WO1994025553A1 - Structuring liquid nonionic surfactants prior to granulation process - Google Patents

Structuring liquid nonionic surfactants prior to granulation process Download PDF

Info

Publication number
WO1994025553A1
WO1994025553A1 PCT/US1994/004843 US9404843W WO9425553A1 WO 1994025553 A1 WO1994025553 A1 WO 1994025553A1 US 9404843 W US9404843 W US 9404843W WO 9425553 A1 WO9425553 A1 WO 9425553A1
Authority
WO
WIPO (PCT)
Prior art keywords
premix
structuring agent
nonionic surfactant
powder
operating temperature
Prior art date
Application number
PCT/US1994/004843
Other languages
French (fr)
Inventor
Scott John Donoghue
Kay Emma Fitzgibbon
Paul Amaat R. G. France
Robin Gibson Hall
John Christian Schmitt
Carole Patricia D. Wilkinson
David William York
Original Assignee
The Procter & Gamble Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Procter & Gamble Company filed Critical The Procter & Gamble Company
Priority to JP6524624A priority Critical patent/JP2888983B2/en
Priority to KR1019950704756A priority patent/KR960701980A/en
Priority to AU67804/94A priority patent/AU693445B2/en
Priority to US08/537,751 priority patent/US5610131A/en
Priority to CA002160662A priority patent/CA2160662C/en
Publication of WO1994025553A1 publication Critical patent/WO1994025553A1/en
Priority to FI955143A priority patent/FI955143A0/en
Priority to NO954308A priority patent/NO954308L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3757(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions
    • C11D3/3761(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions in solid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/835Mixtures of non-ionic with cationic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents ; Methods for using cleaning compositions
    • C11D11/0082Special methods for preparing compositions containing mixtures of detergents ; Methods for using cleaning compositions one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • C11D17/065High-density particulate detergent compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/221Mono, di- or trisaccharides or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/26Organic compounds containing nitrogen
    • C11D3/28Heterocyclic compounds containing nitrogen in the ring
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/26Organic compounds containing nitrogen
    • C11D3/32Amides; Substituted amides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/34Organic compounds containing sulfur
    • C11D3/349Organic compounds containing sulfur additionally containing nitrogen atoms, e.g. nitro, nitroso, amino, imino, nitrilo, nitrile groups containing compounds or their derivatives or thio urea
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3769(Co)polymerised monomers containing nitrogen, e.g. carbonamides, nitriles or amines
    • C11D3/3776Heterocyclic compounds, e.g. lactam
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3792Amine oxide containing polymers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/52Carboxylic amides, alkylolamides or imides or their condensation products with alkylene oxides
    • C11D1/525Carboxylic amides (R1-CO-NR2R3), where R1, R2 or R3 contain two or more hydroxy groups per alkyl group, e.g. R3 being a reducing sugar rest

Definitions

  • the present invention relates to improving storage stability and physical properties of granular detergents which are rich in nonionic surfactant.
  • nonionic surfactants which are liquid at ambient temperature, and are therefore mobile. Without a suitable structurant, the nonionic surfactant tends to leak from the powder and soak into the cardboard container which forms an unsightly stain. Although it is possible to avoid this problem by using lower levels of nonionic surfactant in the composition, or by selecting nonionic surfactants which have a higher solidification temperature, this limits the flexibility of formulation.
  • nonionic surfactants in granular detergent applications has been widely discussed in the prior art.
  • the following references describe various processes and compositions for making granules which comprise nonionic surfactants.
  • GB 2 137 221, published 3rd October, 1984 discloses a nonionic premix which comprises dissolved polyvinyl pyrrolidone (PVP) and soil release polymer.
  • the premix is sprayed on to an absorbant detergent carrier particle.
  • the PVP is used as a stabiliser for the soil release polymer.
  • EPA 0 215 637 published on 25th March, 1987 discloses the use of sugars and derivatives as structurants of spray dried detergent powders. Although nonionic surfactant may be present in such powders it is incorporated at relatively low levels (1.5% - 4% in examples 1 to 5). Furthermore the spray dried powder has a low bulk density (324 - 574 g/1) .
  • EPA 0 513 82.4 published 19th November, 1992, describes a process for granulating nonionic detergent and the use of a surface coating agent having a particle size of less than 10 micrometers to give a powder having a high content of nonionic surfactant (10-60%) and a bulk density of 0.6 to 1.2 g/ml.
  • the use of polymers including polyethylene glycol, polyvinyl alcohol, polyvinyl pyrrolidone and carboxy ethyl cellulose is disclosed (page 13, lines 17- 18) .
  • the benefits of using any of these polymers to structure or thicken the nonionic surfactant is not disclosed.
  • WO 92 6160 published on 16th April, 1992.
  • This application describes (example 14) a granular detergent composition prepared by fine dispersion mixing in an Eirich RV02 mixer of a paste which comprises N-methyl glucose amide and nonionic surfactant in the presence of sodium carbonate and zeolite. There is no suggestion to use polymers as structuring agents.
  • One aspect of the present invention is a process for making granular nonionic detergent agglomerates having a bulk density of at least 650 g/1 and which comprise higher levels of nonionic surfactant than those of the prior art, but do not have problems of mobile nonionic surfactants (i.e. nonionic surfactants with low solidification temperatures) leaking from the granules and soaking into the carton.
  • mobile nonionic surfactants i.e. nonionic surfactants with low solidification temperatures
  • structuring the liquid nonionic surfactant before the dispersion and/or granulation process is done by dissolving a structuring agent which comprises a polymer in the nonionic surfactant.
  • a structuring agent which comprises a polymer in the nonionic surfactant.
  • Preferred structuring agents are polymers, especially polymers having more than one functional hydroxyl group, especially polyvinyl alcohols, polyhydroxyacrylic acid polymers, and polymers such as polyvinyl pyrrolidone and PVNO.
  • Also useful as components of the structuring agent are sugars and artificial sweeteners and their derivatives.
  • Sticky materials if present at or close to the surface of the granules have a negative effect on flow properties. These materials also tend to gel upon contact with water which prevents effective dispensing of the granules from the dispensing drawer of a washing machine or from a dispensing device which is added to the wash with soiled load.
  • sticky materials as structuring agents of the nonionic surfactants thereby improving the surface properties of the granules.
  • high bulk density granular detergent compositions and components which comprise nonionic surfactants and structuring agents.
  • Preferred structurants comprise polymers having more than one functional hydroxyl group, especially polyvinyl alcohols, polyhydroxyacrylic acid polymers, and polymers such as polyvinyl pyrrolidone and PVNO , as well as sugars, artificial sweeteners and their derivatives.
  • the premix is then processed into a granular detergent by any suitable process. Fine dispersion mixing, agglomeration, or spraying the premix onto a granular base product are preferred.
  • Another aspect of the present invention is components or compositions comprising nonionic surfactant and structuring agents.
  • the process aspect of the present invention comprises two essential steps.
  • the first process step is the formation of a nonionic surfactant premix which comprises a structuring agent.
  • the second process step is the processing of the surfactant premix into the form of a granular detergent having the desired physical properties of bulk density, flow properties and storage characteristics.
  • the first process step of the invention is the preparation of a structured nonionic surfactant premix.
  • This premix comprises two essential components which will be described in more detail below. These components are the nonionic surfactant and the structuring agent.
  • the structuring agent is dissolved in the nonionic surfactant.
  • the second process step may be based upon any of the techniques of forming granules which are known to the man skilled in the art.
  • the most preferred granulation techniques for use in the present invention are fine dispersion of the structured nonionic surfactant paste in the presence of powders.
  • One example of such a process is to pump or sjoray the surfactant paste into a high shear mixer.
  • the high shear conditions in the mixer break up the surfactant paste into small droplets and distribute those droplets onto and around the powder.
  • the process is often described as "agglomeration".
  • Another example of such a process is to spray the surfactant paste onto a powder under low shear conditions (such as a rotating drum) .
  • the energy to break the paste into fine droplets comes at the spray nozzle, and in the low shear mixer the droplets are absorbed on to the surface, or into the pores of the powder.
  • Preferred granulation processes are described in more detail below.
  • the term structuring has been used to mean thickening or raising the solidification point of the nonionic surfactant, or both of these. It is an essential feature of the present invention that the viscosity of the premix is greater than 350 mPas when measured at the operating temperature and at a shear rate of 25s" 1 .
  • the operating temperature is the temperature of the surfactant paste at the point which is sprayed or dispersed onto the powders during the granulation step of the process.
  • a pumpable paste is defined herein to mean a paste which has a viscosity of less than 100 000 mPas when measured at 25s" 1 at the required operating temperature.
  • the viscosity of the paste will be less than 60 000 mPas, and even more preferably less than 40 000 mPas.
  • Suitable nonionic surfactants include compounds produced by the condensation of alkylene oxide groups (hydrophilic in nature) with an organic hydrophobic compound, which may be aliphatic or alkyl aromatic in nature.
  • the length of the polyoxyalkylene group which is condensed with any particular hydrophobic group can be readily adjusted to yield a water-soluble compound having the desired degree of balance between hydrophilic and hydrophobic elements.
  • nonionic surfactants such as the polyethylene oxide condensates of alkyl phenols, e.g., the condensation products of alkyl phenols having an alkyl group containing from about 6 to 16 carbon atoms, in either a straight chain or branched chain configuration, with from about 4 to 25 moles of ethylene oxide per mole of alkyl phenol.
  • Preferred nonionics are the water-soluble condensation products of aliphatic alcohols containing from 8 to 20 carbon atoms, in either straight chain or branched configuration, with an average of from 1 to 25 moles of ethylene oxide per mole of alcohol.
  • Particularly preferred are the condensation products of alcohols having an alkyl group containing from about 9 to 15 carbon atoms with from about 2 to 10 moles of ethylene oxide per mole of alcohol; and condensation products of propylene glycol with ethylene oxide.
  • nonionic surfactants which fall within the definitions given above have are liquid at temperatures below 40°C (that is to say the solidification temperature is below 40°C) .
  • the present invention has been found to be particularly useful for such nonionic surfactants.
  • any structuring agent may be chosen which has the effect of raising the viscosity or "stickiness" of the surfactant premix to the required operating window and / or increasing the solidification temperature of the premix, it has been found that structuring agents which comprise at least one polymer are particularly useful.
  • at least one of the components of the structuring agent is a polymer having an average molecular weight of at least 2000, and preferably at least 10000.
  • the group of polymers useful as structuring agents in the present invention includes the group of polymers which are derived from monomers having at least one hydroxyl functional group such as polyvinyl alcohols, polyethylene glycol and polyhydroxyacrylic acid polymers and mixtures and derivatives of these.
  • Other polymers which are useful components of the strucuring agent include polyvinyl pyrollidone, PVNO.
  • the structuring agent may also comprise other ingredients.
  • One group of such ingredients which have been found to be particularly useful comprises the group of sugars and artificial sweeteners and their derivatives.
  • the group of sugars useful in the present invention includes fructose, lactose, dextrose, sucrose, saccharin and sorbitol.
  • One particularly preferred group of structuring agents is the derivatives of sugars such as polyhydroxy fatty acid amides.
  • Such derivatives may be prepared by reacting a fatty acid ester and an N-alkyl polyhydroxy amine.
  • the preferred amine for use in the present invention is N-(R1)- CH2 (CH20H)4-CH2-OH and the preferred ester is a C12-C20 fatty acid methyl ester.
  • Most preferred is the reaction product of N-methyl gluca ine (which may be derived from glucose) with C12-C20 fatty acid methyl ester.
  • Polyhydroxy fatty acid amides are also active in the washing process as surfactants in their own right.
  • ingredients which have been found to be useful as components of the structuring agent include phthalimide, para-toluene sulphonamide, and maleimide.
  • the ratio of nonionic surfactant to structuring agent will vary according to exactly which nonionic surfactant and which structurant is chosen. Any ratio may be used in the present invention provided that a premix having a viscosity of at least 350 mPas when measured at the operating temperature and a shear rate of 25s" 1 is produced. Typically ratios of nonionic surfactant to structuring agent in the range of 20:1 to 1:1 have been found to be particularly suitable, and preferably from 5:1 to 2:1.
  • the detergent compositions made according to the present invention may include a wide range of other ingredients and components which are known to the man skilled in the art to have a function in the washing process. Typical examples of such ingredients which may be used in detergent compositions are given below.
  • An essential step of the present invention is the process of forming granules which comprise the surfactant premix described above.
  • Many processes for granulating surfactant pastes are known to the man skilled in the art. One of these processes is spray drying of a slurry containing the surfactant. However, this is not a preferred process in the present invention because it does not generally yield a powder with a high bulk density, and further processing is needed in order to increase the bulk density.
  • a process which is more suited to the present invention is that of fine dispersion mixing or agglomeration. In this process a powder having a relatively small particle size is mixed with a finely dispersed paste which causes the powder to stick together (or agglomerate) .
  • the result is a granular composition which generally has a particle size distribution in the range of 250 to 1200 micrometers and has a bulk density of at least 650 g/1.
  • the surfactant premix is used as the paste which is finely dispersed with an effective amount of powder in a suitable mixer.
  • suitable mixers for carrying out the fine dispersion mixing are described in more detail below. Any suitable powder may be chosen by mixing one or more of the ingredients listed below which may be conveniently handled in powder form. Powders comprising zeolite, carbonate, silica, silicate,sulphate, phosphate, citrate, citric acid and mixtures of these are particularly preferred.
  • a particularly preferred embodiment of the present invention is to spray water on to the detergent granules after the granulation step.
  • at least one of the powders used should be an anhydrous powder which may be fully or partially hydrated when it comes into contact with water.
  • anhydrous powders such as phosphate, carbonate, borate or sulphate are metered into a high shear mixer (a K-G Schugi [Trade name] Blender- Agglomerator) together with a liquid surfactant and water. The amount of water added is sufficient to completely hydrate the hydratable salts.
  • the resulting agglomerates are fed into a low shear mixer having a longer residence time in order for the hydration reaction to proceed.
  • the water into the low shear mixer after the agglomerates have been formed.
  • adding the water after the initial formation of the agglomerates promotes hydration at the surface of the agglomerates which gives rise to the desired physical characteristics.
  • Most preferred in the process of the present invention is the use of anhydrous sodium carbonate, or anhydrous sodium citrate, or mixtures of these.
  • the anhydrous salts are agglomerated in the presence of a structured nonionic surfactant premix and then water is sprayed on to the resulting agglomerates in a low shear mixer.
  • the agglomerates are finally dried in a fluid bed dryer.
  • Still another process which is suited to the present invention is that of preparing a granular detergent powder and spraying the surfactant premix onto that powder.
  • the base powder may be made by any one of the processes known to the man skilled in the art, including spray drying, granulation,, (including agglomeration) .
  • spray drying, granulation,, (including agglomeration) Preferably different processes which are suited to the preparation of different components will be used, and then the components will be mixed together, for example by dry mixing in a rotating drum or a low shear mixer.
  • the surfactant premix is sprayed onto the base powder in the rotating drum or low shear mixer.
  • Suitable pieces of equipment in which to carry out the fine dispersion mixing or granulation of the present invention are mixers of the Fukae R FS-G series manufactured by Fukae Powtech Kogyo Co., Japan; this apparatus is essentially in the form of a bowl-shaped vessel accessible via a top port, provided near its base with a stirrer having a substantially vertical axis, and a cutter positioned on a side wall.
  • the stirrer and cutter may be operated independently of one another and at separately variable speeds.
  • the vessel can be fitted with a cooling jacket or, if necessary, a cryogenic unit.
  • mixers found to be suitable for use in the process of the invention include Diosna R V series ex Dierks & S ⁇ hne, Germany; and the Pharma Matrix R ex T K Fielder Ltd., England.
  • Other mixers believed to be suitable for use in the process of the invention are the Fuji R VG-C series ex Fuji Sangyo Co., Japan; and the Roto R ex Zanchetta & Co srl, Italy.
  • Other preferred suitable equipment can include Eirich R , series RV, manufactured by Gustau Eirich Hardheim, Germany; Lodige R , series FM for batch mixing, series Baud KM for continuous mixing/agglomeration, manufactured by L ⁇ dige Machinenbau GmbH, Paderborn Germany; Drais R T160 series, manufactured by Drais Werke GmbH, Mannheim Germany; and Winkworth R RT 25 series, manufactured by Winkworth Machinery Ltd., Berkshire, England.
  • the Littleford Mixer, Model #FM-130-D-12, with internal chopping blades and the Cuisinart Food Processor, Model #DCX-Plus, with 7.75 inch (19.7 cm) blades are two examples of suitable mixers. Any other mixer with fine dispersion mixing and granulation capability and having a residence time in the order of 0.1 to 10 minutes can be used.
  • the "turbine-type" impeller mixer, having several blades on an axis of rotation, is preferred.
  • the invention can be practiced as a batch or a continuous process.
  • the granular components or compositions described above may be suitable for use directly, or they may be treated by additional process steps. Commonly used process steps include drying, cooling and/or dusting the granules with a finely divided flow aid. In addition the granules may be blended with other components in order to provide a composition suitable for the desired end use. Any type of mixer or dryer (such as fluid bed dryers) may be found to be suitable for this purpose.
  • the finely divided flow aid may be chosen from a wide variety of suitable ingredients such as zeolite, silica, talc, clay or mixtures of these.
  • compositions of detergent components comprising nonionic surfactant.
  • Components having a bulk density of greater than 650 g/1 and comprising from 10% to 50% by weight of nonionic surfactant and from 5% to 30% by weight of one of the structuring agents listed above fall within the scope of the present invention.
  • the ratio of nonionic surfactant to structuring-agent will vary according to exactly which nonionic surfactant and which structurant is chosen. Any ratio may be used in the present invention provided that a premix having a viscosity of at least 350 mPas when measured at the operating temperature and a shear rate of 25s" 1 is produced.
  • ratios of nonionic surfactant to structuring agent in the range of 20:1 to 1:1 have been found to be particularly suitable, and preferably from 5:1 to 2:1.
  • the granular detergent will also contain other optional ingredients.
  • examples of such ingredients which are commonly used in detergents are given in more detail hereinbelow
  • Alkyl Ester sulfonate surfactants hereof include linear esters of Cg-C 2 o carboxylic acids (i.e. fatty acids) which are sulfonated with gaseous S0 3 according to "The Journal of the American Oil Chemists Society'" 52 (1975), pp. 323- 329. Suitable starting materials would include natural fatty substances as derived from tallow, palm oil, etc.
  • the preferred alkyl ester sulfonate surfactant especially for laundry applications, comprises alkyl ester sulfonate surfactants of the structural formula:
  • R is a C 8 _c 20 hydrocarbyl, preferably an alkyl, or combination thereof
  • R 4 i.s a -C hydrocarbyl, preferably an alkyl, or combination thereof
  • M is a cation which forms a water soluble salt with the alkyl ester sulfonate.
  • Suitable salt-forming cations include metals such as sodium, potassium, and lithium, and substituted or unsubstituted ammonium cations, such as monoethanolamine, diethanolamme, and triethanolamm .
  • R3 is
  • R is methyl, ethyl or isopropyl.
  • methyl ester sulfonates wherein R 3 i.s C -C alkyl.
  • Alkyl sulfate surfactants hereof are water soluble salts or acids or the formula ROSO 3 M wherein R preferably is a C- ⁇ Q -
  • C 2 4 hydrocarbyl preferably an alkyl or hydroxyalkyl having a C 10 -C 20 alkyl component, more preferably a C 12 ⁇ C 18 alJ ⁇ y 1 or hydroxyalkyl
  • M is H or a cation, e.g., an alkali metal cation (e.g., sodium, potassium, lithium), or ammonium or substituted ammonium (e.g., methyl-, dimethyl-, and trimethyl ammonium cations and quaternary ammonium cations, such as tetramethyl-ammonium and dimethyl piperdiniu cations and quarternary ammonium cations derived from alkylamines such as ethylamine, diethyla ine, triethylamine, and mixtures thereof, and the like) .
  • alkali metal cation e.g., sodium, potassium, lithium
  • ammonium or substituted ammonium e.g., methyl-,
  • alkyl chains of c 12 - i6 are P referred for lower wash temperatures (e.g., below about 50°C) and C. 1_6.—18 O alkyl chains are preferred for higher wash temperatures (e.g., above about- 50°C) .
  • Alkyl alkoxylated sulfate surfactants hereof are water soluble salts or acids of the formula RO(A)mS03_M wherein R is an unsubstituted C 10 ⁇ C 24 alkyl or hydroxyalkyl group having a c 10 ⁇ c 2 alkyl component, preferably a C _- C.- ⁇ alkyl or hydroxyalkyl, more preferably C, _-C.
  • A is an ethoxy or propoxy unit
  • m is greater than zero, typically between about 0.5 and about 6, more preferably between about 0.5 and about 3
  • M is H or a cation which can be, for example, a metal cation (e.g., sodium, potassium, lithium, calcium, magnesium, etc.), ammonium or substituted-ammonium cation.
  • Alkyl ethoxylated sulfates as well as alkyl propoxylated sulfates are contemplated herein.
  • substituted ammonium cations include methyl-, dimethyl-, tri ethyl- ammonium and quaternary ammonium cations, such as tetramethyl-ammonium, dimethyl piperdinium and cations derived from alkanolamines such as ethylamine, diethylamine, triethylamine, mixtures thereof, and the like.
  • exemplary surfactants are Cl.-c-Cl.o_ alkyl polyethoxylate (1.0) sulfate, C -C 18 E(1.0)M) , C 12 ⁇ c 18 alkyl polyethoxylate (2.25) sulfate, C 12 ⁇ C 18 E ( •25)M) , C 12 -
  • anionic surfactants useful for detersive purposes can also be included in the laundry detergent compositions of the present invention. These can include salts (including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanola ine salts) of soap, c g - c 0 linear alkylbenzenesulphonates, C -C primary or secondary alkanesulphonates, 8 ⁇ c 24 olefinsulphonates, sulphonated polycarboxylic acids prepared by ⁇ ulphonation of the pyrolyzed product of alkaline earth metal citrates, e.g., as described in British patent specification No.
  • salts including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanola ine salts
  • soap c g - c 0 linear alkylbenzenesulphonates, C -C primary or secondary alkanesulphonates,
  • alkylpolyglycolethersulfates (containing up to 10 moles of ethylene oxide) ; acyl glycerol sulfonates, fatty oleyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, paraffin sulfonates, alkyl phosphates, isethionates such as the acyl isethionates, N-acyl taurates, alkyl succinamates and sulfosuccinates, monoesters of sulfosuccinate (especially saturated and unsaturated c 12 ⁇ c 18 monoesters) diesters of sulfosuccinate
  • acyl sarcosinates sulfates of alkylpolysaccharides such as the sulfates of alkylpolyglucoside, branched primary alkyl sulfates, alkyl polyethoxy carboxylates such as those of the formula RO(CH 2 CH 2 0) k CH 2 COO- + wherein R is a C 8 -C 22 alkyl, k is an integer from 0 to 10, and M is a soluble salt-forming cation.
  • Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tall oil.
  • the laundry detergent compositions of the present invention typically comprise from about 1 % to about 40 %, preferably from about 3 % to about 20 % by weight of such anionic surfactants.
  • the laundry detergent compositions of the present invention may also contain cationic, ampholytic, zwitterionic, and semi-polar surfactants, as well as nonionic surfactants other than those already described herein, including the semi-polar nonionic amine oxides described below.
  • Cationic detersive surfactants suitable for use in the laundry detergent compositions of the present invention are those having one long-chain hydrocarbyl group.
  • cationic surfactants include the ammonium surfactants such as alkyldi ethylammonium halogenides, and those surfactants having the formula :
  • R 1 is an alkyl or alkyl benzyl group having from about 8 to about 18 carbon atoms in the alkyl chain
  • each of R 2 , R 3 , R 4 is independently C 1 -C 4 alkyl, C ⁇ -C 4 hydroxy alkyl, benzyl, and -(C 2 H )xH where x has a value from 2 to
  • R 2 R 3 , R 4 should be benzyl.
  • the preferred alkyl chain length for R 1 is C 12 -Ci5 particularly where the alkyl group is a mixture of chain lengths derived from coconut or palm kernel fat, or is derived synthetically by olefin build up or 0X0 alcohols synthesis.
  • Preferred groups for R 2 , R 3 , R 4 are methyl and hydroxyethyl groups, and the anion X may be selected from halide, methosulphate, acetate and phosphate ions.
  • quaternary ammonium compounds for use herein are: coconut trimethyl ammonium chloride or bromide coconut methyl dihydroxyethyl ammonium chloride or bromide decyl triethyl ammonium chloride or bromide decyl dimethyl hydroxyethyl ammonium chloride or bromide
  • compositions of the present invention are capable of existing in cationic form in a 0.1% aqueous solution- at pHlO.
  • the laundry detergent compositions of the present invention typically comprise from 0 % to about 25 %, preferably form about 3 % to about 15 % by weight of such cationic surfactants.
  • a pholytic surfactants are also suitable for use in the laundry detergent compositions of the present invention. These surfactants can be broadly described as aliphatic derivatives of secondary or tertiary amines, or aliphatic derivatives of heterocyclic secondary and tertiary amines in which the aliphatic radical can be straight- or branched chain.
  • One of the aliphatic substituents contains at least 8 carbon atoms, typically from about 8 to about 18 carbon atoms, and at least one contains an anionic water- solubilizing group e.g. carboxy, sulfonate, sulfate. See U.S. Patent No. 3,929,678 to Laughlin et al., issued December 30, 1975 at column 19, lines 18-35 (herein incorporated by reference) for examples of ampholytic surfactants.
  • the laundry detergent compositions of the present invention typically comprise form 0 % to about 15 %, " preferably from about 1 % to about 10 % by weight of such ampholytic surfactants.
  • Zwitterionic surfactants are also suitable for use in laundry detergent compositions. These surfactants can be broadly described as derivatives of secondary and tertiary amines, derivates of heterocyclic secondary and tertiary amines, or derivatives of quaternary ammonium, quarternary phosphonium or tertiary sulfonium compounds. See U.S. Patent No. 3,929,678 to Laughlin et al., issued December 30, 1975 at columns 19, line 38 through column 22, line 48 (herein incorporated by reference) for examples of zwitterionic surfactants.
  • the laundry detergent compositions of the present invention typically comprise form 0 % to about 15 %, preferably from about 1 % to about 10 % by weight of such zwitterionic surfactants.
  • Semi-polar nonionic surfactants are a special category of nonionic surfactants which include water-soluble amine oxides containing one alkyl moiety of from about 10 to about 18 carbon atoms and 2 moieties selected from the group consisting af alkyl groups and hydrocyalkyl groups containing form about l to about 3 carbon atoms; water- soluble phosphine oxides containing one alkyl moiety of form about 10 to about 18 carbon atoms and 2 moieties selected form the group consisting of alkyl groups and hydroxyalkyl groups containing from about 1 to about 3 carbon atoms.
  • Semi-polar nonionic detergent surfactants include the amine oxide surfactants having the formula :
  • R 3 is an alkyl, hydroxyalkyl, or alkyl phenyl group or mixtures thereof containing from about 8 to about 22 carbon atoms
  • R 4 is an alkylene or hydroxyalkylene group containing from about 2 to about 3 carbon atoms or mixtures thereof
  • x is form 0 to about 3
  • each R 5 is an alkyl or hydroxyalkyl group containing form about 1 to about 3 carbon atoms or a polyethylene oxide group containing from about 1 to about 3 ethylene oxide groups.
  • the R 5 groups can be attached to each other, e.g., through an oxygen or nitrogen atom, to form a ring structure.
  • amine oxide surfactants in particular include C 10 ⁇ C 18 alkyl dimenthyl amine oxides and C 8 -C 12 alkoxy ethyl dihydroxy ethyl amine oxides.
  • the laundry detergent compositions of the present invention typically comprise form 0 % to about 15 %, preferably from about 1 % to about 10 % by weight of such semi-polar nonionic surfactants.
  • Sodium aluminosilicate may take many forms.
  • One example is crystalline aluminosilicate ion exchange material of the formula
  • Amorphous hydrated aluminosilicate materials useful herein have the empirical formula M z (zA10 2 -ySi0 2 ) wherein M is sodium, potassium, ammonium or substituted ammonium, z is from about 0.5 to about 2 and y is 1, said material having a magnesium ion exchange capacity of at least about 50 milligram equivalents of CaC ⁇ 3 hardness per gram of anhydrous aluminosilicate. Hydrated sodium Zeolite A with a particle size of from about 1 to 10 microns is preferred.
  • the aluminosilicate ion exchange builder materials herein are in hydrated form and contain from about 10% to about 28% of water by weight if crystalline, and potentially even higher amounts of water if amorphous. Highly preferred crystalline aluminosilicate ion exchange materials contain from about 18% to about 22% water in their crystal matrix.
  • the crystalline aluminosilicate ion exchange materials are further characterized by a particle size diameter of from about 0.1 micron to about 10 microns.
  • Amorphous materials are often smaller, e.g., down to less than about 0.01 micron.
  • Preferred ion exchange materials have a particle size diameter of from about 0.2 micron to about 4 microns.
  • the term "particle size diameter" herein represents the average particle size diameter by weight of a given ion exchange material as determined by conventional analytical techniques such as, for example, microscopic determination utilizing a scanning electron microscope.
  • the crystalline aluminosilicate ion exchange materials herein are usually further characterized by their calcium ion exchange capacity, which is at least about 200 mg equivalent of CaC0 3 water hardness/g of aluminosilicate, calculated on an anhydrous basis, and which generally is in the range of from about 300 mg eq./g to about 352 mg eq./g.
  • the aluminosilicate ion exchange materials herein are still further characterized by their calcium ion exchange rate which is at least about 2 grains
  • Ca ++ /gallon/minute/gram/gallon of aluminosilicate (anhydrous basis) , and generally lies within the range of from about 2 grains/gallon/minute/gram/gallon to about 6 grains/gallon/minute/gram/gallon, based on calcium ion hardness.
  • Optimum aluminosilicate for builder purposes exhibit a calcium ion exchange rate of at least about 4 grains/galIon/minute/gram/galIon.
  • the amorphous aluminosilicate ion exchange materials usually have a Mg ++ exchange of at least about 50 mg eq. CaC0 3 /g (12 mg Mg ++ /g) and a Mg ++ exchange rate of at least about 1 grain/gallon/minute/gram/gallon. Amorphous materials do not exhibit an observable diffraction pattern when examined by Cu radiation (1.54 Angstrom Units).
  • Aluminosilicate ion exchange materials useful in the practice of this invention are commercially available.
  • the aluminosilicates useful in this invention can be crystalline or amorphous in structure and can be naturally occurring aluminosilicates or synthetically derived.
  • aluminosilicate ion exchange material A method for producing aluminosilicate ion exchange materials is discussed in U.S. Pat. No. 3,985,669, Krummel et al., issued Oct. 12, 1976, incorporated herein by reference.
  • Preferred synthetic crystalline aluminosilicate ion exchange materials useful herein are available under the designations Zeolite A, Zeolite B, Zeolite M and Zeolite X.
  • the crystalline aluminosilicate ion exchange material has the formula
  • ingredients which are known for use in the components and compositions may also be used as optional ingredients in the present invention.
  • the granular detergents of the present invention can contain neutral or alkaline salts which have a pH in solution of seven or greater, and can be either organic or inorganic in nature.
  • the builder salt assists in providing the desired density and bulk to the detergent granules herein. While some of the salts are inert, many of them also function as detergency builder materials in the laundering solution.
  • neutral water-soluble salts examples include the alkali metal, ammonium or substituted ammonium chlorides, fluorides and sulfates.
  • the alkali metal, and especially sodium, salts of the above are preferred.
  • Sodium sulfate is typically used in detergent granules and is a particularly preferred salt.
  • Citric acid and, in general, any other organic or inorganic acid may be incorporated into the granular detergents of the present invention as long as it is chemically compatible with the rest of the agglomerate composition.
  • water-soluble salts include the compounds commonly known as detergent builder materials.
  • Builders are generally selected from the various water-soluble, alkali metal, ammonium or substituted ammonium phosphates, polyphosphates, phosphonates, polyphosphonates, carbonates, silicates, borates, and polyhyroxysulfonates.
  • alkali metal especially sodium, salts of the above.
  • inorganic phosphate builders are sodium and potassium tripolyphosphate, pyrophosphate, polymeric metaphosphate having a degree of polymerization of from about 6 to 21, and orthophosphate.
  • polyphosphonate builders are the sodium and potassium salts of ethylene diphosphonic acid, the sodium and potassium salts of ethane 1-hydroxy-l,1-diphosphonic acid and the sodium and potassium salts of ethane, 1,1,2-triphosphonic acid.
  • Other phosphorus builder compounds are disclosed in U.S. Pat. Nos. 3,159,581; 3,213,030; 3,422,021; 3,422,137; 3,400,176 and 3,400,148, incorporated herein by reference.
  • nonphosphorus, inorganic builders are sodium and potassium carbonate, bicarbonate, sesquicarbonate, tetraborate decahydrate, and silicate having a molar ratio of Si0 2 to alkali metal oxide of from about 0.5 to about 4.0, preferably from about 1.0 to about 2.4.
  • powders normally used in detergents such as zeolite, carbonate, silica, silicate, citrate, phosphate, perborate, etc. and process acids such as starch, can be used in preferred embodiments of the present invention.
  • organic polymers are also useful as builders to improve detergency. Included among such polymers may be mentioned sodium carboxy-lower alkyl celluloses, sodium lower alkyl celluloses and sodium hydroxy-lower alkyl celluloses, such as sodium carboxymethyl cellulose, sodium methyl cellulose and sodium hydroxypropyl cellulose, polyvinyl alcohols (which often also include some polyvinyl acetate) , polyacrylamides, polyacrylates and various copolymers, such as those of maleic and acrylic acids. Molecular weights for such polymers vary widely but most are within the range of 2,000 to 100,000,.
  • Polymeric polycarboxylate builders are set forth in U.S. Patent 3,308,067, Diehl, issued March 7, 1967. Such materials include the water-soluble salts of ho o-and copolymers of aliphatic carboxylic acids such as maleic acid, itaconic acid, mesaconic acid, fumaric acid, aconitic acid, citraconic acid and methylenemalonic acid.
  • ingredients commonly used in detergent compositions can be included in the components and compositions of the present invention. These include color speckles, bleaching agents and bleach activators, suds boosters or suds suppressors, antitarnish and anticorrosion agents, soil suspending agents, soil release agents, dyes, fillers, optical brighteners, germicides, pH adjusting agents, nonbuilder alkalinity sources, hydrotropes, enzymes, enzyme-stabilizing agents, and perfumes. Examples
  • C25E3 C12-15 alkyl ethoxylate, with an average of 3 ethoxy groups per molecule
  • GA N-methyl glucamide
  • C25AS C12-15 alkyl sulphate
  • C45AS C14-15 alkyl sulphate
  • C25AE3S C12-15 alkyl ethoxy sulphate, with an average of 3 ethoxy groups per molecule
  • PVP Polyvinyl Pyrrolidone
  • PVNO Polyvinyl Pyrridine N oxide
  • Viscosity 900 1300 2000 2000 23000 23000 23000
  • the C25E3/PVP paste defined in Table 1 was sprayed into a
  • Loedige CB mixer [Trade Name] at a rate of 1120 kg/hr and at a temperature of 30°C.
  • zeolite A was added to the mixer at a rate of 1340 kg/hr, as well as anhydrous carbonate 1340 kg/hr.
  • the residence time was approximately eight seconds.
  • the agglomerates leaving the Loedige KM mixer were then passed through a fluid bed cooler / elutriator
  • the resulting agglomerates had excellent physical properties including flowability, and were found to be physically stable under stressed storage conditions.
  • Example 4 The process of example 1 was repeated using the components listed in Table 1 and at an operating temperature of the paste premix of 15°C.
  • Example 4 The process of example 1 was repeated using the components listed in Table 1 and at an operating temperature of the paste premix of 15°C.
  • Example 3 The process of example 3 was repeated using the components listed in Table 1, with the Zeolite A being replaced by anhydrous citrate, and the rate of water addition being increased to 190 kg /hr.
  • the C25E3/PVNO/lactose paste defined in Table 1 was sprayed into a Loedige CB mixer [Trade Name] at a rate of 1400 kg/hr and at a temperature of 20°C. At the same time zeolite A was added to the mixer at a rate of 1200 kg/hr, as well as anhydrous carbonate 1200 kg/hr.

Abstract

The invention disclosed is a process for making a granular laundry detergent component or composition having a bulk density of at least 650 g/l, by dissolving a structuring agent in a nonionic surfactant, said structuring agent comprising a polymer, to form a pumpable premix and finely dispersing said premix with an effective amount of powder at a given operating temperature wherein the premix has a viscosity of at least 350 mPas when measured at said operating temperature and at a shear rate of 25s-1. Preferred structurants comprise polymers having more than one functional hydroxyl group, especially polyvinyl alcohols, polyhydroxyacrylic acid polymers, and polymers such as polyvinyl pyrrolidone and PVNO, as well as sugars, artificial sweeteners and their derivatives. The premix is then processed into a granular detergent by any suitable process. Fine dispersion mixing, agglomeration, or spraying the premix onto a granular base product are preferred.

Description

Structuring Liquid Nonionic Surfactants Prior to Granulation Process
Background of the Invention
The present invention relates to improving storage stability and physical properties of granular detergents which are rich in nonionic surfactant.
It is most useful with nonionic surfactants which are liquid at ambient temperature, and are therefore mobile. Without a suitable structurant, the nonionic surfactant tends to leak from the powder and soak into the cardboard container which forms an unsightly stain. Although it is possible to avoid this problem by using lower levels of nonionic surfactant in the composition, or by selecting nonionic surfactants which have a higher solidification temperature, this limits the flexibility of formulation.
The use of nonionic surfactants in granular detergent applications has been widely discussed in the prior art. The following references describe various processes and compositions for making granules which comprise nonionic surfactants.
US 3 868 336, published 25th February, 1975 discloses the use of a powder premix comprising perborate, tripolyphosphate, nonionic surfactant and polyvinyl alcohol. The premix is dry added to other detergent components.
GB 2 137 221, published 3rd October, 1984 discloses a nonionic premix which comprises dissolved polyvinyl pyrrolidone (PVP) and soil release polymer. The premix is sprayed on to an absorbant detergent carrier particle. The PVP is used as a stabiliser for the soil release polymer.
EPA 0 215 637, published on 25th March, 1987 discloses the use of sugars and derivatives as structurants of spray dried detergent powders. Although nonionic surfactant may be present in such powders it is incorporated at relatively low levels (1.5% - 4% in examples 1 to 5). Furthermore the spray dried powder has a low bulk density (324 - 574 g/1) .
EPA 0 513 82.4, published 19th November, 1992, describes a process for granulating nonionic detergent and the use of a surface coating agent having a particle size of less than 10 micrometers to give a powder having a high content of nonionic surfactant (10-60%) and a bulk density of 0.6 to 1.2 g/ml. The use of polymers including polyethylene glycol, polyvinyl alcohol, polyvinyl pyrrolidone and carboxy ethyl cellulose is disclosed (page 13, lines 17- 18) . However, the benefits of using any of these polymers to structure or thicken the nonionic surfactant is not disclosed.
WO 92 6160, published on 16th April, 1992. This application describes (example 14) a granular detergent composition prepared by fine dispersion mixing in an Eirich RV02 mixer of a paste which comprises N-methyl glucose amide and nonionic surfactant in the presence of sodium carbonate and zeolite. There is no suggestion to use polymers as structuring agents.
One aspect of the present invention is a process for making granular nonionic detergent agglomerates having a bulk density of at least 650 g/1 and which comprise higher levels of nonionic surfactant than those of the prior art, but do not have problems of mobile nonionic surfactants (i.e. nonionic surfactants with low solidification temperatures) leaking from the granules and soaking into the carton.
This problem is addressed by structuring the liquid nonionic surfactant before the dispersion and/or granulation process. This is done by dissolving a structuring agent which comprises a polymer in the nonionic surfactant. Preferred structuring agents are polymers, especially polymers having more than one functional hydroxyl group, especially polyvinyl alcohols, polyhydroxyacrylic acid polymers, and polymers such as polyvinyl pyrrolidone and PVNO. Also useful as components of the structuring agent are sugars and artificial sweeteners and their derivatives.
It is a further aspect of the present invention to provide a process for incorporating sticky materials into detergent granules while still maintaining desirable physical properties including free-flowing particles which have a good resistance to caking. Sticky materials if present at or close to the surface of the granules have a negative effect on flow properties. These materials also tend to gel upon contact with water which prevents effective dispensing of the granules from the dispensing drawer of a washing machine or from a dispensing device which is added to the wash with soiled load. In this aspect of the present invention these problems are overcome by using sticky materials as structuring agents of the nonionic surfactants thereby improving the surface properties of the granules.
In a further aspect of the invention, high bulk density granular detergent compositions and components are provided which comprise nonionic surfactants and structuring agents.
Summary of the Invention
A process for making a granular laundry detergent component or composition having a bulk density of at least 650 g/1, by dissolving a structuring agent in a nonionic surfactant, said structuring agent comprising a polymer, to form a pumpable premix and finely dispersing said premix with an effective amount of powder at a given operating temperature wherein the premix has a viscosity of at least 350 mPas when measured at said operating temperature and at a shear rate of 25s~^. Preferred structurants comprise polymers having more than one functional hydroxyl group, especially polyvinyl alcohols, polyhydroxyacrylic acid polymers, and polymers such as polyvinyl pyrrolidone and PVNO , as well as sugars, artificial sweeteners and their derivatives. The premix is then processed into a granular detergent by any suitable process. Fine dispersion mixing, agglomeration, or spraying the premix onto a granular base product are preferred. Another aspect of the present invention is components or compositions comprising nonionic surfactant and structuring agents.
Detailed Description of the Invention
The process aspect of the present invention comprises two essential steps. The first process step is the formation of a nonionic surfactant premix which comprises a structuring agent. The second process step is the processing of the surfactant premix into the form of a granular detergent having the desired physical properties of bulk density, flow properties and storage characteristics.
The first process step of the invention is the preparation of a structured nonionic surfactant premix. This premix comprises two essential components which will be described in more detail below. These components are the nonionic surfactant and the structuring agent. In the first process step the structuring agent is dissolved in the nonionic surfactant.
The second process step may be based upon any of the techniques of forming granules which are known to the man skilled in the art. However, the most preferred granulation techniques for use in the present invention are fine dispersion of the structured nonionic surfactant paste in the presence of powders. One example of such a process is to pump or sjoray the surfactant paste into a high shear mixer. The high shear conditions in the mixer break up the surfactant paste into small droplets and distribute those droplets onto and around the powder. The process is often described as "agglomeration".
Another example of such a process is to spray the surfactant paste onto a powder under low shear conditions (such as a rotating drum) . In this case the energy to break the paste into fine droplets comes at the spray nozzle, and in the low shear mixer the droplets are absorbed on to the surface, or into the pores of the powder. Preferred granulation processes are described in more detail below.
For the purposes of the invention described herein, the term structuring has been used to mean thickening or raising the solidification point of the nonionic surfactant, or both of these. It is an essential feature of the present invention that the viscosity of the premix is greater than 350 mPas when measured at the operating temperature and at a shear rate of 25s"1.
The operating temperature, as defined herein, is the temperature of the surfactant paste at the point which is sprayed or dispersed onto the powders during the granulation step of the process.
A pumpable paste is defined herein to mean a paste which has a viscosity of less than 100 000 mPas when measured at 25s"1 at the required operating temperature. Preferably the viscosity of the paste will be less than 60 000 mPas, and even more preferably less than 40 000 mPas.
Nonionic Surfactant
Suitable nonionic surfactants include compounds produced by the condensation of alkylene oxide groups (hydrophilic in nature) with an organic hydrophobic compound, which may be aliphatic or alkyl aromatic in nature. The length of the polyoxyalkylene group which is condensed with any particular hydrophobic group can be readily adjusted to yield a water-soluble compound having the desired degree of balance between hydrophilic and hydrophobic elements. Particularly preferred for use in the present invention are nonionic surfactants such as the polyethylene oxide condensates of alkyl phenols, e.g., the condensation products of alkyl phenols having an alkyl group containing from about 6 to 16 carbon atoms, in either a straight chain or branched chain configuration, with from about 4 to 25 moles of ethylene oxide per mole of alkyl phenol.
Preferred nonionics are the water-soluble condensation products of aliphatic alcohols containing from 8 to 20 carbon atoms, in either straight chain or branched configuration, with an average of from 1 to 25 moles of ethylene oxide per mole of alcohol. Particularly preferred are the condensation products of alcohols having an alkyl group containing from about 9 to 15 carbon atoms with from about 2 to 10 moles of ethylene oxide per mole of alcohol; and condensation products of propylene glycol with ethylene oxide. Most preferred are condensation products of alcohols having an alkyl group containing from about 12 to 15 carbon atoms with an average of about 3 moles of ethylene oxide per mole of alcohol.
Many of the nonionic surfactants which fall within the definitions given above have are liquid at temperatures below 40°C (that is to say the solidification temperature is below 40°C) . The present invention has been found to be particularly useful for such nonionic surfactants.
Structuring Agent
Although any structuring agent may be chosen which has the effect of raising the viscosity or "stickiness" of the surfactant premix to the required operating window and / or increasing the solidification temperature of the premix, it has been found that structuring agents which comprise at least one polymer are particularly useful. Preferably at least one of the components of the structuring agent is a polymer having an average molecular weight of at least 2000, and preferably at least 10000.
The group of polymers useful as structuring agents in the present invention includes the group of polymers which are derived from monomers having at least one hydroxyl functional group such as polyvinyl alcohols, polyethylene glycol and polyhydroxyacrylic acid polymers and mixtures and derivatives of these. Other polymers which are useful components of the strucuring agent include polyvinyl pyrollidone, PVNO.
The structuring agent may also comprise other ingredients. One group of such ingredients which have been found to be particularly useful comprises the group of sugars and artificial sweeteners and their derivatives.
The group of sugars useful in the present invention includes fructose, lactose, dextrose, sucrose, saccharin and sorbitol.
One particularly preferred group of structuring agents is the derivatives of sugars such as polyhydroxy fatty acid amides. Such derivatives may be prepared by reacting a fatty acid ester and an N-alkyl polyhydroxy amine. The preferred amine for use in the present invention is N-(R1)- CH2 (CH20H)4-CH2-OH and the preferred ester is a C12-C20 fatty acid methyl ester. Most preferred is the reaction product of N-methyl gluca ine (which may be derived from glucose) with C12-C20 fatty acid methyl ester.
Methods of manufacturing polyhydroxy fatty acid amides have been described in WO 92 6073, published on 16th April, 1992. This application describes the preparation of polyhydroxy fatty acid amides in the presence of solvents. In a highly preferred embodiment of the invention N-methyl glucamine is reacted with a C12-C20 methyl ester. It also says that the formulator of granular detergent compositions may find it convenient to run the amidation reaction in the presence of solvents which comprise alkoxylated, especially ethoxylated (EO 3-8) C12-C14 alcohols (page 15, lines 22- 27) . This directly yields nonionic surfactant systems which are preferred in the present invention, such as those comprising N-methyl glucamide and C12-C14 alcohols with an average of 3 ethoxylate groups per molecule.
Polyhydroxy fatty acid amides are also active in the washing process as surfactants in their own right.
Other ingredients which have been found to be useful as components of the structuring agent include phthalimide, para-toluene sulphonamide, and maleimide.
The ratio of nonionic surfactant to structuring agent will vary according to exactly which nonionic surfactant and which structurant is chosen. Any ratio may be used in the present invention provided that a premix having a viscosity of at least 350 mPas when measured at the operating temperature and a shear rate of 25s"1 is produced. Typically ratios of nonionic surfactant to structuring agent in the range of 20:1 to 1:1 have been found to be particularly suitable, and preferably from 5:1 to 2:1.
Normally the detergent compositions made according to the present invention may include a wide range of other ingredients and components which are known to the man skilled in the art to have a function in the washing process. Typical examples of such ingredients which may be used in detergent compositions are given below. Granulation Processes
An essential step of the present invention is the process of forming granules which comprise the surfactant premix described above. Many processes for granulating surfactant pastes are known to the man skilled in the art. One of these processes is spray drying of a slurry containing the surfactant. However, this is not a preferred process in the present invention because it does not generally yield a powder with a high bulk density, and further processing is needed in order to increase the bulk density. A process which is more suited to the present invention is that of fine dispersion mixing or agglomeration. In this process a powder having a relatively small particle size is mixed with a finely dispersed paste which causes the powder to stick together (or agglomerate) . The result is a granular composition which generally has a particle size distribution in the range of 250 to 1200 micrometers and has a bulk density of at least 650 g/1. In the present invention the surfactant premix is used as the paste which is finely dispersed with an effective amount of powder in a suitable mixer. Suitable mixers for carrying out the fine dispersion mixing are described in more detail below. Any suitable powder may be chosen by mixing one or more of the ingredients listed below which may be conveniently handled in powder form. Powders comprising zeolite, carbonate, silica, silicate,sulphate, phosphate, citrate, citric acid and mixtures of these are particularly preferred.
It has further been found that a particularly preferred embodiment of the present invention is to spray water on to the detergent granules after the granulation step. In this embodiment of the invention at least one of the powders used should be an anhydrous powder which may be fully or partially hydrated when it comes into contact with water. A similar process has been described in GB 2 113 707, published on 10th August 1983. This application describes a process in which anhydrous powders such as phosphate, carbonate, borate or sulphate are metered into a high shear mixer (a K-G Schugi [Trade name] Blender- Agglomerator) together with a liquid surfactant and water.The amount of water added is sufficient to completely hydrate the hydratable salts. The resulting agglomerates are fed into a low shear mixer having a longer residence time in order for the hydration reaction to proceed.
In the process of the present invention, in contrast, it is highly preferred to add the water into the low shear mixer, after the agglomerates have been formed. Without wishing to be bound by theory, it is believed that adding the water after the initial formation of the agglomerates promotes hydration at the surface of the agglomerates which gives rise to the desired physical characteristics. Most preferred in the process of the present invention is the use of anhydrous sodium carbonate, or anhydrous sodium citrate, or mixtures of these. The anhydrous salts are agglomerated in the presence of a structured nonionic surfactant premix and then water is sprayed on to the resulting agglomerates in a low shear mixer. The agglomerates are finally dried in a fluid bed dryer.
Still another process which is suited to the present invention is that of preparing a granular detergent powder and spraying the surfactant premix onto that powder. The base powder may be made by any one of the processes known to the man skilled in the art, including spray drying, granulation,, (including agglomeration) . Preferably different processes which are suited to the preparation of different components will be used, and then the components will be mixed together, for example by dry mixing in a rotating drum or a low shear mixer. In a preferred embodiment of the invention the surfactant premix is sprayed onto the base powder in the rotating drum or low shear mixer. Suitable pieces of equipment in which to carry out the fine dispersion mixing or granulation of the present invention are mixers of the FukaeR FS-G series manufactured by Fukae Powtech Kogyo Co., Japan; this apparatus is essentially in the form of a bowl-shaped vessel accessible via a top port, provided near its base with a stirrer having a substantially vertical axis, and a cutter positioned on a side wall. The stirrer and cutter may be operated independently of one another and at separately variable speeds. The vessel can be fitted with a cooling jacket or, if necessary, a cryogenic unit.
Other similar mixers found to be suitable for use in the process of the invention include DiosnaR V series ex Dierks & Sδhne, Germany; and the Pharma MatrixR ex T K Fielder Ltd., England. Other mixers believed to be suitable for use in the process of the invention are the FujiR VG-C series ex Fuji Sangyo Co., Japan; and the RotoR ex Zanchetta & Co srl, Italy.
Other preferred suitable equipment can include EirichR, series RV, manufactured by Gustau Eirich Hardheim, Germany; LodigeR, series FM for batch mixing, series Baud KM for continuous mixing/agglomeration, manufactured by Lδdige Machinenbau GmbH, Paderborn Germany; DraisR T160 series, manufactured by Drais Werke GmbH, Mannheim Germany; and WinkworthR RT 25 series, manufactured by Winkworth Machinery Ltd., Berkshire, England.
The Littleford Mixer, Model #FM-130-D-12, with internal chopping blades and the Cuisinart Food Processor, Model #DCX-Plus, with 7.75 inch (19.7 cm) blades are two examples of suitable mixers. Any other mixer with fine dispersion mixing and granulation capability and having a residence time in the order of 0.1 to 10 minutes can be used. The "turbine-type" impeller mixer, having several blades on an axis of rotation, is preferred. The invention can be practiced as a batch or a continuous process.
Further Processing Steps
The granular components or compositions described above may be suitable for use directly, or they may be treated by additional process steps. Commonly used process steps include drying, cooling and/or dusting the granules with a finely divided flow aid. In addition the granules may be blended with other components in order to provide a composition suitable for the desired end use. Any type of mixer or dryer (such as fluid bed dryers) may be found to be suitable for this purpose.
The finely divided flow aid, if used, may be chosen from a wide variety of suitable ingredients such as zeolite, silica, talc, clay or mixtures of these.
Compositions
Another aspect of the present invention is the composition of detergent components comprising nonionic surfactant. Components having a bulk density of greater than 650 g/1 and comprising from 10% to 50% by weight of nonionic surfactant and from 5% to 30% by weight of one of the structuring agents listed above fall within the scope of the present invention. The ratio of nonionic surfactant to structuring-agent will vary according to exactly which nonionic surfactant and which structurant is chosen. Any ratio may be used in the present invention provided that a premix having a viscosity of at least 350 mPas when measured at the operating temperature and a shear rate of 25s"1 is produced. Typically ratios of nonionic surfactant to structuring agent in the range of 20:1 to 1:1 have been found to be particularly suitable, and preferably from 5:1 to 2:1.
Other ingredients which may be used in making the compositions of the present invention will be described below.
Normally the granular detergent will also contain other optional ingredients. Examples of such ingredients which are commonly used in detergents are given in more detail hereinbelow
Anionic Surfactants
Alkyl Ester Sulfonate Surfactant
Alkyl Ester sulfonate surfactants hereof include linear esters of Cg-C2o carboxylic acids (i.e. fatty acids) which are sulfonated with gaseous S03 according to "The Journal of the American Oil Chemists Society'" 52 (1975), pp. 323- 329. Suitable starting materials would include natural fatty substances as derived from tallow, palm oil, etc.
The preferred alkyl ester sulfonate surfactant, especially for laundry applications, comprises alkyl ester sulfonate surfactants of the structural formula:
Figure imgf000016_0001
S03M 3 wherein R is a C8 _c 20 hydrocarbyl, preferably an alkyl, or combination thereof, R 4 i.s a -C hydrocarbyl, preferably an alkyl, or combination thereof, and M is a cation which forms a water soluble salt with the alkyl ester sulfonate. Suitable salt-forming cations include metals such as sodium, potassium, and lithium, and substituted or unsubstituted ammonium cations, such as monoethanolamine, diethanolamme, and triethanolamm . e. Preferably, R3 is
4 C10~c 16 alkyl, and R is methyl, ethyl or isopropyl.
Especially preferred are the methyl ester sulfonates wherein R 3 i.s C -C alkyl.
Alkyl Sulfate Surfactant
Alkyl sulfate surfactants hereof are water soluble salts or acids or the formula ROSO3M wherein R preferably is a C-^Q-
C24 hydrocarbyl, preferably an alkyl or hydroxyalkyl having a C10-C20 alkyl component, more preferably a C 12~C 18 alJζy1 or hydroxyalkyl, and M is H or a cation, e.g., an alkali metal cation (e.g., sodium, potassium, lithium), or ammonium or substituted ammonium (e.g., methyl-, dimethyl-, and trimethyl ammonium cations and quaternary ammonium cations, such as tetramethyl-ammonium and dimethyl piperdiniu cations and quarternary ammonium cations derived from alkylamines such as ethylamine, diethyla ine, triethylamine, and mixtures thereof, and the like) . Typically, alkyl chains of c 12-i6 are Preferred for lower wash temperatures (e.g., below about 50°C) and C. 1_6.—18O alkyl chains are preferred for higher wash temperatures (e.g., above about- 50°C) .
Alkyl Alkoxylated Sulfate Surfactant
Alkyl alkoxylated sulfate surfactants hereof are water soluble salts or acids of the formula RO(A)mS03_M wherein R is an unsubstituted C 10~C24 alkyl or hydroxyalkyl group having a c 10~c 2 alkyl component, preferably a C _- C.-^ alkyl or hydroxyalkyl, more preferably C, _-C. „ alkyl or hydroxyalkyl, A is an ethoxy or propoxy unit, m is greater than zero, typically between about 0.5 and about 6, more preferably between about 0.5 and about 3, and M is H or a cation which can be, for example, a metal cation (e.g., sodium, potassium, lithium, calcium, magnesium, etc.), ammonium or substituted-ammonium cation. Alkyl ethoxylated sulfates as well as alkyl propoxylated sulfates are contemplated herein. Specific examples of substituted ammonium cations include methyl-, dimethyl-, tri ethyl- ammonium and quaternary ammonium cations, such as tetramethyl-ammonium, dimethyl piperdinium and cations derived from alkanolamines such as ethylamine, diethylamine, triethylamine, mixtures thereof, and the like. Exemplary surfactants are Cl.-c-Cl.o_ alkyl polyethoxylate (1.0) sulfate, C -C18E(1.0)M) , C12~c 18 alkyl polyethoxylate (2.25) sulfate, C12~C 18 E( •25)M) , C12-
C18 alkyl polyethoxylate (3.0) sulfate C12-C18E(3.0) , and C -C g alkyl polyethoxylate (4.0) sulfate C12-C18E(4.0)M) , wherein M is conveniently selected from sodium and potassium.
Other Anionic Surfactants
Other anionic surfactants useful for detersive purposes can also be included in the laundry detergent compositions of the present invention. These can include salts (including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanola ine salts) of soap, c g-c 0 linear alkylbenzenesulphonates, C -C primary or secondary alkanesulphonates, 8~c 24 olefinsulphonates, sulphonated polycarboxylic acids prepared by εulphonation of the pyrolyzed product of alkaline earth metal citrates, e.g., as described in British patent specification No. 1,082,179, C8-C24 alkylpolyglycolethersulfates (containing up to 10 moles of ethylene oxide) ; acyl glycerol sulfonates, fatty oleyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, paraffin sulfonates, alkyl phosphates, isethionates such as the acyl isethionates, N-acyl taurates, alkyl succinamates and sulfosuccinates, monoesters of sulfosuccinate (especially saturated and unsaturated c 12~c 18 monoesters) diesters of sulfosuccinate
(especially saturated and unsaturated C 6-C1.4. diesters) , acyl sarcosinates, sulfates of alkylpolysaccharides such as the sulfates of alkylpolyglucoside, branched primary alkyl sulfates, alkyl polyethoxy carboxylates such as those of the formula RO(CH2CH20)kCH2COO- + wherein R is a C8-C22 alkyl, k is an integer from 0 to 10, and M is a soluble salt-forming cation. Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tall oil. Further examples are given in "Surface Active Agents and Detergents" (Vol. I and II by Schwartz, Perry and Berch) . A variety of such surfactants are also generally disclosed in U.S. Patent 3,929,678, issued December 30, 1975 to Laughlin, et al. at Column 23, line 58 through Column 29, line 23 (herein incorporated by reference) .
When included therein, the laundry detergent compositions of the present invention typically comprise from about 1 % to about 40 %, preferably from about 3 % to about 20 % by weight of such anionic surfactants.
Other Surfactants
The laundry detergent compositions of the present invention may also contain cationic, ampholytic, zwitterionic, and semi-polar surfactants, as well as nonionic surfactants other than those already described herein, including the semi-polar nonionic amine oxides described below.
Cationic detersive surfactants suitable for use in the laundry detergent compositions of the present invention are those having one long-chain hydrocarbyl group. Examples of such cationic surfactants include the ammonium surfactants such as alkyldi ethylammonium halogenides, and those surfactants having the formula :
R1R2R3R N+X"
wherein R1 is an alkyl or alkyl benzyl group having from about 8 to about 18 carbon atoms in the alkyl chain, each of R2, R3, R4 is independently C1-C4 alkyl, Cι-C4 hydroxy alkyl, benzyl, and -(C2H )xH where x has a value from 2 to
5, and X~ is an anion. Not more than one of R2 R3, R4 should be benzyl.
The preferred alkyl chain length for R1 is C12-Ci5 particularly where the alkyl group is a mixture of chain lengths derived from coconut or palm kernel fat, or is derived synthetically by olefin build up or 0X0 alcohols synthesis. Preferred groups for R2, R3, R4 are methyl and hydroxyethyl groups, and the anion X may be selected from halide, methosulphate, acetate and phosphate ions. Examples of suitable quaternary ammonium compounds for use herein are: coconut trimethyl ammonium chloride or bromide coconut methyl dihydroxyethyl ammonium chloride or bromide decyl triethyl ammonium chloride or bromide decyl dimethyl hydroxyethyl ammonium chloride or bromide
C12-14 dimethyl hydroxyethyl ammonium chloride or bromide myristyl trimethyl ammonium methyl sulphate lauryl dimethyl benzyl ammonium chloride or bromide lauryl methyl (ethenoxy)4 ammonium chloride or bromide The above water-soluble cationic components of the compositions of the present invention, are capable of existing in cationic form in a 0.1% aqueous solution- at pHlO.
Other cationic surfactants useful herein are also described in US Patent 4,228,044, Cambre, issued October 14, 1980, incorporated herein by reference.
When included therein, the laundry detergent compositions of the present invention typically comprise from 0 % to about 25 %, preferably form about 3 % to about 15 % by weight of such cationic surfactants.
A pholytic surfactants are also suitable for use in the laundry detergent compositions of the present invention. These surfactants can be broadly described as aliphatic derivatives of secondary or tertiary amines, or aliphatic derivatives of heterocyclic secondary and tertiary amines in which the aliphatic radical can be straight- or branched chain. One of the aliphatic substituents contains at least 8 carbon atoms, typically from about 8 to about 18 carbon atoms, and at least one contains an anionic water- solubilizing group e.g. carboxy, sulfonate, sulfate. See U.S. Patent No. 3,929,678 to Laughlin et al., issued December 30, 1975 at column 19, lines 18-35 (herein incorporated by reference) for examples of ampholytic surfactants.
When included therein, the laundry detergent compositions of the present invention typically comprise form 0 % to about 15 %, "preferably from about 1 % to about 10 % by weight of such ampholytic surfactants.
Zwitterionic surfactants are also suitable for use in laundry detergent compositions. These surfactants can be broadly described as derivatives of secondary and tertiary amines, derivates of heterocyclic secondary and tertiary amines, or derivatives of quaternary ammonium, quarternary phosphonium or tertiary sulfonium compounds. See U.S. Patent No. 3,929,678 to Laughlin et al., issued December 30, 1975 at columns 19, line 38 through column 22, line 48 (herein incorporated by reference) for examples of zwitterionic surfactants.
When included therein, the laundry detergent compositions of the present invention typically comprise form 0 % to about 15 %, preferably from about 1 % to about 10 % by weight of such zwitterionic surfactants.
Semi-polar nonionic surfactants are a special category of nonionic surfactants which include water-soluble amine oxides containing one alkyl moiety of from about 10 to about 18 carbon atoms and 2 moieties selected from the group consisting af alkyl groups and hydrocyalkyl groups containing form about l to about 3 carbon atoms; water- soluble phosphine oxides containing one alkyl moiety of form about 10 to about 18 carbon atoms and 2 moieties selected form the group consisting of alkyl groups and hydroxyalkyl groups containing from about 1 to about 3 carbon atoms.
Semi-polar nonionic detergent surfactants include the amine oxide surfactants having the formula :
O R3(OR4)xN(R5)2
wherein R3 is an alkyl, hydroxyalkyl, or alkyl phenyl group or mixtures thereof containing from about 8 to about 22 carbon atoms; R4 is an alkylene or hydroxyalkylene group containing from about 2 to about 3 carbon atoms or mixtures thereof; x is form 0 to about 3; and each R5 is an alkyl or hydroxyalkyl group containing form about 1 to about 3 carbon atoms or a polyethylene oxide group containing from about 1 to about 3 ethylene oxide groups. The R5 groups can be attached to each other, e.g., through an oxygen or nitrogen atom, to form a ring structure.
There amine oxide surfactants in particular include C10~C 18 alkyl dimenthyl amine oxides and C8-C12 alkoxy ethyl dihydroxy ethyl amine oxides.
When included therein, the laundry detergent compositions of the present invention typically comprise form 0 % to about 15 %, preferably from about 1 % to about 10 % by weight of such semi-polar nonionic surfactants.
Builders and Other Optional Ingredients
Sodium aluminosilicate may take many forms. One example is crystalline aluminosilicate ion exchange material of the formula
Naz[(A102)z- (Si02)y]-xH20 wherein z and y are at least about 6, the molar ratio of z to y is from about 1.0 to about 0.4 and z is from about 10 to about 264. Amorphous hydrated aluminosilicate materials useful herein have the empirical formula Mz(zA102-ySi02) wherein M is sodium, potassium, ammonium or substituted ammonium, z is from about 0.5 to about 2 and y is 1, said material having a magnesium ion exchange capacity of at least about 50 milligram equivalents of CaCθ3 hardness per gram of anhydrous aluminosilicate. Hydrated sodium Zeolite A with a particle size of from about 1 to 10 microns is preferred.
The aluminosilicate ion exchange builder materials herein are in hydrated form and contain from about 10% to about 28% of water by weight if crystalline, and potentially even higher amounts of water if amorphous. Highly preferred crystalline aluminosilicate ion exchange materials contain from about 18% to about 22% water in their crystal matrix. The crystalline aluminosilicate ion exchange materials are further characterized by a particle size diameter of from about 0.1 micron to about 10 microns.
Amorphous materials are often smaller, e.g., down to less than about 0.01 micron. Preferred ion exchange materials have a particle size diameter of from about 0.2 micron to about 4 microns. The term "particle size diameter" herein represents the average particle size diameter by weight of a given ion exchange material as determined by conventional analytical techniques such as, for example, microscopic determination utilizing a scanning electron microscope.
The crystalline aluminosilicate ion exchange materials herein are usually further characterized by their calcium ion exchange capacity, which is at least about 200 mg equivalent of CaC03 water hardness/g of aluminosilicate, calculated on an anhydrous basis, and which generally is in the range of from about 300 mg eq./g to about 352 mg eq./g. The aluminosilicate ion exchange materials herein are still further characterized by their calcium ion exchange rate which is at least about 2 grains
Ca++/gallon/minute/gram/gallon of aluminosilicate (anhydrous basis) , and generally lies within the range of from about 2 grains/gallon/minute/gram/gallon to about 6 grains/gallon/minute/gram/gallon, based on calcium ion hardness. Optimum aluminosilicate for builder purposes exhibit a calcium ion exchange rate of at least about 4 grains/galIon/minute/gram/galIon.
The amorphous aluminosilicate ion exchange materials usually have a Mg++ exchange of at least about 50 mg eq. CaC03/g (12 mg Mg++/g) and a Mg++ exchange rate of at least about 1 grain/gallon/minute/gram/gallon. Amorphous materials do not exhibit an observable diffraction pattern when examined by Cu radiation (1.54 Angstrom Units). Aluminosilicate ion exchange materials useful in the practice of this invention are commercially available. The aluminosilicates useful in this invention can be crystalline or amorphous in structure and can be naturally occurring aluminosilicates or synthetically derived. A method for producing aluminosilicate ion exchange materials is discussed in U.S. Pat. No. 3,985,669, Krummel et al., issued Oct. 12, 1976, incorporated herein by reference. Preferred synthetic crystalline aluminosilicate ion exchange materials useful herein are available under the designations Zeolite A, Zeolite B, Zeolite M and Zeolite X. In an especially preferred embodiment, the crystalline aluminosilicate ion exchange material has the formula
Na12[ (A102) 12 (Si02) 12] xH20 wherein x is from about 20 to about 30, especially about 27 and has a particle size generally less than about 5 microns.
Other ingredients which are known for use in the components and compositions may also be used as optional ingredients in the present invention.
The granular detergents of the present invention can contain neutral or alkaline salts which have a pH in solution of seven or greater, and can be either organic or inorganic in nature. The builder salt assists in providing the desired density and bulk to the detergent granules herein. While some of the salts are inert, many of them also function as detergency builder materials in the laundering solution.
Examples of neutral water-soluble salts include the alkali metal, ammonium or substituted ammonium chlorides, fluorides and sulfates. The alkali metal, and especially sodium, salts of the above are preferred. Sodium sulfate is typically used in detergent granules and is a particularly preferred salt. Citric acid and, in general, any other organic or inorganic acid may be incorporated into the granular detergents of the present invention as long as it is chemically compatible with the rest of the agglomerate composition.
Other useful water-soluble salts include the compounds commonly known as detergent builder materials. Builders are generally selected from the various water-soluble, alkali metal, ammonium or substituted ammonium phosphates, polyphosphates, phosphonates, polyphosphonates, carbonates, silicates, borates, and polyhyroxysulfonates. Preferred are the alkali metal, especially sodium, salts of the above.
Specific examples of inorganic phosphate builders are sodium and potassium tripolyphosphate, pyrophosphate, polymeric metaphosphate having a degree of polymerization of from about 6 to 21, and orthophosphate. Examples of polyphosphonate builders are the sodium and potassium salts of ethylene diphosphonic acid, the sodium and potassium salts of ethane 1-hydroxy-l,1-diphosphonic acid and the sodium and potassium salts of ethane, 1,1,2-triphosphonic acid. Other phosphorus builder compounds are disclosed in U.S. Pat. Nos. 3,159,581; 3,213,030; 3,422,021; 3,422,137; 3,400,176 and 3,400,148, incorporated herein by reference.
Examples of nonphosphorus, inorganic builders are sodium and potassium carbonate, bicarbonate, sesquicarbonate, tetraborate decahydrate, and silicate having a molar ratio of Si02 to alkali metal oxide of from about 0.5 to about 4.0, preferably from about 1.0 to about 2.4.
As mentioned above powders normally used in detergents such as zeolite, carbonate, silica, silicate, citrate, phosphate, perborate, etc. and process acids such as starch, can be used in preferred embodiments of the present invention.
Polymers
Also useful are various organic polymers, some of which also may function as builders to improve detergency. Included among such polymers may be mentioned sodium carboxy-lower alkyl celluloses, sodium lower alkyl celluloses and sodium hydroxy-lower alkyl celluloses, such as sodium carboxymethyl cellulose, sodium methyl cellulose and sodium hydroxypropyl cellulose, polyvinyl alcohols (which often also include some polyvinyl acetate) , polyacrylamides, polyacrylates and various copolymers, such as those of maleic and acrylic acids. Molecular weights for such polymers vary widely but most are within the range of 2,000 to 100,000,.
Polymeric polycarboxylate builders are set forth in U.S. Patent 3,308,067, Diehl, issued March 7, 1967. Such materials include the water-soluble salts of ho o-and copolymers of aliphatic carboxylic acids such as maleic acid, itaconic acid, mesaconic acid, fumaric acid, aconitic acid, citraconic acid and methylenemalonic acid.
Other Optionals Ingredients
Other ingredients commonly used in detergent compositions can be included in the components and compositions of the present invention. These include color speckles, bleaching agents and bleach activators, suds boosters or suds suppressors, antitarnish and anticorrosion agents, soil suspending agents, soil release agents, dyes, fillers, optical brighteners, germicides, pH adjusting agents, nonbuilder alkalinity sources, hydrotropes, enzymes, enzyme-stabilizing agents, and perfumes. Examples
In these examples the following abbreviations have been used:
C25E3: C12-15 alkyl ethoxylate, with an average of 3 ethoxy groups per molecule GA: N-methyl glucamide C25AS: C12-15 alkyl sulphate C45AS: C14-15 alkyl sulphate C25AE3S: C12-15 alkyl ethoxy sulphate, with an average of 3 ethoxy groups per molecule PVP: Polyvinyl Pyrrolidone PVNO: Polyvinyl Pyrridine N oxide
TABLE 1
Ex 1 2 3 4 5 6 7
46 46
13 13
11
11
Figure imgf000029_0001
30 30
Operating 30 30 15 15 20 20 20
Temp. (°C)
Viscosity 900 1300 2000 2000 23000 23000 23000
(mPas)
Figure imgf000029_0002
Operating 40 40 20 20
Temp. ( °C)
Viscosity 24000 15000 380 50
(mPas) Example 1
The C25E3/PVP paste defined in Table 1 was sprayed into a
Loedige CB mixer [Trade Name] at a rate of 1120 kg/hr and at a temperature of 30°C. At the same time zeolite A was added to the mixer at a rate of 1340 kg/hr, as well as anhydrous carbonate 1340 kg/hr.
Dispersion of the paste premix and high intensity mixing of the premix and the powders occurred in the Loedige mixer.
The residence time was approximately eight seconds.
The resulting mixture was fed into a Loedige KM mixer
[Trade Name] and distinct agglomerates were formed. Two high speed choppers in the first half of the Loedige KM mixer prevented a high proportion of oversize agglomerates being formed.
In the second half of the Loedige KM mixer water was sprayed on to the agglomerates at a rate of 225 kg/hr promoting the hydration of the carbonate in the agglomerate.
After the water spray on, a mixture of zeolite and silica was added at a rate of 160 kg/hr.
The agglomerates leaving the Loedige KM mixer were then passed through a fluid bed cooler / elutriator
The resulting agglomerates had excellent physical properties including flowability, and were found to be physically stable under stressed storage conditions.
Example 2
The process of example 1 was repeated using the components listed in Table 1.
Example 3
The process of example 1 was repeated using the components listed in Table 1 and at an operating temperature of the paste premix of 15°C. Example 4
The process of example 3 was repeated using the components listed in Table 1, with the Zeolite A being replaced by anhydrous citrate, and the rate of water addition being increased to 190 kg /hr.
Example 5
The C25E3/PVNO/lactose paste defined in Table 1 was sprayed into a Loedige CB mixer [Trade Name] at a rate of 1400 kg/hr and at a temperature of 20°C. At the same time zeolite A was added to the mixer at a rate of 1200 kg/hr, as well as anhydrous carbonate 1200 kg/hr.
The remainder of the process was carried out as in example
1 with water being sprayed on to the agglomerates at a rate of 200 kg/hr.
Examples 6-10
The process of example 5 was repeated using the components listed in Table 1.
In each of the examples 2 to 10, a free flowing granular products were produced which were found to be physically stable under stressed storage conditions.
Comparative Example A
The process of example 5 was repeated using the components listed in Table 1. Due to the lower viscosity of the surfactant premix it was not possible to make granules having the desired particle size or physical properties.

Claims

1. A process for making a granular laundry detergent component or composition having a bulk density of at least 650 g/1 comprising the steps of ; a) dissolving a structuring agent, said structuring agent comprising a polymer, in a nonionic surfactant to form a pumpable premix; and b) finely dispersing said premix with an effective amount of powder characterised in that the fine dispersing of the premix is carried out at an operating temperature at which the premix has a viscosity of at least 350 mPas when measured at said operating temperature and at a shear rate of 25s"1.
2. A process according to claim 1 wherein the structuring agent comprises at least one ingredient having more than one hydroxyl functional group.
3. A process according to claim either of the claims 1 or 2 wherein the structuring agent comprises at least one ingredient chosen from the group comprising , polyvinyl pyrrolidone, PVNO, polyvinyl alcohols, polyhydroxyacrylic acid polymers, and mixtures of these.
4. A process according to either of claims 2 or 3 wherein the structuring agent comprises at least one ingredient chosen from the group comprising dextrose, lactose, sucrose, saccharin and derivatives, including polyhydroxy fatty acid amides.
5. A process according to any of the previous claims wherein the structuring agent comprises at least one ingredient chosen from the group comprising phthalimide, para-toluene sulphonamide, maleimide and mixtures of these
6. A process according to any of the previous claims characterised in that the structuring agent is a polymer having a molecular weight of at least 2000.
7. A process according to any of the previous claims wherein the granular laundry detergent component or composition comprises at least 10% by weight of nonionic surfactant.
8. A process according to any of the previous claims in which the powder in step b) is chosen from the group comprising zeolite, silica, carbonate, silicate, sulphate, phosphate, citrate, citric acid or mixtures of these
9. A process for making a granular laundry detergent component or composition comprising the steps of ; a) dissolving a structuring agent, said structuring agent comprising a polymer, in a nonionic surfactant to form a premix b) mixing said premix with an effective amount of powder by spraying said premix onto said powder in a low shear mixer or a rotating drum characterised in that the premix is sprayed at an operating temperature at which said premix has a viscosity of at least 350 mPas when measured at said operating temperature and at a shear rate of 25s"1.
10. A process according to claim 9 in which the powder in step b) is a granular detergent which comprises particles prepared by spray drying, agglomeration, or mixtures of these.
11. A process for making a granular laundry detergent component or composition having a bulk density of at least 650 g/1 comprising the steps of ; a) dissolving a structuring agent in a nonionic surfactant to form a pumpable premix; and b) finely dispersing said premix with an effective amount of powder characterised in that the fine dispersing of the premix is carried out at an operating temperature at which the premix has a viscosity of at least 350 mPas when measured at said operating temperature and at a shear rate of 25s"1, and that at least some of said powder is in a hydratable form; and c) spraying water on to the product of step b)
12. A detergent component or composition having a bulk density of at least 650 g/1 comprising: i) from 10% to 50% by weight of a nonionic surfactant ii) from 5% to 30% by weight of a structuring agent which is chosen from the group comprising sugars and artificial sweeteners, polyvinyl alcohols, polyhydroxyacrylic acid polymers, and their derivatives; and polyvinyl pyrrolidone, PVNO, phthalimide, para-toluene sulphonamide, maleimide, and* mixtures of these.
13. A detergent component or composition according to claim 12 wherein the ratio of the nonionic surfactant to the structuring agent is from 20:1 to 1:1.
14. A detergent component or composition according to either of claims 12 or 13 wherein the nonionic surfactant comprises an ethoxylated alcohol, the alcohol having a chain length of from 8 to 20 carbon atoms, and an average of from 1 to 25, preferably from 2 to 10 ethoxy groups per molecule of alcohol.
15. A detergent component or composition according to claim 14 wherein the nonionic surfactant is a liquid at temperatures below 40°C.
PCT/US1994/004843 1993-04-30 1994-04-29 Structuring liquid nonionic surfactants prior to granulation process WO1994025553A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP6524624A JP2888983B2 (en) 1993-04-30 1994-04-29 Structuring of liquid nonionic surfactant before granulation process
KR1019950704756A KR960701980A (en) 1993-04-30 1994-04-29 Structuring liquid nonionic surfactants prior to granulation process
AU67804/94A AU693445B2 (en) 1993-04-30 1994-04-29 Structuring liquid nonionic surfactants prior to granulation process
US08/537,751 US5610131A (en) 1993-04-30 1994-04-29 Structuring liquid nonionic surfactants prior to granulation process
CA002160662A CA2160662C (en) 1993-04-30 1994-04-29 Structuring liquid nonionic surfactants prior to granulation process
FI955143A FI955143A0 (en) 1993-04-30 1995-10-27 Structure of liquid non-ionic surfactants prior to granulation process
NO954308A NO954308L (en) 1993-04-30 1995-10-27 Structure of liquid nonionic surfactants for the granulation process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP93870075A EP0622454A1 (en) 1993-04-30 1993-04-30 Structuring liquid nonionic surfactants prior to granulation process
EP93870075.4 1993-04-30

Publications (1)

Publication Number Publication Date
WO1994025553A1 true WO1994025553A1 (en) 1994-11-10

Family

ID=8215339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1994/004843 WO1994025553A1 (en) 1993-04-30 1994-04-29 Structuring liquid nonionic surfactants prior to granulation process

Country Status (15)

Country Link
EP (1) EP0622454A1 (en)
JP (1) JP2888983B2 (en)
KR (1) KR960701980A (en)
CN (1) CN1125462A (en)
AU (1) AU693445B2 (en)
CA (1) CA2160662C (en)
CZ (1) CZ283895A3 (en)
EG (1) EG20591A (en)
FI (1) FI955143A0 (en)
HU (1) HU216904B (en)
MA (1) MA23182A1 (en)
NO (1) NO954308L (en)
PE (1) PE54094A1 (en)
PH (1) PH31661A (en)
WO (1) WO1994025553A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5726139A (en) * 1996-03-14 1998-03-10 The Procter & Gamble Company Glass cleaner compositions having good filming/streaking characteristics containing amine oxide polymers functionality
WO1998031781A2 (en) * 1997-01-17 1998-07-23 The Procter & Gamble Company Process for making a free-flowing particulate detergent admix containing nonionic surfactant

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE188991T1 (en) * 1993-09-13 2000-02-15 Procter & Gamble GRANULAR DETERGENT COMPOSITIONS WITH NON-IONIC SURFACTANT AND METHOD FOR THE PRODUCTION THEREOF
GB9404821D0 (en) * 1994-03-11 1994-04-27 Unilever Plc Detergent composition
EP0765378A1 (en) * 1994-06-13 1997-04-02 The Procter & Gamble Company Detergent composition containing anionic surfactants and water-soluble saccharides
EP0805845A4 (en) * 1995-01-26 1999-07-14 Procter & Gamble Process for the manufacture of granular detergent compositions comprising nonionic surfactant
US5858957A (en) * 1995-01-26 1999-01-12 The Procter & Gamble Company Process for the manufacture of granular detergent compositions comprising nonionic surfactant
CA2230310A1 (en) * 1995-09-04 1997-03-13 Unilever Plc Detergent compositions and process for preparing them
US6046153A (en) * 1996-08-26 2000-04-04 The Procter & Gamble Company Spray drying process for producing detergent compositions involving premixing modified polyamine polymers
BR9711966A (en) * 1996-08-26 1999-08-24 Procter & Gamble Agglomeration process for the production of detergent compositions involving pre-mixing of modified polyamine polymers
GB9618877D0 (en) * 1996-09-10 1996-10-23 Unilever Plc Process for preparing high bulk density detergent compositions
GB9618875D0 (en) * 1996-09-10 1996-10-23 Unilever Plc Process for preparing high bulk density detergent compositions
WO1999011749A1 (en) * 1997-08-28 1999-03-11 The Procter & Gamble Company Agglomeration process for producing a particulate modifier polyamine detergent admix
CN1276006A (en) * 1997-09-11 2000-12-06 亨克尔两合股份公司 Method for manufacturing washing and detergent particulates
GB9805193D0 (en) * 1998-03-10 1998-05-06 Unilever Plc Process for preparing granular detergent compositions
DE10021113A1 (en) * 2000-05-02 2001-11-15 Henkel Kgaa Particulate compounds containing non-ionic surfactants
GB0111863D0 (en) 2001-05-15 2001-07-04 Unilever Plc Granular composition
GB0111862D0 (en) 2001-05-15 2001-07-04 Unilever Plc Granular composition
EP2085461A1 (en) * 2008-01-11 2009-08-05 Unilever PLC Laundry composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3849327A (en) * 1971-11-30 1974-11-19 Colgate Palmolive Co Manufacture of free-flowing particulate heavy duty synthetic detergent composition containing nonionic detergent and anti-redeposition agent
US4399049A (en) * 1981-04-08 1983-08-16 The Procter & Gamble Company Detergent additive compositions
US4652391A (en) * 1984-09-22 1987-03-24 Henkel Kommanditgesellschaft Auf Aktien High powder density free-flowing detergent
JPS62263299A (en) * 1986-05-09 1987-11-16 ライオン株式会社 Production of granular nonionic detergent composition
US4908159A (en) * 1985-05-10 1990-03-13 Lever Brothers Company Detergent granules containing simple sugars and a seed crystal for calcium carbonate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839208B1 (en) * 1968-11-18 1973-11-22
SE459972B (en) * 1983-03-29 1989-08-28 Colgate Palmolive Co DIRTY REFERENCE PARTICULAR DETERGENT COMPOSITION CONTAINING A DIRT-REFERENCE POLYMER, PROCEDURE FOR ITS PREPARATION AND ITS USE OF WASHING OF SYNTHETIC ORGANIC POLYMER FIBERIAL
CA1293421C (en) * 1985-07-09 1991-12-24 Mark Edward Cushman Spray-dried granular detergent compositions containing nonionicsurfactant, polyethylene glycol, and polyacrylate
GB8522621D0 (en) * 1985-09-12 1985-10-16 Unilever Plc Detergent powder
DE3835918A1 (en) * 1988-10-21 1990-04-26 Henkel Kgaa METHOD FOR PRODUCING TENSIDE CONTAINING GRANULES
EP0508034B1 (en) * 1991-04-12 1996-02-28 The Procter & Gamble Company Compact detergent composition containing polyvinylpyrrolidone
JP3192469B2 (en) * 1991-05-17 2001-07-30 花王株式会社 Method for producing nonionic detergent particles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3849327A (en) * 1971-11-30 1974-11-19 Colgate Palmolive Co Manufacture of free-flowing particulate heavy duty synthetic detergent composition containing nonionic detergent and anti-redeposition agent
US4399049A (en) * 1981-04-08 1983-08-16 The Procter & Gamble Company Detergent additive compositions
US4652391A (en) * 1984-09-22 1987-03-24 Henkel Kommanditgesellschaft Auf Aktien High powder density free-flowing detergent
US4908159A (en) * 1985-05-10 1990-03-13 Lever Brothers Company Detergent granules containing simple sugars and a seed crystal for calcium carbonate
JPS62263299A (en) * 1986-05-09 1987-11-16 ライオン株式会社 Production of granular nonionic detergent composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5726139A (en) * 1996-03-14 1998-03-10 The Procter & Gamble Company Glass cleaner compositions having good filming/streaking characteristics containing amine oxide polymers functionality
WO1998031781A2 (en) * 1997-01-17 1998-07-23 The Procter & Gamble Company Process for making a free-flowing particulate detergent admix containing nonionic surfactant
WO1998031781A3 (en) * 1997-01-17 1998-09-11 Procter & Gamble Process for making a free-flowing particulate detergent admix containing nonionic surfactant

Also Published As

Publication number Publication date
CZ283895A3 (en) 1996-02-14
AU693445B2 (en) 1998-07-02
HUT72275A (en) 1996-04-29
PE54094A1 (en) 1995-01-05
JPH08509775A (en) 1996-10-15
FI955143A (en) 1995-10-27
NO954308D0 (en) 1995-10-27
CA2160662A1 (en) 1994-11-10
FI955143A0 (en) 1995-10-27
PH31661A (en) 1999-01-12
AU6780494A (en) 1994-11-21
JP2888983B2 (en) 1999-05-10
EG20591A (en) 1999-09-30
KR960701980A (en) 1996-03-28
HU216904B (en) 1999-10-28
CA2160662C (en) 1999-08-31
EP0622454A1 (en) 1994-11-02
HU9503082D0 (en) 1995-12-28
MA23182A1 (en) 1994-12-31
NO954308L (en) 1995-11-16
CN1125462A (en) 1996-06-26

Similar Documents

Publication Publication Date Title
CA2160662C (en) Structuring liquid nonionic surfactants prior to granulation process
EP0544492B1 (en) Particulate detergent compositions
EP0643130B1 (en) Granular detergent compositions comprising nonionic surfactant and process for making such compositions
AU8949591A (en) Process for agglomerating aluminosilicate or layered silicate detergent builders
SK32098A3 (en) Method for preparing an amorphous alkali silicate with impregnation
IE921161A1 (en) Agglomeration of high active pastes to form surfactant¹granules useful in detergent compositions
JP4033895B2 (en) Process and composition for compact detergent
US5494599A (en) Agglomeration of high active pastes to form surfactant granules useful in detergent compositions
US5610131A (en) Structuring liquid nonionic surfactants prior to granulation process
WO1996003482A1 (en) Process for making granular detergents and detergent compositions comprising nonionic surfactant
US5698510A (en) Process for making granular detergent compositions comprising nonionic surfactant
US5691294A (en) Flow aids for detergent powders comprising sodium aluminosilicate and hydrophobic silica
EP0618290B1 (en) Flow aids for detergent powders comprising sodium aluminosilicate and hydrophobic silica
JPH09502468A (en) Granular detergent composition containing surfactant and defoaming component
AU768794B2 (en) Particulate detergent composition containing zeolite
CA2231577C (en) Process for making granular detergents
CA2376221C (en) Detergent composition containing zeolite map
EP0723581A1 (en) Continuous process for making high density detergent granules
EP0627484A1 (en) Coating clay agglomerates with finely divided particulate material
EP0660873B2 (en) High density granular detergent composition
WO2004111177A1 (en) Detergent component and process for its preparation

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 94192424.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BB BG BR BY CA CN CZ DK FI GE HU JP KG KP KR KZ LK LV MD MG MN MW NO NZ PL RO RU SD SI SK TJ TT UA US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08537751

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2160662

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: PV1995-2838

Country of ref document: CZ

Ref document number: 955143

Country of ref document: FI

WWP Wipo information: published in national office

Ref document number: PV1995-2838

Country of ref document: CZ

122 Ep: pct application non-entry in european phase
WWR Wipo information: refused in national office

Ref document number: PV1995-2838

Country of ref document: CZ