WO1994015877A1 - Cellule d'electrolyse - Google Patents

Cellule d'electrolyse Download PDF

Info

Publication number
WO1994015877A1
WO1994015877A1 PCT/IB1994/000006 IB9400006W WO9415877A1 WO 1994015877 A1 WO1994015877 A1 WO 1994015877A1 IB 9400006 W IB9400006 W IB 9400006W WO 9415877 A1 WO9415877 A1 WO 9415877A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
anode
electrolyte
peripheral
cell
Prior art date
Application number
PCT/IB1994/000006
Other languages
English (en)
Inventor
Jean-Pol Wiaux
Christine Jeanmonod
Piero Imbruglia
Original Assignee
Titalyse Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Titalyse Sa filed Critical Titalyse Sa
Publication of WO1994015877A1 publication Critical patent/WO1994015877A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4676Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electroreduction
    • C02F1/4678Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electroreduction of metals
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/18Cyanides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/003Coaxial constructions, e.g. a cartridge located coaxially within another
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4611Fluid flow
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/02Fluid flow conditions
    • C02F2301/024Turbulent
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/02Fluid flow conditions
    • C02F2301/026Spiral, helicoidal, radial

Definitions

  • the invention relates to a new generation of electrolyser which combines hydrodynamic and electrochemical phenomena, for the treatment of effluents from the surface treatment industries, printed circuits, baths of alkaline and acid processes, generally industrial waste water. and other wastewater.
  • This wastewater is heavily loaded with toxic heavy metals and oxidizable chemical compounds, in particular organic compounds, as well as phosphates or cyanides.
  • the invention also relates to a new electrolyte distribution system in electrolysers for the treatment of effluents and the like.
  • the conventional chemical treatment of effluents loaded with heavy metals consists of a combined neutralization of a precipitation of heavy metals in the form of hydroxides. These methods do not achieve legal discharge standards, except for copper and zinc, and generate large quantities of sludge to be stored in a landfill.
  • Electrolysers with rotating electrodes which promote mass transfer and, consequently, the current density at the electrodes, for example the cells known under the names Pump Cell, ECO Cell and Turbo Cell. These electrolysers only develop small active surfaces and pose the problem of complex, mobile mechanics, immersed in very aggressive and corrosive environments.
  • Electrolysers favoring the active surfaces of the electrodes without promoting mass transfers for example cells known under the names Multi-Cathode Cell and Swiss-Roll. These cells have the disadvantage of being limited by their possibilities of large-scale extension, due to the high amperage.
  • the invention relates to a new high density electrolyser of anodic and cathodic currents for the treatment of contaminated effluents by heavy metals and oxidizable pollutants, in particular organic pollutants, such as complexing agents, brighteners and additives in process baths, as well as phosphate and cyanide compounds.
  • organic pollutants such as complexing agents, brighteners and additives in process baths, as well as phosphate and cyanide compounds.
  • the invention therefore relates to a cell for the treatment of effluents loaded with heavy metals and oxidizable or reducible chemical compounds, comprising a cylindrical assembly of at least one anode and a cathode.
  • This cell is characterized in that it comprises a generally cylindrical, hollow anode, cooperating by its external and internal surfaces with two cathodes: a peripheral cathode for the cathodic deposition of metals facing the external part of the anode, and a cathode internal auxiliary located opposite the internal part of the anode.
  • the anode is selectively connected to the peripheral cathode or to the two cathodes, so as to carry out electrolysis, either between the peripheral cathode and the external face of the anode during a phase of cathodic deposition of the metal on the peripheral cathode, or between the two cathodes and the two faces of the anode during an oxidation phase of the chemical compounds remaining in solution.
  • the cell of the invention develops high current densities and works as well in cathodic reduction as in anodic oxidation.
  • the electrolysis current is used simultaneously for the reduction of metals and for the oxidation of organic matter and other oxidizable compounds.
  • the invention also relates to a method for the treatment of effluents loaded with heavy metals and oxidizable chemical compounds using this cell where electrolysis is first carried out between the peripheral cathode and the external face of the anode during a phase of cathodic deposition of metal on the peripheral cathode in order to reduce the content of metals in below a certain threshold, and then where electrolysis is continued between the two cathodes and the two faces of the anode during an oxidation phase of the chemical compounds remaining in solution.
  • the cell of the invention combines hydrodynamic and electrochemical phenomena. Its cylindrical geometry allows optimal conditions for mass and material transfer to be achieved, while offering large active surfaces for a minimal footprint. Developing high current densities and easily modular, connected in series of current, this cell allows to realize installations of several thousands of amperes by occupying a reduced surface.
  • the cylindrical geometry of the cell combined with a circulation rate, between 1 and 10 m ⁇ / h, ensures high speeds at the surface of the electrodes and thus promotes mass transfer.
  • the rate of renewal of the effluent in the cell (that is to say of contact with the electrodes) varies from 8 to 40 volumes per hour.
  • the hydrodynamic conditions are also favored by a particular hydraulic distribution which ensures an excellent vortex around the electrodes.
  • the electrolyte enters a distribution chamber which ensures a uniform distribution of the pressure. This chamber supplies several distribution ramps parallel to the electrodes. The liquid is thus sprayed between the electrodes with high tangential speeds which develop a significant mass transfer to the electrodes.
  • the top of the cell is equipped with a crown of larger diameter, through which the liquid flows. This ring also makes it possible to suck up the gases produced during electrolysis.
  • the entire cell and the hydraulic distribution is made of synthetic materials such as polypropylene and PVC.
  • the cell of the invention makes it possible to implement nominal currents between 100 and 1000 A at a maximum voltage of 2 to 10V.
  • the cathodic and anodic current densities can reach values of 1 to 30 A / dm, the surface on the ground being less than 25 dm 2 .
  • Cathodic distribution is ensured by means of a copper crown on which two copper cathode holders are fixed.
  • the cathodes are clamped between these cathode holders.
  • the crown / cathode holder assembly is quickly removable, facilitating the maintenance (replacement) of the cathodes.
  • the anodic distribution is carried out by two copper bars coated with titanium which support the anode and which allow the cells to be assembled in series by means of a connecting tab.
  • the entire electrical distribution is above the liquid, fixed on the plastic casing.
  • the electrical parts are thus protected from attack by corrosive vapors of the electrolyte.
  • the cell of the invention is equipped with concentric cylindrical electrodes.
  • the latter is placed at the periphery of the cell.
  • the anode then comes and a second silent cathode consisting of a metal cylinder, for example stainless steel or copper, is placed inside the anode.
  • the external cathode can have different geometries: expanded metal, grid, solid branches, openwork metal, crosslinked, woven, metallized foams, plates.
  • the nature of the metal cations to be deposited determines the cathode substrate: copper, steel, iron, stainless steel, bronze, titanium, nickel, zinc-plated steel, zinc.
  • the cathodes may or may not be reusable.
  • the anodes used also depend on the medium. They can be of different shapes: full or hollow cylinder, expanded metal, plate, and of different natures. Either a simple metal or a metallic alloy, such as steel, stainless steel, titanium, nickel, lead, graphite, or a metallic substrate covered with a catalytic layer: in particular activated titanium, for example titanium / Pt / Pb02, titanium / Ta / Ir.
  • the proportion of the various metals and oxides is adapted according to the aggressiveness of the medium, the content of organic matter, complexing agents, cyanide and phosphate compounds, etc.
  • the anodes are changed periodically and those made up of catalytic structures can be "recoating".
  • the cell of the invention can be transformed into a cell with separate anode and cathode compartments in order to promote the main electrochemical process.
  • a plastic separator, ceramic or made of a selective ionic membrane, is then placed between the anode and the cathode.
  • This type of configuration is more particularly suitable for the treatment of chlorinated media, the regeneration of acids and alkaline media, as well as process baths and wastewater in general.
  • the total amperage required for the oxidation of organic matter is much higher than that used for the recovery of metals at equivalent concentration.
  • the central cathode remains silent (without current) and does not charge with metal during the first phase of electrolysis. It is only activated when, for example, more than 90% of the metal ions are deposited on the peripheral cathode. This activation of the central cathode has the effect of doubling the active anode surface. Thus, the destruction time of organic matter is reduced considerably.
  • the distance between the peripheral cathode and the anode must be equal to the distance between the anode and the central cathode (mute).
  • the electrolyte distribution system constitutes a characteristic of the invention which can be applied to other types of cell.
  • the characteristics of a cell equipped with an electrolyte distribution system according to the invention are set out in claims 15 to 21.
  • Figure 1 is a sectional view of a first embodiment of the cell according to the invention, cylindrical with electrolyte distribution system.
  • FIG. 2 is a sectional view of an electrolyte distribution tube of a second embodiment of the cell according to the invention, with flat, parallel electrodes, illustrated diagrammatically in top view in FIG. 3. Detailed description
  • the plastic structure of the cell illustrated in FIG. 1 has three parts: a distribution chamber for the electrolyte 2, the envelope of the cell 16 and an upper crown 8.
  • the distribution chamber 2 makes it possible to distribute the electrolyte uniformly in the cell.
  • the chamber has a structure 17 which supports the weight of all the electrodes (usually several hundred kg).
  • the electrolyte enters the chamber through the orifice
  • a polypropylene plate 18 separates the distribution chamber 2 from the rest of the cell. It supports four distributor tubes 10 and allows, by means of a conical structure 19 of plastic, to guide the anode.
  • the envelope 16 consists of a polypropylene cylinder, for example 400 mm in diameter, which can withstand temperatures of around 80 ° C.
  • the thickness for example 23 mm, ensures the rigidity of the cell. It includes a drain outlet 4, used during cleaning.
  • the upper part of the cell has a crown 8 made of polypropylene, for example 500 mm in diameter.
  • This crown performs a double function of recovery of the electrolyte and suction of gases and foam.
  • the electrolyte overflows into the crown 8 through six overflow orifices 13; it is evacuated by the exit
  • the hydraulic distribution is ensured by four distributors formed by vertical tubes 10, which allow the electrolyte to be squirted between the electrodes. These distributors are fitted with a bayonet system 3 which allows rapid disassembly from the top during cleaning. These distributors 10 are guided at the top of the cell by a plate 15. This plate 15 also protects the upper part of the electrical connections.
  • a copper ring 14 is fixed on the crown 8. It is connected to a rectifier and makes it possible to distribute the current over two half copper cathode holders 7.
  • the ring 14 and the cathode holder 7 are attached by means of a quick clamping system.
  • the cathode holders 7 are, for example, two in number per cell.
  • a cathode holder 7 consists of two semicircular copper strips between which a peripheral half cathode 20 is clamped.
  • the peripheral cathode 20 in this case consists of two circular half cathodes made of expanded metal of copper which cannot be reused, that is to say that they are destroyed during the recovery of the deposited metal.
  • the positioning of the cylindrical anode 5 is ensured by means of the central conical part 19 and of the upper plate 15. It holds by its own weight.
  • the anode current is distributed by two curved copper bars of titanium 6 which are welded inside the anode 5.
  • the anode 5 consists of an expanded metal with small meshes of platinum titanium covered with 'an active catalytic layer of lead oxide. This anode is more particularly suitable for the oxidation of cyanides and organic materials.
  • the treated electrolyte enters the cell through the orifice 1 and is distributed uniformly in the chamber 2. From the chamber 2, the electrolyte is forced into the distributors 10, parallel to the electrodes, which ensures a uniform distribution of the 1 ' electrolyte between the electrodes and thus avoids the problem of gradients of concentration observed in conventional electrolysers with parallel plates. Each electrode portion is therefore supplied with an electrolyte of identical composition.
  • the electrolyte pours into the crown 8 through the six orifices 13. It is then discharged through the outlet 11 which, depending on the applications, can be doubled by the assembly of several cells.
  • the peripheral cathode 20 is clamped in the semi-cylindrical cathode holder system 7, ensuring the supply of current over the entire circumference of the cathode.
  • This cathode holder 7 is connected to the copper ring 14 which distributes the current.
  • a lifting ring is also attached to each cathode holder 7 to allow quick change of the charged cathodes. The sequence of this operation is as follows: the cell is disconnected and drained; the two cathode gates 7 are disconnected from the copper ring 14 and lifted, either manually, or by means of a hoist; the cathode and cathode holder assembly is disassembled in the workshop.
  • the current supply on the anode 5 is ensured by two copper bars encircled by titanium (circled) 6, welded lengthwise, inside the anode, to avoid peak effects during the first part. electrolysis (deposition of metal).
  • the central silent cathode 21 is only activated during the second part of the electrolysis, when the majority of the metal is deposited.
  • the connection is made by a cable which connects the crown 14 to the upper part 9 of this central cathode 7, either manually or by a controlled automatic bridging system, depending on the content of metal ions in the electrolyte. All of the electrical connections of the electrodes are located above the electrolyte, which provides protection against corrosion due to the aggressiveness of the media treated. Above the plate 15, the current supply bars are sheathed in order to avoid any problem of current loss.
  • the electrical connection is ensured by two flexible connections which are bridged on the copper crown 14.
  • the peripheral cathode 20 is active from the start of electrolysis. It is charged with metals and can be easily replaced. Only the outer surface of the anode 5 is active during this first part. The central cathode 21 is silent (not connected).
  • peripheral cathode 20 remains active and the central cathode 20 is energized.
  • This configuration has the effect of activating both sides of the anode 5, therefore reducing the destruction time of the organic compounds.
  • the cell described has the following particularities:
  • 300 liters of an old cyanide copper bath, containing 15 g / 1 of copper and 20 g / 1 of cyanides, are treated with a cell equipped with two half-cathodes in expanded metal of copper and an anode in platinum titanium covered with a catalytic layer of lead oxide.
  • the solution is treated with a recirculation rate of one m3 / h.
  • the applied current is 1000 A, at a voltage of 8V.
  • the peripheral cathode 20 is active. This phase mainly corresponds to the reduction of metal ions.
  • the copper is deposited on the peripheral cathode and the concentration of copper in solution decreases from 15 g / 1 to 200 ppm in ten hours of electrolysis.
  • the central cathode 21 is activated, total current maintained at 1000 A, by bridging the central cathode 21 on the peripheral cathode 20.
  • the peripheral cathode 20 is supplied with a current of 1000 A.
  • the density of the anode current is then 20 A / dm. Only one anode side is active.
  • the active anode surface is doubled and, consequently, the current density divided by two (10 A / dm 2 ).
  • Another solution, according to the invention, for achieving these low contents in industrial electrolysers consists in ensuring a uniform distribution of the electrolyte over the entire height of the electrodes.
  • each active part of the electrodes is in contact with an electrolyte of the same concentration. There are no preferential zones since the entire surface of the electrode is stressed.
  • the electrolyte is first distributed in a distribution chamber (such as chamber 2 below), or in a distribution ramp, in the case of cells with parallel electrodes, ensuring a uniform distribution of the liquid before to enter the distributors.
  • the liquid is then forced into distribution tubes which allow the liquid to spurt between the electrodes.
  • These vertical ramps can be installed at each anode, or between the anodes and the cathodes (parallel electrode system or concentric electrode system).
  • Distributors come in two parts: a drilled tube and a bayonet system or other means of attachment.
  • the distribution tube is pierced at regular intervals with orifices of differential diameter between the bottom and the top of the diffuser.
  • orientation of the orifices relative to the electrodes may vary. You can choose the size of the orifices, their height and their orientation in order to establish the most favorable circulation for each installation and each application.
  • the bottom of the distribution tube is advantageously fitted with a bayonet system which allows rapid disassembly from the top of the cell, without tools. This system connects the distributor to the chamber or to the diffusion ramp, ensuring sealing by a "0-ring" seal which also minimizes the effects of vacuum.
  • these distributors can be doubled and thus make it possible to maintain the cathodes.
  • This double function makes it possible to distribute the liquid along each face of each electrode and to position the cathodes leaving the walls of the tanks intact, which allows the installation of a "lining".
  • each diffuser or part of a diffuser, can be equipped with nozzles which cause a local increase in turbulence, and therefore mass transfer effects.
  • the efficiency of this kind of electrolyte distribution is given, for example, by the increase in the destruction efficiency of cyanides or reduction of metallic species in solution, in an electrolyser equipped with this system, compared to an electrolyser conventional .
  • Figure 2 shows the construction detail of a diffusion tube 10.
  • a diffusion tube 10 comprises: a square distribution ramp 33, on which the bayonet system 3 is fixed, and a "0-ring" seal 34 which seals between the ramp 33 and the tube 10 and thus minimizes the effects of depression.
  • the orifices 30 have increasing diameters from the bottom to the top of the system.
  • Figure 3 shows a cell fitted with tubes
  • each cathode diffuser system is separated from an anode compartment 36 by a ceramic pot 32 serving as a diaphragm. Such an arrangement of ceramic pots is described in publication WO91 / 18837.
  • the circulation of electrolyte is modified by the new arrangement of distributor tubes.
  • the electrolyte enters at the bottom of the cell, by means of ramps 33.
  • At the top of the cell there is one or more outlets, or overflows, for the outlet of the electrolyte, usually at one end, or at each end. of the cell.
  • the diffusers 10 are tubes, for example, 16 mm in diameter, 630 mm in length, and pierced with four holes 100 mm apart, the first hole being located 60 mm from the bayonet system 3.
  • the orifices 30, in this case, are all, for example, 1.5 mm in diameter, and parallel to the electrodes.
  • the vertical ramps 10 are welded onto a square diffusion ramp 33. This configuration ensures optimum distribution of the electrolyte.
  • the diffusers 10 are tubes, for example, 16 mm in diameter, 500 mm in length, and pierced with four holes 130 mm apart, the first hole being located 50 mm from the bayonet system 3.
  • the first two holes have a diameter of 2 mm and the last two have a diameter of 4 mm.
  • the vertical ramps 10 are welded to a cylindrical distribution ramp (tube with a diameter of 40 mm).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

Cellule d'électrolyse pour le traitement des effluents chargés en métaux lourds et en composés chimiques oxydables ou réductibles, comprenant un assemblage cylindrique d'au moins une anode et une cathode. La cellule comprend une anode généralement cylindrique (5), creuse, coopérant par ses surfaces externes et internes avec deux cathodes: une cathode périphérique (20) pour le dépôt cathodique des métaux face à la partie externe de l'anode, et une cathode auxiliaire interne (21) située face à la partie interne de l'anode. L'anode est reliée sélectivement à la cathode périphérique ou aux deux cathodes de manière à effectuer l'électrolyse, soit entre la cathode périphérique et la face externe de l'anode pendant une phase de dépôt cathodique du métal sur la cathode périphérique, soit entre les deux cathodes et les deux faces de l'anode pendant une phase d'oxydation des composés chimiques restés en solution. La cellule comporte avantageusement au moins un tube distributeur d'électrolyte (10), ce tube étant pourvu d'orifices de distribution d'électrolyte à des hauteurs différentes dirigés de manière à produire un écoulement tangentiel de l'électrolyte entre la cathode périphérique et l'anode cylindrique.

Description

CELLULE P 'ELECTRQLYSE
Champ Technique
L'invention concerne une nouvelle génération d'électrolyseur qui combine les phénomènes hydrodynamiques et électrochimiques, pour le traitement des effluents provenant des industries de traitement de surfaces, des circuits imprimés, des bains de procédés alcalins et acides, de manière générale les eaux usées industrielles et autres eaux usées. Ces eaux usées sont fortement chargées en métaux lourds toxiques et en composés chimiques oxydables, notamment des composés organiques, ainsi que les phosphatés ou cyanures.
L'invention concerne aussi un nouveau système de distribution d' electrolyte dans des électrolyseurs pour le traitement des effluents et autres.
Etat, d la Technique
Le traitement chimique conventionnel des effluents chargés en métaux lourds consiste en une neutralisation combinée d'une précipitation des métaux lourds sous forme d'hydroxydes . Ces méthodes ne permettent pas d'atteindre les normes de rejet légales, sauf pour le cuivre et le zinc, et génèrent d'importantes quantités de boues à stocker en décharge contrôlée.
Une alternative est l'utilisation des résines échangeuses d'ions. Lors de la régénération des résines, cette technique produit de grands volumes d'eaux usées chargées en métaux et en sels. Les éluats ainsi produits constituent un déchet secondaire dont la neutralisation conduit également à la production de boues d'hydroxydes. Parallèlement à ces traitements classiques, de nombreux procédés électrochimiques se sont développés et sont en service dans l'industrie. Ils peuvent être regroupés en trois catégories, suivant leurs caractéristiques :
1. Electrolyseurs à électrodes tournantes qui favorisent le transfert de masse et, par conséquent, la densité de courant aux électrodes, par exemple les cellules connues sous les dénominations Pump Cell, ECO Cell et Turbo Cell. Ces electrolyseurs ne développent que de faibles surfaces actives et posent le problème d'une mécanique complexe, mobile, immergée dans des milieux très agressifs et corrosifs.
2. Electrolyseurs favorisant les surfaces actives des électrodes sans promouvoir les transferts de masse, par exemple les cellules connues sous les dénominations Multi-Cathode Cell et Swiss-Roll. Ces cellules présentent le désavantage d'être limitées par leurs possibilités d'extension à grande échelle, en raison de l'ampérage élevé.
3. Electrolyseurs couplant 1 ' optimalisation du transfert de masse et développant d'importantes surfaces actives, en mettant en oeuvre des électrodes tridimensionnelles qui limitent les chutes ohmiques, par exemple les cellules connues sous la dénomination RETEC™ et autres, et des cellules à lit fluidisé. Elles présentent le désavantage de posséder des électrodes non- réutilisables, soit coûteuses (mousses métalliques) , soit difficilement manipulables (lits de particules de graphite ou billes de verre métallisées) .
Résumé de l'Invention
En premier lieu, l'invention concerne un nouvel électrolyseur à haute densité de courants anodiques et cathodiques pour le traitement des effluents contaminés par des métaux lourds et des polluants oxydables, notamment organiques, tels que les complexants, les brillanteurs et les additifs des bains de procédé, ainsi que les composés phosphatés et cyanures.
L'invention concerne donc une cellule pour le traitement des effluents chargés en métaux lourds et en composés chimiques oxydables ou réductibles, comprenant un assemblage cylindrique d'au moins une anode et une cathode. Cette cellule est caractérisée en ce qu'elle comprend une anode généralement cylindrique, creuse, coopérant par ses surfaces externes et internes avec deux cathodes: une cathode périphérique pour le dépôt cathodique des métaux face à la partie externe de l'anode, et une cathode auxilliaire interne située face à la partie interne de l'anode. L'anode est reliée sélectivement à la cathode périphérique ou aux deux cathodes, de manière à effectuer l'électrolyse, soit entre la cathode périphérique et la face externe de l'anode pendant une phase de dépôt cathodique du métal sur la cathode périphérique, soit entre les deux cathodes et les deux faces de l'anode pendant une phase d'oxydation des composés chimiques restés en solution.
La cellule de l'invention développe de hautes densités de courant et fonctionne aussi bien en réduction cathodique qu'en oxydation anodique. Ainsi, le courant d'électrolyse sert simultanément à la réduction des métaux et à l'oxydation des matières organiques et autres composés oxydables.
L'invention concerne aussi une méthode pour le traitement des effluents chargés en métaux lourds et en composés chimiques oxydables utilisant cette cellule où l'on effectue d'abord une électrolyse entre la cathode périphérique et la face externe de l'anode pendant une phase de dépôt cathodique du métal sur la cathode périphérique afin de réduire la teneur des métaux en dessous d'un certain seuil, et ensuite où l'on continue l'électrolyse entre les deux cathodes et les deux faces de l'anode pendant une phase d'oxydation des composés chimiques restés en solution.
La cellule de l'invention combine les phénomènes hydrodynamiques et électrochimiques. Sa géométrie cylindrique permet d'atteindre les conditions optimales de transfert de masse et de matière, tout en offrant, pour un encombrement minimal au sol, d'importantes surfaces actives. Développant de hautes densités de courant et facilement modulable, branchée en série de courant, cette cellule permet de réaliser des installations de plusieurs milliers d'ampères en occupant une surface réduite.
La géométrie cylindrique de la cellule combinée à un débit de circulation, compris entre 1 et 10 m^/h, assure d'importantes vitesses à la surface des électrodes et favorise ainsi le transfert de masse. Le taux de renouvellement de l'effluent dans la cellule (c'est-à-dire du contact avec les électrodes) varie de 8 à 40 volumes par heure.
Les conditions hydrodynamiques sont également favorisées par une distribution hydraulique particulière qui assure un excellent vortex autour des électrodes. L 'electrolyte entre dans une chambre de distribution qui assure une répartition uniforme de la pression. Cette chambre alimente plusieurs rampes de distribution parallèles aux électrodes. Le liquide est ainsi giclé entre les électrodes avec de grandes vitesses tangentielles qui développent un important transfert de masse aux électrodes. Le sommet de la cellule est équipé d'une couronne de diamètre supérieur, par laquelle s'écoule le liquide. Cette couronne permet également d'aspirer les gaz produits durant l'électrolyse. L'ensemble de la cellule et de la distribution hydraulique est réalisé en matières synthétiques telles que le polypropylène et le PVC .
La cellule de l'invention permet de mettre en oeuvre des courants nominaux compris entre 100 et 1000 A à une tension maximale de 2 à 10V. Les densités de courant cathodiques et anodiques, en fonction de la géométrie des électrodes, peuvent atteindre des valeurs de 1 à 30 A/dm , la surface au sol étant inférieure à 25 dm2.
La distribution cathodique est assurée au moyen d'une couronne de cuivre sur laquelle viennent se fixer deux porte-cathodes en cuivre. Les cathodes sont serrées entre ces porte-cathodes. L'assemblage couronne/porte-cathodes est rapidement démontable, facilitant la maintenance (le remplacement) des cathodes.
La distribution anodique est réalisée par deux barres en cuivre récouvertes de titane qui supportent l'anode et qui permettent un assemblage en série des cellules au moyen d'une patte de liaison.
L'ensemble de la distribution électrique se trouve au-dessus du liquide, fixé sur l'enveloppe plastique. Les parties électriques sont ainsi protégées des agressions des vapeurs corrosives de 1 'electrolyte .
La cellule de l'invention est équipée d'électrodes cylindriques concentriques. Afin de simplifier l'accès à la cathode chargée en métal et favoriser la surface cathodique de déposition, cette dernière est placée à la périphérie de la cellule. L'anode vient ensuite et une seconde cathode muette constituée d'un cylindre en métal, par exemple en inox ou en cuivre, est placée à l'intérieur de 1'anode.
Selon les applications, la cathode extérieure peut se présenter sous différentes géométries : métal déployé, grille, branches pleines, métal ajouré, mousses réticulées, tissées, métallisées, plaques.
La nature des cations métalliques à déposer détermine le substrat cathodique : cuivre, acier, fer, acier inox, bronze, titane, nickel, acier zingué, zinc.
Selon la géométrie, les cathodes peuvent être réutilisables ou non.
Les anodes mises en oeuvre dépendent également du milieu. Elles peuvent être de différentes formes: cylindre plein ou creux, métal déployé, plaque, et de différentes natures. Soit d'un simple métal ou soit d'un alliage métallique, tel que acier, acier inox, titane, nickel, plomb, graphite, ou soit d'un substrat métallique recouvert d'une couche catalytique: notamment titane activé, par exemple titane/Pt/Pb02, titane/Ta/Ir.
Pour les anodes recouvertes de couches catalytiques, la proportion des divers métaux et oxydes est adaptée en fonction de l'agressivité du milieu, de la teneur en matières organiques, complexants, composés cyanures et phosphatés, etc. Les anodes sont changées périodiquement et celles constituées des structures catalytiques peuvent subir un "recoating" .
Notamment lors de la présence d'espèces réductibles et oxydables électrochimiquement , la cellule de l'invention peut être transformée en une cellule à compartiments anodique et cathodique séparés afin de favoriser le processus électrochimique principal. Un séparateur plastique, céramique ou constitué d'une membrane ionique sélective, est alors placé entre l'anode et la cathode. Ce type de configuration convient plus particulièrement au traitement des milieux chlorés, à la régénération des acides et des milieux alcalins, ainsi que des bains de procédés et eaux usées en général. Dans le cas de la destruction simultanée des matières organiques et de la récupération des métaux, l'ampérage total nécessaire à l'oxydation des matières organiques est largement supérieur à celui utilisé pour la récupération des métaux à concentration équivalente.
La cathode centrale reste muette (sans courant) et ne se charge pas en métal pendant la première phase de l'électrolyse. Elle n'est activée que lorsque, par exemple, plus de 90 % des ions métalliques sont déposés sur la cathode périphérique. Cette mise en fonction de la cathode centrale à pour effet de doubler la surface anodique active. Ainsi, le temps de destruction des matières organiques est réduit de manière considérable.
Au cas où la cathode centrale est pontée sur la cathode périphérique, la distance entre la cathode périphérique et l'anode doit être égale à la distance entre l'anode et la cathode centrale (muette) .
Le système de distribution d' electrolyte constitue une caractéristique de l'invention que l'on peut appliquer à d'autres types de cellule. Les caractéristiques d'une cellule équipée d'un système de distribution d' electrolyte selon l'invention sont exposées dans les revendications 15 à 21.
Brève Description des Dessins
La Figure 1 est une vue en coupe d'une première forme d'exécution de la cellule selon l'invention, cylindrique avec système de distribution d' electrolyte.
La Figure 2 est une vue en coupe d'un tube de distribution d' electrolyte d'une seconde forme d'exécution de cellule selon l'invention, avec électrodes plates, parallèles, illustrée schematiquement en vue de dessus à la Fiσure 3. Description Détaillée
La structure plastique de la cellule illustrée à la Figure 1 comporte trois parties : une chambre de répartition de 1 ' electrolyte 2, l'enveloppe de la cellule 16 et une couronne supérieure 8.
La chambre de distribution 2 permet de répartir uniformément 1 ' electrolyte dans la cellule. La chambre comporte une structure 17 qui supporte le poids de l'ensemble des électrodes (usuellement plusieurs centaines de kg) . L ' electrolyte entre dans la chambre par l'orifice
I connecté à une pompe .
Une plaque en polypropylène 18 sépare la chambre de distribution 2 du reste de la cellule. Elle soutient quatre tubes distributeurs 10 et permet, au moyen d'une structure conique 19 en matière plastique, d'assurer le guidage de l'anode.
L'enveloppe 16 est constituée d'un cylindre en polypropylène, par exemple de 400 mm de diamètre, pouvant supporter des températures d'environ 80°C. L'épaisseur, par exemple de 23 mm, assure la rigidité de la cellule. Elle comprend une sortie de vidange 4, utilisée lors du nettoyage .
La partie supérieure de la cellule comporte une couronne 8 en polypropylène, par exemple de 500 mm de diamètre. Cette couronne assure une double fonction de récupération de 1 'electrolyte et d'aspiration des gaz et de mousse. L'electrolyte déborde dans la couronne 8 par six orifices de surverse 13; il est évacué par la sortie
II en partie basse de la couronne 8. L'aspiration des gaz et de mousse est assurée par la sortie 12 en partie supérieure de la couronne 8.
La répartition hydraulique est assurée par quatre dis ributeurs formés par des tubes verticaux 10, qui permettent de gicler 1 ' electrolyte entre les électrodes. Ces distributeurs sont équipés d'un système à baïonnette 3 qui permet un démontage rapide par le haut au moment du nettoyage. Ces distributeurs 10 sont guidés au sommet de la cellule par une plaque 15. Cette plaque 15 protège également la partie supérieure des connexions électriques.
Un anneau de cuivre 14 est fixé sur la couronne 8. Il est relié à un redresseur et permet de répartir le courant sur deux demi portes-cathodes en cuivre 7. L'accrochage de l'anneau 14 et du porte-cathode 7 est assuré au moyen d'un système de serrage rapide .
Les portes-cathodes 7 sont, par exemple, au nombre de deux par cellule. Un porte-cathode 7 est constitué de deux bandes de cuivre semi-circulaires entre lesquelles une demi cathode périphérique 20 est serrée. La cathode périphérique 20 est dans ce cas constituée de deux demi cathodes circulaires en métal déployé de cuivre non réutilisables, c'est-à-dire qu'elles sont détruites lors de la récupération du métal déposé.
Le positionnement de l'anode 5 cylindrique est assuré au moyen de la partie conique centrale 19 et de la plaque supérieure 15. Elle tient par son propre poids. Le courant anodique est réparti par deux barres de cuivre cintrées de titane 6 qui sont soudées à l'intérieur de l'anode 5. Pour cette application, l'anode 5 est constituée d'un métal déployé à petites mailles en titane platiné recouvert d'une couche catalytique active en oxyde de plomb. Cette anode convient plus particulièrement à l'oxydation des cyanures et des matières organiques.
L ' electrolyte traité entre dans la cellule par l'orifice 1 et se répartit uniformément dans la chambre 2. Depuis la chambre 2, 1 'electrolyte est forcé dans les distributeurs 10, parallèles aux électrodes, ce qui assure une répartition uniforme de 1 ' electrolyte entre les électrodes et évite ainsi le problème des gradients de concentration observés dans les electrolyseurs conventionels à plaques parallèles. Chaque portion d'électrode est donc alimentée par un electrolyte de composition identique.
L 'electrolyte se déverse dans la couronne 8 par les six orifices 13. Il est ensuite évacué par la sortie 11 qui, suivant les applications, peut être doublée par l'assemblage de plusieurs cellules.
La cathode périphérique 20 est serrée dans le système de porte cathode 7 semi cylindrique, assurant l'amenée de courant sur toute la circonférence de la cathode . Ce porte cathode 7 est relié à la couronne de cuivre 14 qui assure la répartition de courant. Un anneau de levage est également attaché sur chaque porte cathode 7 pour permettre le changement rapide des cathodes chargées . Le déroulement de cette opération est le suivant : la cellule est débranchée et vidangée; les deux portes cathodes 7 sont débranchés de l'anneau de cuivre 14 et levés, soit manuellement, soit au moyen d'un palan; l'ensemble porte cathode et cathode est démonté à l'atelier.
L'amenée de courant sur l'anode 5 est assurée par deux barres de cuivre ceintrées de titane (cerclées) 6, soudées sur la longueur, à l'intérieur de l'anode, pour éviter les effets de pointe lors de la première partie de l'électrolyse (déposition du métal) .
La cathode muette centrale 21 n'est activée que pendant la seconde partie de l'électrolyse, lorsque la majorité du métal est déposé. La connexion est réalisée par un câble qui relie la couronne 14 à la partie supérieure 9 de cette cathode centrale 7, soit manuellement, soit par un système de pontage automatique contrôlé, suivant la teneur en ions métalliques de 1 'electrolyte . L'ensemble des connexions électriques des électrodes est situé au-dessus de 1 ' electrolyte, ce qui assure une protection contre la corrosion due à l'agressivité des milieux traités. Au-dessus de la plaque 15, les barres d'amenées de courant sont gainées afin d'éviter tout problème de déperdition de courant.
La cathode muette centrale 21, constituée d'un cylindre d'inox, est posée au sommet du cylindre 19 et guidée par la plaque 15. Le branchement électrique est assuré par deux connexions souples qui viennent se ponter sur la couronne de cuivre 14.
La cathode périphérique 20 est active dès le début de l'électrolyse. Elle se charge en métaux et peut être facilement remplacée. Seule la surface extérieure de l'anode 5 est active durant cette première partie. La cathode centrale 21 est muette (non branchée) .
Pendant la destruction anodique des composés organiques, la cathode périphérique 20 reste active et la cathode centrale 20 est mise sous tension. Cette configuration a pour effet d'activer les deux cotés de l'anode 5, donc de réduire le temps de destruction des composés organiques .
La cellule décrite a les particularités suivantes:
Géométrie radiale pour' de hautes densités de courant et un encombrement minimal au sol.
- Distribution hydraulique par diffuseurs giclant 1 'electrolyte uniformément sur la hauteur des électrodes.
- Cathode muette centrale permettant de doubler la surface anodique active.
- Distribution hydraulique radiale pour assurer un transfert de masse maximum à travers une haute vitesse tangentielle . Exemple du Procédé
300 litres d'un ancien bain de cuivre cyanure, contenant 15 g/1 de cuivre et 20 g/1 de cyanures, sont traités avec une cellule équipée de deux demi-cathodes en métal déployé de cuivre et d'une anode en titane platiné recouverte d'une couche catalytique d'oxyde de plomb.
La solution est traitée avec un débit de recirculation d'un m3/h. Le courant appliqué est de 1000 A, à une tension de 8V.
Durant la première phase, seule la cathode périphérique 20 est active. Cette phase correspond principalement à la réduction des ions métalliques. Le cuivre se dépose sur la cathode périphérique et la concentration de cuivre en solution décroît de 15 g/1 à 200 ppm en dix heures d'électrolyse .
Durant cette première phase de dix heures, les cyanures complexés sont libérés et oxydés à l'anode. La concentration de cyanures passe de 20 g/1 à 16.2 g/1. Pour prolonger l'oxydation anodique et atteindre de faibles concentrations résiduelles en cyanures, sans faire intervenir la cathode centrale, l'électrolyse est poursuivie durant vingt heures. La teneur résiduelle atteinte est alors de l'ordre de 0.3 g/1.
Durant la seconde phase, selon l'invention, la cathode centrale 21 est activée, courant total maintenu à 1000 A, par le pontage de la cathode centrale 21 sur la cathode périphérique 20.
Ainsi, en activant la cathode centrale après les dix premières heures, les performances de l'anode sont considérablement améliorées. La concentration en cyanures passe de 16.2 g/1 à 0.35 g/1 en cinq heures au lieu de vingt heures . L'ensemble des ces résultats expérimentaux sont repris dans le tableau suivant :
Figure imgf000015_0001
Durant la première phase de l'électrolyse, la cathode périphérique 20 est alimentée avec un courant de 1000 A. La densité de courant anodique est alors de 20 A/dm . Une seule face anodique est active.
Durant la seconde phase, lorsque la cathode muette 21 est activée, la surface anodique active est doublée et, par conséquent, la densité de courant divisée par deux (10 A/dm2) .
Nouveau Système de Distribution Hydraulique
Lors du traitement des eaux usées par électrolyse, la concentration en espèces actives décroît largement en dessous du gramme par litre. Les techniques modernes permettent de descendre même en dessous du milligramme par litre. A cette gamme de concentration, il est essentiel de favoriser le transfert de masse au niveau de chaque électrode afin de minimiser les effets de dépolarisation fréquents aux basses concentrations en espèces réactives.
Les méthodes traditionelles utilisent des moyens mécaniques pour atteindre ces basses concentrations : électrodes tournantes, électrodes à hautes surfaces spécifiques .
Une autre solution, selon l'invention, pour atteindre ces faibles teneurs dans les electrolyseurs industriels consiste à assurer une répartition uniforme de 1 'electrolyte sur toute la hauteur des électrodes. Ainsi, chaque partie active des électrodes est en contact avec un electrolyte de même concentration. Il n'y a pas de zones préférentielles puisque toute la surface de l'électrode est sollicitée.
Techniquement, 1'electrolyte est d'abord réparti dans une chambre de distribution (telle que la chambre 2 ci- dessous), ou dans une rampe de distribution, dans le cas de cellules avec des électrodes parallèles, assurant une répartition uniforme du liquide avant d'entrer dans les distributeurs . Le liquide est ensuite forcé dans des tubes de distribution qui permettent de gicler le liquide entre les électrodes. Ces rampes verticales peuvent être installées au niveau de chaque anode, ou entre les anodes et les cathodes (système à électrodes parallèles ou système à électrodes concentriques) .
Les distributeurs se présentent en deux parties : un tube percé et un système à baïonnette ou autre moyen de fixation.
Pour palier aux effets de dépression, le tube de distribution est percé, à intervalles réguliers, d'orifices de diamètre différentiels entre le bas et le haut du diffuseur. Selon les applications, l'orientation des orifices par rapport aux électrodes (angle de giclage du liquide) peut varier. On peut choisir la grandeur des orifices, leur hauteur et leur orientation afin d'établir la circulation la plus favorable pour chaque installation et chaque application. Le bas du tube de distribution est avantageusement équipé d'un système à baïonnette qui permet un démontage rapide depuis le haut de la cellule, sans outils. Ce système relie le distributeur à la chambre ou à la rampe de diffusion en assurant l'étanchéité par un joint "0- ring" qui minimise également les effets de dépression.
Dans le cas d'electrolyseurs non cylindriques, ces distributeurs peuvent être doublés et permettent ainsi de maintenir les cathodes . Cette double fonction permet de distribuer le liquide le long de chaque face de chaque électrode et de positionner les cathodes en laissant les parois des cuves intactes, ce qui permet la pose d'un "lining" .
Afin de favoriser les effets de turbulence, chaque diffuseur, ou partie de diffuseur, peut être équipé de gicleurs qui provoquent une augmentation locale des turbulences, et donc des effets de transfert de masse.
L'efficacité de ce genre de distribution de 1 'electrolyte est donné, par exemple, par l'augmentation de rendement de destruction des cyanures ou de réduction des espèces métalliques en solution, dans un électrolyseur équipé de ce système, par rapport à un électrolyseur conventionnel .
La Figure 2 représente le détail de construction d'un tube de diffusion 10. Dans ce cas, il comprend : une rampe de distribution 33 carrée, sur laquelle est fixé le système à baïonnette 3, et un joint "0-ring" 34 qui assure l'étanchéité entre la rampe 33 et le tube 10 et minimise ainsi les effets de dépression. Dans ce but également, les orifices 30 présentent des diamètres croissants de bas en haut du système.
La Figure 3 représente une cellule équipée de tubes
-verticaux 10 qui permettent également de maintenir les cathodes 31. Les tubes distributeurs 10 dont dédoublés et assurent le positionnement de chaque cathode 31. Dans cette application, les orifices 30 sont parallèles aux électrodes (angle 0°) ou à une inclinaison choisie. Chaque système diffuseur cathode est séparé d'un compartiment anodique 36 par un pot céramique 32 servant comme diaphragme. Une telle disposition de pots céramiques est décrite dans la publication W091/18837.
Dans la cellule de l'invention, la circulation d'electrolyte est modifiée par la nouvelle disposition de tubes distributeurs. L 'electrolyte entre en bas de la - cellule, au moyen des rampes 33. En haut de la cellule, on prévoit une ou plusieurs sorties, ou déverses, pour la sortie de 1'electrolyte, usuellement à une extrémité, ou à chaque extrémité de la cellule.
Dans le cas d'une cellule avec pots céramiques de la Figure 3, les diffuseurs 10 sont des tubes, par exemple, de 16 mm de diamètre, de 630 mm de longueur, et percés de quatre orifices distants de 100 mm, le premier orifice étant situé à 60 mm du système à baïonnette 3. Les orifices 30, dans ce cas, sont tous, par exemple, de 1.5 mm de diamètre, et parallèles aux électrodes. Les rampes verticales 10 sont soudées sur une rampe de diffusion carrée 33. Cette configuration assure une répartition optimale de 1 'electrolyte.
Dans le cas d'une cellule semblable, sans pots céramiques, les diffuseurs 10 sont des tubes, par exemple, de 16 mm de diamètre, de 500 mm de longueur, et percés de quatre orifices distants de 130 mm, le premier orifice étant situé à 50 mm du système à baïonnette 3. Les deux premiers orifices ont un diamètre de 2 mm et les deux derniers un diamètre de 4 mm. Les rampes verticales 10 sont soudées sur une rampe de distribution cylindrique (tube de diamètre 40 mm) .

Claims

Revendications
1. Cellule d' électrolyse pour le traitement des effluents chargés en métaux lourds et en composés chimiques oxydables ou réductibles, comprenant un assemblage cylindrique d' au moins une anode et une cathode, caractérisée en ce qu'elle comprend une anode généralement cylindrique (5), creuse, coopérant par ses surfaces externes et internes avec deux cathodes : une cathode périphérique (20) pour le dépôt cathodique des métaux face à la partie externe de l'anode, et une cathode auxilliaire interne (21) située face à la partie interne de l'anode, l'anode étant reliée sélectivement à la cathode périphérique ou aux deux cathodes de manière à effectuer l'électrolyse, soit entre la cathode périphérique et la face externe de l'anode pendant une phase de dépôt cathodique du métal sur la cathode périphérique, soit entre les deux cathodes et les deux faces de l'anode pendant une phase d'oxydation des composés chimiques restés en solution.
2. Cellule selon la revendication 1, caractérisée en ce que les deux cathodes et l'anode sont concentriques, la cathode périphérique comportant un corps cylindrique creux formé d'une pièce ou de plusieurs secteurs de métal déployé (20) , et la cathode interne comportant un corps cylindrique solide ou creux (21) de métal massif ou déployé .
3. Cellule selon la revendication 2, caractérisée en ce que la cathode périphérique (20) comporte à son extrémité supérieure une couronne distributrice de courant (14) .
4. Cellule selon la revendication. 1, 2 ou 3, caractérisée en ce que l'anode (5) est équidistante entre les deux cathodes (20,21) .
5. Cellule selon la revendication 4, caractérisée en ce que la cathode périphérique (20) comporte un connecteur la reliant à une source de courant, et la cathode interne comporte des moyens pour la ponter à la cathode périphérique ou à son connecteur.
6. Cellule selon une des revendications précédentes, caractérisée en ce qu'elle comporte au moins un séparateur entre l'anode et la cathode périphérique et/ou la cathode auxiliaire pour séparer la cellule en compartiments anodiques et cathodiques afin de favoriser le processus électrochimique principal.
7. Cellule selon une des revendications précédentes, caractérisée en ce qu'elle comporte au moins un tube distributeur d' electrolyte (10) , ce tube étant pourvu d'orifices de distribution d' electrolyte à des hauteurs différentes.
8. Cellule selon la revendication 7, caractérisée en ce qu'elle comprend au moins deux tubes distributeurs d' electrolyte verticaux (10) , disposés entre l'anode (5) et la cathode périphérique (20) , dont les orifices sont dirigés de manière à produire un écoulement tangentiel de l' electrolyte entre la cathode périphérique et l'anode cylindrique .
9. Cellule selon la revendication 7 ou 8, caractérisée en ce qu'elle comprend un corps généralement cylindrique (16) avec une chambre inférieure d'amenée d' electrolyte (1) située au-dessous et servant de support aux cathodes (20,21) , à l'anode (5) et au(x) tube(s) distributeur (s) d' electrolyte (10), cette chambre étant reliée au(x) tube (s) distributeur (s) d'electrolyte .
10. Cellule selon la revendication 9, caractérisée en ce que le corps de la cellule (16) comprend, au niveau supérieur des cathodes et de l'anode, une couronne de collecte périphérique (8) faisant office de déverse pour 1' electrolyte .
11. Cellule selon la revendication 10, caractérisée en ce que la couronne de collecte (8) est pourvue d'au moins une sortie inférieure (11) pour l'aspiration de l' electrolyte, et d'au moins une sortie supérieure (12) pour l'aspiration des gaz.
12. Méthode pour le traitement des effluents chargés en métaux lourds et en composés chimiques oxydables ou réductibles utilisant la cellule de l'une des revendications précédentes, caractérisée en ce que l'on effectue d'abord une électrolyse entre la cathode périphérique (20) et la face externe de l'anode (5) pendant une phase de dépôt cathodique du métal sur la cathode périphérique afin de réduire la teneur des métaux en dessous d'un certain seuil, et ensuite que l'on continue l'électrolyse entre les deux cathodes (20,21) et les deux faces de l'anode (5) pendant une phase d'oxydation des composés chimiques restés en solution.
13. Méthode selon la revendication 12, utilisant la cellule de l'une des revendications 7 à 11, caractérisée en ce que l'on impose une circulation tangentielle de 1' electrolyte entre la cathode périphérique (20) et l'anode cylindrique (5) sous l'impulsion de l' electrolyte distribuée à travers les dits orifices (30) .
14. Méthode selon la revendication 12 ou 13, caractérisée en ce que l'électrolyse a lieu entre la cathode périphérique et la face externe de l'anode jusqu'à ce qu'au plus 90 % des ions métalliques soient déposés sur la cathode périphérique (20) , et ensuite la cathode interne (21) est mise en fonction.
15. Cellule d' électrolyse , notamment pour le traitement des effluents chargés en métaux lourds et/ou en composés chimiques oxydables, comprenant au moins une anode (5;35) et au moins une cathode (20,21;31) lesquelles électrodes sont essentiellement verticales et espacées les unes des autres dans un compartiment d' electrolyte pourvu d'une entrée inférieure et une sortie supérieure pour l' electrolyte, caractérisée en ce qu'elle comprend au moins un tube distributeur d' electrolyte (10) relié à l'entrée d' electrolyte inférieure et s' étendant dans le compartiment d' électrolyse, ce tube étant pourvu d'orifices de distribution d' electrolyte (30) à des hauteurs différentes des électrodes.
16. Cellule selon la revendication 15 qui comprend un assemblage cylindrique d'au moins une anode et une cathode, caractérisée en ce qu'elle comprend au moins deux tubes distributeurs d' electrolyte verticaux (10) disposés entre l'anode et la cathode, dont les orifices (30) sont dirigés de manière à produire un écoulement tangentiel de l' electrolyte entre la cathode et l'anode cylindrique.
17. Cellule selon la revendication 16, caractérisée en ce qu'elle comprend un corps généralement cylindrique (16) avec une chambre inférieure (2) d'amenée d'electrolyte située au-dessous et servant de support aux cathodes, à l'anode et aux tubes distributeurs d' electrolyte (10), cette chambre (2) étant reliée aux tubes distributeurs d' electrolyte (10) .
18. Cellule selon la revendication 15, qui comprend des anodes et cathodes plates parallèles, caractérisée en ce qu'elle comprend au moins un tube distributeur d' electrolyte vertical disposé entre chaque anode et cathode .
19. Cellule selon la revendication 18, caractérisée en ce qu'au moins une extrémité de chaque cathode (31) est disposée entre deux tubes distributeurs d' electrolyte verticaux (10) servant comme support et guide pour ladite extrémité de la cathode, lesdits orifices (30) dirigeant l' electrolyte entre la cathode et l'anode.
20. Cellule selon la revendication 19, caractérisée en ce que chaque extrémité de chaque cathode est supportée et guidée par deux tubes distributeurs d' electrolyte verticaux (10), les extrémités inférieures de chaque rangée de tubes le long de chaque côté de la cellule étant reliées à une rampe de distribution d' electrolyte respective (33) .
21. Cellule selon l'une des revendications 15 à 20, caractérisée en ce que les tubes distributeurs (10) sont reliés par leur extrémité inférieure à une amenée d' electrolyte (2;33) par des moyens de fixation amovibles (3) permettant l'enlèvement du tube (10) par son extrémité supérieure.
PCT/IB1994/000006 1993-01-18 1994-01-17 Cellule d'electrolyse WO1994015877A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP93810022.9 1993-01-18
EP93810022 1993-01-18

Publications (1)

Publication Number Publication Date
WO1994015877A1 true WO1994015877A1 (fr) 1994-07-21

Family

ID=8214907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB1994/000006 WO1994015877A1 (fr) 1993-01-18 1994-01-17 Cellule d'electrolyse

Country Status (1)

Country Link
WO (1) WO1994015877A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2733748A1 (fr) * 1995-05-02 1996-11-08 Beugnet Michel Procede d'extraction de metaux lourds d'une solution aqueuse presentant une forte concentration en sels
CN107188274A (zh) * 2017-06-12 2017-09-22 深圳市瑞成环保设备有限公司 一种多级渗透电解机
CN113502528A (zh) * 2021-07-14 2021-10-15 江苏浩博塑业有限公司 一种提高电镀件表面光洁度的电镀装置及其连续电镀方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3694341A (en) * 1971-01-27 1972-09-26 William R Luck Jr Metal recovery device
US4426261A (en) * 1980-12-23 1984-01-17 Tomotsuru Fushihara Method for separating drinking water
US4804452A (en) * 1988-06-14 1989-02-14 Cpac, Inc. Electrolytic processor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3694341A (en) * 1971-01-27 1972-09-26 William R Luck Jr Metal recovery device
US4426261A (en) * 1980-12-23 1984-01-17 Tomotsuru Fushihara Method for separating drinking water
US4804452A (en) * 1988-06-14 1989-02-14 Cpac, Inc. Electrolytic processor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2733748A1 (fr) * 1995-05-02 1996-11-08 Beugnet Michel Procede d'extraction de metaux lourds d'une solution aqueuse presentant une forte concentration en sels
CN107188274A (zh) * 2017-06-12 2017-09-22 深圳市瑞成环保设备有限公司 一种多级渗透电解机
CN113502528A (zh) * 2021-07-14 2021-10-15 江苏浩博塑业有限公司 一种提高电镀件表面光洁度的电镀装置及其连续电镀方法
CN113502528B (zh) * 2021-07-14 2022-06-24 江苏磊霆精密新材料有限公司 一种提高电镀件表面光洁度的电镀装置及其连续电镀方法

Similar Documents

Publication Publication Date Title
US20070142693A1 (en) Clarification method and apparatus for material contaminated with heavy metals
EP1064070B1 (fr) Equipement de separation solide-liquide notamment pour l'epuration biologique d'eaux usees
LU82769A1 (fr) Appareil pour la fabrication d'hypochlorite de sodium
EP0552097A1 (fr) Appareil et procédé de révêtement électrolytique de nickel
EP0113931B1 (fr) Cathode pour la production électrolytique d'hydrogène et son utilisation
US8097145B2 (en) Method and apparatus for decontamination of fluid
KR101407387B1 (ko) 막 모듈을 이용한 밸러스트수의 막 처리 방법 및 막 처리 장치
GB2343192A (en) Electrochemical cell for metal recovery
FR2832703A1 (fr) Dispositif sono-electrochimique et procede sono-electrochimique de degradation de molecules organiques
WO1994015877A1 (fr) Cellule d'electrolyse
FR2707282A1 (fr) Cellule d'électrocoagulation pour dispositif d'épuration électrolytique des eaux résiduaires.
US5486272A (en) Electroplating method and apparatus
EP0580730B1 (fr) Electrode pour cellule electrolytique, son utilisation et procede l'utilisant
US5837122A (en) Electrowinning electrode, cell and process
WO2007071714A1 (fr) Cellule electrolytique pour deposition metallique
FR2784979A1 (fr) Procede electrochimique de desinfection des eaux par electroperoxydation et dispositif pour la mise en oeuvre d'un tel procede
KR20170047089A (ko) 분리막 생물 반응조-삼투 미생물 연료 전지 융합 수처리 시스템 및 수처리 방법
EP0449735B1 (fr) Réacteur de dépollution électrolytique
JP4102851B2 (ja) 被汚染物からの重金属類の溶出を行う反応槽
WO2009101358A2 (fr) Procédé et équipement pour l'oxydation de matières organiques
WO1998051842A1 (fr) Generateur d'hydrogene et d'oxygene du type separe
KR20070017960A (ko) 중금속류에 의한 피오염물의 정화방법 및 장치
EP1817261A1 (fr) Procede et dispositif de traitement d'un fluide par electrolyse.
EP0534029A1 (fr) Installation électrochimique et procédé de traitement d'effluents aqueux contenant un métal lourd
NO309048B1 (no) Innretning og fremgangsmÕte for elektrolyttisk utskilling av metaller ved hjelp av et roterende katodesystem og en anvendelse av samme

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase