WO1994014950A1 - Human variant manganese superoxide dismutase - Google Patents

Human variant manganese superoxide dismutase Download PDF

Info

Publication number
WO1994014950A1
WO1994014950A1 PCT/JP1993/001917 JP9301917W WO9414950A1 WO 1994014950 A1 WO1994014950 A1 WO 1994014950A1 JP 9301917 W JP9301917 W JP 9301917W WO 9414950 A1 WO9414950 A1 WO 9414950A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
sod
human
human mutant
superoxide dismutase
Prior art date
Application number
PCT/JP1993/001917
Other languages
French (fr)
Japanese (ja)
Inventor
Masatoshi Kondo
Kimio Katsuta
Original Assignee
Sii Technoresearch, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sii Technoresearch, Inc. filed Critical Sii Technoresearch, Inc.
Priority to AU57170/94A priority Critical patent/AU5717094A/en
Publication of WO1994014950A1 publication Critical patent/WO1994014950A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0089Oxidoreductases (1.) acting on superoxide as acceptor (1.15)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention relates to human manganese superoxide dismutase, and more particularly, to a part of the amino acid constituting the peptide sequence of human manganese superoxide dismutase (human Mn-SOD). Accordingly, the present invention relates to a novel Mn-SOD mutated to another amino acid, a DNA gene encoding the amino acid sequence of the Mn-SOD, a host cell, a method for producing the Mn-SOD and its use .
  • Oxygen is essential for biological, ultraviolet, under the action of such external factors such as radiation has been known that force s becomes a variety of reactive oxygen species in vivo tissue. Under normal conditions, it is said that about 1% of oxygen is present as active oxygen. These reactive oxygen species exert a strong bactericidal effect by directly acting on bacteria and the like by phagocytosis of macrophages and the like in vivo, and play an important role as an in vivo infection defense mechanism it is conceivable that.
  • Active oxygen has a longer life span in a hydrophobic environment than in a hydrophilic environment, whereas unsaturated fatty acids in phospholipids are extremely sensitive to active oxygen and can be more susceptible to peroxidation: ⁇ Are known. Therefore, unsaturated fatty acids in biological membranes become lipid peroxides when subjected to a peroxidation reaction, and this lipid peroxide acts on structural proteins and the like, causing cell damage, causing arteriosclerosis, aging, carcinogenesis, etc. Has harmful effects. This active oxygen is generated by irradiating a living body with ultraviolet rays, radiation, or the like.
  • SOD is an essential component for aerobic organisms to survive.
  • the difference in the amount of SOD in the body between various organisms has a clear correlation with the life span of the organism.
  • SOD has the potential to be used for treatment or prevention as a causal therapy for many diseases caused by reduced local SOD levels.
  • S ⁇ D superoxide dismutase having the above-mentioned action
  • Mn-SOD manganese mono-SOD
  • CuZn-SOD copper zinc-SOD
  • F e -SOD iron- S 0 D
  • Fe-S0D is inappropriate because it is derived from bacteria and plants.
  • CuZn-SOD copper-zinc-one SOD
  • Mn-SOD which has a longer half-life in the body, when it is applied to pharmaceuticals, cosmetics, etc. .
  • Mn-SOD is mainly contained in mitochondria in cells in animals including humans, and forms a tetramer composed of a peptide having a molecular weight of about 20,000. It is a metalloprotein containing one per peptide. This Mn ion is essential for enzyme activity.
  • Mn-S0D has a half-life of about 10 times longer in the body than CuZn-SOD, and is more resistant to hydrogen peroxide, a metabolite of S0D. Mn-SOD is considered to be more useful as a drug.
  • a DNA probe was prepared by citing the amino acid sequence of the above-mentioned article, and it was disclosed that a clone encoding 198 amino acids, which is the entire amino acid sequence of Mn-SOD, was identified from human T cells (Japanese Patent Application Laid-Open No. H10-163,878). (Showa 64-27470). Furthermore, Japanese Patent Application Laid-Open No. 63383/1988 describes a human Mn—S0D force ⁇ , of which the isoelectric point of the polypeptide corresponding to IVa (wild type) is P It is stated that i was 8.15.
  • the hMn-SOD described in the publication does not have any other amino acid residue substitution with respect to the wild-type native Mn-S0D.
  • the DNA sequence described in the publication is significantly different from the human mutant Mn-SOD according to the present invention described later.
  • the isoelectric point of this peptide is 7.4.
  • the isoelectric point of human Mn-SOD is usually between 7.0 and 7.4
  • the isoelectric point mentioned above is too high compared to the usual and suddenly I have to say that it is too much.
  • Mn—S 0 D is a polymer, it cannot be said that tissue permeability is good.
  • oxygen radicals are generated in any tissue or organ because oxygen is distributed without gaps in a living body. Therefore, Mn-SOD force administered from outside the body requires good tissue permeability to effectively exert a therapeutic or preventive action in the body.
  • Mn-SOD is not good in tissue permeability, compared to SOD containing CuZn, Mn-SOD has a better ability to penetrate into the heron myocardium.
  • BA Omar & JM McCord J. Mol Cell Cardiol. 23, 149-159 (1991)]. It is said that this is related to the fact that the isoelectric point indicated by Mn-S0D is higher than CuZn-S0D. Molecules having a high affinity for the synovium are more effective. In the case of humans, the isoelectric point of CuZn-SOD is Pi about 5.1, whereas that of Mn-SOD is about 7.0-7.4. Thus, Mn-SOD with a higher isoelectric point is expected to increase the pharmacological effect because of its permeability into tissues.
  • the present invention provides a human mutant Mn-SOD obtained after performing various mutation operations using a recombinant Mn-SOD (rMn-SOD) gene.
  • Another object of the present invention is to create a recombinant mutant Mn-SOD having an isoelectric point higher than that of a natural type Mn-SOD.
  • Another object of the present invention is to create a novel Mn-SOD which does not reduce the enzyme activity and has a sustainability equal to or higher than that of the natural type by reducing the isoelectric point of the Mn-SOD. I do.
  • Another object of the present invention is to provide various inflammatory diseases, cancers, immaturities, etc. as compared with the conventionally known Mn-SOD due to the low isoelectric point and the high tissue permeability. It is an object of the present invention to provide a new recombinant human mutant Mn-SOD that exerts a stronger pharmacological effect against retinopathy of the infant, hypertension, diabetes, and the like.
  • the present invention provides a gene encoding a human mutant Mn-SOD. It is an object of the present invention to provide an expression plasmid containing the gene sequence of the present invention, a host cell containing the expression plasmid, a method for producing a human mutant Mn-S0D, and a method for preventing or treating a disease using the same.
  • serine residue which is the third amino acid residue from the N-terminus of the amino acid sequence of human Mn-SOD, is changed to an arginine residue (Arg), and the amino acid residue at position 42 is replaced with an amino acid residue.
  • Human variant manganese superoxide dismutase in which a certain glutamic acid residue (Glu) is replaced with a palin residue (Val), also has an isoelectric point of about 7.1 to 7. 4 pi was found to rise significantly from pi 8.5 to 9.4.
  • the present inventors have made intensive efforts to further solve the above problems, and as a result, in the case of Mn-SOD, the total power of polar amino acid residues is reflected in the isoelectric point. I found it. In other words, for example, the total number of acidic amino acids in Mn-SOD is 19, and the number of basic amino acids is 29. The total number of basic amino acids is 10 more. It was found that the isoelectric point decreased when the number was reduced, while the isoelectric point increased when the number was increased.
  • hMn-S0D human mutated manganese superoxide dismutase
  • the human mutant manganese superoxide dismutase (hereinafter sometimes abbreviated as "hMn-S0DJ") according to the present invention has an enzyme even if it is substituted with another amino acid residue in its peptide sequence. It is a human mutant Mn-SOD in which a site that does not affect the activity is substituted with a more positively charged amino acid.
  • each of a plurality of sites in the peptide sequence of the human mutant manganese superoxide dismutase that does not affect the enzyme activity even when substituted with other amino acid residues is more positively added.
  • an amino acid residue present at a site that does not affect the enzyme activity even if it is substituted with another amino acid residue is included.
  • Substitution with a basic amino acid residue or a basic amino acid residue provides a human mutant M n -SOD force having an increased isoelectric point.
  • Ser serine residue
  • Arg arginine residue
  • a methionine residue (Met) is added to the N-terminus of human Mn-SOD.
  • the amino acid sequence at the N-terminus is shown below. It is. That is,
  • the fourth serine residue (Ser) from the N-terminus is mutated to an arginine residue (Arg).
  • This serine residue can be replaced with a basic amino acid residue such as a lysine or histidine residue in addition to an arginine residue.
  • the four serine residues from the N-terminal were replaced with an arginine residue or another amino acid residue, and Has an amino acid sequence in which the glutamic acid residue at position 43 is replaced with a neutral amino acid residue such as palin, leucine, isoleucine, glycine, or alanine residue or a basic amino acid residue such as lysine, arginine, or histidine residue
  • a neutral amino acid residue such as palin, leucine, isoleucine, glycine, or alanine residue or a basic amino acid residue
  • a basic amino acid residue such as lysine, arginine, or histidine residue
  • the glutamic acid residue at position 43 from the N-terminus in the amino acid sequence of the human and recombinant Mn-SOD is replaced with a neutral amino acid residue such as valine, leucine, isoleucine, glycine, or alanine residue or lysine.
  • the human mutant Mn-SOD having an amino acid sequence substituted with a basic amino acid residue such as an arginine or histidine residue is also slightly different from the human mutant Mn-SOD having an amino acid sequence in which the above two sites are mutated. It was found to exhibit an inferiorly elevated isoelectric point.
  • novel human Mn-SOD obtained by substituting amino acids at sites greater than the above-mentioned number with other amino acid residues also has problems such as rejection reactions that are difficult to overcome such as antigen-antibody reactions.
  • the development of such Mn-SOD as a medicinal product is expected to be quite difficult because of the potential for the development of Mn-SOD.
  • the site to be replaced with another amino acid in the peptide sequence of hMn-SOD is 1 Pcs to 4 pcs preferred.
  • an amino acid residue at a position where enzyme activity does not change even if it is substituted with another amino acid residue is replaced with another amino acid residue such as arginine residue.
  • another amino acid residue such as arginine residue.
  • basic amino acid residues such as lysine, histidine, glutamine, and asparagine, or Examples include amino acid residues such as syn, isoleucine, alanine, and glycine.
  • the isoelectric point achieved by substituting an amino acid residue existing at a site substituted with another amino acid in the peptide sequence of hMn-SOD with another amino acid residue is about PI It is 7.6 or more, preferably about pI 8.0 or more, and more preferably about P18.1 to 9.4.
  • the present invention provides a human mutant Mn-SQD protein obtained by recombining the amino acid sequence of the human mutant Mn-SOD, a gene sequence encoding the amino acid sequence of the human mutant Mn-SOD, and a microorganism transformed therewith. Are also included.
  • the present invention relates to a method for detecting the activity of CuZn-SOD, as reported by Elizabeth D. Getz off et al; Nature: 358, 23 July, NQ. 6384, 1992, for example.
  • the acidic amino acid for example, glutamic acid
  • a basic amino acid such as glutamine
  • the amino acid residue at a predetermined position from the N-terminal is replaced with another amino acid residue.
  • the amino acid sequence of the human variant Mn-SOD and the amino acid sequence of the human variant Mn-SOD which have increased permeability by substitution with the Microorganisms.
  • the recombinant human mutant Mn-SOD according to the present invention is, for example, substituted by adding a mutation to a gene sequence portion that directs an amino acid residue corresponding to the amino acid sequence of the recombinant amino acid residue in the human Mn-SOD gene sequence. It can be produced by a method of performing amplification by PCR using a primer having a gene sequence that directs the specified amino acid residue. .
  • a primer having a gene sequence that directs other amino acid residues, and / or mutating the gene sequence portion that directs the amino acid residue corresponding to the amino acid sequence of the glutamic acid residue at position 43 from the N-terminus can be produced by multiplying by a PCR method using a primer having a gene sequence that directs a substituted valine residue or other amino acid residue.
  • N-terminal of Mn-SOD N-terminal of Mn-SOD
  • HMS-5 5 'AT CTG GGC GAA TTC ATG AAG CAC CGC CTC CCC GA 3' or
  • HMS-7 5 'C ATG AAG CAC CGC CTC CCC GAC CTG CCC T 3'
  • examples of the primer at the C-terminal side of Mn—S0D include the following.
  • HMS-6 3 'GCTAGC AATACGACGT CTACMTTC 5'
  • the serine residue of the Met Lys His Ser Leu Pro Asp Leu... sequence includes all of the mutant sequences of the N-terminal bimer which change other basic amino acid sequences into gene sequences to be instructed.
  • a part of the peptide sequence of the first to seventh Mn-SOD from the N-terminal side of the natural type is as follows.
  • the corresponding gene sequence that directs the native N-terminal Mn—S 0 D peptide sequence is as follows.
  • N-terminal variant Mn-S0D peptide sequence portion corresponding to the above-mentioned native terminal Mn-S0D peptide partial sequence is as follows.
  • the gene sequence that directs the N-terminal mutant M n-SOD peptide sequence corresponding to the above is as follows.
  • N-terminal side Mn-S0D peptide sequence corresponding to the above-mentioned native terminal Mn-S0D peptide partial sequence is as follows.
  • the corresponding N-terminal mutant Mn-S0D peptide sequence-directed gene sequence is as follows.
  • Partial gene sequence 4 ⁇ MG CAC AAC CTC CCC GAC
  • Partial gene sequence 5 ⁇ MG CAC AAT CTC CCC GAC...
  • N-terminal modification corresponding to the above-mentioned native terminal Mn—S 0 D peptide partial sequence Still another example of the peptide sequence portion of the different Mn—S0D is as follows.
  • Partial gene sequence 7 -AAG CAC AAG CTC CCC GAC...
  • the gene sequence that directs the N-terminal mutant M n-SOD peptide sequence corresponding to the above is as follows.
  • Partial gene sequence 8 ⁇ MG CAC CM CTC CCC GAC...
  • Partial gene sequence 9 —AAG CAC CAG CTC CCC GAC
  • a part of the peptide sequence of the Mn-SOD at positions 41 to 43 from the N-terminal side of the natural type is as follows.
  • the corresponding gene sequence that directs the native N-terminal Mn—S 0 D peptide sequence is as follows.
  • One example of the peptide sequence portion of the N-terminal mutant Mn—S0D corresponding to the above-mentioned peptide sequence of the native terminal Mn-SOD is as follows.
  • the gene sequence that directs the N-terminal mutant M n-SOD peptide sequence corresponding to the above is as follows.
  • sequences of genes containing various mutated amino acids and various codons encoding the same can be mentioned. Therefore, the present invention naturally includes, for example, a primer containing a gene sequence corresponding to the amino acid sequence of the substituted amino acid residue as described above. Furthermore, a recombinant human mutant Mn-SOD gene DNA sequence IJ prepared using the above-mentioned Bramer, a cDNA prepared thereby, and a microorganism such as Escherichia coli transformed with the cDNA are also included. .
  • the active fractions are collected by column chromatography using DEAE Sepharose (Pharmacia), CM Sepharose, or the like, and endotoxin is collected from the collected active fractions according to a conventional method. By removing such pyrogens, a human mutant Mn-SOD having an increased isoelectric point can be produced.
  • Various stabilizers and excipients such as albumin, lactalbumin, poly ⁇ ethylene glycol, amino acids, monosaccharides, disaccharides, trisaccharides, etc. may be added to the recombinant human mutant Mn-SOD of the present invention.
  • a more preferred example of the above-mentioned disaccharide is a solution containing 0.02 to 1% concentration of trehalose (a- [D-glucopyranosyl] a-D-glucoviranose).
  • Formulation examples of the human mutant Mn-SOD according to the present invention include, for example, a recombinant human mutant Mn-SOD in which the serine residue at the fourth position from the N-terminus of recombinant human Mn-SOD is substituted with arginine. And the like formulated in an injection solution such as That is,
  • This solution is dispensed into vials and stored.
  • the dose of the recombinant human mutant Mn-SOD of the present invention is, for example, 0.01 mg to 1 g / kg / day, preferably 0.1 mg to 5 Omg / kg / day, and is used for infusion, intravenous injection, or intramuscular injection. It can also be administered subcutaneously, as a suppository or nasal drop, or into the joint cavity.
  • the administration fee and administration method can be appropriately changed depending on the type and degree of the disease, the condition of the patient, and the like.
  • the toxicity of the recombinant human mutant Mn-SOD according to the present invention is extremely low.
  • the recombinant human mutant Mn-SOD in which the fourth serine residue from the N-terminal of the recombinant human Mn-SOD is changed to arginine is SD. 5 Omg / kg tail vein to male rat No toxicity was observed with these bolus doses.
  • FIG. 1 is a diagram showing an expression vector.
  • Figure 2 is a graph showing the persistence of MHS2: Mn-SOD in rats.
  • indicates MHS: ⁇ -SOD
  • Hata indicates recombinant human Mn-SOD
  • mouth indicates CuZn-SOD.
  • FIG. 3 shows the isoelectric focusing of MHS2: Mn-SOD (ampholyte, pH
  • FIG. 4 is a graph showing the anti-inflammatory effect (rat) of MHS: Mn—SOD on adjuvant arthritis.
  • indicates MHS: Mn—SOD
  • reference indicates recombinant human Mn—SOD.
  • FIG. 5 is a graph showing the effects of MHS : Mn—S0D on the frequency of occurrence of arrhythmias after coronary artery recanalization and their duration.
  • (a) shows recombinant human Mn-SOD
  • (b) shows MHS: Mn-SOD.
  • FIG. 6 is a graph showing the myocardial protective action in a cardiac ischemia reperfusion model.
  • (a) shows control
  • (b) shows recombinant human Mn-SOD
  • (c) shows MHS: Mn-SOD.
  • the mRNA extracted from human cultured cells according to a conventional method has a sequence in which a known phMnS0D4c DNA is used as type II, and then the fourth amino acid residue serine from the N-terminal is mutated to an arginine residue.
  • HMS-5 primer (Sequence Table 1) was chemically synthesized as an N-terminal primer
  • C-terminal primer HMS-6 was chemically synthesized, and both HMS-5 and HMS-6 primers were synthesized.
  • HMS-5 primer (Sequence Table 1) was chemically synthesized as an N-terminal primer
  • C-terminal primer HMS-6 was chemically synthesized, and both HMS-5 and HMS-6 primers were synthesized.
  • HMS-5 primer (Sequence Table 1) was chemically synthesized as an N-terminal primer
  • C-terminal primer HMS-6 (Sequence Table 2) was chemically synthesized, and both HMS-5 and HMS-6 primers were synthesized.
  • the expression vector (A) is used for overexpression of the protein, has a strong tac promoter, is regulated by a 1 ac ribosser in a suitable host (JM105), and It is induced by the addition of galactoside (IPTG) (Fig. 11-A).
  • the obtained human Mn-SOD gene was digested with mung-bean nuclease and restriction enzyme PstI, and digested with restriction enzymes NcoI and Mungbean nuclease. Thereafter, the human mutant SOD gene was ligated to an expression vector treated with PstI (FIG. 11B).
  • the desired expression plasmid was prepared by ligating cDNA containing the human mutant Mn-SOD gene downstream of Pac and its improved Pt ac * as a promoter for E. coli. EcoR I or Nco I and Pst I sites were placed at both ends of the Mn-SOD gene, respectively, and connected to the promoter. The resulting human mutant Mn—
  • An expression plasmid containing the S0D gene was introduced into host Escherichia coli, and transformants were selected as ampicillin-resistant bacteria (FIG. 1).
  • Escherichia coli strain transformed with an expression plasmid containing the human mutant Mn-S0D gene
  • E.co1iJM105 was cultured with stirring at 37 ° C. for 15 hours in a medium containing ampicillin 4 OmgZl and manganese chloride 15 mM. After the culture, the cells were crushed in a blender and the supernatant was obtained by low-speed centrifugation.
  • the supernatant thus obtained is loaded on a DEAE sepharose and chromatographed using a phosphate buffer. Subsequently, the active fraction is subjected to CM Sepharose and eluted with a high-concentration phosphate buffer to collect the active fraction. Pyrogens such as endotoxin were removed from the collected active fractions according to a conventional method.
  • mutant Mn-SOD obtained in this example was abbreviated as MHS: Mn-SOD.
  • the amino acid sequence and gene sequence of MHS : MnS0D are as follows. EcoRI 10 20 30 40 50
  • SDS polyacrylamide gel electrophoresis showed a single band with a molecular weight of about 20000.
  • Native and MHS Isoelectric focusing of PI 3.0 to 9.
  • ⁇ containing a slab-type polyacrylamide gel containing 10 wg each of Mn-SOD showed that natural Mn-SOD had a pi of about 7.2. showed that.
  • MH S Mn—SOD showed a pI of about 8.2, which was clearly different from the native Mn—SOD (FIG. 2).
  • MHS Mn-SOD
  • Mn-S0D Mn-S0D was not deactivated at the concentration of hydrogen peroxide at which CuZn-SOD was deactivated. Cyan resistance was not different from Mn-SOD.
  • the amino acid sequence of the obtained MHS: Mn-SOD of the present invention is shown above, and it was confirmed by N-terminal analysis that the serine at the fourth position from the N-terminal was a human mutant Mn-SOD in which arginine was mutated. .
  • the isoleucine residue at position 59 from the N-terminus is replaced by a threonine residue, which reduces the enzymatic activity to about 50%.
  • the N-terminal Met Lys His Ser Leu Pro Asp Leu ... sequence In the case of the recombinant human mutant Mn-SOD in which the serine residue (Ser) of the moiety was changed to an arginine residue (Arg) according to the method of Examples 1-4, the enzyme activity was higher than that of the native form. It was confirmed that the isoelectric point increased from about 7.0 pi to Pl 8.1 to 8.3 with about 50%. As a result, it was confirmed that the thread permeability increased.
  • Mn-SOD 10 mg / Kg each from the rat tail vein
  • blood was collected over time from the carotid artery and the persistence was measured. It showed 74 minutes and 82 minutes ( Figure 3).
  • Lewis male rats (6-7 weeks old) Use rats weighing 250-300 g. After ether anesthesia, a 0.1 ml tuber (5 mg gZm 1 liquid paraffin) solution is administered by using a tuberculin needle under the tail subcutaneously.
  • MHS Mn—1000 units of SOD Rats were administered to the hind foot joint from day 3 The administration was started once every two days and three times a week. In the MHS administration group, a significant inhibitory effect was seen from week 5 (Fig. 4).
  • Example 8 Therapeutic effect of MHS: Mn-SOD on reperfusion arrhythmia
  • the heart of a male SD rat (300-350 g) was excised and subjected to port flow by the Langendorff method. After administration of 100 units / ml of Mn-SOD or MHS: Mn-SOD 5 minutes before ischemia, ischemia was performed for 30 minutes, and the occurrence frequency and duration of arrhythmia after reperfusion were measured.
  • Example 9 Plasma creatinine kinase release inhibitory action
  • MHS Mn-SOD
  • Mn-SOD like recombinant human Mn-S0D
  • Mn-SOD is unstable when purified to a high degree of purity and its activity may be reduced by freeze-thawing or long-term storage. Therefore, 0.2M trehalose or 12OmgZm1 maltose was added to a 5mg / m1 solution (0.06M phosphate buffer, pH 6.8) of MHS: Mn-SOD, freeze-dried and stored at 55 ° C for 3 weeks.
  • the decrease in activity was examined. As a result, the activity was reduced to about 70% in the group without added sugar, but was not decreased in the group added with sugar.
  • Example 11 MHS2: cDNA preparation for MnSOD adjustment
  • the human mutant Mn-SOD gene was amplified according to the method described in Example 1-1, and the human mutant SOD gene was ligated to an expression vector.
  • mRNA extracted from human cultured cells or known phMnS0D4 cDNA was used as type III, and then the N-terminal side having a sequence in which the fourth amino acid residue serine from the N-terminal was mutated to an arginine residue.
  • the HMS-7 primer was chemically synthesized as a primer
  • the C-terminal primer HMS-6 was chemically synthesized with the primer
  • the HMS-7 and HMS-6 primers were used for gene amplification by the gene amplification method.
  • Mutant S0D gene Amplified Subsequently, the glutamic acid residue at position 43 from the N-terminus was replaced with a valine residue using a primer in which the base at position 134 in the gene code of FIG. 8 was replaced with thymine.
  • the obtained human Mn-SOD gene was digested with mung-bean nuclease and restriction enzyme PstI, and then digested with restriction enzymes NcoI and Mungbean nuclease.
  • the above-mentioned human mutant S0D gene was ligated to the expression vector treated with PstI.
  • Example 12 Selection of promoter and vector of MHS2: Mn-SOD cDNA containing human mutant Mn-SOD gene downstream of Pt ac or its improved Pt ac * was used as a promoter for E. coli.
  • the desired expression plasmid was prepared by ligation. EcoRI or NcoI and PstI sites were placed at both ends of the Mn-SOD gene, respectively, and connected to the promoter.
  • the expression plasmid containing the human mutant Mn-SOD gene thus obtained was introduced into host Escherichia coli, and transformants were selected as ampicillin-resistant bacteria.
  • Escherichia coli strain E.co1iJM105 transformed with an expression plasmid containing the MHS2: Mn-SOD gene was cultured according to the method of Example 3, and the obtained MHS2: Mn-SOD was isolated by a conventional method. Purified.
  • Mn-SOD The resulting purified MHS2: Mn-SOD was measured according to the method of McCord, M., Friedovich, I., J. Biol. Chem., 244, 6049-6055, 1969. It showed an activity of about 4950 units / mg protein.
  • the recombinant ⁇ human Mn—S0D used as a control exhibited an activity of about 4830 units Zmg, and no difference was observed between the two.
  • An appropriate amount of trehalose was added, lyophilized and stored.
  • mutant Mn-SOD obtained in this example was abbreviated as MHS2: Mn-SOD.
  • the amino acid sequence and gene sequence of MHS2: MnSOD are as follows. EcoRI 10 20 30 40 50
  • Gly Asp Val Thr Ala Gin lie Ala Leu Gin Pro Ala Leu Lys Phe Asn Gly Gly 220 230 240 250 260 270
  • Lys Ala lie Tr Asn Val lie Asn Trp Glu Asn Val Thr Glu Arg Tyr Met Ala
  • SDS polyacrylamide gel electrophoresis showed a single band with a molecular weight of about 20000.
  • Natural type and MHS Slab type polyac containing Mn—SOD of 1 Og each Isoelectric focusing of PI 3.0-9.0 • containing rilamide gel showed that the native Mn-SOD had a pI of about 7.2.
  • MH S Mn-SOD showed a pI of about 8.5 to 9.4, which was clearly different from that of native Mn-SOD.
  • MHS2 Mn-SOD in the presence of various concentrations of hydrogen peroxide and cyanide was examined.
  • MHS2 Mn-SOD was not deactivated at the concentration of hydrogen peroxide at which CuZn-SOD was deactivated.
  • Xan resistance was no different from M n -SOD.
  • Mn—S ⁇ D 10 mg / kg
  • blood was sampled from the carotid artery over time and the persistence was measured. Minutes, 76 minutes and 88 minutes.
  • MHS 2 Mn-SOD, like recombinant human Mn-S0D, is unstable when purified to a high degree of purity and loses its activity due to freezing and thawing and long-term storage.
  • Mn—S0D having a significantly increased isoelectric point, thereby increasing tissue permeability and various inflammatory diseases, cancer, retinopathy of prematurity, hypertension, diabetes, etc.
  • a novel Mn-SOD which can exert a more powerful pharmacological effect on the skin and can be used as a cosmetic for cosmetics can be provided.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

A human manganese superoxide dismutase (Mn-SOD) having an elevated isoelectric point and an increased capability of tissue penetration is prepared by replacing an amino acid residue present at the site which does not affect the enzymatic activity even when another amino acid residue is present thereat in the amino acid sequence of the dismutase by a more positively charged amino acid residue. Examples thereof include one prepared by replacing the 4th serine residue on the N-terminal side of a recombinant human variant Mn-SOD by a basic amino acid residue and one prepared by replacing, in addition to the 4th amino acid residue, the 42nd glutamic acid residue by a valine residue. These human variant Mn-SODs have an excellent drug activity on various diseases on which the conventional Mn-SOD is insufficiently efficacious, for example, various inflammatory diseases caused by active oxygen, cancer, retinopathy of prematurity, hypertension and diabetes. Further they are useful as a cosmetic ingredient.

Description

明 細 書 発明の名称  Description Name of Invention
ヒ卜変異マンガンスーパ一ォキシドジスム夕一ゼ 技術分野  Human mutant manganese superoxide disperse
本発明は、 ヒ卜マンガンスーパ一ォキシドジスムタ一ゼに関し、 更に詳細には、 ヒトマンガンスーパーォキシドジスムタ一ゼ (ヒト M n— S O D ) のペプチド配 列を構成するァミノ酸の一部を置換することにより、 他のアミノ酸に変異した新 規な M n— S O D、 該 M n— S O Dのアミノ酸配列をコードする D N A遺伝子、 宿 主細胞、 該 M n— S O Dの製造法およびその用途に関するものである。  The present invention relates to human manganese superoxide dismutase, and more particularly, to a part of the amino acid constituting the peptide sequence of human manganese superoxide dismutase (human Mn-SOD). Accordingly, the present invention relates to a novel Mn-SOD mutated to another amino acid, a DNA gene encoding the amino acid sequence of the Mn-SOD, a host cell, a method for producing the Mn-SOD and its use .
^景技術 ^ Scenic technology
酸素は、 生体にとって必須であり、 紫外線、 放射線などの外界因子などの作用 を受けて生体内組織において種々の活性酸素種になること力 s知られている。 通常 の状態では、 酸素の約 1 %が活性酸素の状態で存在しているといわれている。 こ の活性酸素種は、 生体内において、 マクロファージなどの貪食作用によって、 細 菌などに対して直接作用して強力な殺菌効果を示し、 生体内における感染防御機 構として重要な役割を担っていると考えられる。 Oxygen is essential for biological, ultraviolet, under the action of such external factors such as radiation has been known that force s becomes a variety of reactive oxygen species in vivo tissue. Under normal conditions, it is said that about 1% of oxygen is present as active oxygen. These reactive oxygen species exert a strong bactericidal effect by directly acting on bacteria and the like by phagocytosis of macrophages and the like in vivo, and play an important role as an in vivo infection defense mechanism it is conceivable that.
しカゝし、 酸素も高濃度で生体内に存在すると、 逆に生体にとって有害な影響を 及ぼすことも知られている。 このことも、 生体糸扁内で酸素力 s還元されて生成さ れた種々の活性酸素が作用することによるものと考えられている。 .  However, it is also known that when oxygen is present in a living body at a high concentration, it adversely affects the living body. It is thought that this is also due to the action of various active oxygens generated by the reduction of oxygen force in the biotissue. .
活性酸素は、 親水性環境よりも疎水性環境でのほうがその寿命力長く、 他方、 リン脂質の不飽和脂肪酸は活性酸素に対して極めて敏感に作用し、 過酸化: ^態に なりやすいことが知られている。 従って、 生体膜の不飽和脂肪酸は、 過酸化反応 を受けると過酸化脂質になり、 この過酸化脂質が構造蛋白質などに作用して、 細 胞障害の原因になり、 動脈硬化、 老化、 発癌などの有害な作用を及ぼしている。 この活性酸素は、 生体が紫外線や放射線などに照射されることにより生成され る。 従って、 日光、 特に紫外線に露出される皮膚などの生体膜には、 スクヮラン などの不飽和脂肪酸が含まれる皮脂が存在することから、 この不飽和脂肪酸が活 性酸素の作用を受けて過酸ィヒ脂質になり、 炎症、 色素沈着、 老化などの原因とな つている。 また、 その過酸化脂質の量力著しく増加した場合には、 メラミンの生 成が促進され、 メラミンの沈着を惹起すると推測されている。 更に、 火傷や外傷などで皮膚が損傷を受けて皮膚細胞が直接空気と接触する場 合には、 その細胞膜では活性酸素が生成されて、 この活性酸素が更に皮膚細胞中 の不飽和脂肪酸に作用して過酸化脂質力 s生成されることになる。 この過酸化脂質 の形成が皮膚の損傷部位の治癒を遅らせる原因となっている。 Active oxygen has a longer life span in a hydrophobic environment than in a hydrophilic environment, whereas unsaturated fatty acids in phospholipids are extremely sensitive to active oxygen and can be more susceptible to peroxidation: ^ Are known. Therefore, unsaturated fatty acids in biological membranes become lipid peroxides when subjected to a peroxidation reaction, and this lipid peroxide acts on structural proteins and the like, causing cell damage, causing arteriosclerosis, aging, carcinogenesis, etc. Has harmful effects. This active oxygen is generated by irradiating a living body with ultraviolet rays, radiation, or the like. Therefore, there is sebum containing unsaturated fatty acids such as squalane in biological membranes such as skin exposed to sunlight, particularly ultraviolet rays, and the unsaturated fatty acids are subjected to the action of active oxygen to form peroxyacids. It becomes hylipid and causes inflammation, pigmentation, and aging. It is also assumed that when the amount of lipid peroxide is significantly increased, melamine production is promoted and melamine deposition is caused. Furthermore, when skin cells are damaged by burns or trauma and skin cells come into direct contact with air, active oxygen is generated in the cell membrane, and this active oxygen further acts on unsaturated fatty acids in the skin cells. will be lipid peroxidation force s generated. The formation of this lipid peroxide delays the healing of damaged areas of the skin.
上にも述べたように、 最近、 この活性酸素は、 各種炎症性疾患や発癌、 未熟児 網膜症、 老人性疾患などの原因の一つであるとの報告がなされている。 さらには、 免疫にも深い係わりがあると推定されている。  As mentioned above, recently, it has been reported that this active oxygen is one of the causes of various inflammatory diseases and carcinogenesis, retinopathy of premature babies, and senile diseases. Furthermore, it is estimated that immunity is deeply involved.
ところで、 酸素を呼吸して生活する生物 (好気 'ΐϊΐ物) は、 当然取入れた酸素 を全身に供給することになり活性酸素も同時に供給されることになるが、 こうし て体内に入った活性酸素を酵素分解し消去しているの力 s各種のスーパ一ォキシド ジスム夕一ゼ (以後 SODと呼称) である。 従って、 SODは好気性生物が生存 を続けるのに必須の成分であると言える。 実際、 各種生物間の体内 SOD量の濃 度差はその生物の寿命と明白な相関関係があることが知られている。 By the way, living organisms that breathe oxygen and live (aerobic organisms) naturally supply the oxygen they take in to the whole body and supply active oxygen at the same time. super one force s various active oxygen enzymatic degradation are erased Okishido Jisumu evening is Ichize (hereinafter SOD and referred). Therefore, it can be said that SOD is an essential component for aerobic organisms to survive. In fact, it is known that the difference in the amount of SOD in the body between various organisms has a clear correlation with the life span of the organism.
また、 局所的な S 0 Dの濃度の減少力上記した非常に多くの疾患を引き起こすこ とは数多くの文献にて報告されている。 Numerous documents have reported that the local decrease in the concentration of S 0 D causes the above-mentioned numerous diseases.
例えば、 癌細胞ではマンガンスーパ一ォキシドジスムタ一ゼ (Mn— SOD) の低下力 s著しいこと力 s報告されている (大柳義彦: トキシコロジ一フォーラム 1 1巻 ( 1 ) 、 62— 70、 1988等) 。 For example, in cancer cells have been reduced force s Remarkably force s report of manganese super one Okishidojisumuta Ichize (Mn- SOD) (Yoshihiko Oyanagi: Tokishikoroji one Forum 1 1 Volume (1), 62- 70, 1988, etc.).
従って、 SODは、 局所的 SODの濃度の減少によって起きる多くの疾患の原 因療法として治療あるいは予防に用いられる可能性を秘めている。  Thus, SOD has the potential to be used for treatment or prevention as a causal therapy for many diseases caused by reduced local SOD levels.
前述したような作用を有するスーパーォキシドジスムタ一ゼ (以後 S〇 Dと略 称する) としては、 例えば、 マンガン一 SOD (Mn— SOD) 、 銅亜鉛— SO D (CuZn-SOD) 、 鉄— S 0 D (F e -SOD) 等が挙げられる。  Examples of the superoxide dismutase having the above-mentioned action (hereinafter abbreviated as S〇D) include manganese mono-SOD (Mn-SOD), copper zinc-SOD (CuZn-SOD), and iron- S 0 D (F e -SOD) and the like.
このうち、 動物由来の SODをヒ卜に投与する場合には、 抗原抗体反応に由来 するような拒絶反応等の問題があるため、 医薬として開発するには多くの困難が 予想される。 これに対して、 ヒト由来の SODはカかる問題がない分だけ、 医薬 品として開発するに当たっては好ましい。  Of these, when administering animal-derived SOD to humans, there are problems such as rejection due to the antigen-antibody reaction, and therefore, many difficulties are expected to be developed as pharmaceuticals. On the other hand, human-derived SOD is preferable for development as a medicinal product because it has no problem.
この意味で、 F e— S 0 Dは細菌および植物由来であるために不適当であるとい える。  In this sense, Fe-S0D is inappropriate because it is derived from bacteria and plants.
しかしながら、 ヒト由来の SODについても製造および供給面で極めて大きな 問題があると同時にウィルス等の混入に起因する感染の心配などがある。 従って、 前記問題を解決する手段として遺伝子工学的手段によりヒ卜型 S 0 Dを製造する 試みがなされている。 つまり、 マンガン一SOD (Mn— SOD) と、 銅亜鉛— SOD (CuZn-SOD) とについて、 遺伝子工学的手法により製造カ呵能で あるので、 これらの SODについて薬剤、 ィヒ粧品などへの応用の可能性力検討さ れている。 また、 銅亜鉛一 SOD (CuZn-SOD) については、 その寿命が 短いために、 医薬、 ィヒ粧品などに応用する場合には、 より体内半減期力長い Mn- SODの方がより好ましいといえる。 However, human-derived SOD also has extremely serious problems in production and supply, and at the same time, there is concern about infection due to contamination with viruses. Therefore, attempts have been made to produce human SOD by genetic engineering means as a means for solving the above-mentioned problems. In other words, manganese-SOD (Mn—SOD) and copper-zinc— Since SOD (CuZn-SOD) has the potential to be manufactured by genetic engineering techniques, the feasibility of applying these SODs to drugs, cosmetics, etc. is being investigated. In addition, copper-zinc-one SOD (CuZn-SOD) has a shorter life span, so it is more preferable to use Mn-SOD, which has a longer half-life in the body, when it is applied to pharmaceuticals, cosmetics, etc. .
ところで、 Mn— SODは、 ヒトを含む動物には主として細胞中のミトコンド リアに多く含まれていて、 その分子量が約 20, 000のペプチドよりなる 4量 体を形成していて、 Mnイオンを各ペプチドあたり 1個づっ含む金属蛋白質であ る。 酵素活性には、 この Mnイオンが必須である。  By the way, Mn-SOD is mainly contained in mitochondria in cells in animals including humans, and forms a tetramer composed of a peptide having a molecular weight of about 20,000. It is a metalloprotein containing one per peptide. This Mn ion is essential for enzyme activity.
Mn— S0Dは、 CuZn— SODに比して体内半減期力約 10倍も長いこと、 さらに S 0 Dの代謝産物である過酸化水素に対して耐性であるため、 C u Z n— SODよりも Mn— SO Dの方が薬剤,としてより有用と考えられる。  Mn-S0D has a half-life of about 10 times longer in the body than CuZn-SOD, and is more resistant to hydrogen peroxide, a metabolite of S0D. Mn-SOD is considered to be more useful as a drug.
ところで、 Mn— SODのアミノ酸配列 ついては、 ヒト型 Mn— S0Dの全 アミノ酸 198個のうち、 196個からなるアミノ酸配列力 s報告された [バラ等 (Barra et al, J. Biol. Chem259, 12595-12601, 1984) ] 。  By the way, regarding the amino acid sequence of Mn-SOD, it was reported that the amino acid sequence consisted of 196 out of 198 total amino acids of human Mn-S0D [Barra et al., J. Biol. Chem259, 12595- 12601, 1984)].
次いで、 上記論文のアミノ酸配列を引用して DNAプローブを作製し、 ヒ卜 T 細胞から Mn— SODの全アミノ酸配列である 198個のアミノ酸をコードする クローンが同定されたと開示されている (特開昭 64— 27470号公報) 。 更に、 特開昭 64— 63383号公報には、 ヒト型 Mn— S 0 D力 ^記載されて いて、 そのうちの I V aと表示されたポリペプチド (野生株) に対応するものの 等電点が P iが 8. 15であったと記載されている。 しカしな力 sら、 同公報に記 載された hMn— SODは、 野生株の天然型 M n— S 0 Dに対して他のアミノ酸 残基を何ら置換されたものではなく、 更に同公報に記載された DN A配列は、 後 述する本発明に係るヒト変異 Mn— SODとは著しく異なっている。 また、 この 等電点がどのような方法で測定されたの力^"切不明であるうえに、 文献 [B.A. Then, a DNA probe was prepared by citing the amino acid sequence of the above-mentioned article, and it was disclosed that a clone encoding 198 amino acids, which is the entire amino acid sequence of Mn-SOD, was identified from human T cells (Japanese Patent Application Laid-Open No. H10-163,878). (Showa 64-27470). Furthermore, Japanese Patent Application Laid-Open No. 63383/1988 describes a human Mn—S0D force ^, of which the isoelectric point of the polypeptide corresponding to IVa (wild type) is P It is stated that i was 8.15. The hMn-SOD described in the publication does not have any other amino acid residue substitution with respect to the wild-type native Mn-S0D. The DNA sequence described in the publication is significantly different from the human mutant Mn-SOD according to the present invention described later. In addition, the power of this isoelectric point measured by any method ^ "is indeterminate, and the literature [B.A.
Omar & J.M. McCord: J. Mol Cell Cardiol 23, 149-159 (1991)] にも、 このべ プチドに該当するものの等電点が 7. 4であると記載されているように、 これま でのヒ卜型 Mn— SODの等電点力通常 7. 0から 7. 4の間にあるとされてい ることをも勘案すれば、 上述した等電点は通例に比べて余りにも高すぎて唐突過 ぎると言わざるを得ない。 Omar & JM McCord: J. Mol Cell Cardiol 23, 149-159 (1991)], the isoelectric point of this peptide is 7.4. Considering that the isoelectric point of human Mn-SOD is usually between 7.0 and 7.4, the isoelectric point mentioned above is too high compared to the usual and suddenly I have to say that it is too much.
また、 ヒト型 SODのアミノ酸配列の N末端部から 3番目のアミノ酸 Serが A r gに変異したものが同定されたとの報告がある(S.L. Church: Biochimica et Biophysica Acta, 1087, 250-252, 1990) 。 しかしながら、 その後著者自身が このアミノ酸配列は誤報であつたとの訂正がなされている(S.し Church: BBA, 1171, 341, 1993)。 In addition, it has been reported that the third amino acid Ser from the N-terminal of the amino acid sequence of human SOD was mutated to Arg (SL Church: Biochimica et Biophysica Acta, 1087, 250-252, 1990). . However, then the author himself This amino acid sequence has been corrected as a misinformation (S. Church: BBA, 1171, 341, 1993).
ところで、 Mn— S 0 Dは高分子であるため組織浸透性が良好とは言えない。 一方、 酸素ラジカルは、 酸素が生体内中隙間なく分布するため何れの組織あるい は器官においても発生する。 従って、 体外より投与された Mn— SOD力 s体内で 治療あるいは予防作用を効果的に発揮するためには組織浸透性のよいこと力要求 される。  By the way, since Mn—S 0 D is a polymer, it cannot be said that tissue permeability is good. On the other hand, oxygen radicals are generated in any tissue or organ because oxygen is distributed without gaps in a living body. Therefore, Mn-SOD force administered from outside the body requires good tissue permeability to effectively exert a therapeutic or preventive action in the body.
しかしながら、 従来の Mn— S 0 Dを S 0 D欠乏に起因する各種の炎症性疾患、 癌、 未熟児網膜症、 高血圧症、 糖尿病等に対して投与した場合、 もともと必要な 局所に存在する内在性の S 0 Dと異なり、 必要な局所に浸透せず治療効果は不充 分であった。 従って、 組織浸透性の良いヒト型 Mn— SODの開発が強く要望さ れている。 ,  However, when conventional Mn-S0D is administered to various inflammatory diseases caused by S0D deficiency, cancer, retinopathy of prematurity, hypertension, diabetes mellitus, etc. Unlike sex S0D, it did not penetrate the required local area, and the therapeutic effect was unsatisfactory. Therefore, there is a strong demand for the development of human-type Mn-SOD with good tissue permeability. ,
前述したように Mn— SODは組織浸透性 良好でないといっても、 C u Z n を含む SODに比べると、 Mn— SODはゥサギの心筋 ¾への浸透能力か Ifい こと力 S報告されている [B.A. Omar & J.M. McCord: J. Mol Cell Cardiol. 23, 149-159 (1991) ] 。 このことは、 Mn— S 0 Dの示す等電点が C u Z n— S 0 D より高いことと関係があると言われている。 また関節滑膜への親和性も等 の 高い分子の方がより効果的である。 ちなみにヒ卜の場合 CuZn— SODの等電 点は P i約 5. 1であるのに対し、 Mn— SODのそれは p I約 7. 0〜7. 4 である。 このように、 等電点のより高い Mn— SODは組織への浸透性か^まり 薬理効果の増大が予想される。  As mentioned above, even though Mn-SOD is not good in tissue permeability, compared to SOD containing CuZn, Mn-SOD has a better ability to penetrate into the heron myocardium. [BA Omar & JM McCord: J. Mol Cell Cardiol. 23, 149-159 (1991)]. It is said that this is related to the fact that the isoelectric point indicated by Mn-S0D is higher than CuZn-S0D. Molecules having a high affinity for the synovium are more effective. In the case of humans, the isoelectric point of CuZn-SOD is Pi about 5.1, whereas that of Mn-SOD is about 7.0-7.4. Thus, Mn-SOD with a higher isoelectric point is expected to increase the pharmacological effect because of its permeability into tissues.
従って、 本発明は、 組換え Mn— SOD (rMn-SOD) 遺伝子を用いて各 種変異操作を行なつた後得られたヒ卜型変異 M n-SODを提供するものである。 また、 本発明は、 天然型の Mn— SODの等電点よりも高い等電点を有する組 み換え変異 Mn— SODを創製することを課題とする。  Therefore, the present invention provides a human mutant Mn-SOD obtained after performing various mutation operations using a recombinant Mn-SOD (rMn-SOD) gene. Another object of the present invention is to create a recombinant mutant Mn-SOD having an isoelectric point higher than that of a natural type Mn-SOD.
さらに、 本発明の他の課題は、 Mn— SODの等電点カ稿くなることによって 酵素活性カ 下せずまた持続性も天然型と同等以上である新規 Mn— S O Dの創 製を課題とする。  Further, another object of the present invention is to create a novel Mn-SOD which does not reduce the enzyme activity and has a sustainability equal to or higher than that of the natural type by reducing the isoelectric point of the Mn-SOD. I do.
さらに、 本発明のその他の課題は、 等電点か * く、 かつ、 組織浸透性が高くな つたことにより、 従来の公知である Mn— SODに比べて、 各種の炎症性疾患、 癌、 未熟児網膜症、 高血圧、 糖尿病等に対してより強力な薬理効果を発揮する新 規組み換えヒト変異 M n-SODを提供することを課題とする。  Furthermore, another object of the present invention is to provide various inflammatory diseases, cancers, immaturities, etc. as compared with the conventionally known Mn-SOD due to the low isoelectric point and the high tissue permeability. It is an object of the present invention to provide a new recombinant human mutant Mn-SOD that exerts a stronger pharmacological effect against retinopathy of the infant, hypertension, diabetes, and the like.
これらに加えて、 本発明は、 ヒ卜型変異 Mn— SODをコードした遺伝子、 そ の遺伝子配列を含む発現プラスミド、 その発現プラスミドを含む宿主細胞、 ヒト 型変異 Mn— S 0 Dの製造方法、 およびそれを使用した疾病の予防または治療方 法を提供することを課題としている。 In addition to these, the present invention provides a gene encoding a human mutant Mn-SOD, It is an object of the present invention to provide an expression plasmid containing the gene sequence of the present invention, a host cell containing the expression plasmid, a method for producing a human mutant Mn-S0D, and a method for preventing or treating a disease using the same.
これまでは、 Mn— SODのアミノ酸配列の中のたとえひとつのアミノ酸でも その他の塩基性アミノ酸で置換変異させると、 その酵素活性は低下してしまい、 充分な目的を達成することできなかった。  Until now, if even one amino acid in the amino acid sequence of Mn-SOD was substituted and mutated with another basic amino acid, its enzymatic activity was reduced, and it was not possible to achieve its intended purpose.
ところ力 極めて驚いたことには、 ヒト Mn— SODのアミノ酸配列の N末端 から 3番目のアミノ酸残基であるセリン残基 (Ser) をアルギニン残基 (Arg) に変 えたヒト変異マンガンスーパ一ォキシドジスム夕ーゼにおいては、 その等電点が p i約 7. 1〜7. 4力ら p i 8. 1〜8. 4と有意に上昇したのに対して、 酵 素活性、 体内半減期、 過酸化水素に対する耐性に関しては変化が見られず、 上記 課題を満たしたものであることを見出レた。 なお、 ヒト Mn— SODを大腸菌に 組換える場合には、 その N末端にメチォニン残基 (Met ) カ^ t¾口されるため、 組 み換えヒト変異 Mn— SODにおいては N末端より 4番目のセリン残基 (Ser ) がアルギニン残基 (Arg ) に変換することになる。  However, surprisingly, it was surprising that the human manganese superoxide dismutation in which the serine residue (Ser), the third amino acid residue from the N-terminal of the amino acid sequence of human Mn-SOD, was changed to an arginine residue (Arg). In Yuze, its isoelectric point increased significantly from about 7.1 to 7.4 pi to 8.1 to 8.4 pi, while enzyme activity, half-life in the body, and peroxidation No change was seen in the resistance to hydrogen, and it was found that the above-mentioned problem was satisfied. When human Mn-SOD is recombined into Escherichia coli, a methionine residue (Met) is added to the N-terminus of the recombinant Mn-SOD. The residue (Ser) will be converted to an arginine residue (Arg).
同様に、 ヒ卜 Mn— SODのアミノ酸配列の N末端から 3番目のァミノ酸残基 であるセリン残基 (Ser) をアルギニン残基 (Arg) に変えると共に、 42番目のァ ミノ酸残基であるグルタミン酸残基 (Glu) をパリン残基 (Val) で置換したヒト変 異マンガンスーパ一ォキシドジスムタ一ゼも、 その等電点が、 野生株のヒト Mn 一 SODの p i約 7. 1〜7. 4力ら p i 8. 5〜9. 4と有意に上昇すること を見いだした。  Similarly, the serine residue (Ser), which is the third amino acid residue from the N-terminus of the amino acid sequence of human Mn-SOD, is changed to an arginine residue (Arg), and the amino acid residue at position 42 is replaced with an amino acid residue. Human variant manganese superoxide dismutase, in which a certain glutamic acid residue (Glu) is replaced with a palin residue (Val), also has an isoelectric point of about 7.1 to 7. 4 pi was found to rise significantly from pi 8.5 to 9.4.
その結果を踏まえて、 本発明者等は、 更に上記課題を解決するために鋭意努力 した結果、 Mn-SO Dの場合には極性アミノ酸残基の総和力 s等電点に反映され ることを見出した。 つまり、 たとえば、 Mn— SODの酸性アミノ酸の総数は 1 9個であり、 また塩基性アミノ酸数は 29であって、 合計で塩基性アミノ酸数が 10個多いこと力 s知られる力 この塩基性アミノ酸の数を減らすと等電点は減少 し、 一方増加させると等電点が増加することが見い出された。  Based on the results, the present inventors have made intensive efforts to further solve the above problems, and as a result, in the case of Mn-SOD, the total power of polar amino acid residues is reflected in the isoelectric point. I found it. In other words, for example, the total number of acidic amino acids in Mn-SOD is 19, and the number of basic amino acids is 29. The total number of basic amino acids is 10 more. It was found that the isoelectric point decreased when the number was reduced, while the isoelectric point increased when the number was increased.
換言すると、 ヒト型変異マンガンスーパ一ォキシドジスムタ一ゼ (以下「hM n— S0D」 と略称することがある) のペプチド配列において、 他のアミノ酸残 基に置換しても酵素活性に影響を及ぼさない部位に、 よりプラスに荷電したアミ ノ酸で置換することによって、 等電点が所望の値以上に上昇したヒト型変異 Mn -SO Dが得られることを見いだして、 本発明を完成させるに至った。 発明の開示 In other words, in the peptide sequence of human mutated manganese superoxide dismutase (hereinafter sometimes abbreviated as "hMn-S0D"), a site that does not affect enzyme activity even if it is replaced with another amino acid residue. In addition, it was found that by substituting with a more positively charged amino acid, it was possible to obtain a human mutant Mn-SOD having an isoelectric point higher than a desired value, thereby completing the present invention. . Disclosure of the invention
本発明に係るヒト型変異マンガンスーパ一ォキシドジスムタ一ゼ (以下「h M n— S 0 D J と略称することがある) は、 そのペプチド配列において、 他のァ ミノ酸残基に置換しても酵素活性に影響を及ぼさない部位に、 よりプラスに荷電 したアミノ酸で置換したヒト型変異 M n— S O Dである。  The human mutant manganese superoxide dismutase (hereinafter sometimes abbreviated as "hMn-S0DJ") according to the present invention has an enzyme even if it is substituted with another amino acid residue in its peptide sequence. It is a human mutant Mn-SOD in which a site that does not affect the activity is substituted with a more positively charged amino acid.
本発明においては、 ヒト型変異マンガンスーパーォキシドジスム夕一ゼのぺプ チド配列における他のアミノ酸残基に置換しても酵素活性に影響を及ぼさない複 数の部位のそれぞれに、 よりプラスに荷電したアミノ酸で置換させて、 等電点を 上昇させたヒト型変異 M n— S O Dも提供される。  In the present invention, each of a plurality of sites in the peptide sequence of the human mutant manganese superoxide dismutase that does not affect the enzyme activity even when substituted with other amino acid residues is more positively added. Also provided is a human variant Mn-SOD having an increased isoelectric point by substituting a charged amino acid.
更にまた、 本発明においては、 ヒト型変異マンガンスーパ一ォキシドジスム 夕一ゼのペプチド配列において、 他のアミノ酸残基に置換しても酵素活性に影響 を及ぼさない部位に存在するァミノ酸残基を中性ァミノ酸残基または塩基性ァミ ノ酸残基にて置換することによってその等電点が上昇したヒト型変異 M n - S O D力 s提供される。  Furthermore, in the present invention, in the peptide sequence of the human mutant manganese superoxide dismutase, an amino acid residue present at a site that does not affect the enzyme activity even if it is substituted with another amino acid residue is included. Substitution with a basic amino acid residue or a basic amino acid residue provides a human mutant M n -SOD force having an increased isoelectric point.
その他の目的、 特長および利点は、 添付する図面を参照にした下記の発明の詳細 な説明から明らかである。  Other objects, features and advantages will be apparent from the following detailed description of the invention which refers to the accompanying drawings.
ところで、 ヒ卜 M n— S O Dのアミノ酸配列を系統的に比較した場合のヒト M n - S O Dのァミノ酸配列を中心にした保存アミノ酸配列のみを表示すると以下 の通りである [ () で囲むアミノ酸が保存アミノ酸であり、 アミノ酸略称の上の 数値はヒト組換 M n— S O Dのアミノ酸配列における N末端からのアミノ酸の位 置を示す] 。  By the way, when the amino acid sequence of human Mn-SOD is systematically compared, only the conserved amino acid sequence centering on the amino acid sequence of human Mn-SOD is shown below. Is a conserved amino acid, and the numerical value above the amino acid abbreviation indicates the position of the amino acid from the N-terminus in the amino acid sequence of human recombinant Mn-SOD.
10  Ten
Met Lys His Ser (Leu Pro) Asp (Leu) Pro Tyr Asp Tyr Gly (Ala Leu) Glu  Met Lys His Ser (Leu Pro) Asp (Leu) Pro Tyr Asp Tyr Gly (Ala Leu) Glu
20 30  20 30
Pro His He Asn Ala Glu lie Met Glu Leu (His) His Ser Lys (His His) Ala Pro His He Asn Ala Glu lie Met Glu Leu (His) His Ser Lys (His His) Ala
40 50 Ala Tyr Val Asn Asn Leu (Asn) Val Tyr Glu Glu Lys Tyr Gin Glu Ala Leu  40 50 Ala Tyr Val Asn Asn Leu (Asn) Val Tyr Glu Glu Lys Tyr Gin Glu Ala Leu
60  60
Ala Lys Gly Asp Val Thr Ala Gin lie Ala Leu Gin Pro Ala Leu Lys Phe Asn 70 80  Ala Lys Gly Asp Val Thr Ala Gin lie Ala Leu Gin Pro Ala Leu Lys Phe Asn 70 80
Gly Gl Gly His lie Asn (His) Ser lie Phe (Trp) Thr Asn Leu Ser (Pro)  Gly Gl Gly His lie Asn (His) Ser lie Phe (Trp) Thr Asn Leu Ser (Pro)
90 100  90 100
Asn Gly Gly Gly Glu Pro Lys (Gly) Glu Leu Leu Glu Ala lie Lys Arg Asp . 110 Asn Gly Gly Gly Glu Pro Lys (Gly) Glu Leu Leu Glu Ala lie Lys Arg Asp. 110
Phe Gly Ser Phe Asp Lys Phe Lys Glu Lys Leu Thr Ala Ala Ser Val Gly Phe Gly Ser Phe Asp Lys Phe Lys Glu Lys Leu Thr Ala Ala Ser Val Gly
120 130 120 130
Val Gin (Gly Ser) Gly (Trp) Gly Trp Leu Gly Phe Asn Lys Gin Arg Gly Val Gin (Gly Ser) Gly (Trp) Gly Trp Leu Gly Phe Asn Lys Gin Arg Gly
140 150 140 150
His Leu Gin lie Ala Ala Cys Pro Asn Gin Asp (Pro) Leu Gin Gly Thr Thr His Leu Gin lie Ala Ala Cys Pro Asn Gin Asp (Pro) Leu Gin Gly Thr Thr
160  160
Gly Leu lie (Pro) Leu Leu Gly lie (Asp) Val (Trp) (Glu His) Ala (Tyr  Gly Leu lie (Pro) Leu Leu Gly lie (Asp) Val (Trp) (Glu His) Ala (Tyr
170 180 Tyr) Leu Gin Tyr Lys Asn Val Arg Pro Asp Tyr Leu Lys Ala lie Trp Asn  170 180 Tyr) Leu Gin Tyr Lys Asn Val Arg Pro Asp Tyr Leu Lys Ala lie Trp Asn
190 199  190 199
Val He Asn Trp Glu Asn Val Thr Glu Arg Tyr Met Ala Cys Lys Lys このヒト Mn— SODのアミノ酸配列において、 アミノ酸残基が欠失、 重複、 置換等により異なる配列に変異した組み換えヒト変異 Mn— SODを得ることが できる。 例えば、 N末端より 4番目のセリン残基をアルギニン残基 (ヒト由来原 料より精製した天然 Mn— SODにおいてはメチォニン残基が N末端に欠けてい るので 3番目) に変えることによって、 p iを 8. 1〜8. 4に上げること力 能である。 Val He Asn Trp Glu Asn Val Thr Glu Arg Tyr Met Ala Cys Lys Lys In this amino acid sequence of human Mn-SOD, a recombinant human mutant Mn-SOD in which amino acid residues are mutated to different sequences by deletion, duplication, substitution, etc. Obtainable. For example, by changing the fourth serine residue from the N-terminus to an arginine residue (the third in natural Mn-SOD purified from human-derived material because the methionine residue is missing at the N-terminus), pi is changed. 8. The ability to increase to 1 to 8.4.
更に詳細には、 例えば、 天然型 (野生株) のヒト Mn— SODのアミノ酸配列 の N末端から 3番目のアミノ酸残基であるセリン残基 (Ser) をアルギニン残基 (Arg) に置換したヒト変異 Mn— SODを大腸菌に組換えた場合には、 ヒト Mn — SODの N末端にはメチォニン残基 (Met ) 力 s付加されるので、 N末端部のァ ミノ酸配列を示すと次のとおりである。 つまり、  More specifically, for example, a human in which a serine residue (Ser), which is the third amino acid residue from the N-terminus of the amino acid sequence of a native (wild-type) human Mn-SOD, is substituted with an arginine residue (Arg) When the mutant Mn-SOD is recombined into Escherichia coli, a methionine residue (Met) is added to the N-terminus of human Mn-SOD. The amino acid sequence at the N-terminus is shown below. It is. That is,
N末端 - Met Lys his Ser Leu Pro Asp Leu—  N-terminal-Met Lys his Ser Leu Pro Asp Leu—
1  1
N末 ϋ而- Met Lys His Arg Leu Pro Asp Leu—  N-end Kyu-Met Lys His Arg Leu Pro Asp Leu—
この場合には、 組み換えヒ卜変異 Mn— SODにおいては N末端より 4番目の セリン残基 (Ser ) がアルギニン残基 (Arg ) に変異されることになる。 このセ リン残基は、 アルギニン残基の他に、 リジン、 ヒスチジン残基などの塩基性アミ ノ酸残基で置換されることもできる。  In this case, in the recombinant human mutant Mn-SOD, the fourth serine residue (Ser) from the N-terminus is mutated to an arginine residue (Arg). This serine residue can be replaced with a basic amino acid residue such as a lysine or histidine residue in addition to an arginine residue.
更に、 ヒト組換 Mn— SODのアミノ酸配列における N末端から 4香のセリン 残基を、 アルギニン残基または別のアミノ酸残基で置換すると共に、 同 N末端か ら 43番目のグルタミン酸残基をパリン、 ロイシン、 イソロイシン、 グリシン、 ァラニン残基などの中性アミノ酸残基またはリジン、 アルギニン、 ヒスチジン残 基などの塩基性ァミノ酸残基で置換されたアミノ酸配列をもつヒ卜変異 M n-S ODは、 酵素活性、 体内半減期、 過酸化水素に対する耐性については変化を及ば さないのに、 その等電点だけを約 P I 8. 5〜9. 4にも上昇させることを見い だした。 Furthermore, in the amino acid sequence of the human recombinant Mn-SOD, the four serine residues from the N-terminal were replaced with an arginine residue or another amino acid residue, and Has an amino acid sequence in which the glutamic acid residue at position 43 is replaced with a neutral amino acid residue such as palin, leucine, isoleucine, glycine, or alanine residue or a basic amino acid residue such as lysine, arginine, or histidine residue Although the human mutant MnS OD does not affect the enzyme activity, half-life in the body, or resistance to hydrogen peroxide, it only increases its isoelectric point to about PI 8.5-9.4. Was found.
更にまた、 ヒ卜糸且換 Mn— SODのアミノ酸酉己列における N末端から 43番目 のグルタミン酸残基だけをバリン、 ロイシン、 イソロイシン、 グリシン、 ァラニ ン残基などの中性アミノ酸残基またはリジン、 アルギニン、 ヒスチジン残基など の塩基性アミノ酸残基で置換されたアミノ酸配列をもつヒト変異 Mn— SODも、 前述した 2つの部位を変異させたァミノ酸配列をもつヒ卜変異 Mn— SODより も若干劣る程度に上昇した等電点を示すことが判明した。  Furthermore, only the glutamic acid residue at position 43 from the N-terminus in the amino acid sequence of the human and recombinant Mn-SOD is replaced with a neutral amino acid residue such as valine, leucine, isoleucine, glycine, or alanine residue or lysine. The human mutant Mn-SOD having an amino acid sequence substituted with a basic amino acid residue such as an arginine or histidine residue is also slightly different from the human mutant Mn-SOD having an amino acid sequence in which the above two sites are mutated. It was found to exhibit an inferiorly elevated isoelectric point.
なお、 上述したヒト Mn— SODのアミノ酸配列において、 上記保存アミノ酸 以外は大幅な構造の変化をもたらさない限り全て変異可能なアミノ酸である。 つ まり、 理論的には、 他のアミノ酸で置換されてもそのポリペプチドとしての酵素 活性を喪失しなレ、部位に存在するァミノ酸残基の全てまたは多くを、 よりプラス に荷電 (チャージ) されたアミノ酸残基、 または、 中性アミノ酸残基または塩基 性アミノ酸残基で置換することも可能である。 しカ しな力 Sら、 余りにも多くの部 位を別のアミノ酸残基で置換すれば、 場合によっては、 全く別の蛋白質に変ィヒす る可能性があり、 力かる蛋白質を医薬品として開発するには全くの新規物質とし て取り扱わなければならなくなり、 ヒト Mn— SODとして開発する利点が損な われてしまい現実味がなくなる。 また、 前述した数よりも多い部位のアミノ酸を 他のアミノ酸残基で置換することによってえられる新規ヒ卜 Mn— SODについ ても、 抗原抗体反応などの克服困難な拒絶反応等の問題力性じる可能性があるの で、 かかる Mn— SODを医薬品として開発するのは、 かなりの困難が予想され る。  In the above-described amino acid sequence of human Mn-SOD, all amino acids other than the conserved amino acids are mutable amino acids unless they cause a significant structural change. In other words, theoretically, even if it is substituted with another amino acid, the enzyme activity of the polypeptide is not lost, and all or many of the amino acid residues present at the site are more positively charged. It is also possible to substitute a substituted amino acid residue, or a neutral amino acid residue or a basic amino acid residue. For example, the substitution of too many positions with another amino acid residue may result in a completely different protein in some cases. In order to develop it, it must be treated as a completely new substance, and the advantages of developing it as human Mn-SOD are diminished and unrealistic. In addition, the novel human Mn-SOD obtained by substituting amino acids at sites greater than the above-mentioned number with other amino acid residues also has problems such as rejection reactions that are difficult to overcome such as antigen-antibody reactions. The development of such Mn-SOD as a medicinal product is expected to be quite difficult because of the potential for the development of Mn-SOD.
従って、 医薬品、 ィヒ粧品などの開発に当たって、 拒絶反応などの問題を考慮し た場合には、 本発明においては、 hMn— SODのペプチド配列における他のァ ミノ酸で置換される部位は、 1個ないし 4個力 s好ましい。  Therefore, in consideration of problems such as rejection in the development of pharmaceuticals, eh cosmetics, etc., in the present invention, the site to be replaced with another amino acid in the peptide sequence of hMn-SOD is 1 Pcs to 4 pcs preferred.
hMn— SODのペプチド配列において、 他のアミノ酸残基で置換されても酵 素活性が変わらない位置にあるアミノ酸残基を置換される他のァミノ酸残基とし ては、 例えば、 アルギニン残基の他に、 リジン、 ヒスチジン、 グルタミン、 ァス パラギンなどの塩基性アミノ酸残基、 または、 例えば、 パリン残基の他に、 ロイ シン、 イソロイシン、 ァラニン、 グリシンなどのアミノ酸残基を挙げることがで きる。 In the peptide sequence of hMn-SOD, an amino acid residue at a position where enzyme activity does not change even if it is substituted with another amino acid residue is replaced with another amino acid residue such as arginine residue. In addition to basic amino acid residues such as lysine, histidine, glutamine, and asparagine, or Examples include amino acid residues such as syn, isoleucine, alanine, and glycine.
また、 本発明において、 hMn— SODのペプチド配列において他のアミノ酸 で置換される部位に存在するァミノ酸残基を他のアミノ酸残基で置換することに よって達成される等電点は、 約 P I 7. 6以上、 好ましくは約 p I 8. 0以上、 更に好ましくは約 P 1 8. 1〜9. 4である。 このように等電点を上昇させるこ とにより、 ヒ卜 Mn— SODの組織浸透性を上昇させることができる。  In the present invention, the isoelectric point achieved by substituting an amino acid residue existing at a site substituted with another amino acid in the peptide sequence of hMn-SOD with another amino acid residue is about PI It is 7.6 or more, preferably about pI 8.0 or more, and more preferably about P18.1 to 9.4. By increasing the isoelectric point in this way, the tissue permeability of human Mn-SOD can be increased.
また、 本発明には、 上記ヒト変異 Mn— SODのアミノ酸配列を組換えたヒト 変異 Mn— SQD蛋白質および該ヒト変異 Mn— SODのアミノ酸配列をコード する遺伝子配列ならびにそれを形質転換された微生物をも包含される。  Further, the present invention provides a human mutant Mn-SQD protein obtained by recombining the amino acid sequence of the human mutant Mn-SOD, a gene sequence encoding the amino acid sequence of the human mutant Mn-SOD, and a microorganism transformed therewith. Are also included.
また、 本発明には、 例えばエリザベス ·デ一 ·ゲッツォフ等 (Elizabeth D.Getz off et al; Nature: 358, 23 July, NQ. 6384, 1992 ) によって CuZn— SOD について報告されるように、 活性中 、の酸性アミノ酸 (例えば、 グルタミン酸) 残 基をグルタミン等の塩基性ァミノ酸に変えることによって活性を数倍上昇させた後 、 例えば、 N末端からの所定の位置のアミノ酸残基をその他のアミノ酸残基で置換 することによって等電点を上昇させ、 これによつて 透過性を増進させたヒト変 異 Mn— SODおよび該ヒト変異 Mn- SODのアミノ酸配列をコードする遺伝子 配列ならびにそれを形質転換された微生物をも包含される。  Also, the present invention relates to a method for detecting the activity of CuZn-SOD, as reported by Elizabeth D. Getz off et al; Nature: 358, 23 July, NQ. 6384, 1992, for example. After increasing the activity several times by changing the acidic amino acid (for example, glutamic acid) residue to a basic amino acid such as glutamine, for example, the amino acid residue at a predetermined position from the N-terminal is replaced with another amino acid residue. The amino acid sequence of the human variant Mn-SOD and the amino acid sequence of the human variant Mn-SOD which have increased permeability by substitution with the Microorganisms.
本発明に係る組換ヒト変異 Mn— SODは、 例えば、 ヒト Mn— SOD遺伝子 配列における組換ァミノ酸残基のアミノ酸配列に該当するアミノ酸残基を指令す る遺伝子配列部分に変異を加えて置換されたアミノ酸残基を指令する遺伝子配列 を有するブライマ一を用いて PC R法による増幅を行なう方法によって製造する ことができる。 .  The recombinant human mutant Mn-SOD according to the present invention is, for example, substituted by adding a mutation to a gene sequence portion that directs an amino acid residue corresponding to the amino acid sequence of the recombinant amino acid residue in the human Mn-SOD gene sequence. It can be produced by a method of performing amplification by PCR using a primer having a gene sequence that directs the specified amino acid residue. .
つまり、 例えば、 ヒ卜 Mn-SOD遺伝子配列における N末端から 4番目のセ リン残基のアミノ酸配列に該当するアミノ酸残基を指令する遺伝子配列部分に変 異を加えて置換されたアルギニン残基またはその他のアミノ酸残基を指令する遺 伝子配列を有するプライマーを用いて、 および ·または同 N末端から 43番目の グルタミン酸残基のァミノ酸配列に該当するアミノ酸残基を指令する遺伝子配列 部分に変異を加えて置換されたバリン残基またはその他のアミノ酸残基を指令す .る遺伝子配列 ¾有するプライマ一を用いて、 P C R法による増殖することによつ て製造することができる。  That is, for example, an arginine residue or a arginine residue substituted by adding a mutation to a portion of the gene sequence that directs the amino acid residue corresponding to the amino acid sequence of the fourth serine residue from the N-terminal in the human Mn-SOD gene sequence Using a primer having a gene sequence that directs other amino acid residues, and / or mutating the gene sequence portion that directs the amino acid residue corresponding to the amino acid sequence of the glutamic acid residue at position 43 from the N-terminus Can be produced by multiplying by a PCR method using a primer having a gene sequence that directs a substituted valine residue or other amino acid residue.
従って、 本発明に用いることのできるブライマ一のうち、 Mn— SODの N末 端側のプライマ一としては次のものが挙げられる。 Therefore, among the primers that can be used in the present invention, N-terminal of Mn-SOD The following are examples of the primer on the end side.
HMS-5 : 5' AT CTG GGC GAA TTC ATG AAG CAC CGC CTC CCC GA 3' または  HMS-5: 5 'AT CTG GGC GAA TTC ATG AAG CAC CGC CTC CCC GA 3' or
HMS-7 : 5' C ATG AAG CAC CGC CTC CCC GAC CTG CCC T 3'  HMS-7: 5 'C ATG AAG CAC CGC CTC CCC GAC CTG CCC T 3'
また、 Mn— S 0 Dの C末端側プライマ一としては次のものが挙げられる。Further, examples of the primer at the C-terminal side of Mn—S0D include the following.
HMS-6 : 3' GCTAGC AATACGACGT CTACMTTC 5' HMS-6: 3 'GCTAGC AATACGACGT CTACMTTC 5'
また、 上記ヒト Mn— S 0 Dの N末端べプチド配列の一部を指令する遺伝子配 列を有する N末端側プライマ一のうち、 Met Lys His Ser Leu Pro Asp Leu …配 列のセリン残基を指令する遺伝子配列としては、 他の塩基性アミノ酸配列を指令 する遺伝子配列に変えるような N末端側ブラィマーの変異配列の全て力 S包含され る。 - なお、 例えば、 天然型 N末端側から 1番目ないし 7番目の Mn— SODのぺプ チド配列の一部分は次のとおりである。  Also, among the N-terminal primers having a gene sequence that directs a part of the N-terminal peptide sequence of the human Mn—S0D, the serine residue of the Met Lys His Ser Leu Pro Asp Leu… sequence The gene sequence to be instructed includes all of the mutant sequences of the N-terminal bimer which change other basic amino acid sequences into gene sequences to be instructed. -For example, a part of the peptide sequence of the first to seventh Mn-SOD from the N-terminal side of the natural type is as follows.
—Lys His Ser Leu Pro Asp Leu ···  —Lys His Ser Leu Pro Asp Leu
上記に対応する天然型 N末端側 Mn— S 0 Dぺプチド配列を指令する遺伝子配 列は次のとおりである。  The corresponding gene sequence that directs the native N-terminal Mn—S 0 D peptide sequence is as follows.
—AAG CAC AGC CTC CCC GAC …  —AAG CAC AGC CTC CCC GAC…
上記の天然型末端側 Mn— S 0 Dのべプチド部分配列に対応する、 N末端側変 異 Mn— S 0 Dのべプチド配列部分の 1つの例は下記のとおりである。  One example of the N-terminal variant Mn-S0D peptide sequence portion corresponding to the above-mentioned native terminal Mn-S0D peptide partial sequence is as follows.
— Lys His Arg Leu Pro Asp Leu ···  — Lys His Arg Leu Pro Asp Leu ···
上記に対応する N末端側変異 M n-SODぺプチド配列を指令する遺伝子配列は 次のとおりである。 The gene sequence that directs the N-terminal mutant M n-SOD peptide sequence corresponding to the above is as follows.
部分遺伝子配列 1 —AAG CAC CGC CTC CCC GAC … . Partial gene sequence 1 —AAG CAC CGC CTC CCC GAC….
部分遺伝子配列 2 AAG CAC AGG CTC CCC GAC … Partial gene sequence 2 AAG CAC AGG CTC CCC GAC…
部分遺伝子配列 3 AAG CAC AGA CTC CCC GAC … Partial gene sequence 3 AAG CAC AGA CTC CCC GAC…
上記の天然型末端側 Mn— S 0 Dのべプチド部分配列に対応する、 N末端側変 異 Mn— S 0 Dのべプチド配列部分の別の例は下記のとおりである。  Another example of the N-terminal side Mn-S0D peptide sequence corresponding to the above-mentioned native terminal Mn-S0D peptide partial sequence is as follows.
— Lys His Asn Leu Pro Asp Leu …  — Lys His Asn Leu Pro Asp Leu…
上記に対応する N末端側変異 Mn— S 0 Dペプチド配列を指令する遺伝子配列は 次のとおりである。 The corresponding N-terminal mutant Mn-S0D peptide sequence-directed gene sequence is as follows.
部分遺伝子配列 4 : 〜MG CAC AAC CTC CCC GAC ··· Partial gene sequence 4: ~ MG CAC AAC CTC CCC GAC
部分遺伝子配列 5 : 〜MG CAC AAT CTC CCC GAC … Partial gene sequence 5: ~ MG CAC AAT CTC CCC GAC…
上記の天然型末端側 Mn— S 0 Dのべプチド部分配列に対応する、 N末端側変 異 M n— S 0 Dのべプチド配列部分の更に別の例は下記のとおりである。 N-terminal modification corresponding to the above-mentioned native terminal Mn—S 0 D peptide partial sequence Still another example of the peptide sequence portion of the different Mn—S0D is as follows.
— Lys His Lys Leu Pro Asp Leu ···  — Lys His Lys Leu Pro Asp Leu ···
上記に対応する N末端側変異 Mn— S 0 Dぺプチド配列を指令す'る遺伝子配列は次 のとおりである。 The gene sequences that direct the N-terminal mutant Mn—S 0 D peptide sequence corresponding to the above are as follows.
部分遺伝子配列 6 : 〜MG CAC AAA CTC CCC GAC … Partial gene sequence 6: ~ MG CAC AAA CTC CCC GAC…
部分遺伝子配列 7 : -AAG CAC AAG CTC CCC GAC … Partial gene sequence 7: -AAG CAC AAG CTC CCC GAC…
上記の天然型末端側 Mn— S 0 Dのべプチド部分配列に対応する、 N末端側変 異 Mn— S 0 Dのべプチド配列部分の更に別の例は下記のとおりである。  Further examples of the peptide sequence portion of the N-terminal mutant Mn-S0D corresponding to the above-mentioned native terminal Mn-S0D peptide partial sequence are as follows.
—Lys His Gin Leu Pro Asp Leu ···  —Lys His Gin Leu Pro Asp Leu
上記に対応する N末端側変異 M n-SODぺプチド配列を指令する遺伝子配列は 次のとおりである。 The gene sequence that directs the N-terminal mutant M n-SOD peptide sequence corresponding to the above is as follows.
部分遺伝子配列 8: 〜MG CAC CM CTC CCC GAC … Partial gene sequence 8: ~ MG CAC CM CTC CCC GAC…
部分遺伝子配列 9 : —AAG CAC CAG CTC CCC GAC ··· Partial gene sequence 9: —AAG CAC CAG CTC CCC GAC
また、 例えば、 天然型 N末端側から 41番目ないし 43番目の Mn— SODの ベプチド配列の一部分は次のとおりである。  Also, for example, a part of the peptide sequence of the Mn-SOD at positions 41 to 43 from the N-terminal side of the natural type is as follows.
— Arg Glu lie "·  — Arg Glu lie "·
上記に対応する天然型 N末端側 Mn— S 0 Dぺプチド配列を指令する遺伝子配 列は次のとおりである。  The corresponding gene sequence that directs the native N-terminal Mn—S 0 D peptide sequence is as follows.
-CGC GAG ATA …  -CGC GAG ATA…
上記の天然型末端側 M n-SO Dのべプチド部分配列に対応する、 N末端側変 異 Mn— S 0 Dのべプチド配列部分の 1つの例は下記のとおりである。  One example of the peptide sequence portion of the N-terminal mutant Mn—S0D corresponding to the above-mentioned peptide sequence of the native terminal Mn-SOD is as follows.
—Arg Val lie ···  —Arg Val lie ···
上記に対応する N末端側変異 M n-SODぺプチド配列を指令する遺伝子配列は 次のとおりである。 The gene sequence that directs the N-terminal mutant M n-SOD peptide sequence corresponding to the above is as follows.
部分遺伝子配列 10 : "'CGC GTG ATA … Partial gene sequence 10: "'CGC GTG ATA…
その他、 各種変異アミノ酸とそれをコードする各種コドンを含む遺伝子の配列 を挙げることができる。 従って、 本発明には、 例えば、 前述したような置換アミノ酸残基のアミノ酸配列 に対応する遺伝子配列を含むブライマ一も包含されるのは当然である。 さらには上 記ブラィマーを用いて作成された組み換えヒト変異 M n-SO D遺伝子 D N A配 歹 IJ、 それによつて作成された c D N Aおよび該 c D N Aを形質転換された大腸菌な どの微生物も包含される。 In addition, sequences of genes containing various mutated amino acids and various codons encoding the same can be mentioned. Therefore, the present invention naturally includes, for example, a primer containing a gene sequence corresponding to the amino acid sequence of the substituted amino acid residue as described above. Furthermore, a recombinant human mutant Mn-SOD gene DNA sequence IJ prepared using the above-mentioned Bramer, a cDNA prepared thereby, and a microorganism such as Escherichia coli transformed with the cDNA are also included. .
さらに、 前記形質転換微生物を培養後、 DEAEセファロース (フアルマシ ァ) 、 CMセファロ一スなどを用いてカラムクロマトグラフィーなどを行なって活 性画分を集め、 集めた活性画分より常法に従ってェンドトキシン等のパイロゲンを 除去することによつて等電点を高めたヒト変異 M n-SODを製造することができ る。  After culturing the transformed microorganism, the active fractions are collected by column chromatography using DEAE Sepharose (Pharmacia), CM Sepharose, or the like, and endotoxin is collected from the collected active fractions according to a conventional method. By removing such pyrogens, a human mutant Mn-SOD having an increased isoelectric point can be produced.
本発明の組み換えヒト変異 Mn - SODには各種の安定化剤、 賦形剤、 例えば、 アルブミン、 ラクトアルブミン、 ポリ^チレングリコール、 アミノ酸、 単糖類、 2 単糖類、 3単糖類等を添加することができる。 例えば、 上記の 2糖類の一層好まし い例として卜レハロース (a— [D—グルコピラノシル] a— D—グルコビラノー ス) の 0. 02〜1Μ濃度を含む溶液が挙げられる。  Various stabilizers and excipients such as albumin, lactalbumin, poly ^ ethylene glycol, amino acids, monosaccharides, disaccharides, trisaccharides, etc. may be added to the recombinant human mutant Mn-SOD of the present invention. Can be. For example, a more preferred example of the above-mentioned disaccharide is a solution containing 0.02 to 1% concentration of trehalose (a- [D-glucopyranosyl] a-D-glucoviranose).
本発明に係るヒト変異 Mn— S 0 Dの製剤例としては、 例えば、 組み換えヒト Mn— SODの N末端より 4番目のセリン残基をアルギニンに置換した組み換えヒ ト変異 M n-SODを下記処方のような注射用溶液に配合したものなどが挙げられ る。 つまり、  Formulation examples of the human mutant Mn-SOD according to the present invention include, for example, a recombinant human mutant Mn-SOD in which the serine residue at the fourth position from the N-terminus of recombinant human Mn-SOD is substituted with arginine. And the like formulated in an injection solution such as That is,
MHS : SOD 10 Omg  MHS: SOD 10 Omg
トレハロース 0. 23M (最終濃度) グルタミン酸ナトリウム 10mM  Trehalose 0.23M (final concentration) Sodium glutamate 10mM
希釈水酸化ナトリウム PH7. 2〜7. 4に調整後、 蒸留水 (パイロゼンフリー) を加えて全量を 1 Omlにする。  After adjusting the pH of the diluted sodium hydroxide to pH 7.2 to 7.4, add distilled water (pyrozen free) to make the total volume 1 Oml.
この溶液をバイアルに分注して保存する。  This solution is dispensed into vials and stored.
本発明の組み換えヒト変異 Mn— SODの投与量は、 例えば、 0. 01mg〜 1 g/ kg/ 曰、 好ましくは 0. 1 mg〜5 Omg/ kg/ 日であり、 点滴、 静注 、 筋注、 皮下注、 坐剤ないしは点鼻薬としてまたは関節腔へも投与することができ る。 なお、 投与料や投与方法などは、 疾患の種類や程度、 患者の状態などにより、 適宜変えることができる。  The dose of the recombinant human mutant Mn-SOD of the present invention is, for example, 0.01 mg to 1 g / kg / day, preferably 0.1 mg to 5 Omg / kg / day, and is used for infusion, intravenous injection, or intramuscular injection. It can also be administered subcutaneously, as a suppository or nasal drop, or into the joint cavity. The administration fee and administration method can be appropriately changed depending on the type and degree of the disease, the condition of the patient, and the like.
なお、 本発明に係る組み換えヒト変異 Mn— SODの毒性は極めて少なく、 例え ば、 組み換えヒト Mn— SODの N末端より 4番目のセリン残基をアルギニンに変 えた組み換えヒ卜変異 Mn— SODは SD雄ラッ卜への 5 Omg/ k gの尾静脈か らのボーラス投与によつて何等の毒性も観察されなかつた。 The toxicity of the recombinant human mutant Mn-SOD according to the present invention is extremely low. For example, the recombinant human mutant Mn-SOD in which the fourth serine residue from the N-terminal of the recombinant human Mn-SOD is changed to arginine is SD. 5 Omg / kg tail vein to male rat No toxicity was observed with these bolus doses.
こうして得られた本発明に係るヒト Mn— S 0 Dのアミノ酸酉己列の N末端より 4 番目がアルギニン残基に変異した組み換えヒト変異 Mn— SODは、 これまで効果 が明確でなかった関節炎のラッ卜モデル等に対して有意の抗炎症作用を発揮した。 図面の簡単な説明  The thus obtained recombinant human mutant Mn-SOD in which the fourth amino acid from the N-terminus of the amino acid sequence of human Mn-S0D according to the present invention is mutated to an arginine residue has the effect of arthritis whose effect was not clear until now. A significant anti-inflammatory effect was exhibited on rat models and the like. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 発現ベクターを示す図である。 大腸菌宿主において Pt a cプロモー ターの下流に組み換えヒ 卜変異 Mn— SOD ( = MHS : Mn— SOD) 遺伝子 を結合した。  FIG. 1 is a diagram showing an expression vector. In an E. coli host, a recombinant human mutant Mn-SOD (= MHS: Mn-SOD) gene was linked downstream of the Ptac promoter.
図中において、 (a) は P t ac— hMnSODへの組み込みを示し、 (b) は Pt ac* — hMnSODへの組み込みを示す。  In the figure, (a) shows incorporation into Ptac-hMnSOD, and (b) shows incorporation into Ptac * -hMnSOD.
図 2は、 MHS2 : Mn— SODのラット 中における体内持続性を示すグラ フである。 グラフにおいて、 〇印は MHS : ΐνΐη— SODを、 秦印は組み換えヒ ト Mn-SODを示し、 口印は CuZn— SODを示す。  Figure 2 is a graph showing the persistence of MHS2: Mn-SOD in rats. In the graph, 〇 indicates MHS: ΐνΐη-SOD, Hata indicates recombinant human Mn-SOD, and mouth indicates CuZn-SOD.
図 3は、 MHS 2 : Mn— SODの等電点電気泳動 (アンフォライ ト、 pH Figure 3 shows the isoelectric focusing of MHS2: Mn-SOD (ampholyte, pH
3〜9、 ファーマシア社製) を示すグラフである。 グラフにおいて、 (a) は組 み換えヒト Mn— SOD、 (b) は MHS 2 : Mn— SOD、 (c) は蛋白質ス タンダ—ドを示す。 3-9, manufactured by Pharmacia Co., Ltd.). In the graph, (a) shows the recombinant human Mn-SOD, (b) shows MHS2: Mn-SOD, and (c) shows the protein standard.
図 4は、 MHS: Mn— SODのアジュバント関節炎に対する抗炎症作用 (ラ ッ卜) を示すグラフである。 グラフにおいて、 〇印は MHS: Mn— SOD、 參印は組み換えヒト Mn— SODを示す。  FIG. 4 is a graph showing the anti-inflammatory effect (rat) of MHS: Mn—SOD on adjuvant arthritis. In the graph, 〇 indicates MHS: Mn—SOD, and reference indicates recombinant human Mn—SOD.
図 5は、 MHS : Mn— S0Dの冠動脈再開通後の不整脈出現頻度とその持続時 間に対する作用を示すグラフである。 グラフにおいて、 (a) は組み換えヒト Mn -SOD, (b) は MHS : Mn— SODを示す。 FIG. 5 is a graph showing the effects of MHS : Mn—S0D on the frequency of occurrence of arrhythmias after coronary artery recanalization and their duration. In the graph, (a) shows recombinant human Mn-SOD, and (b) shows MHS: Mn-SOD.
図 6は、 心臓虚血再漼流モデルでの心筋保護作用を示すグラフである。 グラフに おいて、 (a) はコントロール、 (b) は組み換えヒト Mn— SOD、 (c) は M HS : Mn— SODを示す。 発明を実施するための最良の形態  FIG. 6 is a graph showing the myocardial protective action in a cardiac ischemia reperfusion model. In the graph, (a) shows control, (b) shows recombinant human Mn-SOD, and (c) shows MHS: Mn-SOD. BEST MODE FOR CARRYING OUT THE INVENTION
実施例 Example
以下に本発明を実施例により詳細に説明する力 本発明は下記実施例によって何 等制限されるものではない。  EXAMPLES Hereinafter, the present invention will be described in detail with reference to Examples. The present invention is not limited to the following Examples.
遺伝子操作についての実験は、 基本的にはサンブロック等 (Sambrook et al, Cold Spring Harbor Lab. , 1989)の 「モレキュラークロ一ニング、 ァ ラボラト リ一マニュアル」 ( ["Molecular Cloning, A Laboratory Manual J ) に従って行 なった。 蛋白化学、 精製その他の手法についてはパッカー編 [ (Lester P acker, e d) Me tho d i n Enzymo l o gy Vo l. 105、 1984 Ac ademi c P r e s s ] を參考にした。 Experiments on genetic engineering are basically performed by Sunbrook et al. (Sambrook et al, Cold Spring Harbor Lab., 1989) "Molecular Cloning, A Laboratory Manual J." For protein chemistry, purification and other methods, see Packer Edition [( Lester P acker, ed) Methodin Enzymo logy Vo l. 105, 1984 Ac ademic Press].
実施例 1—1 : c DNAの作成 Example 1-1: Preparation of cDNA
常法に従つてヒト培養細胞より抽出した mRNAあるレ、は公知の phMnS0D4c DNAを铸型として用い、 次に N末端から 4番目のアミノ酸残基セリンをアルギニ ン残基に変異させた配列を有する N末端側ブライマ一として HMS— 5プライマ一 (配列表 1) を化学合成し、 これに C末端プライマー HMS— 6 (配列表 2) を化 学合成し、 HMS— 5および HMS— 6の両プライマーを用いて遺伝子増幅法によ りヒト変異 Mn— SOD遺伝子を増幅させた。  The mRNA extracted from human cultured cells according to a conventional method has a sequence in which a known phMnS0D4c DNA is used as type II, and then the fourth amino acid residue serine from the N-terminal is mutated to an arginine residue. HMS-5 primer (Sequence Table 1) was chemically synthesized as an N-terminal primer, and C-terminal primer HMS-6 (Sequence Table 2) was chemically synthesized, and both HMS-5 and HMS-6 primers were synthesized. Was used to amplify the human mutant Mn-SOD gene by the gene amplification method.
HMS-5  HMS-5
EcoRI  EcoRI
5ΆΤ CTG GGC GAA TTC ATG AAG CAC CGC CTC CCC GA 3' 5ΆΤ CTG GGC GAA TTC ATG AAG CAC CGC CTC CCC GA 3 '
HMS— 6  HMS— 6
3'GCTAGC AATACGACGT CTACAATTC 5' 3'GCTAGC AATACGACGT CTACAATTC 5 '
Pstl  Pstl
続いて、 得られたヒ卜変異 SOD遺伝子を制限酵素 P st Iおよび EcoR Iに よって消化し、 制限酵素 P s t Iおよび EcoR Iによって消化された発現べクタ ― (A) に前記ヒト変異 SOD遺伝子を連結した。 発現ベクター (A) は蛋白質の 過剰発現用に用いられ、 強力な t a cプロモーターをもち、 適当な宿主中 (JM1 05) で 1 acリブレッサ一によって調節され、 培地へのイソプロピル一 |3— D— チォガラクトシド (I PTG) の添加によって誘導される (図 1一 A) 。  Subsequently, the obtained human mutated SOD gene was digested with the restriction enzymes PstI and EcoRI, and the expression vector digested with the restriction enzymes PstI and EcoRI was added to the human mutated SOD gene. Was linked. The expression vector (A) is used for overexpression of the protein, has a strong tac promoter, is regulated by a 1 ac ribosser in a suitable host (JM105), and It is induced by the addition of galactoside (IPTG) (Fig. 11-A).
実施例 1—2 : Example 1-2:
常法に従ってヒ卜培養細胞より抽出した mRNAあるいは公知の phMnS0D4c DNAを鐯型として用い、 次に N末端から 4番目のアミノ酸残基セリンをアルギニ ン残基に変異させた配列を有する N末端側プライマーとして HMS— 7プライマー を化学合成し、 これに C末端プライマ一 HMS— 6を化学合成し、 HMS— 7およ び HMS— 6の両プライマ一を用いて遺伝子増幅法によりヒト変異 S0D遺伝子を 増幅させた。  Using an mRNA extracted from human cultured cells or a known phMnS0D4c DNA according to a conventional method as type III, and then an N-terminal primer having a sequence in which the fourth amino acid residue serine from the N-terminal is mutated to an arginine residue HMS-7 primer was chemically synthesized, and the C-terminal primer HMS-6 was chemically synthesized therewith. Using both HMS-7 and HMS-6 primers, the human mutant S0D gene was amplified by the gene amplification method I let it.
HMS-7  HMS-7
5'C ATG AAG CAC CGC CTC CCC GA 3' HMS- 6 5'C ATG AAG CAC CGC CTC CCC GA 3 ' HMS-6
3' GCTAGC AATACGACGT CTACMTTC 5' 3 'GCTAGC AATACGACGT CTACMTTC 5'
Pst I  Pst I
続いて得られたヒト Mn— SOD遺伝子をムングビーンヌクレア一ゼ (mung- bean nuclease ) および制限酵素 P s t Iによって消化し、 制限酵素 N c o Iお よびムングビーンヌクレア一ゼによつて消化後 P s t Iで処理した発現べクタ一 に前記ヒ 卜変異 SOD遺伝子を連結した (図 1一 B) 。  Subsequently, the obtained human Mn-SOD gene was digested with mung-bean nuclease and restriction enzyme PstI, and digested with restriction enzymes NcoI and Mungbean nuclease. Thereafter, the human mutant SOD gene was ligated to an expression vector treated with PstI (FIG. 11B).
実施例 2 :プロモーターおよびベクターの選択 Example 2: Selection of promoter and vector
大腸菌用プロモータ一として Pa cやその改良型 Pt a c*の下流にヒト変異 M n— SOD遺伝子を含む cDN Aを連結することによって目的の発現プラスミドを 作成した。 Mn— SOD遺伝子の両端にはそれぞれ EcoR Iか Nco Iおよび P st Iサイトを設置しプロモーターと連結した。 こうして得られたヒト変異 Mn— The desired expression plasmid was prepared by ligating cDNA containing the human mutant Mn-SOD gene downstream of Pac and its improved Pt ac * as a promoter for E. coli. EcoR I or Nco I and Pst I sites were placed at both ends of the Mn-SOD gene, respectively, and connected to the promoter. The resulting human mutant Mn—
S 0 D遺伝子を含む発現プラスミドを宿主大腸菌に導入しアンピシリン耐性菌とし て形質転換体を選抜した (図 1) 。 An expression plasmid containing the S0D gene was introduced into host Escherichia coli, and transformants were selected as ampicillin-resistant bacteria (FIG. 1).
実施例 3:培養および分離精製 Example 3: Culture and separation and purification
ヒト変異 Mn— S 0 D遺伝子を含む発現プラスミドで形質転換された大腸菌菌株 Escherichia coli strain transformed with an expression plasmid containing the human mutant Mn-S0D gene
E. c o 1 i JM 105をアンピシリン 4 OmgZlおよび塩化マンガン 15mM を含む培地中で 37°C15時間撹拌培養した。 培養後プレンダ一にて細胞を破砕し 低速遠心によって上清をえた。 E.co1iJM105 was cultured with stirring at 37 ° C. for 15 hours in a medium containing ampicillin 4 OmgZl and manganese chloride 15 mM. After the culture, the cells were crushed in a blender and the supernatant was obtained by low-speed centrifugation.
こうして得た上清を DE A Eセファロ一スに負荷してリン酸緩衝液を用いてクロ マ卜グラフィ一を行なう。 続いて活性画分を C Mセファロ一スを行なつて高濃度リ ン酸緩衝液により溶出し活性画分を集める。 集めた活性画分より常法に従ってェン ド卜キシン等のパイロゲンを除去した。  The supernatant thus obtained is loaded on a DEAE sepharose and chromatographed using a phosphate buffer. Subsequently, the active fraction is subjected to CM Sepharose and eluted with a high-concentration phosphate buffer to collect the active fraction. Pyrogens such as endotoxin were removed from the collected active fractions according to a conventional method.
得られた精製組み換えヒト変異 Mn— SODをマツコード等 (McCord, J. ., Friedovich, I., J. Biol. Chem. , 244, 6049〜6055, 1969 ) の方法に従って測定した ところ、 約 4900単位 Zmg蛋白質の活性を示した。 一方対照に用いた組み換え ヒ卜 Mn— S 0 Dは約 4800単位/ m gの活性を示し、 両者間に違いは見られな かった。  When the obtained purified recombinant human mutant Mn-SOD was measured according to the method of pine code or the like (McCord, J., Friedovich, I., J. Biol. Chem., 244, 6049-6055, 1969), about 4900 units were obtained. It showed the activity of Zmg protein. On the other hand, the recombinant human Mn-S0D used as a control exhibited an activity of about 4800 units / mg, and no difference was observed between the two.
こうして本実施例によって得られた変異 Mn— SODは MHS: Mn— SODと 略称した。  Thus, the mutant Mn-SOD obtained in this example was abbreviated as MHS: Mn-SOD.
この MHS : MnS0Dのアミノ酸配列と遺伝子配列は次のとおりである。 EcoRI 10 20 30 40 50The amino acid sequence and gene sequence of MHS : MnS0D are as follows. EcoRI 10 20 30 40 50
GAA TTC ATG AAG CAC CGC CTC CCC GAC CTG CCC TAC GAC TAC GGC GCC CTG GAA TTC ATG AAG CAC CGC CTC CCC GAC CTG CCC TAC GAC TAC GGC GCC CTG
Met Lys His Arg Leu Pro Asp Leu Pro Tyr Asp Tyr Gly Ala Leu 60 70 80 90 100 Met Lys His Arg Leu Pro Asp Leu Pro Tyr Asp Tyr Gly Ala Leu 60 70 80 90 100
5 GAA CCT CAC ATC AAC GCG CAG ATC ATG CAG CTG CAC CAC AGC AAG CAC CAC GCG Glu Pro His lie Asn Ala Gin lie Met Gin Leu His His Ser Lys His His Ala5 GAA CCT CAC ATC AAC GCG CAG ATC ATG CAG CTG CAC CAC AGC AAG CAC CAC GCG Glu Pro His lie Asn Ala Gin lie Met Gin Leu His His Ser Lys His His Ala
110 120 130 140 150 110 120 130 140 150
GCC TAC GTG AAC AAC CTG AAC GTC ACC GAG GAG AAG TAC CAG GAG GCG GCC  GCC TAC GTG AAC AAC CTG AAC GTC ACC GAG GAG AAG TAC CAG GAG GCG GCC
Ala Tyr Val Asn Asn Leu Asn Val Thr Glu Glu Lys Tyr Gin Glu Ala Leu Ala O 160 170 180 190 200 210 Ala Tyr Val Asn Asn Leu Asn Val Thr Glu Glu Lys Tyr Gin Glu Ala Leu Ala O 160 170 180 190 200 210
AAG GGA GAT ACA GCC CAG ATA GCT CTT CAG CCT GCA CTG AAG TTC AAT GGTAAG GGA GAT ACA GCC CAG ATA GCT CTT CAG CCT GCA CTG AAG TTC AAT GGT
s Gly Asp Val Thr Ala Gin lie Al? Leu Gin Pro Ala Leu Lys Phe Asn Gly s Gly Asp Val Thr Ala Gin lie Al? Leu Gin Pro Ala Leu Lys Phe Asn Gly
220 230 240 250 260 220 230 240 250 260
GGT GGT CAT ATC AAT CAT AGC ΚΠ TTC TGG ACA AAC CTC AGC CCT AAC GGT GGT  GGT GGT CAT ATC AAT CAT AGC ΚΠ TTC TGG ACA AAC CTC AGC CCT AAC GGT GGT
5 Gly Gly His lie Asn His Ser lie Phe Trp Thr Asn Leu Ser Pro Asn Gly Gly 270 280 290 300 310 3205 Gly Gly His lie Asn His Ser lie Phe Trp Thr Asn Leu Ser Pro Asn Gly Gly 270 280 290 300 310 310 320
GGA GAA CCC AAA GGG GAG HG CTG GAA GCC ATC AAA CGT GAC ΊΤΓ GGT TCC ΉΤ GGA GAA CCC AAA GGG GAG HG CTG GAA GCC ATC AAA CGT GAC ΊΤΓ GGT TCC ΉΤ
Gly Glu Pro Lys Gly Glu Leu Leu Glu Ala lie Lys Arg Asp Phe Gly Ser Phe  Gly Glu Pro Lys Gly Glu Leu Leu Glu Ala lie Lys Arg Asp Phe Gly Ser Phe
330 340 350 360 370 O GAC AAG ΉΤ AAG GAG AAG CTG ACG GCT GCA TCT GU GGT GTC C GGC TCA GGT  330 340 350 360 370 O GAC AAG ΉΤ AAG GAG AAG CTG ACG GCT GCA TCT GU GGT GTC C GGC TCA GGT
Asp Lys Phe Lys Glu Lys Leu Thr Ala Ala Ser Val Gly Val Gin Gly Ser Gly Asp Lys Phe Lys Glu Lys Leu Thr Ala Ala Ser Val Gly Val Gin Gly Ser Gly
380 390 400 410 420380 390 400 410 420
TGG GGT TGG ΖΉ GGT TTC AAT AAG GAA CGG GCA CAC ΉΑ CM ΚΠ GCT GCT TGT TGG GGT TGG ΖΉ GGT TTC AAT AAG GAA CGG GCA CAC ΉΑ CM ΚΠ GCT GCT TGT
Trp Gly Trp Leu Gly Phe Asn Lys Glu Arg Gly His Leu Gin lie Ala Ala Cys 5 430 440 450 460 470 480 Trp Gly Trp Leu Gly Phe Asn Lys Glu Arg Gly His Leu Gin lie Ala Ala Cys 5 430 440 450 460 470 470 480
CCA AAT CAG GAT CCA CTG C GGA ACA ACA GGC CTT ΚΠ CCA CTG CTG GGG ΚΠ CCA AAT CAG GAT CCA CTG C GGA ACA ACA GGC CTT ΚΠ CCA CTG CTG GGG ΚΠ
Pro Asn Gin Asp Pro Leu Gin Gly Thr Thr Gly Leu lie Pro Leu Leu Gly lie  Pro Asn Gin Asp Pro Leu Gin Gly Thr Thr Gly Leu lie Pro Leu Leu Gly lie
490 500 510 520 530  490 500 510 520 530
GAT GTG TGG GAG CAC GCT TAC TAC CTT CAG TAT AAA AAT GTC AGG CCT GAT TAT O Asp Val Trp Glu His Ala Tyr Tyr Leu Gin Tyr Lys Asn Val Arg Pro Asp Tyr GAT GTG TGG GAG CAC GCT TAC TAC CTT CAG TAT AAA AAT GTC AGG CCT GAT TAT O Asp Val Trp Glu His Ala Tyr Tyr Leu Gin Tyr Lys Asn Val Arg Pro Asp Tyr
540 550 560 570 580 590540 550 560 570 580 590
CTA AAA GCT ΚΉ TGG AAT GTA ATC AAC TGG GAG AAT GTA ACT GAA AGA TAC ATG CTA AAA GCT ΚΉ TGG AAT GTA ATC AAC TGG GAG AAT GTA ACT GAA AGA TAC ATG
Leu Lys Ala lie Tr Asn Val lie Asn Trp Glu Asn Val Thr Glu Arg Tyr Met 600 610 620 Pstl Leu Lys Ala lie Tr Asn Val lie Asn Trp Glu Asn Val Thr Glu Arg Tyr Met 600 610 620 Pstl
GCT TGC AAA AAG TM ACC ACG ATC GTT ATG CTG CAG  GCT TGC AAA AAGTM ACC ACG ATC GTT ATG CTG CAG
Ala Cys Lys Lys End 実施例 4 :精製 M HS : Mn-SODの酵素学的性質 Ala Cys Lys Lys End Example 4: Purified MHS: Enzymatic properties of Mn-SOD
S D Sポリアクリルアミドゲル電気泳動により分子量約 20000の単一バンド を示した。 天然型および MHS : Mn— SODを各 10 wg含むスラブ型ポリアク リルアミドゲルを含有する P I 3. 0〜9. ◦の等電点電気泳動を行なった結果、 天然型 Mn— SODは p i約 7. 2を示した。 一方、 MH S: Mn— S 0 Dは p I 約 8. 2を示し明らかに天然、型の Mn— SODと異なっていた (図 2) 。  SDS polyacrylamide gel electrophoresis showed a single band with a molecular weight of about 20000. Native and MHS: Isoelectric focusing of PI 3.0 to 9. ◦ containing a slab-type polyacrylamide gel containing 10 wg each of Mn-SOD showed that natural Mn-SOD had a pi of about 7.2. showed that. On the other hand, MH S: Mn—SOD showed a pI of about 8.2, which was clearly different from the native Mn—SOD (FIG. 2).
各種濃度の過酸化水素およびシアンの存在下での MHS: Mn - SODの安定性 を検討したところ、 CuZn— SODの失活する過酸化水素濃度で MHS : Mn— S 0 Dは失活せず、 シアン耐性も Mn— SODと変らなかった。  Investigation of the stability of MHS: Mn-SOD in the presence of various concentrations of hydrogen peroxide and cyanide showed that MHS: Mn-S0D was not deactivated at the concentration of hydrogen peroxide at which CuZn-SOD was deactivated. Cyan resistance was not different from Mn-SOD.
得られた本発明の MHS : Mn— SODのアミノ酸配列を上記に示したが、 N末 端より 4番目のセリンがアルギニンに変異したヒト変異 Mn— SODであることが N末端分析により確認された。  The amino acid sequence of the obtained MHS: Mn-SOD of the present invention is shown above, and it was confirmed by N-terminal analysis that the serine at the fourth position from the N-terminal was a human mutant Mn-SOD in which arginine was mutated. .
実施例 5 :他のヒト変異 Mn— SOD遺伝子におけるセリン残基の置換 Example 5: Substitution of serine residue in other human mutant Mn-SOD gene
N末端より 59番目のイソロイシン残基がスレオニン残基に置換しこれによつて 酵素活性が約 50%に落ちた組み換え変異 M n-SO Dの N末端一 Met Lys His Ser Leu Pro Asp Leu …配列部分のセリン残基 (Ser ) を実施例 1〜4の方法に従 つてアルギニン残基 (Arg ) に変えた組み換えヒ卜変異 Mn— SODの場合におい ては、 酵素活性は天然型に比較して約 50%のままで等電点のみが p i約 7. 0か ら P l 8. 1〜8. 3と上昇したのカ'確認された。 これによつて糸應浸透性も上昇 したこと力 s確認できた。  The isoleucine residue at position 59 from the N-terminus is replaced by a threonine residue, which reduces the enzymatic activity to about 50%. The N-terminal Met Lys His Ser Leu Pro Asp Leu ... sequence In the case of the recombinant human mutant Mn-SOD in which the serine residue (Ser) of the moiety was changed to an arginine residue (Arg) according to the method of Examples 1-4, the enzyme activity was higher than that of the native form. It was confirmed that the isoelectric point increased from about 7.0 pi to Pl 8.1 to 8.3 with about 50%. As a result, it was confirmed that the thread permeability increased.
実施例 6 : MHS : Mn-S 0 Dの体内持続性 Example 6: Persistence of MHS: Mn-S0D in the body
ラット尾静脈より CuZn— SOD、 Mn— SODおよび MHS : Mn-SOD の各 10m g/ Kgを投与後頸動脈より経時的に採血し持続性を測定した結果、 そ れぞれ半減期 6分、 74分および 82分を示した (図 3) 。 After administration of CuZn-SOD, Mn-SOD and MHS: Mn-SOD: 10 mg / Kg each from the rat tail vein, blood was collected over time from the carotid artery and the persistence was measured. It showed 74 minutes and 82 minutes (Figure 3).
実施例 7 :アジュバント関節炎に対する MHS: Mn— SODの治療効果 Example 7: Therapeutic effect of MHS: Mn—SOD on adjuvant arthritis
レービス(Lewis) 雄ラット (6〜7週齢) 体重 250〜300 gのものを用い る。 エーテル麻酔後尾部皮下にッベルクリン針を甩いて 0. 1mlの結ネ鐘 (5m gZm 1流動パラフィン) 液を投与する。  Lewis male rats (6-7 weeks old) Use rats weighing 250-300 g. After ether anesthesia, a 0.1 ml tuber (5 mg gZm 1 liquid paraffin) solution is administered by using a tuberculin needle under the tail subcutaneously.
MHS : Mn— SODの 1000単位 ラットを後足関節に 3日目より投与を開 始し、 2日に 1回の割合で週 3回投与を行なった。 MHS投与群で 5週目より有意 に抑制効果が見られた (図 4) 。 MHS: Mn—1000 units of SOD Rats were administered to the hind foot joint from day 3 The administration was started once every two days and three times a week. In the MHS administration group, a significant inhibitory effect was seen from week 5 (Fig. 4).
実施例 8:再開通不整脈への MHS: Mn - SODの治療効果 Example 8: Therapeutic effect of MHS: Mn-SOD on reperfusion arrhythmia
SDラット雄 (300〜350 g) の心臓を摘出しランゲンドルフ法にて港流を 行なった。 虚血 5分前に Mn— SODまたは MHS: Mn— SODの 100単位/ mlを投与後、 30分間虚血を実施し、 再漼流後不整脈の出現頻度とその持続時間 を測定した。  The heart of a male SD rat (300-350 g) was excised and subjected to port flow by the Langendorff method. After administration of 100 units / ml of Mn-SOD or MHS: Mn-SOD 5 minutes before ischemia, ischemia was performed for 30 minutes, and the occurrence frequency and duration of arrhythmia after reperfusion were measured.
その結果、 図 5に示したように M n— S〇 Dに比べて有意の頻度低下作用と持続 時間短縮効果が見られた。  As a result, as shown in FIG. 5, a significant frequency-reducing effect and a duration-reducing effect were observed as compared with Mn-S〇D.
実施例 9:血しょうクレアチニンキナーゼの放出抑制作用 Example 9: Plasma creatinine kinase release inhibitory action
フィンケ等は冠動脈血栓溶解時にゥロキナーゼとともに M n— S 0 Dを併用する ことによりクレアチニンキナーゼの放出が防御されることを観察している [フィン ケ等 (Fincke, U. Arzne im Forcsch 38 N r . 1 : 138- 142, 1988)]。 本発明の実施例 1〜4で作成した組み換えヒ卜変異 Mn— SODの 10m gZk gと高分子ゥロキナーゼ 3m gZk gをフィンケ等の ィヌ心臓虚血再漼流モデルでの実験系にて虚血後に併用し検討し 6時間後採血して 血しょうクレアチュンキナーゼの測定を行なったところ大幅な血しようクレアチニ ンキナーゼの放出抑制作用がみられ心筋の保護作用力 s観察された (図 6) 。  Finke et al. Have observed that the use of Mn-S0D together with perokinase during coronary thrombolysis protects the release of creatinine kinase [Fincke, U. Arzne im Forcsch 38 Nr. 1: 138-142, 1988)]. 10 mgZkg of the recombinant human mutant Mn-SOD and 3 mgZkg of the high-molecular-weight protein kinase prepared in Examples 1-4 of the present invention were subjected to ischemia in an experimental system using a canine heart ischemia reperfusion model such as Finke. After 6 hours, blood was collected and plasma creatine kinase was measured. As a result, a significant inhibitory effect on plasma creatinine kinase release was observed, and a protective effect on the myocardium was observed (Fig. 6).
実施例 10: MHS: Mn-SODに対する安定剤の効果 Example 10: MHS: Effect of stabilizer on Mn-SOD
MHS: Mn— SODは組み換えヒ卜 M n— S 0 Dと同様に高純度に精製された 状態で不安定であり凍結融解、 また長期保存等により活性が低下することがある。 そこで MHS: Mn— SODの 5mg/m 1溶液 (0. 06Mリン酸緩衝液 pH 6. 8) にトレハロース 0. 2Mあるいはマルト一ス 12 OmgZm 1を添加して 凍結乾燥後 55°C3週間保存し活性の低下を検討した。 その結果、 糖無添加群では 約 70%に活性が低下したが糖添加群では活性の低下が見られなかった。  MHS: Mn-SOD, like recombinant human Mn-S0D, is unstable when purified to a high degree of purity and its activity may be reduced by freeze-thawing or long-term storage. Therefore, 0.2M trehalose or 12OmgZm1 maltose was added to a 5mg / m1 solution (0.06M phosphate buffer, pH 6.8) of MHS: Mn-SOD, freeze-dried and stored at 55 ° C for 3 weeks. The decrease in activity was examined. As a result, the activity was reduced to about 70% in the group without added sugar, but was not decreased in the group added with sugar.
実施例 11 : MHS2: MnSOD調整における cDNAの作成 Example 11: MHS2: cDNA preparation for MnSOD adjustment
実施例 1—1に示した方法に従ってヒト変異 Mn— SOD遺伝子を増幅させ、 発 現ベクターに前記ヒ卜変異 SOD遺伝子を連結した。  The human mutant Mn-SOD gene was amplified according to the method described in Example 1-1, and the human mutant SOD gene was ligated to an expression vector.
続いて、 ヒ卜培養細胞より抽出した mRNAあるいは公知の phMnS0D4 c DNAを鐯型として用い、 次に N末端から 4番目のアミノ酸残基セリンをアルギニ ン残基に変異させた配列を有する N末端側プライマ一として HMS— 7プライマー を化学合成し、 これに C末端プライマー HMS— 6をィヒ学合成し、 HMS— 7およ び H MS— 6の両プライマ一を用いて遺伝子増幅法によりヒ卜変異 S0D遺伝子を 増幅させた。 続いて図 8の遺伝子コードにおいて 134番目の塩基アデニンがチミ ンとなるように塩基置換したプライマ一をもちいて N末端より 43番目のグルタミ ン酸残基をバリン残基に置換した。 Subsequently, mRNA extracted from human cultured cells or known phMnS0D4 cDNA was used as type III, and then the N-terminal side having a sequence in which the fourth amino acid residue serine from the N-terminal was mutated to an arginine residue. The HMS-7 primer was chemically synthesized as a primer, the C-terminal primer HMS-6 was chemically synthesized with the primer, and the HMS-7 and HMS-6 primers were used for gene amplification by the gene amplification method. Mutant S0D gene Amplified. Subsequently, the glutamic acid residue at position 43 from the N-terminus was replaced with a valine residue using a primer in which the base at position 134 in the gene code of FIG. 8 was replaced with thymine.
続いて、 得られたヒト Mn— SOD遺伝子をムングビーンヌクレア一ゼ (mung- bean nuclease ) および制限酵素 P s t Iによって消化し、 制限酵素 N c o Iおよ びムングビーンヌクレアーゼによつて消化後 P s t Iで処理した発現べクタ一に前 記ヒト変異 S 0 D遺伝子を連結した。  Subsequently, the obtained human Mn-SOD gene was digested with mung-bean nuclease and restriction enzyme PstI, and then digested with restriction enzymes NcoI and Mungbean nuclease. The above-mentioned human mutant S0D gene was ligated to the expression vector treated with PstI.
実施例 12 : MHS 2 : Mn— SODのプロモータ一およびべクタ一の選択 大腸菌用プロモ一夕一として Pt a cやその改良型 Pt a c*の下流にヒ卜変異 Mn— SOD遺伝子を含む cDN Aを連結することによって目的の発現プラスミド を作成した。 Mn— SOD遺伝子の両端にはそれぞれ Ec o R Iか Nc o Iおよび Ps t Iサイトを設置しプロモーターと連結した。 こうして得られたヒト変異 Mn — SOD遺伝子を含む発現プラスミドを宿主大腸菌に導入しアンピシリン耐性菌と して形質転換体を選抜した。 Example 12: Selection of promoter and vector of MHS2: Mn-SOD cDNA containing human mutant Mn-SOD gene downstream of Pt ac or its improved Pt ac * was used as a promoter for E. coli. The desired expression plasmid was prepared by ligation. EcoRI or NcoI and PstI sites were placed at both ends of the Mn-SOD gene, respectively, and connected to the promoter. The expression plasmid containing the human mutant Mn-SOD gene thus obtained was introduced into host Escherichia coli, and transformants were selected as ampicillin-resistant bacteria.
実施例 13 : MHS 2 : Mn— SO Dの培養および分離精製 Example 13: Culture and separation and purification of MHS2: Mn-SOD
MHS 2 : Mn-SO Dの遺伝子を含む発現プラスミドで形質転換された大腸菌 菌株 E. co 1 i JM105を実施例 3の方法に従って培養した後、 得られた MHS2 : Mn— SODを常法により分離精製した。  Escherichia coli strain E.co1iJM105 transformed with an expression plasmid containing the MHS2: Mn-SOD gene was cultured according to the method of Example 3, and the obtained MHS2: Mn-SOD was isolated by a conventional method. Purified.
得られた精製 MHS2 : Mn— SODをマッコ一ド等 (McCord, M., Friedo- vich, I., J. Biol. Chem. , 244, 6049〜6055, 1969) の方法に従って測定したと ころ、 約 4950単位/ mgの蛋白質の活性を示した。 一方、 対照に用いた組み換 ぇヒト Mn— S 0 Dは約 4830単位 Zm gの活性を示し、 両者間に違いは見られ なかった。 適当量の卜レハロース等を添加して凍結乾燥し保存した。  The resulting purified MHS2: Mn-SOD was measured according to the method of McCord, M., Friedovich, I., J. Biol. Chem., 244, 6049-6055, 1969. It showed an activity of about 4950 units / mg protein. On the other hand, the recombinant ぇ human Mn—S0D used as a control exhibited an activity of about 4830 units Zmg, and no difference was observed between the two. An appropriate amount of trehalose was added, lyophilized and stored.
こうして本実施例によって得られた変異 Mn— SODは MHS 2 : Mn— SOD と略称した。  Thus, the mutant Mn-SOD obtained in this example was abbreviated as MHS2: Mn-SOD.
この MHS2 : MnSODのァミノ酸配列と遺伝子配列は次のとおりである。 EcoRI 10 20 30 40 50 The amino acid sequence and gene sequence of MHS2: MnSOD are as follows. EcoRI 10 20 30 40 50
GAA TTC ATG AAG CAC CGC CTC CCC GAC CTG CCC TAC GAC TAC GGC GCC CTG GAA GAA TTC ATG AAG CAC CGC CTC CCC GAC CTG CCC TAC GAC TAC GGC GCC CTG GAA
Met Lys His Arg Leu Pro Asp Leu Pro Tyr Asp Tyr Gly Ala Leu Glu 60 70 80 90 100  Met Lys His Arg Leu Pro Asp Leu Pro Tyr Asp Tyr Gly Ala Leu Glu 60 70 80 90 100
CCT CAC ATC AAC GCG CAG ATC ATG CAG CTG CAC CAC AGC AAG CAC CAC GCG GCC  CCT CAC ATC AAC GCG CAG ATC ATG CAG CTG CAC CAC AGC AAG CAC CAC GCG GCC
Pro His lie Asn Ala Gin lie Met Gin Leu His His Ser Lys His His Ala Ala 110 120 130 140 150 160Pro His lie Asn Ala Gin lie Met Gin Leu His His Ser Lys His His Ala Ala 110 120 130 140 150 160
TAC GTG AAC AAC CTG AAC GTC ACC GTG GAG AAG TAC CAG GAG GCG TTG GCC AAG TAC GTG AAC AAC CTG AAC GTC ACC GTG GAG AAG TAC CAG GAG GCG TTG GCC AAG
Tyr Val Asn Asn Leu Asn Val Thr Val Glu Lys Tyr Gin Glu Ala Leu Ala Lys Tyr Val Asn Asn Leu Asn Val Thr Val Glu Lys Tyr Gin Glu Ala Leu Ala Lys
170 180 190 200 210 GGA GAT GH ACA GCC CAG ATA GCT CH CAG CCT GCA CTG AAG TTC AAT GGT GGT  170 180 190 200 210 GGA GAT GH ACA GCC CAG ATA GCT CH CAG CCT GCA CTG AAG TTC AAT GGT GGT
Gly Asp Val Thr Ala Gin lie Ala Leu Gin Pro Ala Leu Lys Phe Asn Gly Gly 220 230 240 250 260 270Gly Asp Val Thr Ala Gin lie Ala Leu Gin Pro Ala Leu Lys Phe Asn Gly Gly 220 230 240 250 260 270
GGT CAT ATC AAT CAT AGC ΑΠ TTC TGG ACA AAC CTC AGC CCT AAC GGT GGT GGA GGT CAT ATC AAT CAT AGC ΑΠ TTC TGG ACA AAC CTC AGC CCT AAC GGT GGT GGA
Gly His lie Asn His Ser lie Phe Trp Thr Asn Leu Ser Pro Asn Gly Gly Gly Gly His lie Asn His Ser lie Phe Trp Thr Asn Leu Ser Pro Asn Gly Gly Gly
280 290 300 310 320 280 290 300 310 320
GAA CCC AAA GGG GAG HG CTG GAA GCC ATC AAA CGT GAC TIT GGT TCC ΉΤ GAC GAA CCC AAA GGG GAG HG CTG GAA GCC ATC AAA CGT GAC TIT GGT TCC ΉΤ GAC
Glu Pro Lys Gly Glu Leu Leu Glu Al^ lie Lys Arg Asp Phe Gly Ser Phe AspGlu Pro Lys Gly Glu Leu Leu Glu Al ^ lie Lys Arg Asp Phe Gly Ser Phe Asp
330 340 350 360 370 330 340 350 360 370
AAG ΊΤΓ AAG GAG AAG CTG ACG GCT GCA TCT GH GGT GTC CAA GGC TCA GGT TGG  AAG ΊΤΓ AAG GAG AAG CTG ACG GCT GCA TCT GH GGT GTC CAA GGC TCA GGT TGG
Lys Phe Lys Glu Lys Leu Thr Ala Ala Ser Val Gly Val Gin Gly Ser Gly Trp 380 390 400 410 420 430Lys Phe Lys Glu Lys Leu Thr Ala Ala Ser Val Gly Val Gin Gly Ser Gly Trp 380 390 400 410 420 430
GGT TGG CTT GGT TTC AAT AAG GAA CGG GCA CAC ΠΑ CAA Απ GCT GCT TGT CCA Gly Trp Leu Gly Phe Asn Lys Glu Arg Gly His Leu Gin lie Ala Ala Cys Pro 440 450 460 470 480 GGT TGG CTT GGT TTC AAT AAG GAA CGG GCA CAC ΠΑ CAA Απ GCT GCT TGT CCA Gly Trp Leu Gly Phe Asn Lys Glu Arg Gly His Leu Gin lie Ala Ala Cys Pro 440 450 460 470 480
AAT CAG GAT CCA CTG CAA GGA ACA ACA GGC Ή ΚΠ CCA CTG CTG GGG ΑΉ GAT AAT CAG GAT CCA CTG CAA GGA ACA ACA GGC Ή ΚΠ CCA CTG CTG GGG ΑΉ GAT
Asn Gin Asp Pro Leu Gin Gly Thr Thr Gly Leu lie Pro Leu Leu Gly He Asp 490 500 510 520 530 540Asn Gin Asp Pro Leu Gin Gly Thr Thr Gly Leu lie Pro Leu Leu Gly He Asp 490 500 510 520 530 530 540
GTG TGG GAG CAC GCT TAC TAC CTT CAG TAT AAA AAT GTC AGG CCT GAT TAT CTA GTG TGG GAG CAC GCT TAC TAC CTT CAG TAT AAA AAT GTC AGG CCT GAT TAT CTA
Val Trp Glu His Ala Tyr Tyr Leu Gin Tyr Lys Asn Val Arg Pro Asp Tyr Leu Val Trp Glu His Ala Tyr Tyr Leu Gin Tyr Lys Asn Val Arg Pro Asp Tyr Leu
550 560 570 580 590 550 560 570 580 590
AAA GCT ATT TGG AAT GTA ATC AAC TGG GAG AAT GTA ACT GAA AGA TAC ATG GCT AAA GCT ATT TGG AAT GTA ATC AAC TGG GAG AAT GTA ACT GAA AGA TAC ATG GCT
Lys Ala lie Tr Asn Val lie Asn Trp Glu Asn Val Thr Glu Arg Tyr Met AlaLys Ala lie Tr Asn Val lie Asn Trp Glu Asn Val Thr Glu Arg Tyr Met Ala
600 610 620 Pstl 600 610 620 Pstl
丁 GC AAA AAG TAA ACC ACG ATC Gn ATG CTG CAG Ding GC AAA AAG TAA ACC ACG ATC Gn ATG CTG CAG
Cys Lys Lys End Cys Lys Lys End
実施例 1 4 :精製 M H S 2 : M n - S 0 Dの酵素学的性質 Example 14: Enzymatic Properties of Purified MHS2: Mn-SOD
S D Sポリアクリルアミドゲル電気泳動により分子量約 2 0 0 0 0の単一バンド を示した。 天然型および M H S : M n— S O Dを各 1 O g含むスラブ型ポリアク リルァミドゲルを含有する P I 3. 0〜 9 · 0の等電点電気泳動を行なつた結果、 天然型 Mn-SODは p I約 7. 2を示した。 一方、 MH S : Mn— S 0 Dは p I 約 8. 5〜9. 4を示し、 明らかに天然型の Mn— SODの異なっていた。 SDS polyacrylamide gel electrophoresis showed a single band with a molecular weight of about 20000. Natural type and MHS: Slab type polyac containing Mn—SOD of 1 Og each Isoelectric focusing of PI 3.0-9.0 • containing rilamide gel showed that the native Mn-SOD had a pI of about 7.2. On the other hand, MH S : Mn-SOD showed a pI of about 8.5 to 9.4, which was clearly different from that of native Mn-SOD.
各種濃度の過酸化水素およびシアンの存在下での MHS 2: Mn— SODの安定 性を検討したところ、 CuZn— SODの失活する過酸化水素濃度で MHS2: M n-SODは失活せず、 シァン耐性も M n -SODと変らなかつた。  The stability of MHS2: Mn-SOD in the presence of various concentrations of hydrogen peroxide and cyanide was examined. MHS2: Mn-SOD was not deactivated at the concentration of hydrogen peroxide at which CuZn-SOD was deactivated. However, Xan resistance was no different from M n -SOD.
得られた本発明の MHS2 : Mn— SODのアミノ酸配列を上記に示したが、 N 末端より 4番目のセリンがアルギニンに変異したヒト変異 Mn— SODであり 42 番目がバリンであること力 s遺伝子構造解析により確認された。 実施例 15: MHS 2 : Mn - SODの体内持続性  The amino acid sequence of the obtained MHS2: Mn—SOD of the present invention is shown above, but the human s gene in which the fourth serine from the N-terminus is mutated to arginine is Mn—SOD and the 42nd is valine Confirmed by structural analysis. Example 15: Biopersistence of MHS2: Mn-SOD
ラッ卜尾静脈より CuZn— S0D、 Mn— SODおよび MHS2: Mn— S〇 Dの各 10 m gノ K gを投与後頸動脈より経時的に探血し持続性を測定した結果、 それぞれ半減期 6分、 76分および 88分を示した。  After administration of CuZn—S0D, Mn—SOD, and MHS2: Mn—S〇D (10 mg / kg) from the rat tail vein, blood was sampled from the carotid artery over time and the persistence was measured. Minutes, 76 minutes and 88 minutes.
実施例 16: MHS 2: Mn-SODに対する安定剤の効果 Example 16: Effect of stabilizer on MHS 2: Mn-SOD
MHS 2 : Mn— SODは組み換えヒ卜 M n— S 0 Dと同様に高純度に精製され た状態で不安定であり凍結融解、 また長期保存等により活性が失われる。  MHS 2: Mn-SOD, like recombinant human Mn-S0D, is unstable when purified to a high degree of purity and loses its activity due to freezing and thawing and long-term storage.
そこで、 MHS 2: Mn— SODの 5mg/ml溶液 (0. 06Mリン酸緩衝液 pH6. 8) にトレハロース 0. 2Mあるいはマルト一ス 12 OmgZm 1を添カロ して凍結乾燥後 55 3週間保存し活性の低下を検討した。 その結果、 糖無添加群 では約 70%に活性力 s低下したのに対して、 糖添加群では活性の低下力 s見られなか つた。 産業上の利用可能性  Therefore, after adding trehalose 0.2M or maltose 12 OmgZm1 to a 5mg / ml solution of MHS2: Mn-SOD (0.06M phosphate buffer pH6.8), freeze-dry and store for 55 weeks. The decrease in activity was examined. As a result, the activity s was reduced to about 70% in the group without added sugar, whereas the activity s was not reduced in the group added with sugar. Industrial applicability
本発明により、 等電点が有意に上昇した Mn— S 0 Dを得ることができこれによ つて、 組織浸透性を上げ各種の炎症性疾患、 癌、 未熟児網膜症、 高血圧症、 糖尿病 等に対してより強力な薬理効果を発揮すると共に、 ィヒ粧品としても使用することが できる新規な M n-SODを提供できる。  According to the present invention, it is possible to obtain Mn—S0D having a significantly increased isoelectric point, thereby increasing tissue permeability and various inflammatory diseases, cancer, retinopathy of prematurity, hypertension, diabetes, etc. A novel Mn-SOD which can exert a more powerful pharmacological effect on the skin and can be used as a cosmetic for cosmetics can be provided.

Claims

請求の範囲 The scope of the claims
1 . ヒトマンガンスーパーォキシドジスムターゼのペプチド配列において、 他の アミノ酸に置換しても酵素活性に影響を与えない部位に存在するアミノ酸残基を、 よりプラスに荷電されたァミノ酸残基で置換することにより等電点を上昇させたこ とを特徴とするヒト変異マンガンスーパ一ォキシドジスムターゼ。 1. In the peptide sequence of human manganese superoxide dismutase, the amino acid residue existing at the site that does not affect the enzyme activity even if it is replaced with another amino acid is replaced with a more positively charged amino acid residue. A human mutant manganese superoxide dismutase characterized by having an increased isoelectric point.
2 . ヒトマンガンスーパ一ォキシドジスムターゼのペプチド酉己列において、 他の ァミノ酸に置換しても酵素活性に影響を与えない部位に存在するァミノ酸を中性ァ ミノ酸残基または塩基性アミノ酸残基で置換して等電点を上昇させたことを特徴と するヒト変異マンガンスーパ一ォキシドジスムタ一ゼ。  2. In the peptide sequence of human manganese superoxide dismutase, a neutral amino acid residue or a basic amino acid is substituted for an amino acid present at a site that does not affect enzyme activity even if it is substituted with another amino acid. A human mutant manganese superoxide dismutase characterized by increasing the isoelectric point by substitution with a residue.
3 . ·請求の範囲 1項または 2項に記載のヒト変異マンガンスーパ一ォキシドジス ムタ一ゼにおいて、 他のアミノ酸で置換された部位力5複数個存在することを特徴と する。 3. The human mutant manganese superoxide dismutase according to claim 1 or 2, characterized in that there are five or more site forces substituted with other amino acids.
4 . 請求の範囲 3項記載のヒト変異マンガンス一パーォキシドジスムタ一ゼにお いて、 他のアミノ酸で置換された部位が 1ないし 4個存在することを特徵とする。 4. The human mutant manganese peroxide dismutase according to claim 3 is characterized in that there are 1 to 4 sites substituted with another amino acid.
5 . 請求の範囲 1項または 2項に記載のヒト変異マンガンスーパ一ォキシドジス ムターゼにおいて、 他のアミノ酸で置換された部位が N末端から 3番目および/ ま たは 4 2番目であることを特徴とする。 5. The human manganese superoxide dismutase according to claim 1 or 2, wherein the site substituted with another amino acid is the third and / or the second from the N-terminal. I do.
6 . 請求の範囲 1項ないし 5項のいずれかに記載のヒト変異マンガンスーパ一才 キシドジスム夕ーゼにおいて、 等電点が p i力約 7. 6以上であることを特徴とす る。  6. The human mutant manganese superoxide xydismumase according to any one of claims 1 to 5, characterized in that its isoelectric point is a pi force of about 7.6 or more.
7 . 請求の範囲 6項に記載のヒト変異マンガンスーパ一ォキシドジスムターゼに おいて、 等電点が p Iが 8 . 1以上であることを特徴とする。  7. The human mutant manganese superoxide dismutase according to claim 6, wherein the isoelectric point is pI of 8.1 or more.
8. ヒトマンガンスーパ一ォキシドジスムタ一ゼのペプチド配列において、 他の ァミノ酸に置換しても酵素活性に影響を与えない部位に存在するァミノ酸残基を、 よりプラスに荷電されたアミノ酸残基で置換することにより等電点を上昇させたヒ ト変異マンガンスーパーォキシドジスムターゼのぺプチド酉己歹 ljをコードすることを 特徵とするヒ卜変異マンガンス一パーォキシドジスムターゼをコ一ドする遺伝子配 列。  8. In the peptide sequence of human manganese superoxide dismutase, amino acid residues at sites that do not affect enzyme activity even when substituted with other amino acids are replaced with more positively charged amino acid residues. A gene sequence encoding a human mutant manganese peroxide dismutase characterized by encoding a human mutant manganese superoxide dismutase peptide whose isoelectric point has been increased by substitution. Column.
9 . ヒ卜マンガンスーパ一ォキシドジスムタ一ゼのペプチド配列において、 他のァ ミノ酸に置換しても酵素活性に影響を与えない部位に存在するアミノ酸を中性アミ ノ酸残基または塩基性ァミノ酸残基で置換して等電点を上昇させたヒト変異マンガ ンスーパ一ォキシドジスム夕一ゼのぺプチド配列をコードすることを特徴とするヒ ト変異マンガンスーパ一才キシドジスムターゼをコ一ドする遺伝子配列。 9. In the peptide sequence of human manganese superoxide dismutase, amino acids present at sites that do not affect enzyme activity even when substituted with other amino acids are replaced with neutral amino acid residues or basic amino acids. A human mutant manganese superoxide dismutase encoding a peptide sequence having an increased isoelectric point by substitution with a residue. A gene sequence encoding a mutated manganese super one year old xydodimutase.
1 0 . 請求の疏囲 8項または 9項に記載のヒト変異マンガンスーパー才キシドジ スムターゼをコ一ドする遗伝子配列において、 他のアミノ酸で置換された部位を含 む部分遺 子配列を含むことを特徴とするヒト変異マンガンスーパ一才キシドジス 10. The gene sequence encoding the human mutant manganese superoxide dismutase according to claim 8 or 9, which includes a partial gene sequence including a site substituted with another amino acid. Characterized by the fact that a human mutant manganese super one-year-old xydosis
5 ムターゼのブライマー。 5 Mutase Primer.
1 1 . 謂求の範 項、 9項または 1 0項に Γΰ の遗伝子配列を含むことを特徴 とする発現プラスミ ド。  11. An expression plasmid characterized by containing the gene sequence of 範 in the so-called sought term, section 9 or section 10.
1 2 , 請求の範囲 1 1項に記載の発現ブラスミドを^むことを特徴とする宿主細 胞。  12. A host cell comprising the expression plasmid according to claim 11.
0 1 3 . 求の範囲 8項または 9項に記載のヒト変異マンガンスーパ一ォキシドジ スムタ一ゼの遺仨子配列をふくむ発現ブラスミドを含む宿主細胞を培養することを 特徴とするヒ卜変異マンガンス一バーオキシドジスムターゼの製造方法。 0 13. A human mutant manganese mutant comprising culturing a host cell containing an expression plasmid containing the gene sequence of the human mutant manganese superoxide dismutase according to item 8 or 9. A method for producing baroxide dismutase.
1 4 . ^求の範囲 1 0項に記載のヒ卜変異マンガンスーパ一才キシドジスムタ一 ゼのプライマーを用いてヒト変異マンガンスーパ一才キシドジスムクーゼの. it伝子 5 を増幅することを特徴とするヒト変異マンガンスーパーォキシドジスムクーゼの製 造方法。  14.Amplification of .it gene 5 of human mutant manganese super-lactose xidodismutase using the primer of the human mutant manganese super-lactate xidodismutase described in section 10. A method for producing a human mutant manganese superoxide dismutse, which is described as follows.
1 5 . 請求の範囲 1項ないし 7項のいずれかの 1項に記載のヒ卜変異マンガンス —バ一ォキシドジスム夕一ゼを活性成分として含有する医薬品用または化粧品闲組 成物。  15. A pharmaceutical or cosmetic composition comprising as an active ingredient the human mutant manganese-baxoxide dismutase according to any one of claims 1 to 7.
0 1 6 . ¾求の 15囲 1 5項に ¾載のヒト変異マンガンスーパ一才キシドジスムタ一 ゼを含む医薬品 ¾組成物をヒ卜 [¾!節炎に適闬すること。 0 16. The pharmaceutical composition containing the human mutant manganese super-one-year-old xydismutase described in paragraph 15, paragraph 15 of the request should be applied to human [IV!
】 7 . ^求の範囲 1 5項に'記毂のヒト変異マンガンスーパ一才キシドジスムター ゼを'さむ医荬品用組成物を^いて活性酸素に起因する疾病への予防および治療に用 いることを特徴とするヒ卜変異マンガンスーパ一ォキシドジスム夕一ゼの闲途。 o  7. Scope of claim 15 A medical composition containing the human mutant manganese super-one year old xydismutase described in section 15 above shall be used for the prevention and treatment of diseases caused by active oxygen. The purpose of the human mutant manganese superoxide disposition, which is characterized by the following. o
0 0
PCT/JP1993/001917 1992-12-28 1993-12-28 Human variant manganese superoxide dismutase WO1994014950A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU57170/94A AU5717094A (en) 1992-12-28 1993-12-28 Human variant manganese superoxide dismutase

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP35995992 1992-12-28
JP4/359959 1992-12-28

Publications (1)

Publication Number Publication Date
WO1994014950A1 true WO1994014950A1 (en) 1994-07-07

Family

ID=18467176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/001917 WO1994014950A1 (en) 1992-12-28 1993-12-28 Human variant manganese superoxide dismutase

Country Status (2)

Country Link
AU (1) AU5717094A (en)
WO (1) WO1994014950A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999006059A3 (en) * 1997-07-30 1999-08-05 Univ Texas Methods and compositions relating to no-mediated cytotoxicity
US6171856B1 (en) 1997-07-30 2001-01-09 Board Of Regents, The University Of Texas System Methods and compositions relating to no-mediated cytotoxicity
WO2002030453A1 (en) * 2000-10-12 2002-04-18 Beth Israel Deaconess Medical Center, Inc. Methods of inhibiting angiogenesis using nadph oxidase inhibitors
US8569374B2 (en) 2004-09-16 2013-10-29 The Trustees Of The University Of Pennsylvania NADPH oxidase inhibition pharmacotherapies for obstructive sleep apnea syndrome and its associated morbidities

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6427470A (en) * 1987-03-27 1989-01-30 Bio Technology General Corp Human manganese superoxide dismutase dna, its development, recovery of human maganese superoxide dismutase, human manganese superoxide dismutase analogue or human manganese superoxide dismutase mutant, use and composition thereof and treatment method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6427470A (en) * 1987-03-27 1989-01-30 Bio Technology General Corp Human manganese superoxide dismutase dna, its development, recovery of human maganese superoxide dismutase, human manganese superoxide dismutase analogue or human manganese superoxide dismutase mutant, use and composition thereof and treatment method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J MOL CELL CARDIOL, Vol. 23, (1991), BASSAM A OMAR et al., "Intrestitial Equilibration of Superoxide Dismutase Correlates with its Protective Effect in the Isolated Rabbit Heart", p. 149-159. *
JAPAN BIOCHEMISTRY SOCIETY, "Protein I-Separation.Purification.Quality-", 26 February 1990, TOKYO KAGAKU DOJIN, p. 336-338. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999006059A3 (en) * 1997-07-30 1999-08-05 Univ Texas Methods and compositions relating to no-mediated cytotoxicity
US6171856B1 (en) 1997-07-30 2001-01-09 Board Of Regents, The University Of Texas System Methods and compositions relating to no-mediated cytotoxicity
WO2002030453A1 (en) * 2000-10-12 2002-04-18 Beth Israel Deaconess Medical Center, Inc. Methods of inhibiting angiogenesis using nadph oxidase inhibitors
US8569374B2 (en) 2004-09-16 2013-10-29 The Trustees Of The University Of Pennsylvania NADPH oxidase inhibition pharmacotherapies for obstructive sleep apnea syndrome and its associated morbidities

Also Published As

Publication number Publication date
AU5717094A (en) 1994-07-19

Similar Documents

Publication Publication Date Title
KR100219970B1 (en) Recombinant obese (ob) proteins
JP3013896B2 (en) Pharmaceutical composition comprising human manganese superoxide dismutase
CN104711243B (en) Elastin laminin zymoprotein of recombination and its preparation method and application
JP2609449B2 (en) Human manganese superoxide dismutase DNA (c), its expression in bacteria and enzymatic activity Human manganese superoxide dismutase recovery method
AU2010203446B2 (en) Prevention and/or treatment of multiple organ dysfunction syndrome with interleukin-22
US5683894A (en) Recombinant nerve growth factor
WO1994014950A1 (en) Human variant manganese superoxide dismutase
US7414035B2 (en) hKIS composition and methods of use
JP3598322B2 (en) Human mutant manganese superoxide dismutase
AU2609799A (en) Method for treating acute intermittent porphyria (aip) and other porphyric diseases
JPH09504423A (en) Modified maxadilan protein, preparation and use thereof, and DNA encoding the protein
WO2000011165A1 (en) ROLE OF HUMAN KIS (hKIS) AS AN INHIBITORY KINASE OF THE CYCLIN-DEPENDENT KINASE INHIBITOR P27. COMPOSITIONS, METHODS AND USES THEREOF TO CONTROL CELL PROLIFERATION
EP0425821B1 (en) The use of human ADF (=Adult T-cell leukemia-derived factor) for producing a medicament
CA2505478A1 (en) Antioxidant pharmaceutical compound, method for producing polypeptide and method of cure
JPS63273473A (en) Heat stable human cu/zn superoxidodismutase variant protein
JP2942578B2 (en) Superoxide disproportionate analogs with new binding properties
EP0806477B1 (en) Use of a recombinant dna comprising dna coding for smooth muscle-type myosin heavy-chain sm1 isoform protein in the manufacture of a medicament
AU677379B2 (en) Arteriosclerosis remedy
JP3409118B2 (en) Pharmaceutical composition containing human ADF
HU212510B (en) Process for the preparation of novel plasminogen activator polypeptides and plasmids encoding them
US20030109439A1 (en) KGF polypeptide compositions
JP3227673B2 (en) Pancreatitis prophylactic and therapeutic drugs
JPH05139992A (en) Organ-protecting agent containing human adf
AU747287B2 (en) Adenovirus including a gene coding for a superoxide dismutase
JP2553425B2 (en) Thrombin-binding substance and method for producing the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA