WO1994022991A1 - Use of polyasparaginic acid in chain lubricants for conveyor belts of bottle filling and washing installations - Google Patents
Use of polyasparaginic acid in chain lubricants for conveyor belts of bottle filling and washing installations Download PDFInfo
- Publication number
- WO1994022991A1 WO1994022991A1 PCT/EP1994/000953 EP9400953W WO9422991A1 WO 1994022991 A1 WO1994022991 A1 WO 1994022991A1 EP 9400953 W EP9400953 W EP 9400953W WO 9422991 A1 WO9422991 A1 WO 9422991A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- acid
- aspartic acid
- condensates
- acids
- polyaspartic
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M107/00—Lubricating compositions characterised by the base-material being a macromolecular compound
- C10M107/40—Lubricating compositions characterised by the base-material being a macromolecular compound containing nitrogen
- C10M107/44—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M129/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
- C10M129/02—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
- C10M129/26—Carboxylic acids; Salts thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M129/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
- C10M129/02—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
- C10M129/26—Carboxylic acids; Salts thereof
- C10M129/28—Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
- C10M129/38—Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having 8 or more carbon atoms
- C10M129/40—Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having 8 or more carbon atoms monocarboxylic
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M133/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
- C10M133/02—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
- C10M133/04—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M133/06—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
- C10M133/08—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M145/00—Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
- C10M145/18—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M145/24—Polyethers
- C10M145/26—Polyoxyalkylenes
- C10M145/36—Polyoxyalkylenes etherified
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M149/00—Lubricating compositions characterised by the additive being a macromolecular compound containing nitrogen
- C10M149/12—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M149/14—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds a condensation reaction being involved
- C10M149/18—Polyamides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M173/00—Lubricating compositions containing more than 10% water
- C10M173/02—Lubricating compositions containing more than 10% water not containing mineral or fatty oils
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2201/00—Inorganic compounds or elements as ingredients in lubricant compositions
- C10M2201/02—Water
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/12—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2207/121—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/12—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2207/121—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
- C10M2207/122—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms monocarboxylic
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/12—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2207/125—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/12—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2207/125—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
- C10M2207/126—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids monocarboxylic
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/12—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2207/129—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of thirty or more carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
- C10M2209/104—Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
- C10M2209/108—Polyethers, i.e. containing di- or higher polyoxyalkylene groups etherified
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/12—Polysaccharides, e.g. cellulose, biopolymers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/04—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2215/042—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/22—Heterocyclic nitrogen compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/22—Heterocyclic nitrogen compounds
- C10M2215/221—Six-membered rings containing nitrogen and carbon only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/22—Heterocyclic nitrogen compounds
- C10M2215/225—Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/22—Heterocyclic nitrogen compounds
- C10M2215/225—Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
- C10M2215/226—Morpholines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/30—Heterocyclic compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2217/00—Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2217/04—Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2217/044—Polyamides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2217/00—Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2217/04—Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2217/045—Polyureas; Polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/04—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
- C10M2219/042—Sulfate esters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/04—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
- C10M2219/044—Sulfonic acids, Derivatives thereof, e.g. neutral salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/02—Groups 1 or 11
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/30—Refrigerators lubricants or compressors lubricants
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/32—Wires, ropes or cables lubricants
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/34—Lubricating-sealants
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/36—Release agents or mold release agents
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/38—Conveyors or chain belts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/40—Generators or electric motors in oil or gas winning field
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/42—Flashing oils or marking oils
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/44—Super vacuum or supercritical use
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/50—Medical uses
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2050/00—Form in which the lubricant is applied to the material being lubricated
- C10N2050/01—Emulsions, colloids, or micelles
Definitions
- the invention relates to the use of condensates of aspartic acid in chain lubricants for conveyor belts of bottle filling and cleaning systems and chain lubricants which contain condensates of aspartic acid.
- the thermal polymerization of aspartic acid with other amino acids such as glutamic acid at temperatures of 160 to 210 ° C. is known from US Pat. No. 3,052,655.
- the polycondensation can optionally be carried out in the presence of phosphoric acid, it being possible to use molar amounts of phosphoric acid on the amino acids used in the condensation.
- polyaspartic acid is formed by thermal polycondensation of maleic monoammonium salt at 120 to 150 ° C.
- the polyaspartate can prevent glass from becoming dull in dishwashers.
- the potassium, magnesium and calcium salts of polyaspartic acid can also be used as fertilizers.
- DE-A-40 23 463 discloses a process for the preparation of polyaspartic acid in two stages, in which aspartic acid is first treated with phosphoric acids at temperatures up to 250 ° C condensed under reduced pressure, then crushed the reaction mixture and post-condensed.
- the polycondensates are used to produce, by means of polymer-analogous reactions, for example plasma expanders or by reaction with amines, polyaspartic acid derivatives which are used in pharmaceutical and food-technical preparations, these polymers having to be film-forming.
- polyaspartic acid as a builder in detergent formulations is known from EP-A-0 454 126 and EP-A-0 511 037.
- polyaspartic acids with molar masses of 1000 to 5000 are used as dispersants.
- Chain lubricants for the tapes of bottle filling and bottle cleaning systems usually consist of 15 mixtures of water, soap, surfactants, fatty acids, alkanolamines and complexing agents.
- the substances used in practice as complexing agents the sodium salts of ethylenediaminetetraacetic acid (EDTA), are not biodegradable.
- the object of the invention is to provide biodegradable complexing agents for chain lubricants.
- polyaspartic acid and condensates of aspartic acid which contain up to 25 40 mol% of other amino acids, as well as the alkali and ammonium salts of polyaspartic acid and the named condensates in chain lubricants for conveyor belts for bottle filling and Cleaning systems.
- the invention also relates to chain lubricants based on mixtures of water, soap, surfactants, fatty acids and alkanolamines for conveyor belts in bottle filling and cleaning systems.
- the mixtures contain 1 to 30% by weight of polyaspartic acid, condensates of aspartic acid which
- L-, D- and DL-aspartic acid can be used as the starting material for the production of polyaspartic acid 40 and the reaction products containing condensed aspartic acid.
- DL-aspartic acid is technically easily accessible, for example by reacting ammonia with maleic acid or fumaric acid under pressure.
- L-aspartic acid can be produced, for example, by asymmetric addition of ammonia to fumaric acid catalyzed by 45 L-aspartase.
- Suitable microbes for the industrial bioconversion of fumaric acid into L-aspartic acid include mutated ones Strains of, for example, Pseudomonas, Brevibacterium flavum or lactoferum.
- the microorganisms can be immobilized on a solid phase in the catalyzed addition of ammonia to fumaric acid. The production of L-aspartic acid can thus flow economically and continuously in one
- L-aspartic acid can also be produced, for example, by chemical or enzymatic hydrolysis of L-asparagine.
- L-asparagine is a by-product of sugar molasses and potato processing.
- L- and DL-aspartic acid are preferably used to produce the polycondensates.
- Biotechnologically produced L-aspartic acid is particularly preferably used as the starting material for the production of the polyaspartates.
- cocondensates of aspartic acid with up to 40 mol% of other ⁇ -amino acids can also be used as deposit inhibitors.
- Suitable other ⁇ -amino acids and their half-amides are, for example, asparagine, iso-asparagine, glutamic acid, glutamine, lysine, arginine, histidine, glycine, alanine, valine, leucine, isoleucine, 4-aminobutyric acid, 2-aminoisobutyric acid, hydroxyamino acids, such as serine , Threonine or N- (hydroxyethyl) glycine and imino acids such as proline, aromatic and heteroeyclic amino acids such as phenylalanine, tyrosine, anthranilic acid or tryptophan, and sulfur-containing amino acids such as cystine, cysteine and methionine.
- aminodicarboxylic acids such as diaminobutyric acid or N-methylamino acids, for example sarcosine or N-methylalanine. All amino acids can be used in the L and D configuration or in the form of mixtures of L and D amino acids in any mixture ratio and as racemates. However, preference is given to using L-aspartic acid as the sole starting material for producing the thermal polyaspartic acid.
- the aspartic acid is condensed by tempering the aspartic acid crystals at temperatures of 140 to 260 ° C., preferably at 190 to 240 ° C., for up to 50 hours.
- the tempering is preferably carried out in a vacuum or under an inert gas atmosphere.
- the condensation reaction can also be carried out under elevated pressure or in a gas stream, for example carbon dioxide, air, nitrogen or superheated steam.
- the times for the condensation depend on the chosen reaction conditions; they are generally between 10 minutes and 50 hours.
- the poly Condensates can be used, for example, a drying belt, a paddle dryer, a tumble dryer or a fluidized bed dryer.
- Low molecular weight polycondensates can also be produced in a pressure-tightly closed vessel by not or only partially removing the water formed during the condensation.
- the condensation temperatures are 120 to 260 ° C. and are preferably in the range from 140 to 220 ° C., while the reaction times are about 1 minute to 10 hours.
- hydrohalic acids can be used as inorganic acids.
- Hydrochloric acid is preferably used.
- the hydrohalic acids can be used in gaseous or liquid form.
- Concentrated aqueous solutions of hydrochloric acid are preferably used, in which aspartic acid is soluble to form aspartic acid hydrochloride.
- liquid or gaseous hydrogen chloride can also be used to produce the hydrochlorides.
- the aqueous solutions of the aspartic acid hydrochloride are evaporated to dryness and the residue is polycondensed by heating to temperatures in the range given above.
- a spray dryer or a spray whirl layer dryer can be used for the continuous evaporation of the aqueous solutions of the hydrochlorides of aspartic acid.
- the polycondensation of the hydrochlorides can take place directly after the evaporation or at a later point in time.
- Suitable apparatus for the condensation are all those devices in which solids can be heated to temperatures of up to 260 ° C. in a vacuum or in a gas stream.
- the hydrogen chloride emerges again from the condensation product.
- the hydrogen chloride released can be recovered and reacted again with aspartic acid.
- the polycondensation of aspartic acid or its co-condensation with the other possible acids can also be carried out with inorganic acids of phosphorus in various oxidation states.
- inorganic acids of phosphorus sets phosphoric acid and polymeric anhydrides of phosphoric acid (polyphosphoric acids) are preferred.
- polyphosphoric acids polymeric anhydrides of phosphoric acid
- 75 to 85% aqueous ortho-phosphoric acid is preferably used as the phosphoric acid.
- 100% ortho-phosphoric acid or meta-phosphoric acid can also be used.
- polymeric anhydrides of polyphosphoric acid for example, diphosphoric acid (pyrophosphoric acid), triphosphoric acid and higher homologs are suitable.
- the polycondensation can also be carried out with an excess of phosphorus-containing acids.
- This measure can be of advantage in cases in which higher molecular weight polyaspartimides form very highly viscous solutions in phosphoric acids. In such cases, superstoichiometric amounts of phosphoric acid as solvents and diluents can reduce the viscosity of the resulting polymer solutions.
- the reaction with the phosphoric acids takes place in such a way that aspartic acid and optionally other amino acids are slurried in phosphoric acid at 20 ° C. and heated to a temperature of about 100 ° C. in vacuo.
- the water that may be introduced with the phosphoric acid distills off, at the same time the aspartic acid dissolves in the phosphoric acid.
- a homogeneous melt of an aspartic acid phosphate is obtained which is thermally polycondensed by heating to temperatures in the range from 120 to 260 ° C., preferably in vacuo. As the polycondensation progresses, the viscosity of the reaction mixture increases. The increase in the molecular weight can be followed by the increase in the viscosity of the reaction mixture.
- the molecular weight of the polycondensates can be limited by premature termination of the polycondensation reaction, for example by introduction into water. If the polycondensation is carried out to the end, homogeneous, very highly viscous solutions of polyaspartimides in anhydrous phosphoric acid are obtained.
- polyphosphoric acids are formed by dissolving phosphorus pentoxide in phosphoric acid. For example, a slurry of crystalline aspartic acid in polyphosphoric acid is heated to a temperature of 120 to 250 ° C. The aspartic acid first goes into solution. This solution is then annealed, preferably in a vacuum. The aspartic acid is polycondensed.
- the polycondensation of aspartic acid can also be carried out in the presence of derivatives of phosphoric acid, for example phosphorus oxychloride, phosphorus oxybromide, phosphorus pentachloride and phosphorus pentoxide.
- phosphoric acids in which the phosphorus has a lower oxidation level than +5.
- This group of acids includes, for example, the phosphorous Acid, which, based on 1 mol of aspartic acid, is used in amounts of 0.05 to 0.3 mol in the polycondensation.
- phosphorous acid can also be used in combination with phosphoric acid or hydrochloric acid.
- the condensation of aspartic acid with a mixture of 1 mol of phosphoric acid and 0.05 to 0.1 mol of phosphorous acid per 1 mol of aspartic acid has proven to be very advantageous.
- Mixtures of 1 mol of hydrochloric acid and 0.05 to 0.1 mol of phosphorous acid per 1 mol of aspartic acid can also be used in the polycondensation.
- derivatives of phosphorous acid are suitable as auxiliaries in the condensation in order to lower the temperature required for the condensation and to accelerate the reaction.
- phosphorus trichloride, phosphorus tribromide, triethyl phosphite, diethyl chlorophosphite, ethyl dichlorophosphite or tetraethyl pyrophosphite can also be used in the condensation.
- hypophosphorous acid is usually used in the form of aqueous solutions. 0.05 to 0.5 mol of hypophosphorous acid is used per 1 mol of aspartic acid.
- the hypophosphorous acid is homogeneously distributed on the aspartic acid by dissolving the aspartic acid together with hypophosphorous acid in water and evaporating the solution.
- the hypophosphorous acid can also be used in combination with hydrochloric acid or phosphoric acid.
- a mixture of 1 mol of phosphoric acid and 0.05 to 0.1 mol of hypophosphorous acid or a mixture of 1 mol of hydrochloric acid with 0.05 to 0.5 mol of hypophosphorous acid per 1 mol of aspartic acid is used in the condensate tion.
- the production of the condensates by elimination of water from crystalline L-aspartic acid at temperatures of 180 to 260 ° C. and the elimination of water from L-aspartic acid in phosphoric acid medium at 130 to 220 ° C. is particularly preferred.
- Suitable other inorganic acids which are used in the polycondensation of aspartic acid are, for example, sulfuric acid, disulfuric acid, sulfur trioxide, sodium and potassium hydrogen sulfate.
- the polycondensate is obtained in the form of the water-insoluble polyaspartic acid amides.
- the polyaspartimides are soluble in phosphoric acid and dimethylformamide. They have a 1% solution in dimethylformamide K values from 8 to 70, preferably 10 to 45.
- the polyaspartimides or the co-condensates of aspartic acid with the other amino acids can be added from the unreacted starting materials. can be cleaned, for example, by comminuting the condensation product and extracting it with 1 to 10 times the amount of water at temperatures from 0 to 100.degree. The unconverted acids are released. Polyaspartic acid imide or the cocondensates remain as an insoluble residue. Unreacted aspartic acid can easily be removed by extraction with 1N hydrochloric acid.
- the unmodified polyaspartic acids are preferably obtained from the polyaspartimides by slurrying the polyaspartimides in water and hydrolyzing and neutralizing them at temperatures in the range from 40 to 90 ° C. with the addition of base. These reactions can of course also be carried out at temperatures which are below and above the range given above.
- Suitable bases are, for example, sodium hydroxide solution, potassium hydroxide solution, sodium carbonate, potassium carbonate, ammonia and amines, such as trimethylamine, diethylamine, ethanolamine, diethanolamine, triethanolamine and morpholine.
- the neutralization can also be carried out using alkaline earth metal bases, e.g. Calcium hydroxide or barium hydroxide.
- the treatment of the polyaspartimides is preferably carried out at pH values from 8 to 10. Hydrolysis and neutralization can be accelerated by the action of ultrasound on the reaction partners.
- partially or completely neutralized polyaspartic acids or condensates which contain at least 60 mol% aspartic acid and up to 40 mol% of other amino acids condensed, are obtained in the form of the alkali metal or ammonium salts.
- the polymers have K values (determined according to H. Fikentscher in a 1% strength aqueous solution at pH 7 and 25 ° C. on the sodium salt) of 5 to 150 and preferably 10 to 100.
- polyaspartic acids and the condensates of aspartic acid with other amino acids are biodegradable according to OECD Guidelines for testing of Chemicals (1981), 302 B (modified Zahn-Wellens test). They are also degradable according to the decrease in dissolved oxygen in the closed bottle test.
- Chain lubricants are usually used to lubricate the belts of machines on which bottles are transported, which are filled or cleaned.
- the composition of chain lubricants can only be given as an example because it is specially adapted to the conditions of the company in which they are used.
- the chain lubricants consist, for example, of mixtures which contain water, soap, surfactants, fatty acids, alkanolamines and complexing agents.
- Suitable fatty acids are, for example, -C 2 to C 22 carboxylic acids which are either aliphatic saturated or one or more contain ethylenically unsaturated double bonds in the molecule. Oleic acid is preferably used.
- Suitable surfactants are, for example, alkyl sulfates, alkyl sulfonates, fatty alcohol alkoxylates, oxo alcohol alkoxylates, alkyl polyglucosides and fatty amine alkoxylates and fatty acid / protein condensates. Products of this type are commercially available.
- Another essential component in chain lubricants are amine, potassium or sodium soaps, e.g. Potassium palmitate, sodium palmitate, potassium stearate, sodium stearate.
- the chain lubricants also usually contain alkanolamines, such as monoethanolamine, diethanolamine, triethanolamine, morpholine or morpholm-N-oxide, or else mixtures, in particular mixtures of monoethanolamine and triethanolamine.
- alkanolamines such as monoethanolamine, diethanolamine, triethanolamine, morpholine or morpholm-N-oxide, or else mixtures, in particular mixtures of monoethanolamine and triethanolamine.
- Another essential component of chain lubricants are complexing agents.
- polyaspartic acid and condensates of aspartic acid which contain up to 40 mol% of other amino acids in condensed form, and the alkali and ammonium salts of these polymers are used as complexing agents.
- Condensates of aspartic acid which can be prepared in particular in the presence of phosphoric acid are biodegradable.
- Polyaspartic acid is preferably used as the complexing agent, which is obtainable by splitting off water from crystalline L-aspartic acid at temperatures of 180 to 260 ° C., or such condensates of aspartic acid are used which are split off from L-aspartic acid in a phosphoric acid medium at temperatures of 120 are available up to 250 ° C.
- the chain lubricants contain water in all cases. These are clear solutions which result in clear solutions when diluted with hard water.
- the chain lubricants composed according to the invention can have, for example, the following composition:
- Aspartic acid with other amino acids 5 - 10 parts by weight of a C ⁇ 3 / Ci 5 -oxoalcohol ethoxylate with one
- the pH of the chain lubricants is due to the content of at least 8.
- the alkanolamines Kettengleit- 'described above medium is used for the application by adding water in a weight ratio of for example 1: 500 diluted further advertising the order required in the for the application Concentration.
- the chain lubricants described above may optionally contain further additives, e.g. Corrosion inhibitors.
- the proportion of polyaspartic acid or condensates of aspartic acid in the chain lubricant prevents the precipitation of poorly soluble calcium salts of oleic acid or the soaps contained in the chain lubricants.
- the K values of the neutralized polycondensates were determined according to H. Fikentscher, Cellulosechemie, Vol. 13, 58 to 64 and 71 to 74 (1932) in aqueous solution at a temperature of 25 ° C and a concentration of 1% by weight pH 7 determined on the sodium salt of polyaspartic acids.
- the K values of the polyaspartimides were determined in 1% strength solution in dimethylformamide (DMF) at 25 ° C. The percentages in the examples mean% by weight.
- polyaspartimide By condensing L-aspartic acid in the presence of phosphoric acid in a molar ratio of 1: 1, polyaspartimide is obtained within 1.5 hours at a temperature of 150 ° C, which - after removal of phosphoric acid by washing with water - becomes a treatment with sodium hydroxide solution 40% aqueous solution is processed.
- the polyaspartic acid had a K value of 38.7 (determined at 25 ° C. and a concentration of 1% by weight at pH 7 on the sodium salt of polyaspartic acid).
- a chain lubricant for conveyor belts for bottles is produced, for example, by mixing the following components:
- Samples of the mixture described above are then diluted with drinking water of 30 ° d hardness in a ratio of 1: 100, 1: 200 and 1: 300.
- the 3 dilutions are then examined by nephelometric turbidity measurement. The values obtained are given in the table.
- polyaspartic acid 1 is replaced by the same amount of EDTA or NTA. 3 dilutions of this chain lubricant are then prepared and examined nephelometrically. The values obtained are given in the following table.
- polyaspartic acid has a better effect than EDTA and has the advantage over this complexing agent that it is biodegradable and toxicologically harmless.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Polyamides (AREA)
Abstract
Polyasparaginic acid and condensates of asparaginic acid containing up to 40 % by moles of other condensed aminoacids, as well as the alkaline and ammonium salts of said polyasparaginic acids, are used in chain lubricants for conveyor belts of bottle filling and washing installations. Also disclosed are chain lubricants based on mixtures of water, soap, surfactants, fatty acid, alkanolamines and 1 to 30 % by weight polyasparaginic acid, condensates of asparaginic acid containing up to 40 % by moles of other condensed aminoacids, and/or alkaline and ammonium salts of the polyasparaginic acids useful for conveyor belts of bottle filling and washing installations.
Description
Verwendung von Polyasparaginsäure in Kettengleitmitteln für Transportbänder von Flaschenbefüllungs- und ReinigungsanlagenUse of polyaspartic acid in chain lubricants for conveyor belts in bottle filling and cleaning systems
Beschreibungdescription
Die Erfindung betrifft die Verwendung von Kondensaten der Asparaginsäure in Kettengleitmitteln für Transportbänder von Flaschenbefüllungs- und Reinigungsanlagen und Kettengleitmittel, die Kondensate der Asparaginsäure enthalten.The invention relates to the use of condensates of aspartic acid in chain lubricants for conveyor belts of bottle filling and cleaning systems and chain lubricants which contain condensates of aspartic acid.
Aus der US-A-3 052 655 ist die thermische Polymerisation von Asparaginsäure mit anderen Aminosäuren wie Glutaminsäure, bei Temperaturen von 160 bis 210°C bekannt. Die Polykondensation kann gegebenenfalls in Gegenwart von Phosphorsäure durchgeführt werden, wobei molare Mengen Phosphorsäure auf die bei der Konden¬ sation eingesetzten Aminosäuren angewendet werden können.The thermal polymerization of aspartic acid with other amino acids such as glutamic acid at temperatures of 160 to 210 ° C. is known from US Pat. No. 3,052,655. The polycondensation can optionally be carried out in the presence of phosphoric acid, it being possible to use molar amounts of phosphoric acid on the amino acids used in the condensation.
Aus der DE-A-20 32 470 ist die thermische Polykondensation von Asparaginsäure unter vermindertem Druck bei Temperaturen von 170 bis 200°C bekannt. Die Polykondensation kann gegebenenfalls in Ge¬ genwart von Phosphorsäure durchgeführt werden. Die Umsetzungspro¬ dukte der so erhältlichen Polyaspartimide mit Alkanolaminen wer¬ den als Blutplasmaexpander eingesetzt. In der US-A-4 534 881 wird die Inhibierung von anorganisehen oder biologischen Kalzium- carbonatausfällungen durch Polyaspartat, Polyglutamat und Copoly- kondensate mit anderen Aminosäuren beschrieben. Die Poly- kondensate haben vorzugsweise Molekulargewichte von 3500 bis 10.000. Sie werden beispielsweise in Meerwasseraufbereitungs- anlagen oder Kühlkreisläufen als Scaleinhibitor verwendet.From DE-A-20 32 470 the thermal polycondensation of aspartic acid under reduced pressure at temperatures from 170 to 200 ° C is known. The polycondensation can optionally be carried out in the presence of phosphoric acid. The reaction products of the polyaspartimides obtainable in this way with alkanolamines are used as blood plasma expanders. US Pat. No. 4,534,881 describes the inhibition of inorganic or biological calcium carbonate precipitates by polyaspartate, polyglutamate and copolycondensates with other amino acids. The polycondensates preferably have molecular weights from 3500 to 10,000. For example, they are used as scale inhibitors in seawater treatment plants or cooling circuits.
Durch thermische Polykondensation von Maleinsäuremonoammoniumsalz bei 120 bis 150°C entsteht gemäß der Lehre der DE-A-36 26 672 Po¬ lyasparaginsäure, die in der sauren Form Ablagerungen der Härte- bildner des Wassers verhindert und Ablagerungen dieser Art wieder auflösen kann. Das Polyaspartat kann in Geschirrspülmaschinen das Mattwerden von Glas verhindern. Die Kalium-, Magnesium- und Kalziumsalze der Polyasparaginsäure können außerdem als Dünge¬ mittel verwendet werden.According to the teaching of DE-A-36 26 672, polyaspartic acid is formed by thermal polycondensation of maleic monoammonium salt at 120 to 150 ° C. The polyaspartate can prevent glass from becoming dull in dishwashers. The potassium, magnesium and calcium salts of polyaspartic acid can also be used as fertilizers.
Aus der DE-A-22 53 190 ist bekannt, daß mit langkettigen Alkyl- aminen modifizierte Polyasparaginsäuren als Tenside in Wasch¬ mitteln eingesetzt werden können.From DE-A-22 53 190 it is known that polyaspartic acids modified with long-chain alkyl amines can be used as surfactants in detergents.
Aus der DE-A-40 23 463 ist ein Verfahren zur Herstellung von Polyasparaginsäure in 2 Stufen bekannt, bei dem man Asparagin¬ säure zunächst mit Phosphorsäuren bei Temperaturen bis zu 250°C
unter vermindertem Druck kondensiert, dann das Reaktionsgemisch zerkleinert und nachkondensiert. Aus den Polykondensaten werden durch polymeranaloge Umsetzungen beispielsweise Plasmaexpander oder durch Umsetzung mit Aminen Polyasparaginsaurederivate herge- 5 stellt, die in pharmazeutischen und lebensmitteltechnischen Zu¬ bereitungen verwendet werden, wobei diese Polymeren filmbildend sein müssen.DE-A-40 23 463 discloses a process for the preparation of polyaspartic acid in two stages, in which aspartic acid is first treated with phosphoric acids at temperatures up to 250 ° C condensed under reduced pressure, then crushed the reaction mixture and post-condensed. The polycondensates are used to produce, by means of polymer-analogous reactions, for example plasma expanders or by reaction with amines, polyaspartic acid derivatives which are used in pharmaceutical and food-technical preparations, these polymers having to be film-forming.
Aus der EP-A-0 454 126 und der EP-A-0 511 037 ist die Verwendung 10 von Polyasparaginsäure als Builder in Waschmittelformulierungen bekannt. Gem ß der Lehre der WO-A-92/15535 werden Polyasparagin¬ säuren mit Molmassen von 1000 bis 5000 als Dispergiermittel verwendet. Kettengleitmittel für die Bander von Flaschenbefül¬ lungs- und Flaschenreinigungsanlagen bestehen üblicherweise aus 15 Mischungen von Wasser, Seife, Tensiden, Fettsauren, Alkanolaminen und Komplexbildnern. Die als Komplexbildner in der Praxis verwen¬ deten Stoffe, die Natriumsalze der Ethylendiamintetraessigsaure (EDTA) , sind jedoch biologisch nicht abbaubar.The use of polyaspartic acid as a builder in detergent formulations is known from EP-A-0 454 126 and EP-A-0 511 037. According to the teaching of WO-A-92/15535, polyaspartic acids with molar masses of 1000 to 5000 are used as dispersants. Chain lubricants for the tapes of bottle filling and bottle cleaning systems usually consist of 15 mixtures of water, soap, surfactants, fatty acids, alkanolamines and complexing agents. However, the substances used in practice as complexing agents, the sodium salts of ethylenediaminetetraacetic acid (EDTA), are not biodegradable.
20 Der Erfindung liegt die Aufgabe zugrunde, biologisch abbaubare Komplexbildner f r Kettengleitmittel zur Verfügung zu stellen.The object of the invention is to provide biodegradable complexing agents for chain lubricants.
Die Aufgabe wird erfindungsgemaß gelost mit der Verwendung von Polyasparaginsäure und Kondensaten der Asparaginsäure, die bis zu 25 40 mol-% anderer Aminosäuren einkondensiert enthalten, sowie den Alkali- und Ammoniumsalzen der Polyasparaginsäure und der ge¬ nannten Kondensate in Kettengleitmitteln für Transportbander von Flaschenbefüllungs- und Reinigungsanlagen.The object is achieved according to the invention with the use of polyaspartic acid and condensates of aspartic acid, which contain up to 25 40 mol% of other amino acids, as well as the alkali and ammonium salts of polyaspartic acid and the named condensates in chain lubricants for conveyor belts for bottle filling and Cleaning systems.
30 Gegenstand der Erfindung sind außerdem Kettengleitmittel auf der Basis von Mischungen aus Wasser, Seife, Tensiden, Fettsauren und Alkanolaminen für Transportbander von Flaschenbefüllungs- und Reinigungsanlagen. Die Mischungen enthalten erfindungsgemaß 1 bis 30 Gew.-% Polyasparaginsäure, Kondensate der Asparaginsäure, dieThe invention also relates to chain lubricants based on mixtures of water, soap, surfactants, fatty acids and alkanolamines for conveyor belts in bottle filling and cleaning systems. According to the invention, the mixtures contain 1 to 30% by weight of polyaspartic acid, condensates of aspartic acid which
35 bis zu 40 mol-% anderer Aminosäuren einkondensiert enthalten und/ oder Alkali- und Ammoniumsalze der Polyasparaginsäure und der ge¬ nannten Kondensate.Contain 35 to 40 mol% of other amino acids in condensed form and / or alkali and ammonium salts of polyaspartic acid and the named condensates.
Als Ausgangsmaterial für die Herstellung von Polyasparaginsäure 40 und den Asparaginsäure einkondensiert enthaltenden Reaktions¬ produkten kann L-, D- und DL-Asparaginsaure verwendet werden. DL-Asparaginsaure ist technisch leicht zuganglich, z.B. durch Um¬ setzung von Ammoniak mit Maleinsäure oder Fumarsaure unter Druck. L-Asparaginsaure kann beispielsweise durch asymmetrische 45 L-Aspartase katalysierte Addition von Ammoniak an Fumarsaure her¬ gestellt werden. Geeignete Mikroben für die industrielle Biokon¬ version von Fumarsaure in L-Asparaginsaure beinhalten mutierte
Stämme von beispielsweise Pseudomonas, Brevibacterium flavum oder lactoferum. Die Mikroorganismen können bei der katalysierten An¬ lagerung von Ammoniak an Fumars ure auf einer festen Phase immobilisiert werden. Die Produktion von L-Asparaginsäure kann somit ökonomisch und kontinuierlich in einem durchströmtenL-, D- and DL-aspartic acid can be used as the starting material for the production of polyaspartic acid 40 and the reaction products containing condensed aspartic acid. DL-aspartic acid is technically easily accessible, for example by reacting ammonia with maleic acid or fumaric acid under pressure. L-aspartic acid can be produced, for example, by asymmetric addition of ammonia to fumaric acid catalyzed by 45 L-aspartase. Suitable microbes for the industrial bioconversion of fumaric acid into L-aspartic acid include mutated ones Strains of, for example, Pseudomonas, Brevibacterium flavum or lactoferum. The microorganisms can be immobilized on a solid phase in the catalyzed addition of ammonia to fumaric acid. The production of L-aspartic acid can thus flow economically and continuously in one
Reaktor oder Rohr durchgeführt werden, vgl. Ullmanns Encyclopädie der technischen Chemie, 1985, Band A2, Seite 68. L-Asparaginsäüre kann auch beispielsweise durch chemische oder enzymatische Hydro¬ lyse von L-Asparagin hergestellt werden. L-Asparagin fällt als Nebenprodukt in der Zuckermelasse und bei der Verarbeitung von Kartoffeln an. Zur Herstellung der Polykondensate wird vorzugs¬ weise L- und DL-Asparaginsäure eingesetzt. Besonders bevorzugt dient biotechnologisch hergestellte L-Asparaginsäure als Aus¬ gangsmaterial zur Herstellung der Polyaspartate.Reactor or tube are carried out, cf. Ullmann's Encyclopedia of Industrial Chemistry, 1985, volume A2, page 68. L-aspartic acid can also be produced, for example, by chemical or enzymatic hydrolysis of L-asparagine. L-asparagine is a by-product of sugar molasses and potato processing. L- and DL-aspartic acid are preferably used to produce the polycondensates. Biotechnologically produced L-aspartic acid is particularly preferably used as the starting material for the production of the polyaspartates.
Außer den Kondensaten, die durch alleinige thermische Konden¬ sation von Asparaginsäure erhältlich sind, kann man auch Cokon- densate der Asparaginsäure mit bis zu 40 mol% anderen α-Amino- säuren als Belagsverhinderer einsetzen. Geeignete andere α—Amino- säuren und deren Halbamide sind beispielsweise Asparagin, Iso- asparagin, Glutaminsäure, Glutamin, Lysin, Arginin, Histidin, Glycin, Alanin, Valin, Leucin, Isoleucin, 4-Aminobuttersäure, 2-Aminoisobuttersäure, Hydroxyaminosäuren, wie Serin, Threonin oder N-(Hydroxyethyl)glycin und Iminosäuren, wie Prolin, aromati- sehe und heteroeyclische Aminosäuren, wie Phenylalanin, Tyrosin, Anthranilsäure oder Tryptophan, sowie Schwefel enthaltende Amino¬ säuren, wie beispielsweise Cystin, Cystein und Methionin. Außer¬ dem eignen sich als andere Aminosäuren zur Herstellung der Cokon- densate die Aminodicarbonsäuren wie Diaminobuttersäure oder N-Methylaminosäuren, beispielsweise Sarkosin oder N-Methylalanin. Sämtliche Aminosäuren können in der L- und D-Konfiguration oder in Form von Mischungen aus L- und D-Aminosäuren in beliebigen Mi¬ schungsverhältnissen und als Racemate eingesetzt werden. Bevor¬ zugt ist jedoch die Verwendung von L-Asparaginsäure als alleini- ges Ausgangsmaterial zur Herstellung der thermischen Polyaspara¬ ginsäure.In addition to the condensates which can be obtained by thermal condensation of aspartic acid alone, cocondensates of aspartic acid with up to 40 mol% of other α-amino acids can also be used as deposit inhibitors. Suitable other α-amino acids and their half-amides are, for example, asparagine, iso-asparagine, glutamic acid, glutamine, lysine, arginine, histidine, glycine, alanine, valine, leucine, isoleucine, 4-aminobutyric acid, 2-aminoisobutyric acid, hydroxyamino acids, such as serine , Threonine or N- (hydroxyethyl) glycine and imino acids such as proline, aromatic and heteroeyclic amino acids such as phenylalanine, tyrosine, anthranilic acid or tryptophan, and sulfur-containing amino acids such as cystine, cysteine and methionine. Also suitable as other amino acids for the preparation of the cocondensates are the aminodicarboxylic acids such as diaminobutyric acid or N-methylamino acids, for example sarcosine or N-methylalanine. All amino acids can be used in the L and D configuration or in the form of mixtures of L and D amino acids in any mixture ratio and as racemates. However, preference is given to using L-aspartic acid as the sole starting material for producing the thermal polyaspartic acid.
Die Kondensation von Asparaginsäure erfolgt durch Tempern der As- paraginsäurekristalle bei Temperaturen von 140 bis 260°C, bevor- zugt bei 190 bis 240°C, innerhalb eines Zeitraums bis zu 50 Stun¬ den. Das Tempern wird vorzugsweise im Vakuum oder unter Inertgas- atmosphäre durchgeführt. Die Kondensationsreaktion kann jedoch auch unter erhöhtem Druck oder in einem Gasstrom, z.B. Kohlendi¬ oxid, Luft, Stickstoff oder überhitztem Wasserdampf durchgeführt werden. Die Zeiten für die Kondensation sind von den gewählten Reaktionsbedingungen abhängig; sie liegen im allgemeinen zwischen 10 Minuten und 50 Stunden. Zur technischen Herstellung der Poly-
kondensate kann man beispielsweise ein Trockenband, einen Schau¬ feltrockner, einen Taumeltrockner oder einen Wirbelschichttrock¬ ner einsetzen. Polykondensate mit niedrigem Molgewicht können auch in einem druckdicht verschlossenen Gefäß hergestellt werden, indem man das bei der Kondensation entstehende Wasser nicht oder nur teilweise entfernt.The aspartic acid is condensed by tempering the aspartic acid crystals at temperatures of 140 to 260 ° C., preferably at 190 to 240 ° C., for up to 50 hours. The tempering is preferably carried out in a vacuum or under an inert gas atmosphere. However, the condensation reaction can also be carried out under elevated pressure or in a gas stream, for example carbon dioxide, air, nitrogen or superheated steam. The times for the condensation depend on the chosen reaction conditions; they are generally between 10 minutes and 50 hours. For the technical production of the poly Condensates can be used, for example, a drying belt, a paddle dryer, a tumble dryer or a fluidized bed dryer. Low molecular weight polycondensates can also be produced in a pressure-tightly closed vessel by not or only partially removing the water formed during the condensation.
Bei der Polykondensation der Asparaginsäure und der Cokondensati- on von Asparaginsäure mit anderen α-Aminosäuren kann man auch von den Salzen der Asparaginsäure oder den Salzen der anderen Amino¬ säuren ausgehen, wenn man bei der Polykondensation zusätzlich an¬ organische Säuren itverwendet. Die Kondensationstemperaturen können dann gegenüber der rein thermischen Polykondensation der Asparaginsäure gesenkt werden. Ein weiterer Vorteil besteht da- rin, daß man praktisch nicht gefärbte Polykondensate erhält. Bei Einsatz von Salzen der Asparaginsäure und anorganischen Säuren betragen die Kondensationstemperaturen 120 bis 260°C und liegen vorzugsweise in dem Bereich von 140 bis 220°C, während die Reakti¬ onszeiten etwa 1 Minute bis zu 10 Stunden betragen.In the polycondensation of aspartic acid and the co-condensation of aspartic acid with other α-amino acids, one can also start from the salts of aspartic acid or the salts of the other amino acids if additional organic acids are used in the polycondensation. The condensation temperatures can then be reduced compared to the purely thermal polycondensation of aspartic acid. Another advantage is that practically non-colored polycondensates are obtained. When salts of aspartic acid and inorganic acids are used, the condensation temperatures are 120 to 260 ° C. and are preferably in the range from 140 to 220 ° C., while the reaction times are about 1 minute to 10 hours.
Als anorganische Säuren können alle Halogenwasserstoffsäuren ver¬ wendet werden. Bevorzugt wird Chlorwasserstoffsäure eingesetzt. Die Halogenwasserstoffsäuren können gasförmig oder in flüssigem Zustand verwendet werden. Bevorzugt finden konzentrierte wäßrige Lösungen von Chlorwasserstoffsäure Anwendung, in denen Asparagin¬ säure unter Bildung von Asparaginsäure-Hydrochlorid löslich ist. Es kann aber auch flüssiger oder gasförmiger Chlorwasserstoff zur Herstellung der Hydrochloride verwendet werden. Die wäßrigen Lö¬ sungen des Asparaginsäure-Hydrochlorids werden zur Trockene ein- gedampft und der Rückstand durch Erhitzen auf Temperaturen in dem oben angegebenen Bereich polykondensiert. Zum kontinuierlichen Eindampfen der wäßrigen Lösungen der Hydrochloride der Asparagin¬ säure kann beispielsweise ein Sprühtrockner oder Sprühwir el- schichttrockner verwendet werden. Die Polykondensation der Hy- drochloride kann direkt im Anschluß an das Eindampfen oder auch zu einem späteren Zeitpunkt erfolgen. Geeignete Apparaturen für die Kondensation sind alle diejenigen Vorrichtungen, bei denen Feststoffe in Vakuum oder in einem Gasstrom auf Temperaturen bis zu 260°C erhitzt werden können. Im Verlauf der Polykondensation tritt der Chlorwasserstoff aus dem Kondensationsprodukt wieder aus. Der freigesetzte Chlorwasserstoff kann zurückgewonnen und erneut mit Asparaginsäure umgesetzt werden.All hydrohalic acids can be used as inorganic acids. Hydrochloric acid is preferably used. The hydrohalic acids can be used in gaseous or liquid form. Concentrated aqueous solutions of hydrochloric acid are preferably used, in which aspartic acid is soluble to form aspartic acid hydrochloride. However, liquid or gaseous hydrogen chloride can also be used to produce the hydrochlorides. The aqueous solutions of the aspartic acid hydrochloride are evaporated to dryness and the residue is polycondensed by heating to temperatures in the range given above. For the continuous evaporation of the aqueous solutions of the hydrochlorides of aspartic acid, for example, a spray dryer or a spray whirl layer dryer can be used. The polycondensation of the hydrochlorides can take place directly after the evaporation or at a later point in time. Suitable apparatus for the condensation are all those devices in which solids can be heated to temperatures of up to 260 ° C. in a vacuum or in a gas stream. In the course of the polycondensation, the hydrogen chloride emerges again from the condensation product. The hydrogen chloride released can be recovered and reacted again with aspartic acid.
Die Polykondensation der Asparaginsäure bzw. ihre Cokondensation mit den anderen in Betracht kommenden Säuren kann auch mit anor¬ ganischen Säuren des Phosphors in verschiedenen Oxidationsstufen durchgeführt werden. Als anorganische Säuren des Phosphors setzt
man bevorzugt Phosphorsäure und polymere Anhydride der Phosphor¬ säure (Polyphosphorsäuren) ein. Als Phosphorsäure wird bevorzugt technische, 75 bis 85 %ige wäßrige ortho-Phosphorsäure einge¬ setzt. Man kann jedoch auch 100 %ige ortho-Phosphorsäure oder me- ta-Phosphorsäure verwenden. Von den polymeren Anhydriden der Po¬ lyphosphorsäure eignen sich beispielsweise Diphosphorsäure (Pyro- phosphorsäure) , Triphosphorsäure und höhere Homologe. Die Poly-' kondensation kann auch mit einem Überschuß an Phosphor enthalten¬ den Säuren durchgeführt werden. Diese Maßnahme kann in solchen Fällen von Vorteil sein, in denen höhermolekulare Polyaspartimide sehr hochviskose Lösungen in Phosphorsäuren bilden. Überstöchio- metrische Mengen an Phosphorsäure können in solchen Fällen als Löse- und Verdünnungsmittel die Viskosität der entstehenden Poly¬ merlösungen herabsetzen.The polycondensation of aspartic acid or its co-condensation with the other possible acids can also be carried out with inorganic acids of phosphorus in various oxidation states. As inorganic acids of phosphorus sets phosphoric acid and polymeric anhydrides of phosphoric acid (polyphosphoric acids) are preferred. Technical, 75 to 85% aqueous ortho-phosphoric acid is preferably used as the phosphoric acid. However, 100% ortho-phosphoric acid or meta-phosphoric acid can also be used. Of the polymeric anhydrides of polyphosphoric acid, for example, diphosphoric acid (pyrophosphoric acid), triphosphoric acid and higher homologs are suitable. The polycondensation can also be carried out with an excess of phosphorus-containing acids. This measure can be of advantage in cases in which higher molecular weight polyaspartimides form very highly viscous solutions in phosphoric acids. In such cases, superstoichiometric amounts of phosphoric acid as solvents and diluents can reduce the viscosity of the resulting polymer solutions.
Die Umsetzung mit den Phosphorsäuren geschieht in der Weise, daß man Asparaginsäure und gegebenenfalls andere Aminosäuren in Phosphorsäure bei 20°C aufschlämmt und im Vakuum auf eine Tempera¬ tur von etwa 100°C erwärmt. Das mit der Phosphorsäure gegebenen- falls eingebrachte Wasser destilliert dabei ab, gleichzeitig löst sich die Asparaginsäure in der Phosphorsäure auf. Man erhält eine homogene Schmelze eines Asparaginsäure-Phosphats, das durch Er¬ hitzen auf Temperaturen in dem Bereich von 120 bis 260°C, vorzugs¬ weise im Vakuum, thermisch polykondensiert wird. Mit fortschrei- tender Polykondensation nimmt die Viskosität der Reaktionsmi¬ schung zu. Das Ansteigen des Molekulargewichts kann an der Zunah¬ me der Viskosität der Reaktionsmischung verfolgt werden. Durch vorzeitigen Abbruch der Polykondensationsreaktion, beispielsweise durch Eintragen in Wasser, läßt sich das Molekulargewicht der Po- lykondensate begrenzen. Wenn man die Polykondensation bis zum En¬ de durchführt, so erhält man homogene, sehr hochviskose Lösungen von Polyaspartimiden in wasserfreier Phosphorsäure.The reaction with the phosphoric acids takes place in such a way that aspartic acid and optionally other amino acids are slurried in phosphoric acid at 20 ° C. and heated to a temperature of about 100 ° C. in vacuo. The water that may be introduced with the phosphoric acid distills off, at the same time the aspartic acid dissolves in the phosphoric acid. A homogeneous melt of an aspartic acid phosphate is obtained which is thermally polycondensed by heating to temperatures in the range from 120 to 260 ° C., preferably in vacuo. As the polycondensation progresses, the viscosity of the reaction mixture increases. The increase in the molecular weight can be followed by the increase in the viscosity of the reaction mixture. The molecular weight of the polycondensates can be limited by premature termination of the polycondensation reaction, for example by introduction into water. If the polycondensation is carried out to the end, homogeneous, very highly viscous solutions of polyaspartimides in anhydrous phosphoric acid are obtained.
In analoger Weise erfolgt die Polykondensation der Asparaginsäure und ggf. der anderen Aminosäuren in Polyphosphorsäure. Polyphosp¬ horsäuren entstehen durch Auflösen von Phosphorpentoxid in Phos¬ phorsäure. Eine Aufschlämmung von kristalliner Asparaginsäure in Polyphosphorsäure wird z.B. auf eine Temperatur von 120 bis 250°C erwärmt. Hierbei geht zunächst die Asparaginsäure in Lösung. Diese Lösung wird anschließend - bevorzugt im Vakuum - getempert. Dabei erfolgt die Polykondensation der Asparaginsäure. Die Poly¬ kondensation der Asparaginsäure kann auch in Gegenwart von Derivaten der Phosphorsäure durchgeführt werden, z.B. Phosphor- oxychlorid, Phosphoroxybromid, Phosphorpentachlorid und Phosphor- pentoxid. Außerdem eignen sich Phosphorsäuren, in denen der Phosphor eine niedrigere Oxidationsstufe als +5 aufweist. Zu dieser Gruppe von Säuren gehört beispielsweise die phosphorige
Saure, die, bezogen auf 1 Mol Asparaginsäure, in Mengen von 0,05 bis 0,3 Mol bei der Polykondensation eingesetzt wird. Phosphorige Saure kann jedoch auch in Kombination mit Phosphorsaure oder Chlorwasserstoffsaure angewendet werden. So hat sich beispiels- weise die Kondensation von Asparaginsäure mit einer Mischung aus 1 Mol Phosphorsaure und 0,05 bis 0,1 Mol phosphoriger Saure pro 1 Mol Asparaginsäure als sehr vorteilhaft erwiesen. Man kann auch Mischungen aus 1 Mol Chlorwasserstoffsaure und 0,05 bis 0,1 Mol phosphoriger Saure pro 1 Mol Asparaginsäure bei der Polykondensa- tion einsetzen. Außerdem eignen sich Derivate der phosphorigen Saure als Hilfsmittel bei der Kondensation, um die bei der Kon¬ densation erforderliche Temperatur zu erniedrigen und die Reakti¬ on zu beschleunigen. Außer der phosphorigen Saure können bei der Kondensation auch Phosphortrichlorid, Phosphortribromid, Trie- thylphosphit, Diethylchlorphosphit, Ethyldichlorphosphit oder Te- traethylpyrophosphit eingesetzt werden.The polycondensation of aspartic acid and possibly the other amino acids in polyphosphoric acid takes place in an analogous manner. Polyphosphoric acids are formed by dissolving phosphorus pentoxide in phosphoric acid. For example, a slurry of crystalline aspartic acid in polyphosphoric acid is heated to a temperature of 120 to 250 ° C. The aspartic acid first goes into solution. This solution is then annealed, preferably in a vacuum. The aspartic acid is polycondensed. The polycondensation of aspartic acid can also be carried out in the presence of derivatives of phosphoric acid, for example phosphorus oxychloride, phosphorus oxybromide, phosphorus pentachloride and phosphorus pentoxide. Also suitable are phosphoric acids in which the phosphorus has a lower oxidation level than +5. This group of acids includes, for example, the phosphorous Acid, which, based on 1 mol of aspartic acid, is used in amounts of 0.05 to 0.3 mol in the polycondensation. However, phosphorous acid can also be used in combination with phosphoric acid or hydrochloric acid. For example, the condensation of aspartic acid with a mixture of 1 mol of phosphoric acid and 0.05 to 0.1 mol of phosphorous acid per 1 mol of aspartic acid has proven to be very advantageous. Mixtures of 1 mol of hydrochloric acid and 0.05 to 0.1 mol of phosphorous acid per 1 mol of aspartic acid can also be used in the polycondensation. In addition, derivatives of phosphorous acid are suitable as auxiliaries in the condensation in order to lower the temperature required for the condensation and to accelerate the reaction. In addition to the phosphorous acid, phosphorus trichloride, phosphorus tribromide, triethyl phosphite, diethyl chlorophosphite, ethyl dichlorophosphite or tetraethyl pyrophosphite can also be used in the condensation.
Eine weitere Möglichkeit besteht darin, Asparaginsäure in Gegen¬ wart von unterphosphoriger Saure zu kondensieren. Die unterphosp- hörige Saure wird üblicherweise in Form wäßriger Losungen verwen¬ det. Pro 1 Mol Asparaginsäure verwendet man 0,05 bis 0,5 Mol un- terphosphorige Saure. Die unterphosphorige Saure wird auf der As¬ paraginsäure homogen verteilt, indem man die Asparaginsäure zu¬ sammen mit unterphosphoriger Säure in Wasser löst und die Losung eindampft. Die unterphosphorige Säure kann auch in Kombination mit Chlorwasserstoffsaure oder Phosphorsaure verwendet werden. Beispielsweise verwendet man eine Mischung aus 1 Mol Phosphorsau¬ re und 0,05 bis 0,1 Mol unterphosphoriger Säure oder eine Mischung von 1 Mol Chlorwasserstoffsäure mit 0,05 bis 0,5 Mol un- terphosphoriger Säure pro 1 Mol Asparaginsäure bei der Kondensa¬ tion. Besonders bevorzugt ist die Herstellung der Kondensate durch Wasserabspaltung aus kristalliner L-Asparaginsaure bei Tem¬ peraturen von 180 bis 260°C und die Wasserabspaltung aus L-Aspara¬ ginsaure in phosphorsaurem Medium bei 130 bis 220°C.Another possibility is to condense aspartic acid in the presence of hypophosphorous acid. The hypophosphorous acid is usually used in the form of aqueous solutions. 0.05 to 0.5 mol of hypophosphorous acid is used per 1 mol of aspartic acid. The hypophosphorous acid is homogeneously distributed on the aspartic acid by dissolving the aspartic acid together with hypophosphorous acid in water and evaporating the solution. The hypophosphorous acid can also be used in combination with hydrochloric acid or phosphoric acid. For example, a mixture of 1 mol of phosphoric acid and 0.05 to 0.1 mol of hypophosphorous acid or a mixture of 1 mol of hydrochloric acid with 0.05 to 0.5 mol of hypophosphorous acid per 1 mol of aspartic acid is used in the condensate tion. The production of the condensates by elimination of water from crystalline L-aspartic acid at temperatures of 180 to 260 ° C. and the elimination of water from L-aspartic acid in phosphoric acid medium at 130 to 220 ° C. is particularly preferred.
Geeignete andere anorganische Sauren, die bei der Polykondensati¬ on der Asparaginsäure verwendet werden, sind beispielsweise Schwefelsaure, Dischwefelsaure, Schwefeltrioxid, Natrium- und Ka- liu hydrogensulfat.Suitable other inorganic acids which are used in the polycondensation of aspartic acid are, for example, sulfuric acid, disulfuric acid, sulfur trioxide, sodium and potassium hydrogen sulfate.
Bei der thermischen Polykondensation der Asparaginsäure fallt das Polykondensat in Form der wasserunlöslichen Polyasparaginsaurei- mide an. Die Polyaspartimide sind in Phosphorsaure und Dimethyl- formamid löslich. Sie haben m 1 %iger Losung in Dimethylformamid K-Werte von 8 bis 70, vorzugsweise 10 bis 45. Die Polyaspartimide bzw. die Cokondensate der Asparaginsäure mit den anderen Amino¬ säuren können von den nicht umgesetzten AusgangsStoffen bei-
spielsweise dadurch gereinigt werden, daß man das Kondensations- produkt zerkleinert und mit der 1- bis 10-fachen Menge an Wasser bei Temperaturen von 0 bis 100°C extrahiert. Dabei lösen sich die nicht umgesetzten Säuren heraus. Polyasparaginsäureimid bzw. die Cokondensate verbleiben als unlöslicher Rückstand. Nicht umge¬ setzte Asparaginsäure läßt sich durch Extraktion mit 1-N-Salzsäu- re leicht herauslösen.During the thermal polycondensation of aspartic acid, the polycondensate is obtained in the form of the water-insoluble polyaspartic acid amides. The polyaspartimides are soluble in phosphoric acid and dimethylformamide. They have a 1% solution in dimethylformamide K values from 8 to 70, preferably 10 to 45. The polyaspartimides or the co-condensates of aspartic acid with the other amino acids can be added from the unreacted starting materials. can be cleaned, for example, by comminuting the condensation product and extracting it with 1 to 10 times the amount of water at temperatures from 0 to 100.degree. The unconverted acids are released. Polyaspartic acid imide or the cocondensates remain as an insoluble residue. Unreacted aspartic acid can easily be removed by extraction with 1N hydrochloric acid.
Die nicht modifizierten Polyasparaginsäuren werden aus den Poly- asparaginsäureimiden vorzugsweise dadurch erhalten, daß man die Polyaspartimide in Wasser aufschlämmt und bei Temperaturen im Be¬ reich von 40 bis 90°C unter Zugabe von Base hydrolysiert und neu¬ tralisiert. Diese Reaktionen können selbstverständlich auch bei Temperaturen durchgeführt werden, die unterhalb und oberhalb des oben angegebenen Bereichs liegen. Geeignete Basen sind beispiels¬ weise Natronlauge, Kalilauge, Soda, Kaliumcarbonat, Ammoniak und Amine, wie Trimethylamin, Diethylamin, Ethanolamin, Diethanola- min, Triethanolamin und Morpholin. Die Neutralisation kann auch mit Hilfe von Erdalkalimetallbasen erfolgen, z.B. Calciumhydroxid oder Bariumhydroxid. Die Behandlung der Polyaspartimide erfolgt vorzugsweise bei pH-Werten von 8 bis 10. Hydrolyse und Neutrali¬ sation können durch Einwirkung von Ultraschall auf die Reaktions¬ partner beschleunigt werden. Bei der Behandlung mit Basen erhält man teilweise oder vollständig neutralisierte Polyasparaginsäuren bzw. Kondensate, die mindestens 60 mol% Asparaginsäure und bis zu 40 mol% anderer Aminosäuren einkondensiert enthalten, in Form der Alkali- bzw. Ammoniumsalze. Die Polymeren haben K-Werte (bestimmt nach H. Fikentscher in 1 %iger wäßriger Lösung bei pH 7 und 25°C am Natriumsalz) von 5 bis 150 und vorzugsweise 10 bis 100.The unmodified polyaspartic acids are preferably obtained from the polyaspartimides by slurrying the polyaspartimides in water and hydrolyzing and neutralizing them at temperatures in the range from 40 to 90 ° C. with the addition of base. These reactions can of course also be carried out at temperatures which are below and above the range given above. Suitable bases are, for example, sodium hydroxide solution, potassium hydroxide solution, sodium carbonate, potassium carbonate, ammonia and amines, such as trimethylamine, diethylamine, ethanolamine, diethanolamine, triethanolamine and morpholine. The neutralization can also be carried out using alkaline earth metal bases, e.g. Calcium hydroxide or barium hydroxide. The treatment of the polyaspartimides is preferably carried out at pH values from 8 to 10. Hydrolysis and neutralization can be accelerated by the action of ultrasound on the reaction partners. In the treatment with bases, partially or completely neutralized polyaspartic acids or condensates, which contain at least 60 mol% aspartic acid and up to 40 mol% of other amino acids condensed, are obtained in the form of the alkali metal or ammonium salts. The polymers have K values (determined according to H. Fikentscher in a 1% strength aqueous solution at pH 7 and 25 ° C. on the sodium salt) of 5 to 150 and preferably 10 to 100.
Die Polyasparaginsäuren sowie die Kondensate der Asparaginsäure mit anderen Aminosäuren sind biologisch abbaubar nach OECD Guide¬ lines for testing of Chemicals (1981) , 302 B (modifizierter Zahn- Wellens-Test) . Sie sind auch abbaubar gemäß der Abnahme des ge- lösten Sauerstoffs im geschlossenen Flaschentest.The polyaspartic acids and the condensates of aspartic acid with other amino acids are biodegradable according to OECD Guidelines for testing of Chemicals (1981), 302 B (modified Zahn-Wellens test). They are also degradable according to the decrease in dissolved oxygen in the closed bottle test.
Kettengleitmittel werden üblicherweise verwendet, um die Bänder von Maschinen gleitfähig zu machen, auf denen Flaschen transpor¬ tiert werden, die befüllt oder gereinigt werden. Die Zusammen- setzung von Kettengleitmitteln kann nur beispielhaft angegeben werden, weil sie speziell auf die Verhältnisse des Betriebes, in dem sie verwendet werden, angepaßt ist. Die Kettengleitmittel be¬ stehen beispielsweise aus Mischungen, die Wasser, Seife, Tenside, Fettsäuren, Alkanolamine und Komplexbildner enthalten. Als Fett- säuren eignen sich beispielsweise Cι2- bis C22-Carbonsäuren, die entweder aliphatisch gesättigt sind oder eine bzw. mehrere
ethylenisch ungesättigte Doppelbindungen im Molekül enthalten. Bevorzugt wird Olsaure eingesetzt.Chain lubricants are usually used to lubricate the belts of machines on which bottles are transported, which are filled or cleaned. The composition of chain lubricants can only be given as an example because it is specially adapted to the conditions of the company in which they are used. The chain lubricants consist, for example, of mixtures which contain water, soap, surfactants, fatty acids, alkanolamines and complexing agents. Suitable fatty acids are, for example, -C 2 to C 22 carboxylic acids which are either aliphatic saturated or one or more contain ethylenically unsaturated double bonds in the molecule. Oleic acid is preferably used.
Als Tenside können alle üblichen anionischen oder nichtionischen Tenside sowie Mischungen dieser Tenside eingesetzt werden. Geei¬ gnete Tenside sind beispielsweise Alkylsulfate, Alkylsulfonate, Fettalkoholalkoxylate, Oxoalkoholalkoxylate, Alkylpolyglukoside und Fettaminalkoxylate und Fettsaure/Eiweißkondensate. Produkte dieser Art sind im Handel erhaltlich.All conventional anionic or nonionic surfactants and mixtures of these surfactants can be used as surfactants. Suitable surfactants are, for example, alkyl sulfates, alkyl sulfonates, fatty alcohol alkoxylates, oxo alcohol alkoxylates, alkyl polyglucosides and fatty amine alkoxylates and fatty acid / protein condensates. Products of this type are commercially available.
Eine weitere essentielle Komponente in Kettengleitmitteln sind Amin-, Kalium- oder Natriumseifen, z.B. Kaliumpalmitat, Natrium- palmitat, Kaliumstearat, Natriumstearat.Another essential component in chain lubricants are amine, potassium or sodium soaps, e.g. Potassium palmitate, sodium palmitate, potassium stearate, sodium stearate.
Die Kettengleitmittel enthalten außerdem üblicherweise Alkanol- amine, wie Monoethanolamin, Diethanolamin, Triethanolamin, Morpholin oder Morpholm-N-oxid oder auch Mischungen, insbeson¬ dere Mischungen aus Monoethanolamin und Triethanolamin.The chain lubricants also usually contain alkanolamines, such as monoethanolamine, diethanolamine, triethanolamine, morpholine or morpholm-N-oxide, or else mixtures, in particular mixtures of monoethanolamine and triethanolamine.
Ein anderer wesentlicher Bestandteil von Kettengleitmitteln sind Komplexbildner. Gemäß Erfindung werden Polyasparaginsäure und Kondensate der Asparaginsäure, die bis zu 40 mol-% anderer Amino¬ säuren einkondensiert enthalten, sowie die Alkali- und Ammonium¬ salze dieser Polymeren als Komplexbildner verwendet. Insbesondere in Gegenwart von Phosphorsäure herstellbare Kondensate der Aspa¬ raginsäure sind biologisch abbaubar. Vorzugsweise verwendet man Polyasparaginsäure als Komplexbildner, die durch Wasserabspaltung aus kristalliner L-Asparaginsaure bei Temperaturen von 180 bis 260°C erhaltlich ist oder man setzt solche Kondensate der Asparaginsäure ein, die durch Wasserabspaltung aus L-Asparagin¬ saure in phosphorsaurem Medium bei Temperaturen von 120 bis 250°C erhaltlich sind.Another essential component of chain lubricants are complexing agents. According to the invention, polyaspartic acid and condensates of aspartic acid, which contain up to 40 mol% of other amino acids in condensed form, and the alkali and ammonium salts of these polymers are used as complexing agents. Condensates of aspartic acid which can be prepared in particular in the presence of phosphoric acid are biodegradable. Polyaspartic acid is preferably used as the complexing agent, which is obtainable by splitting off water from crystalline L-aspartic acid at temperatures of 180 to 260 ° C., or such condensates of aspartic acid are used which are split off from L-aspartic acid in a phosphoric acid medium at temperatures of 120 are available up to 250 ° C.
Die Kettengleitmittel enthalten in allen Fallen Wasser. Es han- delt sich hierbei um klare Losungen, die beim Verdünnen mit har¬ tem Wasser klare Losungen ergeben. Die erfindungsgemaß zusammen¬ gesetzten Kettengleitmittel können beispielsweise folgende Zusam¬ mensetzung haben:The chain lubricants contain water in all cases. These are clear solutions which result in clear solutions when diluted with hard water. The chain lubricants composed according to the invention can have, for example, the following composition:
5 - 30 Gew.-Teile Polyasparaginsäure oder Kondensate der5 - 30 parts by weight of polyaspartic acid or condensates
Asparaginsäure mit anderen Aminosäuren 5 - 10 Gew.-Teile eines Cχ3/Ci5-Oxoalkoholethoxilates mit einemAspartic acid with other amino acids 5 - 10 parts by weight of a Cχ 3 / Ci 5 -oxoalcohol ethoxylate with one
Ethoxylierungsgrad von ca. 10 5 - 10 Gew.-Teile eines C-. /Ci5-Oxoalkoholethoxilates mit einem Ethoxylierungsgrad von ca. 8 bis zu 5 Gew.-Teilen einer handelsüblichen Alkylcarbonsaure-Degree of ethoxylation of about 10 5 - 10 parts by weight of a C-. / Ci 5 -oxo alcohol ethoxylates with a degree of ethoxylation of about 8 to 5 parts by weight of a commercially available alkyl carboxylic acid
Mischung als Losungsvermittler
bis zu 15 Gew.-Teilen Triethanolamin bis zu 5 Gew.-Teilen Monoethanolamin 15 - 20 Gew.-Teile Ölsäure 15 - 30 Gew.-Teile Wasser.Mixture as solution broker up to 15 parts by weight of triethanolamine up to 5 parts by weight of monoethanolamine 15 to 20 parts by weight of oleic acid 15 to 30 parts by weight of water.
Der pH-Wert der Kettengleitmittel beträgt aufgrund des Gehalts an Alkanolaminen mindestens 8. Das oben beschriebene Kettengleit-' mittel wird für die Anwendung durch Zugabe von Wasser im Gewichtsverhältnis von beispielsweise 1:500 weiter verdünnt wer- den, um in der für die Anwendung erforderlichen Konzentration vorzuliegen.The pH of the chain lubricants is due to the content of at least 8. The alkanolamines Kettengleit- 'described above medium is used for the application by adding water in a weight ratio of for example 1: 500 diluted further advertising the order required in the for the application Concentration.
Die oben beschriebenen Kettengleitmittel können gegebenenfalls noch weitere Zusätze enthalten, z.B. Korrosionsinhibitoren.The chain lubricants described above may optionally contain further additives, e.g. Corrosion inhibitors.
Der Anteil an Polyasparaginsäure bzw. Kondensaten der Asparagin¬ säure im Kettengleitmittel verhindert die Ausfällung von schwer löslichen Kalziumsalzen der Ölsäure bzw. der in den Kettengleit¬ mitteln enthaltenen Seifen.The proportion of polyaspartic acid or condensates of aspartic acid in the chain lubricant prevents the precipitation of poorly soluble calcium salts of oleic acid or the soaps contained in the chain lubricants.
Die K-Werte der neutralisierten Polykondensate wurden nach H. Fi- kentscher, Cellulosechemie, Band 13, 58 bis 64 und 71 bis 74 (1932) in wäßriger Lösung bei einer Temperatur von 25°C und einer Konzentration von 1 Gew.-% bei pH 7 am Natriumsalz der Polyaspa- raginsäuren bestimmt. Die K-Werte der Polyaspartimide wurden in 1 %iger Lösung in Dimethylformamid (DMF) bei 25°C bestimmt. Die %-Angaben in den Beispielen bedeuten Gew.-%.The K values of the neutralized polycondensates were determined according to H. Fikentscher, Cellulosechemie, Vol. 13, 58 to 64 and 71 to 74 (1932) in aqueous solution at a temperature of 25 ° C and a concentration of 1% by weight pH 7 determined on the sodium salt of polyaspartic acids. The K values of the polyaspartimides were determined in 1% strength solution in dimethylformamide (DMF) at 25 ° C. The percentages in the examples mean% by weight.
Beispielexample
Polyasparaginsäure 1Polyaspartic acid 1
Durch Kondensieren von L-Asparaginsäure in Gegenwart von Phosphorsäure im Molverhältnis 1:1 wird innerhalb von 1,5 Stunden bei einer Temperatur von 150°C Polyasparaginsäureimid erhalten, das - nach dem Entfernen von Phosphorsäure durch Auswaschen mit Wasser - durch Behandlung mit Natronlauge zu einer 40 %igen wäßrigen Lösung aufbereitet wird. Die Polyasparaginsäure hatte einen K-Wert von 38,7 (bestimmt bei 25°C und einer Konzentration von 1 Gew.-% bei pH 7 am Natriumsalz der Polyasparaginsäure) .By condensing L-aspartic acid in the presence of phosphoric acid in a molar ratio of 1: 1, polyaspartimide is obtained within 1.5 hours at a temperature of 150 ° C, which - after removal of phosphoric acid by washing with water - becomes a treatment with sodium hydroxide solution 40% aqueous solution is processed. The polyaspartic acid had a K value of 38.7 (determined at 25 ° C. and a concentration of 1% by weight at pH 7 on the sodium salt of polyaspartic acid).
Ein Kettengleitmittel für Transportbänder für Flaschen wird bei¬ spielsweise durch Mischen folgender Komponenten hergestellt:A chain lubricant for conveyor belts for bottles is produced, for example, by mixing the following components:
30 Gew.-Teilen einer 40 %igen wäßrigen Lösung von Poly¬ asparaginsäure 1 20 Gew.-Teilen Triethanolamin
20 Gew. -Teilen Ölsäure 5 Gew. -Teilen eines Cι3 /Ci5-Oxoalkoholethoxylats mit einem30 parts by weight of a 40% aqueous solution of polyaspartic acid 1 20 parts by weight of triethanolamine 20 parts by weight of oleic acid 5 parts by weight of a C 3 / Ci 5 oxo alcohol ethoxylate with a
Ethoxylierungsgrad von ca. 2 - 10Degree of ethoxylation of approx. 2 - 10
3 Gew. -Teilen einer handelsüblichen Alkylcarbonsäuremi- schung und3 parts by weight of a commercially available alkyl carboxylic acid mixture and
22 Gew. -Teilen Wasser22 parts by weight of water
Proben der oben beschriebenen Mischung werden anschließend mit Trinkwasser von 30° d Härte im Verhältnis 1:100, 1:200 und 1:300 verdünnt. Die 3 Verdünnungen werden anschließend durch nephelome- trische Trübungsmessung untersucht. Die dabei erhaltenen Werte sind in der Tabelle angegeben.Samples of the mixture described above are then diluted with drinking water of 30 ° d hardness in a ratio of 1: 100, 1: 200 and 1: 300. The 3 dilutions are then examined by nephelometric turbidity measurement. The values obtained are given in the table.
Vergleichsbeispiele 1 und 2Comparative Examples 1 and 2
In der im Beispiel angegebenen Formulierung wird Polyasparagin¬ säure 1 durch die gleiche Menge an EDTA bzw. NTA ersetzt. Man stellt dann jeweils 3 Verdünnungen dieses Kettengleitmittels her und untersucht sie nephelometrisch. Die dabei erhaltenen Werte sind in der folgenden Tabelle angegeben.In the formulation given in the example, polyaspartic acid 1 is replaced by the same amount of EDTA or NTA. 3 dilutions of this chain lubricant are then prepared and examined nephelometrically. The values obtained are given in the following table.
Tabelletable
Ergebnisse der nephelometrischen Trübungsmessung in [NTU-Ein- heiten] bei VerdünnungResults of the nephelometric turbidity measurement in [NTU units] when diluted
Wie aus der Tabelle ersichtlich ist, hat Polyasparaginsäure eine bessere Wirkung als EDTA und gegenüber diesem Komplexbildner den Vorteil, daß sie biologisch abbaubar und toxikologisch unbedenk¬ lich ist.
As can be seen from the table, polyaspartic acid has a better effect than EDTA and has the advantage over this complexing agent that it is biodegradable and toxicologically harmless.
Claims
1. Verwendung von Polyasparaginsäure und Kondensaten der Asparaginsäure, die bis zu 40 mol-% andere Aminosäuren ein¬ kondensiert enthalten, sowie den Alkali- und Ammoniumsalzen der Polyasparaginsäure und der genannten Kondensate in in : Kettengleitmitteln für Transportbänder von Flaschenbe¬ füllungs- und Reinigungsanlagen.1. Use of polyaspartic acid and condensates of aspartic acid, which contain up to 40 mol% of other amino acids condensed, as well as the alkali and ammonium salts of polyaspartic acid and the condensates mentioned in in : chain lubricants for conveyor belts in bottle filling and cleaning systems.
2. Verwendung nach Anspruch 1, dadurch gekennzeichnet, daß man Kondensate einsetzt, die durch Wasserabspaltung aus kristal¬ liner L-Asparaginsäure bei Temperaturen von 180 bis 260°C er¬ hältlich sind.2. Use according to claim 1, characterized in that condensates are used which are obtained by elimination of water from crystalline L-aspartic acid at temperatures of 180 to 260 ° C.
3. Verwendung nach Anspruch 1, dadurch gekennzeichnet, daß man Kondensate einsetzt, die durch Wasserabspaltung aus L-Aspara¬ ginsäure in phosphorsaurem Medium bei 120 bis 250°C erhält¬ lich sind.3. Use according to claim 1, characterized in that condensates are used which are obtained by elimination of water from L-Aspara¬ ginsäure in phosphoric acid medium at 120 to 250 ° C.
4. Kettengleitmittel auf der Basis von Mischungen aus Wasser, Seife, Tensiden, Fettsäuren und Alkanolaminen für Transport¬ bänder von Flaschenbefüllungs- und Reinigungsanlagen, dadurch gekennzeichnet, daß die Mischungen 1 bis 30 Gew.-% Polyaspa- raginsäure, Kondensate der Asparaginsäure, die bis zu4. Chain lubricant based on mixtures of water, soap, surfactants, fatty acids and alkanolamines for conveyor belts in bottle filling and cleaning systems, characterized in that the mixtures contain 1 to 30% by weight of polyaspartic acid, condensates of aspartic acid which up to
40 mol-% andere Aminosäuren einkondensiert enthalten, und/ oder Alkali- und Ammoniumsalze der Polyasparaginsäure und der genannten Kondensate enthalten. Contain 40 mol% of other amino acids condensed, and / or alkali and ammonium salts of polyaspartic acid and the condensates mentioned.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEP4311237.4 | 1993-04-06 | ||
DE4311237A DE4311237A1 (en) | 1993-04-06 | 1993-04-06 | Use of polyaspartic acid in chain lubricants for conveyor belts for bottle filling and cleaning systems |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1994022991A1 true WO1994022991A1 (en) | 1994-10-13 |
Family
ID=6484842
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP1994/000953 WO1994022991A1 (en) | 1993-04-06 | 1994-03-25 | Use of polyasparaginic acid in chain lubricants for conveyor belts of bottle filling and washing installations |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE4311237A1 (en) |
WO (1) | WO1994022991A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5401428A (en) * | 1993-10-08 | 1995-03-28 | Monsanto Company | Water soluble metal working fluids |
AU6762596A (en) * | 1995-07-20 | 1997-02-18 | Solutia Inc. | Improved water soluble metal working fluids |
DE19530203A1 (en) * | 1995-08-17 | 1997-02-20 | Bayer Ag | Use of polymers with recurring succinyl units as anti-freeze |
DE10049175A1 (en) | 2000-09-22 | 2002-04-25 | Tea Gmbh | Biodegradable functional fluid for mechanical drives |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3052655A (en) * | 1958-08-01 | 1962-09-04 | Sidney W Fox | Thermal polymerization of amino acid mixtures containing aspartic acid or a thermal precursor of aspartic acid |
US3583914A (en) * | 1968-07-18 | 1971-06-08 | Basf Wyandotte Corp | Microbe control in food processing and related industries |
WO1981000014A1 (en) * | 1979-06-22 | 1981-01-08 | Diversey Corp | Improved aqueous soap-based lubricant composition |
EP0372628A2 (en) * | 1988-12-05 | 1990-06-13 | Unilever N.V. | Use of aqueous lubricant solutions based on fatty alkyl amines |
EP0412697A2 (en) * | 1989-08-10 | 1991-02-13 | The Procter & Gamble Company | N, N'-(1-oxo-1,2-ethanediyl)-bis (aspartic acid), salts and use in detergent compositions |
EP0454126A1 (en) * | 1990-04-26 | 1991-10-30 | Rohm And Haas Company | Polyaminoacids as builders for detergent formulations |
EP0511037A1 (en) * | 1991-04-15 | 1992-10-28 | Rhone-Poulenc Chimie | Detergent composition containing a polyimide biopolymer hydrolysable in the washing medium |
-
1993
- 1993-04-06 DE DE4311237A patent/DE4311237A1/en not_active Withdrawn
-
1994
- 1994-03-25 WO PCT/EP1994/000953 patent/WO1994022991A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3052655A (en) * | 1958-08-01 | 1962-09-04 | Sidney W Fox | Thermal polymerization of amino acid mixtures containing aspartic acid or a thermal precursor of aspartic acid |
US3583914A (en) * | 1968-07-18 | 1971-06-08 | Basf Wyandotte Corp | Microbe control in food processing and related industries |
WO1981000014A1 (en) * | 1979-06-22 | 1981-01-08 | Diversey Corp | Improved aqueous soap-based lubricant composition |
EP0372628A2 (en) * | 1988-12-05 | 1990-06-13 | Unilever N.V. | Use of aqueous lubricant solutions based on fatty alkyl amines |
EP0412697A2 (en) * | 1989-08-10 | 1991-02-13 | The Procter & Gamble Company | N, N'-(1-oxo-1,2-ethanediyl)-bis (aspartic acid), salts and use in detergent compositions |
EP0454126A1 (en) * | 1990-04-26 | 1991-10-30 | Rohm And Haas Company | Polyaminoacids as builders for detergent formulations |
EP0511037A1 (en) * | 1991-04-15 | 1992-10-28 | Rhone-Poulenc Chimie | Detergent composition containing a polyimide biopolymer hydrolysable in the washing medium |
Also Published As
Publication number | Publication date |
---|---|
DE4311237A1 (en) | 1994-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1994001486A1 (en) | Modified polyaspartic acids, process for preparing the same and their use | |
EP0687282B1 (en) | Process for preparing products from the reaction of polyasparaginic acid imides with aminoacids, and use of these products | |
DE69333816T2 (en) | Polyaspartic acid salts obtained by high temperature reaction | |
DE69320643T2 (en) | PRODUCTION OF POLYSUCCINIMIDES AND POLYASPARGINIC ACID | |
DE69520471T2 (en) | Process for corrosion inhibition in aqueous systems | |
EP0650995B1 (en) | Process for preparing aspartic acid polymers | |
US6054553A (en) | Process for the preparation of polymers having recurring agents | |
EP0740696A1 (en) | Use of polyasparaginic acid in washing and cleaning agents | |
DE4300020A1 (en) | Process for the preparation of polymers of aspartic acid and their use | |
EP0692015B1 (en) | Use of polyasparaginic acid in cleaning product formulations | |
WO1997007178A1 (en) | Use as antifreeze of polymers with recurring succinyl units | |
WO1994022991A1 (en) | Use of polyasparaginic acid in chain lubricants for conveyor belts of bottle filling and washing installations | |
DE4225620A1 (en) | Reaction products from polybasic carboxylic acids and compounds containing amino groups, processes for their preparation and their use in detergents and cleaning agents | |
DE60027833T2 (en) | Process for the preparation of polyaspartic acid | |
EP0642593B1 (en) | Use of condensation products of aspartic acid as deposit-prevention agents in the concentration of sugar juices | |
EP0823923A1 (en) | Process for preparing polymers with recurring succinyl units | |
EP0786487B1 (en) | Preparation process of polymers containing succinyl repeating units | |
DE4427630A1 (en) | Process for the preparation of polymers containing hydroxamic acid, hydroxamic acid ether and / or hydrazide groups in the side chain and their use | |
DE19603052A1 (en) | Process for the preparation of polymers with repeating succinyl units | |
EP0992525B1 (en) | Process of preparation of biodegradable polymers having recurring succinyl units | |
EP0773970A1 (en) | Process for preparing aspartic acid polycondensates with improved biological degradability and their use | |
EP0927216A1 (en) | Process for preparing polymers with recurring succinyl units | |
DE19517715A1 (en) | Process for the preparation of polycocondensates of aspartic acid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: CA |