WO1994019590A1 - Reciprocating engine having two-stage crank mechanism - Google Patents

Reciprocating engine having two-stage crank mechanism Download PDF

Info

Publication number
WO1994019590A1
WO1994019590A1 PCT/JP1993/000250 JP9300250W WO9419590A1 WO 1994019590 A1 WO1994019590 A1 WO 1994019590A1 JP 9300250 W JP9300250 W JP 9300250W WO 9419590 A1 WO9419590 A1 WO 9419590A1
Authority
WO
WIPO (PCT)
Prior art keywords
crank
shaft
stage
connecting shaft
flywheel
Prior art date
Application number
PCT/JP1993/000250
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsugu Aoyama
Original Assignee
Mitsugu Aoyama
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsugu Aoyama filed Critical Mitsugu Aoyama
Priority to AU35754/93A priority Critical patent/AU3575493A/en
Priority to PCT/JP1993/000250 priority patent/WO1994019590A1/en
Publication of WO1994019590A1 publication Critical patent/WO1994019590A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B9/00Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups
    • F01B9/02Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with crankshaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • F02B41/02Engines with prolonged expansion

Definitions

  • the present invention belongs to the reciprocating engine in the internal machine M, and the starting force of the gas combustion explosion is changed from a piston to a crank through a compressor! ! To crank 3 ⁇ 4, to rotational force! In other words, it relates to an engine that extracts advanced torque and outputs it. Furthermore, the two-stage combination of the first and second stages is used.
  • crank radius is reduced to a shorter radius, and the pressure of the crank is increased to reduce the power, and the power factor of the pressure is increased by inertial rotation.]?
  • the purpose is to strongly react to the force, continue the normal rotation, and increase the engine output error.
  • the fuel chamber has the minimum volume at the initial explosion pressure, and when the explosion pressure 11 is, for example, about 35 /, the next (the C-biston position is lowered and it is twice the initial volume).
  • the explosion pressure value drops to about 1/2
  • the explosion pressure value drops to about 1 / 2.5
  • the drop from the top dead center of the biston with the maximum explosion force ⁇ There is an irrationality of the ability to change the torque on the starting force, and the irrationality of the greeting ability.
  • the shaded area D in the lower left of the figure is the effective energy.]
  • The shaded area in the lower right is the effective energy.
  • the extension of the graph to the side ⁇ indicates the value of the value ⁇ This value is based on the force of one explosive force received by the biston ⁇
  • the extension of the left side of the biston ⁇ Shown in a. b. c. d-e. ⁇ is a phenomenon in which the piston is moved downward from the top dead center position S, the room becomes wider, and the explosion pressure value suddenly declines.
  • the explosion pressure value which was the largest in the top dead center area of the above-mentioned crank, is .g, which is inversely proportional to the square of the shoe drop of the biston.
  • the first stage and the second stage of the present invention there is a two-S-rank mechanism with rank.
  • the second stage crank which is connected to the second stage crank 1), the second stage crank and flywheel / re 12 and the second stage connecting shaft 10
  • the structure of this ⁇ -stage crank structure is as follows: the front-stage crank fulcrum at the center of the front-stage crank] 3 is fixed to the rear-stage and flywheel 12 as the front-stage crank.
  • the location is set to the front rank 13 on the left side of the center line passing through the latter rank [1 ] , but the position is close to the latter rank IS11. Set to position.
  • the front crank 13 pivots only the front front crank fulcrum ⁇ on the rear crank / flywheel 12, but the rotation is slow.
  • This relative front Kura ink split Ngu ⁇ shaft are fixed out of the preceding click rank I 3 is an operation which hula Ihoinore 1 doubles the inertial rotation force Zhang, subsequent click rank and off La Ihoi / scan pre ring provided Les 12 bearing shaft ⁇ spring 30 to face the hole 26.3] is receiving resiliently sandwiching Memi the preceding clan click split ring bearing shaft 2 4 in the rotational direction .
  • the piston is operated with two cranks, and the compression and exhaust strokes of the explosion and suction, compression, and exhaust strokes performed during one round trip of the piston are performed. Due to the occurrence of inter-axle dislocation temporary cracking that occurs only in the post-compression stage], starting from the point when two-thirds of the compression stroke has elapsed with the rotation of the crank connecting shaft 9 >> Top dead center The operation is completed at about 10 degrees before this, but in this operating region, the two shafts are used to rotate the front and rear cranks to shorten the distance between both crank shafts. It operates as a crank between shafts.
  • the distance between the two shafts is temporarily reduced to a flute at the interval between the front crank fulcrum shaft M provided in the front crank I 3 and the rear crank shaft 11.
  • the rotating force of the crank and flywheel is the remaining rotating force of the explosive power of the first stage explosion process1), which is several times the power factor of the insidious rotating force.
  • is raised to its labor saving driving force is the gel front click rank connection shaft 9 which transmits the pre-dunk rank I 3 directly from the preceding class link fulcrum shaft 14 pushed, earthenware pots row 3 ⁇ 4 when this short Inter-axis operation of the crank arm radius is performed *
  • the crank arm radius is reduced by about 1/3. **,, Next operation
  • the explosion stroke and the suction stroke are the same, and the compression stroke and the exhaust stroke are also the same.
  • the front crank spring receiving member 2 is located at the missing portion of the hole, and is fixed by protruding. In the notch hole S, insert the front crank spring receiving 3 ⁇ 42 in the upper part. Half-fix it to the rear crank and flywheel 12 so that it is sandwiched in the lower part! )
  • branch panel 30.31 Ru to a circle direction of rotation of the front click rank I 3, Ru Citea to produce a cushioning effect ⁇ strength. Therefore from the preceding stage class link split ring bearing shaft 24
  • the front crank spring receiver 1 ⁇ 224 is located at a distance of at least twice the distance from S li to the front crank connection 3 ⁇ 49.Therefore, the power factor of the remaining inertia S rotational force is about twice is increased to, ⁇ click rank: 13 through the bare Li in g S you have to rotatable in front Kura link connecting 9 1, by increasing the co-down Rod 6 I] bis t 4 It is the transition.
  • This operation starts when the second crank connection line 9 is located at the bottom dead center 4 of the subsequent crank drum fly-wheel 12. That is, the former stage crank connection ⁇ 9 rotates forward and starts from the bottom dead center 44 of the latter stage and flywheel 1 at the position shown in Fig.
  • the moment of inertia of the rear-stage crank and flywheel 12 is expressed by It is gradually switched to the front crank fulcrum shaft 14 installed on the crank and fly wheel, and then shifted to the front crank shaft 11, and only a part of the post compression stage is performed in the middle of the stroke. It becomes the arm crank connection axis.
  • This operation is a short radius crank operation with a short distance I between the two crank shafts.In the normal crank operation, the crank radius is smaller than that of the rear crank shaft 11 with respect to the rear crank shaft 11.
  • the section that operates with the normal crank radius extends from near top dead center in Fig. 4 to Fig. 5 '! ), And runs through from Fig. 2 to Fig. 3.
  • the inertia rotational force of the rear-stage crank and flywheel / rail 12 is increased when the front-stage crank fulcrum shaft M reaches the bottom dead center position shown in Fig. 3.
  • the axis position is slightly eccentric with the axis 11] 3, and the axis relation that is the shortest distance of the radius of the crank arm is used. Therefore, the inertial rotational force is the rotational force of the rear-stage crank and flywheel 12), and the force directly shifts to the front-stage crank fulcrum shaft 14 and takes the action point.
  • the force acts directly on the front 'step crank connecting shaft 9 in the upper part of the front 13 crank 13 * Lighten the connector 6 or piston 4 Press up and compress.
  • the intermediate shaft rapid rotation operation performed by the front crank connecting shaft 9 is, as shown in Fig. 4, where the front crank connecting shaft consists of the center of the biston bin 5 and the front crank fulcrum shaft. Slightly before the two-point sales line center line 2 connecting the centers of W * A force repulsing leftward against forward clockwise rotation occurs. The repulsive force reaches ⁇ above 16], and] 3.
  • the center of the preceding crank connecting shaft 9 shifts, and if it crosses this top dead center 16 only slightly in the clockwise direction, at the same time, The force of rapid rotation to the right, opposite to the direction of the previous repulsion, is generated, and the intermediate shaft rapid rotation is completed, but at the same time, the rear crank connecting shaft 10 is at its top dead center 43. j?] 5 degrees Even before this, the rotation of the preceding crank connecting shaft 9 never rotates in the reverse direction, but continues in the normal rotation. In this case, in the crank operation of the normal engine, the maximum explosive power due to the ignition is caused by the biston 4 and reaches the crank connection shaft at a time before the position of the top dead center 3 by the biston 4. The engine is stopped by rotating the crank in the reverse direction.
  • Pushing up force towards is the next through. It is a crank arm with a short radius that is formed by combining the rear crank shaft 11 and the front crank shaft 14 in the post-compression stage, and the two shafts are extremely short.
  • the rear crankshaft 11 is converted to the main shaft.] 3 and the front crankshaft 1 »is converted to the connecting shaft, and the force is transmitted directly to the front crank 13 and the front crank is transmitted.
  • the connecting shaft 9 can be pushed up, this inter-axis transposition temporary crank operation, which operates only in the post-compression stage, is as short as approximately one-third of the crank radius arm in other stroke sections.
  • the inertia rotational force accumulated in the second-stage crank / flywheel / re 12 has a power factor of approximately three times, and since the expected compression force is 150, it is three times that.
  • the top of the wheel is slightly accelerated, and the excess rotation force causes the flywheel to further accelerate forward rotation.
  • the front-stage crank connecting shaft 9 ′ accelerates and rises above the two-dot chain line center line 29.
  • the fuel is low or LP gas. Charcoal gas. Hydrogen alcohol / can produce strong enough power.
  • FIG. 1 is a front sectional view of the present invention
  • FIG. 2 is a side sectional view at the time when an explosion stroke or a suction stroke is completed.
  • Fig. 3 is a diagram at the time when the pre-compression stage ends at lJ in the compression process or the exhaust stroke, and continues to enter the post-compression stage.
  • Fig. 4 The post-compression stage is over at the time of the butt! Immediately, the intermediate shaft rapid operation is activated, and even if the front-stage crank connecting shaft 9 receives an explosive force, it overcomes the force corresponding to the explosion, and the flywheel 12 saves labor. It is a diagram when a forward rotation is obtained by causing a reverse rotation. Fig.
  • Figure 5 shows that when the engine is normal, It is a diagram that begins to grow.
  • Figure 6 shows the force value of the starting force at the time of the explosion and the force value generated at the circumferential angle that indicates the distribution of effective and invalid torque that changes with the transfer of biston 4. It is a straight line.
  • indicates the case of a normal engine.
  • B indicates the case of the present engine.
  • This engine is the most fuel-efficient and energy-saving engine that can save a lot of fuel oil.]
  • the engine's weight to horsepower ratio is extremely large. It is a high-efficiency engine that can be activated with the same amount of fuel oil, which is about twice as large as the engine.
  • With the first structure it is accurate at the top dead center of the piston like a conventional engine. With maximum explosive power was the first condition, but in this engine, 1) ignition was started at about 30 degrees before top dead center. * The maximum explosive power was about 18 degrees before top dead center. Even if it responds to the crank, the repulsion force of the same is applied to the crank. * The residual inertia generated in the previous stroke by Flyhoy, etc.
  • this engine does not require a complete top dead center explosion, does not require the use of high-octane gasoline, and uses fuel oil, kerosene, light oil, heavy oil A, LP gas, charcoal gas, and hydrogen gas. -Can be used.
  • the engine efficiency can be improved up to 70%, it is considered to be a small-sized, light-weight, and large-horsepower engine. :!: If the engine is manufactured by the engine of the present invention, a power of about 150 horsepower can be exerted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

An internal combustion engine, more particularly a reciprocating engine is described. In a conventional reciprocating engine, only 25 % of the explosion starting power thereof is used as a driving power for torque rotating the crank. A reciprocating engine of the invention adopts a two-stage crank mechanism constituted by a combination of a front stage crank mechanism with a rear stage crank mechanism comprising a rear stage crank shaft (1), a flywheel (12) doubling as a rear stage crank and a rear stage crank connecting shaft (10) so that a compression power factor by inertial rotating force is increased to thereby prevent the reverse rotation of the crank. The reciprocating engine having the two-stage crank mechanism of the present invention is suitable for small, high-output engine for an automobile and the like.

Description

発明の名 ¾■、 二 sク ラ ンク撐構のレシプロエンジン  The reciprocating engine of the invention
技銜分野  Skill bite field
この発明は、 内¾機 Mでレシプロエンジンに属し、 ガスの燃垸爆癸 の起動力を、 ビス ト ンからコ ンロ ッ ドを介してク ラ ンク違 へ!!にク ラ ンク ¾へと、 回転力に! ¾換して, 高度のト クを取出して出力とするェ ン ジンに関する。 更には、 前段ク ラ ンク と後段ク ラ ンク との二段組合せによ The present invention belongs to the reciprocating engine in the internal machine M, and the starting force of the gas combustion explosion is changed from a piston to a crank through a compressor! ! To crank ¾, to rotational force! In other words, it relates to an engine that extracts advanced torque and outputs it. Furthermore, the two-stage combination of the first and second stages is used.
. その回動をもってクラ ンク半径^の短半径化を構成させて、 ク ラ ンク の圧綍^動を gめて省力化し、 慣性回 力による圧^の力率の増大を計]? 更 爆発力に強く反動させ、 正回転を続け、 エ ンジン出力の ¾違増大を行 う目的である。 With this rotation, the crank radius is reduced to a shorter radius, and the pressure of the crank is increased to reduce the power, and the power factor of the pressure is increased by inertial rotation.]? The purpose is to strongly react to the force, continue the normal rotation, and increase the engine output error.
背: S ix ' j  Height: S ix 'j
以前よ i>今日迄、 レシプロェンジンの効率は 2 5 %程でもると言はれて 来た。 その低窈率てある原因の一つに、 ビス ドンが上死点位 Sの 1 3度程 手前で点火 ¾镜が始ま ]?、 上死点に至って爆発力體は最高に違し、 その起 動力はビス ト ンを強く^下げて、 コ ンロ ッ ドを介してク ラ ンク連結 よ ]? ク ラ ンクを回転させよう とするが、 この時点に至ったときに、 従来ェンジ ンでは、 ク ラ ンク違結 の軸位置が、 ク ラ ンクの上死点位置に正 ¾に来た 場合又はそれよ ]?少し後の時点による最大爆発力の到来て ければ、 逆 e とるつてェンジンは停止してしまうのて、 正^ 上死点爆発が必要と ¾る が、 この場合に、 上死点て爆発力が到違したとしても、 この時点てはコ ン -ノ.ドはビス ト ンのカを受けて真下方向へのみ^らくが, その力を受けよ うとして るクランク違結軲は、 コ ン つ ドからの力の方向とは 9 0度違 つた真横方向への力の らき しか受けることが出 ¾ず、 ¾つて爆発起動力 ϋ 最高であっても、 その力はク ラ ンクを ト ク回 させる為の l¾力と 新た な用紙 は らず、 ^力値てある。 れがビス ト ンとコ ンロ ドとク ラ ンク との連 結の構造上の欠陥てある。 Until today, it has been said that reciprocating efficiency is as high as 25%. One of the causes of the low Yo rate is that bisdon ignites about 13 degrees before top dead center S S, and the explosive power body is the highest at the top dead center. The driving force strongly lowers the piston, and the crank is connected via the connector.]? Attempts to rotate the crank, but when this point is reached, in the conventional engine, If the axial position of the crank is exactly at the top dead center of the crank, or is it?]? Because it stops, a positive top dead center explosion is required, but in this case, even if the top dead center and the explosion power differ, at this point the con- The direction of the crank that is trying to receive that force is 90 degrees different from the direction of the force from the connector. Can only receive the force of the sideways force, and therefore the explosive motive force っ て も Even at the highest, the force is the l¾ force to turn the crank and the new paper But it is a strength. This is a structural defect in the connection between the piston, the compressor and the crank.
上述の作動と、 更にもう一つの不合理 点がある。 それは燃垸室の広さ の変化と爆発圧力値の^ Sの関係である。 それは最初の爆発圧力儘は燃浣 室が最小容積であって、 爆癸圧力 11が, 例へば、 3 5 / 程である時に 次 (Cビス ト ン位置が降下して、 最初の容積の 2倍の広さにるると、 爆発圧 力値は約 2分の 1 に降下して約 1 Ί . 5 と つてしま う ことで、 爆 発力 ΐΐが最大であるビス トンの上死点からの降下率が、起動力に及ぼすトル ク変.挨能力の不合理性があるのである。 その状 IIは苐六図で示す。 爆発力 と^効ト ク值の発生場所と有効トノレク itの癸生場所と、 それらの残留場 所と量を示す図で、 図中左下 斜線部分 Dが^効トノレク¾であ]^ 右下 斜辏部が有効ト ク ¾であ.る。 ^:. S鎳グラ フの横方への延長鎳にト ク ©数値を示す。 この数値はビス ト ンが受け 爆発力の 1 当 の力 ίΐを基 準としたものである。 ビス ト ンの左側の延長鎳に示す a . b . c . d - e . ίはビス ト ンが上死点位 Sから下方向へ移動させられて、 ^镜室内が広 く ]?、 爆発した圧力値が急 ¾に ¾衰し、 これが前述のク ラ ンクの上死点 域で最大であったものが、 ビス ト ンの降下の臣鞋の二乗に反比例して . g する爆発圧力値を示す。  There is one more unreasonable point with the operation described above. It is the relationship between the change in the size of the combustion chamber and the explosion pressure value ^ S. That is, the fuel chamber has the minimum volume at the initial explosion pressure, and when the explosion pressure 11 is, for example, about 35 /, the next (the C-biston position is lowered and it is twice the initial volume). When the explosion pressure value drops to about 1/2, the explosion pressure value drops to about 1 / 2.5, and the drop from the top dead center of the biston with the maximum explosion force ΐΐ There is an irrationality of the ability to change the torque on the starting force, and the irrationality of the greeting ability. In the figure showing the locations and their remaining locations and amounts, the shaded area D in the lower left of the figure is the effective energy.] ^ The shaded area in the lower right is the effective energy. The extension of the graph to the side 鎳 indicates the value of the value © This value is based on the force of one explosive force received by the biston 鎳 The extension of the left side of the biston 鎳Shown in a. b. c. d-e. ί is a phenomenon in which the piston is moved downward from the top dead center position S, the room becomes wider, and the explosion pressure value suddenly declines. The explosion pressure value, which was the largest in the top dead center area of the above-mentioned crank, is .g, which is inversely proportional to the square of the shoe drop of the biston.
このよう 不合理性によって全爆発エ ネ ノレギ一の 4分の 1 しかト ク化 し得¾ 従 エンジンに対し、 本尧明を以つて改良すれは-、 苐六図中 Bで 示すように、 . A図中の左下]?斜鎳 ¾ Dの^効ト .ク¾は、 クラ ンクが上死 点に至るォ目当手前から 高爆発力 ΪΙを佘すところ ¾く強力 ト クと化す ことが出来る。  Due to such irrationalities, only one-fourth of the total explosion energy can be saved.With respect to the slave engine, it is possible to improve with this invention-as shown in B in Fig. 6, [Lower left in Fig. A]? The oblique effect of D. The effect is that the crank should have a high explosive power from just before it reaches the top dead center. Can be done.
発^の ϋ示  Indication of ^
よ の穽害を解^しよ うとするのが本発明の前段クラ ンクと後 gク 新た な ¾紙 ラ ンクとから る二 Sクラ ンク機構の方法てある。 図靣によって実 ¾例を 説明する。 先づ後段クランク檨構として * 從来 ¾ のクラ ンク接構てある 後段ク ラ ンク軲1】と後段ク ラ ンク兼フ ラ イホイ /レ 12と ¾ ¾ク ラ ンク連結軸 10とを以つて成る従来通]?の後段クラ ンク撐構に^設するようにして, 前 段ク ラ ンク檨構を ^設するのでもる。 この^段ク ラ ンク接構の構成は、 前 段ク ラ ンク ] 3の中央部の, 前段クラ ンク支点章 を後段クラ ンク兼フ ラ イ ホィノレ 12に、 前段ク ラ ンク として固設するか, その場所の^定は、 後 段クラ ンク ¾ 1]を通過する 中心線よ 左方側て、 前段ク ラ ンク 13に ^設 するが、 その位置は後段クラ ンク IS 11に出来得る 接近し 位置に設定 する。 こうして前段クラ ンク 13は自侔の前段クラ ンク支点 ¾ のみを後段 ク ラ ンク兼フ ラ イホイ 12に枢軸支させるが、 回転はしるい。 In order to solve the pitfalls of the present invention, it is the first stage and the second stage of the present invention. There is a two-S-rank mechanism with rank. An example will be described with reference to FIG. First, as the second stage crank structure * The second stage crank which is connected to the second stage crank 1), the second stage crank and flywheel / re 12 and the second stage connecting shaft 10 It is also possible to set up the front-end crank structure by installing it in the rear-end crank structure. The structure of this ^ -stage crank structure is as follows: the front-stage crank fulcrum at the center of the front-stage crank] 3 is fixed to the rear-stage and flywheel 12 as the front-stage crank. , The location is set to the front rank 13 on the left side of the center line passing through the latter rank [1 ] , but the position is close to the latter rank IS11. Set to position. Thus, the front crank 13 pivots only the front front crank fulcrum に on the rear crank / flywheel 12, but the rotation is slow.
前段クランク 13の上方都には前段クランク連結^ 9の罔端を各々固設一 体化してクランク状とする。 この前段クランク連 ^ ίέ 〇外局には、 前段 クラ ンク違結 ίέ 9の .泾と同一の内径穴を有する口一ラーベア リ ング 8 の5 内!^が s着しャある。 ベア リ ング 8の外 はコ ンロッ ドのクラ ンク違結部In the upper part of the front crank 13, the leading ends of the front crank connection 9 are respectively fixedly integrated to form a crank shape. This front crank chain ^ ^ 〇 〇 〇 前 局 前 前 前 前 前 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 9 There is ^^ Outside the bearing 8 is the crank joint of the connector
7の街 &部《て接合してボルト とナツ トで籙付ける。 コ ンロ ッ ド 6 の上部 は, ビス ト ン 4 と組合はせて、 ビス ト ンビン 5を挿 Sして ¾設する。 前段 クラ ンク違結 ¾ 9の内部には後段クランク違結 ¾ 10が貫-: 1し, その局固の 間隙には、 m. ^性のゴム等で出来た瑗衝材 45が介在し、 後段ク ラ ンD ク違 ϋί ΐθが前段ク ラ ンク連結軺 9の内靣に衝擎的に接 |≤し いよう 挿 入充填してある。 該後段ク' 'ラ ンク違結 Ιέ 10は, その両靖が各 後段クラ ン ク兼フ ラ イォ、ィ レ 12の上方部分て固設一体化して後段クラ ンク兼フ ラ イ ホ ィノレ: 12を構成して る。 ノ 7 city & department jointed with bolts and nuts. The upper part of connector 6 is combined with biston 4 and biston bin 5 is inserted and set. The rear crank connection ¾10 penetrates through the inside of the front crank connection ¾9, and the material 45 made of m. ^ Rubber is interposed in the localized gap. The latter is inserted and filled in such a way that the difference in angle between the upper and lower clans D does not impinge on | The rear rank is connected to the rank Ιέ10, and the two ranks are fixedly integrated at the upper part of each rear rank and flywheel 12 and the rear rank and flywheel: 12 Is composed. No
前 クラ ンク には前段クラ ンク スプリ ング受 ¾ 24を!]設するが、 その For the front crank, receive the front crank spring ¾ 24! ]
¾ 位置は ¾段ク ラ ンク漦フ ラ イホイ ノレ 12の全外局 ¾ί分の近傍て', いづれの場 位置 The position is in the vicinity of all external stations of the second stage
新たな ¾羝 所ても設定は自由位置であるが, 後段クラ ンク軸 11から前段ク ラ ンク連結 軸 9迄の距^の 2倍以上長い距離の位置にして前段ク ラ ンク 13の下方部分 に軸設する,。 これはフラ イホイノレ 1 が慣性回転力を 2倍にする作動である 前段ク ラ ンク I3から張出して固設されている前段クラ ンク スプリ ング受 軸 に対して、 後段ク ラ ンク兼フ ラ イホイ /レ 12に設けたス プリ ング受軸穴 26内に臨ませた朽バネ 30 . 3]が前段クラ ン ク スプリ ング受軸 24を回転方向 にめみ挟んで弾性的に受止めている。 A new style Although the setting is a free position at any point, it is set at a position that is at least twice as long as the distance from the rear crank shaft 11 to the front crank connecting shaft 9 and is installed below the front crank 13. ,. This relative front Kura ink split Ngu受shaft are fixed out of the preceding click rank I 3 is an operation which hula Ihoinore 1 doubles the inertial rotation force Zhang, subsequent click rank and off La Ihoi / scan pre ring provided Les 12 bearing shaft朽spring 30 to face the hole 26.3] is receiving resiliently sandwiching Memi the preceding clan click split ring bearing shaft 2 4 in the rotational direction .
このようにして、 】 ビス ト ンに対し 2 ク ラ ンクで作動させて, ピス ト ン が一往復する間に行 ¾う爆発と吸入, と圧縮と排気の行程のうち、 圧縮と 排気行程の圧縮後段階でのみ行 ¾う軸間転位一時クラ ンク作動の発生によ ]?、 クラ ンク連結軸 9が回転し圧縮行程のうち 3分の 2程を経過した時点 から始まって》 上死点の手前約 1 0度程で終了させるが, この作動域では 二段階にして設けた前段と後段のク ラ ンクの回転作動を応用して, 両ク ラ ンク軸間を短距離化させ、この.軸間をク ラ ンク と して作動させるのである。 即ち, 圧縮後段階の部分域のみに対し, 前段クラ ンク I3に設けてある前段 クラ ンク支点軸 Mと、 後段ク ラ ンク軸 11との間隔で両軸間が一時的に桎度 に短縮されたクラ ンクに転換されて作動し, ク ラ ンク及びフ ラ イホイルが 今回転する力は,前段爆発行程の爆発力の残存回転力であ 1)、憤性回転力の力 率を数倍に向上させて、 その省力化駆動力が前段クラ ンク支点軸 14から前 段ク ラ ンク I3を直接伝達して前段ク ラ ンク連結軸 9を押上げるのである,こ の時に行 ¾う短クラ ンク腕半径の軸間作動は * この圧縮行程 の後段階の みの行程区間て行 はれ ,、 クランク腕半径が約 3分の 1程短縮されてい **る, , 次に作動 ¾説明すると, 爆発行程と吸入行程は同様であ 1)、 圧縮行程と 排気行程も同様であるので爆発行程から説明する。 In this manner, the piston is operated with two cranks, and the compression and exhaust strokes of the explosion and suction, compression, and exhaust strokes performed during one round trip of the piston are performed. Due to the occurrence of inter-axle dislocation temporary cracking that occurs only in the post-compression stage], starting from the point when two-thirds of the compression stroke has elapsed with the rotation of the crank connecting shaft 9 >> Top dead center The operation is completed at about 10 degrees before this, but in this operating region, the two shafts are used to rotate the front and rear cranks to shorten the distance between both crank shafts. It operates as a crank between shafts. In other words, for only the partial area in the post-compression stage, the distance between the two shafts is temporarily reduced to a flute at the interval between the front crank fulcrum shaft M provided in the front crank I 3 and the rear crank shaft 11. The rotating force of the crank and flywheel is the remaining rotating force of the explosive power of the first stage explosion process1), which is several times the power factor of the insidious rotating force. is raised to its labor saving driving force is the gel front click rank connection shaft 9 which transmits the pre-dunk rank I 3 directly from the preceding class link fulcrum shaft 14 pushed, earthenware pots row ¾ when this short Inter-axis operation of the crank arm radius is performed * During the compression stroke only in the later stage, the crank arm radius is reduced by about 1/3. **,, Next operation Then, the explosion stroke and the suction stroke are the same, and the compression stroke and the exhaust stroke are also the same.
爆発行程の場合を第五図によって説明すると, 爆発に'よってビス ト ン 4 が下降して、 その起動力は、 コ ンロ ッ ド 6を介して前段クラ ンク違 9 を右下方に向けて捋下げると、 その暴 2動力は前段ク ラ ンク違結 ¾ 9を固設 してある前段ク ラ ンク】3に作動し、 その前段ク ラ ンク 13は、 自体の支軺で ある前段クラ ンク支点 *έ が 後段クラ ンク兼フ ラ イホイノレ 1 の支 |¾てあ る後段ク ラ ンク Ki llの軸付近で、 3分の 1以下の {S心比で ¾Κされ 前段 ク ラ ンク 13の下方の端に固設してある前段クラ ンク スプリ ング受 は、 前記の前段ク ラ ンク連結^ 9が受けた ¾動力の作動を受けて、 該前段クラ ンク スプリ ング受軸 24の在る位置と対応するよ うに設ける。後段ク ラ ンク兼 フ ラ イ ホイノレ 12の穴 26の位置に対し、 その穴の中失部分に位置して前段ク ラ ンク スプリ ング受軲 2 を突出させて固設し、 そのスプリ ング受 ¾用切込 穴 S内で、 前段ク ラ ンク スプリ ング受 ¾ 2 を上. 下で挟むようにして後段 ク ラ ンク兼フ ラ イホイ ノレ 12に半固設して!)る枝パネ 30 . 31によって, 前段 ク ラ ンク I3の回動する円方向に対し、 強度の緩衝効杲を生むようにしてあ る。 従って前段クラ ンク スプリ ング受軸 24からの |2動力は、 ¾パネ 3〕 . 31 1 後段クラ ンク兼フ ラ イホイ ノレ 12に伝達し、 後段ク ラ ンク ί ΐ]を回転さ せるのてある。 この場合に、 ビス ト ン 4からの起動力が、 後段ク ラ ンク 11を ΤΪ]動させる力の挺子作^は、 力点を前段ク ラ ンク-違結 ¾ 9 とし、 支点 を後段クラ ンク ¾ 11と前段ク ラ ンク支点 ¾ 14との合力点箧所とし、 作周点 を前段クラ ンクスプリ ング受軸24とする。 その力は後段クラ ンク スプリ ン グ受 から、 それに接蝕して る板パネ 31よ ]?後段ク ラ ンク兼フ ラ イホ ィ /1ノ 12を 動させ後段ク ラ ンク ¾ 11を回転させるのてある。 The case of the explosion process is described with reference to Fig. 5. When the starting force is lowered downward to the right by the front crank 9 via the connector 6, the violent power is fixed to the front crank 9. The front crank 13), and the front crank 13 has the front crank fulcrum * έ which is its own support, and the rear crank which is the support of the rear crank and flywheel 1 | In the vicinity of the axis of the Rank Kill, the pre-clamp spring support fixed to the lower end of the pre-clunk 13 with an S center ratio of 1/3 or lessン Provided so as to correspond to the position where the front crank spring receiving shaft 24 is located in response to the operation of the power received by the link connection 9 . At the position of the hole 26 of the rear crank and fly hood 12, the front crank spring receiving member 2 is located at the missing portion of the hole, and is fixed by protruding. In the notch hole S, insert the front crank spring receiving ¾2 in the upper part. Half-fix it to the rear crank and flywheel 12 so that it is sandwiched in the lower part! ) By branch panel 30.31 Ru, to a circle direction of rotation of the front click rank I 3, Ru Citea to produce a cushioning effect杲strength. Therefore from the preceding stage class link split ring bearing shaft 24 |. 2 motive power, ¾ panel 3] 31 1 is transmitted to the subsequent stage class tank and off La Ihoi Honoré 12, there Te rotate the subsequent click rank ί ΐ] . In this case, when the starting force from the piston 4 ΤΪ] moves the rear crank 11 ΤΪ, the power point is the front crank-disconnection ¾ 9 and the fulcrum is the rear crank. the resultant force point箧所of the ¾ 11 and the preceding click rank fulcrum ¾ 1 4, the work week point and a previous class Nkusupuri ring bearing shaft 24. The force from the subsequent class link Split in g received, I plate panel 31 Ru in Shokushi contact with it]? Rotate the post-stage click rank ¾ 11 a later stage click rank and off La Hijo I / 1 Roh 12 is moving It is.
次に圧 ¾1及び^気行程を第二図によって説明すると、 ビス ト ン 4は最下 位置 あ]?、 前段クラ ンク違結 9が正回転して上方に移行するのてある が、 この時に、 ビス ト ン 4 を上方へ^上け'る力は, 爆発力によ ])後段ク ラ ンク兼- ラ イホイ 12が回いさせられ 、 その慣性回転力による惰性回転 新た な用紙 力を利用して行 つているが、 この作動力は後段ク ラ ン ク? S liから前段ク ラ ンク連結 ¾ 9迄の距齄の倍以上の距離の位置に前段クラ ンク ス プ リ ング 受 ½ 24がる.るから、 残存慣 S回転力は 力率が約 2倍に増大されて、莂段ク ラ ンク : 13から 前段クラ ンク連結 9 1!に回転可動にしてあるベア リ ン グ Sを介して、 コ ン ロ ッ ド 6 よ ] ビス ト ン 4 を 上げて移行させるのであ る。 この作 ¾は、 第二^てク ラ ン ク連結 ¾ 9が後段ク ラ ンク鼓フ ラ イ ホ イ ノレ 12の下死点 4の位置にある時から始ま 。 即ち前段クラ ンク違結 β 9が 正回転して 第三図に示す位置の後段クラ ンク兼フ ラ イ ホ イ /ン 1 の下死点 44から始ま 、 上死点 3に至る半回転距 のうち、 約 3分の 2程を回転移 行した場所'と 、 且つ前段クラ ンク支点 fe wが正回転して Sて、 後段ク ランク兼フライホイノレ 12の下死点位置 4 迄到達した時点迄の間である。 こ れ迄のクラ ンク の這行は、 前行程よ ]}引続いて行るはれて る爆発力の惰 Sによる慣 S回転力によるもので, この時点迄後段クラ ン ク兼フ ラ イ ホ イ ] 2の、 それ自体に設けてある板パネ 30から、 前段ク ラ ンク 13の一方に固 設してある前段クラ ンク スプリ ング受 に及ほさせると、 前段ク ラ ン ク 13の前段クランク支点 ¾ 14を支点として. 前段クランク違結 ¾ 9 正回 ¾ して上方に移行し、 該前段クラ ンク違結 ¾ 9 に同 ¾するべァ リ ング Sを介 してコ ン '口つ ド 6が上昇して行くので, そのピス ト ン 4がシ リ ンダー 3 内 を上昇して圧縮行程の約 3分の 2 の区間を、 通常の後段ク ラ ンク $έ 11をま &として, It段クランク違結軸 9が回転するクランク牛 巨^による倍力 化されたクラ, ンク作動であって、 全圧縮圧力 11の約 3分の 2程の圧 笸の 上昇である力 、 圧縮力は省力化されて る。 これ迄を圧^前段陪とする。 次に第三図の時点からのクラ ンク の作 Eiを説 する。 これからの区間を 圧 後段 gとし、 行程の最後部分で 3分の】 の区間てある。 これから圧^ 後段陪に入るが. 先づ、 後段ク ラ ンク兼フ ラ イ ホ イ ノ] 2 ·|τ 設してある前 新たな S紙 段ク ラ ンク支点軸 Mが, 後段ク ラ ンク兼フ ラ イホイ 12の下死点 4 を正回 転して経過した時点よ 始まる。 今迄の圧縮行程の力作用は * 後段ク ラ ン ク兼フ ラ イホイル 12の^性回転力を受ける板パネ 30が、 前段クラ ンク スプ リ ング受軸 24を正回転方向へ狎し回すことによ ]? , これを力点とし、 支点 か後段ク ラ ンク軸:!]と ]?、 作用点が前段クラ ンク 結軸 9 と *つていた が, これよ 圧縮後段陪に入ると, 後段クラ ンク兼フ ラ イホイ ノレ 12の慣性 回転力は, その力点が、 後段クラ ンク兼フライホイノレ 12に軸設してある前 段クランク支点軸 14に序々に切換えられて移行し, 前段クラ ンク軸 11に対 し、 行程の中途で一部の圧縮後段階のみで行 う短腕クラ ンク連結軸と化 するのである。 この作動は両ク ラ ンク軸間の短距 Iによる短半径ク ラ ンク 作動で、 通常のクラ ンク作動は後段ク ラ ンク軸 11に対してク ラ ンク半径は 後段クラ ンク連結軸 9 までの長さであ]?、 その通常ク ラ.ンク半径で作動す る区間は, 第四図の上死点付近から第五'図に至!)、 第二図を経て第三図に 至る間中で行るはれているのである。 Next, the pressures 1 and the air stroke will be described with reference to FIG. 2. When the piston 4 is at the lowest position, the front crank connection 9 rotates forward and moves upward. The force that raises the screw 4 upwards is due to the explosive force.]) The second-stage crank and flywheel 12 is rotated, and the inertial rotational force causes inertial rotation. Is this actuation force used in the second stage crank? The front crank spring receiver ½24 is located at a distance of at least twice the distance from S li to the front crank connection ¾9.Therefore, the power factor of the remaining inertia S rotational force is about twice is increased to,莂段click rank: 13 through the bare Li in g S you have to rotatable in front Kura link connecting 9 1, by increasing the co-down Rod 6 I] bis t 4 It is the transition. This operation starts when the second crank connection line 9 is located at the bottom dead center 4 of the subsequent crank drum fly-wheel 12. That is, the former stage crank connection β9 rotates forward and starts from the bottom dead center 44 of the latter stage and flywheel 1 at the position shown in Fig. 3 and reaches a half rotation distance to the top dead center 3 Of which, about two-thirds of the way, and the point where the front crank fulcrum fe w made a positive rotation and reached S to reach the bottom dead center position 4 of the rear crank and fly hoinole 12. Between. Until now, the crawling of the crank is the previous stroke.]} The subsequent explosive force is due to the inertial S rotational force due to the inertia of the explosive force. [Hoi] 2, from the panel panel 30 provided on itself to the front crank spring holder fixed to one of the front cranks 13, the front of the front crank 13 the crank pivot ¾ 1 4 as a fulcrum. front crank違結¾ 9 Seikai shifted upward by ¾, co down and through the same ¾ Surubea-rings S on front stage class link違結¾ 9 'mouth As the piston 6 rises, the piston 4 rises in the cylinder 3 and about two-thirds of the compression stroke is taken as the normal rear stage $ έ11. , It stage crank connection shaft 9 The rotation of the crank 9 with the rotation of the crank cow, which rotates 9 Power is an increase of pressure 笸, compressive force is Ru is labor saving. The process up to this point is referred to as pre-compression. Next, the work of the crank Ei from the point in Fig. 3 is explained. The section from now on is referred to as the post-compression stage g. From now on, we will enter the second stage. First, the second stage and fly-hono] 2 · | τ It starts when the stage crank fulcrum shaft M rotates forward after the bottom dead center 4 of the rear stage crank / flywheel 12. Up to now, the force action of the compression stroke is: * The panel panel 30 which receives the rotational force of the rear crank and flywheel 12 apically rotates the front crank spring receiving shaft 24 in the forward rotation direction. This is the point of power, and the fulcrum or the post-stage crank axis:! ] And] ?, the point of action was the same as that of the front-stage crank shaft 9. However, when entering the post-compression stage, the moment of inertia of the rear-stage crank and flywheel 12 is expressed by It is gradually switched to the front crank fulcrum shaft 14 installed on the crank and fly wheel, and then shifted to the front crank shaft 11, and only a part of the post compression stage is performed in the middle of the stroke. It becomes the arm crank connection axis. This operation is a short radius crank operation with a short distance I between the two crank shafts.In the normal crank operation, the crank radius is smaller than that of the rear crank shaft 11 with respect to the rear crank shaft 11. The section that operates with the normal crank radius extends from near top dead center in Fig. 4 to Fig. 5 '! ), And runs through from Fig. 2 to Fig. 3.
この圧縮後段階に於 ては、 後段ク ラ ンク兼フラ イホイ /レ 12の慣性回転 力は、 前段ク ラ ンク支点軸 Mが第三図に示す下死点位置に至ると, 後段ク ラ ンク軸 11と少し偏心した状態の軸位置であ ]3 , ク ラ ンク腕の半径の最短 距離となっている軸関係を利用するのである。 従って慣性回転力は後段ク ラ ンク兼フ ラ イホイノレ 12の回転力が力点と ])、 その力は直接に前段ク ラ ンク支点軸 14に移行し作用点とる ]?、 前段ク ラ ンク軸 i によって新た 軸 ク ラ ンク体形が構成'されることに: 5:る。 このクラ ンク腕は, ク ラ ンク腕半 径が通常のクラ ンク半径の場合の約 3分の 1を以つた腕距離とるるように 構成される。 従ってこのようにク ラ ンク腕半径が短かく る程、 軸間挺子 作用の力率が高く強く るのである。 その力は前 ¾クラ ンク 13の上部の前 '段ク ラ ンク連結軸 9に直接働らいて * コ ンロ ッ ド 6か ピス ト ン 4を軽く 押上けて圧縮を行 う。 圧縮後段階の最後に於いて前段クラ ンク連結軸 9 が行 ¾う 仲軸急転作動は, 第四図に見る如く, 前段ク ラ ンク連結軸 が ビス トンビン 5 の中心と前段ク ラ ンク支点軸 Wの中心を結ぶ二点銷線中心 線 2 の線上の少々手前で * 右正回転に対して左方向へ反発する力作用が起 こ 、 ¾ 進行して前段ク ラ ン ク 13の上死点 16の^上に至って反発力は^ と ]3、 更に進んて、 前段ク ラ ンク連結軸 9の中心 が移行し, この上死 点 16をほんの僅でも右回転方向へ越えると, 同時に今度は前の反発作用の 方向とは反対する右方向へ急転進する力作用が発生して仲軸急転作動が終 るが, 同時に後段クラ ンク連結軸 10がその上死点 43よ j? ] 5度程手前であ つても, 前段ク ラ ンク連結軸 9の回転は決して逆回転せず, 正回転を続行 するのである。 この場合に通常エンジンのク ラ ンク作動では、 点火による 最大爆発力がビス トン 4によって、 上死点 3の位置よ 1)手前の時期に、 ク ラ ンク連結軸に到来すれぱ, 必ずク ラ ンクを逆回転させェンジンは停止す るが、 木発明エンジンでは, 上方から爆発力が前段ク ラ ンク連結軸 9を押 下げて来ても * その力は上死点付近で行 ¾うクランクとコンロ ッ ドの結合 機構の不合理性による低 力率値であって、 例えば〗 0 O ccの気筒容積の エンジンはクラ ンク連結軸を押下けようとする力値は約 6 0 0 であるが 不合理性によって上死点付近では 0から 1 5 %程に力率が降下していて約 1 5 0 ^程て,、 又圧縮の為の残存回転力が前回爆発力値の約 4分の 1程で あるから約〗 5 0 A9程あって * 合計て 3 0 0 程と る, ^の力値に対抗 してク ラ ンク連結軸を上方へ押上げる力は, 次の通 である。 それは圧縮 後段階でも行 はれ後段ク ラ ンク軸 11と前段クラ ンク軸 14,と 組合はせに よって構成された短半径距離によるクランク腕で, 両軸間は極めて短かく この間隔に於いて 後段クランク軸 11が主軸と ] 3、 前段クランク軸 1 »が 連結軸に転換されてその力は前段ク ラ ンク 13を直接伝はって前段ク ラ ンク 連結軸 9を押上けるが、 この圧縮後段階の域のみ作動する軸間転位一時ク ラ ンク作動は, その軸間が他の行程区間のク ラ ンク半径腕の約 3分の 1に 短かく *つているから》 後段ク ラ ンク兼フラ イホイ /レ 12に蓄積されて る 慣性回転力は、 その力率が約 3倍と 、 予定圧縮力が 1 5 0 であるか ら, その 3倍で 4 0 k と つて . 上方からの 3 0 0 を軽く狎上げてし まい、 尚且つ余剰回転カはフラ イホイ ルを更に加速正回転させるの あ 又, 圧縮後段階に於いて, その最終時に、 仲軸急転作動が終ると同時に前 段ク ラ ンク連結軸9'は、 二点鎖線中心線 29を趑えると、 前段ク ラ ンク軸 が加速上昇してくるので、 第五図に見る如く ビス ト ンピン 5の軸と前段ク ラ ンク軸 14,との間で、 右回転方向へ逆のくの字に曲げられて延びることが 出来ず、 この作動が逆回転を完全に防止しているのである。 従って本ェン ジンには、 絶対的に正確 上死点での点火爆発が必要で く、 高オクタ ン 価ガソ リ ンを必要とし い。 又燃料も低扱^か L Pガス . 木炭ガス . 水素 ア コ一/ で充分に強烈 パヮ一を生むことが出来る。 In the post-compression stage, the inertia rotational force of the rear-stage crank and flywheel / rail 12 is increased when the front-stage crank fulcrum shaft M reaches the bottom dead center position shown in Fig. 3. The axis position is slightly eccentric with the axis 11] 3, and the axis relation that is the shortest distance of the radius of the crank arm is used. Therefore, the inertial rotational force is the rotational force of the rear-stage crank and flywheel 12), and the force directly shifts to the front-stage crank fulcrum shaft 14 and takes the action point.], The front-stage crank shaft i To form a new axial crank body: 5: This crank arm is configured so that the radius of the crank arm is about one third that of a normal crank radius. Therefore, the shorter the radius of the crank arm, the higher and stronger the power factor of the axle tensioner action. The force acts directly on the front 'step crank connecting shaft 9 in the upper part of the front 13 crank 13 * Lighten the connector 6 or piston 4 Press up and compress. At the end of the post-compression stage, the intermediate shaft rapid rotation operation performed by the front crank connecting shaft 9 is, as shown in Fig. 4, where the front crank connecting shaft consists of the center of the biston bin 5 and the front crank fulcrum shaft. Slightly before the two-point sales line center line 2 connecting the centers of W * A force repulsing leftward against forward clockwise rotation occurs. The repulsive force reaches ^^ above 16], and] 3. Further on, the center of the preceding crank connecting shaft 9 shifts, and if it crosses this top dead center 16 only slightly in the clockwise direction, at the same time, The force of rapid rotation to the right, opposite to the direction of the previous repulsion, is generated, and the intermediate shaft rapid rotation is completed, but at the same time, the rear crank connecting shaft 10 is at its top dead center 43. j?] 5 degrees Even before this, the rotation of the preceding crank connecting shaft 9 never rotates in the reverse direction, but continues in the normal rotation. In this case, in the crank operation of the normal engine, the maximum explosive power due to the ignition is caused by the biston 4 and reaches the crank connection shaft at a time before the position of the top dead center 3 by the biston 4. The engine is stopped by rotating the crank in the reverse direction. However, in the wood-invented engine, even if an explosive force pushes down on the front crank connecting shaft 9 from above, the force is not equal to that of the crank running near top dead center. This is a low power factor value due to the irrationality of the coupling mechanism of the condole.For example, in an engine with a cylinder capacity of〗 0 Occ, the force value for pushing down the crank connecting shaft is about 600. Due to irrationality, the power factor drops from 0 to 15% around top dead center, about 150%, and the remaining rotational force for compression is about 4 minutes of the previous explosion force value Since it is about 1, there is about〗 50 A9 * It takes about 300 in total, and the crank connecting axis is opposed to the force value of ^. Pushing up force towards is the next through. It is a crank arm with a short radius that is formed by combining the rear crank shaft 11 and the front crank shaft 14 in the post-compression stage, and the two shafts are extremely short. The rear crankshaft 11 is converted to the main shaft.] 3 and the front crankshaft 1 »is converted to the connecting shaft, and the force is transmitted directly to the front crank 13 and the front crank is transmitted. Although the connecting shaft 9 can be pushed up, this inter-axis transposition temporary crank operation, which operates only in the post-compression stage, is as short as approximately one-third of the crank radius arm in other stroke sections. The inertia rotational force accumulated in the second-stage crank / flywheel / re 12 has a power factor of approximately three times, and since the expected compression force is 150, it is three times that. At the end of the post-compression stage, the top of the wheel is slightly accelerated, and the excess rotation force causes the flywheel to further accelerate forward rotation. At the same time as the intermediate shaft rapid rotation operation is completed, the front-stage crank connecting shaft 9 ′ accelerates and rises above the two-dot chain line center line 29. Between the axis of the tonpin 5 and the preceding crank axis 14, it can be bent in the right-hand direction and bent in the opposite direction. Not, it is that this operation is completely prevent reverse rotation. Therefore, this engine does not require absolutely accurate ignition and explosion at top dead center and does not require high octane gasoline. Also, the fuel is low or LP gas. Charcoal gas. Hydrogen alcohol / can produce strong enough power.
尚このエンジンに於 て行 う軸間転位一時クラ ンク作動は》 後段クラ ンク軸 Uと前段クランク支点軸 I4との短蹈離軸の設定で一時的に発生する 軸対軸の組合はせであって,.通常のクランク状では ¾い。 . The inter-axis transposition temporary cranking operation performed by this engine is not possible. >> The shaft-to-shaft combination that occurs temporarily when the short crank shaft between the rear crank shaft U and the front crank fulcrum shaft I 4 is set And it is long in a normal crank shape. .
図面の簡単 説明  Brief description of drawings
第一図は本発明の正面断面図、 第二図は側面断面図で爆発行程又は吸入 行程が終った時点の図である。 第三図は圧縮行巷又は排気行程て、 圧縮前 段階が終 lJ、 引続 て圧縮後段階に入ろうとする時点の図である。 第四図 ばとの時点で圧縮後段階が終!?直ちに仲軸急転作動が働らき、 前段ク ラ ン ク連結軸 9が爆発力を受けても, その力に対応して打勝ち、 又フ ラ イホイ ノレ 12の省力化 2倍力回転作動で逆回転を起こさる で正回転を得る時の図 である。 第五図は通常のエンジンの場合に、 この時点から有効ト、 クが発 生し始める図である。 第六図は爆発の時点の起動力の力値とビス ト ン 4 の移行に伴るつて変化する有効ト クと無効ト クの分布を示す円周角度 合に発生する力値を表はす直. 曲線図である。 図中 Αは通常エ ンジンの場 合であ ]3 , Bは本エ ンジンの場合である。 次に図中の番号と名称を記す。 FIG. 1 is a front sectional view of the present invention, and FIG. 2 is a side sectional view at the time when an explosion stroke or a suction stroke is completed. Fig. 3 is a diagram at the time when the pre-compression stage ends at lJ in the compression process or the exhaust stroke, and continues to enter the post-compression stage. Fig. 4 The post-compression stage is over at the time of the butt! Immediately, the intermediate shaft rapid operation is activated, and even if the front-stage crank connecting shaft 9 receives an explosive force, it overcomes the force corresponding to the explosion, and the flywheel 12 saves labor. It is a diagram when a forward rotation is obtained by causing a reverse rotation. Fig. 5 shows that when the engine is normal, It is a diagram that begins to grow. Figure 6 shows the force value of the starting force at the time of the explosion and the force value generated at the circumferential angle that indicates the distribution of effective and invalid torque that changes with the transfer of biston 4. It is a straight line. In the figure, Α indicates the case of a normal engine.] 3, B indicates the case of the present engine. Next, the numbers and names in the figure are described.
】 =発火栓, 2 =シ リ ンダーヘッ ド、 3 シリ ンダー、 4 =ピス ト ン、 5 =ピス ト ンピン、 6 =コ ンロ ッ ド、 6'=コ ンロ ッ ドの中心、線 7 =コ ンロ ッ ドのク ラ ンク連結部、 8 =前段クラ ンク連結用ペア リ ング 9 =前段ク ラ ンク連結軸, 9,=前段ク ラ ンク連結軸 9 の中心線、 9" = 前段ク ンク支点軸 Mを支点として前段ク ラ ンクスプリ ング受軸 2 が角移 行する半径曲心線, 9 =前段ク ラ ンク 13の半径円弧線, 10 =後段ク ラ ンク連結軸, 11 =後段ク ラ ンク軸 * 12=後段ク ラ ンク兼フ ラ イホイ / u 13=前段クラ ンク, M =前段ク ラ ンク支点軸, 14' =前段ク ラ ンク軸、( 前段クラ ンク支点軸 Mの別名) 15 =クラ ンク ケーシング * 16=前段ク ラ ンクの上死点, 24 ==前段ク ラ ンクスプリ ング受軸、 26 =前段ク ラ ン クスプリ ング受軸用切込穴, 29 =ビス ト ンビン 5の中心と前段ク ラ ンク 軸 14'を結ぶ二点鎖線の中心線》 30=板パネ, 31 =板パネ、 43 =後段 クラ ンク兼フライホイ 12の上死点, 44 =後段クラ ンク兼フ ライホイ 12の下死点、 46 =後段クラ ンク連結軸 10と前段クラ ンク連結軸 9 との間 隙に充填する緩衝材、 47 =板パネ 31の外部空間, ] = Hydrant, 2 = cylinder head, 3 cylinder, 4 = piston, 5 = piston pin, 6 = conrod, 6 '= cond center, line 7 = cond 8 = Front crank connection pairing 9 = Front crank connection shaft 9, 9, = Center line of front crank connection shaft 9, 9 "= Front crank fulcrum shaft Radial curved line at which the front crank spring receiving shaft 2 moves angularly with M as a fulcrum, 9 = Radial arc line of the front crank 13, 10 = Post crank connection shaft, 11 = Post crank shaft * 12 = Rear crank and flywheel / u 13 = Front crank, M = Front crank fulcrum axis, 14 '= Front crank axis, (also known as front crank fulcrum axis M) 15 = Cluster Link casing * 16 = Top dead center of front crank, 24 = = Front crank spring receiving shaft, 26 = Notch for front crank spring receiving shaft, 29 = The center line of the two-dot chain line connecting the center of bis Tonbin 5 and the preceding crank axis 14 '>> 30 = panel panel, 31 = panel panel, 43 = back stage Top dead center of crank and fly huy 12, 44 = post stage Bottom dead center of the crank and fly-hoy 12, 46 = cushioning material to fill the gap between the rear crank connecting shaft 10 and the front crank connecting shaft 9, 47 = external space of the panel panel 31,
産業上の利用可能性  Industrial applicability
このエンジンは, 燃料油を大巾に節減することの出来る低燃費の省エネ ギ一のエンジンであ ]9 , エンジンの重量対馬力比が極めて大きく * 且つ 気筒容積当 Dの馬力数が、 ¾来エンジンの約 2倍以上の大出力-を, 同一量 の燃料油で発動させることが出来る高効率のエンジンである, 先づ構造上 では、 従来エンジンの如く、 ビス ト ンの上死点で正確に最大爆発力が加え られる事が第一条件であったが、 本エ ンジンでは、 上死点よ 1) 3 0度程の 手前で点火着火させ * 上死点の手前 1 8度程の位笸で最大爆発力がク ラ ン クに対応して来ても, そのク ラ ンクに対して * その力以上の反発 区動力を ク ラ ンク軸を同じくするフ ラ イホイ ^等によって、 前行程で生じた残留慣 性回転力を 用し, ク ラ ンク回動の力率を極めて高度化して正回転方向に のみ儺かせるので, 決して逆回転せずに正回転を加速し続けるものである。 従って本ェンジンには完全 ¾上死点爆発を必要とせず, 高ォクタ ン価ガソ リ ンを使用する必要が無く、 燃料は石油. 燈油. 軽油. A重油, L P ガス 木炭ガス. 水素. ァ コ - ノレ等が使用出来る。 又ェンジン効率を 7 0 %近 く迄は向上させることが出来るので、 小形状で軽重量で大馬力のエ ンジン と ¾るのて, たとえば, 自動車で例えれば、 軽自動車で 6 6 O ccの:!: ンジ ンを本発明^ンジン方式で製造したとすれば, 力 1 5 0馬力程が発揮出 来るので、 従来ェンジンでは 2 0 0 0 tcクラスて約 1 5 0馬力であるので, これと同等の出力ともるのである。 従って自動車は小さ ¾ェンジンで強力 ¾馬力を発生するので、 普通乗用車として, およそ一定の馬力よ ]?以上を 望まるけれぱ * すべて世界中の乗用車は, 6 6 0 cのェンジンて充分と る。 近い将来に世界中の自動車が、 本エンジン方式を採用すれぱ、 排気ガ ス量が現在放出量の約 3分の 1の量.に減少するから地球環境公害を及ぼし ている排気ガスの排出量が減少して:! 9 8 0年代の無公害の時期となるで しょ う。 尚本エンジンの方式を大型のジーゼ^エンジンに応用すれば, 燃 料費は 2分の: I以下と ¾ ]? * 自家発電力料、 旅客運賃 * 船舶料金, トラ " ク運送料等を低料金化することが出来る β This engine is the most fuel-efficient and energy-saving engine that can save a lot of fuel oil.] 9, The engine's weight to horsepower ratio is extremely large. It is a high-efficiency engine that can be activated with the same amount of fuel oil, which is about twice as large as the engine. With the first structure, it is accurate at the top dead center of the piston like a conventional engine. With maximum explosive power Was the first condition, but in this engine, 1) ignition was started at about 30 degrees before top dead center. * The maximum explosive power was about 18 degrees before top dead center. Even if it responds to the crank, the repulsion force of the same is applied to the crank. * The residual inertia generated in the previous stroke by Flyhoy, etc. with the same crank axis By using the torque, the power factor of the crank rotation is extremely enhanced and can be adjusted only in the forward rotation direction, so that the forward rotation is continuously accelerated without reverse rotation. Therefore, this engine does not require a complete top dead center explosion, does not require the use of high-octane gasoline, and uses fuel oil, kerosene, light oil, heavy oil A, LP gas, charcoal gas, and hydrogen gas. -Can be used. In addition, since the engine efficiency can be improved up to 70%, it is considered to be a small-sized, light-weight, and large-horsepower engine. :!: If the engine is manufactured by the engine of the present invention, a power of about 150 horsepower can be exerted. Since the conventional engine has a power of about 150 horsepower in the 200 tc class, It has the same output as. Therefore, automobiles generate strong horsepower with a small engine, so it is desirable to have more than a constant horsepower as a normal passenger car.] * All passenger cars around the world have a sufficient engine capacity of 600 c. . If automobiles around the world adopt this engine system in the near future, the amount of exhaust gas will be reduced to about one-third of the amount released at present. Is decreasing :! It will be a pollution-free period in the 980s. If this engine method is applied to a large engine, the fuel cost can be reduced to two minutes: I or less ¾]? * Low self-generated electricity, passenger fare * Ship fare, truck freight, etc. Β that can be charged

Claims

請 求 の 範 囲  The scope of the claims
(一) 出力軸である後段クランク軸( 11 )に後段クラ ンク兼フ ラ イホ ィ /レ( 12 )を固設し、 該後段ク ラ ンク兼フ ラ イホイ ( 12 )に後段ク ラ ン ク連結軸( 10 )の両端を各々固設一体化してク ラ ンク状として成る従来形 のレシプロェ ンジンに於 て, そのク ラ ンク撐構を後段ク ラ ンク機構と し てその儘の形でこれを応用し * 更にこの後段ク ラ ンク機構に対し、 一対の ^ 々 ン 々 ¾フ ラ イ イ ,レ ( ]2 )の内方側に並設させて、 前段クラ ンク 連結軸( 9 )を固設してク ラ ンク状とした前段ク ラ ンク ( 13 ) を組合はせ、 該前段クラ ンク ( 13 )の下方部に前段クラ ンク支点軸 ( 14 ) を一対にして 設け,' 回転作動中に於 て、 前段クラ ンク軸( W,)に兼用させる。 ェンジ ンを側面断面にして見た場合に, 圧綜行程の最終の 3分の 2程の位置に回 転して来た時点に、 前段ク ラ ンク ( 13 )に設けてある前段ク ラ ンク連結軸 ( 9 ) の位置を, 後段クラ ンク ·( 12 ) の上死点( 43 ) よ 逆回転方向へ約 5 0度程戻った位置に設定して置く, 丁度その時点に合った時期に, 後段 ク ラ ンク兼フ ラ イホイ ( )に対して軸設してある前段クランク支点軸 ( 14 ) の位置が, ¾段ク ラ ンク軸:( 11 )を通る縱中心線の線上で, 下死点 ( 44 )の上方部であって, その位置に対応させた前段クラ ンク ( 13 )に対 して軸設するが、 この場合に、 前段クラ ンク支点軸( I4 ) と後段クラ ンク 軸( U ) とは, その軸心間距離が、 クラ ンク腕半径にして 3分の 1の短半 径で構成された軸間作動クラ ンクと ¾ 、 それの作動の区間は圧縮行程の 圧縮後段階の域のみの作動である。 (1) The rear crank and flywheel (12) is fixed to the rear crankshaft (11), which is the output shaft, and the rear crank and flywheel (12) are fixed to the rear crankshaft (12). In a conventional reciprocating engine in which both ends of the connecting shaft (10) are fixedly integrated into a crank shape, the crank structure is used as it is as a subsequent crank mechanism. * In addition to this rear-stage crank mechanism, the front-stage crank connecting shaft (9) is arranged side by side on the inner side of a pair of individual flywheels and rails ( ] 2 ). The front-stage crank (13), which is fixed and formed in a crank shape, is combined, and a pair of front-stage crank fulcrum shafts (14) are provided below the front-stage crank (13). Inside, it is also used for the front crank shaft (W,). When the engine is turned to the last two-thirds of its position in the cross section when viewed from the side, the front crank provided in the front crank (13) The position of the connecting shaft (9) is set at a position about 50 degrees backward in the reverse rotation direction from the top dead center (43) of the latter stage crank (12). The position of the front-stage crank fulcrum shaft (14), which is provided with respect to the rear-stage and fly-hoy (), is located on the vertical center line passing through the second-stage crank shaft: (11). a top portion of the dead center (44), but axially set in pairs upstream classifier tank (13) made to correspond to the position, in this case, front class link fulcrum shaft (I 4) and subsequent class link The axis (U) is defined as the inter-axis operation crank whose distance between the axis centers is a short radius of one-third of the radius of the crank arm. It is an operation of only frequency compression after stage of the compression stroke.
前段ク ラ ンク連結軸( 9 ) の内部には後段クラ ンク連結軸( 10 )が軸方 向 貫通して て、 両端は一対の後段クラ ンク兼フラ イホイ ( 12 )え固 設一体化してク ラ ンクが形成されて る β 前段クラ ンク連結軸( 9 )がそ の半径円弧線 (9'" に沿って前段ク'ランク連結軸( 9 ) と後段クラ ンク ( 9)と後段ク ラ ンク ( 】0 )が直接に接触しないように、 緩衝材( )が介在 させてある。 前段ク ラ ンク連結軸( 9 )の外周部には、 該前段クラ ンク連 結軸( 9 )の軸怪と同一の内径穴を有する口一ラーベア リ ング ( 8 )を嵌 込む., 該ベア リ ング ( 8 ) の外輪の外周部には、 コ ンロ ッ ドのク ラ ンク連 結部( 7 )の上. 下の綜合せ彎曲部材で挟み、 ボルトとナツ トで締付ける。 コ ンロ ッ ド ( 6 ) とピス ト ン,( 4 )はピス ト ン ピン ( 5 )で軸設する。 一対の前段クラ ンク ( I3 )に固設定する前段クラ ンク スプリ ング受軸 (The rear crank connecting shaft (10) penetrates inside the front crank connecting shaft (9) in the axial direction, and both ends are fixedly integrated with a pair of rear crank / flywheels (12). The β front rank connecting shaft (9) where the rank is formed is connected with the front crank connecting shaft (9) along the radial arc line (9 '") and the rear crank (9). The cushioning material () is interposed so that the 9 ) and the subsequent crank () 0) do not directly contact. A mouth bearing (8) having the same inner diameter hole as that of the shaft of the front crank connecting shaft (9) is fitted around the outer periphery of the front crank connecting shaft (9). The outer periphery of the ring (8) is sandwiched between the upper and lower joints (7) of the clamp by the joint bending member, and tightened with bolts and nuts. Axle (6) and piston (4) are installed with piston pin (5). Front crank spring receiving shaft (fixed to a pair of front cranks (I 3 ))
24 )の位置の決定は、 後段クラ ンク兼フ ラ イ ホイ ノレ ( 12 )の外周部近くで 全周部位のいづれの場所にでもよい、 その所に設置する前段クラ ンク スプ リ ング受軸用切込穴( 26 ) と、 その位置を合せて設置するが、 その距離は 後段ク ラ ンク軸( II )から連結軸( 9 )迄の距離の 2倍以上であること。 前段クラ ンク兼フ ラ イ ホイ /レ ( 12 )に設けてある前段クラ ンク スプリ ン グ受軸用切込穴( 26 )の内部には、 板パネ ( 30 ) . ( 31 )が半固設され前 段クラ ンク スプリ ング受軸( 24 )を弾性的に強く自由 ¾形で密着して挟合 してあることを特徴とする二段ク ラ ンク機構のレシプロエ ンジ ン。 The position of (24) can be determined at any position on the entire circumference near the outer periphery of the rear crank and flywheel (12). For the front crank spring receiving shaft installed at that location The cut-off hole (26) should be aligned with its position, but the distance should be at least twice the distance from the rear crank shaft (II) to the connecting shaft (9). Panel panels (30) and (31) are semi-fixed inside the notch holes (26) for the front crank spring receiving shaft provided in the front crank and flywheel (12). A reciprocating engine with a two-stage crank mechanism, characterized in that the front-stage crank spring receiving shaft (24) is elastically strong and free and is tightly sandwiched.
(二) 前段ク ラ ンク ( I3 ) の前段ク ラ ンク支点軸( I4 )を, 後段ク ラ ンク軸( 11 )に極めて接近させた形で * 挺子ク ラ ンク作動を行なはせて、 圧縮行程の最終段階に対してのみ働くようにして, 後段ク ラ ンク兼フ ラ イ ホイ ノレ ( 12 )が行なう通常のクランク腕半径の約 3分 © 1程にク ラ ンク腕 が短半径距離と るように.前段ク ラ ンク軸 ( 14,)を後段ク ラ ンク軸( 11 ) に近接して * 挺子作動クラ ンク として作動するようにし、 ピス ト ン ( 4 ) が行 う圧縮力と、 更に同時期に圧縮後段階で行 う、 早期点火着火によ る最大爆発力の到来に対しても. 慣性回転力の力率を極度.に向上した挺子 クラ ンク作動を起こさせて, 逆転を防ぎ正回転を加速することを特徵とす る特許請求の範围第一 のニ¾クランク搂構のレシプロェンジン c (D) preceding click rank fulcrum shaft of the front click rank (I 3) the (I 4), subsequent click rank axis (11) in close proximity to thereby form * a lever click rank actuatable rows are Then, it works only for the final stage of the compression stroke, and the crank arm becomes about 3 minutes © 1 of the normal crank arm radius performed by the post-stage crank and flywheel (12). In order to keep a short radius distance, the front crank shaft (14,) is brought close to the rear crank shaft (11) so as to operate as a * armor working crank, and the piston (4) moves. Combustion force and, at the same time, after compression, against the arrival of the maximum explosive force due to early ignition and ignition. Claim 1. The first reciprocating crankshaft of claim 1, characterized in that the reciprocating is prevented and the forward rotation is accelerated. Down c
PCT/JP1993/000250 1993-02-26 1993-02-26 Reciprocating engine having two-stage crank mechanism WO1994019590A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU35754/93A AU3575493A (en) 1993-02-26 1993-02-26 Reciprocating engine having two-stage crank mechanism
PCT/JP1993/000250 WO1994019590A1 (en) 1993-02-26 1993-02-26 Reciprocating engine having two-stage crank mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1993/000250 WO1994019590A1 (en) 1993-02-26 1993-02-26 Reciprocating engine having two-stage crank mechanism

Publications (1)

Publication Number Publication Date
WO1994019590A1 true WO1994019590A1 (en) 1994-09-01

Family

ID=14070151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/000250 WO1994019590A1 (en) 1993-02-26 1993-02-26 Reciprocating engine having two-stage crank mechanism

Country Status (2)

Country Link
AU (1) AU3575493A (en)
WO (1) WO1994019590A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5968524A (en) * 1982-10-12 1984-04-18 Minoru Koyakata Internal-combustion engine
JPS5986745A (en) * 1982-11-06 1984-05-19 Minoru Koyakata Internal-combustion engine
JPS61255223A (en) * 1985-05-04 1986-11-12 Tsuneo Tsukahira Double crankshaft of gasoline engine
WO1990012202A1 (en) * 1989-04-04 1990-10-18 Mitsugu Aoyama Reciprocating engine having two crank mechanisms

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5968524A (en) * 1982-10-12 1984-04-18 Minoru Koyakata Internal-combustion engine
JPS5986745A (en) * 1982-11-06 1984-05-19 Minoru Koyakata Internal-combustion engine
JPS61255223A (en) * 1985-05-04 1986-11-12 Tsuneo Tsukahira Double crankshaft of gasoline engine
WO1990012202A1 (en) * 1989-04-04 1990-10-18 Mitsugu Aoyama Reciprocating engine having two crank mechanisms

Also Published As

Publication number Publication date
AU3575493A (en) 1994-09-14

Similar Documents

Publication Publication Date Title
US6094915A (en) Method and devices for eliminating the pollution of cyclic internal combustion engines with an independent combustion chamber
US7574859B2 (en) Monocylindrical hybrid two-cycle engine, compressor and pump, and method of operation
CN102639842B (en) Hydraulic internal combustion engines
JP2798461B2 (en) Method for increasing engine brake output in a four-cycle reciprocating piston internal combustion engine
US4123910A (en) Air drive assist
EP1105635A1 (en) Dual-cylinder expander engine and combustion method with two expansion strokes per cycle
US7373870B2 (en) Universal hybrid engine, compressor and pump, and method of operation
US1013528A (en) Combined internal-combustion and compressed-air engine.
US7011051B2 (en) Hybrid two cycle engine, compressor and pump, and method of operation
US20020076339A1 (en) Fuel/hydraulic engine system
AU4161700A (en) Combustion method for an internal combustion engine
US6418708B1 (en) Engine having external combustion chamber
US6718751B2 (en) Engine having external combustion chamber
JPS5918538B2 (en) Oyobi Oyobi Jidoushiyayoudouoriyokusouchi
WO1994019590A1 (en) Reciprocating engine having two-stage crank mechanism
EP1319121B1 (en) Two-stroke cycle for internal combustion engines
US8511204B2 (en) Transmission arrangement
CN1386657A (en) Automobile power system using compressed air as power
CN109779746B (en) Generator set
CN101002009B (en) Use of diesel engines for motorcycles
CN100406320C (en) Energy-storing drive of vehicle brake
US179782A (en) Improvement in gas-engines
EP1164272A1 (en) Internal combustion engine
CN2510631Y (en) Crankshaft-offset engine
CN101109322A (en) Non-dead center coupling crank reciprocating-piston engine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA JP KR RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA