WO1994026407A1 - Electron beam system - Google Patents

Electron beam system Download PDF

Info

Publication number
WO1994026407A1
WO1994026407A1 PCT/US1994/004823 US9404823W WO9426407A1 WO 1994026407 A1 WO1994026407 A1 WO 1994026407A1 US 9404823 W US9404823 W US 9404823W WO 9426407 A1 WO9426407 A1 WO 9426407A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron beam
reaction chamber
processing unit
electron
influent
Prior art date
Application number
PCT/US1994/004823
Other languages
French (fr)
Inventor
Peter R. Schonberg
Russel G. Schonberg
David Richard Fadness
Original Assignee
Zapit Technology, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zapit Technology, Inc. filed Critical Zapit Technology, Inc.
Priority to AU67800/94A priority Critical patent/AU6780094A/en
Priority to JP52550294A priority patent/JP3519408B2/en
Publication of WO1994026407A1 publication Critical patent/WO1994026407A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/007Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by irradiation
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/10Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation
    • A62D3/15Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation to particle radiation, e.g. electron beam radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • B01D53/323Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00 by electrostatic effects or by high-voltage electric fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/081Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing particle radiation or gamma-radiation
    • B01J19/085Electron beams only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • B01J19/2425Tubular reactors in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/06Reclamation of contaminated soil thermally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • C02F1/766Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens by means of halogens other than chlorine or of halogenated compounds containing halogen other than chlorine
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J33/00Discharge tubes with provision for emergence of electrons or ions from the vessel; Lenard tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J33/00Discharge tubes with provision for emergence of electrons or ions from the vessel; Lenard tubes
    • H01J33/02Details
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2203/00Aspects of processes for making harmful chemical substances harmless, or less harmful, by effecting chemical change in the substances
    • A62D2203/10Apparatus specially adapted for treating harmful chemical agents; Details thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/812Electrons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00076Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements inside the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00103Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor in a heat exchanger separate from the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00132Controlling the temperature using electric heating or cooling elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/0015Controlling the temperature by thermal insulation means
    • B01J2219/00153Vacuum spaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00159Controlling the temperature controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00162Controlling or regulating processes controlling the pressure
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/305Treatment of water, waste water, or sewage by irradiation with electrons

Definitions

  • This invention relates to methods and apparatus for treating and/or chemically converting toxics in fluids including gases, vapors, aerosols, and/or suspended particulates.
  • this invention relates to an electron generator or source and processing units used to configure an electron beam system to treat and/or convert toxics, as are, for example, typically found in gases, vapors or extractions from polluted soil, or from groundwater, or as output from industrial processes.
  • Carbon containment is a collection technique in which contaminants pass through canisters containing carbon or certain plastic materials (or other adsorbent) with the result that toxics are adsorbed on the carbon or other material.
  • the contaminant sources may be vacuum extraction wells or air strippers.
  • the contaminants may be the discharge of an industrial process. In any case, volatile organic contaminants are adsorbed onto the carbon or other adsorbent material, while the remaining portion of the extracted air, steam, or process effluent is released to the environment along with contaminants which the adsorption system fails to remove.
  • Carbon canisters with adsorbed toxics create a disposal problem of their own. This is further complicated by the transport problem to move canisters to a treatment facility.
  • containment of the adsorbed toxics, whether kept in a single location or moved, is not universally effective, as some volatile organic compounds and other pollutants have low adsorptivity.
  • incineration attempts to destroy contaminants through high-temperature burning.
  • the vapors may come from vacuum extraction wells, air strippers, or industrial process effluent.
  • Destruction of these contaminants by incineration is often incomplete, however, and incomplete destruction can produce (and release to the atmosphere) compounds more hazardous than the original contaminants.
  • incineration is often undesirable at refineries and chemical plants because of the dangers presented by the incinerator's high temperatures near flammable substances.
  • incineration is politically and socially undesirable.
  • electron beams are used to process or convert toxic and nontoxic compounds to different compounds or elements.
  • Influents comprising gases, aerosols, and/or suspended particulates enter a reaction chamber into which a beam of electrons is injected. These electrons interact with the influent to chemically transform harmful compounds into environmentally safe elements or other compounds.
  • gas gas or gases, vapor or vapors, colloidal dispersions, foams, fogs, emulsions, aerosols, or combinations thereof, as well as suspended particulates in a supporting material.
  • Prior art electron beam conversion systems were typically designed to fit the composition and flow rate parameters of a single material source.
  • U.S. Patent No. 4,507,265 describes a power plant effluent gas treatment system in which electron beams convert flowing sulfur oxides and nitrogen oxides into solids and mists for later removal by a dust collector. Since the conversion facility is dedicated to a single source of material, the reaction chamber and electron beam sources were not designed to accommodate large variations in flow rate or composition.
  • this prior art technique fails to address the conversion of other toxic materials, such as volatile organic compounds, to relatively benign compounds or elements which can be dealt with by conventional means.
  • these prior art systems have generally been large and immobile and typically have high power requirements which is a different type of structure and methodology than that described in the instant application.
  • This invention describes an electron beam generator to supply electrons as well as processing units comprising electron beam sources or generators and related reaction chambers, in which toxics are destroyed and which, because of features such as modularity, simplify the configuration and/or the ability to create systems to meet specific requirements.
  • a system requirement may include transportability, ease of assembly and freedom in designing, in physical dimensions, systems to be used in otherwise inaccessible areas, the handling of a variety of inputs including different influent flow rates, and an ability to treat different compositions, phases (gas, liquid, solid) or materials.
  • This invention achieves these objectives.
  • This invention also simplifies reconfiguration of systems if the influent flow rates and/or compositions change.
  • the processing unit is small and lightweight and because the new and preferred electron beam source is relatively inexpensive and requires less of a power supply to function, the system is less costly to manufacture and use and can readily be used at almost any location.
  • the small size and weight of the processing unit, referred to herein as portable, and its low power requirements make this design particularly well-suited for transportable electron beam conversion systems and for remediation systems configured for small spaces or remote locations.
  • Processing units of this invention are built as modules and such modules can be configured to satisfy a designated range of influent flow rates and electron beam dose rates.
  • modules can be arranged in series and/or in parallel as needed.
  • Figure 1 is a cross-sectional view of the preferred electron beam generator or electron source of this invention.
  • Figure 2 is a schematic drawing of a processing unit according to a preferred embodiment of this invention.
  • Figure 3(a) is a schematic drawing of a series arrangement of processing unit modules like those shown in Figure 2.
  • Figure 3(b) is a schematic drawing of a parallel arrangement of the processing unit modules like those shown in Figure 2.
  • Figure 4 is a block diagram of a preferred electron beam modular conversion system including system controls.
  • This invention is a novel electron beam generator and a novel electron beam processing system comprising one or more electron beam sources or generators and associated reaction chamber(s).
  • the processing units can be used singly or in combination with other processing units to create an electron beam reaction system that meets the particular needs of a given application.
  • Each processing unit has means for attaching the reaction chamber inlet either directly to the system inlet or into system preprocessing modules from where the flow will feed to the processing portion for treatment. Alternatively, the inlet flow can be to the outlet of an upstream reaction chamber.
  • Each processing unit also has means for attaching a reaction chamber either directly to the system outlet, through system post-processing modules, or to the inlet of a downstream reaction chamber.
  • an electron beam source may be associated with one or more processing units and means for admitting an electron beam into the reaction chamber(s).
  • a preferred embodiment of the electron beam generator is shown in Figure 1.
  • a high voltage electron gun 20 is attached by way of a ceramic insulator 21 inside vacuum chamber 22 within the electron beam generator housing 23.
  • gun 20 contains a control grid or electrode that may be used to modulate or control electron flows.
  • the heated cathode of the gun emits electrons which form a high voltage, high current flux, electrostatically and electromagnetically focused electron beam that is directed through a passage in the vacuum chamber toward a thin vacuum window 24.
  • the material and thickness of the window are carefully selected so as to maintain a hard vacuum, to allow a high percentage of the electron beam to pass through, and to carry away heat generated by that fraction of the beam that is absorbed. Because it needs to be very thin, the material of choice must also be very strong to resist thermal cycling and ambient pressure at elevated temperatures.
  • Havar window is a material sold by Hamilton Precision Metals, Inc. of 1780 Roherstown Road, Lancaster PA 17604. It is an alloy having the following composition, amounts are nominal and percents are by weight: cobalt - 42 %; chromium - 19.5 %; iron - 19.1 %; nickel - 12.7 %; tungsten - 2.7%; molybdenum - 2.2%; manganese - 1.6%; and, carbon- 0.2%.
  • vacuum window 24 can be plated or otherwise coated on the side external to the vacuum to provide resistance to corrosion, for example by a thin layer of gold, ceramic or other corrosion resistant material.
  • the window deflects the beam through half angles in the range from about a few degrees up to approximately twenty degrees. This angle is a function of the window thickness, material, and electron beam energy.
  • Power losses in the window are a non-linear function of the electron beam energy, which in the preferred embodiment is in the range of from 50,000 to 500,000 electron volts. As beam voltage varies, current density and cooling requirements must be considered in determining appropriate operating conditions.
  • the beam After passing through the window, the beam is passed through foil 25 which isolates the vacuum window and acts to scatter the beam as it enters reaction chamber 12 (see Fig. 3a for example).
  • Foil 25 functions to expand the emerging angles of the beam as it enters the reaction chamber. Proper selection of material and its thickness is also crucial. It must be strong, fairly transparent to electrons, and, in combination with vacuum window 24, produce the desired output beam angle.
  • scatter foil 25 Another function of scatter foil 25 is to form an impervious chemically resistant barrier isolating vacuum window 24 from the reaction chamber. Materials present in the influent and by ⁇ products of certain reactions occurring in the reaction chamber could otherwise rapidly corrode the vacuum window leading to premature system failure.
  • a .0005 to .002 inch thick mica layer is used for scatter foil 25 resulting in a 120-degree included angle electron beam output and excellent resistance to corrosive attack.
  • Other intended scatter foil materials include kapton or sapphire.
  • other materials such as Havar or titanium can be used if plated or otherwise coated on the side facing the contents of the reaction chamber by a thin layer of a corrosion-resistant material such as, for example, gold or ceramic.
  • a metal spool 26 is brazed into vacuum window housing 27 to form annulus 28 through which cooling water is pumped. It develops a turbulent flowing pattern as it passed through and carries away heat caused by electrons absorbed in vacuum window 24. Supplemental cooling is provided by a controlled flow of non- reactive gas (nitrogen, helium or argon) which is directed through the gap 29 between window 24 and foil 25. In addition to cooling the vacuum window and the scatter foil, this gas flow prevents formation of ozone in the volume of gap 29, as would occur if air were present in that volume, further preventing corrosive attack of critical system components.
  • non- reactive gas nitrogen, helium or argon
  • foil 25 may be eliminated. Isolation of the vacuum window 24 from corrosive substances will in this configuration be accomplished by way of a high-flow "curtain" of purge gas which exhausts directly into the reaction chamber, driving those substances away and into the electron beam for treatment. In addition a thin corrosive resistance coating may be applied to the outside of vacuum window 24 to provide further protection.
  • Vacuum inside chamber 22 is continuously maintained by ion pump 19.
  • Electromagnetic focus coil 30 supplements electrostatic techniques of focusing the electron beam, which among other things permits its size (diameter) to be altered and controlled remotely. Beam size is important because it establishes power density at the vacuum window and at the scatter foil; the larger the beam diameter, the lower the power density. For example, if gun current were held constant, a small beam would rapidly burn a hole through both window 24 and foil 25. Focus coil 30 allows tailoring of the electron beam output to the size of the reaction chamber 12. For simple systems, this electromagnet can be replaced by a permanent magnet sized for desired beam output characteristics.
  • a lead (Pb) shield 31 around the outside of the beam generator attenuates xrays generated by electron collisions inside the vacuum chamber 22. This preferred embodiment can be altered to use steel, concrete, or other suitable material for radiation shielding. Additional shielding will be added externally as needed to result in a safe operating environment.
  • the overall electron beam generator assembly is attached to a mounting flange 32.
  • This flange enables bolted attachment to mating flanges 11 (see Fig. 3a) on reaction chamber 12 or other processing device.
  • This modular approach allows for easy maintenance service and facilitates replacement by another electron beam source having different output characteristics.
  • Incorporated into mounting flange 32 is a water cooling path to keep the reaction chamber heat from reaching the electron beam generator.
  • Processing unit 10 has a reaction chamber 12, preferably formed as a cylinder formed from
  • Hastelloy C-22 is available from Corrosion
  • Hastelloy C-22 is an alloy that has the following composition, amounts being nominal and percentages being by weight: nickel - 56 %; chromium - 22 %; molybdenum - 13 %; tungsten - 3.0 %; iron - 3.0 %; cobalt - 2.5 %;; manganese -
  • Flanges 14 and 16 extend from the inlet and outlet ends, respectively, of reaction chamber 12. Flanges 14 and 16 serve as means for attaching processing unit 10 to an inflow means feeding influent to the unit for treatment and an outflow means to transfer treated materials to other processing units or to the atmosphere for release, as discussed below.
  • Electron beam treatment system 10 as shown in Fig. 2, can accommodate influent gas flows of up to about 1 ,000 cubic feet per minute. With large diameter pipes system 10 can accommodate flows to about 5,000 cubic feet per minute. Other configurations of piping systems within the scope of this invention can accommodate flow rates of up to about 50,000 cubic feet per minute.
  • processing unit 10 has two electron beam sources. It should be understood, however, that the processing unit could use one or more than two electron beam sources without departing from the scope of the invention. It should be understood that other means for generating electrons may also be used. What is required is a sufficient electron beam energy to penetrate the vacuum window, typically 30 KeV or greater.
  • the current density of the beam incident on the window will generally be less than 5 milliamperes per square centimeter with typical thermal cooling systems for the window as are usually used with this type source. However, it should be understood that with a more effective cooling system the beam current density may be increased.
  • the incident electron beam on the window should be sized so that it will diverge to no more than a half cone angle of about twenty degrees. This will ensure that electrons that penetrate the window do not contribute appreciably to defocusing and divergence after scatter from the window itself.
  • Each electron beam source 18 can supply average electron beam power to about 5 kilowatts, either continuous or pulsed
  • Electron beams that may be used in this invention include those that are generated by, for example, thermionic devices, plasma generators, certain corona generators, as well as field emission devices. Pulsed linear accelerators may also be used as electron sources within the scope of this invention.
  • two electron beam sources 18 are attached to reaction chamber 12 of the electron beam treatment system 10, preferably by means of flanges 17 and 11 and flanges 9 and 13 on the electron beam sources and on the reaction chamber, respectively.
  • the second electron beam source position may be covered by a removable plate attached to flange 13.
  • influent enters the opening at flange 14 and exits the opening at flange 16.
  • Controls and power supplies 7 drive and control system 10 during operation.
  • the unit includes a heat exchanger 8 for purposes of controlling heat through the system and xray high tension supplies 6 to drive the electron beam sources.
  • the processing unit shown in Fig. 2 may be constructed to be approximately 4 feet wide by 8 feet long by 5 feet high, and, when containing two electron sources weighs less than about 4,000 pounds. In general processing units in accordance with this invention will be less than about 10 feet long in any surface * t dimension and will weigh less than about 3 tons.
  • an electron beam system In order to optimize its effectiveness, an electron beam system must be tailored to the treated material's composition and mass flow rate.
  • dose defined as energy absorbed per unit mass of treated material.
  • the dose required for a particular electron beam application depends on the nature of the material to be treated and the desired chemical transformation of that material.
  • Energy absorbed from the electron beam by the material in the reaction chamber is a function of the power of the electron beam source, the kinetic energy of the electrons in the beam, the spatial distribution of the electrons, the shape and dimensions of the chamber, the mass flow rate of the treated material, the type and concentration of contaminants and the carrier gas.
  • higher mass flow requires higher electron beam power.
  • each electron source can administer a treatment dose of about 5 watt-seconds per gram to the material flowing through reaction chamber 12.
  • the upper limit of flow rate through a reaction chamber of given dimensions is defined by the acceptable pressure drop across the reaction chamber due to fluid friction and the maximum electron beam power the system is capable of delivering. Enlarging the reaction chamber requires an increase in electron energy to ensure complete treatment of the material flowing through the reaction chamber.
  • the modular nature of the electron generator described above facilitates the exchange of one electron beam source for another.
  • fins or other flow directing devices may be added to the interior of the reaction chamber to create turbulence within the reaction chamber, thereby increasing the interaction between the electron beam and the flowing material.
  • FIG. 3(a) and 3(b) show two possible configurations. Other configurations apparent to those skilled in the art are within the scope of this invention.
  • FIG. 3(a) is a schematic drawing of a series arrangement of the processing unit modules shown in Figure 1.
  • the dose delivered by the processing unit module is a function of electron beam power.
  • the dose delivered by the system can be increased incrementally to at least its required level by attaching the modular processing units serially as shown in Figure 3(a).
  • Processing units 10 are connected to each other by means of flanges 14 and 16 or by other suitable connecting means.
  • the inlet flange of the first reaction chamber in the series is attached to a flange on an influent duct
  • the outlet flange of the last reaction chamber in the series is attached to a flange on an effluent duct 42 which removes treated effluent from the system directly or via any post-processing components such as scrubber and/or carbon adsorption containers. Suitable seals or gaskets are disposed between the flanges to prevent leakage.
  • Figure 3(b) is a schematic drawing of a parallel arrangement of the modular processing units of this invention. If the incoming material flow rate exceeds the design flow rate or allowable pressure of the processing unit, the incoming material can be split into two or more separate flows by manifold 50 which delivers influent gas from the material source directly or via any pre ⁇ processing components.
  • the inlet flanges 14 or other suitable connecting means of the multiple processing units 10 are attached to flanges on the influent manifold branches 52.
  • Outlet flanges 16 of processing units 10 are attached to flanges on branches 56 of manifold 54 which removes treated effluent from the system directly or via any post-processing components.
  • Valves 58 on influent manifold branches 52 may be used to apportion flow among the branches in any desired ratio.
  • the modular reaction chamber of this invention may be used in a dedicated, stationary electron beam conversion system. Because it is relatively small and lightweight and because it can be easily reconfigured, the modular reaction chamber of this invention is particularly useful in a transportable electron beam system.
  • electron beam systems may be used to convert organic contaminants found in soil and groundwater to nontoxic forms.
  • the electron beam system of this invention can therefore be configured to meet the initial site requirements, then be transported to the site. When the site requirements change, the system can be reconfigured on site or removed for reconfiguration elsewhere. The entire system can be easily removed from the site when the cleanup is complete.
  • Figure 4 is a simplified block diagram showing a preferred embodiment of a modular processing unit in accordance with this invention.
  • This configuration includes two electron sources and one reaction chamber.
  • only one electron source may be included or the system can be configured with more than two sources and more than a single reaction chamber.
  • One or more modular processing units such as that of Figure 4, will typically be employed as the central processor in a system which will also include, external to the processing unit, preprocessing elements and components such as pumps, valves, and filter, and postprocessing stations such as scrubbers and containers of activated charcoal.
  • preprocessing elements and components such as pumps, valves, and filter
  • postprocessing stations such as scrubbers and containers of activated charcoal.
  • Gas to be processed enters at flange 101. If the pressure of this influent gas exceeds a predetermined limit beyond which the scatter foil might be damaged, high-limit pressure switch 102 signals to system control assembly 103 which in turn signals control means external to the processing unit to reduce or stop the flow or otherwise reduce the incoming pressure.
  • a control valve (not shown) can be included in the processing unit for this purpose.
  • system control assembly 103 can contain means for delivering pulse signals to the optional control electrode or grid in the electron guns of electron sources 105 and 106.
  • pulsing provides the capability of applying higher peak power to the influent flowing through the reaction chamber and such higher peak power can prove useful in those cases where the reaction rate depends on power levels or in those cases where the material under treatment requires an occasional pulse at higher peak power to accomplish an effective transformation.
  • the influent next flows through the reaction chamber 104 in which it is exposed to electron beams from one or more electron sources such as sources 105 and 106.
  • Sources 105 and 106 direct beams through window assemblies 107 and 108, respectively.
  • Focus coils 109 and 110 enable adjustments, for control of the electron beams, and to assure operation of the processing unit at an efficient level to transfer electron energy from the beams to the gas or other influent passing through reaction chamber 104.
  • electron sources 105 and 106 respectively, receive direct-current power (DC) via high tension cables 123 and 124 from high tension generators 111 and 112 which are controlled in turn by power control assemblies 113 and 114.
  • DC direct-current power
  • more than one electron source can be driven by a single DC source of suitable capacity.
  • the cathodes of electron sources 105 and 106 are heated by conventional electrical means (not shown).
  • Focus coil power supply 1 15 provides DC to focus coils 109 and 1 10 through system control assembly 103 which contains controls for focus adjustments.
  • each focus coil can be fed by a separate power supply, and routing of each power supply to its focus coil can be direct rather than through a separate control assembly.
  • Electron sources 105 and 106 are equipped respectively with vacuum pumps 117 and 1 18 to assure that vacuums are maintained during operation and to extend operating life of the sources.
  • Vacuum pump power supply 116 provides DC to the vacuum pumps.
  • a separate power supply assembly can be used for each pump.
  • these pumps and their power supplies can be omitted at some sacrifice to operating life.
  • Alternating-current power is introduced into the processing unit via power distribution assembly 119 which feed the AC to system elements that use AC.
  • Conventional electrical interlocks maybe included for personnel protection.
  • Refrigerated heat exchanger 120 supplies closed-loop flow of cooling liquid whose temperature is limited by thermostat 130.
  • the liquid flows through cooling elements in window assemblies 108 and 107 and then is returned to heat exchanger 120.
  • Flow switch 121 disables high tension power to electron sources 105 and 106 if water temperature exceeds a pre-set limit. Alternatively, other routing of cooling liquid can be employed.
  • Temperature switch 122 limits operating temperatures within the processing unit enclosure.
  • Windows 108 and 109 are also cooled, in part, by recirculating gas which, in the preferred embodiment, is argon but alternatively could be another suitable dry, inert gas.
  • This recirculating gas is cooled on passing through heat exchanger 120 flowing through recirculating gas window cooler 125. Cooling-gas pressure is controlled by regulator 129 and monitored by high-low pressure gauge 126 which signals the system control assembly 103 if pressure is outside the programmed limits so that processing unit operations may be discontinued until remedial action is taken. Replenishment of the recirculating gas is provided from supply bottle 127 through valve 128 and regulator 129.
  • Influent gases from a vacuum extraction system or other source are fed to the system, and undesirable compounds in the gases are either transformed to benign elements or compounds or are removed (or further transformed) by the effluent treatment modules.
  • the system may be made transportable through the use of power generators to provide power and may be mounted on a transportable support such as a truck bed or other movable support which facilitates movement from site to site.
  • the system's elements are easily reconfigured to meet the specific requirements of each toxic site.
  • Influent and effluent gases may be monitored on-line by flow sensors and chemical analysis sensors to determine the composition, temperature, and pressure of input and output material. Operation of the electron beam source may also be monitored by measuring the electron beam current either at the power supply or with a toroidal current monitor surrounding the output beam. Analytical instruments and equipment may be located in an equipment monitor with the other system controls. Computers and computer software may be used for system control. Provision may also be made to control the entire system from a remote location.
  • the electron beam system of this invention may be used to break down volatile organic compounds or other toxic materials in carriers into their elements or to other compounds which are relatively benign and can therefore be released to the atmosphere.
  • a particular advantage of the electron beam system of this invention when used in connection with a carbon containment system is the considerable reduction in the need for the carbon technique of adsorbing toxics which in turn extends the useful life of the normal carbon canisters. This reduction in need also reduces the associated problems with such canisters including permitting for movement and clean up, as previously discussed.
  • the system of this invention also requires far less power or energy to achieve results as compared to existing techniques used in this field.
  • the electron beam conversion system of this invention requires less fuel to convert toxics to other forms than is required for example by incineration systems. In fact, in the basic operating mode, no material such as oxygen is required in addition to the influent to be processed. Thus, another advantage of this invention over prior art conversion systems is the reduction in the volume of system effluent.
  • This invention produces very little thermal pollution as compared for example to incineration systems, except in those cases that may require heat to release contaminants for treatment.
  • the preferred embodiments of this invention are inherently energy efficient.
  • the electron beam system of this invention may be used in a closed-loop system in which treated material is returned to the material source or to another destination from which it may subsequently be retrieved for reprocessing.
  • Other modifications to the system and to elements thereof will be apparent to those skilled in the art. It is intended to cover this invention broadly within the scope of the claims.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • General Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Soil Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Plasma & Fusion (AREA)
  • General Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Biomedical Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Treating Waste Gases (AREA)

Abstract

An electron beam source or generator (18) is described for the treatment of toxic materials in a treatment system (10) in which electron beams are reacted with a flowing influent in a reaction chamber (12). The system is modular allowing different configurations as demanded by the site and by the clean-up job. It is also portable in that it can be easily moved from place to place. If mounted on a portable base it can be taken from place to place for use.

Description

ELECTRON BEAM SYSTEM
Background of the Invention
This invention relates to methods and apparatus for treating and/or chemically converting toxics in fluids including gases, vapors, aerosols, and/or suspended particulates. In particular, this invention relates to an electron generator or source and processing units used to configure an electron beam system to treat and/or convert toxics, as are, for example, typically found in gases, vapors or extractions from polluted soil, or from groundwater, or as output from industrial processes.
Products and by-products of industrial processes, toxic organic compounds, various forms of waste and other discards contaminate our air, soil, and groundwater. Industrial processes are generating additional toxic organic compounds, adding to existing contamination. Toxics created by incinerators, rotary kilns and bioreactors are also major sources of contamination. Recognition of this problem has led to the development of diverse extraction, collection, and disposal methods in an attempt to reduce the effects of pollution in our society and on our environment.
Techniques such as air stripping and vacuum extraction are used to remove contaminants from, among other things, soil and groundwater. However, venting contaminants directly to the atmosphere is environmentally undesirable. Thus, treatment of contaminants before release or disposal is greatly desired and is addressed by this invention. This invention has additional applications in air and water purification as well as in on-line chemical processing in manufacturing and other facilities.
Carbon containment is a collection technique in which contaminants pass through canisters containing carbon or certain plastic materials (or other adsorbent) with the result that toxics are adsorbed on the carbon or other material. In remediation systems for removal of volatile organic compounds from soil and groundwater, the contaminant sources may be vacuum extraction wells or air strippers. In effluent treatment systems of refineries or chemical plants, the contaminants may be the discharge of an industrial process. In any case, volatile organic contaminants are adsorbed onto the carbon or other adsorbent material, while the remaining portion of the extracted air, steam, or process effluent is released to the environment along with contaminants which the adsorption system fails to remove.
Carbon canisters with adsorbed toxics, however, create a disposal problem of their own. This is further complicated by the transport problem to move canisters to a treatment facility. In addition, containment of the adsorbed toxics, whether kept in a single location or moved, is not universally effective, as some volatile organic compounds and other pollutants have low adsorptivity.
Another remediation technique, incineration, attempts to destroy contaminants through high-temperature burning. As with carbon containment systems, the vapors may come from vacuum extraction wells, air strippers, or industrial process effluent. Destruction of these contaminants by incineration is often incomplete, however, and incomplete destruction can produce (and release to the atmosphere) compounds more hazardous than the original contaminants. Furthermore, incineration is often undesirable at refineries and chemical plants because of the dangers presented by the incinerator's high temperatures near flammable substances. Moreover, and clearly in populated areas, incineration is politically and socially undesirable.
In accordance with this invention, electron beams are used to process or convert toxic and nontoxic compounds to different compounds or elements. Influents, comprising gases, aerosols, and/or suspended particulates enter a reaction chamber into which a beam of electrons is injected. These electrons interact with the influent to chemically transform harmful compounds into environmentally safe elements or other compounds.
It should be understood that the words "gas", "material", or like terminology to describe the influent flow, as used in the specification and claims in describing this invention, is intended to mean gas or gases, vapor or vapors, colloidal dispersions, foams, fogs, emulsions, aerosols, or combinations thereof, as well as suspended particulates in a supporting material.
Prior art electron beam conversion systems were typically designed to fit the composition and flow rate parameters of a single material source. For example, U.S. Patent No. 4,507,265 describes a power plant effluent gas treatment system in which electron beams convert flowing sulfur oxides and nitrogen oxides into solids and mists for later removal by a dust collector. Since the conversion facility is dedicated to a single source of material, the reaction chamber and electron beam sources were not designed to accommodate large variations in flow rate or composition. In addition, this prior art technique fails to address the conversion of other toxic materials, such as volatile organic compounds, to relatively benign compounds or elements which can be dealt with by conventional means. Also, these prior art systems have generally been large and immobile and typically have high power requirements which is a different type of structure and methodology than that described in the instant application.
Summary of the Invention This invention describes an electron beam generator to supply electrons as well as processing units comprising electron beam sources or generators and related reaction chambers, in which toxics are destroyed and which, because of features such as modularity, simplify the configuration and/or the ability to create systems to meet specific requirements. For example, a system requirement may include transportability, ease of assembly and freedom in designing, in physical dimensions, systems to be used in otherwise inaccessible areas, the handling of a variety of inputs including different influent flow rates, and an ability to treat different compositions, phases (gas, liquid, solid) or materials. This invention achieves these objectives. This invention also simplifies reconfiguration of systems if the influent flow rates and/or compositions change. In addition, because the processing unit is small and lightweight and because the new and preferred electron beam source is relatively inexpensive and requires less of a power supply to function, the system is less costly to manufacture and use and can readily be used at almost any location. The small size and weight of the processing unit, referred to herein as portable, and its low power requirements make this design particularly well-suited for transportable electron beam conversion systems and for remediation systems configured for small spaces or remote locations.
Processing units of this invention are built as modules and such modules can be configured to satisfy a designated range of influent flow rates and electron beam dose rates. When configuring a system to meet a designated influent flow rate and composition of influent, modules can be arranged in series and/or in parallel as needed.
Brief Description of the Drawings
Figure 1 is a cross-sectional view of the preferred electron beam generator or electron source of this invention.
Figure 2 is a schematic drawing of a processing unit according to a preferred embodiment of this invention. Figure 3(a) is a schematic drawing of a series arrangement of processing unit modules like those shown in Figure 2.
Figure 3(b) is a schematic drawing of a parallel arrangement of the processing unit modules like those shown in Figure 2.
Figure 4 is a block diagram of a preferred electron beam modular conversion system including system controls.
Description of the Preferred Embodiment
This invention is a novel electron beam generator and a novel electron beam processing system comprising one or more electron beam sources or generators and associated reaction chamber(s). The processing units can be used singly or in combination with other processing units to create an electron beam reaction system that meets the particular needs of a given application. Each processing unit has means for attaching the reaction chamber inlet either directly to the system inlet or into system preprocessing modules from where the flow will feed to the processing portion for treatment. Alternatively, the inlet flow can be to the outlet of an upstream reaction chamber. Each processing unit also has means for attaching a reaction chamber either directly to the system outlet, through system post-processing modules, or to the inlet of a downstream reaction chamber. In addition, an electron beam source may be associated with one or more processing units and means for admitting an electron beam into the reaction chamber(s). A preferred embodiment of the electron beam generator is shown in Figure 1. A high voltage electron gun 20 is attached by way of a ceramic insulator 21 inside vacuum chamber 22 within the electron beam generator housing 23. Optionally, gun 20 contains a control grid or electrode that may be used to modulate or control electron flows. The heated cathode of the gun emits electrons which form a high voltage, high current flux, electrostatically and electromagnetically focused electron beam that is directed through a passage in the vacuum chamber toward a thin vacuum window 24. The material and thickness of the window are carefully selected so as to maintain a hard vacuum, to allow a high percentage of the electron beam to pass through, and to carry away heat generated by that fraction of the beam that is absorbed. Because it needs to be very thin, the material of choice must also be very strong to resist thermal cycling and ambient pressure at elevated temperatures.
Yet another consideration in selecting window material and thickness is control of the angle through which the emerging electron beam diverges. Large beam divergence angles maximize the exposed volume of, and minimize the possibility of voids in the reaction chamber. In our preferred embodiment, a Havar window, less than or approximately .002-inch thick is used. Havar is a material sold by Hamilton Precision Metals, Inc. of 1780 Roherstown Road, Lancaster PA 17604. It is an alloy having the following composition, amounts are nominal and percents are by weight: cobalt - 42 %; chromium - 19.5 %; iron - 19.1 %; nickel - 12.7 %; tungsten - 2.7%; molybdenum - 2.2%; manganese - 1.6%; and, carbon- 0.2%.
Other materials, including beryllium, titanium and stainless steel are alternates for vacuum window 24 and it should be understood that windows of other thicknesses may also be used in the electron sources of this invention. Optionally, vacuum window 24 can be plated or otherwise coated on the side external to the vacuum to provide resistance to corrosion, for example by a thin layer of gold, ceramic or other corrosion resistant material.
The window deflects the beam through half angles in the range from about a few degrees up to approximately twenty degrees. This angle is a function of the window thickness, material, and electron beam energy.
Power losses in the window are a non-linear function of the electron beam energy, which in the preferred embodiment is in the range of from 50,000 to 500,000 electron volts. As beam voltage varies, current density and cooling requirements must be considered in determining appropriate operating conditions.
After passing through the window, the beam is passed through foil 25 which isolates the vacuum window and acts to scatter the beam as it enters reaction chamber 12 (see Fig. 3a for example). Foil 25 functions to expand the emerging angles of the beam as it enters the reaction chamber. Proper selection of material and its thickness is also crucial. It must be strong, fairly transparent to electrons, and, in combination with vacuum window 24, produce the desired output beam angle.
Another function of scatter foil 25 is to form an impervious chemically resistant barrier isolating vacuum window 24 from the reaction chamber. Materials present in the influent and by¬ products of certain reactions occurring in the reaction chamber could otherwise rapidly corrode the vacuum window leading to premature system failure.
In our preferred embodiment, a .0005 to .002 inch thick mica layer is used for scatter foil 25 resulting in a 120-degree included angle electron beam output and excellent resistance to corrosive attack. Other intended scatter foil materials include kapton or sapphire. Alternatively, other materials such as Havar or titanium can be used if plated or otherwise coated on the side facing the contents of the reaction chamber by a thin layer of a corrosion-resistant material such as, for example, gold or ceramic.
A metal spool 26 is brazed into vacuum window housing 27 to form annulus 28 through which cooling water is pumped. It develops a turbulent flowing pattern as it passed through and carries away heat caused by electrons absorbed in vacuum window 24. Supplemental cooling is provided by a controlled flow of non- reactive gas (nitrogen, helium or argon) which is directed through the gap 29 between window 24 and foil 25. In addition to cooling the vacuum window and the scatter foil, this gas flow prevents formation of ozone in the volume of gap 29, as would occur if air were present in that volume, further preventing corrosive attack of critical system components.
In an alternate embodiment, foil 25 may be eliminated. Isolation of the vacuum window 24 from corrosive substances will in this configuration be accomplished by way of a high-flow "curtain" of purge gas which exhausts directly into the reaction chamber, driving those substances away and into the electron beam for treatment. In addition a thin corrosive resistance coating may be applied to the outside of vacuum window 24 to provide further protection.
Vacuum inside chamber 22 is continuously maintained by ion pump 19.
Electromagnetic focus coil 30 supplements electrostatic techniques of focusing the electron beam, which among other things permits its size (diameter) to be altered and controlled remotely. Beam size is important because it establishes power density at the vacuum window and at the scatter foil; the larger the beam diameter, the lower the power density. For example, if gun current were held constant, a small beam would rapidly burn a hole through both window 24 and foil 25. Focus coil 30 allows tailoring of the electron beam output to the size of the reaction chamber 12. For simple systems, this electromagnet can be replaced by a permanent magnet sized for desired beam output characteristics. A lead (Pb) shield 31 around the outside of the beam generator attenuates xrays generated by electron collisions inside the vacuum chamber 22. This preferred embodiment can be altered to use steel, concrete, or other suitable material for radiation shielding. Additional shielding will be added externally as needed to result in a safe operating environment.
The overall electron beam generator assembly is attached to a mounting flange 32. This flange enables bolted attachment to mating flanges 11 (see Fig. 3a) on reaction chamber 12 or other processing device. This modular approach allows for easy maintenance service and facilitates replacement by another electron beam source having different output characteristics. Incorporated into mounting flange 32 is a water cooling path to keep the reaction chamber heat from reaching the electron beam generator.
A preferred embodiment of the overall processing unit is shown schematically in Figure 2. Processing unit 10 has a reaction chamber 12, preferably formed as a cylinder formed from
Hastelloy C-22. Hastelloy C-22 is available from Corrosion
Materials, Inc. P.O. Drawer 666 Baker, LA 70714. Hastelloy C-22 is an alloy that has the following composition, amounts being nominal and percentages being by weight: nickel - 56 %; chromium - 22 %; molybdenum - 13 %; tungsten - 3.0 %; iron - 3.0 %; cobalt - 2.5 %;; manganese -
0.5 % max.; vanadium - 0.35 % max.; silicon - 0.08 % max.; and carbon - 0.010% max. This material has been selected in recognition of the potentially corrosive atmosphere in the reaction chamber. Other materials (such as polyvinyl chloride, inconel, and austenitic stainless steel) and other chamber body shapes may be used without departing from the scope of this invention depending on the requirements of the intended application. Flanges 14 and 16 extend from the inlet and outlet ends, respectively, of reaction chamber 12. Flanges 14 and 16 serve as means for attaching processing unit 10 to an inflow means feeding influent to the unit for treatment and an outflow means to transfer treated materials to other processing units or to the atmosphere for release, as discussed below.
Electron beam treatment system 10, as shown in Fig. 2, can accommodate influent gas flows of up to about 1 ,000 cubic feet per minute. With large diameter pipes system 10 can accommodate flows to about 5,000 cubic feet per minute. Other configurations of piping systems within the scope of this invention can accommodate flow rates of up to about 50,000 cubic feet per minute.
In the preferred embodiment, processing unit 10 has two electron beam sources. It should be understood, however, that the processing unit could use one or more than two electron beam sources without departing from the scope of the invention. It should be understood that other means for generating electrons may also be used. What is required is a sufficient electron beam energy to penetrate the vacuum window, typically 30 KeV or greater. The current density of the beam incident on the window will generally be less than 5 milliamperes per square centimeter with typical thermal cooling systems for the window as are usually used with this type source. However, it should be understood that with a more effective cooling system the beam current density may be increased. The incident electron beam on the window should be sized so that it will diverge to no more than a half cone angle of about twenty degrees. This will ensure that electrons that penetrate the window do not contribute appreciably to defocusing and divergence after scatter from the window itself. Each electron beam source 18 can supply average electron beam power to about 5 kilowatts, either continuous or pulsed
Electron beams that may be used in this invention include those that are generated by, for example, thermionic devices, plasma generators, certain corona generators, as well as field emission devices. Pulsed linear accelerators may also be used as electron sources within the scope of this invention.
As shown in Figure 2, two electron beam sources 18 are attached to reaction chamber 12 of the electron beam treatment system 10, preferably by means of flanges 17 and 11 and flanges 9 and 13 on the electron beam sources and on the reaction chamber, respectively. In the event that the system is used with a single electron beam source, the second electron beam source position may be covered by a removable plate attached to flange 13. In this system, influent enters the opening at flange 14 and exits the opening at flange 16. Controls and power supplies 7 drive and control system 10 during operation. The unit includes a heat exchanger 8 for purposes of controlling heat through the system and xray high tension supplies 6 to drive the electron beam sources.
The processing unit shown in Fig. 2 may be constructed to be approximately 4 feet wide by 8 feet long by 5 feet high, and, when containing two electron sources weighs less than about 4,000 pounds. In general processing units in accordance with this invention will be less than about 10 feet long in any surface * t dimension and will weigh less than about 3 tons.
In order to optimize its effectiveness, an electron beam system must be tailored to the treated material's composition and mass flow rate. One of the design parameters is dose, defined as energy absorbed per unit mass of treated material. The dose required for a particular electron beam application depends on the nature of the material to be treated and the desired chemical transformation of that material. Energy absorbed from the electron beam by the material in the reaction chamber is a function of the power of the electron beam source, the kinetic energy of the electrons in the beam, the spatial distribution of the electrons, the shape and dimensions of the chamber, the mass flow rate of the treated material, the type and concentration of contaminants and the carrier gas. For a given dose, higher mass flow requires higher electron beam power. For example, at a flow rate of 1 ,000 cubic feet per minute and beam power of 3 kilowatts delivered to reaction chamber 12, each electron source can administer a treatment dose of about 5 watt-seconds per gram to the material flowing through reaction chamber 12.
The upper limit of flow rate through a reaction chamber of given dimensions is defined by the acceptable pressure drop across the reaction chamber due to fluid friction and the maximum electron beam power the system is capable of delivering. Enlarging the reaction chamber requires an increase in electron energy to ensure complete treatment of the material flowing through the reaction chamber. The modular nature of the electron generator described above facilitates the exchange of one electron beam source for another. In addition, fins or other flow directing devices may be added to the interior of the reaction chamber to create turbulence within the reaction chamber, thereby increasing the interaction between the electron beam and the flowing material.
The modular nature of the processing unit of this invention facilitates alternate configurations of the electron beam system to meet the material treatment needs of a given application according to the design parameters discussed above. Figures 3(a) and 3(b) show two possible configurations. Other configurations apparent to those skilled in the art are within the scope of this invention.
Figure 3(a) is a schematic drawing of a series arrangement of the processing unit modules shown in Figure 1. As discussed above, the dose delivered by the processing unit module is a function of electron beam power. Assuming that the physical dimensions of the reaction chamber meet the mass flow requirements of the conversion system input, and assuming that the power of the electron beam source is not changed, the dose delivered by the system can be increased incrementally to at least its required level by attaching the modular processing units serially as shown in Figure 3(a). Processing units 10 are connected to each other by means of flanges 14 and 16 or by other suitable connecting means. The inlet flange of the first reaction chamber in the series is attached to a flange on an influent duct
40 which delivers influent gas from the material source directly or via any pre-processing system components such as pumps, filters, moisture traps and/or thermal devices. The outlet flange of the last reaction chamber in the series is attached to a flange on an effluent duct 42 which removes treated effluent from the system directly or via any post-processing components such as scrubber and/or carbon adsorption containers. Suitable seals or gaskets are disposed between the flanges to prevent leakage.
Figure 3(b) is a schematic drawing of a parallel arrangement of the modular processing units of this invention. If the incoming material flow rate exceeds the design flow rate or allowable pressure of the processing unit, the incoming material can be split into two or more separate flows by manifold 50 which delivers influent gas from the material source directly or via any pre¬ processing components. The inlet flanges 14 or other suitable connecting means of the multiple processing units 10 are attached to flanges on the influent manifold branches 52. Outlet flanges 16 of processing units 10 are attached to flanges on branches 56 of manifold 54 which removes treated effluent from the system directly or via any post-processing components. Valves 58 on influent manifold branches 52 may be used to apportion flow among the branches in any desired ratio.
It is possible, of course, to combine the serial arrangement of Figure 3(a) with the parallel arrangement of Figure 3(b) in order to meet the dose and flow rate requirements of the treated material source. The invention also simplifies reconfiguration of the system if the material source changes or the site is different.
The modular reaction chamber of this invention may be used in a dedicated, stationary electron beam conversion system. Because it is relatively small and lightweight and because it can be easily reconfigured, the modular reaction chamber of this invention is particularly useful in a transportable electron beam system.
Additionally, electron beam systems may be used to convert organic contaminants found in soil and groundwater to nontoxic forms.
No two toxic waste sites are the same, however. Each site has different contaminants in varying amounts. In addition, requirements to clean up a site vary over time. The electron beam system of this invention can therefore be configured to meet the initial site requirements, then be transported to the site. When the site requirements change, the system can be reconfigured on site or removed for reconfiguration elsewhere. The entire system can be easily removed from the site when the cleanup is complete.
Figure 4 is a simplified block diagram showing a preferred embodiment of a modular processing unit in accordance with this invention. This configuration includes two electron sources and one reaction chamber. Alternatively, only one electron source may be included or the system can be configured with more than two sources and more than a single reaction chamber.
One or more modular processing units, such as that of Figure 4, will typically be employed as the central processor in a system which will also include, external to the processing unit, preprocessing elements and components such as pumps, valves, and filter, and postprocessing stations such as scrubbers and containers of activated charcoal.
Gas to be processed (such as, for example, contaminated air from a soil extraction system, gas from an incinerator or from the output of an industrial process, or from a collection carbon barrel) enters at flange 101. If the pressure of this influent gas exceeds a predetermined limit beyond which the scatter foil might be damaged, high-limit pressure switch 102 signals to system control assembly 103 which in turn signals control means external to the processing unit to reduce or stop the flow or otherwise reduce the incoming pressure. Alternatively, a control valve (not shown) can be included in the processing unit for this purpose. Optionally, system control assembly 103 can contain means for delivering pulse signals to the optional control electrode or grid in the electron guns of electron sources 105 and 106. For a given average power, pulsing provides the capability of applying higher peak power to the influent flowing through the reaction chamber and such higher peak power can prove useful in those cases where the reaction rate depends on power levels or in those cases where the material under treatment requires an occasional pulse at higher peak power to accomplish an effective transformation.
The influent next flows through the reaction chamber 104 in which it is exposed to electron beams from one or more electron sources such as sources 105 and 106. Sources 105 and 106 direct beams through window assemblies 107 and 108, respectively. Focus coils 109 and 110 enable adjustments, for control of the electron beams, and to assure operation of the processing unit at an efficient level to transfer electron energy from the beams to the gas or other influent passing through reaction chamber 104.
In the configuration shown, electron sources 105 and 106, respectively, receive direct-current power (DC) via high tension cables 123 and 124 from high tension generators 111 and 112 which are controlled in turn by power control assemblies 113 and 114. Alternatively, more than one electron source can be driven by a single DC source of suitable capacity. The cathodes of electron sources 105 and 106 are heated by conventional electrical means (not shown).
Focus coil power supply 1 15 provides DC to focus coils 109 and 1 10 through system control assembly 103 which contains controls for focus adjustments. Alternatively, each focus coil can be fed by a separate power supply, and routing of each power supply to its focus coil can be direct rather than through a separate control assembly.
Electron sources 105 and 106 are equipped respectively with vacuum pumps 117 and 1 18 to assure that vacuums are maintained during operation and to extend operating life of the sources. Vacuum pump power supply 116 provides DC to the vacuum pumps. Alternatively, a separate power supply assembly can be used for each pump. As an option, these pumps and their power supplies can be omitted at some sacrifice to operating life.
Alternating-current power (AC) is introduced into the processing unit via power distribution assembly 119 which feed the AC to system elements that use AC. Conventional electrical interlocks maybe included for personnel protection.
Refrigerated heat exchanger 120 supplies closed-loop flow of cooling liquid whose temperature is limited by thermostat 130. The liquid flows through cooling elements in window assemblies 108 and 107 and then is returned to heat exchanger 120. Flow switch 121 disables high tension power to electron sources 105 and 106 if water temperature exceeds a pre-set limit. Alternatively, other routing of cooling liquid can be employed. Temperature switch 122 limits operating temperatures within the processing unit enclosure.
Windows 108 and 109 are also cooled, in part, by recirculating gas which, in the preferred embodiment, is argon but alternatively could be another suitable dry, inert gas. This recirculating gas is cooled on passing through heat exchanger 120 flowing through recirculating gas window cooler 125. Cooling-gas pressure is controlled by regulator 129 and monitored by high-low pressure gauge 126 which signals the system control assembly 103 if pressure is outside the programmed limits so that processing unit operations may be discontinued until remedial action is taken. Replenishment of the recirculating gas is provided from supply bottle 127 through valve 128 and regulator 129.
Influent gases from a vacuum extraction system or other source are fed to the system, and undesirable compounds in the gases are either transformed to benign elements or compounds or are removed (or further transformed) by the effluent treatment modules. The system may be made transportable through the use of power generators to provide power and may be mounted on a transportable support such as a truck bed or other movable support which facilitates movement from site to site. In addition, the system's elements are easily reconfigured to meet the specific requirements of each toxic site.
Influent and effluent gases may be monitored on-line by flow sensors and chemical analysis sensors to determine the composition, temperature, and pressure of input and output material. Operation of the electron beam source may also be monitored by measuring the electron beam current either at the power supply or with a toroidal current monitor surrounding the output beam. Analytical instruments and equipment may be located in an equipment monitor with the other system controls. Computers and computer software may be used for system control. Provision may also be made to control the entire system from a remote location.
The electron beam system of this invention may be used to break down volatile organic compounds or other toxic materials in carriers into their elements or to other compounds which are relatively benign and can therefore be released to the atmosphere. A particular advantage of the electron beam system of this invention when used in connection with a carbon containment system is the considerable reduction in the need for the carbon technique of adsorbing toxics which in turn extends the useful life of the normal carbon canisters. This reduction in need also reduces the associated problems with such canisters including permitting for movement and clean up, as previously discussed. The system of this invention also requires far less power or energy to achieve results as compared to existing techniques used in this field.
The electron beam conversion system of this invention requires less fuel to convert toxics to other forms than is required for example by incineration systems. In fact, in the basic operating mode, no material such as oxygen is required in addition to the influent to be processed. Thus, another advantage of this invention over prior art conversion systems is the reduction in the volume of system effluent.
This invention produces very little thermal pollution as compared for example to incineration systems, except in those cases that may require heat to release contaminants for treatment. In fact as should be apparent the preferred embodiments of this invention are inherently energy efficient.
While the examples given above describe an open-loop system in which treated material is either released to the environment or collected in carbon canisters, the electron beam system of this invention may be used in a closed-loop system in which treated material is returned to the material source or to another destination from which it may subsequently be retrieved for reprocessing. Other modifications to the system and to elements thereof will be apparent to those skilled in the art. It is intended to cover this invention broadly within the scope of the claims.

Claims

We claim:
1 . A portably sized processing unit of modular elements for an electron beam toxic treatment system comprising: a reaction chamber; means in the reaction chamber for admitting an electron beam of sufficient power to treat an influent flow from industrial processes through said reaction chamber; first attachment means for selectively attaching the reaction chamber to, and detaching the reaction chamber from a source of an influent flow; and second attachment means for selectively attaching the reaction chamber to, and detaching the reaction chamber from, output means for an effluent flow.
2. The processing unit of claim 1 wherein the first attachment means comprises connecting means to the reaction chamber and wherein said processing unit is no larger than about ten feet in any single surface dimension.
3. The processing unit of claim 2 wherein the second attachment means comprises connecting means from the reaction chamber.
4. The processing unit of claim 1 wherein the reaction chamber comprises a cylinder having a material inlet at one end and a material outlet at the other end and wherein said processing unit is no larger than about ten feet in any single surface dimension.
5. The processing unit of claim 1 further comprising at least one modular electron beam source connected to said reaction chamber and arranged to transmit an electron beam into the reaction chamber.
6. The processing unit of claim 5 in which said electron beam source is capable of producing electron beam energy of from 50,000 to 500,000 electron volts.
7. The processing unit of claim 5 wherein the means for admitting an electron beam to said reaction chamber is a port formed in the wall of the reaction chamber and the electron beam source at its output end includes a vacuum window aligned with the port.
8. The processing unit of claim 7 wherein the vacuum window is approximately 0.002-inch thick.
9. The processing unit of claim 8 further including a scatter foil between the reaction chamber and the vacuum window at the output of said electron source.
10. An electron beam portable modular treatment system comprising: input means for admitting influent to the system; exit means for removing effluent from the system; conversion means comprising more than one processing unit, at least one electron beam source connected to each said processing unit, and means for flowing the influent from said input means to said processing units and the effluent from said processing units to said exit means.
1 1 . The electron beam system of claim 10 including means for selectively controlling the influent flow comprising a input manifold having a predetermined number of branches, an exit manifold having the same predetermined number of branches, and means for controlling the paths of inflowing influent to pass through designated paths through said input manifold, then through said processing chambers and then to said exit means out of said unit.
12. The electron beam system of claim 11 including means to position the components of the system into a number of different possible positions as to configure the unit into different shapes.
13. The electron beam system of claim 1 1 wherein said processing units are arranged in series, means for attaching the first processing unit in the series to the input means, and means for attaching the last processing in the series to the exit means.
14. The electron beam system of claim 1 1 wherein said processing units are arranged in parallel.
15. The electron beam system of claim 14 wherein said electron beam source is positioned at a port formed in the reaction chamber wall and the electron beam source feeds electrons to said reaction chamber through a vacuum window aligned with the port.
16. The electron beam system of claim 15 wherein a scatter foil is positioned between the vacuum window and said port of said reaction chamber .
17. A transportable electron beam modular system comprising: a processing unit comprising an electron beam source; a reaction chamber; first attachment means for selectively attaching the reaction chamber to, and detaching the reaction chamber from, material influent means; and second attachment means for selectively attaching the reaction chamber to, and detaching the reaction chamber from, material effluent means; and transport means for moving the processing unit from one site to another.
18. A transportable electron beam modular system in accordance with claim 17 in which said electron beam source is adapted to generate electron beam energy in the range of 50,000 to 500,000 electron volts.
19. A transportable electron beam modular system in accordance with claim 17 in which said electron beam source is attached to said reaction chamber and is adapted to feed electrons first through an output vacuum window of said electron beam source and next through a foil prior to entering said reaction chamber and in which said foil comprises an impervious chemically resistant barrier isolating the vacuum window from the reaction chamber.
20. A transportable electron beam modular system in accordance with claim 19 in which said system is capable of processing influent materials at flow rate of up to about 50,000 cubic feet per minute.
21 . A transportable electron beam modular system in accordance with claim 18 in which said electron beam source can supply average electron beam power of up to about 5 kilowatts.
22. A transportable electron beam modular system comprising: influent means for admitting an influent flow to the system; effluent means for removing an effluent flow from the system; conversion means comprising a plurality of processing units and means for selectively arranging the processing units serially or in parallel, each processing unit comprising a reaction chamber, means for admitting an electron beam into the reaction chamber and means for communicating the reaction chamber with the influent means and the effluent means; means to arrange the components of the system in various possible configurations, and transport means for moving the influent means, the effluent means, and the conversion means from one site to another.
23. An electron beam source comprising a substantially cylindrical vacuum envelope, an accelerating electrode, an electron emitter, means to apply a negative electric potential to said emitter with respect to the accelerating electrode to accelerate electrons emitted from said emitter substantially along the axis of said vacuum envelope, a thin vacuum window at the end of said cylindrical envelope to pass electrons through, said source being in the 50,000 to 500,000 electron volt beam energy range and means to connect said envelope with said window facing a reaction chamber to treat, with electron beams, a toxic influent passing therethrough.
24. An electron beam source in accordance with claim 23 in which said window is about 0.002-inch thick.
25. An electron beam source in accordance with claim 23 in which said emitter comprises an electron gun having a control electrode associated therewith.
26. An electron beam source in accordance with claim 23 to provide average electron beam power of up to about 5 kilowatts.
26. An electron beam source in accordance with claim 25 in which said control electrode is pulsed and said source provides a pulsed average electron beam power of up to about 5 kilowatts.
27. The processing unit of claim 5 wherein said electron beam source comprises a substantially cylindrical vacuum envelope, an accelerating electrode, an electron emitter, means to apply a negative electric potential to said emitter with respect to the accelerating electrode to accelerate electrons emitted from said emitter substantially along the axis of said vacuum envelope, and a thin vacuum window at the end of said cylindrical envelope to pass electrons through, said source being in the 50,000 to 500,000 electron volt beam energy range.
28. An electron beam source in accordance with claim 25 including a focusing coil to magnetically focus said beam.
29. An electron beam source in accordance with claim 28 including cooling means for said window.
30. An electron beam source in accordance with claim 29 including a scatter foil positioned spaced apart from said window and means to flow a cooling and purge gas therebetween.
31 . An electron beam source in accordance with claim 30 including a pathway to flow the purge gas after passage between said window and said foil to said reaction chamber for processing.
32 An electron beam system in accordance with claim 1 including means to add promoters to the influent prior to the reaction chamber.
PCT/US1994/004823 1993-05-14 1994-04-28 Electron beam system WO1994026407A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU67800/94A AU6780094A (en) 1993-05-14 1994-04-28 Electron beam system
JP52550294A JP3519408B2 (en) 1993-05-14 1994-04-28 Processing unit, processing system, and electron beam source used for converting and processing volatile organic compounds using electrons

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/062,964 1993-05-14
US08/062,964 US5378898A (en) 1992-09-08 1993-05-14 Electron beam system

Publications (1)

Publication Number Publication Date
WO1994026407A1 true WO1994026407A1 (en) 1994-11-24

Family

ID=22046003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1994/004823 WO1994026407A1 (en) 1993-05-14 1994-04-28 Electron beam system

Country Status (4)

Country Link
US (2) US5378898A (en)
JP (1) JP3519408B2 (en)
AU (1) AU6780094A (en)
WO (1) WO1994026407A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0667173A1 (en) * 1994-02-09 1995-08-16 Hughes Aircraft Company Destruction of contaminants using a low-energy electron beam

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5378898A (en) * 1992-09-08 1995-01-03 Zapit Technology, Inc. Electron beam system
US5357291A (en) * 1992-09-08 1994-10-18 Zapit Technology, Inc. Transportable electron beam system and method
US5909032A (en) * 1995-01-05 1999-06-01 American International Technologies, Inc. Apparatus and method for a modular electron beam system for the treatment of surfaces
US5756054A (en) * 1995-06-07 1998-05-26 Primex Technologies Inc. Ozone generator with enhanced output
US6080362A (en) * 1995-06-07 2000-06-27 Maxwell Technologies Systems Division, Inc. Porous solid remediation utilizing pulsed alternating current
US6030506A (en) * 1997-09-16 2000-02-29 Thermo Power Corporation Preparation of independently generated highly reactive chemical species
US5814821A (en) * 1996-11-26 1998-09-29 Northrop Grumman Corporation Mobile irradiation device
US6407492B1 (en) 1997-01-02 2002-06-18 Advanced Electron Beams, Inc. Electron beam accelerator
US5962995A (en) * 1997-01-02 1999-10-05 Applied Advanced Technologies, Inc. Electron beam accelerator
US6545398B1 (en) * 1998-12-10 2003-04-08 Advanced Electron Beams, Inc. Electron accelerator having a wide electron beam that extends further out and is wider than the outer periphery of the device
EP1160799A4 (en) * 1999-01-11 2003-02-26 Ebara Corp Electron beam projection reaction device
US7424764B2 (en) * 1999-09-01 2008-09-16 Hagleitner Hygiene International Gmbh Brush with locking and detaching structure for disposable head
JP2001221899A (en) * 2000-02-07 2001-08-17 Ebara Corp Electron beam irradiating apparatus
US7189978B2 (en) * 2000-06-20 2007-03-13 Advanced Electron Beams, Inc. Air sterilizing system
US6623705B2 (en) 2000-06-20 2003-09-23 Advanced Electron Beams, Inc. Gas conversion system
US6623706B2 (en) 2000-06-20 2003-09-23 Advanced Electron Beams, Inc. Air sterilizing system
US6702984B2 (en) 2000-12-13 2004-03-09 Advanced Electron Beams, Inc. Decontamination apparatus
US7183563B2 (en) * 2000-12-13 2007-02-27 Advanced Electron Beams, Inc. Irradiation apparatus
US6833551B2 (en) 2001-03-20 2004-12-21 Advanced Electron Beams, Inc. Electron beam irradiation apparatus
US7265367B2 (en) * 2001-03-21 2007-09-04 Advanced Electron Beams, Inc. Electron beam emitter
US20020135290A1 (en) * 2001-03-21 2002-09-26 Advanced Electron Beams, Inc. Electron beam emitter
ITTO20010372A1 (en) * 2001-04-13 2002-10-13 Silvio Perona DEPURATION AND REFINING PROCESS OF FLUIDS BY MEANS OF ACCELERATED ELECTRONS.
US7148613B2 (en) 2004-04-13 2006-12-12 Valence Corporation Source for energetic electrons
US20060113486A1 (en) * 2004-11-26 2006-06-01 Valence Corporation Reaction chamber
US20090205947A1 (en) * 2005-02-10 2009-08-20 John Barkanic Method for the reduction of malodorous compounds
EP2109873B1 (en) * 2007-02-06 2017-04-05 FEI Company High pressure charged particle beam system
US7656236B2 (en) 2007-05-15 2010-02-02 Teledyne Wireless, Llc Noise canceling technique for frequency synthesizer
US8179045B2 (en) * 2008-04-22 2012-05-15 Teledyne Wireless, Llc Slow wave structure having offset projections comprised of a metal-dielectric composite stack
DE102008045187A1 (en) * 2008-08-30 2010-03-04 Krones Ag Electron beam sterilization for containers
US8339024B2 (en) * 2009-07-20 2012-12-25 Hitachi Zosen Corporation Methods and apparatuses for reducing heat on an emitter exit window
EP2385542B1 (en) * 2010-05-07 2013-01-02 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Electron beam device with dispersion compensation, and method of operating same
US9679741B2 (en) 2010-11-09 2017-06-13 Fei Company Environmental cell for charged particle beam system
US9655223B2 (en) * 2012-09-14 2017-05-16 Oregon Physics, Llc RF system, magnetic filter, and high voltage isolation for an inductively coupled plasma ion source
NZ706072A (en) * 2013-03-08 2018-12-21 Xyleco Inc Equipment protecting enclosures
US9202660B2 (en) 2013-03-13 2015-12-01 Teledyne Wireless, Llc Asymmetrical slow wave structures to eliminate backward wave oscillations in wideband traveling wave tubes
WO2023208707A2 (en) * 2022-04-26 2023-11-02 Tetra Laval Holdings & Finance S.A. Sterilization apparatus having an irradiation beam emitting device and packaging machine having a sterilization apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4595569A (en) * 1984-02-03 1986-06-17 Polymer-Physik Gmbh & Co. Kg Device for desulphurizing and denitrating flue gases by electron irradiation
US4752450A (en) * 1985-07-11 1988-06-21 Leybold-Heraeus Gmbh Apparatus for cleaning sulphur and nitrogen containing flue gas
WO1991009665A1 (en) * 1989-12-22 1991-07-11 Ebara Corporation Method and apparatus for treating exhaust gas by multi-stage irradiation with electron beam

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2583899A (en) * 1950-11-29 1952-01-29 Lester H Smith Electrochemical process
US2892946A (en) * 1955-11-25 1959-06-30 High Voltage Engineering Corp Method of and apparatus for the more efficient use of high-energy charged particles in the treatment of gasphase systems
US4702808A (en) * 1957-06-27 1987-10-27 Lemelson Jerome H Chemical reaction apparatus and method
US2958638A (en) * 1958-04-24 1960-11-01 Exxon Research Engineering Co Reaction container for carrying out radiation induced chemical reactions
JPS5844009B2 (en) * 1978-12-29 1983-09-30 株式会社荏原製作所 Electron beam irradiation treatment method for exhaust gas and its equipment
JPS58884B2 (en) * 1978-12-29 1983-01-08 株式会社荏原製作所 Exhaust gas treatment method using radiation irradiation
US4372832A (en) * 1981-01-21 1983-02-08 Research-Cottrell, Incorporated Pollution control by spray dryer and electron beam treatment
JPS62250933A (en) * 1986-04-24 1987-10-31 Ebara Corp Exhaust gas treatment method and device using electron beam irradiation
EP0294658B1 (en) * 1987-05-30 1993-01-27 Ebara Corporation Process for treating effluent gas
US4969984A (en) * 1987-06-01 1990-11-13 Ebara Corporation Exhaust gas treatment process using irradiation
US5256854A (en) * 1990-12-18 1993-10-26 Massachusetts Institute Of Technology Tunable plasma method and apparatus using radio frequency heating and electron beam irradiation
US5219534A (en) * 1991-04-26 1993-06-15 Reynolds Warren D Process and apparatus for decontaminating air
US5357291A (en) * 1992-09-08 1994-10-18 Zapit Technology, Inc. Transportable electron beam system and method
US5378898A (en) * 1992-09-08 1995-01-03 Zapit Technology, Inc. Electron beam system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4595569A (en) * 1984-02-03 1986-06-17 Polymer-Physik Gmbh & Co. Kg Device for desulphurizing and denitrating flue gases by electron irradiation
US4752450A (en) * 1985-07-11 1988-06-21 Leybold-Heraeus Gmbh Apparatus for cleaning sulphur and nitrogen containing flue gas
WO1991009665A1 (en) * 1989-12-22 1991-07-11 Ebara Corporation Method and apparatus for treating exhaust gas by multi-stage irradiation with electron beam

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0667173A1 (en) * 1994-02-09 1995-08-16 Hughes Aircraft Company Destruction of contaminants using a low-energy electron beam
US5561298A (en) * 1994-02-09 1996-10-01 Hughes Aircraft Company Destruction of contaminants using a low-energy electron beam

Also Published As

Publication number Publication date
US5378898A (en) 1995-01-03
JPH08511698A (en) 1996-12-10
AU6780094A (en) 1994-12-12
US5523577A (en) 1996-06-04
JP3519408B2 (en) 2004-04-12

Similar Documents

Publication Publication Date Title
US5378898A (en) Electron beam system
AU697163B2 (en) Transportable electron beam system and method
US5457269A (en) Oxidizing enhancement electron beam process and apparatus for contaminant treatment
US5319211A (en) Toxic remediation
WO1993003879A1 (en) Electrodeless plasma torch apparatus and methods for the dissociation of hazardous waste
JPH07251026A (en) Method for destroying pollutant by using low energy electron beam
JP2010510871A (en) Apparatus and method for destroying organic compounds in large volumes of exhaust in commercial and industrial applications
US6534754B2 (en) Microwave off-gas treatment apparatus and process
EP1542238B1 (en) Aerosol particle charging equipment
KR920010275B1 (en) Stack gas emission control system
US7722765B2 (en) Molecular arrangement magnetic treatment apparatus and method
US7026570B2 (en) Transportable, self-controlled plasma neutralization of highly toxic bio-chemical waste and method therefore
Farrar et al. Rapid decontamination of large surface areas
US20230128332A1 (en) Universal Chemical Processor with Radioisotope Source
WO2008055684A1 (en) Process for hazardous wastes remediation using plasma technologies and device for the implementation of such process
US20090308730A1 (en) Hollow cathode plasma source for bio and chemical decotaminiation of air and surfaces
WO1994017899A1 (en) Tunable compact electron beam generated plasma system for the destruction of gaseous toxic compounds
Iacoboni et al. A new semi-mobile plant for radiation processing of waste
KR20050029889A (en) Surface treatment system for radioactive waste

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AT AU BB BG BR BY CA CH CZ DE DK ES FI GB HU JP KP KR KZ LK LU MG MN MW NL NO NZ PL PT RO RU SD SE SK UA VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA