WO1994021568A1 - Sewage treatment plant - Google Patents

Sewage treatment plant Download PDF

Info

Publication number
WO1994021568A1
WO1994021568A1 PCT/EP1994/000765 EP9400765W WO9421568A1 WO 1994021568 A1 WO1994021568 A1 WO 1994021568A1 EP 9400765 W EP9400765 W EP 9400765W WO 9421568 A1 WO9421568 A1 WO 9421568A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage
filter
biological
purification
plant
Prior art date
Application number
PCT/EP1994/000765
Other languages
German (de)
French (fr)
Inventor
Andreas Strohmeier
Ingulf Schroeter
Jean-Marie Rovel
Original Assignee
Philipp Müller Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philipp Müller Gmbh filed Critical Philipp Müller Gmbh
Priority to EP19940910411 priority Critical patent/EP0689523B1/en
Priority to US08/513,869 priority patent/US5798044A/en
Priority to DE9421651U priority patent/DE9421651U1/en
Publication of WO1994021568A1 publication Critical patent/WO1994021568A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1205Particular type of activated sludge processes
    • C02F3/1215Combinations of activated sludge treatment with precipitation, flocculation, coagulation and separation of phosphates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/06Aerobic processes using submerged filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2806Anaerobic processes using solid supports for microorganisms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S210/00Liquid purification or separation
    • Y10S210/902Materials removed
    • Y10S210/903Nitrogenous
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S210/00Liquid purification or separation
    • Y10S210/902Materials removed
    • Y10S210/906Phosphorus containing

Definitions

  • the invention relates to a plant for the purification of waste water, in particular municipal waste water, with a mechanical purification stage, a first biological and a second biological purification stage, in which the second biological purification stage is a biological filter system which has both a chemical-physical and a biological one Cleaning causes, and in which said filter system has a filter stage for nitrification and a downstream filter stage for denitrification and the filter stages has at least one biological filter.
  • the first filter stage up to 80% is set up as a nitrification stage.
  • the remaining 20% of the first filter stage and the second filter stage are set up as denitrification stages.
  • the carbon load in particular the COD load, is broken down, since under the selection pressure of the SCB load, microorganisms that are able to break down CBB also settle. This can relieve the upstream low-load revitalization stage.
  • a disadvantage of this known system is that the low-load activation stage upstream of the filter stages must be dimensioned relatively large, provided that the specified values in the process are to be reached even at peak loads - loads above the daily average values. This can only be achieved if the low-load activation level is designed for a shock factor of greater than 1.
  • the impact factor is the ratio of the maximum two-hour exposure to the average 24-hour nitrogen exposure.
  • a further disadvantage of the known arrangement is that a nitrification must be converted to denitrification within the first filter stage.
  • the various biocenoses can mix within the filter.
  • Such a filter is difficult to handle from a process engineering point of view, since no oxygen may be present in the denitrification stage.
  • the object of the present invention is to improve the system of the type mentioned in such a way that the space requirement is reduced.
  • the other disadvantages described above should be avoided.
  • the daily load of nitrogen in the raw sewage is registered and averaged over 24 hours.
  • the sales performance of the biological cleaning stages are empirical values.
  • the concentration of the nitrogen load is calculated on a 24-hour average from the daily freight and hydraulic throughput. However, within a day, some considerable freight fluctuations around this average value.
  • nitrogen impact factor f which is defined as the ratio of maximum two-hour nitrogen exposure to average nitrogen exposure.
  • this shock factor varies from 1.5 to 2.5, depending on the connection size.
  • the design is carried out according to A 131 via the required sludge age, which in turn is a function of the design temperature and the size of the activation tank.
  • the exposure limit of the second biological cleaning stage is also determined empirically. This allows you to calculate the dimensioning of the second biological cleaning stage if you have decided on the dimensioning of the first biological cleaning stage.
  • the system according to the invention is also dimensioned such that only the carbon load is reduced in the first biological cleaning stage and the entire nitrogen load is reduced in the second biological cleaning stage. Between these two basic values, the system according to the invention can be optimally dimensioned depending on the local conditions.
  • This optimization of the two cleaning stages results in an extremely compact design, so that the space saving is up to 50% compared to a single-stage system according to A 131.
  • the system according to the invention also has great process stability. This stable process control is possible because the filter stages are completely decoupled and each filter stage only fulfills a very specific task. This also means that a mixture of biocenoses is excluded.
  • the cleaning performance of the system according to the invention meets the strict requirements of the legislation.
  • the runoff concentration at N "" can be adjusted to the desired level in the subsequent denitrification stage due to the extensive nitrification by the metered amount of the external carbon source. In this way, less than 5 mg / l can be reached in the process for N « -, or .
  • COD Elimination, suspension elimination and germ reduction improved. These good drainage values are achieved due to the precise dimensioning of the two cleaning stages and also with fluctuating raw water data, ie peak loads that occur during the day are reliably reduced. Overall, this means a better adaptation to the local situation and to the daily routine of the load with minimized space requirements of the system.
  • Another advantage of the system according to the invention is the more rational use of the operating resources.
  • the filters are operated in an upward flow, ie the waste water to be treated flows through the filter stages from bottom to top and in cocurrent with the process air or the carbon source. This leads, for example, to an improved 0 a utilization (up to 40-50%).
  • the system according to the invention thus has a lower energy requirement, which leads to lower operating costs. Due to the reliably good drainage values, the financial burden of wastewater tax is also reduced.
  • the precipitation and flocculation of phosphate is advantageously provided before one of the filter stages, optionally also before both filter stages.
  • Precipitation and flocculation can take place in a coagulation chamber arranged in front of the biological filter or in the form of a pipe coagulation, ie in the feed line.
  • the precipitant added can be either an Fe or Al compound, preferably a basic Al compound.
  • an acid metering can be provided before the precipitant is added, depending on the nature of the waste water.
  • the flocculated phosphate is retained by the filters. So you can bring about a phosphate elimination in the filter system.
  • the use of a basic precipitant is recommended to increase the Acid capacity to improve nitrification conditions. These measures can correct both too low and too high pH values in the feed.
  • the filter stages preferably have a plurality of biological filters connected in parallel.
  • This modular design makes it possible to adapt the operation of the plant to the wastewater inflow. For example, one or more filters can be switched off in the case of dry water inflow (1/2 to 1/3 of the rainwater inflow). This leads to a further reduction in operating costs.
  • Another advantageous embodiment is an additional denitrification system within the first biological purification stage and the additional recirculation of part of the NO 3 produced in the first filter stage. This is recommended because the carbon source for the denitrifiers is still contained in the waste water in the first biological purification stage, whereas it has to be added in the second biological purification stage.
  • the rinsing wastewater can either be sent to the entire system for preliminary clarification, or it can be treated separately, e.g. by flotation to relieve the line of treatment stages. It is then passed in front of a filter stage. The system is therefore not subjected to as much hydraulic load as when it is returned to the primary clarifier.
  • the treated rinsing waste water serves to replenish the feed to the second filter stage, so that it is evenly loaded. This type of operation is known as a reservoir operation.
  • the reduction of the phosphate and COD load can be improved further in an upstream mechanical cleaning stage in which these ingredients are removed by precipitation / flocculation and sedimentation.
  • the first biological purification stage can be a low-load revitalization stage according to A 131 measured according to the design rules according to the invention.
  • the first biological cleaning stage It is particularly advantageous to also equip the first biological cleaning stage with biological filters.
  • additional biological filter stages fulfill the task of conventional aeration tanks.
  • the space requirement can be reduced by up to 75% compared to a conventional system according to A 131.
  • the closed design of the reactors also significantly reduces emissions (odor, noise).
  • a denitrification system with N0 3 recirculation in the form of a filter stage is provided in the first biological purification stage, this can advantageously be designed such that it has a lower anaerobic zone with raw water inflow for the biological phosphate degradation and an upper anoxic zone with N0 3 inflow for which has denitrification.
  • this filter stage provides that both zones can optionally be ventilated and the entire filter stage can thus be converted to aerobic carbon degradation. This is advantageous, for example, if the recirculation has to be switched off in order to increase the permissible flow of rainwater Do not exceed the flow rate in the filter stage.
  • the biological filter of such a filter stage has a nozzle base on which granular filter material is heaped.
  • the raw water inflow is arranged under the nozzle base and an optionally switchable process air distributor with process air nozzles for the oxygen input is arranged above the nozzle base.
  • the N0 3 inlet opens into a recirculation distributor, which is optionally arranged on the nozzle bottom or further up in the filter material.
  • the biological filter according to the invention can be operated so that the zone below the
  • Recirculation distributor anaerobic and the zone above it is anoxic, so that in each case phosphate or nitrate are biodegraded.
  • the biological filter can also be aerated starting from the nozzle bottom and thus operated aerobically, so that the carbon pollution of the wastewater and phosphate are biodegraded.
  • Fig. 1 shows schematically a first embodiment of a plant for the purification of waste water
  • FIG. 2 schematically shows a second exemplary embodiment of a plant according to the invention for cleaning waste water; 3 shows a more detailed illustration of a biological filter;
  • FIG 4 shows an alternately operable biological filter according to the invention.
  • the system 10 shown in FIG. 1 is composed of a mechanical cleaning stage 11, a first biological cleaning stage 12 and a second biological cleaning stage 13.
  • the mechanical cleaning stage 11 consists of a rake with sand and fat trap 14 and a primary clarifier 15.
  • the primary clarifier can, however, also be carried out in another way, for example by an inclined honeycomb clarifier.
  • the aeration tank 16 and the denitrification tank 17 are not mandatory. From the secondary clarifier 19, the withdrawn return sludge is fed back into the activation tank 16 via a line 22. Part of the nitrate-containing effluent from the activation tank 18 is recirculated to the denitrification tank 17 via a line 23.
  • the secondary clarification basin 19 is followed by the second biological purification stage 13, which consists of a first filter stage 20 for aerobic nitrification and a second filter stage 21 for anoxic denitrification.
  • the first filter stage 20 is supplied with process air via the line 31.
  • the second filter stage 21 is charged with methanol via line 35. Part of the nitrate-containing effluent from the first filter stage 20 becomes recirculated via line 23 to the denitrification tank 17.
  • Lines (not shown in FIG. 1) for filter rinsing water and filter rinsing air also open into both filter stages 20, 21.
  • the rinsing wastewater obtained during backwashing is discharged via a line 24 and cleaned separately in 25 by flotation.
  • the cleaned rinsing waste water is fed via a line 26 to the inlet of the second filter stage 21.
  • Each filter stage 20, 21 consists of six biological filters 70 connected in parallel. Such a biological filter 70 is shown in more detail in FIG. 3.
  • a granular expanded clay with a grain spectrum of 3-6 mm up to a dumping height of 4 m is filled in a housing 71 on a nozzle bottom 76 as filter material 73.
  • filter material 73 is abrasion-resistant and has a sufficient specific weight (1.5 g / cm 3 ) and a large specific surface.
  • the filter material 73 lies on a two-stage graded support gravel layer 72.
  • a process air distributor 74 with process air nozzles 75 (trademark "Oxazur") is embedded in the supporting gravel layer 72, directly on the nozzle base 76. 25-50 nozzles / m 2 are provided. Flushing nozzles 82 are screwed into the nozzle bottom 76 itself, namely 50-60 nozzles / m.
  • the biological filter 70 is operated in the upflow. The raw waste water from the raw waste water inlet 80 and the process gas or the carbon source from the lines 31 and 57 are in cocurrent.
  • the growth of the filter material 73 is regulated by the general conditions, i.e. the type of operation (oxygen content, pH, organic carbon source, etc.) exerts a selection pressure that favors the growth of the desired biocenosis.
  • the microorganisms are partially rinsed out of the secondary clarifier 19, enter the biological filters 70 in the inlet and remain attached to the filter material 73. Since there are always microorganisms in the inflow, the biocenosis is flexible and can adapt to changing conditions.
  • Oxygen must be available for the nitrifying bacteria.
  • the air intake at a speed of 4-15 m / h is set according to the theoretical oxygen demand, which can be calculated stoichiometrically.
  • the oxygen utilization is unusually high and is up to 40-50%.
  • the oxygen supply may only be interrupted briefly when the filter is in operation, otherwise the nitrifiers can be damaged.
  • the carbon load is in the inlet of the second biological purification stage 13 about 20-60 mg BOD. 5/1
  • the oxygen transfer is between 55 and 80 g 0 2 / Nm 3 , which corresponds to a utilization of 20-50%.
  • the setting of the framework conditions is subject to a certain self-regulation. It is usually the range of fluctuation that is optimal for the microorganisms. This area sets itself up. In the event of extreme fluctuations, for example the pH value, intervention takes place from the outside, but normally in the first biological cleaning stage 12. If necessary, it is of course also possible to intervene before the first filter stage 20, for example if the acid capacity (carbonate hardness) in the feed is not sufficient to ensure complete nitrification for a given NH 4 -N load; then a pH correction with lime, carbonate or NaOH is recommended. Another possibility is to use an alkaline precipitant, for example Na aluminate, to precipitate phosphate. In municipal wastewater, however, the acid capacity is usually sufficient.
  • the temperature is not regulated at all, but one accepts that the microorganisms are less active in winter.
  • the immobilized microorganisms are somewhat less sensitive to temperature than the microorganisms suspended in the aeration tank. Operating temperatures of ⁇ 10 ° C are also acceptable.
  • the effect of the biological filter 70 is therefore based on the one hand on a classic filtration effect (solid retention), on the other hand on the nitrification or denitrification by the biomass immobilized on the filter material 73. At the same time, the residual carbon that is still running towards the filter is broken down during nitrification.
  • the nitrification capacity is typically about 0.5 to 1.5 kg NH 4 -N 01 - / m 3 d, but can also be higher. That depends on the local conditions, especially on the quality of the wastewater.
  • the NH 4 -N content in the drain is approximately below 2 mg / l regardless of the time of day fluctuations.
  • the biological filters 70 of the filter stages 20, 21 are regularly flushed back according to the specified time or in the event of pressure loss or turbidity. Flushing is fully automatic with programmable control. A time interval is set, usually 24 to 72 hours. If the pressure loss of the filter does not exceed a limit value during this time, flushing takes place only after the time interval has elapsed. However, if the pressure loss or the turbidity in the biological filter 70 exceeds a limit value, it is backwashed when the limit value is exceeded.
  • the rinse is a combined air / water rinse with subsequent rinsing.
  • the purge air is supplied via line 77.
  • the rinse water is fed from a pump 79 to the raw sewage inlet 80 via line 78.
  • the rinse water is usually taken from the outlet of the second filter stage.
  • the consumption is about 3-8% of the flowing clear water, ie 7- 10m 3 / m 2 . It consists of the steps of rapid lowering, loosening, air-water rinsing and rinsing.
  • the precipitant 29 is added for the residual phosphate precipitation in the feed to the activation tank 18 and to the first filter stage 20.
  • An acid addition 83 is provided in each case by the first filter stage 20 and the second filter stage 21.
  • the precipitant added can optionally be an Fe or Al compound.
  • the flocculated phosphate is drawn off or retained by the filter material 73.
  • P To achieve drain values of ⁇ 0.8 mg / 1, you need approx. 3-4.5 mg Fe 3+ / 1 with inflow values of 1.5 mg / 1.
  • the outflow from the first filter stage 20 is fed to the second filter stage 21.
  • the load is about 50 mg nitrate / l.
  • the second filter stage 21 is constructed like the first filter stage 20, with the exception that it is not aerated, but is instead supplied with a carbon source via line 35.
  • About 2.5 kg of methanol / kg of N0 3 -N is supplied as the carbon source.
  • Other carbon sources such as acetic acid or ethanol are also suitable, as are products from sludge treatment or cloudy water.
  • the denitrification capacity is up to 2-5 kg / m 3 d. In the process one observes 1-7 mg / 1 N0 3 -N.
  • the suspension content in the outlet of the second filter stage 21 is less than 10 mg / 1 and remains so low even at a flow rate of up to 10-12 m / h.
  • the number of bacteria is reduced in the first filter stage 20, for example from 5.10 6 / ml to 5.10 5 / ml and in the second filter stage 21 again to 1.10 5 / ml.
  • the following measuring devices for controlling the operating sequence can also be seen from FIG. 1.
  • an NH «-N measurement 30 takes place in the inlet of the first filter stage 20, an NH «-N measurement 30 takes place.
  • the process air supply 31 is thus controlled in connection with a flow measurement (not shown). It there is also a P measurement 28 with which the addition of precipitant 29 is controlled.
  • An N0 3 measurement 34 which controls the methanol feed 35, takes place in the inlet of the second filter stage 21.
  • the flow measurement also controls the switching on and off of individual biological filters 70; a pressure measurement, also not shown, under the nozzle bottoms 76 of the biological filters 70, together with a turbidity measurement 33, controls the flushing in the processes of both filter stages 20, 21.
  • the NH 4 -N and P measurement can of course also take place in the course of the first filter stage 20.
  • FIG. 2 shows a second exemplary embodiment of a system 10 'according to the invention.
  • This system also has a mechanical cleaning stage 40, a first biological cleaning stage 41 and a second biological cleaning stage 42.
  • the mechanical cleaning stage 40 consists of a rake with sand and fat trap 43 and a precipitation, flocculation and sedimentation unit 44, in which COD and phosphate are precipitated, flocculated and sedimented.
  • the latter is a honeycomb inclined clarifier, which is divided vertically into three zones: metering the precipitation chemical, flocculation and sedimentation on a honeycomb-shaped insert.
  • the incoming sludge is drawn off via line 51 and fed to a separate treatment 52.
  • the hydraulic load of this stage can be up to 20 m / h.
  • Such a sedimentation level 44 is useful if there is little space available because it is more compact than a classic pre-clarification.
  • a primary clarifier and / or an aeration tank for biological phosphate degradation can also be provided. It is important that a preliminary clarification takes place at all.
  • the aeration tanks of the conventional aeration stage are replaced by corresponding filter stages 45, 46.
  • the structure of these filter stages is in principle as described for the filter stages 20, 21 of the first exemplary embodiment.
  • the function of the first filter stage 45 corresponds to that of the denitrification basin 17. Carbon and nitrate are mined in parallel. Nitrate is recirculated from the outlet of the downstream nitrification filters via a line 49. The recirculation must be switched off if the raw water inflow becomes too large, e.g. in rainy weather, so as not to exceed the permissible flow speed of 2-11 m / h in filter stage 45. A flow measurement, not shown, is therefore provided in the inlet for control purposes.
  • the biological filters of filter stage 45 are constructed as described above. But they can also be constructed as shown in Fig. 4.
  • the biological filter 70 ′ shown in FIG. 4 differs from the biological filter already described 70 additionally has a recirculation distributor 49 'which is embedded in the filter material 73.
  • the raw water supply 80 and the purge air supply 77 are located below the nozzle base 76.
  • the process air supply 57 is located above the nozzle base 76.
  • the process air supply 57 is open and the nitrate supply 49 is open, the area between the nozzle base 76 and the recirculation distributor 49 'is anaerobic, and that The area above the recirculation distributor 49 'is anoxic, so that the denitrification takes place.
  • the process air supply 57 is open and the nitrate supply 49 is closed, the entire biological filter 70 'is aerobic and carbon and phosphate are biodegraded. The biological filter 70 'is therefore operated alternately.
  • the second filter stage 46 of the first biological purification stage 41 corresponds to the activation tank 18. The carbon still present is broken down. At the same time, nitrification begins. The second filter stage 46 is constantly ventilated.
  • the filter stage 46 is followed by the second biological cleaning stage 42, which corresponds in structure and function to the second biological cleaning stage 13 of the first exemplary embodiment.
  • the remaining NH 4 -N is nitrified to N0 3 -N.
  • the conversion of N0 3 -N to N 2 takes place in the second filter stage 48.
  • the biological filters 70, 70 ' are backwashed as described above.
  • the filter rinsing waste water is fed via line 50 to the top of the system 10 ', ie to the sedimentation stage 44.
  • the system 10 has essentially the same measuring devices as the system 10 of the first embodiment. Reference is made to this description. The same measuring devices have the same reference numerals.
  • the plant for the purification of waste water 10, 10 'takes up 40-75% less space when optimally dimensioned than a single-stage activation system according to A 131 with comparable purification goals.
  • the cleaning performance of the different filter stages is very good regardless of the time of day fluctuations and is 4-7 kg / m 3 for the solids loading, 6 kg / m 3 d for the BOD degradation, 12 kg / m 3 d for the COD degradation, for nitrification 1-1.5 kg / m 3 d, denitrification 2-2.5 kg / m 3 d at a design temperature of 10 ⁇ C.
  • the cleaning performance of the system according to the invention allows drain values of:

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Water Supply & Treatment (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Water Treatment By Sorption (AREA)
  • Filtration Of Liquid (AREA)

Abstract

Described is a two-stage sewage treatment plant (10), in particular for domestic sewage, wherein the first biological purification stage (12) is dimensioned so that besides the carbon load, the mean nitrogen load is maximally degraded. Any peak loads that may appear are degraded in the second biological purification stage (13). This makes possible a space-saving construction and an economical operation. The second biological purification stage (13) is always a two-stage filtering installation with a filter stage (20) for nitrification and a filter stage (21) for denitrification. The first biological purification stage (12) can be an activated sludge stage as per A 131, a pure oxygen activated sludge or likewise a two-stage filtering installation.

Description

Anlage für die Reinigung von Abwasser Plant for the treatment of waste water
Die Erfindung betrifft eine Anlage für die Reinigung von Abwasser, insbesondere komunalem Abwasser, mit einer mechanischen Reinigungsstufe, einer ersten biologischen und einer zweiten biologischen Reinigungsstufe, bei der die zweite biologische Reinigungsstufe eine biologische Filteranlage ist, die sowohl eine chemisch-physikalische als auch eine biologische Reinigung bewirkt, und bei der die genannte Filteranlage eine Filterstufe für die Nitrifikation und eine in Strömungsrichtung nachgeschaltete Filterstufe für die Denitrifikation aufweist und die Filterstufen mindestens einen biologischen Filter aufweist.The invention relates to a plant for the purification of waste water, in particular municipal waste water, with a mechanical purification stage, a first biological and a second biological purification stage, in which the second biological purification stage is a biological filter system which has both a chemical-physical and a biological one Cleaning causes, and in which said filter system has a filter stage for nitrification and a downstream filter stage for denitrification and the filter stages has at least one biological filter.
Die gängigen Anlagen für die biologische Reinigung von Abwasser sind in der Regel einstufige Belebungsanlagen nach dem Arbeitsblatt A 131 der Abwassertechnischen Vereinigung e.V. (ATV) . Die Belebungsbecken dieser Anlagen, in denen NH4-N zu N03-N (Nitrifizierung) bzw. N03-N zu N2 (Denitrifizierung) umgesetzt werden und Phosphate sowie die Kohlenstofffrächt eliminiert werden, müssen in ihrer Bemessung nicht nur an die durchschnittliche Belastung, sondern auch an tageszeitliche Schwankungen angepaßt werden. Das hat zur Folge, daß Belebungsbecken sehr groß bemessen sind und die ganze Anlage viel Platz beansprucht, der z.B. in Ballungsgebieten nicht zur Verfügung steht. Eine Anlage der eingangs genannten Art ist aus der DE-PS 39 16 679 bekannt. Bei dieser ist die erste Filterstufe bis zu 80 % als Nitrifizierungsstufe eingerichtet. Die restlichen 20 % der ersten Filterstufe und die zweite Filterstufe sind als Denitrifizierungsstufen eingerichtet. In der ersten Filterstüfe erfolgt neben der Nitirifizierung der Abbau der Kohlenstoff-Fracht, insbesondere der CSB-Fracht, da sich unter dem Selektrionsdruck der SCB-Belastung auch Mikroorganismen ansiedeln, die in der Lage sind, CBB abzubauen. Damit kann die vorgeschaltete Schwachlastbelebungsstufe entlastet werden.The usual systems for the biological treatment of wastewater are usually single-stage activation systems according to worksheet A 131 of the Abwassertechnischen Vereinigung eV (ATV). The aeration tanks of these plants, in which NH 4 -N are converted to N0 3 -N (nitrification) or N0 3 -N to N 2 (denitrification) and phosphates and the carbon load are eliminated, do not only have to be measured according to the average Load, but also be adjusted to fluctuations in the time of day. As a result, aeration tanks are very large and the whole system takes up a lot of space, which is not available in conurbations, for example. A system of the type mentioned is known from DE-PS 39 16 679. With this, the first filter stage up to 80% is set up as a nitrification stage. The remaining 20% of the first filter stage and the second filter stage are set up as denitrification stages. In the first filter stage, in addition to the nitirification, the carbon load, in particular the COD load, is broken down, since under the selection pressure of the SCB load, microorganisms that are able to break down CBB also settle. This can relieve the upstream low-load revitalization stage.
Nachteilig an dieser bekannten Anlage ist, daß die den Filterstufen vorgeschaltete Schwachlastbelebungsstufe relativ groß bemessen sein muß, sofern man auch bei Spitzenbelastungen - also Belastungen, die über den täglichen Durchschnittswerten liegen - die angegebenen Werte im Ablauf erreichen will. Das ist nur erreichbar, wenn die Schwachlast-Belebungsstufe für einen Stoßfaktor von größer als l ausgelegt wird. Der Stoßfaktor ist das Verhältnis der maximalen Zweistundenbelastung zur mittleren 24-Stunden-Stickstoffbelastung.A disadvantage of this known system is that the low-load activation stage upstream of the filter stages must be dimensioned relatively large, provided that the specified values in the process are to be reached even at peak loads - loads above the daily average values. This can only be achieved if the low-load activation level is designed for a shock factor of greater than 1. The impact factor is the ratio of the maximum two-hour exposure to the average 24-hour nitrogen exposure.
Nachteilig bei der bekannten Anordnung ist ferner, daß innerhalb der ersten Filterstufe von einer Nitri fikation auf eine Denitrifikation umgestellt werden muß. Dabei können sich die verschiedenen Biozönosen innerhalb des Filters mischen. Ein solches Filter ist prozeßtechnisch schwierig zu handhaben, da in der Denitrifikationsstufe kein Sauerstoff anwesend sein darf.A further disadvantage of the known arrangement is that a nitrification must be converted to denitrification within the first filter stage. The various biocenoses can mix within the filter. Such a filter is difficult to handle from a process engineering point of view, since no oxygen may be present in the denitrification stage.
Aufgabe der vorliegenden Erfindung ist es, die Anlage der eingangs genannten Art so zu verbessern, daß der Raumbedarf verringert wird. Außerdem sollen die weiteren oben beschriebenen Nachteile vermieden werden. Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die erste biologische Reinigungsstufe so dimensioniert ist, daß mindestens die Kohlenstoffbelastung und höchstens sowohl die Kohlenstoffbelastung als auch die im 24-Stunden-Mittel anfallende Stickstoffbelastung (Stickstoff-Stoßfaktor fH = 1,0) bei Bemessungstemperatur abgebaut wird und die zweite biologische Reinigungsstufe (13, 42) im Aufwärtsstrom betrieben wird und so bemessen ist, daß mindestens die tageszeitlichen Spitzen der Stickstoffbelastung (Stoßfaktor für Verhältnis maximaler Zweistunden-Stickstoffbelastung zu 24-Stunden-Mittel f„ > 1,0) selbst bei niedrigen Temperaturen (< 12°C) auf ein bestimmbares Maß abgebaut werden.The object of the present invention is to improve the system of the type mentioned in such a way that the space requirement is reduced. In addition, the other disadvantages described above should be avoided. This object is achieved according to the invention in that the first biological purification stage is dimensioned such that at least the carbon load and at most both the carbon load and the nitrogen load (nitrogen impact factor f H = 1.0) occurring on a 24-hour average are reduced at the design temperature and the second biological purification stage (13, 42) is operated in an upward flow and is dimensioned such that at least the peaks of the daytime nitrogen load (impact factor for ratio of maximum two-hour nitrogen load to 24-hour mean f "> 1.0) itself contribute low temperatures (<12 ° C) can be reduced to a determinable level.
Zur Quantifizierung der Stickstoffbelastung soll folgendes gelten:The following should apply to quantify nitrogen pollution:
Die Tagesfracht der Stickstoffbelastung des Rohabwassers wird registriert und über 24 Stunden gemittelt. Die Umsatzleistungen der biologischen Reinigungsstufen sind empirische Werte. Aus Tagesfracht und hydraulischem Durchsatz wird die Konzentration der Stickstoffbelastung im 24-Stunden-Mittel errechnet. Innerhalb eines Tages hat man jedoch z.T. erhebliche Frachtschwankungen um diesen mittleren Wert. Es gibt nach A 131 einen sog. Stickstoff- Stoßfaktor f„, der definiert ist als Verhältnis von maximaler Zweistunden-Stickstoffbelastung zu mittlerer Stickstoffbelastung. Dieser Stoßfaktor schwankt erfahrungsgemäß, abhängig von der Anschlußgröße, von 1,5 bis 2,5.The daily load of nitrogen in the raw sewage is registered and averaged over 24 hours. The sales performance of the biological cleaning stages are empirical values. The concentration of the nitrogen load is calculated on a 24-hour average from the daily freight and hydraulic throughput. However, within a day, some considerable freight fluctuations around this average value. According to A 131, there is a so-called nitrogen impact factor f ", which is defined as the ratio of maximum two-hour nitrogen exposure to average nitrogen exposure. Experience has shown that this shock factor varies from 1.5 to 2.5, depending on the connection size.
Die erste biologische Reinigungsstufe wird also maximal für einen Stoßfaktor fH=l bemessen. Die Bemessung erfolgt gemäß A 131 über das erforderliche Schlammalter, das wiederum eine Funktion der Bemessungstemperatur und der Größe des Belebungsbeckens ist. Die Belastungsobergrenze der zweiten biologischen Reinigungsstufe wird ebenfalls empirisch ermittelt. Damit kann man die Bemessung der zweiten biologischen Reinigungsstufe ausrechnen, wenn man über die Bemessung der ersten biologischen Reinigungsstufe entschieden hat.The first biological cleaning stage is therefore measured for a shock factor f H = 1 at the most. The design is carried out according to A 131 via the required sludge age, which in turn is a function of the design temperature and the size of the activation tank. The exposure limit of the second biological cleaning stage is also determined empirically. This allows you to calculate the dimensioning of the second biological cleaning stage if you have decided on the dimensioning of the first biological cleaning stage.
Die im Lauf des Tages auftretenden Stickstoff- Belastungsspitzen werden in der zweiten biologischen Reinigungsstufe abgebaut. Man kann, z.B. aus Platzgründen, die erfindungsgemäße Anlage auch so bemessen, daß in der ersten biologischen Reinigungsstufe nur die Kohlenstoff-Belastung und in der zweiten biologischen Reinigungsstufe die gesamte Stickstoffbelastung abgebaut wird. Zwischen diesen beiden Eckwerten kann die erfindungsgemäße Anlage je nach den örtlichen Gegebenheiten optimal bemessen werden.The nitrogen pollution peaks that occur during the day are reduced in the second biological cleaning stage. You can, e.g. for reasons of space, the system according to the invention is also dimensioned such that only the carbon load is reduced in the first biological cleaning stage and the entire nitrogen load is reduced in the second biological cleaning stage. Between these two basic values, the system according to the invention can be optimally dimensioned depending on the local conditions.
Aus dieser Optimierung der beiden Reinigungsstufen folgt eine extrem kompakte Bauweise, so daß die Platzersparnis im Vergleich zu einer einstufigen Anlage nach A 131 bis zu 50% beträgt. Die erfindungsgemäße Anlage weist ferner eine große Prozeßstabilität auf. Diese stabile Prozeßführung ist möglich, weil die Filterstufen völlig entkoppelt sind und jede Filterstufe nur eine ganz bestimmte Aufgabe erfüllt. Damit ist auch eine Mischung der Biozönosen ausgeschlossen.This optimization of the two cleaning stages results in an extremely compact design, so that the space saving is up to 50% compared to a single-stage system according to A 131. The system according to the invention also has great process stability. This stable process control is possible because the filter stages are completely decoupled and each filter stage only fulfills a very specific task. This also means that a mixture of biocenoses is excluded.
Gleichzeitig entspricht die Reinigungsleistung der erfindungsgemäßen Anlage den strengen Anforderungen des Gesetzgebers. Die Ablaufkonzentration an N««.--, kann infolge der weitgehenden Nitrifikation durch die Dosiermenge der externen Kohlenstoffquelle in der nachgeschalteten Denitrifikationsstufe auf das gewünschte Maß eingestellt werden. So sind im Ablauf für N«-,or, weniger als 5mg/l erreichbar. Darüberhinaus sind CSB- Elimination, Suspensaelimination und Keimreduktion verbessert. Diese guten Ablaufwerte werden aufgrund der präzisen Dimensionierung der beiden Reinigungsstufen und auch bei schwankendem Rohwasserdaten erzielt, d.h. im Tagesverlauf auftretende Spitzenbelastungen werden zuverlässig abgebaut. Das bedeutet insgesamt eine bessere Anpassung an die örtliche Situation und an den Tagesgang der Belastung bei minimiertem Raumbedarf der Anlage.At the same time, the cleaning performance of the system according to the invention meets the strict requirements of the legislature. The runoff concentration at N "" can be adjusted to the desired level in the subsequent denitrification stage due to the extensive nitrification by the metered amount of the external carbon source. In this way, less than 5 mg / l can be reached in the process for N « -, or . In addition, COD Elimination, suspension elimination and germ reduction improved. These good drainage values are achieved due to the precise dimensioning of the two cleaning stages and also with fluctuating raw water data, ie peak loads that occur during the day are reliably reduced. Overall, this means a better adaptation to the local situation and to the daily routine of the load with minimized space requirements of the system.
Ein weiterer Vorteil der erfindungsgemäßen Anlage ist die rationellere Ausnützung der Betriebsmittel. Die Filter sind im Aufwärtsstrom betrieben, d.h. das zu behandelnde Abwasser strömt von unten nach oben und im Gleichstrom mit der Prozeßluft bzw. der Kohlenstoffquelle durch die Filterstufen. Das führt z.B. zu einer verbesserten 0a- Ausnützung (bis zu 40-50%). Damit besitzt die erfindungsgemäße Anlage einen geringeren Energiebedarf, was zu niedrigeren Betriebskosten führt. Aufgrund der zuverlässig guten Ablaufwerte verringert sich außerdem die finanzielle Belastung durch die Abwasserabgabe.Another advantage of the system according to the invention is the more rational use of the operating resources. The filters are operated in an upward flow, ie the waste water to be treated flows through the filter stages from bottom to top and in cocurrent with the process air or the carbon source. This leads, for example, to an improved 0 a utilization (up to 40-50%). The system according to the invention thus has a lower energy requirement, which leads to lower operating costs. Due to the reliably good drainage values, the financial burden of wastewater tax is also reduced.
Vorteilhafterweise ist vor einer der Filterstufen, wahlweise auch vor beiden Filterstufen, die Fällung und Flockung von Phosphat vorgesehen. Fällung und Flockung können in einer vor dem biologischen Filter angeordneten Koagulationskammer oder in Form einer Rohrkoagulation, d.h. in der Zulaufleitung, erfolgen. Das zudosierte Fällmittel kann je nach Abwasserbeschaffenheit wahlweise eine Fe- oder AI-Verbindung, bevorzugt eine basische AI- Verbindung sein. Zur Optimierung des alkalischen Fällmittelbedarfs kann je nach Abwasserbeschaffenheit vor der Fällmittelzugäbe eine Säuredosierung vorgesehen sein. Das ausgeflockte Phosphat wird von den Filtern zurückgehalten. So kann man in der Filteranlage eine Phosphateliminierung herbeiführen. Die Verwendung eines basischen Fällmittels empfiehlt sich zur Erhöhung der Säurekapazität, um die Nitrifikationsbedingungen zu verbessern. Durch diese Maßnahmen können sowohl zu niedrige als auch zu hohe pH-Werte im Zulauf korrigiert werden.The precipitation and flocculation of phosphate is advantageously provided before one of the filter stages, optionally also before both filter stages. Precipitation and flocculation can take place in a coagulation chamber arranged in front of the biological filter or in the form of a pipe coagulation, ie in the feed line. Depending on the nature of the wastewater, the precipitant added can be either an Fe or Al compound, preferably a basic Al compound. To optimize the alkaline precipitant requirement, an acid metering can be provided before the precipitant is added, depending on the nature of the waste water. The flocculated phosphate is retained by the filters. So you can bring about a phosphate elimination in the filter system. The use of a basic precipitant is recommended to increase the Acid capacity to improve nitrification conditions. These measures can correct both too low and too high pH values in the feed.
Die Filterstufen weisen vorzugsweise mehrere parallel geschaltete biologische Filter auf. Diese modulare Bauweise ermöglicht es, den Betrieb der Anlage an den Abwasserzufluß anzupassen. Beispielsweise können bei Trockenwasserzufluß (1/2 bis 1/3 des Regenwasserzuflusses) ein oder mehrere Filter abgeschaltet werden. Dies führt zu einer weiteren Senkung der Betriebskosten.The filter stages preferably have a plurality of biological filters connected in parallel. This modular design makes it possible to adapt the operation of the plant to the wastewater inflow. For example, one or more filters can be switched off in the case of dry water inflow (1/2 to 1/3 of the rainwater inflow). This leads to a further reduction in operating costs.
Eine weitere vorteilhafte Ausführungsform ist eine zusätzliche Denitrifikationsanlage innerhalb der ersten biologischen Reinigungsstufe und die zusätzliche Rezirkulation eines Teils des in der ersten Filterstufe entstandenen N03. Dies empfiehlt sich, weil in der ersten biologischen Reinigungsstufe die Kohlenstoffquelle für die Denitrifikanten noch im Abwasser enthalten ist, während sie in der zweiten biologischen Reinigungsstufe zugeführt werden muß.Another advantageous embodiment is an additional denitrification system within the first biological purification stage and the additional recirculation of part of the NO 3 produced in the first filter stage. This is recommended because the carbon source for the denitrifiers is still contained in the waste water in the first biological purification stage, whereas it has to be added in the second biological purification stage.
Eine weitere vorteilhafte Weiterbildung ist die Optimierung der Spülabwasserbehandlung. Das Spülabwasser kann entweder vor die Gesamtanlage, zur Vorklärung, geschickt werden, oder es kann separat behandelt werden, z.B. durch Flotation, um die Linie der Behandlungsstufen zu entlasten. Anschließend wird es vor eine Filterstufe geführt. Die Anlage wird damit nicht so stark hydraulisch belastet wie beim Rückführen zur Vorklärung.Another advantageous development is the optimization of the rinse water treatment. The rinsing wastewater can either be sent to the entire system for preliminary clarification, or it can be treated separately, e.g. by flotation to relieve the line of treatment stages. It is then passed in front of a filter stage. The system is therefore not subjected to as much hydraulic load as when it is returned to the primary clarifier.
Wird das Spülwasser dem Klarwasser der ersten Filterstufe entnommen, so dient das behandelte Spülabwasser dazu, den Zulauf zur zweiten Filterstufe wieder aufzufüllen, so daß sie gleichmäßig belastet wird. Diese Art des Betriebs bezeichnet man als Speicherbeckenbetrieb.If the rinsing water is removed from the clear water of the first filter stage, the treated rinsing waste water serves to replenish the feed to the second filter stage, so that it is evenly loaded. This type of operation is known as a reservoir operation.
Der Abbau der Phosphat- und CSB-Belastung kann in eine vorgeschalteten mechanischen Reinigungsstufe, in der diese Inhaltsstoffe durch Fällung/Flockung und Sedimentation entfernt werden, noch verbessert werden.The reduction of the phosphate and COD load can be improved further in an upstream mechanical cleaning stage in which these ingredients are removed by precipitation / flocculation and sedimentation.
Die erste biologische Reinigungsstufe kann eine nach den erfindungsgemäßen Bemessungsregeln bemessene Schwachlast- Belebungsstufe nach A 131 sein.The first biological purification stage can be a low-load revitalization stage according to A 131 measured according to the design rules according to the invention.
Besonders vorteilhaft ist es, auch die erste biologische Reinigungsstufe mit biologischen Filtern auszurüsten. Bei einer solchen kompakten Anlage erfüllen zusätzliche biologische Filterstufen die Aufgabe der konventionellen Belebungsbecken. Der Platzbedarf kann gegenüber einer konventionellen Anlage nach A 131 um bis zu 75% verringert werden. Durch die geschlossene Bauweise der Reaktoren wird außerdem die Emissionsbelastung (Geruch, Lärm) merklich reduziert.It is particularly advantageous to also equip the first biological cleaning stage with biological filters. In such a compact system, additional biological filter stages fulfill the task of conventional aeration tanks. The space requirement can be reduced by up to 75% compared to a conventional system according to A 131. The closed design of the reactors also significantly reduces emissions (odor, noise).
Wenn in der ersten biologischen Reinigungsstufe eine Denitrifikationsanlage mit N03-Rezirkulation in Form einer Filterstufe vorgesehen ist, kann diese vorteilhafterweise so ausgelegt sein, daß sie eine untere anaerobe Zone mit Rohwasserzufluß für den biologischen Phosphatabbau und eine obere anoxische Zone mit N03- Zufluß für die Denitrifikation aufweist.If a denitrification system with N0 3 recirculation in the form of a filter stage is provided in the first biological purification stage, this can advantageously be designed such that it has a lower anaerobic zone with raw water inflow for the biological phosphate degradation and an upper anoxic zone with N0 3 inflow for which has denitrification.
Eine weitere vorteilhafte Weiterbildung dieser Filterstufe sieht vor, daß beide Zonen wahlweise belüftet werden können und die ganze Filterstufe somit auf aeroben Kohlenstoffabbau umgestellt werden kann. Das ist z.B. dann von Vorteil, wenn bei erhöhtem Regenwasserzufluß die Rezirkulation abgeschaltet werden muß, um die zulässige Strömungsgeschwindigkeit in der Filterstufe nicht zu überschreiten.A further advantageous development of this filter stage provides that both zones can optionally be ventilated and the entire filter stage can thus be converted to aerobic carbon degradation. This is advantageous, for example, if the recirculation has to be switched off in order to increase the permissible flow of rainwater Do not exceed the flow rate in the filter stage.
Der biologische Filter einer solcher Filterstufe weist einen Düsenboden auf, auf dem körniges Filtermaterial aufgeschüttet ist. Unter dem Düsenboden ist der Rohwasserzufluß und über dem Düsenboden ein wahlweise zuschaltbarer Prozeßluftverteiler mit Prozeßluftdüsen für den Sauerstoffeintrag angeordnet. Weiter oberhalb des Düsenbodens mündet der N03-Zulauf in einen Rezirkulationsverteiler, welcher wahlweise auf dem Düsenboden oder weiter oben im Filtermaterial angeordnet ist.The biological filter of such a filter stage has a nozzle base on which granular filter material is heaped. The raw water inflow is arranged under the nozzle base and an optionally switchable process air distributor with process air nozzles for the oxygen input is arranged above the nozzle base. Further above the nozzle bottom, the N0 3 inlet opens into a recirculation distributor, which is optionally arranged on the nozzle bottom or further up in the filter material.
Der erfindungsgemäße biologische Filter kann so betrieben werden, daß die Zone unterhalb desThe biological filter according to the invention can be operated so that the zone below the
Rezirkulationsverteilers anaerob und die Zone darüber anoxisch ist, so daß jeweils Phosphat bzw. Nitrat biologisch abgebaut werden. Der biologische Filter kann auch vom Düsenboden ausgehend belüftet und damit aerob betrieben werden, so daß die Kohlenstoffbelastung des Abwassers sowie Phosphat biologisch abgebaut werden.Recirculation distributor anaerobic and the zone above it is anoxic, so that in each case phosphate or nitrate are biodegraded. The biological filter can also be aerated starting from the nozzle bottom and thus operated aerobically, so that the carbon pollution of the wastewater and phosphate are biodegraded.
Im folgenden werden zwei Ausführungsbeispiele der erfindungsgemäßen Anlage sowie ein Ausführungsbeispiel des erfindungsgemäßen biologischen Filters unter Bezugnahme auf die beiliegenden Zeichnungen näher beschrieben. Es zeigen:Two exemplary embodiments of the system according to the invention and an exemplary embodiment of the biological filter according to the invention are described in more detail below with reference to the accompanying drawings. Show it:
Fig. 1 schematisch ein erstes Ausführungsbeispiel einer erfindungsgemäßen Anlage zur Reinigung von Abwasser;Fig. 1 shows schematically a first embodiment of a plant for the purification of waste water;
Fig. 2 εchematisch ein zweites Ausführungsbeispiel einer erfindungsgemäßen Anlage zur Reinigung von Abwasser; Fig. 3 eine detailliertere Darstellung eines biologischen Filters;2 schematically shows a second exemplary embodiment of a plant according to the invention for cleaning waste water; 3 shows a more detailed illustration of a biological filter;
Fig. 4 einen erfindungsgemäßen alternierend betreibbaren biologischen Filter.4 shows an alternately operable biological filter according to the invention.
Die in Fig. 1 gezeigte Anlage 10 setzt sich zusammen aus einer mechanischen Reinigungsstufe 11, einer ersten biologischen Reinigungsstufe 12 und einer zweiten biologischen Reinigungsstufe 13. Die mechanische Reinigungsstufe 11 besteht aus einem Rechen mit Sand- und Fettfang 14 und einem Vorklärbecken 15. Die Vorklärung kann jedoch auch auf andere Weise, z.B. durch einen Schrägwabenklärer erfolgen. Die erste biologische Reinigungsstufe 12 ist eine für einen Stoßfaktor fN=l bemessene konventionelle Belebungsstufe nach A 131 mit einem Belebungsbecken 16 für den anaeroben biologischen Phosphatabbau, einem Denitrifikationsbecken 17 für den anoxischen N03-N- und Kohlenstoffabbau, einem Belebungsbecken 18 für den aeroben NH4-N- und Kohlenstoffabbau und einem Nachklärbecken 19. Das Belebungsbecken 16 und das Denitrifikationsbecken 17 sind nicht zwingend. Vom Nachklärbecken 19 wird der abgezogene Rücklaufschlämm über eine Leitung 22 wieder in das Belebungsbecken 16 geführt. Ein Teil des nitrathaltigen Ablaufs des Belebungsbeckens 18 wird über eine Leitung 23 zum Denitrifikationsbecken 17 rezirkuliert.The system 10 shown in FIG. 1 is composed of a mechanical cleaning stage 11, a first biological cleaning stage 12 and a second biological cleaning stage 13. The mechanical cleaning stage 11 consists of a rake with sand and fat trap 14 and a primary clarifier 15. The primary clarifier can, however, also be carried out in another way, for example by an inclined honeycomb clarifier. The first biological purification stage 12 is a conventional activation stage according to A 131, measured for a shock factor f N = 1, with an activation basin 16 for anaerobic biological phosphate degradation, a denitrification basin 17 for anoxic N0 3 -N and carbon degradation, an activation basin 18 for the aerobic NH 4 -N and carbon degradation and a secondary clarifier 19. The aeration tank 16 and the denitrification tank 17 are not mandatory. From the secondary clarifier 19, the withdrawn return sludge is fed back into the activation tank 16 via a line 22. Part of the nitrate-containing effluent from the activation tank 18 is recirculated to the denitrification tank 17 via a line 23.
An das Nachklärbecken 19 schließt sich die zweite biologische Reinigungsstufe 13 an, die aus einer ersten Filterstufe 20 zur aerboen Nitrifikation und einer zweiten Filterstufe 21 zur anoxischen Denitrifikation besteht. Die erste Filterstufe 20 wird über die Leitung 31 mit Prozeßluft versorgt. Die zweite Filterstufe 21 wird über die Leitung 35 mit Methanol beschickt. Ein Teil des nitrathaltigen Ablaufs der ersten Filterstufe 20 wird über die Leitung 23 zum Denitrifikationsbecken 17 rezirkuliert. In beide Filterstufen 20, 21 münden außerdem in Fig. 1 nicht gezeigte Leitungen für Filterspülwasser und Filterspülluft. Das bei der Rückspülung anfallende Spülabwasser wird über eine Leitung 24 abgeführt und separat in 25 durch Flotation gereinigt. Das gereinigte Spülabwasser wird über eine Leitung 26 dem Zulauf der zweiten Filterstufe 21 zugeführt.The secondary clarification basin 19 is followed by the second biological purification stage 13, which consists of a first filter stage 20 for aerobic nitrification and a second filter stage 21 for anoxic denitrification. The first filter stage 20 is supplied with process air via the line 31. The second filter stage 21 is charged with methanol via line 35. Part of the nitrate-containing effluent from the first filter stage 20 becomes recirculated via line 23 to the denitrification tank 17. Lines (not shown in FIG. 1) for filter rinsing water and filter rinsing air also open into both filter stages 20, 21. The rinsing wastewater obtained during backwashing is discharged via a line 24 and cleaned separately in 25 by flotation. The cleaned rinsing waste water is fed via a line 26 to the inlet of the second filter stage 21.
Jede Filterstufe 20, 21 besteht aus sechs parallel geschalteten biologischen Filtern 70. Ein solcher biologischer Filter 70 ist in Fig. 3 genauer dargestellt.Each filter stage 20, 21 consists of six biological filters 70 connected in parallel. Such a biological filter 70 is shown in more detail in FIG. 3.
In einem Gehäuse 71 ist auf einem Düsenboden 76 als Filtermaterial 73 ein körniger Blähton mit einem Kornspektrum von 3-6 mm bis zu einer Schütthöhe von 4m eingefüllt. Es sind aber auch andere Tone, Basalte, Laven, Quarzsand oder Aktivkohle mit einer Körnung von etwa 1-8 mm geeignet. Geeignetes Filtermaterial 73 ist abriebsfest und besitzt ein ausreichendes spezifisches Gewicht (l,5g/cm3) sowie eine große spezifische Oberfläche. Das Filtermaterial 73 liegt auf einer zweistufig abgestuften Stützkiesschicht 72. Direkt auf dem Düsenboden liegt eine etwa 15 cm hohe Stützkiesschicht mit einer Körnung von 16-32 mm, darauf liegt eine etwa 15 cm hohe Stützkiesschicht mit einer Körnung von 8-16 mm, darauf liegt das eigentliche Filtermaterial. In die Stützkiesschicht 72, direkt auf dem Düsenboden 76, ist ein Prozeßluftverteiler 74 mit Prozeßluftdüsen 75 (Warenzeichen "Oxazur"), eingelassen. Es sind 25-50 Düsen/m2 vorgesehen. In den Düsenboden 76 selbst sind Spüldüsen 82 eingeschraubt, und zwar 50-60 Düsen/m . Der biologische Filter 70 wird im Aufström betrieben. Das Rohabwasser aus dem Rohabwasserzulauf 80 und das Prozeßgas bzw. die Kohlenstoffquelle aus der Leitung 31 bzw. 57 befinden sich im Gleichstrom.A granular expanded clay with a grain spectrum of 3-6 mm up to a dumping height of 4 m is filled in a housing 71 on a nozzle bottom 76 as filter material 73. However, other clays, basalts, lavas, quartz sand or activated carbon with a grain size of about 1-8 mm are also suitable. Suitable filter material 73 is abrasion-resistant and has a sufficient specific weight (1.5 g / cm 3 ) and a large specific surface. The filter material 73 lies on a two-stage graded support gravel layer 72. Directly on the nozzle bottom is an approximately 15 cm high support gravel layer with a grain size of 16-32 mm, on which there is an approximately 15 cm high support gravel layer with a grain size of 8-16 mm the actual filter material. A process air distributor 74 with process air nozzles 75 (trademark "Oxazur") is embedded in the supporting gravel layer 72, directly on the nozzle base 76. 25-50 nozzles / m 2 are provided. Flushing nozzles 82 are screwed into the nozzle bottom 76 itself, namely 50-60 nozzles / m. The biological filter 70 is operated in the upflow. The raw waste water from the raw waste water inlet 80 and the process gas or the carbon source from the lines 31 and 57 are in cocurrent.
Der Bewuchs des Filtermaterials 73 wird reguliert durch die Rahmenbedingungen, d.h. durch die Art des Betriebs (Sauerstoffgehalt, pH, organische Kohlenstoffquelle etc.) wird ein Selektionsdruck ausgeübt, der das Wachstum der gewünschten Biozönose begünstigt. Die Mikroorganismen werden teilweise aus den Nachklärbecken 19 gespült, treten im Zulauf in die biologischen Filter 70 ein und bleiben am Filtermaterial 73 hängen. Da im Zulauf immer auch Mikroorganismen sind, ist die Biozönose flexibel und kann sich veränderten Bedingungen anpassen.The growth of the filter material 73 is regulated by the general conditions, i.e. the type of operation (oxygen content, pH, organic carbon source, etc.) exerts a selection pressure that favors the growth of the desired biocenosis. The microorganisms are partially rinsed out of the secondary clarifier 19, enter the biological filters 70 in the inlet and remain attached to the filter material 73. Since there are always microorganisms in the inflow, the biocenosis is flexible and can adapt to changing conditions.
In der ersten Filterstufe 20 darf dieIn the first filter stage 20, the
Kohlenstoffbelastung nicht zu hoch sein, weil sonst ihre Leistung reduziert wird. Es muß Sauerstoff für die Nitrifikanten vorhanden sein. Der Lufteintrag mit einer Geschwindigkeit von 4-15 m/h wird nach dem theoretischen Sauerstoffbedarf eingestellt, den man stöchiometrisch berechnen kann. Die Sauerstoffausnutzung ist ungewöhnlich hoch und beträgt bis zu 40-50%. Die Sauerstoffzufuhr darf bei Betrieb der Filter nur kurzzeitig unterbrochen werden, sonst können die Nitrifikanten geschädigt werden.Carbon pollution should not be too high, otherwise their performance will be reduced. Oxygen must be available for the nitrifying bacteria. The air intake at a speed of 4-15 m / h is set according to the theoretical oxygen demand, which can be calculated stoichiometrically. The oxygen utilization is unusually high and is up to 40-50%. The oxygen supply may only be interrupted briefly when the filter is in operation, otherwise the nitrifiers can be damaged.
Typischerweise beträgt die Kohlenstoffbelastung im Zulauf der zweiten biologischen Reinigungsstufe 13 etwa 20-60 mg BSB5/1. Der Sauerstofftransfer beträgt zwischen 55 und 80 g 02/Nm3, das entspricht einer Ausnutzung von 20-50%.Typically, the carbon load is in the inlet of the second biological purification stage 13 about 20-60 mg BOD. 5/1 The oxygen transfer is between 55 and 80 g 0 2 / Nm 3 , which corresponds to a utilization of 20-50%.
Die Einstellung der Rahmenbedingungen unterliegt einer gewissen Selbstregulation. Es liegt normalerweise der Schwankungsbereich vor, der für die Mikroorganismen optimal ist. Dieser Bereich stellt sich von selbst ein. Bei extremen Schwankungen z.B. des pH-Werts wird aber von außen eingegriffen, allerdings normalerweise in der ersten biologischen Reinigungsstufe 12. Falls erforderlich, kann man natürlich auch vor der ersten Filterstufe 20 eingreifen, z.B. wenn die Säurekapazität (Carbonathärte) im Zulauf nicht ausreicht, um bei einer gegebenen NH4-N-Fracht die vollständige Nitrifikation zu gewährleisten; dann empfiehlt sich eine pH-Korrektur mit Kalk, Carbonat oder NaOH. Eine andere Möglichkeit ist, zum Fällen von Phosphat ein alkalisches Fällmittel, z.B. Na-Aluminat, zu benutzen. Bei kommunalem Abwasser reicht die Säurekapazität aber in der Regel aus.The setting of the framework conditions is subject to a certain self-regulation. It is usually the range of fluctuation that is optimal for the microorganisms. This area sets itself up. In the event of extreme fluctuations, for example the pH value, intervention takes place from the outside, but normally in the first biological cleaning stage 12. If necessary, it is of course also possible to intervene before the first filter stage 20, for example if the acid capacity (carbonate hardness) in the feed is not sufficient to ensure complete nitrification for a given NH 4 -N load; then a pH correction with lime, carbonate or NaOH is recommended. Another possibility is to use an alkaline precipitant, for example Na aluminate, to precipitate phosphate. In municipal wastewater, however, the acid capacity is usually sufficient.
Die Temperatur wird gar nicht reguliert, sondern man nimmt hin, daß die Mikroorganismen im Winter weniger aktiv sind.The temperature is not regulated at all, but one accepts that the microorganisms are less active in winter.
Man geht aber davon aus, daß die immobilisierten Mikroorganismen etwas weniger temperaturempfindlich sind als die im Belebungsbecken suspendierten Mikroorganismen. Auch Betriebstemperaturen von < 10°C sind akzeptabel.However, it is assumed that the immobilized microorganisms are somewhat less sensitive to temperature than the microorganisms suspended in the aeration tank. Operating temperatures of <10 ° C are also acceptable.
Die Wirkung des biologischen Filters 70 beruht also zum einen auf einer klassischen Filtrationswirkung (Feststoffrückhalt) , zum anderen auf der Nitrifikation bzw. Denitrifikation durch die auf dem Filtermaterial 73 immobilisierte Biomasse. Gleichzeitg wird bei der Nitrifikation der Restkohlenstoff abgebaut, der noch auf den Filter zuläuft.The effect of the biological filter 70 is therefore based on the one hand on a classic filtration effect (solid retention), on the other hand on the nitrification or denitrification by the biomass immobilized on the filter material 73. At the same time, the residual carbon that is still running towards the filter is broken down during nitrification.
Die Nitrifikationsleistung beträgt typischerweise etwa 0,5 bis 1,5 kg NH4-N01-/m3d, kann jedoch auch darüberliegen. Das hängt von den örtlichen Gegebenheiten, insbesondere von der Abwasserqualität ab. Der NH4-N-Gehalt im Ablauf beträgt unabhängig von tageszeitlichen Schwankungen ca. unter 2mg/l. Die biologischen Filter 70 der Filterstufen 20,21 werden regelmäßig nach Zeitvorgabe oder bei Druckverlust oder Trübung zurückgespült. Die Spülung erfolgt vollautomatisch mit programmierbarer Steuerung. Es ist ein Zeitintervall eingestellt, meist 24 bis 72 h. Wenn in dieser Zeit der Druckverlust des Filters einen Grenzwert nicht überschreitet, wird erst nach Ablauf des Zeitintervalls gespült. Überschreitet der Druckverlust oder die Trübung im biologischen Filter 70 jedoch einen Grenzwert, so wird er bei der Grenzwertüberschreitung in Rückspülung genommen.The nitrification capacity is typically about 0.5 to 1.5 kg NH 4 -N 01 - / m 3 d, but can also be higher. That depends on the local conditions, especially on the quality of the wastewater. The NH 4 -N content in the drain is approximately below 2 mg / l regardless of the time of day fluctuations. The biological filters 70 of the filter stages 20, 21 are regularly flushed back according to the specified time or in the event of pressure loss or turbidity. Flushing is fully automatic with programmable control. A time interval is set, usually 24 to 72 hours. If the pressure loss of the filter does not exceed a limit value during this time, flushing takes place only after the time interval has elapsed. However, if the pressure loss or the turbidity in the biological filter 70 exceeds a limit value, it is backwashed when the limit value is exceeded.
Es werden nie alle biologischen Filter 70 einer Filterstufe 20,21 gleichzeitig gespült, um den Wasserfluß nicht zu unterbrechen.All biological filters 70 of a filter stage 20, 21 are never rinsed at the same time in order not to interrupt the water flow.
Die Spülung ist eine kombinierte Luft-Wasserspülung mit anschließender Klarspülung. Die Spülluft wird über die Leitung 77 zugeführt. Das Spülwasser wird von einer Pumpe 79 über die Leitung 78 dem Rohabwasserzulauf 80 zugeführt. Das Spülwasser wird in der Regel aus dem Ablauf der zweiten Filterstufe entnommen. Der Verbrauch beträgt etwa 3-8% des abfließenden Klarwassers, d.h. 7- 10m3/m2. Sie besteht aus den Verfahrensschritten Schnellabsenkung, Auflockerung, Luft-Wasser-Spülung und Klarspülung.The rinse is a combined air / water rinse with subsequent rinsing. The purge air is supplied via line 77. The rinse water is fed from a pump 79 to the raw sewage inlet 80 via line 78. The rinse water is usually taken from the outlet of the second filter stage. The consumption is about 3-8% of the flowing clear water, ie 7- 10m 3 / m 2 . It consists of the steps of rapid lowering, loosening, air-water rinsing and rinsing.
Wenn man nun wieder zu Fig. 1 zurückgeht, sieht man, daß im Ausführungsbeispiel die Fällmittelzugabe 29 für die Rest-Phosphatfällung im Zulauf zum Belebungsbecken 18 und zur ersten Filterstufe 20 erfolgt. Eine Säurezugabe 83 ist jeweils von der ersten Filterstufe 20 und der zweiten Filterstufe 21 vorgesehen. Das zudosierte Fällmittel kann wahlweise eine Fe- oder AI-Verbindung sein. Das ausgeflockte Phosphat wird abgezogen bzw. vom Filtermaterial 73 zurückgehalten. Um z.B. P, Ablaufwerte von < 0,8 mg/1 zu erzielen, braucht man bei Zulaufwerten von 1,5 mg/1 ca. 3-4,5 mg Fe3+/1.If one now goes back to FIG. 1, one sees that in the exemplary embodiment the precipitant 29 is added for the residual phosphate precipitation in the feed to the activation tank 18 and to the first filter stage 20. An acid addition 83 is provided in each case by the first filter stage 20 and the second filter stage 21. The precipitant added can optionally be an Fe or Al compound. The flocculated phosphate is drawn off or retained by the filter material 73. For example, P, To achieve drain values of <0.8 mg / 1, you need approx. 3-4.5 mg Fe 3+ / 1 with inflow values of 1.5 mg / 1.
Der Ablauf aus der ersten Filterstufe 20 wird der zweiten Filterstufe 21 zugeführt. Die Belastung beträgt etwa 50 mg Nitrat /l. Die zweite Filterstufe 21 ist wie die erste Filterstufe 20 aufgebaut, mit der Ausnahme, daß sie nicht belüftet, sondern mit über die Leitung 35 mit einer Kohlenstoffquelle beschickt wird. Als Kohlenstoffquelle wird etwa 2,5 kg Methanol/kg N03-N zugeführt. Andere Kohlenstoffquellen wie Essigsäure oder Ethanol sind auch geeignet, ebenso Produkte aus der Schlammbehandlung oder Trübwasser.The outflow from the first filter stage 20 is fed to the second filter stage 21. The load is about 50 mg nitrate / l. The second filter stage 21 is constructed like the first filter stage 20, with the exception that it is not aerated, but is instead supplied with a carbon source via line 35. About 2.5 kg of methanol / kg of N0 3 -N is supplied as the carbon source. Other carbon sources such as acetic acid or ethanol are also suitable, as are products from sludge treatment or cloudy water.
Man beobachtet im Ablauf der zweiten Filterstufe 21 keine Ammoniumbildung durch Nitratammonifikation. Außerdem beobachtet man Nitritbildung nur zu Beginn der Anfahrphase. Später werden die Nitritbildner wohl von den Denitrifikanten überwachsen und man beobachtet kaum Nitritbildung mehr.No ammonium formation by nitrate ammonification is observed in the course of the second filter stage 21. In addition, nitrite formation is only observed at the beginning of the start-up phase. Later, the nitrite formers are probably overgrown by the denitrifiers and one hardly observes any more nitrite formation.
Die Denitrifikationsleistung beträgt bis 2-5 kg/m3d. Im Ablauf beobachtet man 1-7 mg/1 N03-N.The denitrification capacity is up to 2-5 kg / m 3 d. In the process one observes 1-7 mg / 1 N0 3 -N.
Der Suspensagehalt im Ablauf der zweiten Filterstufe 21 beträgt kleiner 10 mg/1 und bleibt auch bei einer Strömungsgeschwindigkeit bis 10-12 m/h so niedrig. Die Keimzahl wird in der ersten Filterstufe 20 z.B. von 5.106/ml auf 5.105/ml und in der zweiten Filterstufe 21 nochmals auf 1.105/ml reduziert.The suspension content in the outlet of the second filter stage 21 is less than 10 mg / 1 and remains so low even at a flow rate of up to 10-12 m / h. The number of bacteria is reduced in the first filter stage 20, for example from 5.10 6 / ml to 5.10 5 / ml and in the second filter stage 21 again to 1.10 5 / ml.
Aus Fig. 1 sind weiterhin folgende Meßeinrichtungen zur Steuerung des Betriebsablaufs ersichtlich. Im Zulauf der ersten Filterstufe 20 erfolgt eine NH«-N-Messung 30. Damit wird in Verbindung mit einer nicht gezeigten Durchflußmessung die Prozeßluftzufuhr 31 gesteuert. Es erfolgt weiterhin eine P-Messung 28, mit der die die Fällmittelzugabe 29 gesteuert wird. Im Zulauf der zweiten Filterstufe 21 erfolgt eine N03-Messung 34, die die MethanolZuführung 35 steuert. Die Durchflußmessung steuert ferner die Zu- und Abschaltung einzelner biologischer Filter 70; eine ebenfalls nicht gezeigte Druckmessung unter den Düsenböden 76 der biologischen Filter 70 steuert zusammen mit einer Trübungsmessung 33 in den Abläufen beider Filterstufen 20,21 die Spülung.The following measuring devices for controlling the operating sequence can also be seen from FIG. 1. In the inlet of the first filter stage 20, an NH «-N measurement 30 takes place. The process air supply 31 is thus controlled in connection with a flow measurement (not shown). It there is also a P measurement 28 with which the addition of precipitant 29 is controlled. An N0 3 measurement 34, which controls the methanol feed 35, takes place in the inlet of the second filter stage 21. The flow measurement also controls the switching on and off of individual biological filters 70; a pressure measurement, also not shown, under the nozzle bottoms 76 of the biological filters 70, together with a turbidity measurement 33, controls the flushing in the processes of both filter stages 20, 21.
Die NH4-N- und P-Messung kann natürlich auch im Ablauf der ersten Filterstufe 20 erfolgen.The NH 4 -N and P measurement can of course also take place in the course of the first filter stage 20.
So kann man die Anlage 10 wirtschaftlich betreiben. Man kann auch über Integrationsrechnung die Filterlaufzeit beeinflussen. Wenn man die Beladungskapazität eines biologischen Filters 70 kennt, weiß man ziemlich genau, nach welcher Zeit der Filter gespült werden muß. So kann man die Zeitvorgabe bei der Spülung optimal einstellen.So you can operate the system 10 economically. You can also influence the filter runtime using the integration calculation. If one knows the loading capacity of a biological filter 70, one knows quite well after what time the filter has to be rinsed. So you can optimally set the time for flushing.
In Fig. 2 ist ein zweites Ausführungsbeispiel einer erfindungsgemäßen Anlage 10' dargestellt. Auch diese Anlage weist eine mechanische Reinigungsstufe 40, eine erste biologische Reinigungsstufe 41 und eine zweite biologische Reinigungsstufe 42 auf.2 shows a second exemplary embodiment of a system 10 'according to the invention. This system also has a mechanical cleaning stage 40, a first biological cleaning stage 41 and a second biological cleaning stage 42.
Die mechanische Reinigungsstufe 40 besteht aus einem Rechen mit Sand- und Fettfang 43 und einer Fällungs-, Flockungs- und Sedimentationseinheit 44, in der CSB und Phosphat gefällt, ausgeflockt und sedimentiert werden. Letztere ist hier ein Wabenschrägklärer, der vertikal in drei Zonen unterteilt: Zudosieren der Fällungschemikalie, Flockung und Sedimentation an einem wabenförmigen Einsatz. Der einfallende Schlamm wird über die Leitung 51 abgezogen und einer separaten Behandlung 52 zugeführt. Die hydraulische Belastung dieser Stufe kann bis zu 20 m/h betragen.The mechanical cleaning stage 40 consists of a rake with sand and fat trap 43 and a precipitation, flocculation and sedimentation unit 44, in which COD and phosphate are precipitated, flocculated and sedimented. The latter is a honeycomb inclined clarifier, which is divided vertically into three zones: metering the precipitation chemical, flocculation and sedimentation on a honeycomb-shaped insert. The incoming sludge is drawn off via line 51 and fed to a separate treatment 52. The hydraulic load of this stage can be up to 20 m / h.
Eine solche Sedimentationsstufe 44 bietet sich an, wenn wenig Platz zur Verfügung steht, weil sie kompakter als eine klassische Vorklärung ist.Such a sedimentation level 44 is useful if there is little space available because it is more compact than a classic pre-clarification.
Stattdessen kann selbstverständlich auch ein Vorklärbecken und/oder ein Belebungsbecken für den biologischen Phosphatabbau vorgesehen sein. Wichtig ist, daß überhaupt eine Vorklärung stattfindet.Instead, of course, a primary clarifier and / or an aeration tank for biological phosphate degradation can also be provided. It is important that a preliminary clarification takes place at all.
In der ersten biologischen Reinigungsstufe 41 sind die Belebungsbecken der konventionellen Belebungsstufe durch entsprechende Filterstufen 45,46 ersetzt. Der Aufbau dieser Filterstufen ist im Prinzip wie für die Filterstufen 20,21 des ersten Ausführungsbeiεpiels beschrieben.In the first biological purification stage 41, the aeration tanks of the conventional aeration stage are replaced by corresponding filter stages 45, 46. The structure of these filter stages is in principle as described for the filter stages 20, 21 of the first exemplary embodiment.
Die erste Filterstufe 45 entspricht in ihrer Funktion dem Denitrifizierungsbecken 17. Kohlenstoff und Nitrat werden parallel abgebaut. Über eine Leitung 49 wird Nitrat aus dem Ablauf der nachgeschalteten Nitrifikationsfiltern rezirkuliert. Die Rezirkulation muß abgeschaltet werden, wenn der Rohwasserzufluß zu groß wird, z.B. bei Regenwetter, um die zulässige Strömungsgeschwindigkeit von 2-11 m/h in der Filterstufe 45 nicht zu überschreiten. Zur Kontrolle ist daher im Zulauf eine nicht gezeigte Durchflußmessung vorgesehen.The function of the first filter stage 45 corresponds to that of the denitrification basin 17. Carbon and nitrate are mined in parallel. Nitrate is recirculated from the outlet of the downstream nitrification filters via a line 49. The recirculation must be switched off if the raw water inflow becomes too large, e.g. in rainy weather, so as not to exceed the permissible flow speed of 2-11 m / h in filter stage 45. A flow measurement, not shown, is therefore provided in the inlet for control purposes.
Die biologischen Filter der Filterstufe 45 sind aufgebaut wie oben beschrieben. Sie können aber auch so aufgebaut sein, wie es in Fig. 4 dargestellt ist.The biological filters of filter stage 45 are constructed as described above. But they can also be constructed as shown in Fig. 4.
Der in Fig. 4 gezeigte biologische Filter 70' weist im Unterschied zum bereits beschriebenen biologischen Filter 70 zusätzlich einen Rezirkulationsverteiler 49' auf, der im Filtermaterial 73 eingebettet ist. Unter dem Düsenboden 76 befindet sich die Rohwasserzufuhr 80 und die Spülluftzufuhr 77. Über dem Düsenboden 76 befindet sich die Prozeßluftzufuhr 57. Wenn diese abgeschaltet und die Nitratzufuhr 49 offen ist, ist der Bereich zwischen dem Düsenboden 76 und dem Rezirkulationsverteiler 49' anaerob, und der Bereich über dem Rezirkulationsverteiler 49' ist anoxisch, so daß die Denitrifikation stattfindet. Ist die Prozeßluftzufuhr 57 offen und die Nitratzufuhr 49 geschlossen, so ist der ganze biologische Filter 70' aerob, und es werden Kohlenstoff und Phosphat biologisch abgebaut. Der biologische Filter 70' wird also alternierend betrieben.The biological filter 70 ′ shown in FIG. 4 differs from the biological filter already described 70 additionally has a recirculation distributor 49 'which is embedded in the filter material 73. The raw water supply 80 and the purge air supply 77 are located below the nozzle base 76. The process air supply 57 is located above the nozzle base 76. When this is switched off and the nitrate supply 49 is open, the area between the nozzle base 76 and the recirculation distributor 49 'is anaerobic, and that The area above the recirculation distributor 49 'is anoxic, so that the denitrification takes place. If the process air supply 57 is open and the nitrate supply 49 is closed, the entire biological filter 70 'is aerobic and carbon and phosphate are biodegraded. The biological filter 70 'is therefore operated alternately.
Die zweite Filterstufe 46 der ersten biologischen Reinigungsstufe 41 entspricht dem Belebungsbecken 18. Der noch vorhandene Kohlenstoff wird abgebaut. Parallel dazu wird mit der Nitrifikation begonnen. Die zweite Filterstufe 46 ist ständig belüftet.The second filter stage 46 of the first biological purification stage 41 corresponds to the activation tank 18. The carbon still present is broken down. At the same time, nitrification begins. The second filter stage 46 is constantly ventilated.
An die Filterstufe 46 schließt sich die zweite biologische Reinigungsstufe 42 an, die in Aufbau und Funktion der zweiten biologischen Reinigungsstufe 13 des ersten Ausführungsbeispiels entspricht. In der ersten Filterstufe 47 wird das verbleibende NH4-N zu N03-N nitrifiziert. Auch hier gibt es eine Rezirkulation 49 zum Zulauf der Filterstufe 45. Die Rezirkulation wird wie beschrieben in Abhängigkeit von der zulaufenden Wassermenge gesteuert. In der zweiten Filterstufe 48 findet die Umsetzung von N03-N zu N2 statt.The filter stage 46 is followed by the second biological cleaning stage 42, which corresponds in structure and function to the second biological cleaning stage 13 of the first exemplary embodiment. In the first filter stage 47, the remaining NH 4 -N is nitrified to N0 3 -N. Here, too, there is a recirculation 49 for the inlet of the filter stage 45. As described, the recirculation is controlled as a function of the inflowing amount of water. The conversion of N0 3 -N to N 2 takes place in the second filter stage 48.
Die Rückspülung der biologischen Filter 70, 70' findet wie oben beschrieben statt. Das Filterspülabwasser wird über die Leitung 50 zum Kopf der Anlage 10', d.h. zur sedimentationsstufe 44 geführt. Eine separate Behandlung, z.B. durch Flotation, ist aber auch denkbar, ebenso wie der Speicherbeckenbetrieb.The biological filters 70, 70 'are backwashed as described above. The filter rinsing waste water is fed via line 50 to the top of the system 10 ', ie to the sedimentation stage 44. A separate treatment, eg by flotation, but is also conceivable, as is storage tank operation.
Die Anlage 10' besitzt im wesentlichen dieselben Meßeinrichtungen wie die Anlage 10 des ersten Ausführungsbeispiels. Auf diese Beschreibung wird Bezug genommen. Gleiche Meßeinrichtungen besitzen gleiche Bezugszeichen.The system 10 'has essentially the same measuring devices as the system 10 of the first embodiment. Reference is made to this description. The same measuring devices have the same reference numerals.
Zusammenfassend ist festzuhalten, daß die erfindungsgemäße Anlage zur Reinigung von Abwasser 10, 10' bei optimaler Bemessung 40-75% weniger Platz beansprucht als eine einstufige Belebungsanlage nach A 131 mit vergleichbaren Reinigungszielen. Die Reinigungsleistung der verschiedenen Filterstufen ist unabhängig von tageszeitlichen Schwankungen sehr gut und beträgt für die Feststoffbeladung 4-7 kg/m3, für den BSB- Abbau 6 kg/m3d, für den CSB-Abbau 12 kg/m3d, für die Nitrifikation 1-1,5 kg/m3d, für die Denitrifikation 2-2,5 kg/m3d bei einer Bemessungstemperatur von 10βC.In summary, it should be noted that the plant for the purification of waste water 10, 10 'takes up 40-75% less space when optimally dimensioned than a single-stage activation system according to A 131 with comparable purification goals. The cleaning performance of the different filter stages is very good regardless of the time of day fluctuations and is 4-7 kg / m 3 for the solids loading, 6 kg / m 3 d for the BOD degradation, 12 kg / m 3 d for the COD degradation, for nitrification 1-1.5 kg / m 3 d, denitrification 2-2.5 kg / m 3 d at a design temperature of 10 β C.
Die Reinigungsleistung der erfindungsgemäßen Anlage erlaubt Ablaufwerte von:The cleaning performance of the system according to the invention allows drain values of:
N "anorg < 5 mg/1.N "anorg <5 mg / 1.
BSB < 10 mg/1.BOD <10 mg / 1.
AFS < 10 mg/1.AFS <10 mg / 1.
CSB < 50 mg/1. p < 0,8 mg/1. COD <50 mg / 1. p <0.8 mg / 1.

Claims

Patentansprüche Claims
1. Anlage für die Reinigung von Abwasser, insbesondere kommunalem Abwasser, mit einer mechanischen Reinigungsstufe (11, 40), einer ersten biologischen Reinigungsstufe (12, 41) und einer zweiten biologischen Reinigungsstufe (13, 42), bei der die zweite biologische Reinigungsstufe (13, 42) eine biologische Filteranlage ist, die sowohl eine chemisch-physikalische als auch eine biologische Reinigung bewirkt, die eine Filterstufe für die Nitrifikation (20, 47) und eine in Strömungsrichtung nachgeschaltete Filterstufe für die Denitrifikation (21, 48) aufweist, wobei die Filterεtufen mindestens einen biologischen Filter (70) aufweisen, dadurch gekennzeichnet, daß die erste biologische Reinigungsstufe so dimensioniert ist, daß mindestens die Kohlenstoffbelastung und höchstens sowohl die Kohlenstoffbelastung als auch die im 24-Stunden- Mittel anfallende Stickstoffbelastung (Stickstoff- Stoßfaktor f„ = 1,0) bei Bemessungstemperatur abgebaut wird und die zweite biologische Reinigungsstufe (13, 42) im Aufwärtsstrom betrieben wird und so bemessen ist, daß mindestens die tageszeitlichen Spitzen der Stickstoffbelastung (Stoßfaktor für Verhältnis maximaler Zweitstunden- Stickstoffbelastung zu 24-Stunden-Mittel f„ > 1,0) selbst bei niedrigen Temperaturen (< 12°C) auf ein bestimmbares Maß abgebaut werden.1. Plant for the purification of waste water, in particular municipal waste water, with a mechanical purification stage (11, 40), a first biological purification stage (12, 41) and a second biological purification stage (13, 42), in which the second biological purification stage ( 13, 42) is a biological filter system which effects both a chemical-physical and a biological cleaning, which has a filter stage for the nitrification (20, 47) and a downstream filter stage for the denitrification (21, 48), whereby the filter stages have at least one biological filter (70), characterized in that the first biological cleaning stage is dimensioned in such a way that at least the carbon load and at most both the carbon load and the nitrogen load obtained on a 24-hour average (nitrogen impact factor f "= 1.0) is degraded at the rated temperature and the second biological cleaning Level (13, 42) is operated in an upward flow and is dimensioned such that at least the daily peaks of the nitrogen load (impact factor for the ratio of the maximum second-hour nitrogen load to the 24-hour mean f "> 1.0) even at low temperatures (<12 ° C) are reduced to a determinable level.
2. Anlage für die Reinigung von Abwasser nach Anspruch 1, dadurch gekennzeichnet, daß innerhalb der zweiten biologischen Reinigungsstufe (13,42) vor mindestens einer der Filterstufen (20,47), (21,48) die Eliminierung von Phosphat durch Fällung/Flockung vorgesehen ist.2. Plant for the purification of waste water according to claim 1, characterized in that within the second biological purification stage (13,42) before at least one of the filter stages (20,47), (21,48) Elimination of phosphate by precipitation / flocculation is provided.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß für die Phosphatfällung ein basisches Fällmittel vorgesehen ist und daß vor der Fällung eine pH- Korrektur durch Säuredosierung stattfindet, um die Einsatzmenge des basischen Fällmittels zu optimieren.3. The method according to claim 2, characterized in that a basic precipitant is provided for the phosphate precipitation and that a pH correction by acid metering takes place before the precipitation in order to optimize the amount of the basic precipitant.
4. Anlage für die Reinigung von Abwasser nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Filterstufen (20,47), (21,48) mehrere parallel geschaltete biologische Filter (70) aufweisen.4. Plant for the purification of waste water according to one of the preceding claims, characterized in that the filter stages (20, 47), (21, 48) have a plurality of biological filters (70) connected in parallel.
5. Anlage für die Reinigung von Abwasser nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß in der ersten biologischen Reinigungsstufe (12,41) eine Denitrifikationsanlage (17,45) vorgesehen ist und innerhalb der zweiten biologischen Reinigungsstufe (13,42) ein Teil des Ablaufs der ersten Filterstufe (20,47) in die Denitrifikationsanlage (17,45) zurückgeführt wird.5. Plant for the purification of waste water according to one of the preceding claims, characterized in that a denitrification plant (17,45) is provided in the first biological purification stage (12, 41) and part within the second biological purification stage (13, 42) the end of the first filter stage (20, 47) is returned to the denitrification system (17.45).
6. Anlage für die Reinigung von Abwasser nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das bei der Spülung der Filterstufen6. Plant for the purification of waste water according to one of the preceding claims, characterized in that that in the rinsing of the filter stages
(20,47) , (21,48) anfallende Spülabwasser im Speicherbeckenbetrieb einer separaten Behandlung (25) zugeführt wird.(20,47), (21,48) rinsing waste water in storage tank operation is fed to a separate treatment (25).
7. Anlage für die Reinigung von Abwasser nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß in der mechanischen Reinigungsstufe (11,40) Phosphat und CSB durch Fällung/Flockung eliminiert werden.7. Plant for the purification of waste water according to one of the preceding claims, characterized in that in the mechanical cleaning stage (11.40) Phosphate and COD can be eliminated by precipitation / flocculation.
8. Anlage für die Reinigung von Abwasser nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die erste biologische Reinigungsstufe (12) eine Reinsauer-Stoff-Belebungsanlage ist.8. Plant for the purification of wastewater according to one of claims 1 to 7, characterized in that the first biological purification stage (12) is a pure acid revitalization plant.
9. Anlage für die Reinigung von Abwasser nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die erste biologische Reinigungsstufe (12) eine einstufige Belebungsanlage nach A 131 ist.9. Plant for the purification of waste water according to one of claims 1 to 7, characterized in that the first biological purification stage (12) is a one-stage activation system according to A 131.
10. Anlage für die Reinigung von Abwasser nach einem der Ansprüche 1-7, dadurch gekennzeichnet, daß die erste biologische Reinigungsstufe (41) eine biologische Filteranlage ist, die in AufwärtsStrömung betrieben wird, sowohl eine chemisch-physikalische als auch eine biologische Reinigung bewirkt und mindestens eine Filterstufe (45) für Denitrifikation und Kohlenstoffabbau und/oder mindestens eine Filterstufe (46) für Kohlenstoffabbau und10. Plant for the purification of waste water according to one of claims 1-7, characterized in that the first biological purification stage (41) is a biological filter system, which is operated in upward flow, brings about both a chemical-physical and a biological purification and at least one filter stage (45) for denitrification and carbon degradation and / or at least one filter stage (46) for carbon degradation and
Nitrifikation aufweist, wobei die Filterstufen (45,46) mindestens einen biologischen Filter (70) aufweisen.Has nitrification, the filter stages (45, 46) having at least one biological filter (70).
11. Anlage für die Reinigung von Abwasser nach Anspruch 10, dadurch gekennzeichnet, daß die Filterstufe (45) eine anaerobe Zone für die biologischen Phosphatelimination und eine anoxische Zone für die Denitrifikation aufweist, und daß die Filterstufe (45) wahlweise anoxisch bzw. anaerob/anoxisch oder aerob betrieben werdne kann.11. Plant for the purification of waste water according to claim 10, characterized in that the filter stage (45) has an anaerobic zone for biological phosphate removal and an anoxic zone for denitrification, and that the filter stage (45) is optionally anoxic or anaerobic / can be operated anoxically or aerobically.
12. Biologischer Filter, insbesondere für die Verwendung in einer Anlage für die Reinigung von Abwasser nach Anspruch 11, mit einem Gehäuse (71), einem Düsenboden (76), einem oberhalb des Düsenbodens (76) angeordneten Prozeßluftverteiler (74) mit Prozeßluftdüsen (75), wobei über dem Düsenboden (76) ein körniges Filtermaterial (73) aufgeschüttet ist, dadurch gekennzeichnet, daß über dem Düsenboden (76) ein Rezirkulationsverteiler (49') angeordnet ist. 12. Biological filter, especially for use in a plant for the purification of waste water after Claim 11, with a housing (71), a nozzle base (76), a process air distributor (74) with process air nozzles (75) arranged above the nozzle base (76), a granular filter material (73) being heaped up over the nozzle base (76), characterized in that a recirculation distributor (49 ') is arranged above the nozzle base (76).
PCT/EP1994/000765 1993-03-15 1994-03-11 Sewage treatment plant WO1994021568A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19940910411 EP0689523B1 (en) 1993-03-15 1994-03-11 Process for the purification of waste water,in particular communal waste water
US08/513,869 US5798044A (en) 1993-03-15 1994-03-11 Method for sewage treatment
DE9421651U DE9421651U1 (en) 1993-03-15 1994-03-11 Plant for the treatment of waste water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4308156.8 1993-03-15
DE4308156A DE4308156C2 (en) 1993-03-15 1993-03-15 Plant for the purification of waste water

Publications (1)

Publication Number Publication Date
WO1994021568A1 true WO1994021568A1 (en) 1994-09-29

Family

ID=6482818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1994/000765 WO1994021568A1 (en) 1993-03-15 1994-03-11 Sewage treatment plant

Country Status (5)

Country Link
US (1) US5798044A (en)
EP (1) EP0689523B1 (en)
AT (1) ATE145634T1 (en)
DE (1) DE4308156C2 (en)
WO (1) WO1994021568A1 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19631796A1 (en) * 1996-08-07 1998-02-26 Otto Oeko Tech Biological purification for treating sewage
DE19650482B4 (en) * 1996-12-05 2004-02-19 Riße, Henry, Dipl.-Ing. Energy-optimized wastewater treatment plant
EP0847963A3 (en) * 1996-12-13 1999-01-27 Böhnke, Botho, Prof. Dr.-Ing. Dr. h.c. mult. Process for operating a two-stage installation for purifying communal waste water and installation for carrying out the process
DE19806938A1 (en) * 1998-02-19 1999-08-26 Philipp Mueller Gmbh Stationary bed reactor for denitrification of water, used in sewage works with biological unit
AUPP439398A0 (en) * 1998-06-29 1998-07-23 Bellamy, Kenneth M. Method of treating waste water
US6271020B1 (en) 1999-07-07 2001-08-07 Alberta Research Council Inc. Two-stage hybrid biofiltration
US6284138B1 (en) 2000-01-11 2001-09-04 Hydro Flo, Inc. Method and arrangement for introduction of sewage pre-treatment upstream of sewage treatment facility
US6517723B1 (en) 2000-07-27 2003-02-11 Ch2M Hill, Inc. Method and apparatus for treating wastewater using membrane filters
US6444126B1 (en) * 2000-09-19 2002-09-03 T. M. Gates, Inc. System and method for treating sanitary wastewater for on-site disposal
FR2814454B1 (en) * 2000-09-27 2002-12-20 Degremont PROCESS FOR THE PURIFICATION OF WASTEWATER FOR THE ELIMINATION OF NITROGEN AND PHOSPHATE POLLUTIONS
EP1227066A3 (en) * 2001-01-05 2003-11-19 Herwig Adler Method and Apparatus for the biological treatment of municipal, industrial or commercial waste water
US20030105505A1 (en) * 2001-12-05 2003-06-05 Pianca Anne M. Medical leads with superior handling characteristics
US6946073B2 (en) * 2003-09-02 2005-09-20 Ch2M Hill, Inc. Method for treating wastewater in a membrane bioreactor to produce a low phosphorus effluent
US7022233B2 (en) * 2003-11-07 2006-04-04 Severn Trent Services, Water Purification Solutions, Inc. Biologically active reactor system and method for treating wastewater
US7320749B2 (en) * 2004-02-09 2008-01-22 Eco-Oxygen Technologies, Llc Method and apparatus for control of a gas or chemical
US7563371B2 (en) * 2005-04-13 2009-07-21 Mccune-Sanders William Jason Tubular anaerobic digester
GB2430793A (en) * 2005-09-29 2007-04-04 Bookham Technology Plc Bragg grating reflection strength control
US7927493B2 (en) * 2007-05-11 2011-04-19 Ch2M Hill, Inc. Low phosphorus water treatment methods
WO2010131234A1 (en) * 2009-05-15 2010-11-18 Bioenergia S.R.L. Process for the biologic treatment of organic wastes and plant therefor
US8721887B2 (en) 2009-12-07 2014-05-13 Ch2M Hill, Inc. Method and system for treating wastewater
CN101857309B (en) * 2010-06-12 2012-08-08 浙江工商大学 Electrochemical biological combined denitrification reactor
US9969635B2 (en) 2011-11-18 2018-05-15 Infilco Degremont, Inc. Downflow denitrification system
CN103539260B (en) * 2013-10-14 2015-03-04 北京工业大学 Method for enhancing anammox granular sludge in UASB
CN106277558A (en) * 2015-06-25 2017-01-04 安徽华骐环保科技股份有限公司 A kind of integrate process for removing nitrogen and phosphor from sewage and the device that physical biochemistry filters
PL429686A1 (en) * 2019-04-18 2020-10-19 Id'eau Spółka Z Ograniczoną Odpowiedzialnością Technological system for wastewater treatment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4826601A (en) * 1986-08-01 1989-05-02 Waste Treatment Technologies, Inc. Sewage treatment method
DE3933513A1 (en) * 1989-10-06 1991-04-18 Boehnke Botho Biological waste-water treatment plant - by adsorption process, in which performance is improved by addition of final denitrification filtration stage
EP0456607A1 (en) * 1990-05-08 1991-11-13 Ciba-Geigy Ag Water purification process
WO1992004284A1 (en) * 1990-09-07 1992-03-19 Axel Johnson Engineering Ab Method for purification of wastewater
EP0543457A1 (en) * 1991-11-18 1993-05-26 Tauw Milieu B.V. Method for the treatment of sewage and installation to be used for this method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2824446C2 (en) * 1978-06-03 1985-09-05 Davy Bamag Gmbh, 6308 Butzbach Process for the nitrification of waste water with the help of a trickling filter
DE3131989A1 (en) * 1981-08-13 1983-02-24 Linde Ag, 6200 Wiesbaden METHOD AND DEVICE FOR BIOLOGICAL WASTE WATER TREATMENT
DE3136409A1 (en) * 1981-09-14 1983-03-24 Linde Ag, 6200 Wiesbaden Process and device for the biological purification of waste water
CH667449A5 (en) * 1986-04-23 1988-10-14 Sulzer Ag METHOD FOR THE BIOLOGICAL PURIFICATION OF WATER OR WASTE WATER FROM ORGANIC NITROGEN-BASED IMPURITIES.
US5252214A (en) * 1987-02-27 1993-10-12 Gunter Lorenz Biological dephosphatization and (de)nitrification
US5022993A (en) * 1988-06-02 1991-06-11 Orange Water And Sewer Authority Process for treating wastewater
DE3916679A1 (en) * 1989-05-23 1990-11-29 Boehnke Botho Installation for purifying waste water, esp. domestic waste water - has 2 biologically intensified filtration stages, 1st ŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸŸ for nitrification and 2nd for denitrification
US5393427A (en) * 1992-04-09 1995-02-28 Barnard; James L. Process for the biological treatment of wastewater
US5480548A (en) * 1993-12-28 1996-01-02 Ch2M Hill, Inc. Wastewater biological phosphorus removal process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4826601A (en) * 1986-08-01 1989-05-02 Waste Treatment Technologies, Inc. Sewage treatment method
DE3933513A1 (en) * 1989-10-06 1991-04-18 Boehnke Botho Biological waste-water treatment plant - by adsorption process, in which performance is improved by addition of final denitrification filtration stage
EP0456607A1 (en) * 1990-05-08 1991-11-13 Ciba-Geigy Ag Water purification process
WO1992004284A1 (en) * 1990-09-07 1992-03-19 Axel Johnson Engineering Ab Method for purification of wastewater
EP0543457A1 (en) * 1991-11-18 1993-05-26 Tauw Milieu B.V. Method for the treatment of sewage and installation to be used for this method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
G. RHEINEIMER ET AL.: "STICKSTOFFKREISLAUF IM WASSER", 1988, R.OLDENBOURG VERLAG, MÜNCHEN WIEN *
HELMER/SEKOULOV: "WEITERGEHENDE ABWASSERREINIGUNG", 1977, DEUTSCHER FACHSCHRIFTEN-VERLAG, MAINZ-WIESBADEN *
NOLTING B.: "UNTERSUCHUNGEN ZUR BEDEUTUNG DER SÄUREKAPAZITÄT BEI BELEBUNGSANLAGEN MIT NITRIFIKATION UND SIMULTANFÄLLUNG", GWF WASSER ABWASSER, vol. 130, no. 5, May 1989 (1989-05-01), MUNCHEN DE, pages 229 - 234 *

Also Published As

Publication number Publication date
ATE145634T1 (en) 1996-12-15
US5798044A (en) 1998-08-25
EP0689523A1 (en) 1996-01-03
DE4308156C2 (en) 2000-04-27
EP0689523B1 (en) 1996-11-27
DE4308156A1 (en) 1994-09-22

Similar Documents

Publication Publication Date Title
EP0689523B1 (en) Process for the purification of waste water,in particular communal waste water
DE69202985T2 (en) METHOD AND SYSTEM FOR BIOLOGICAL REMOVAL OF NITROGEN FROM SEWAGE.
EP0247519B1 (en) Method for sewage purification
DE60111070T2 (en) WASTEWATER PURIFICATION METHOD FOR REMOVING NITROGEN-AND-PHOSPHATE-CONTAINING POLLUTION
DE69918414T2 (en) METHOD AND APPARATUS FOR TREATING WASTEWATER WITH AN ANERAL FLOW REACTOR
EP0497114B1 (en) Process for purifying waste water containing phosphates and nitrogen compounds
EP1309517B1 (en) Method for purifying waste water, and purification plant for carrying out said method
DE3241348C2 (en)
EP1531123B1 (en) Method and installation for the treatment of soiled water from ships
EP0483312B1 (en) Process for eliminating nitrates and phosphates in the biological purification of waste water
DE3833185A1 (en) Process for biological waste water purification
DE19626592C2 (en) Biological small sewage treatment plant
EP0025597B1 (en) Process and plant for the activated-sludge purification of waste water
DE19806938A1 (en) Stationary bed reactor for denitrification of water, used in sewage works with biological unit
DE3235992C2 (en) Plant for the biological treatment and denitrification of waste water
EP0846664B1 (en) Waste water treatment plant achieving optimum use of the energy
AT396684B (en) Activated sludge process for the purification of waste water
DE9421651U1 (en) Plant for the treatment of waste water
DE4332815A1 (en) Sewage treatment plant operating by the SBR principle
EP0888253A1 (en) Small-scale biological sewage treatment plant
EP1030821B1 (en) Method for denitrifying waste water
EP2230212B9 (en) Method for operating a waste water treatment plant for cleaning waste water and waste water treatment plant
DE19843967A1 (en) Process for the denitrification of waste water
EP1903010A1 (en) Method for wastewater treatment in continuously charged activated sludge plants comprising upstream denitrification
DE2740766A1 (en) PROCESS FOR THE BIOCHEMICAL CLEANING OF DOMESTIC, COMMERCIAL, INDUSTRIAL OR MIXED WASTE WATER WHEN ORGANIC INGREDIENTS THAT CAUSE THE UNWANTED DEVELOPMENT OF THREADBACTERIA AND / OR THE FORMATION OF BLUES

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1994910411

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08513869

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1994910411

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994910411

Country of ref document: EP