WO1994026871A1 - Capteur electrochimique de dosage enzymatique de type enfet - Google Patents

Capteur electrochimique de dosage enzymatique de type enfet Download PDF

Info

Publication number
WO1994026871A1
WO1994026871A1 PCT/FR1994/000552 FR9400552W WO9426871A1 WO 1994026871 A1 WO1994026871 A1 WO 1994026871A1 FR 9400552 W FR9400552 W FR 9400552W WO 9426871 A1 WO9426871 A1 WO 9426871A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
enfet
enzymatic
membrane
enzyme
Prior art date
Application number
PCT/FR1994/000552
Other languages
English (en)
Inventor
Alexei Soldatkine
Alexandre Choulga
Claude Martelet
Nicole Jaffrezic-Renault
Hubert Maupas
Anne El'skaya
Original Assignee
Ecole Centrale De Lyon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecole Centrale De Lyon filed Critical Ecole Centrale De Lyon
Priority to EP94915608A priority Critical patent/EP0651782A1/fr
Publication of WO1994026871A1 publication Critical patent/WO1994026871A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/002Electrode membranes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4145Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for biomolecules, e.g. gate electrode with immobilised receptors

Definitions

  • the present invention belongs to the general technical field of integrated electrochemical sensors, based on the principle of dosing a substrate using an enzyme and a field effect transistor, sensitive to at least one given ionic species ( Ion Sensitive Field Effect Transistor, ISFET).
  • ISFET Ion Sensitive Field Effect Transistor
  • ENFET ENzymatic Field Effect Transistor
  • the invention relates to an electrochemical sensor for enzymatic assay of the ENFET type, in which the selective grid, sensitive to at least one given ionic species, is at least partially covered:
  • At least one internal membrane comprising at least one enzyme capable of catalyzing the decomposition of the substrate (or substrates) to be assayed, by forming and / or consuming the aforementioned given ionic species,
  • This type of sensor exploits the fact that the enzyme which it contains causes the hydrolysis of the substrate to be assayed and, consequently, a modification of the pH of the assay solution in the vicinity of the surface of the sensor, for example.
  • the iSFET used is an ISFET for measuring pH. The pH variations thus determined are directly related to the concentration of the substrate to be assayed.
  • ENFET sensors have the advantage, among other things, of having a relatively small size, of being of a low cost price, of offering a very good measurement sensitivity, of giving access to multiple possibilities of assays. different substrates and to be biocompatible.
  • glucose and urea which involve, respectively, glucose oxidase (GOD) and urease.
  • ENFETs Another obstacle to the development of ENFETs is that their dynamic measurement interval, i. e. the substrate concentration range in which the response of the sensor is linear, is relatively limited. Often, this dynamic measurement interval is well below normal biological concentrations of substrates, such as glucose or urea.
  • ENFET sensors for glucose measurement and comprising an enzyme, glucose oxidase, immobilized in a polyacrylamide gel or else in bovine serum albumin crosslinked with glutaraldehyde.
  • ENFETs do not make it possible to eliminate the penalizing dilution operation, any more than the harmful influence of the buffer.
  • the effect of ionic strength which is weak in the case of biological samples, must be neutralized by adding NaCl.
  • Such an arrangement makes it possible to restrict the diffusion of glucose from the assay medium to the enzymatic membrane and thus to significantly increase the dynamic measurement interval of the sensor.
  • ENFET REFET differential circuit is also used in the experiments described in this document, in order to limit the influence of pH variations in the dosing medium. In any event, this variant in the mode of support of the enzyme does not resolve anything with regard to the major problem of the harmful influence of the buffer.
  • One of the objects of the present invention is to provide an electrochemical enzyme dosing sensor, of the ENFET type, in which the negative effect of the buffer, possibly present in the dosing medium, is not felt, in particular with regard to the threshold of detection of the substrate considered.
  • Another object of the invention is to provide an ENFET sensor having a wide dynamic measurement interval, as well as a certain insensitivity to variations in pH of the assay medium; but on the other hand a sensitivity for measuring the enzymatic activity, therefore the concentration of substrate to be assayed, high.
  • Another object of the invention is to provide an ENFET sensor in which the enzymatic reaction of hydrolysis of the substrate takes place without disturbance, resulting, for example, from the ionic strength of the assay medium.
  • Another object of the invention is to provide an ENFET sensor of limited cost price.
  • the Applicant has had the merit of highlighting that the nature of the material constituting the additional membrane is preponderant with regard to the insensitivity of the sensor vis-à-vis the buffer. It was after much research and experience that she was able to isolate the class of ionomeric materials as being particularly suitable for the additional membrane.
  • the present invention achieves the above objects, among others, by proposing an electrochemical sensor for enzymatic assay, of the field effect transistor type (ENFET), in which the selective grid, sensitive to at least one ionic species given, is at least partially covered by at least one internal enzymatic layer comprising at least one enzyme capable of catalyzing the decomposition of the substrate to be assayed, by forming and / or consuming the aforementioned given ionic species and by at least one additional external membrane, superimposed on the enzymatic layer, the originality of this sensor coming, essentially, from the fact that this additional membrane is based on at least one ionomer.
  • ENFET field effect transistor type
  • ionomer designates ionic polymers having inorganic salt groups linked to the polymer chain. This definition corresponds to that given in "Encyclopedia of Polymer
  • the ionomer constituting the additional membrane, is chosen from the following families of ionomers:
  • polyacylates such as polyacetate or butyrate and polyvinylimidazole
  • Perfluorinated, perfluorinated ionomers being preferred and, among them, perfluorosulfonates being particularly preferred.
  • One of the most suitable ionomers is a copolymer of tetrafluoroethylene and perfluorinated vinyl ether, having a fluorosulfonate group.
  • polyvinyl butyral which is a linear copolymer of butyral vinyl / vinyl alcohol / vinyl acetate.
  • the respective proportions of these comonomers vary from 60 to 90/9 to 33/1 to 7, preferably from 70 to 80/28 to 19/1 to 2, the 75/22/3 ratio being particularly preferred.
  • polyvinylimidazole which is a positively charged ionic polymer.
  • the polymers marketed under the name EASTMAN AQ polymers by the company EASTMAN belong to this family of amorphous polyesters.
  • the ENFET thus produced, has an extremely limited sensitivity to the surrounding buffer capacity. It should also be noted that this ENFET has a relatively wide dynamic measurement interval and, moreover, it allows the enzymatic reaction to be carried out under optimal conditions. According to the invention, the additional ionomer membrane has a thickness which is the result of a compromise between the insensitivity vis-à-vis the target buffer and the measurement speed.
  • the thickness of the additional membrane can be between 0, 1 and 10 micrometers, preferably between 0.5 and 5 micrometers and, more preferably still, between 0.5 and 2.5 micrometers.
  • the internal enzymatic layer and in accordance with a first embodiment, it is constituted by a membrane forming a matrix in which the enzyme is included and immobilized.
  • the constituent material of this membrane is, advantageously, at least one macromolecular compound, preferably chosen from proteins, polysaccharides, synthetic polymers and copolymers.
  • non-enzymatic proteins such as collagens, albumin, preferably crosslinked.
  • polysaccharides the illustration can be perfected by mentioning alginates, chitin, cellulose and its derivatives, such as nitro cellulose or cellulose esters and ethers, or even starches and derivatives.
  • polyacrylamide gels vinyl polymers, in particular polyvinyl acetates, polyvinyl alcohols, preferably polyvinyl butyral alcohol.
  • polyurethanes or polysiloxanes, of the heteropolysiloxane type carrying functional groups, such as amines, are also suitable.
  • the crosslinking takes place advantageously using glutaraldehyde and, in this regard, it is interesting to note that the level of crosslinking has an effect on the extension of the dynamic interval. of measurement.
  • This level of crosslinking is linked to the time of exposure to glutaraldehyde, which is preferably chosen from 20 to 60 minutes and, more preferably still, to 30 minutes at room temperature.
  • the ratio R expressed in% by mass, varies from 5 to 95, preferably from 8 to 50 and, more preferably still, from 9 to 11.
  • the internal membrane contains at at least one polyol, preferably glycerol, sucrose or sorbitol, glycerol being particularly preferred.
  • This polyol has the effect of improving the surface condition, the mechanical and adhesion properties of the enzymatic membrane.
  • the ratio R 2 of macromolecular compounds / polyols, expressed in% by volume, is between 2.5 and 20, preferably between 5 and 15 and, more preferably still, is of the order of 10;
  • the enzyme (or enzymes) is directly covalently linked to the selective grid.
  • the ENFET sensor according to the invention has, for example, a general structure of the type of that of known ISFET or ENFET sensors.
  • an enzymatic electrochemical dosing device using at least one ENFET measurement sensor, as described above, as well as at least one reference sensor (REFET) similar to the above-mentioned measurement sensor , except that it does not contain an enzyme.
  • ENFET ENFET measurement sensor
  • REFET reference sensor
  • Fig. 1 Graphs of the voltage U measured in millivolts by ENFET glucose oxidase sensors allowing the measurement of glucose, as a function of the glucose concentration in millimoles.
  • the curves Ia, Ib correspond to a sensor 1 according to the prior art membrane and free of additional areas 2c, 2d to a sensor 2 with an additional membrane made of Nafion ® in accordance with the invention.
  • the measurements were made in a medium titrating 1 millimole / 1 of phosphate buffer and a pH equal to 7.4, while for measurements b and d, the buffer concentration is 10 millimoles / 1 for a 7.4 pH.
  • Fig. 2 Graph of dU / dT (mV.m 1 ) as a function of the glucose concentration (millimoles) for sensors 1 and 2 under conditions a, b and c, d above.
  • Fig. 3 Graph of the measurement sensitivity of a sensor 3 with additional polyvinyl butyral membrane according to the invention, as a function of the glucose concentration in millimoles / 1.
  • enzymatic ENFET sensors comprising glucose oxidase and intended for the determination of glucose.
  • a reference ENFET 1 is produced in accordance with the prior art and having no additional membrane in addition to the enzymatic membrane and, on the other hand, an ENFET 2 sensor having an additional membrane based on perfluorosulfonate ionomer sold under the registered trademark Nafion ® .
  • the ENFET sensors used are of a perfectly known type and are obtained from ISFET pH sensors, such as those described in Sensors and
  • the glucose oxidase (GOD) used comes from vital Penicillium, having an activity of 168 IU / mg and coming from the factory COSARSKY (CHERKASY, Ukraine).
  • bovine serum albumin is that sold by the SIGMA Company.
  • Glutaraldehyde is presented in a solution containing 25% and sold by the company MERCK.
  • the Nafion ® used is the commercial product consisting of a 5% solution in a hydroalcoholic mixture containing 10% water and sold by the company ALDRICH under the reference 27,470-4, page 937 catalog.
  • the conventional procedure consists in preparing a phosphate buffer solution (KH 2 PO 4 - NaOH) pH 7.4, titrating 20 millimoles and containing
  • the membrane is obtained, first of all, by depositing a drop of the previous solution on the sensitive part of the ENFET sensor, the REFET being treated with the same enzyme-free solution, then by exposing the sensor to vapors of glutaraldehyde for 30 min.
  • the sensors thus prepared are then dried at room temperature for 10 to 15 min. They are stored before use, in 20 mM phosphate buffer at a pH of 7.4 or in the dry state. In the latter case, the addition of a preservative is not necessary.
  • the measurements are made at room temperature.
  • Fig. 1 shows the surprising and significant efficiency of sensor 2 according to H
  • the polyvinyl butyral solution used for the deposition is ethanolic and has a titer of 5%. It is clear from fig. 3 that the ENFET sensor 3 according to the invention makes it possible to obtain a curve of measurement sensitivity (microvolts / s) / glucose concentration (millimoles / 1), approximately linear from 1 millivolt to 50 millivolts. It can therefore be deduced therefrom that the additional membranes based on ionomers of the sensors according to the invention have the additional advantage, but not negligible, of allowing the extension of the dynamic measurement interval of the sensor. This facilitates the measurements since it is no longer necessary to dilute the dosing medium.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pathology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

La présente invention concerne un capteur électrochimique de dosage enzymatique, du type transistor à effet de champ (ENFET), dans lequel la grille sélective, sensible à au moins une espèce ionique donnée, est, au moins partiellement, recouverte: par au moins une couche interne enzymatique comprenant au moins une enzyme apte à catalyser la décomposition du (ou des) substrat(s) à doser, en formant et/ou en consommant la susdite espèce ionique donnée; et par au moins une membrane additionnelle externe, superposée à la couche enzymatique; caractérisé en ce que cette membrane additionnelle est à base d'au moins un ionomère. Un tel capteur présente l'avantage de ne pas être soumis à l'influence négative du tampon susceptible d'être présent dans le milieu de dosage. Application aux analyses biologiques, notamment de glucose ou d'urée, à l'aide de glucose oxydase et d'uréase, respectivement.

Description

CAPTEUR ELECTROCHIMIQUE DE DOSAGE ENZYMATIQUE DE TYPE ENFET
DOMAINE TECHNIQUE :
La présente invention appartient au domaine technique général des capteurs électrochimiques intégrés, reposant sur le principe du dosage d'un substrat à l'aide d'une enzyme et d'un transistor à effet de champ, sensible à au moins une espèce ionique donnée (Ion Sensitive Field Effect Transistor, ISFET).
ETATDELATECHNIQUEANTERIEURE:
De tels capteurs sont communément dénommés ENFET : ENzymatic Field Effect Transistor = transistors à effet de champ enzymatique. De manière plus précise, l'invention concerne un capteur électrochimique de dosage enzymatique de type ENFET, dans lequel la grille sélective, sensible à au moins une espèce ionique donnée, est au moins partiellement recouverte :
- par au moins une membrane interne comprenant au moins une enzyme apte à catalyser la décomposition du substrat (ou des substrats) à doser, en formant et/ou en consommant la susdite espèce ionique donnée,
- et par au moins une membrane additionnelle externe.
Ce type de capteur exploite le fait que l'enzyme qu'il contient entraîne l'hydrolyse du substrat à doser et, par suite, une modification du pH de la solution de dosage au voisinage de la surface du capteur, par exemple. Dans ce cas, l'iSFET mis en oeuvre est un ISFET de mesure de pH. Les variations de pH ainsi déterminées sont directement reliées à la concentration du substrat à doser.
Ces capteurs ENFET ont l'avantage, entre autres, d'avoir une taille relativement réduite, d'être d'un coût de revient peu élevé, d'offrir une très bonne sensibilité de mesure, de donner accès à de multiples possibilités de dosages de différents substrats et d'être biocompatibles.
Il s'ensuit qu'il existe de nombreuses possibilités d'application de ces capteurs ENFET dans le domaine de l'analyse clinique. Parmi les substrats à doser les plus étudiés, on peut citer le glucose et l'urée qui font, respectivement, intervenir la glucose oxydase (GOD) et l'uréase.
Les perspectives prometteuses de développement, pressenties initialement pour ces capteurs ENFET, ont été quelque peu contrariées par un certain nombre d'obstacles techniques sérieux.
Le plus important d'entre eux est l'influence extrêmement négative de la capacité tampon du milieu de dosage sur la réponse du capteur. Ce problème est particulièrement aigu dans le cadre des applications en analyses biomédicales de ces capteurs, puisque les milieux biologiques sont, par définition, des milieux tampons.
Corollairement à cela, il est clair que le pH du milieu de dosage et ses éventuelles variations constituent, également, un facteur pénalisant au regard des performances des capteurs ENFET.
Un autre frein au développement des ENFET est que leur intervalle dynamique de mesure, i. e. la gamme de concentration en substrat dans laquelle la réponse du capteur est linéaire, est relativement limité. Bien souvent, cet intervalle dynamique de mesure se situe largement en deçà des concentrations biologiques normales de substrats, tels que le glucose ou l'urée.
Cela impose donc de procéder à des dilutions du milieu de dosage, de manière à ramener celui-ci dans une fenêtre de concentration en substrat, pour laquelle la mesure du pH par l'iFSET est directement corrélée à la concentration à mesurer.
Un certain nombre de scientifiques, dont les Inventeurs de la présente invention, ont pris en considération ces différents problèmes et ont proposé des solutions plus ou moins satisfaisantes.
On sait, par exemple, que, pour éliminer l'influence des variations de pH dans le milieu de dosage, il est avantageux de mettre en oeuvre un dispositif de mesures différentielles comprenant un capteur de référence (REFET) et un capteur de mesure ENFET. SHUL'GA et al. ont, par ailleurs décrit dans "Sensors and Actuators B",
10 (1992), 41-46, deux types de capteurs ENFET destinés au dosage du glucose et comprenant une enzyme, la glucose oxydase, immobilisée dans un gel de polyacrylamide ou bien encore dans de la sérum albumine bovine réticulée au glutaraldéhyde. Ces ENFET ne permettent pas de supprimer l'opération pénalisante de dilution, pas plus que l'influence néfaste du tampon. En outre, l'effet de la force ionique, faible dans le cas d'échantillons biologiques, doit être neutralisé par un ajout de NaCl.
SATTO et al. proposent dans "Sensors and Actuators B", 5 (1991), 237- 239, un capteur ENFET pour le dosage du glucose comprenant une membrane interne dans laquelle l'enzyme est immobilisée, ainsi qu'une membrane externe constituée d'albumine hautement réticulée à l'aide de glutaraldéhyde.
Une telle disposition permet de restreindre la diffusion du glucose du milieu de dosage vers la membrane enzymatique et ainsi d'augmenter, de manière significative, l'intervalle dynamique de mesure du capteur.
Dans le document "Analytica Chimica Acta", 231 (1990), 305-308, GARDIES et al. décrivent des capteurs ENFET dans lesquels la couche interne enzymatique n'est pas constituée par une membrane polymère formant une matrice d'immobilisation d'enzymes, mais est simplement constituée de l'enzyme en elle- même, directement liée par liaison covalente à la grille sélective.
Un montage différentiel ENFET REFET est en outre mis en oeuvre dans les expériences décrites dans ce document, en vue de limiter l'influence des variations de pH dans le milieu de dosage. En tout état de cause, cette variante dans le mode de support de l'enzyme ne résoud rien en ce qui concerne le problème majeur de l'influence néfaste du tampon.
Un des objets de la présente invention est de fournir un capteur électrochimique de dosage enzymatique, de type ENFET, dans lequel l'effet négatif du tampon, éventuellement présent dans le milieu de dosage, ne se fait pas ressentir, notamment au regard du seuil de détection du substrat considéré.
Un autre objet de l'invention est de fournir un capteur ENFET possédant un intervalle dynamique de mesure étendu, ainsi qu'une certaine insensibilité vis-à- vis des variations de pH du milieu de dosage ; mais en revanche une sensibilité de mesure de l'activité enzymatique, donc de la concentration en substrat à doser, élevée.
Un autre objet de l'invention est de fournir un capteur ENFET dans lequel la réaction enzymatique d'hydrolyse du substrat se déroule sans perturbation, issue, par exemple, de la force ionique du milieu de dosage. Un autre objet de l'invention est de fournir un capteur ENFET de coût de revient limité.
La Demanderesse a eu le mérite de mettre en évidence que la nature du matériau constitutif de la membrane additionnelle est prépondérante au regard de l'insensibilisation du capteur vis-à-vis du tampon. C'est après de nombreuses recherches et expériences qu'elle a pu isoler la classe des matériaux ionomères comme étant particulièrement appropriée pour la membrane additionnelle.
RESUME DE L'INVENTION :
Ainsi, la présente invention atteint les objets ci-dessus, parmi d'autres, en proposant un capteur électrochimique de dosage enzymatique, du type transistor à effet de champ (ENFET), dans lequel la grille sélective, sensible à au moins une espèce ionique donnée, est au moins partiellement recouverte par au moins une couche interne enzymatique comprenant au moins une enzyme apte à catalyser la décomposition du substrat à doser, en formant et/ou en consommant la susdite espèce ionique donnée et par au moins une membrane additionnelle externe, superposée à la couche enzymatique, l'originalité de ce capteur provenant, essentiellement, du fait que cette membrane additionnelle est à base d'au moins un ionomère.
EXPOSE DE TAILLE :
Au sens de la présente invention, le terme "ionomère" désigne des polymères ioniques présentant des groupements salins inorganiques liés à la chaîne polymère. Cette définition correspond à celle donnée dans "Encyclopedia of Polymer
Science and Engineering", volume 8, Identification to Lignin, 1987, pages 393-396. Conformément à l'invention, le ionomère, constitutif de la membrane additionnelle, est choisi parmi les familles de ionomères suivantes :
- copolymères d'éthylène et d'acide acrylique ou méthacrylique,
- élastomères carboxylés, - polyisobutylènes sulfonatés téléchéliques,
- terpoly mères éthylène-propylène-diène sulfonatés,
- polyvinyliques substitués dont les polyacylates, tels que le polyacétate ou butyrate et le polyvinylimidazole,
- copolymères d'acide(s) aromatique(s) dicarboxylique(s) et de résidu(s) glycolyque(s) aliphatique(s) ou cyclo aliphatique(s),
- perfluorés, les ionomères perfluorés étant préférés et, parmi eux, les perfluorosulfonates étant particulièrement préférés.
L'un des ionomères les plus appropriés est un copolymère de tétrafluoroéthylène et d'éther vinylique perfluoré, présentant un groupement fluorosulfonate.
L'Εncyclopedia of Polymer Science and Engineering" donne, dans son volume 16 page 642-643, des précisions quant aux ionomères perfluorés.
A titre de variante de ionomère, on peut citer le polyvinyle butyral, qui est un copolymère linéaire de vinyle butyral/alcool vinylique/acétate de vinyle. Les proportions respectives de ces comonomères varient de 60 à 90/9 à 33/1 à 7, de préférence de 70 à 80/28 à 19/1 à 2, le ratio 75/22/3 étant particulièrement préféré.
Un autre composé ionomère avantageux est le polyvinylimidazole, qui est un polymère ionique chargé positivement. Sans que cela ne soit limitatif, on peut également citer comme exemple de ionomère, les polyesters amorphes constitués par des copolymères d'acides dicarboxyliques aromatiques et de résidus glycolyques aliphatiques ou cycloaliphatiques, substitués par des groupements ioniques du type (SO3 ' Na+) et comprenant des groupements hydroxyles terminaux. Les polymères commercialisés sous la dénomination polymères EASTMAN AQ par la Société EASTMAN appartiennent à cette famille de polyesters amorphes. L'un des facteurs à prendre en compte dans le choix des ionomères est relatif au procédé d'obtention de la membrane additionnelle, qui s'effectue, classiquement, par immersion dans une solution de polymères (spin-coating). Cela impose que ledit polymère soit soluble dans un solvant compatible avec les autres constituants du capteur.
L'ENFET, ainsi réalisé, bénéficie d'une sensibilité à l'égard de la capacité tampon environnante, extrêmement limitée. Il est également à relever que cet ENFET présente un intervalle dynamique de mesure relativement étendu et, qu'en outre, il permet à la réaction enzymatique de s'effectuer dans des conditions optimales. Suivant l'invention, la membrane additionnelle en ionomère a une épaisseur qui est le résultat d'un compromis entre l'insensibilité vis-à-vis du tampon visée et la vitesse de mesure.
En effet, il est clair que, plus la membrane additionnelle est épaisse, plus la diffusion des espèces ioniques protagonistes s'opère lentement. La Demanderesse a déterminé que l'épaisseur de la membrane additionnelle peut être comprise entre 0, 1 et 10 micromètres, de préférence entre 0,5 et 5 micromètres et, plus préférentiellement encore, entre 0,5 et 2,5 micromètres. Concernant la couche enzymatique interne, et conformément à un premier mode de réalisation, elle est constituée par une membrane formant une matrice dans laquelle est incluse et immobilisée l'enzyme. Le matériau constitutif de cette membrane est, avantageusement, au moins un composé macromoléculaire, de préférence choisi parmi les protéines, les polysaccharides, les polymères et copolymères synthétiques.
A titre d'exemples de protéines préférées, on peut citer les protéines non enzymatiques, telles que les collagènes, les albumines, de préférence réticulées.
S'agissant des polysaccharides, on peut parfaire l'illustration en évoquant les alginates, la chitine, la cellulose et ses dérivés, tels que la nitro cellulose ou les esters et les éthers de cellulose, ou bien encore les amidons et dérivés.
Parmi les polymères convenables, on trouve les gels de polyacrylamide, les polymères vinyliques, dont notamment les polyacétates de vinyle, les alcools polyvinyliques, de préférence l'alcool polyvinylbutyral. Les polyuréthanes ou les polysiloxanes, du type hétéropolysiloxanes portant des groupements fonctionnels, tels que les aminés, sont également appropriés.
Dans le cas de l'albumine, la réticulation s'opère, avantageusement, à l'aide de glutaraldéhyde et, à ce propos, il est intéressant de noter que le niveau de réticulation a une incidence sur l'extension de l'intervalle dynamique de mesure. Ce niveau de réticulation est lié au temps d'exposition au glutaraldéhyde, lequel est choisi, de préférence, de 20 à 60 minutes et, plus préférentiellement encore, à 30 minutes à la température ambiante. Le ratio Rj = enzyme : composé macromoléculaire, a également son importance au regard de l'importance de la plage de linéarité de la réponse en différence de potentiel par rapport à la concentration en substrat.
Ainsi, le ratio R, exprimé en % en masse, varie de 5 à 95, de préférence de 8 à 50 et, plus préférentiellement encore, de 9 à 11. Conformément à une disposition avantageuse de l'invention, la membrane interne contient au moins un polyol, de préférence le glycérol, le saccharose ou le sorbitol, le glycérol étant particulièrement préféré.
Ce polyol a pour effet d'améliorer l'état de surface, les propriétés mécaniques et d'adhésion de la membrane enzymatique. Sur le plan pondéral, le rapport R2 composés macromoléculaires/polyols, exprimé en % en volume, s'tablit entre 2,5 et 20, de préférence entre 5 et 15 et, plus préférentiellement encore, est de l'ordre de 10;
Selon un deuxième mode de réalisation de la couche enzymatique, l'enzyme (ou les enzymes) est directement liée de façon covalente à la grille sélective.
Ce greffage est rendu possible grâce à une fonctionnalisation chimique préalable de la surface de la grille sélective (cf. notamment, dans le document GARDIES et al sus-mentionné).
Le capteur ENFET selon l'invention possède, par exemple, une structure générale du type de celle des capteurs ISFET ou ENFET connus.
Pour s'affranchir des phénomènes parasites, tels que les variations de pH, il est intéressant d'avoir recours à un dispositif de dosage électrochimique enzymatique mettant en oeuvre au moins un capteur de mesure ENFET, tel que décrit ci-dessus, ainsi qu'au moins un capteur de référence (REFET) semblable au susdit capteur de mesure, à la différence près qu'il ne comprend pas d'enzyme.
Les exemples qui suivent mettent bien en évidence toutes les variantes et les avantages des capteurs ENFET selon l'invention et illustrent, également, un de leurs modes d'obtention.
DESCRIPTION DES FIGURES
Fig. 1 : Graphes de la tension U mesurée en millivolts par des capteurs ENFET à glucose oxydase permettant la mesure du glucose, en fonction de la concentration en glucose en millimoles. Les courbes la, lb correspondent à un capteur 1 selon l'art antérieur exempt de membrane additionnelle et les courbes 2c, 2d à un capteur 2 comprenant une membrane additionnelle à base de Nafion® conformément à l'invention. Pour a et c les mesures se sont faites dans un milieu titrant 1 millimole/1 de tampon phosphate et de pH égal à 7,4, tandis que pour les mesures b et d, la concentration en tampon est de 10 millimoles/1 pour un pH de 7,4.
Fig. 2 : Graphe de dU/dT (mV.m 1) en fonction de la concentration en glucose (millimoles) pour les capteurs 1 et 2 dans les conditions a, b et c, d ci- dessus. Fig. 3 : Graphe de la sensibilité de mesure d'un capteur 3 avec membrane additionnelle en polyvinyle butyral conforme à l'invention, en fonction de la concentration en glucose en millimoles/1. EXEMPLES
EXEMPLE 1 :
Dans cet exemple, on se propose de fabriquer des capteurs ENFET enzymatiques, comprenant de la glucose oxydase et destinés au dosage du glucose. On réalise, d'une part, un ENFET 1 de référence conforme à l'art antérieur et ne présentant pas de membrane additionnelle en plus de la membrane enzymatique et, d'autre part, un capteur ENFET 2 possédant une membrane additionnelle à base de ionomère perfluorosulfonaté commercialisé sous la marque déposée Nafion®.
1.1 CAPTEURS ENFET :
Les capteurs ENFET mis en oeuvre sont d'un type parfaitement connu et sont obtenus à partir de capteurs ISFET pH, tels que ceux décrits dans Sensors and
Actuators B, 10 (1992), page 42, paragraphe 2.1.
1.2 MATÉRIAUX :
La glucose oxydase (GOD) mise en oeuvre provient de Pénicillium vital, ayant une activité de 168 Ul/mg et provenant de la fabrique COSARSKY (CHERKASY, Ukraine).
La sérum albumine bovine est celle commercialisée par la Société SIGMA. Le glutaraldéhyde se présente en solution titrant 25 % et commercialisée par la Société MERCK.
Le Nafion® utilisé est le produit commercial constitué par une solution à 5 % dans un mélange hydroalcoolique contenant 10 % d'eau et vendu par la Société ALDRICH sous la référence 27,470-4, page 937 catalogue. 1.3 MÉTHODOLOGIE :
1.3.1 MEMBRANE ENZYMATIQUE :
La procédure classique consiste à préparer une solution de tampon phosphate (KH2PO4 - NaOH) pH 7,4, titrant 20 millimoles et contenant
5 % de glucose oxydase, 5 % de sérum albumine bovine et 10 % de glycérol. La membrane est obtenue, tout d'abord, par dépôt d'une goutte de la solution précédente sur la partie sensible du capteur ENFET, le REFET étant traité par la même solution exempte d'enzyme, puis par exposition du capteur à des vapeurs de glutaraldéhyde pendant 30 min.
Les capteurs ainsi préparés sont ensuite séchés à la température ambiante pendant 10 à 15 min. Ils sont conservés avant utilisation, dans du tampon phosphate à 20 mM à un pH de 7,4 ou à l'état sec. Dans ce dernier cas, l'ajout d'un agent conservateur n'est pas nécessaire.
1.3.2 FORMATION DES MEMBRANES ADDITIONNELLES :
Elle s'opère par dépôt à la tournette d'une solution de Nafion® à 5 % , puis séchage à température ambiante. Le stockage des ENFET ainsi obtenus se fait dans du tampon phosphate 20 millimolaire à pH 7,4.
1.4 MESURES :
On procède à une mesure différentielle de différence de potentiel entre l'ENFET/REFET du capteur 1 et du capteur 2, dans une cellule de mesure plus ou moins tamponnée et contenant du glucose en solution.
Les mesures s'opèrent à température ambiante.
1.5 RÉSULTATS :
La fig. 1 montre la surprenante et importante efficacité du capteur 2 selon H
l'invention, au regard de l'insensibilité de la mesure vis-à-vis des variations de pouvoir/tampon. Les courbes c, tampon = 1 millimole, et d, tampon = 10 millimoles, sont superposables, tandis que l'écart entre les courbes a et b est manifeste. On observe, également, sur la fig. 2 que le capteur 2 selon l'invention a une vitesse de réponse légèrement plus faible que le capteur 1 de référence.
EXEMPLE 2 :
Dans cet exemple, on prépare un capteur ENFET 3 selon l'invention, de dosage du glucose (enzyme = glucose oxydase), de la même manière et avec les mêmes matériaux que ceux de l'exemple 1, à la différence près que la membrane additionnelle du capteur 3 n'est plus à base de Nafion®, mais à base d'un ionomère formé par du polyvinyle butyral, c'est-à-dire un copolymère de vinyle butyral/d'alcool vinylique/d'acétate de vinyle (75 : 22 : 3 respectivement).
La solution de polyvinyle butyral utilisée pour le dépôt est éthanolique et titre 5 % . Il ressort clairement de la fig. 3 que le capteur ENFET 3 selon l'invention permet d'obtenir une courbe de sensibilité de mesure (microvolts/s)/concentration en glucose (millimoles/1), approximativement linéaire de 1 millivolt à 50 millivolts. On peut donc en déduire que les membranes additionnelles à base de ionomères des capteurs selon l'invention ont, pour avantage supplémentaire, mais non négligeable, de permettre l'extension de l'intervalle dynamique de mesure du capteur. Cela facilite les mesures, car il n'est plus nécessaire de diluer le milieu de dosage.

Claims

REVENDICATIONS :
1 - Capteur électrochimique de dosage enzymatique, du type transistor à effet de champ (ENFET), dans lequel la grille sélective, sensible à au moins une espèce ionique donnée, est au moins partiellement recouverte : - par au moins une couche interne enzymatique comprenant au moins une enzyme apte à catalyser la décomposition du (ou des) substrat(s) à doser, en formant et/ou en consommant la susdite espèce ionique donnée, - et par au moins une membrane additionnelle externe, superposée à la couche enzymatique, caractérisé en ce que cette membrane additionnelle est à base d'au moins un ionomère.
2 - Capteur selon la revendication 1, caractérisé en ce que le ionomère est sélectionné parmi les familles de ionomères suivantes :
- copolymères d'éthylène et d'acide acrylique ou méthacrylique, - élastomères carboxylés,
- polyisobutylènes sulfonatés téléchéliques,
- terpolymères éthylène-propylène-diène sulfonatés,
- polyvinyliques substitués dont les polyacylates, tels que le polyacétate ou butyrate et le polyvinylimidazole, - perfluorés, les ionomères perfluorés étant préférés et, parmi eux, les perfluorosulfonates étant particulièrement préférés.
3 - Capteur selon la revendication 2, caractérisé en ce que le ionomère est un copolymère de tétrafluoroéthylène et d'éther vinylique perfluoré présentant un groupement fluorosulfonate.
4 - Capteur selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la membrane additionnelle a une épaisseur comprise entre 0,1 et 10 μm, de préférence entre 0,5 et 5 μm et, plus préférentiellement encore, entre 0,5 et 2,5 μm. 5 - Capteur selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la couche enzymatique interne est constituée par une membrane formant une matrice dans laquelle est immobilisée l'enzyme et réalisée à partir d'au moins un composé macromoléculaire, de préférence choisi parmi les protéines, les polysaccharides ou les polymères et copolymères synthétiques.
6 - Capteur selon la revendication 5, caractérisé en ce que la membrane enzymatique interne contient au moins un polyol, de préférence le glycérol, le saccharose ou le sorbitol, le glycérol étant particulièrement préféré.
7 - Capteur selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la couche enzymatique est formée par l'enzyme (ou les enzymes) directement liée(s) par liaison covalente à la grille sélective. 8 - Dispositif de dosage électrochimique enzymatique mettant en oeuvre au moins un capteur de mesure selon l'une quelconque des revendications 1 à 7 (ENFET), caractérisé en ce qu'il comporte, également, au moins un capteur de référence (REFET) semblable au susdit capteur de mesure, à la différence près qu'il est exempt d'enzyme.
PCT/FR1994/000552 1993-05-12 1994-05-10 Capteur electrochimique de dosage enzymatique de type enfet WO1994026871A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP94915608A EP0651782A1 (fr) 1993-05-12 1994-05-10 Capteur electrochimique de dosage enzymatique de type enfet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9305941A FR2705148B1 (fr) 1993-05-12 1993-05-12 Capteur electrochimique de dosage enzymatique de type enfet et dispositif de dosage le mettant en oeuvre.
FR93/05941 1993-05-12

Publications (1)

Publication Number Publication Date
WO1994026871A1 true WO1994026871A1 (fr) 1994-11-24

Family

ID=9447226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1994/000552 WO1994026871A1 (fr) 1993-05-12 1994-05-10 Capteur electrochimique de dosage enzymatique de type enfet

Country Status (3)

Country Link
EP (1) EP0651782A1 (fr)
FR (1) FR2705148B1 (fr)
WO (1) WO1994026871A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001064945A2 (fr) * 2000-03-01 2001-09-07 Nucleica Nouvelles puces a adn

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0228259A2 (fr) * 1985-12-18 1987-07-08 Seitaikinouriyou Kagakuhin Sinseizogijutsu Kenkyu Kumiai Membrane contenant un enzyme immobilisé pour un détecteur semi-conducteur et méthode pour sa préparation
WO1991009304A1 (fr) * 1989-12-11 1991-06-27 United States Department Of Energy Electrode de detecteur electrique d'enzymes, et son procede de fabrication
WO1993013408A1 (fr) * 1991-12-31 1993-07-08 Abbott Laboratories Membrane composite

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0228259A2 (fr) * 1985-12-18 1987-07-08 Seitaikinouriyou Kagakuhin Sinseizogijutsu Kenkyu Kumiai Membrane contenant un enzyme immobilisé pour un détecteur semi-conducteur et méthode pour sa préparation
WO1991009304A1 (fr) * 1989-12-11 1991-06-27 United States Department Of Energy Electrode de detecteur electrique d'enzymes, et son procede de fabrication
WO1993013408A1 (fr) * 1991-12-31 1993-07-08 Abbott Laboratories Membrane composite

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
A.A.SHUL'GA ET AL.: "Overall characterization of ISFET-based glucose biosensor", SENSORS AND ACTUATORS B, vol. 10, 1992, pages 41 - 46 *
A.SAITO ET AL.: "ISFET glucose sensor for undiluted serum sample measurement", SENSORS AND ACTUATORS B, vol. 5, 1991, pages 237 - 239 *
D.J.HARRISON ET AL.: "Characterization of Perfluorosulfonic Acid Polymer Coated Enzyme Electrodes and a Miniturized Integrated Potentiostat for Glucose Analysis in whole Blood.", ANALYTICAL CHEMISTRY, vol. 60, 1988, pages 2002 - 2007 *
E.NEPOMUCENO NAVERA ET AL.: "Nafion-Coated Carbon Fiber for Acetylcholine and Choline Sensors", ELECTROANALYSIS, vol. 5, no. 1, January 1993 (1993-01-01), pages 17 - 22 *
F.GARDIES ET AL.: "Micro-enzyme field effect transistor sensor using direct covalent bonding of urease", ANALYTICA CHIMICA ACTA, vol. 231, 1990, pages 305 - 308 *
F.MOUSSY ET AL.: "Performance of Subcutaneously Implanted Needle-Type Glucose Sensors Employing a Novel trilayer Coating.", ANALYTICAL CHEMISTRY, vol. 65, 1 August 1993 (1993-08-01), pages 2072 - 2077 *
S.A.ROSARIO ET AL.: "Use of Ionomer Membranes To Enhance the Selectivity of Electrode-Based Biosensors in Flow-Injection Analysis.", ANALYTICAL CHEMISTRY, vol. 62, 1990, pages 2418 - 2424 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001064945A2 (fr) * 2000-03-01 2001-09-07 Nucleica Nouvelles puces a adn
FR2805826A1 (fr) * 2000-03-01 2001-09-07 Nucleica Nouvelles puces a adn
WO2001064945A3 (fr) * 2000-03-01 2002-03-28 Nucleica Nouvelles puces a adn

Also Published As

Publication number Publication date
EP0651782A1 (fr) 1995-05-10
FR2705148A1 (fr) 1994-11-18
FR2705148B1 (fr) 1995-08-04

Similar Documents

Publication Publication Date Title
Assolant-Vinet et al. New immobilized enzyme membranes for tailor-made biosensors
EP0409896B1 (fr) Electrode enzymatique et son procede de preparation
Hlavay et al. Fibre-optic biosensor for hypoxanthine and xanthine based on a chemiluminescence reaction
Doong et al. Glutamate optical biosensor based on the immobilization of glutamate dehydrogenase in titanium dioxide sol–gel matrix
FR2609723A1 (fr) Procede de preparation d'une enzyme ou d'un micro-organisme immobilise
EP0169767B1 (fr) Membrane porteuse de la luciférase pour le dosage de l'ATP et son procédé de production
Marty et al. Entrapped enzymes in photocrosslinkable gel for enzyme electrodes
Shul'ga et al. Removing the influence of buffer concentration on the response of enzyme field effect transistors by using additional membranes
WO1994026871A1 (fr) Capteur electrochimique de dosage enzymatique de type enfet
Nwosu et al. Comparative studies of immobilized enzyme electrodes based on the inhibitory effect of nicotine on choline oxidase and acetylcholinesterase
Gotoh et al. Micro-FET biosensors using polyvinylbutyral membrane
Lukachova et al. Non-aqueous enzymology approach for improvement of reagentless mediator-based glucose biosensor
Soldatkin et al. Application of charged polymeric materials as additional permselective membranes for modulation of the working characteristics of penicillin sensitive ENFETs
EP0416419B1 (fr) Alcool-oxydase immobilisée, méthode pour sa préparation et appareil de mesure
JPS61145447A (ja) 固定化酵素膜
Apetrei et al. Biosensors in food PDO authentication
Alteriis et al. Enzyme immobilisation within insolubilised gelatin
EP0384090B1 (fr) Biocapteur à enzyme destiné à la mesure directe d'au moins un paramètre biochimique de la peau
JPS59210356A (ja) トリグリセライドセンサ
JP3952156B2 (ja) バイオセンサ
Jaffrezic-Renault et al. Development of new polymeric membranes for ENFETs for biomedical and environmental applications
JPS6254155A (ja) 半導体バイオセンサ酵素固定化膜の形成方法
EP0214053A1 (fr) Supports protéiques modifiés aptes à immobiliser de façon covalente ou réversible des anticorps ou des substances immunologiquement actives, et leurs applications au dosage et à la purification d'antigènes ou similaires
Karakus et al. Nanoparticle based biosensor for penicillin quantification in pharmaceuticals
AU737107B2 (en) Membrane for a sensor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP RU UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1994915608

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: US

Ref document number: 1995 362494

Date of ref document: 19950310

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1994915608

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1994915608

Country of ref document: EP