 to 38 are measured in a similar manner and a raw density profile over the thickness 2 of the workpiece 3 is created by forming the difference in accordance with the previously described exemplary embodiment.
  • the advantage with the embodiment according to FIG. 2 is that all depth measurements can be carried out very quickly in succession in a single position of the workpiece 3, preferably when it is at a standstill.
  • the device 1 according to FIG. 3 manages with only one radiation source 45, in which, however, the level of the radiation energy can be controlled.
  • the radiation source 45 In the position of the radiation source 45, drawn with solid lines in FIG. 3, it emits the first radiation 6 with the lowest energy down to the first depth 8. This takes place at a first radiation angle 46 to the surface 47 containing the target location 34 of the workpiece 3.
  • the associated first backscatter 9 is collected by a detector 48 and converted into an electrical signal, which in turn is fed to the device 12 according to FIG. 1.
  • the radiation source 45 in FIG. 3 is moved to the right into the next dash-dotted position in which the second radiation 13 of controlled higher energy level than the first radiation 6 is directed onto the target location 34.
  • the second radiation 13 penetrates to the second depth 17 and results in the second backscatter 18, which in turn is captured by the detector 48 and subsequently evaluated.
  • the radiation source 45 is then moved once more in FIG. 3 to the right into the subsequent dash-dotted position in which it directs the third radiation 14 from the energy level, which has been increased again in a controlled manner, to the target location 34.
  • the third radiation 14 penetrates to the third depth 23 and leads to the third backscatter 24, which is again picked up by the detector 48 and subsequently evaluated.
  • Thieves- Drive positions of the radiation source 45 for measuring the depths 17, 23 are characterized by a second angle of incidence 49 and a third angle of incidence 50.
  • the detectors for the respective backscattering can be designed in any suitable manner.
  • FIG. 4 shows a typical bulk density profile 51 over the thickness 2 of the workpiece, in this case a chipboard.
  • An average value 52 of the bulk density is also drawn in with a dashed horizontal line.
  • the maxima 53 and 54 of the bulk density profile 51 are, as desired, far out, where particularly high bulk density values are sought in the area of the top layers of the workpiece 3.
  • the zones in FIG. 4 to the left of the maximum 53 and to the right of the maximum 54 are later removed in the usual manner by grinding or calibration grinding, so that the maxima 53, 54 of the bulk density are actually on the outer surfaces of the workpiece 3.
  • Fig. 4 also shows that one can get by with relatively low bulk density values in the middle layer of the chipboard arranged between the two cover layers.

Abstract

A device (1) has radiation sources (5, 15, 21) arranged one after the other in the direction of transport (4) of a board-shaped workpiece (3). The sources emit radiation (6, 13, 14) of increasing energy towards a target spot (7, 16, 22) of the workpiece (3). The radiation consequently penetrates down to increasing depths (8, 17, 23) of the thickness (2) of the workpiece (3). The corresponding backscattered radiation (9, 18, 24) is sensed by detectors (10, 19, 25) and converted into electric signals which are supplied to a device (12) for establishing the apparent density profile.

Description

B E S C H R E I B U N G DESCRIPTION
Vorrichtung zur Erstellung eines Rohdichteprofils über die Dicke einer PlatteDevice for creating a bulk density profile over the thickness of a plate
Die Erfindung betrifft eine Vorrichtung nach dem Oberbe¬ griff des Anspruchs 1.The invention relates to a device according to the preamble of claim 1.
Bei einer bekannten Vorrichtung dieser Art (IEEE Proceed- ings - 1989 Southeastcon, Session 12D2, Seiten 1366 bis 1371) wird eine aus einer Span- oder Faserplatte ausge¬ schnittene Probe durch einen Gammastrahl einer Meßvor¬ richtung hindurchbewegt (S. 1367, Fig. 2) . Der Gamma¬ strahl verläuft rechtwinklig zu einer Schmalfläche der Probe und durchdringt die Probe auf ihrer gesamten Länge. Es handelt sich hier um eine Laborvorrichtung. Die Proben werden aus der laufenden Plattenproduktion entnommen und durchgemessen. Nachteilig sind die Zerstö¬ rung von Platten für die Probenentnahme und die lange Dauer, bis das Rohdichteprofil vorliegt. Die Produktion läßt sich nur mit entsprechender Verzögerung nachsteu- ern. Nachteilig ist auch, daß sich das Rohdichteprofil nur als Mittelwert über die gesamte Länge der Probe ergibt .In a known device of this type (IEEE Proceedings - 1989 Southeastcon, Session 12D2, pages 1366 to 1371), a sample cut from a particle board or fibreboard is moved through a gamma ray of a measuring device (p. 1367, Fig. 2). The gamma ray runs at right angles to a narrow surface of the sample and penetrates the sample over its entire length. This is a laboratory device. The samples are taken from the ongoing plate production and measured. Disadvantages are the destruction of plates for sampling and the long time until the bulk density profile is available. The production can only be readjusted with a corresponding delay. Another disadvantage is that the bulk density profile only results as an average over the entire length of the sample.
Aus der DE 25 44 354 AI ist es an sich bekannt, die Compton-Streuung von Strahlungen unterschiedlicher Ener¬ gie insbesondere in der medizinischen Diagnostik zur Bestimmung der Dichte von Knochen oder inneren Organen zu verwenden. Die Strahlen- oder Strahlungsquelle ist jeweils stationär angeordnet. Der Einstrahlungswinkel in den menschlichen Körper beträgt jeweils 90 . Der Patient ist relativ zu Strahlungsquelle und Detektoren zweidi- meπsional einstellbar abgestützt.From DE 25 44 354 AI it is known per se that the Compton scattering of radiations of different energies, in particular in medical diagnostics, for determining the density of bones or internal organs to use. The radiation or radiation source is arranged in a stationary manner. The angle of incidence in the human body is 90 in each case. The patient is supported in a two-dimensionally adjustable manner relative to the radiation source and detectors.
Aus der Zeitschrift "Isotopenpraxis", 12. Jahrgang, 1976, S. 459 bis 462, sind mehrere Möglichkeiten zur Ausnutzung der Compton-Streuung zur örtlichen Dichtemes¬ sung an sich bekannt. So kann die unbekannte Dichtever¬ teilung entlang einer festen Strecke von radioaktiver Strahlung mit verschiedenen Energien durchstrahlt werden (S. 461, Abb. 4a) . Aus den zugehörigen Streuzählraten wird die gesuchte Dichteverteilung mit erheblichen mathematischen Schwierigkeiten errechnet. Diese Methode sollte nur in Ausnahmefällen angewendet werden, z.B. , wenn Strahlenquelle, Detektor und Meßobjekt ortsfest sind .From the magazine "Isotopenpraxis", 12th year, 1976, pp. 459 to 462, several possibilities for utilizing the Compton scatter for local density measurement are known per se. Thus, the unknown density distribution along a fixed section of radioactive radiation with different energies can be irradiated (p. 461, Fig. 4a). The density distribution sought is calculated from the associated scatter counting rates with considerable mathematical difficulties. This method should only be used in exceptional cases, e.g. when the radiation source, detector and measurement object are stationary.
Aus der Zeitschrift "Holztechnologie", 10. Jahrgang, 1969, S. 75 bis 79, ist es an sich bekannt, die Roh¬ dichte von Spanplatten zu bestimmen. Eine Probe wird von Röntgenstrahlen durchstrahlt und auf Röntgenfilm aufge¬ nommen. Die optische Dichte der Röntgenaufnahme ist eine Funktion der Dichte der durchstrahlten Probe und wird densitometrisch ausgewertet.It is known per se from the magazine "Holztechnologie", 10th year, 1969, pp. 75 to 79, to determine the bulk density of chipboard. X-rays pass through a sample and are recorded on X-ray film. The optical density of the X-ray image is a function of the density of the irradiated sample and is evaluated densitometrically.
Der Erfindung liegt die Aufgabe zugrunde, das Rohdichte¬ profil des Werkstücks schneller und genauer zu erstel¬ len .The object of the invention is to create the bulk density profile of the workpiece faster and more precisely.
Diese Aufgabe ist durch die Merkmale des Anspruchs 1 gelöst. Als Strahlung ist eine elektromagnetische Strah¬ lung, also z.B. Röntgen- oder Ga ma-Strahlung oder Mikrowellen geeignet, aber auch Korpuskularstrahlen wie Alpha-, Beta- oder eine Neutronenstrahlung sowie eine Strahlung aus beschleunigten Elektronen, aber auch Ultraschallwellen. In jedem Fall wird die Streuung dieser Strahlung detektiert. Bei größerer Rohdichte des Werkstücks wird stärker gestreut und umgekehrt.This object is solved by the features of claim 1. Electromagnetic radiation, for example X-ray or gamma radiation or microwaves, is suitable as radiation, but also corpuscular rays such as Alpha, beta or neutron radiation as well as radiation from accelerated electrons, but also ultrasonic waves. In any case, the scattering of this radiation is detected. If the bulk density of the workpiece is greater, the spread is greater and vice versa.
Von besonderem Vorteil ist, daß die Rohdichteermittlung jetzt nicht mehr auf die Schmalflächen der Platte einge¬ schränkt ist. Vielmehr kann erfindungsgemäß an jeder beliebigen Stelle der Platte zerstörungsfrei gemessen werden. Das Werkstück selbst kann sowohl die bekannte, aus einer Platte herausgeschnittene Probe, als auch die gesamte Platte selbst sein. Im letzteren Fall kann eine ganze Platte aus dem Herstellungsprozeß abgezweigt und zerstörungsfrei zur Erstellung eines oder mehrerer Rohdichteprofile untersucht werden. Es kann aber auch mit besonderem Vorteil ebenso zerstörungsfrei und ebenso an beliebig vielen Stellen einer Platte "on line", also während des Herstellungsprozesses, an den Platten selbst das Rohdichteprofil erstellt werden. In all diesen Fällen wird das Rohdichteprofil vergleichsweise schnell und sicher erstellt. So können Fehlertendenzen im Her¬ stellungsprozeß frühzeitig geortet und abgestellt wer¬ den. Dies führt zu einer erheblichen Qualitätsverbesse¬ rung der Werkstücke bei Verringerung des Ausschusses.It is particularly advantageous that the determination of the bulk density is no longer restricted to the narrow surfaces of the plate. Rather, according to the invention, non-destructive measurements can be carried out at any point on the plate. The workpiece itself can be both the known sample cut out of a plate and the entire plate itself. In the latter case, an entire plate can be branched off from the manufacturing process and examined non-destructively to create one or more bulk density profiles. However, it is also particularly advantageous for the raw density profile to be created on the plates themselves in a non-destructive manner and also at any number of locations on a plate, that is to say during the production process. In all of these cases, the density profile is comparatively quickly and reliably created. In this way, error tendencies in the manufacturing process can be located and eliminated at an early stage. This leads to a considerable improvement in the quality of the workpieces while reducing the number of rejects.
Gemäß Anspruch 2 wird stets ein optimales Streuverhalten angestrebt und erreicht.According to claim 2, an optimal spreading behavior is always sought and achieved.
Die Strahlungsquellen gemäß Anspruch 3 weisen vorzugs¬ weise in der Reihenfolge ihrer Einwirkung auf die Ziel¬ stelle zunehmende Energie auf. In diesem Fall ist die Rohdichteprofil-Erstellung durch Differenzbildung er¬ leichtert. Die Strahlungsquellen können verhältnismäßig einfach auf den zugehörigen Detektor eingestellt werden Die Merkmale des Anspruchs 4 bieten apparative und funk- tionelle Vorteile.The radiation sources according to claim 3 preferably have increasing energy in the order in which they act on the target location. In this case, the creation of a bulk density profile is facilitated by forming the difference. The radiation sources can be set relatively easily on the associated detector The features of claim 4 offer apparatus and functional advantages.
Gemäß Anspruch 5 kann die Steuerung der Strahlungsquelle stufenlos oder in Stufen erfolgen. In allen Fällen ergibt sich das Rohdichteprofil sehr schnell und sicher. Geeignet sind hierfür alle Strahlungsarten mit Ausnahme der Gamma-Strahlung. Der Ultraschallgeber kann in seiner Intensität und/oder seiner Frequenz steuerbar sein.According to claim 5, the radiation source can be controlled continuously or in stages. In all cases, the bulk density profile is obtained very quickly and reliably. All types of radiation are suitable for this, with the exception of gamma radiation. The intensity and / or frequency of the ultrasound transmitter can be controllable.
Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen anhand der Zeichnungen. Es zeigt:Features and advantages of the invention result from the following description of exemplary embodiments with reference to the drawings. It shows:
Fig. 1 in schematischer Darstellung eine erste Ausfüh¬ rungsform der Vorrichtung,1 shows a schematic representation of a first embodiment of the device,
Fig. 2 eine schematische Ansicht einer weiteren Ausfüh¬ rungsform der Vorrichtung,2 shows a schematic view of a further embodiment of the device,
Fig. 3 eine schematische Ansicht einer wiederum anderen Ausführungsform der Vorrichtung undFig. 3 is a schematic view of yet another embodiment of the device and
Fig. 4 ein typisches Rohdichteprofil.Fig. 4 shows a typical bulk density profile.
In Fig. 1 ist schematisch eine Vorrichtung 1 zur Erstel¬ lung eines Rohdichteprofils über die Dicke 2 eines plattenför igen Werkstücks 3, z.B. einer Span- oder Faserplatte, dargestellt.1 schematically shows a device 1 for creating a bulk density profile over the thickness 2 of a plate-shaped workpiece 3, e.g. a chipboard or fibreboard.
Das Werkstück 3 wird in einer Bewegungsrichtung 4 durch die Vorrichtung 1 hindurchbewegt. Dabei wird zunächst von einer ersten Strahlungsquelle 5 eine erste Strahlung 6 auf eine erste Zielstelle 7 an der Oberfläche des Werkstücks 3 gerichtet.The workpiece 3 is moved through the device 1 in a direction of movement 4. First of all, a first radiation is generated by a first radiation source 5 6 directed at a first target location 7 on the surface of the workpiece 3.
Die erste Strahlung 6 ist von nur geringer Energie, so daß sie im wesentlichen bis zu einer verhältnismäßig geringen ersten Tiefe 8 in das Werkstück 3 eindringt. Eine erste Rückstreuung 9 wird von einem ersten Detektor 10 aufgefangen und in ein elektrisches Signal gewandelt, das über eine erste Leitung 11 einer Einrichtung 12 zur Erstellung des Rohdichteprofils zugeführt wird.The first radiation 6 is of low energy so that it penetrates into the workpiece 3 essentially to a relatively small first depth 8. A first backscatter 9 is collected by a first detector 10 and converted into an electrical signal, which is fed via a first line 11 to a device 12 for creating the bulk density profile.
Die erste Strahlung ist in Fig. 1 als Strich darge¬ stellt. Je nach dem Einsatzfall kann die Querschnitts¬ fläche der ersten Strahlung 6 und der nachfolgend zu beschreibenden zweiten Strahlung 13 und dritten Strah¬ lung 14 punktförmig, schlitzförmig oder in beliebiger Weise flächig ausgestaltet sein.The first radiation is shown as a line in FIG. 1. Depending on the application, the cross-sectional area of the first radiation 6 and the second radiation 13 and third radiation 14 to be described below can be designed in a punctiform, slit-shaped or flat manner in any way.
Die Vorrichtung 1 weist in der Bewegungsrichtung 4 hinter dem ersten Detektor 10 eine zweite Strahlungs¬ quelle 15 auf, die die zweite Strahlung 13 auf eine zweite Zielstelle 16 an der Oberfläche des Werkstücks 3 richtet. Die zweite Strahlung 13 ist von höherer Energie als die erste Strahlung 6 und dringt daher bis zu einer größeren zweiten Tiefe 17 in das Werkstück 3 vor. Eine zweite Rückstreuung 18 wird von einem zweiten Detektor 19 aufgefangen und in ein elektrisches Signal gewandelt, das über eine zweite Leitung 20 in die Einrichtung 12 eingespeist wird.In the direction of movement 4, the device 1 has a second radiation source 15 behind the first detector 10, which directs the second radiation 13 to a second target location 16 on the surface of the workpiece 3. The second radiation 13 is of higher energy than the first radiation 6 and therefore penetrates into the workpiece 3 to a greater second depth 17. A second backscatter 18 is captured by a second detector 19 and converted into an electrical signal which is fed into the device 12 via a second line 20.
Die zweite Zielstelle 16 hat sich zuvor an derjenigen Stelle befunden, an der in Fig. 1 die erste Zielstelle 7 angeordnet ist. Das dort gewonnene Rückstreuungssignal ist in der Einrichtung 12 gespeichert worden und steht jetzt zur Differenzbildung mit dem aus der zweiten Rückstreuung 18 gewonnenen Signal zur Verfügung. Aus dieser Differenzbildung läßt sich dann eine Aussage über die Rohdichte in der zweiten Tiefe 17 gewinnen.The second target location 16 was previously located at the location at which the first target location 7 is arranged in FIG. 1. The backscatter signal obtained there has been stored in the device 12 and is now available for difference formation with that from the second Backscattering 18 obtained signal available. A statement about the bulk density in the second depth 17 can then be obtained from this difference formation.
In der Bewegungsrichtung 4 nach dem zweiten Detektor 19 weist die Vorrichtung 1 eine dritte Strahlungsquelle 21 auf, die die dritte Stahlung 14 auf eine dritte Ziel¬ stelle 22 an der Oberfläche des Werkstücks 3 richtet. Die dritte Strahlung 14 ist von wiederum größerer Ener¬ gie als die zweite Strahlung 13 und dringt daher bis zu einer noch größeren dritten Tiefe 23 in dem Werkstück 3 vor. Daraus ergibt sich eine dritte Rückstreuung 24, die von einem dritten Detektor 25 aufgefangen und in ein elektrisches Signal gewandelt wird, das über eine dritte Leitung 26 der Einrichtung 12 zugeführt wird.In the direction of movement 4 after the second detector 19, the device 1 has a third radiation source 21 which directs the third radiation 14 to a third target location 22 on the surface of the workpiece 3. The third radiation 14 is again of greater energy than the second radiation 13 and therefore penetrates to an even greater third depth 23 in the workpiece 3. This results in a third backscatter 24, which is collected by a third detector 25 and converted into an electrical signal which is fed to the device 12 via a third line 26.
Die dritte Zielstelle 22 ist zuvor an derjenigen Posi¬ tion geprüft worden, an der sich in Fig. 1 die zweite Zielstelle 16 befindet. Das Rückstreuungssignal aus der dort entstandenen zweiten Rückstreuung 18 wurde wiederum in der Einrichtung 12 gespeichert und kann jetzt zur Differenzbildung mit demjenigen Signal herangezogen werden, das sich in Fig. 1 aus der dritten Rückstreuung 24 ergibt. So kann auch hier wieder durch Differenzbil¬ dung auf den Rohdichtewert in der dritten Tiefe 23 geschlossen werden.The third target location 22 has previously been checked at the position at which the second target location 16 is located in FIG. 1. The backscatter signal from the second backscatter 18 created there was again stored in the device 12 and can now be used to form the difference with the signal that results from the third backscatter 24 in FIG. 1. In this way too, the difference in density can be used to infer the bulk density value in the third depth 23.
Die Einrichtung 12 ist in an sich bekannter, nicht dargestellter Weise mit peripheren Geräten wie z.B. einem Sichtschirm oder einem Plotter verbunden, so daß das gewünschte Rohdichteprofil über die Dicke 2 des Werkstücks 3 nacheinander Punkt für Punkt ermittelt und sichtbar gemacht bzw. ausgedruckt werden kann.The device 12 is in a known manner, not shown, with peripheral devices such as a viewing screen or a plotter, so that the desired density profile over the thickness 2 of the workpiece 3 can be determined successively point by point and made visible or printed out.
Anstelle der in Fig. 1 gezeichneten drei Strahluπgsquel- len 5, 15, 21 können weniger oder mehr Strahlungsquellen verwendet werden, je nach dem, wie fein gestuft das Rohdichteprofil sein soll.Instead of the three radiation sources shown in FIG. len 5, 15, 21 fewer or more radiation sources can be used, depending on how finely graduated the density profile should be.
In allen Zeichnungsfiguren sind gleiche Teile mit glei¬ chen Bezugszahlen versehen.The same parts are provided with the same reference numbers in all drawing figures.
Bei dem Ausführungsbeispiel nach Fig. 2 sind vier Strah¬ lungsquellen 27 bis 30 an einem Revolver 31 angeordnet, der in Richtung eines Pfeils 32 um eine Längsachse 33 schwenkbar ist. Die Strahlungsquellen 27 bis 30 senden in dieser Reihenfolge Strahlung zunehmender Energie auf eine Zielstelle 34 an der Oberfläche des Werkstücks 3. Je nach ihrer Energie dringt diese Strahlung mehr oder weniger tief bis zu Tiefen 35 bis 38 in das Werkstück 3 ein. Die zugehörigen Rückstreuungen werden durch zuge¬ ordnete Detektoren 39 bis 42 aufgefangen und in der zuvor beschriebenen Weise in elektrische Signale gewan¬ delt und der Einrichtung 12 gemäß Fig. 1 zugeführt.In the exemplary embodiment according to FIG. 2, four radiation sources 27 to 30 are arranged on a turret 31, which can be pivoted about a longitudinal axis 33 in the direction of an arrow 32. The radiation sources 27 to 30 send radiation of increasing energy to a target location 34 on the surface of the workpiece 3 in this order. Depending on their energy, this radiation penetrates the workpiece 3 more or less deeply to depths 35 to 38. The associated backscatter is collected by assigned detectors 39 to 42 and converted into electrical signals in the manner described above and fed to the device 12 according to FIG. 1.
In der in Fig. 2 gezeichneten Betriebsstellung ist die Strahlungsquelle 28 aktiv und sendet ihre Strahlung 43 bis in die Tiefe 36 des Werkstücks 3. Die Rückstreuung 44 wird von dem Detektor 40 aufgenommen und in der erwähnten Weise in ein elektrisches Signal gewandelt. Sobald dieses Signal gespeichert ist, wird der Revolver 31 um eine Teilung weitergeschwenkt, bis die in Fig. 2 verdeckt hinter der Strahlungsquelle 27 liegende Strah¬ lungsquelle 29 sich in der unteren Betriebsstellung befindet und dann ihre Strahlung bis zu der Tiefe 37 senden kann. In ähnlicher Weise werden alle Tiefen 35 bis 38 vermessen und durch Differenzbildung entsprechend dem zuvor beschriebenen Ausführungsbeispiel ein Rohdich¬ teprofil über die Dicke 2 des Werkstücks 3 erstellt. Der Vorteil bei der Ausführungsform nach Fig. 2 ist der, daß alle Tiefenmessungen sehr schnell nacheinander in einer einzigen Position des Werkstücks 3, vorzugweise bei dessen Stillstand, erfolgen können.In the operating position shown in FIG. 2, the radiation source 28 is active and sends its radiation 43 down to the depth 36 of the workpiece 3. The backscatter 44 is picked up by the detector 40 and converted into an electrical signal in the manner mentioned. As soon as this signal is stored, the turret 31 is pivoted further by one division until the radiation source 29, which is hidden behind the radiation source 27 in FIG. 2, is in the lower operating position and can then transmit its radiation down to the depth 37. All depths 35 to 38 are measured in a similar manner and a raw density profile over the thickness 2 of the workpiece 3 is created by forming the difference in accordance with the previously described exemplary embodiment. The advantage with the embodiment according to FIG. 2 is that all depth measurements can be carried out very quickly in succession in a single position of the workpiece 3, preferably when it is at a standstill.
Die Vorrichtung 1 gemäß Fig. 3 kommt mit nur einer Strahlungsquelle 45 aus, bei der jedoch die Höhe der Strahlungsenergie steuerbar ist.The device 1 according to FIG. 3 manages with only one radiation source 45, in which, however, the level of the radiation energy can be controlled.
In der in Fig. 3 mit vollausgezogenen Linien gezeichne¬ ten Stellung der Strahlungsquelle 45 sendet diese die erste Strahlung 6 mit der geringsten Energie bis zu der ersten Tiefe 8. Dies geschieht unter einem ersten Ein¬ strahlwinkel 46 zu der die Zielstelle 34 enthaltenden Oberfläche 47 des Werkstücks 3. Die zugehörige erste Rückstreuung 9 wird von einem Detektor 48 aufgefangen und in ein elektrisches Signal gewandelt, das wiederum der Einrichtung 12 gemäß Fig. 1 zugeführt wird.In the position of the radiation source 45, drawn with solid lines in FIG. 3, it emits the first radiation 6 with the lowest energy down to the first depth 8. This takes place at a first radiation angle 46 to the surface 47 containing the target location 34 of the workpiece 3. The associated first backscatter 9 is collected by a detector 48 and converted into an electrical signal, which in turn is fed to the device 12 according to FIG. 1.
Im nächsten Schritt wird die Strahlungsquelle 45 in Fig. 3 nach rechts bewegt bis in die nächste strichpunktierte Stellung, in der die zweite Strahlung 13 von gesteuert höherem Energieniveau als die erste Strahlung 6 auf die Zielstelle 34 gerichtet wird. Die zweite Strahlung 13 dringt bis zur zweiten Tiefe 17 vor und hat die zweite Rückstreuung 18 zur Folge, die wiederum von Detektor 48 aufgefangen und nachfolgend ausgewertet wird.In the next step, the radiation source 45 in FIG. 3 is moved to the right into the next dash-dotted position in which the second radiation 13 of controlled higher energy level than the first radiation 6 is directed onto the target location 34. The second radiation 13 penetrates to the second depth 17 and results in the second backscatter 18, which in turn is captured by the detector 48 and subsequently evaluated.
Die Strahlungsquelle 45 wird anschließend ein weiteres Mal in Fig. 3 nach rechts in die nachfolgende strich¬ punktierte Stellung bewegt, in der sie die dritte Strah¬ lung 14 von gesteuert nochmals erhöhtem Energieniveau auf die Zielstelle 34 richtet. Die dritte Strahlung 14 dringt bis zu der dritten Tiefe 23 vor und führt zur dritten Rückstreuung 24, die erneut von dem Detektor 48 aufgefangen und nachfolgend ausgewertet wird. Die Be- triebsstellungen der Strahlungsquelle 45 zur Messung der Tiefen 17, 23 sind durch einen zweiten Einstrahlwinkel 49 und einen dritten Einstrahlwinkel 50 gekennzeichnet.The radiation source 45 is then moved once more in FIG. 3 to the right into the subsequent dash-dotted position in which it directs the third radiation 14 from the energy level, which has been increased again in a controlled manner, to the target location 34. The third radiation 14 penetrates to the third depth 23 and leads to the third backscatter 24, which is again picked up by the detector 48 and subsequently evaluated. Thieves- Drive positions of the radiation source 45 for measuring the depths 17, 23 are characterized by a second angle of incidence 49 and a third angle of incidence 50.
Es ist jedoch nicht erforderlich, die Strahlungsquelle 45 zur Messung aufeinanderfolgender Tiefenzonen in der Dicke 2 des Werkstücks 3 zu verlagern. Vielmehr können diese Tiefenmessungen sämtlich bei ein und derselben Betriebsstellung der Strahlungsquelle 45 geschehen, während lediglich das Energieniveau der die Strahlungs¬ quelle 45 verlassenden Strahlung gesteuert wird.However, it is not necessary to shift the radiation source 45 to measure successive depth zones in the thickness 2 of the workpiece 3. Rather, these depth measurements can all be carried out in one and the same operating position of the radiation source 45, while only the energy level of the radiation leaving the radiation source 45 is controlled.
Die Ausbildung der Detektoren für die jeweilige Rück¬ streuung kann in beliebiger, jeweils geeigneter Weise erfolgen .The detectors for the respective backscattering can be designed in any suitable manner.
Fig. 4 zeigt ein typisches Rohdichteprofil 51 über der Dicke 2 des Werkstücks, in diesem Fall einer Spanplatte. Mit einer gestrichelten waagerechten Linie ist außerdem ein Mittelwert 52 der Rohdichte eingezeichnet. Die Maxima 53 und 54 des Rohdichteprofils 51 liegen wie gewünscht weit außen, wo im Bereich der Decklagen des Werkstücks 3 besonders hohe Rohdichtewerte angestrebt werden. Die Zonen in Fig. 4 links von dem Maximum 53 und rechts von dem Maximum 54 werden in der üblichen Weise später durch Abschliff oder Kalibrierschliff abgetragen, so daß die Maxima 53, 54 der Rohdichte schließlich tatsächlich an den Außenflächen des Werkstücks 3 liegen.4 shows a typical bulk density profile 51 over the thickness 2 of the workpiece, in this case a chipboard. An average value 52 of the bulk density is also drawn in with a dashed horizontal line. The maxima 53 and 54 of the bulk density profile 51 are, as desired, far out, where particularly high bulk density values are sought in the area of the top layers of the workpiece 3. The zones in FIG. 4 to the left of the maximum 53 and to the right of the maximum 54 are later removed in the usual manner by grinding or calibration grinding, so that the maxima 53, 54 of the bulk density are actually on the outer surfaces of the workpiece 3.
Fig. 4 zeigt auch, daß man in der zwischen den beiden Decklagen angeordneten Mittellage der Spanplatte mit verhältnimäßig geringen Rohdichtewerten auskommt. Fig. 4 also shows that one can get by with relatively low bulk density values in the middle layer of the chipboard arranged between the two cover layers.

Claims

P A T E N T A N S P R Ü C H E PATENT CLAIMS
1. Vorrichtung (1) zur Erstellung eines Rohdichteprofils (51) über die Dicke (2) eines plattenförmigen Werkstücks (3) aus nicht homogenem Stoff, z.B. einer mit Leim oder Mineralien gebundenen Span- oder Faserplatte ,1. Device (1) for creating a bulk density profile (51) over the thickness (2) of a plate-shaped workpiece (3) made of non-homogeneous material, e.g. a chipboard or fiberboard bound with glue or minerals,
mit einer Strahlungsquelle (5,15,21;27 bis 30;45) , deren Strahlung (6,13,14;43) auf das Werkstück (3) gesendet werden kann,with a radiation source (5, 15, 21; 27 to 30; 45), the radiation (6, 13, 14; 43) of which can be sent to the workpiece (3),
und mit einem Detektor (10,19,25;39 bis 42;48) zur Detektion von Strahlung nach ihrer Einwirkung auf das Werkstück (3) ,and with a detector (10, 19, 25; 39 to 42; 48) for detecting radiation after it has acted on the workpiece (3),
wobei der Detektor mit einer Einrichtung (12) zur Erstellung des Rohdichteprofils (51) elektrisch verbunden ist,wherein the detector is electrically connected to a device (12) for creating the bulk density profile (51),
dadurch gekennzeichnet, daß mit wenigstens einer Strahlungsquelle (5,15,21;27 bis 30;45) nacheinander Strahlung (6,13,14;43) unterschiedlich hoher Energie auf zumindest annähernd dieselbe Zielstelle (7,16, 22;34) des Werkstücks (3) sendbar ist,characterized in that with at least one radiation source (5, 15, 21; 27 to 30; 45) successively radiation (6, 13, 14; 43) of differently high energy on at least approximately the same target point (7, 16, 22; 34) of the Workpiece (3) can be sent,
wobei die Strahlung in Abhängigkeit von ihrer Energie nur sehr wenig (8;35) bis zur vollen Dicke (2) des Werkstücks (3) in das Werkstück (3) eindringt,the radiation depending on its energy penetrates very little (8; 35) up to the full thickness (2) of the workpiece (3) into the workpiece (3),
daß ein Einstrahlungswinkel (46,49,50) zwischen einer Längsachse der Strahlung (6,13,14) und einer die Zielstelle (34) enthaltenen Oberfläche (47) des Werk stück s ( 3 ) > 0° bis 90" ist,that an irradiation angle (46,49,50) between a longitudinal axis of the radiation (6,13,14) and a surface (47) of the target location (34) Workpiece s (3)> 0 ° to 90 ",
und daß durch wenigstens einen Detektor (10,19,25;39 bis 42;48) die Streuung (9 ,18,24;44) der Strahlung (6,13,14;43) über die Dicke (2) des Werkstücks (3) detektierbar und daraus durch Differenzbildung in der Einrichtung (12) das Rohdichteprofil (51) erstellbar ist.and that at least one detector (10, 19, 25; 39 to 42; 48) spreads (9, 18, 24; 44) the radiation (6, 13, 14; 43) over the thickness (2) of the workpiece ( 3) is detectable and the bulk density profile (51) can be generated therefrom by forming the difference in the device (12).
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Einstrahlungswinkel (46,49,50) in Abhängig¬ keit von der Meßtiefe (8,17,23) in dem Werkstück (3) änderbar ist.2. Device according to claim 1, characterized in that the irradiation angle (46,49,50) in dependence on the measuring depth (8,17,23) in the workpiece (3) can be changed.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß mehrere Strahlungsquellen (5,15,21) unterschiedlicher, aber jeweils zumindest annähernd konstanter Energie vorgesehen sind, daß die Strahlungsquellen (5,15,21) nacheinander zur Einwirkung auf die Zielstelle (7,16,22) bringbar sind, und daß die Strahlungsquellen (5,15,21) hintereinander entlang einer Bewegungsbahn (vgl. 4) des Werksstücks (3) stationär angeordnet sind.3. Apparatus according to claim 1 or 2, characterized in that a plurality of radiation sources (5,15,21) of different, but in each case at least approximately constant energy are provided, that the radiation sources (5,15,21) successively to act on the target point ( 7, 16, 22) can be brought in, and that the radiation sources (5, 15, 21) are arranged one behind the other along a path of movement (cf. 4) of the workpiece (3).
4. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß mehrere Strahlungsquellen (27 bis 30) unterschiedlicher, aber jeweils zumindest annähernd konstanter Energie vorgesehen sind, daß die Strahlungsquellen (27 bis 30) nacheinander zur Einwirkung auf die Zielstelle (34) bringbar sind, und daß die Strahlungsquellen (27 bis 30) an einem Revolver (31) angeordnet und nacheinander in eine Betriebsstellung schwenkbar sind.4. Apparatus according to claim 1 or 2, characterized in that a plurality of radiation sources (27 to 30) of different, but in each case at least approximately constant energy are provided, that the radiation sources (27 to 30) can be brought in succession to act on the target location (34) , and that the radiation sources (27 to 30) are arranged on a turret (31) and can be pivoted one after the other into an operating position.
5. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß nur eine Strahlungsquelle (45) vorgesehen ist, und daß die Höhe der Strahlungsenergie (vgl. 43) steuerbar ist. 5. The device according to claim 1 or 2, characterized characterized in that only one radiation source (45) is provided and that the level of the radiation energy (cf. 43) can be controlled.
PCT/EP1994/001540 1993-05-13 1994-05-13 Process for establishing the apparent density over the thickness of a board WO1994027138A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP94916230A EP0650592A1 (en) 1993-05-13 1994-05-13 Process for establishing the apparent density over the thickness of a board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4315988.5 1993-05-13
DE4315988A DE4315988C2 (en) 1993-05-13 1993-05-13 Device for creating a bulk density profile over the thickness of a plate-shaped workpiece

Publications (1)

Publication Number Publication Date
WO1994027138A1 true WO1994027138A1 (en) 1994-11-24

Family

ID=6487979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1994/001540 WO1994027138A1 (en) 1993-05-13 1994-05-13 Process for establishing the apparent density over the thickness of a board

Country Status (3)

Country Link
EP (1) EP0650592A1 (en)
DE (1) DE4315988C2 (en)
WO (1) WO1994027138A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10160398A1 (en) * 2001-12-10 2003-06-26 Dieffenbacher Gmbh Maschf Method and device for testing a mat made of biomass particles
US6889551B2 (en) * 2000-04-12 2005-05-10 Carter Holt Harvey Limited Method of estimating timber stiffness profiles
WO2008061531A1 (en) 2006-11-22 2008-05-29 Force Technology Method of providing a density profile of a plate-shaped body
GB2571099A (en) * 2018-02-15 2019-08-21 Bae Systems Plc Radiation detector
US11415532B2 (en) 2018-02-15 2022-08-16 Bae Systems Plc Radiation detector
US11650338B2 (en) 2018-11-23 2023-05-16 Bae Systems Plc Scintillation detector

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29706476U1 (en) * 1997-04-11 1998-03-19 Grecon Greten Gmbh & Co Kg Device for creating a bulk density profile over the thickness of a plate sample
DE10211382A1 (en) * 2002-03-14 2003-10-02 Siemens Ag Process for measuring a material distribution in an object used in the measurement of the quality of paper during paper production comprises measuring the material distribution based on optical measurements
ITMO20050341A1 (en) 2005-12-23 2007-06-24 Imal Srl EQUIPMENT FOR THE DENSITY MEASUREMENT OF MANUFACTURED PRODUCTS, PARTICULARLY OF PANELS MADE OF UNCONERENT PRESSED MATERIAL, AND RELATIVE METHOD
DE102010013765B4 (en) * 2010-03-31 2015-09-10 Fagus-Grecon Greten Gmbh & Co. Kg Method for testing wood workpieces produced in high multiplicity in a continuous process and apparatus preferably for carrying out this method
DE102012019533B4 (en) * 2012-10-05 2014-10-30 Fagus-GreCon Greten GmbH und Co. KG Method for calibrating a device for measuring the basis weights and device, preferably for carrying out the method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB846094A (en) * 1956-04-07 1960-08-24 Dunlop Rubber Co Improvements in or relating to weight or composition factor measuring apparatus for sheet materials
FR1340990A (en) * 1962-09-14 1963-10-25 Realisations Ultrasoniques Sa Method and device for examining the human body by means of ultrasound
EP0139317A2 (en) * 1983-08-26 1985-05-02 Dow Chemical (Nederland) B.V. Apparatus and method for the non-destructive inspection of solid bodies
EP0146707A2 (en) * 1983-12-07 1985-07-03 TERUMO KABUSHIKI KAISHA trading as TERUMO CORPORATION Ultrasonic measurement method, and apparatus therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2544354A1 (en) * 1975-10-03 1977-04-14 Siemens Ag METHOD OF DETERMINING THE DENSITY OF BODIES BY MEANS OF PENETRATING RAYS AND EQUIPMENT FOR ITS IMPLEMENTATION

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB846094A (en) * 1956-04-07 1960-08-24 Dunlop Rubber Co Improvements in or relating to weight or composition factor measuring apparatus for sheet materials
FR1340990A (en) * 1962-09-14 1963-10-25 Realisations Ultrasoniques Sa Method and device for examining the human body by means of ultrasound
EP0139317A2 (en) * 1983-08-26 1985-05-02 Dow Chemical (Nederland) B.V. Apparatus and method for the non-destructive inspection of solid bodies
EP0146707A2 (en) * 1983-12-07 1985-07-03 TERUMO KABUSHIKI KAISHA trading as TERUMO CORPORATION Ultrasonic measurement method, and apparatus therefor

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"ANALYTICAL INSTRUMENTS AND COMPONENTS", NTIS TECH NOTES, May 1988 (1988-05-01), SPRINGFIELD, VA US, pages 417 *
M.MENZEL ET AL.: "MOGLICHKEITEN DER ANWENDUNG VON QUANTENSTRAHLUNG ZUR ORTLICHEN DICHTEBESTIMMUNG", ISOTOPENPRAXIS, vol. 12, no. 12, 1976, pages 459 - 462 *
VON HUBERT POLGE ET AL.: "UBER DIE MOGLICHKEIT DER DICHTEMESSUNG VON SPANPLATTEN SENKRECHT ZUR PLATTENEBENE MIT HILFE VON RONTGENSTRAHLEN", HOLZTECHNOLOGIE, vol. 10, no. 2, 1969, pages 75 - 79 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6889551B2 (en) * 2000-04-12 2005-05-10 Carter Holt Harvey Limited Method of estimating timber stiffness profiles
DE10160398A1 (en) * 2001-12-10 2003-06-26 Dieffenbacher Gmbh Maschf Method and device for testing a mat made of biomass particles
DE10160398B4 (en) * 2001-12-10 2004-11-11 Dieffenbacher Gmbh + Co. Kg Method and device for testing a mat made of biomass particles
US6885198B2 (en) 2001-12-10 2005-04-26 Dieffenbacher Gmbh + Co. Kg Method and device for testing a mat made of biomass particles
WO2008061531A1 (en) 2006-11-22 2008-05-29 Force Technology Method of providing a density profile of a plate-shaped body
GB2571099A (en) * 2018-02-15 2019-08-21 Bae Systems Plc Radiation detector
US11415532B2 (en) 2018-02-15 2022-08-16 Bae Systems Plc Radiation detector
GB2571099B (en) * 2018-02-15 2022-12-21 Bae Systems Plc Radiation detector
US11650338B2 (en) 2018-11-23 2023-05-16 Bae Systems Plc Scintillation detector

Also Published As

Publication number Publication date
DE4315988A1 (en) 1994-11-24
DE4315988C2 (en) 1997-08-21
EP0650592A1 (en) 1995-05-03

Similar Documents

Publication Publication Date Title
EP0311177B1 (en) System for examining a body with a radiance source
EP0571017B1 (en) Filtering procedure for an X-ray system and arrangement to carry out such a filtering procedure
EP0209952B1 (en) Method for the measurement of the spatial distribution of scattering cross-sections in elastically scattered x-radiation, and arrangement for carrying out such a method
EP0153786B1 (en) X-ray apparatus
EP1711800B1 (en) Method and device for determining the material of an object
DE2729901A1 (en) THICKNESS MEASURING DEVICE WITH X-RAYS OR GAMMA RAYS
DE102006023309A1 (en) Method and device for detecting material by means of rapid neutrons and a continuous spectral x-ray beam
DE4214369A1 (en) METHOD AND DEVICE FOR DETERMINING THE BONE MINERAL DENSITY AND THE BONE THICKNESS
EP0496454A1 (en) X-Ray apparatus
DE2358237C2 (en) Method for determining the content of at least one chemical element in a substance, in particular for determining the sulfur content in hydrocarbon fuels
DE4315988C2 (en) Device for creating a bulk density profile over the thickness of a plate-shaped workpiece
DE3643764A1 (en) METHOD FOR SELECTIVE FILLER MEASUREMENT ON RUNNING MATERIAL SHEETS, IN PARTICULAR PAPER SHEETS
DE1296829B (en) Methods and devices for determining the content of heavy elements in a sample by measuring its optically excited K alfa or K beta X-ray fluorescence lines
CH643359A5 (en) METHOD FOR TESTING PRODUCT SAMPLES AND ARRANGEMENT FOR IMPLEMENTING THE METHOD.
DE1220640B (en) Device for the continuous quantitative determination of proportions per unit mass of solids
EP0217464B1 (en) Method for determining photoattenuation in a domain of a test object, and arrangement for carrying out the method
DE3035929C2 (en) Device for determining the volume fractions of a multicomponent mixture by transmitting several gamma lines
DE2912210C2 (en) Scintillator arrangement with a scintillator body of trapezoidal cross-section
DE1598841A1 (en) Device for analyzing and / or separating mixtures
DE19603000A1 (en) Calibration method for computer-controlled X=ray spectroscope
DE2426794A1 (en) DEVICE FOR RADIATION DETECTION AND METHOD OF DETERMINING THE PRESENCE OF AN ELEMENT OF INTEREST IN A SAMPLE
DE102007051135A1 (en) Apparatus for the online determination of the content of a substance and method using such a device
EP1526376A1 (en) Method and apparatus for determining a basis weight and/or a chemical composition of a conveyed material specimen
DE102009051643B4 (en) X-ray analysis device and method for X-ray analysis
DE3616520A1 (en) METHOD FOR DETERMINING DENSITY OF DOCUMENTS

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1994916230

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref country code: US

Ref document number: 1995 367291

Date of ref document: 19950112

Kind code of ref document: A

Format of ref document f/p: F

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1994916230

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1994916230

Country of ref document: EP