WO1994017122A1 - Polyester material continuous crystallisation and polycondensation process - Google Patents

Polyester material continuous crystallisation and polycondensation process Download PDF

Info

Publication number
WO1994017122A1
WO1994017122A1 PCT/CH1994/000006 CH9400006W WO9417122A1 WO 1994017122 A1 WO1994017122 A1 WO 1994017122A1 CH 9400006 W CH9400006 W CH 9400006W WO 9417122 A1 WO9417122 A1 WO 9417122A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester material
temperature
reactor
polyester
preheater
Prior art date
Application number
PCT/CH1994/000006
Other languages
German (de)
French (fr)
Inventor
Arthur Ruf
Edwin Boller
Original Assignee
Buehler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Buehler Ag filed Critical Buehler Ag
Publication of WO1994017122A1 publication Critical patent/WO1994017122A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/80Solid-state polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/06Conditioning or physical treatment of the material to be shaped by drying
    • B29B13/065Conditioning or physical treatment of the material to be shaped by drying of powder or pellets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules
    • B29B2009/165Crystallizing granules

Definitions

  • the invention relates to a method for the continuous crystallization and polycondensation of polyester material according to the preamble of claim 1 and 2 respectively.
  • the pre-crystallized material Before entering the reactor, the pre-crystallized material has to be heated to about 200 ° C. to 225 ° C. in the core and dried. The residence time in the reactor is again several hours. Surface temperatures of up to approx. 230 ° C are reached, which is already above the melting point, cf. z. B. EP-B-85 643. This in turn leads to signs of stickiness and agglomeration of the material in the thermal solid phase treatment.
  • the invention is therefore based on the object, while avoiding the disadvantages of the prior art shown, of designing a process for the continuous crystallization and polycondensation of polyester material in such a way that exercises of the polyester material due to exothermic processes can be avoided.
  • this object is achieved in that, in a process procedure known per se, as described, for.
  • the material is subjected to intermediate cooling.
  • the material is heated in the preheater from an initial temperature of, for example, 120-190 ° C. to approximately 220 ° C. in a hot gas stream and completely warmed up in a dwell time of approximately three hours.
  • a degree of crystallinity of approx. 50% is achieved here.
  • the residence time in the reactor is 7-15 hours in a known manner. A degree of crystallinity of about 53% is achieved. This is followed by conventional cooling of the material to ensure that it can be stored.
  • the method according to the invention enables a higher application variance and an increased throughput of gas and polyester material. Material change and process change of an SSP system can be considerably simplified.
  • the material throughput is used as a control variable to avoid the beginning of the melting of the polyester granulate.
  • excess material is used, which results in a controlled temperature gradient. According to the invention, excess material is to be understood in the sense of a specific heat flow, derived from the required specific output
  • CPG mean specific thermal conductivity.
  • This variant of the invention is based on the surprising finding that an excess of gas tends to cause a deterioration in the temperature profile.
  • a process control with transient driving is also possible.
  • the material is preheated in a manner known per se in a few minutes in a gas stream of high temperature, but no total heating may occur. A degree of crystallinity of approx. 45% is achieved.
  • the polyester material is heated in a fluidizing gas stream, for example air.
  • the first fluidized bed is a bubbling fluidized bed with a mixed characteristic, in which the material has an average residence time of max. Is heated to about 160 ° C for 60 minutes.
  • This is followed by a fluid bed as the second fluidized bed Piston flow characteristics, with heating to approx. 170 ° C, with a minimum residence time of 2-25 minutes. This ensures trouble-free and complete crystallization even of sticky material, and agglomerate-free granules with a uniform degree of crystallization are obtained.
  • the polyester material is introduced into a preheater of an SSP reactor and in a period of about three hours to a temperature of about 215 ° C, max. 230 ° C heated with a hot inert gas stream (e.g. nitrogen). After passing through the preheating zone, the polyester material is intercooled from an average of 217 ° C. to approx. 210 ° C. in order to avoid overheating (exceeding the melting point) of the material in the subsequent reactor.
  • a hot inert gas stream e.g. nitrogen
  • the polyester material is again heated in the preheating zone of the reactor. In order to avoid the start of melting, however, an excess of material is used when a temperature of approximately 215 ° C. is reached.
  • the material throughput is set in such a way that 218 ° C. is not exceeded and the granulate does not stick together.
  • a temperature measurement is generally carried out in the process, and the data obtained can be compared with a simulation model.

Abstract

A process is disclosed for continuously crystallizing and polycondensating polyester material. The object of the invention is to avoid oxidative damages to the polyester material during the SSP treatment and at the same time to multiply the possibilities of application of polycondensation in the solid phase. For that purpose, the crystallized and polycondensed polyester material according to a per se known process is cooled by approximately 5 °C after going through the preheater and before entering the reactor.

Description

Beschreibung description
Verfahren zum kontinuierlichen Kristallisieren und Polykondensieren von PolyestermaterialProcess for the continuous crystallization and polycondensation of polyester material
Die Erfindung betrifft ein Verfahren zum kontinuierlichen Kristallisieren und Polykondensieren von Polyestermaterial nach dem Oberbegriff des Patentanspruchs 1 bzw. 2.2. The invention relates to a method for the continuous crystallization and polycondensation of polyester material according to the preamble of claim 1 and 2 respectively.
Es ist hinlänglich bekannt, Polyester-, bzw.Polyamidmaterial in zwei Verfahrensabschnitten kontinuierlich zu kristalli¬ sieren und nachfolgend in fester Phase zu polykondensieren. In einem stationären Betrieb erfolgt zunächst eine ein- und/oder zweistufige Kristallisation bei Temperaturen von 120 °C bis 190 °C und Verweilzeiten von bis zu mehreren Stunden. Zur Vermeidung von Verklebungen lehrt die EP-A-379 684 als besonders vorteilhafte .Anordnung die Führung des Materials durch hintereinander geschaltete Wirbelbetten. Das einen weitgehend einheitlichen Kristallinitätsgrad aufweisende Material wird anschliessend in einem Vorerhitzer erhitzt, ge¬ trocknet und teilweise polymerisiert, wobei die erforderliche Temperatur oberhalb der Oxidationstemperatur des Materials liegt. Von daher findet dieser Vorgang in einer Schutzgasat¬ mosphäre statt. Das vorkristallisierte Material muss vor dem Eintritt in den Reaktor auf ca. 200 °C bis 225 °C im Kern er¬ hitzt und getrocknet werden. Die Verweilzeit im Reaktor be¬ trägt wiederum mehrere Stunden. Hierbei werden Oberflächen¬ temperaturen bis ca. 230 °C erreicht, was bereits oberhalb des Schmelzpunktes liegt, vgl. z. B. EP-B-85 643. Dies wie¬ derum führt zu Klebrigkeitserscheinungen und Agglomeration des Materials bei der thermischen Festphasenbehandlung.It is well known to continuously crystallize polyester or polyamide material in two process stages and subsequently to polycondense in the solid phase. In a stationary operation, there is first a one and / or two-stage crystallization at temperatures from 120 ° C to 190 ° C and residence times of up to several hours. To avoid sticking, EP-A-379 684 teaches, as a particularly advantageous arrangement, the guidance of the material through fluidized beds connected in series. The material, which has a largely uniform degree of crystallinity, is subsequently heated, dried and partially polymerized in a preheater, the temperature required being above the oxidation temperature of the material. Therefore, this process takes place in a protective gas atmosphere. Before entering the reactor, the pre-crystallized material has to be heated to about 200 ° C. to 225 ° C. in the core and dried. The residence time in the reactor is again several hours. Surface temperatures of up to approx. 230 ° C are reached, which is already above the melting point, cf. z. B. EP-B-85 643. This in turn leads to signs of stickiness and agglomeration of the material in the thermal solid phase treatment.
Der Erfindung liegt daher die Aufgabe zugrunde, unter Vermei¬ dung der aufgezeigten Nachteile des Standes der Technik ein Verfahren zum kontinuierlichen Kristallisieren und Polykon¬ densieren von Polyestermaterial so auszubilden, dass Verkle- bungen des Polyestermaterials infolge exothermer Abläufe vermieden werden.The invention is therefore based on the object, while avoiding the disadvantages of the prior art shown, of designing a process for the continuous crystallization and polycondensation of polyester material in such a way that exercises of the polyester material due to exothermic processes can be avoided.
Diese Aufgabe wird erfindungsgemäss dadurch gelöst, dass in einer an sich bekannten Verfahrensführung, wie sie z. B. in der EP-A-379 684 offenbart wird, nach dem Austritt des Mate¬ rials aus dem Vorerhitzer und vor dem Eintritt in den Reaktor das Material einer Zwischenkühlung unterworfen wird. Bei einer solchen Verfahrensführung mit stationärem Gleichgewicht wird das Material im Vorerhitzer von einer Ausgangstemperatur von beispielsweise 120-190 °C auf ca. 220 °C im heissen Gas¬ strom erhitzt und in einer ca. dreistündigen Verweildauer vollständig durchgewärmt. Hierbei wird ein Kristallinitäts- grad von ca. 50 % erreicht. Beim Übertritt des Materials in den Reaktor und weiterer Durchströmung mit heissem Gas führen bei der bekannten Verfahrensführung exotherme Vorgänge im dichtgepackten Materialstrom zu Verklebungen des Materials.According to the invention, this object is achieved in that, in a process procedure known per se, as described, for. As is disclosed in EP-A-379 684, after the material has left the preheater and before entering the reactor, the material is subjected to intermediate cooling. In such a process with steady-state equilibrium, the material is heated in the preheater from an initial temperature of, for example, 120-190 ° C. to approximately 220 ° C. in a hot gas stream and completely warmed up in a dwell time of approximately three hours. A degree of crystallinity of approx. 50% is achieved here. When the material passes into the reactor and hot gas flows through it further, exothermic processes in the densely packed material flow lead to sticking of the material in the known process.
Es wurde nun gefunden, dass diese Nachteile durch eine Zwi¬ schenkühlung des Materials vermeidbar sind. Die Abkühlung er¬ folgt, in Abhängigkeit vom verwendeten Polyestermaterial um ca. 5 °C gegenüber der erreichten Endtemperatur im Vorerhit¬ zer, um ein Erreichen oder gar Überschreiten einer kritschen Oberflächentemperatur (Beginn des Aufschmelzens) zu verhin¬ dern.It has now been found that these disadvantages can be avoided by intercooling the material. The cooling takes place, depending on the polyester material used, by approx. 5 ° C. compared to the final temperature reached in the preheater in order to prevent a critical surface temperature from being reached or even exceeded (beginning of melting).
Die Verweilzeit im Reaktor beträgt in bekannter Weise 7-15 Stunden. Erreicht wird ein Kristallinitätsgrad von etwa 53 %. Anschliessend folgt eine übliche Kühlung des Materials, um die Lagerfähigkeit zu gewährleisten.The residence time in the reactor is 7-15 hours in a known manner. A degree of crystallinity of about 53% is achieved. This is followed by conventional cooling of the material to ensure that it can be stored.
Eine solch einfache Verfahrensweise war aus dem Stand der Technik nicht folgerbar, wurde doch vielmehr eine einge¬ schränkte Verfahrensweise und eine mögliche, oxidative Schä¬ digung bewusst in Kauf genommen (DE-AS 25 58 730, DE-OS 26 42 102) oder es wurden zusätzliche Verfahrensschrit¬ te und Substanzen vorgeschlagen (z. B. US-PS 4 130 551, DE-OS 21 24 203) .Such a simple procedure could not be inferred from the prior art, but rather a restricted procedure and possible oxidative damage were consciously accepted (DE-AS 25 58 730, DE-OS 26 42 102) or additional method steps and substances have been proposed (e.g. US Pat. No. 4,130,551, DE-OS 21 24 203).
Des weiteren ermöglicht die erfindungsgemässe Verfahrens¬ führung eine höhere Anwendungsvarianz und einen erhöhten Durchsatz an Gas und Polyestermaterial. Materialwechsel und Prozessänderung einer SSP-Anlage können wesentlich verein¬ facht werden.Furthermore, the method according to the invention enables a higher application variance and an increased throughput of gas and polyester material. Material change and process change of an SSP system can be considerably simplified.
In einer Ausgestaltung der Erfindung wird anstelle einer Zwi¬ schenkühlung im Gasstrom der Materialdurchsatz als Regel- grösse zur Vermeidung des Aufschmelzbeginns des Polyestergra¬ nulats verwendet. Dabei wird nach dem Vorerhitzen im Reaktor mit Materialüberschuss gefahren, was einen kontrollierten Temperaturgradienten ergibt. Materialüberschuss ist erfin- dungsgemäss im Sinne eines spezifischen Wärmestroms zu ver¬ stehen, abgeleitet von der notwendigen spezifischen Leistung gemässIn one embodiment of the invention, instead of intermediate cooling in the gas stream, the material throughput is used as a control variable to avoid the beginning of the melting of the polyester granulate. After preheating in the reactor, excess material is used, which results in a controlled temperature gradient. According to the invention, excess material is to be understood in the sense of a specific heat flow, derived from the required specific output
ms • cps > ig . cpg wobei m s • cp s > ig. cpg where
ms Massestrom Granulat cPs spezifische Wärmeleitfähigkeit Granulat mg Massestrom Gasm s mass flow granulate cPs specific thermal conductivity granulate mg mass flow gas
CPG spezifische Wärmeleitfähigkeit bedeuten.CPG mean specific thermal conductivity.
Dieser Variante der Erfindung liegt die überraschende Er¬ kenntnis zugrunde, dass ein Gasüberschuss eher eine Ver¬ schlechterung des Temperaturprofils bewirkt.This variant of the invention is based on the surprising finding that an excess of gas tends to cause a deterioration in the temperature profile.
II.
Eine solche Lösung ist dem bekannten Stand der Technik nicht zu entnehmen. Sie liegt die DE-AS 25 29 290 ein Gewichtsver¬ hältnis Gasstrom (Stickstoff) zu Granulat von 2 : 1 zugrunde, d.h. ein deutlicher Gasüberschuss. Gemäss EP-B-310 968 kann bei einer Kristallisation anhand der Materialtemperatur die Entnahmegeschwindigkeit des Granulats geregelt werden. Daraus ist jedoch nicht ableitbar, wie mit dem Massestrom selbst ein Beginn des Anschmelzens vermieden werden kann.Such a solution cannot be found in the known prior art. It is based on DE-AS 25 29 290, a weight ratio of gas stream (nitrogen) to granules of 2: 1, ie a significant excess of gas. According to EP-B-310 968, the rate of removal of the granules can be regulated in the case of crystallization on the basis of the material temperature. However, it cannot be deduced from this how the start of the melting process can be avoided with the mass flow itself.
In der nicht vorveröffentlichten schweizerischen Patentanmel¬ dung Nr. 02 516/92-0 der Anmelderin wird ebenso vermekrt, dass Regelungen über die Temperatur relativ träge sind und eine Regelung über die Verweilzeit des Materials im Reaktor und/oder der Vorheizzone möglich ist. D.h. Beeinflussung durch die auszutragende Materialmenge pro Zeiteinheit.In the applicant's previously unpublished Swiss patent application No. 02 516 / 92-0, it is also noted that regulations about the temperature are relatively slow and regulation about the residence time of the material in the reactor and / or the preheating zone is possible. That Influenced by the amount of material to be discharged per unit of time.
Neben dem vorgenannten ist in einer anderen Ausgestaltung der Erfindung auch eine Verfahrensführung mit instationärer Fahr¬ weise möglich. Hierzu erfolgt die Vorerhitzung des Materials in an sich bekannter Weise in wenigen Minuten in einem Gas¬ strom von hoher Temperatur, wobei jedoch keine totale Durch¬ wärmung eintreten darf. Erreicht wird ein Kristallinitatsgrad von ca. 45 %.In addition to the above, in another embodiment of the invention, a process control with transient driving is also possible. For this purpose, the material is preheated in a manner known per se in a few minutes in a gas stream of high temperature, but no total heating may occur. A degree of crystallinity of approx. 45% is achieved.
Die weiterführende Behandlung im Reaktor mit nachfolgender Kühlung lässt wiederum einen Kristallinitatsgrad von ca. 53 % erreichen, jedoch bei höherer Exothermie.Further treatment in the reactor with subsequent cooling in turn allows a degree of crystallinity of approx. 53% to be achieved, but with higher exothermicity.
Das erfindungsgemässe Verfahren soll nachstehend an Hand eines Ausführungsbeispieles näher beschrieben werden.The method according to the invention will be described in more detail below using an exemplary embodiment.
Beispiel 1example 1
In einer Anordnung gemäss EP-A-379 684, bestehend aus zwei hintereinander geschalteten Wirbelbetten, wird das Polyester¬ material in einem Fluidisiergasstrom, beispielsweise Luft, erhitzt. Das erste Wirbelbett ist ein sprudelndes Wirbelbett mit Mischcharakteristik, in dem das Material bei einer mitt¬ leren Verweildauer von max. 60 Minuten auf ca. 160 °C erwärmt wird. Dem folgt als zweites Wirbelbett ein Fliessbett mit Kolbenströmungscharakteristik, mit einer Erwärmung auf ca. 170 °C, bei einer Mindestverweildauer von 2-25 Minuten. Damit ist eine störungsfreie und vollständige Kristallisation selbst von klebrigem Material gewährleistet, es wird ein agglomeratfreies Granulat von einheitlichem Kristallisa¬ tionsgrad erhalten.In an arrangement according to EP-A-379 684, consisting of two fluidized beds connected in series, the polyester material is heated in a fluidizing gas stream, for example air. The first fluidized bed is a bubbling fluidized bed with a mixed characteristic, in which the material has an average residence time of max. Is heated to about 160 ° C for 60 minutes. This is followed by a fluid bed as the second fluidized bed Piston flow characteristics, with heating to approx. 170 ° C, with a minimum residence time of 2-25 minutes. This ensures trouble-free and complete crystallization even of sticky material, and agglomerate-free granules with a uniform degree of crystallization are obtained.
Nach dem Kristallisationsvorgang wird das Polyestermaterial in einen Vorerhitzer eines SSP-Reaktors eingebracht und in einem Zeitraum von ca. drei Stunden auf eine Temperatur von ca. 215 °C, max. 230 °C mittels eines heissen Inertgasstroms (z.B. Stickstoff) erhitzt. Nach dem Passieren der Vorheizzone wird das Polyestermaterial von durchschnittlich erreichten 217 °C auf ca. 210 °C zwischengekühlt, um eine Überhitzung (Überschreitung des Schmelzpunktes) des Materials im nachfol¬ genden Reaktor zu vermeiden.After the crystallization process, the polyester material is introduced into a preheater of an SSP reactor and in a period of about three hours to a temperature of about 215 ° C, max. 230 ° C heated with a hot inert gas stream (e.g. nitrogen). After passing through the preheating zone, the polyester material is intercooled from an average of 217 ° C. to approx. 210 ° C. in order to avoid overheating (exceeding the melting point) of the material in the subsequent reactor.
Im Reaktor, beschrieben z. B. in der EP-A-379 684, erfolgt eine Nachkondensation des Materials in fester Phase bei einer Temperatur von weniger als 217 °C und einer Verweildauer von 7-10 Stunden. Nachfolgend wird das fertige Granulat auf eine Temperatur von weniger als 60 °C gekühlt, um dessen Lagerfä¬ higkeit zu sichern.In the reactor, described for. B. in EP-A-379 684, there is a post-condensation of the material in the solid phase at a temperature of less than 217 ° C and a residence time of 7-10 hours. The finished granulate is then cooled to a temperature of less than 60 ° C. in order to ensure its storability.
Beispiel 2Example 2
Nach einer Kristallisation gemäss Beispiel 1 erfolgt wiederum eine Erhitzung des Polyestermaterials in der Vorheizzone des Reaktors. Zur Vermeidung des Anschmelzbeginns wird jedoch bei Erreichen einer Temperatur von ca. 215°C mit einem Material¬ überschuss gefahren. Der Materialdurchsatz wird so einge¬ stellt, dass 218°C nicht überschritten werden und ein Verkle¬ ben des Granulats unterbleibt.After crystallization according to Example 1, the polyester material is again heated in the preheating zone of the reactor. In order to avoid the start of melting, however, an excess of material is used when a temperature of approximately 215 ° C. is reached. The material throughput is set in such a way that 218 ° C. is not exceeded and the granulate does not stick together.
Generell erfolgt eine Temperaturmessung im Prozess, ein Ver¬ gleich der gewonnenen Daten mit einem Simulationsmodell, ist möglich. A temperature measurement is generally carried out in the process, and the data obtained can be compared with a simulation model.

Claims

Patentansprüche Claims
1. Verfahren zum kontinuierlichen Kristallisieren und Fest- phasen-Polykondensieren von Polyestermaterial durch Kri¬ stallisieren des Ausgangsmaterials, nachfolgender Vor¬ heizung des vorkristallisierten Materials und Polykon¬ densation bei ca. 205 °C bis 230 °C in fester Phase sowie anschliessender Abkühlung, dadurch gekennzeichnet, dass das Polyestermaterial nach dem Passieren des Vorerhitzers, vor dem Eintritt in den Reaktor einer Zwischenkühlung aus¬ gesetzt wird.1. A process for the continuous crystallization and solid-phase polycondensation of polyester material by crystallizing the starting material, subsequent preheating of the precrystallized material and polycondensation at about 205 ° C. to 230 ° C. in the solid phase and subsequent cooling, thereby characterized in that the polyester material after passing through the preheater is subjected to intermediate cooling before entering the reactor.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Zwischenkühlung in Abhängigkeit vom Polyestermaterial auf eine Temperatur unterhalb einer kritischen Oberflä¬ chentemperatur (Aufschmelzbeginn) des Polyestermaterials erfolgt.2. The method according to claim 1, characterized in that the intermediate cooling takes place depending on the polyester material to a temperature below a critical surface temperature (start of melting) of the polyester material.
3. Verfahren nach Anspruch 1 und 2, dadurch gekennzeichnet, dass das Polyestermaterial gegenüber der Vorerhitzertempe¬ ratur vorzugsweise um mindestens 5 °C abgekühlt wird.3. The method according to claim 1 and 2, characterized in that the polyester material compared to the preheater temperature is preferably cooled by at least 5 ° C.
4. Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet, dass das Vorerhitzen des Polyestermaterials durch eine in¬ stationäre Kurzzeitvorerhitzung von nur wenigen Minuten Dauer und bei einer genügend hohen Temperatur erfolgt. 4. The method according to claim 1 to 3, characterized in that the preheating of the polyester material is carried out by in¬ stationary short-term preheating of only a few minutes and at a sufficiently high temperature.
PCT/CH1994/000006 1993-01-21 1994-01-11 Polyester material continuous crystallisation and polycondensation process WO1994017122A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH179/93-5 1993-01-21
CH17993A CH684697A5 (en) 1993-01-21 1993-01-21 A method of continuously crystallizing and polycondensing polyester material.

Publications (1)

Publication Number Publication Date
WO1994017122A1 true WO1994017122A1 (en) 1994-08-04

Family

ID=4181071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1994/000006 WO1994017122A1 (en) 1993-01-21 1994-01-11 Polyester material continuous crystallisation and polycondensation process

Country Status (2)

Country Link
CH (1) CH684697A5 (en)
WO (1) WO1994017122A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19505680C1 (en) * 1995-02-20 1996-05-23 Inventa Ag Condensn. injection moulding of preform for food-quality bottle
WO2007022994A1 (en) 2005-08-26 2007-03-01 Lurgi Zimmer Gmbh Method and device for reducing acetaldehyde content in polyester granulate
US7262263B2 (en) 2001-11-30 2007-08-28 Brigitta Otto Method and apparatus for producing solid-state polycondensed polyesters
US7977448B2 (en) 2004-03-04 2011-07-12 Lurgi Zimmer Gmbh Method for producing highly condensed solid-phase polyesters
US8063176B2 (en) 2006-03-16 2011-11-22 Lurgi Zimmer Gmbh Method and device for the crystallization of polyester material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2008523A1 (en) * 1968-05-14 1970-01-23 Glanzstoff Ag
US4161578A (en) * 1978-05-12 1979-07-17 Bepex Corporation Process for solid phase polymerization of polyester
EP0085643A2 (en) * 1982-02-02 1983-08-10 The Goodyear Tire & Rubber Company Process for the production of high molecular weight polyester
EP0091566A1 (en) * 1982-04-02 1983-10-19 Karl Fischer Industrieanlagen Gmbh Process and apparatus for the post condensation of polycondensates
EP0379684A2 (en) * 1988-12-23 1990-08-01 Bühler Ag Method of and apparatus for the continuous crystallisation of polyesters

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2008523A1 (en) * 1968-05-14 1970-01-23 Glanzstoff Ag
US4161578A (en) * 1978-05-12 1979-07-17 Bepex Corporation Process for solid phase polymerization of polyester
EP0085643A2 (en) * 1982-02-02 1983-08-10 The Goodyear Tire & Rubber Company Process for the production of high molecular weight polyester
EP0091566A1 (en) * 1982-04-02 1983-10-19 Karl Fischer Industrieanlagen Gmbh Process and apparatus for the post condensation of polycondensates
EP0379684A2 (en) * 1988-12-23 1990-08-01 Bühler Ag Method of and apparatus for the continuous crystallisation of polyesters

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19505680C1 (en) * 1995-02-20 1996-05-23 Inventa Ag Condensn. injection moulding of preform for food-quality bottle
US5656719A (en) * 1995-02-20 1997-08-12 Ems-Inventa Ag Condensation injection molding process for producing bottle preforms of polyethylene terephthalate and/or its copolyesters and resultant preforms
US7262263B2 (en) 2001-11-30 2007-08-28 Brigitta Otto Method and apparatus for producing solid-state polycondensed polyesters
US7977448B2 (en) 2004-03-04 2011-07-12 Lurgi Zimmer Gmbh Method for producing highly condensed solid-phase polyesters
WO2007022994A1 (en) 2005-08-26 2007-03-01 Lurgi Zimmer Gmbh Method and device for reducing acetaldehyde content in polyester granulate
US7521522B2 (en) 2005-08-26 2009-04-21 Lurgi Zimmer Gmbh Method and device to reduce the acetaldehyde content of polyester granulate
US8063176B2 (en) 2006-03-16 2011-11-22 Lurgi Zimmer Gmbh Method and device for the crystallization of polyester material

Also Published As

Publication number Publication date
CH684697A5 (en) 1994-11-30

Similar Documents

Publication Publication Date Title
DE2918675C2 (en) Process for the continuous production of high molecular weight polyethylene terephthalate
EP1274761B1 (en) Method and device for producing granulates from intermediate products of thermoplastic polyesters and copolyesters
DE3710803A1 (en) METHOD FOR REMOVING CAPROLACTAM AND ITS OLIGOMERS FROM SUCH CONTAINING POLYAMIDE GRANULES
WO2000023497A1 (en) Method for granulating and crystallizing thermoplastic polyesters or copolyesters
DE2919008A1 (en) PROCESS FOR THE MANUFACTURING OF POLYAETHYLENE TEREPHTHALATE WITH A REDUCED ACETALDEHYDE CONTENT
EP1313599B1 (en) Method and device for producing spherical particles from a polymer melt
DE19709517A1 (en) Device for crystallizing polymer granules and method for crystallizing polymer granules
AT395013B (en) METHOD FOR THE CONTINUOUS PRODUCTION OF HIGH MOLECULAR POLYESTER RESINS
DE3105767C2 (en)
WO2006128408A1 (en) Method for thermally treating polyester pellets to obtain a partial crystallization
DE2837770A1 (en) STORAGE LIQUID, POLYISOCYANATES HAVING CARBODIIMIDE GROUPS AND METHOD FOR THE PRODUCTION THEREOF
WO1994017122A1 (en) Polyester material continuous crystallisation and polycondensation process
EP0020946A1 (en) Continuous process for preparing polycaprolactam, and a device for carrying out the process
EP1129124B1 (en) Method and installation for producing pet granulates
DE4314345A1 (en) Process and apparatus for the recycling of solid polyester material
WO2002068498A1 (en) Method and device for the continuous polycondensation of polyester material in the solid phase
AT398574B (en) METHOD FOR PRODUCING HIGH MOLECULAR WEIGHT POLYESTER RESIN
DE19503054B4 (en) Process for the thermal treatment of polyester granules in solid phase
WO2005123807A1 (en) Method and device for continuously producing copolyamides with melting points greater than 265 °c
DE60223383T2 (en) METHOD FOR INCREASING THE SOLID PHASE POLYMERIZATION SPEED
EP1194473A1 (en) Method for preparing polyamides from lactams and polyamide extracts
EP2725051B1 (en) Continuous process for the preparation of polyamide 6 and devices for this
DE2248127B2 (en) Process for the production of an infusible, thermally stable p-oxybenzoyl polyester
DE2315272B2 (en) Process for the solid phase condensation of polybutylene terephthalate
DE60211153T2 (en) IMPROVED REMOVAL OF VOLATILE SUBSTANCES IN THE NYLON-6 SOLID PHASE HARDENING PROCESS IN TEMPERATURE PROGRAMMING

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase