WO1994014056A1 - Densitometer - Google Patents

Densitometer Download PDF

Info

Publication number
WO1994014056A1
WO1994014056A1 PCT/JP1993/001816 JP9301816W WO9414056A1 WO 1994014056 A1 WO1994014056 A1 WO 1994014056A1 JP 9301816 W JP9301816 W JP 9301816W WO 9414056 A1 WO9414056 A1 WO 9414056A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
concentration
densitometer
immersed
oscillation
Prior art date
Application number
PCT/JP1993/001816
Other languages
French (fr)
Japanese (ja)
Inventor
Takaaki Matsumura
Original Assignee
Etex Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Etex Co., Ltd. filed Critical Etex Co., Ltd.
Priority to AU57145/94A priority Critical patent/AU5714594A/en
Publication of WO1994014056A1 publication Critical patent/WO1994014056A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2617Measuring dielectric properties, e.g. constants
    • G01R27/2635Sample holders, electrodes or excitation arrangements, e.g. sensors or measuring cells
    • G01R27/2676Probes

Definitions

  • the present invention relates to a liquid concentration meter, particularly to a concentration meter for measuring the concentration of an aqueous electrolyte solution containing ions.
  • aqueous solutions of electrolytes such as caustic soda Na ⁇ and hydrochloric acid are used for chemical treatment and cleaning. Is used. These electrolyte aqueous solutions are required to have a relatively high concentration of 0.1 wt% to several wt% or several tens wt%, and have a strong chemical reaction of acids, alkalis, etc. There are many things that need to be handled with care, such as danger, and it is also necessary to supply a specified concentration at such a high concentration over a long period of time, as in a mass production factory. I have.
  • the densitometer therefor there is a conductivity meter at concentrations ranging from ppm order to about LWT%, conductivity meter, no current flows polarization with a concentration of over about 1 1% or 4 is generated From that, on
  • an electromagnetic concentration meter is used. Used.
  • An electromagnetic densitometer measures conductivity by immersing a transformer consisting of two superimposed annular coils for transmission and detection in a sample solution and using the electromagnetic induction current flowing in the solution passing through the through-hole.
  • concentration measurement range is up to several tens of Wt%, and online concentration measurement is possible, there is a problem that it is large, unwieldy, and expensive. .
  • An object of the present invention is to provide an inexpensive densitometer that is capable of on-line concentration measurement, and that is small, easy to handle, and inexpensive to solve the above-mentioned problems of the prior art. . Disclosure of the invention
  • a coil and a high-frequency oscillation circuit including the coil as an oscillating element are mounted on a detection end of a concentration detector immersed in a sample solution which is an aqueous electrolyte solution, and the detector is provided in the sample solution. It is configured to measure the concentration of the sample liquid by detecting a change in the oscillation state of the high-frequency oscillation circuit when immersed in the sample.
  • the concentration meter according to the present invention is configured such that the coil is formed in a flat spiral shape, and is integrated with a high-frequency oscillation circuit by a resin to form a detection end of a concentration detector immersed in a sample solution.
  • the flat spiral coil is placed parallel to the end face of the detection end of the concentration detector immersed in the sample liquid, or the detection end of the concentration detector immersed in the sample liquid. It is arranged so as to protrude vertically from the end face. Further, the flat spiral coil is formed by being densely wound or coarsely wound depending on the purpose of use.
  • the concentration meter Since the concentration meter according to the present invention is configured as described above, if the detection end is immersed in the aqueous electrolyte solution to be measured, the conductive aqueous electrolyte solution is electromagnetically coupled to the coil and the detector is connected to the detector. Oscillation circuit inside Since this influences the oscillation conditions, the current supplied to the oscillation circuit changes according to the conductivity of the aqueous electrolyte solution and thus the concentration. Since the electrolyte aqueous solution around the detection end is considered to affect the volume, the detector is immersed to a predetermined depth, and the liquid exists within a predetermined distance around the detection end. If the conductor such as metal is kept away from the range, the influence of the aqueous electrolyte solution on the oscillation conditions of the oscillation circuit is stabilized, and the accuracy of the concentration measurement can be improved.
  • the coil in a flat spiral shape and arranging it at the detection end, the facing area between the coil and the sample solution increases, and high-accuracy concentration measurement becomes possible. Even if the coil is formed in a ring shape, the same operation and effect as those of a flat spiral coil can be achieved.
  • FIG. 1 is a schematic configuration diagram showing an appearance of an embodiment of a densitometer according to the present invention.
  • FIG. 2 is a block diagram showing a circuit configuration of a signal processing circuit for density detection in an embodiment of the densitometer according to the present invention.
  • FIG. 3 is a conceptual structure diagram showing a structure of a sensor according to the embodiment of the present invention.
  • FIGS. 4A and 4B are an internal structural view and an external perspective view, respectively, showing an enlarged tip portion for illustrating the configuration of another embodiment of the sensor in the densitometer according to the present invention.
  • FIGS. 5A and 5B are an internal structure diagram and an external perspective view, respectively, showing an enlarged tip portion for illustrating the configuration of still another embodiment of the sensor in the densitometer according to the present invention.
  • FIG. 4 is an explanatory diagram for explaining a winding state of a sensor oscillation coil in the concentration meter according to the present invention.
  • 7A and 7B are explanatory diagrams each showing a modified example of the sensor oscillation coil in the concentration meter according to the present invention.
  • FIGS. 8A and 8B are perspective views showing a modification of the sensor according to the embodiment of the present invention.
  • FIG. 9 is a perspective view showing a modification of the pointing / adjusting unit.
  • 10A to 10E are characteristic diagrams showing measurement examples using the densitometer of the present invention.
  • FIG. 1 is a schematic configuration diagram showing the appearance of a densitometer according to an embodiment of the present invention.
  • 1 is a meter
  • 2 is a power lamp
  • 3 is a power switch
  • 4 is a span volume
  • 5 is a zero-adjustment volume
  • 6 is a sensor as a concentration detector
  • 7 is a lead wire
  • 8 is a measurement.
  • the aqueous electrolyte solution to be used such as hydrochloric acid or cassette.
  • the zero point is adjusted using the zero adjustment volume 5 in the air.
  • the sensor 6 is immersed or pressed against a standard solution having a standard conductivity or a calibration plate, and span adjustment is performed using a span volume unit 4.
  • the sensor 6 is immersed in the electrolyte aqueous solution 8 at a depth of, for example, 4 O mm or more, and the liquid exists within a range of, for example, 30 to 40 mm around the tip thereof, and Dip so that a conductor such as metal does not come close to the area.
  • FIG. 2 is a block diagram showing a circuit configuration of a signal processing circuit for density detection in the present embodiment, where 11 denotes, for example, several MHz to several tens of MHz.
  • An oscillation circuit having an oscillation frequency on the order of z, 12 is a coil, which is a circuit element of the oscillation circuit, is disposed inside the tip of the sensor 6, and 13 and 13 'are for power supply.
  • a lead line for transmitting a measurement signal, 14 is a detection circuit for detecting the oscillation state of the oscillation circuit 11, 15 is a comparison circuit for comparing the detected voltage signal with the reference voltage ref, 1
  • FIG. 6 is a stabilized DC power supply that supplies a DC power supply to the detection circuit 14 and a reference voltage to the comparison circuit 15, and 17 is a zero-adjustment volume for adjusting the reference voltage to perform zero adjustment (Fig. 1 5) and 18 are span volumes (4 in Fig. 1) for adjusting the signal level of the comparison result to perform span adjustment, 19 is a DC amplifier, and 20 is for displaying the measurement results. It's a night.
  • the detection circuit 14 Is done.
  • the detection voltage is, for example, a comparison circuit composed of a differential amplifier.
  • the circuit form of the oscillation circuit 11 is from several MHz to several tens M As long as oscillation at a high frequency of Hz is possible, any type such as a Colpitts type or a tray type may be used, and the temperature of the electrolyte aqueous solution 8 to be measured is not only room temperature but also 100%. Some of them reach several tens of degrees, and it is necessary to perform temperature compensation to ensure the measurement accuracy. Therefore, the oscillation circuit 11 is well known to other circuits as well. Temperature compensation circuit is attached.
  • FIG. 3 is a conceptual structural diagram showing a configuration of one embodiment of the sensor 6 in the concentration meter according to the present invention.
  • Reference numeral 61 denotes, for example, a cylindrical body of vinyl chloride, and an oscillation circuit 11 is housed at the tip, that is, at the detection end, so that the oscillation coil 12 is located at the tip of the cylinder.
  • Numeral 62 denotes a liquid-contacting part made of a front plate of vinyl chloride of the same material adhered to the tip of the cylindrical body 61, so that the inside of the cylindrical body 61 is sealed at least in a liquid-tight manner. It is sealed.
  • 63 is a cable fixing device for fixing a shielded wire, and 64 is a shielded wire.
  • the cylindrical body 61 has a diameter of about 20 to 40 O mm and a length of 200 to 100 O mm, and the tip is immersed in an aqueous electrolyte solution 8 to be measured.
  • the rear end is gripped by the operator or attached to a holder for continuous measurement.
  • the lead wires 13 and 13 ′ are formed by a shield wire that is continuous with the shield wire 64, and are fixed to the rear end of the sensor 6 by the cable fixture 63, and Even if an external force is applied to the wire 6 4, it is prevented from affecting the inside.
  • the oscillation circuit 11 A temperature sensor is provided in close proximity to the sensor, and its detection output is taken out via a shielded wire 64 and transmitted to the comparison circuit 15 to increase the measurement accuracy by adjusting the concentration value to compensate. be able to.
  • the oscillation circuit 11 is made of, for example, a compact printed circuit or an integrated circuit, and is further strengthened by being molded into the cylindrical body 61 with epoxy casting resin or the like.
  • the oscillation coil 12 may have any shape and structure as long as the coil 12 can be electromagnetically coupled to the electrolyte aqueous solution 8 to be measured.
  • FIGS. 4A and 4B are an internal structural view and an external perspective view, respectively, showing an enlarged tip portion for illustrating the configuration of another embodiment of the sensor 6 in the densitometer according to the present invention.
  • 1 1 ′ and 1 2 ′ are an oscillation circuit and a coil equivalent to the oscillation circuit 11 and the coil 12 constituting the detection end in FIGS. 2 and 3, respectively.
  • the oscillating circuit 11 ' is composed of, for example, a compact printed circuit board or an integrated circuit in the form of a flat plate, and the coil 12' is, for example, a flat spiral having an outermost diameter of about 10 to 3 O mm. As shown in FIG.
  • the coil is formed at one end of the plate-like oscillation circuit 11 ′, in parallel with the edge thereof, and with respect to the plate surface of the oscillation circuit 11 ′. They are joined with orthogonal directions.
  • the oscillation circuit 11 ′ and the coil 12 ′ are molded and integrated with an epoxy casting resin 65 or the like to constitute a detection end of the sensor 6.
  • the flat spiral coil 12 ′ is disposed so as to face the surface of the liquid contact portion 62 of the sensor 6.
  • the sensor 6 of the present embodiment configured as described above has a wide area and a very close proximity between the oscillation coil 12 ′ and the sample solution which is the aqueous electrolyte solution 8 (FIG. 1) to be measured. Since they face each other, the electromagnetic coupling between them is good, and the accuracy of the concentration measurement is therefore high. Can be increased.
  • FIGS. 5A and 5B are an internal structural view and an external perspective view, respectively, showing an enlarged tip portion for showing the configuration of still another embodiment of the sensor 6 in the densitometer according to the present invention.
  • reference numerals 1 1 "and 1 2" denote oscillation circuits and coils equivalent to the oscillation circuit 11 and the coil 12 constituting the detection end in FIGS. 2 and 3, respectively.
  • the oscillating circuit 11 is formed, for example, in a flat plate shape from a compact printed circuit or an integrated circuit
  • the coil 12 is formed, for example, from 10 to 10 mm in outermost diameter. It is formed into a flat spiral coil of about 3 Omm, and as shown in Fig.
  • the oscillation circuit 11 "and the coil 12" are molded by epoxy casting resin 6 or the like to form the detection end of the sensor 6 as shown in Fig. 5B.
  • the plate-shaped spiral coil 12 " is molded and integrated so as to protrude from the end face of the cylindrical sensor 6, thereby forming a liquid contact part 6 2 '.
  • the sample solution is the electrolyte solution to be measured 8 ( (Fig. 1) is present and faces the aqueous electrolyte solution 8 in a wider area and closer to those of the other embodiments described above. Is further improved, so that a more accurate concentration measurement can be performed.
  • the flat spiral coil 12 or 12 "shown in FIGS. 4A and 5A described above is formed by spirally winding a single conductive wire. It can also be formed by printing and wiring on a printed board using technology. Alternatively, for 1-2 ", a flat plate is preferable, and a plate with a distorted surface distorts the oscillation waveform to generate harmonics, which causes a reduction in detection sensitivity.
  • FIGS. 6A and 6B are explanatory diagrams for explaining the winding mode of the flat spiral coil 12 ′ or 12 ′′ shown in FIG. 4A or 5A, respectively.
  • spiral coil windings There are two types of spiral coil windings, as shown in FIG. 6A and densely wound as shown in FIG. 6A and coarsely wound as shown in FIG. 6B.
  • the capacitance component that determines the oscillation frequency is determined by the oscillation circuit 1 1 ′ (1 1 )
  • the positional relationship between it and the oscillating coil 12 '(1 2 ") are greatly restricted, and in practice, it cannot be reduced below a certain range. However, there are circumstances in which they can only have a limited range of values.
  • FIGS. 7A and 7B show a sensor for a densitometer according to the present invention. It is explanatory drawing which shows the modification of a vibration coil.
  • the coil of this modification is formed in a ring shape, and the ring-shaped coil portion can be formed in a flat plate shape (FIG. 7A) or a tubular shape (FIG. 7B).
  • the coil of this example is equivalent to or more than the roughly wound coil shown in Fig. 6B. It has the advantage of high detection sensitivity and easy coil fabrication.
  • the cylindrical body 61 and the liquid contact part 62 are formed, for example, by molding and covering or surrounding with vinyl chloride, epoxy resin, or the like.
  • a more heat-resistant material can be used.
  • the structure of the rear end of the sensor 6 is shown in a cylindrical shape (Fig. 1).
  • deformations are required, for example, as shown in Figures 8A and 8B.
  • the structure used for measurement attached to the side is shown, and a flange 68 is provided at the rear of the sensor 6 to seal the inside of the tank and also support the sensor itself.
  • B in the middle of the piping
  • the structure used to measure the concentration of the sample solution flowing in the pipe is shown.
  • a screw portion 69 is formed by attaching a screw.
  • FIG. Fig. 9 shows a case where a meter 1 and adjustment knobs 45 are arranged, but as shown in Fig. 9, it is intended to be attached to a control panel in an operation control room or the like in the manufacturing process. :.
  • the front panel 10 of the measuring instrument box 9 is formed in a shape that protrudes in a flange shape, and the front panel 10 is provided with an integral mounting member.Instruction on the control panel surface
  • the structure can be as follows.
  • FIGS. 10A to 10E are characteristic diagrams showing measurement examples using the densitometer of the present invention.
  • Fig. 1 OA shows the results of a wide range of measurements for various aqueous electrolyte solutions, and the maximum point appears in the middle concentration range for most of the sample solutions. It is shown that each of the sample liquids has a characteristic that monotonically increases in the range of 0 to 10 several wt%.
  • Fig. 10B Fig. 10C, Fig. 10D and Fig. 10E show the characteristics of NaC1, HC1, ZnC12 and NaOH in the dilute concentration range, respectively. Is enlarged. Industrial applicability
  • the present invention a compact, inexpensive densitometer capable of online measurement can be obtained.
  • the metal electrode is not exposed at the detection end, and
  • it since there is no through hole in the measurement part like an electromagnetic densitometer, it has a very simple shape and is easy to handle.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

This densitometer is small, easy to handle, and inexpensive. It is also capable of measuring concentration on-line. On the detecting tip of a concentration detector (6) which is dipped in a sample solution, an electrolytic aqueous solution, there are installed a coil (12), and a high frequency oscillating circuit (11) using the coil as an element of oscillation. The concentration of the sample solution is measured by detecting the changes of the oscillating state of the high frequency oscillating circuit when the detecting tip is dipped in the sample solution.

Description

明 細 書 濃度計  Description Densitometer
, 技術分野 , Technical field
本発明は、 液体濃度計、 特にイオンを含む電解質水溶液の濃度を 測定するための濃度計に関する。 背景技術  The present invention relates to a liquid concentration meter, particularly to a concentration meter for measuring the concentration of an aqueous electrolyte solution containing ions. Background art
化学工業、 食品製造、 半導体製造等の産業分野において、 化学的 処理や洗浄などの処理のために、 例えばカセイソーダ N a Ο Η、 塩 酸のような電解質水溶液であって所定濃度あるいは所定の濃度範囲 のものが用いられている。 これらの電解質水溶液としては、 0 . 1 w t %から数 w t %あるいは数十 w t %の比較的濃度の高いものが 必要とされており、 酸、 アルカ リ等の化学的反応力が強く、 人体に 危険があるなどの取扱いに注意を要するものが多く、 また、 大量生 産工場におけるように、 連続的に長時間にわたって、 そのような高 濃度における所定濃度のものを供給することが必要とされている。  In the chemical industry, food manufacturing, semiconductor manufacturing, and other industrial fields, aqueous solutions of electrolytes such as caustic soda NaΟ and hydrochloric acid are used for chemical treatment and cleaning. Is used. These electrolyte aqueous solutions are required to have a relatively high concentration of 0.1 wt% to several wt% or several tens wt%, and have a strong chemical reaction of acids, alkalis, etc. There are many things that need to be handled with care, such as danger, and it is also necessary to supply a specified concentration at such a high concentration over a long period of time, as in a mass production factory. I have.
このような高濃度の電解質溶液について連続的な濃度管理を行う には、 滴定などの手法では手間と時間がかかり過ぎ、 しかも、 最近 のコンピュータを利用した生産管理システムに適合させる必要があ ることから、 オンライ ンでの濃度計測手段が求められている。  In order to continuously control the concentration of such a high-concentration electrolyte solution, methods such as titration require too much time and effort, and must be adapted to recent computer-based production management systems. Therefore, there is a need for an online concentration measurement method.
そのための濃度計としては、 p p mオーダーから約 l w t %まで の濃度範囲における導電率計があるが、 導電率計は、 約 1 1 %以 4 上の濃度になると分極が発生して電流が流れなくなることから、 上The densitometer therefor, there is a conductivity meter at concentrations ranging from ppm order to about LWT%, conductivity meter, no current flows polarization with a concentration of over about 1 1% or 4 is generated From that, on
, 述したような高濃度の電解質水溶液の濃度測定には十分ではない。 However, it is not enough to measure the concentration of a high-concentration aqueous electrolyte solution as described above.
そこで、 このような高濃度範囲においては、 いわゆる電磁濃度計が 用いられている。 電磁濃度計は、 重ね合わせた環状の発信用および 検出用の 2つのコイルからなる トランスを試料液中に浸し、 その貫 通孔中を通る液に流れる電磁誘導電流を利用して導電率を測定する ものであり、 濃度測定可能な範囲は数十 W t %まであり、 かつ、 ォ ンライ ン濃度計測が可能であるが、 大型で扱いにく く、 しかも、 高 価であるという問題点がある。 Therefore, in such a high concentration range, a so-called electromagnetic concentration meter is used. Used. An electromagnetic densitometer measures conductivity by immersing a transformer consisting of two superimposed annular coils for transmission and detection in a sample solution and using the electromagnetic induction current flowing in the solution passing through the through-hole. Although the concentration measurement range is up to several tens of Wt%, and online concentration measurement is possible, there is a problem that it is large, unwieldy, and expensive. .
本発明は、 オンラインでの濃度計測が可能であり、 しかも、 上述 した従来技術の問題点を解消しうる小型で取扱いも容易であり、 か つ、 安価な濃度計を得るこ とを目的とする。 発明の開示  SUMMARY OF THE INVENTION An object of the present invention is to provide an inexpensive densitometer that is capable of on-line concentration measurement, and that is small, easy to handle, and inexpensive to solve the above-mentioned problems of the prior art. . Disclosure of the invention
本発明による濃度計は、 電解質水溶液である試料液中に浸漬され る濃度検出器の検出端部に、 コイルとそのコイルを発振要素として 含む高周波発振回路とを装着し、 検出器が試料液中に浸潰されたと きの高周波発振回路の発振状態の変化を検出することによって試料 液の濃度を測定するように構成される。  In the concentration meter according to the present invention, a coil and a high-frequency oscillation circuit including the coil as an oscillating element are mounted on a detection end of a concentration detector immersed in a sample solution which is an aqueous electrolyte solution, and the detector is provided in the sample solution. It is configured to measure the concentration of the sample liquid by detecting a change in the oscillation state of the high-frequency oscillation circuit when immersed in the sample.
また、 本発明による濃度計は、 コイルを平板状の渦巻き状に形成 し、 高周波発振回路とともに樹脂により一体化して試料液中に浸漬 される濃度検出器の検出端部を形成するように構成される。 そして 平板状の渦巻き状コィルは、 試料液中に浸潰される濃度検出器の検 出端部の端面に平行に配置されるか、 あるいは、 試料液中に浸潰さ れる濃度検出器の検出端部の端面から垂直に突き出すように配置さ れる。 また、 平板状の渦巻き状コイルは、 使用目的に応じて、 密に 巻回されるか、 あるいは、 粗に巻回されて形成される。  Further, the concentration meter according to the present invention is configured such that the coil is formed in a flat spiral shape, and is integrated with a high-frequency oscillation circuit by a resin to form a detection end of a concentration detector immersed in a sample solution. You. The flat spiral coil is placed parallel to the end face of the detection end of the concentration detector immersed in the sample liquid, or the detection end of the concentration detector immersed in the sample liquid. It is arranged so as to protrude vertically from the end face. Further, the flat spiral coil is formed by being densely wound or coarsely wound depending on the purpose of use.
本発明による濃度計は上記のように構成されていることから、 検 出端部を測定すべき電解質水溶液中に浸漬すれば、 電導性を有する 電解質水溶液がコイルと電磁的に結合して検出器内の発振回路の発 振条件に影響を及ぼすので、 発振回路への供給電流が電解質水溶液 の電導性したがって濃度に応じて変化する。 検出端部の周りの電解 質水溶液が体積的に影響すると考えられることから、 検出器を所定 の深さに浸漬し、 また、 検出端部の周りの所定距離の範囲内に液が 存在し、 かつ、 その範囲内に金属等の導電体を近づけないようにす れば、 発振回路の発振条件に及ぼす電解質水溶液の影響が安定し、 濃度測定の精度を高めることができる。 Since the concentration meter according to the present invention is configured as described above, if the detection end is immersed in the aqueous electrolyte solution to be measured, the conductive aqueous electrolyte solution is electromagnetically coupled to the coil and the detector is connected to the detector. Oscillation circuit inside Since this influences the oscillation conditions, the current supplied to the oscillation circuit changes according to the conductivity of the aqueous electrolyte solution and thus the concentration. Since the electrolyte aqueous solution around the detection end is considered to affect the volume, the detector is immersed to a predetermined depth, and the liquid exists within a predetermined distance around the detection end. If the conductor such as metal is kept away from the range, the influence of the aqueous electrolyte solution on the oscillation conditions of the oscillation circuit is stabilized, and the accuracy of the concentration measurement can be improved.
また、 コィルを平板状の渦巻き状に形成して検出端部に配置する ことにより、 コイルと試料液との対向面積が増大し、 高精度な濃度 測定が可能となる。 また、 コイルをリ ング状に形成しても、 平板状 の渦巻き状のコィルと同等の作用および効果を達成することができ  In addition, by forming the coil in a flat spiral shape and arranging it at the detection end, the facing area between the coil and the sample solution increases, and high-accuracy concentration measurement becomes possible. Even if the coil is formed in a ring shape, the same operation and effect as those of a flat spiral coil can be achieved.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 本発明による濃度計の実施例の外観を示す概略構成図で ある。  FIG. 1 is a schematic configuration diagram showing an appearance of an embodiment of a densitometer according to the present invention.
図 2は、 本発明による濃度計の実施例における濃度検出のための 信号処理回路の回路構成を示すプロッ ク図である。  FIG. 2 is a block diagram showing a circuit configuration of a signal processing circuit for density detection in an embodiment of the densitometer according to the present invention.
図 3は、 本発明の実施例におけるセンサの構成を示す概念的な構 造図である。  FIG. 3 is a conceptual structure diagram showing a structure of a sensor according to the embodiment of the present invention.
図 4 Aおよび図 4 Bは、 それぞれ、 本発明による濃度計における センサの他の実施例の構成を示すための先端部を拡大して示す内部 構造図および外観斜視図である。  FIGS. 4A and 4B are an internal structural view and an external perspective view, respectively, showing an enlarged tip portion for illustrating the configuration of another embodiment of the sensor in the densitometer according to the present invention.
図 5 Aおよび図 5 Bは、 それぞれ、 本発明による濃度計における センサの更に他の実施例の構成を示すための先端部を拡大して示す 内部構造図および外観斜視図である。  FIGS. 5A and 5B are an internal structure diagram and an external perspective view, respectively, showing an enlarged tip portion for illustrating the configuration of still another embodiment of the sensor in the densitometer according to the present invention.
図 6 Aおよび図 6 Bは、 それぞれ、 図 4 Aあるいは図 5 Aに示さ れている本発明による濃度計におけるセンサ用発振コイルの巻回態 様を説明するための説明図である。 Figures 6A and 6B are shown in Figure 4A or Figure 5A, respectively. FIG. 4 is an explanatory diagram for explaining a winding state of a sensor oscillation coil in the concentration meter according to the present invention.
図 7 Aおよび図 7 Bは、 それぞれ、 本発明による濃度計における センサ用発振コィルの変形例を示す説明図である。  7A and 7B are explanatory diagrams each showing a modified example of the sensor oscillation coil in the concentration meter according to the present invention.
図 8 Aおよび図 8 Bは、 本発明の実施例におけるセンサの変形例 を示す斜視図である。  8A and 8B are perspective views showing a modification of the sensor according to the embodiment of the present invention.
図 9は、 指示 · 調整部の変形例を示す斜視図である。  FIG. 9 is a perspective view showing a modification of the pointing / adjusting unit.
図 1 O A乃至図 1 0 Eは、 本発明の濃度計による測定例を示す特 性図である。 発明を実施するための最良の形態  10A to 10E are characteristic diagrams showing measurement examples using the densitometer of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明による濃度計の実施例について、 説明する。  Hereinafter, embodiments of the densitometer according to the present invention will be described.
図 1 は、 本発明の実施例である濃度計の外観を示す概略構成図で ある。 図中、 1 はメータ、 2は電源ランプ、 3は電源スィ ッチ、 4 はスパンボリ ューム、 5はゼロ調ボリ ューム、 6は濃度検出器とし てのセンサ、 7はリー ド線、 8は測定すべき電解質水溶液、 例えば 塩酸あるいはカセィソ一ダである。  FIG. 1 is a schematic configuration diagram showing the appearance of a densitometer according to an embodiment of the present invention. In the figure, 1 is a meter, 2 is a power lamp, 3 is a power switch, 4 is a span volume, 5 is a zero-adjustment volume, 6 is a sensor as a concentration detector, 7 is a lead wire, and 8 is a measurement. The aqueous electrolyte solution to be used, such as hydrochloric acid or cassette.
測定に当たっては、 まず、 空気中でゼロ調ボリ ューム 5を用いて ゼロ点合わせを行う。 次いで、 基準となる導電率を有する標準液あ るいは校正板にセンサ 6を浸漬あるいは押し当て、 スパンボリ ユ ー ム 4を用いてスパン合わせを行う。 校正後、 センサ 6を測定すべき 電解質水溶液 8中にセッ トする。 この場合、 センサ 6を電解質水溶 液 8中に例えば 4 O m m以上の深さで、 また、 その先端部の周りの 例えば 3 0 〜 4 0 m mの距離の範囲内に液が存在し、 かつ、 その範 囲内に金属等の導電体を近づけないように、 浸潰する。  In the measurement, first, the zero point is adjusted using the zero adjustment volume 5 in the air. Next, the sensor 6 is immersed or pressed against a standard solution having a standard conductivity or a calibration plate, and span adjustment is performed using a span volume unit 4. After calibration, set the sensor 6 in the aqueous electrolyte solution 8 to be measured. In this case, the sensor 6 is immersed in the electrolyte aqueous solution 8 at a depth of, for example, 4 O mm or more, and the liquid exists within a range of, for example, 30 to 40 mm around the tip thereof, and Dip so that a conductor such as metal does not come close to the area.
図 2は、 本実施例における濃度検出のための信号処理回路の回路 構成を示すブロ ッ ク図であり、 1 1 は例えば数 M H z乃至数十 M H zのオーダ一の発振周波数を有する発振回路、 1 2は発振回路の回 路要素であるコイルであって、 センサ 6の先端部の内部に配置され ており、 1 3、 1 3 ' は電源供給および測定用信号伝送のためのリ ー ド線、 1 4 は発振回路 1 1 の発振状態を検出する検出回路、 1 5 は検出された電圧信号と参照電圧 r e f とを比較する比較回路、 1FIG. 2 is a block diagram showing a circuit configuration of a signal processing circuit for density detection in the present embodiment, where 11 denotes, for example, several MHz to several tens of MHz. An oscillation circuit having an oscillation frequency on the order of z, 12 is a coil, which is a circuit element of the oscillation circuit, is disposed inside the tip of the sensor 6, and 13 and 13 'are for power supply. And a lead line for transmitting a measurement signal, 14 is a detection circuit for detecting the oscillation state of the oscillation circuit 11, 15 is a comparison circuit for comparing the detected voltage signal with the reference voltage ref, 1
6は検出回路 1 4への D C電源および比較回路 1 5への参照電圧を 供給する安定化直流電源、 1 7は参照電圧を調整してゼロ点合わせ を行うためのゼロ調ボリ ューム (図 1 における 5 ) 、 1 8 は比較結 果の信号レベルを調整してスパン合わせを行うためのスパンボリ ュ —厶 (図 1 における 4 ) 、 1 9は直流増幅器、 2 0は測定結果を表 示するためのメ一夕である。 6 is a stabilized DC power supply that supplies a DC power supply to the detection circuit 14 and a reference voltage to the comparison circuit 15, and 17 is a zero-adjustment volume for adjusting the reference voltage to perform zero adjustment (Fig. 1 5) and 18 are span volumes (4 in Fig. 1) for adjusting the signal level of the comparison result to perform span adjustment, 19 is a DC amplifier, and 20 is for displaying the measurement results. It's a night.
図 1 において述べたように、 発振回路 1 1 を内蔵するセンサ 6を 測定すべき電解質水溶液 8中に浸漬すると、 センサ先端の接液部に 配置されたコイル 1 2に液が接近することとなり、 液 8の導電性に 基づいてコイル 1 2の発振へ寄与する程度が変化し、 結果として発 振回路 1 の発振状態が変化する。 この発振状態の変化は、 リー ド 線 1 3、 1 3 ' を経て安定化直流電源 1 6から供給されている電源 電流に変化をもたらし、 その電流変化が検出回路 1 4 により電圧と して検出される。 検出電圧は、 例えば差動増幅器からなる比較回路 As described in Fig. 1, when the sensor 6 incorporating the oscillation circuit 11 is immersed in the aqueous electrolyte solution 8 to be measured, the liquid approaches the coil 12 arranged at the liquid contact part at the sensor tip, The degree of contribution to the oscillation of the coil 12 changes based on the conductivity of the liquid 8, and as a result, the oscillation state of the oscillation circuit 1 changes. This change in the oscillation state causes a change in the power supply current supplied from the stabilized DC power supply 16 via the lead wires 13 and 13 ', and the change in the current is detected as a voltage by the detection circuit 14 Is done. The detection voltage is, for example, a comparison circuit composed of a differential amplifier.
1 5 に供給され、 そこで別に安定化直流電源 1 6から供給されてい る参照電圧 r e f と比較される。 この参照電圧は上記した空気中で のゼロ点合わせによりゼロを示す電圧にセッ トされているので、 比 較回路 1 5 により液 8の存在のみによる発振状態の変化分が検出さ れるこ ととなる。 比較結果は、 所定のレベルにスパン合わせされて 所定の利得を有するスパンボリ ューム 1 8および直流増幅器 1 9を 経て、 メータ 2 0 に供給されて液 8の濃度が表示される。 15, where it is compared with a reference voltage r e f supplied separately from the stabilized DC power supply 16. Since this reference voltage is set to a voltage indicating zero by the above-mentioned zero adjustment in the air, the change in the oscillation state due to only the presence of the liquid 8 is detected by the comparison circuit 15. Become. The comparison result is sent to a meter 20 via a span volume 18 having a predetermined gain and a DC amplifier 19 having a predetermined level, and the concentration of the liquid 8 is displayed.
なお、 発振回路 1 1 を構成する回路形式は、 数 M H z乃至数十 M H zの高周波数での発振が可能なものであれば、 コルピッツ形、 ハ 一ト レー形などいかなる形式のものでもよく、 また、 測定すべき電 解質水溶液 8の温度は常温のみならず百数十度に及ぶものもあり、 また、 測定精度の確保のために温度補償を行う ことが必要であるの で、 発振回路 1 1 には、 更にはその他の回路にも、 それ自体はよく 知られている温度補偾回路が付されている。 The circuit form of the oscillation circuit 11 is from several MHz to several tens M As long as oscillation at a high frequency of Hz is possible, any type such as a Colpitts type or a tray type may be used, and the temperature of the electrolyte aqueous solution 8 to be measured is not only room temperature but also 100%. Some of them reach several tens of degrees, and it is necessary to perform temperature compensation to ensure the measurement accuracy. Therefore, the oscillation circuit 11 is well known to other circuits as well. Temperature compensation circuit is attached.
図 3は、 本発明による濃度計におけるセンサ 6の一実施例の構成 を示す概念的な構造図である。 6 1 は例えば塩化ビニールの筒状体 であり、 その先端部すなわち検出端部の内部には発振用コイル 1 2 がその最先端に位置するように発振回路 1 1 が収納されている。 6 2は筒状体 6 1 の先端部に接着された同じ材料の塩化ビニールの前 面板からなる接液部であり、 これにより筒状体 6 1 の内部を少なく とも液密に密封するように封止している。 6 3はシール ド線を固定 するためのケーブル固定具、 6 4はシールド線である。 筒状体 6 1 は、 直径 2 0〜4 O m m程度、 長さが 2 0 0〜 1 0 0 O m mの寸法 であり、 先端部が測定すべき電解質水溶液 8中に浸潰されるととも に、 後端側は操作者により把持されるか、 あるいは、 連続測定のた めの保持具に装着される。 リー ド線 1 3、 1 3 ' は、 実際には、 シ 一ルド線 6 4 と連続するシールド線により形成されており、 センサ 6の後端部にケーブル固定具 6 3により固定されて、 シール ド線 6 4 に外力が加わっても内部に影饗しないようにされている。  FIG. 3 is a conceptual structural diagram showing a configuration of one embodiment of the sensor 6 in the concentration meter according to the present invention. Reference numeral 61 denotes, for example, a cylindrical body of vinyl chloride, and an oscillation circuit 11 is housed at the tip, that is, at the detection end, so that the oscillation coil 12 is located at the tip of the cylinder. Numeral 62 denotes a liquid-contacting part made of a front plate of vinyl chloride of the same material adhered to the tip of the cylindrical body 61, so that the inside of the cylindrical body 61 is sealed at least in a liquid-tight manner. It is sealed. 63 is a cable fixing device for fixing a shielded wire, and 64 is a shielded wire. The cylindrical body 61 has a diameter of about 20 to 40 O mm and a length of 200 to 100 O mm, and the tip is immersed in an aqueous electrolyte solution 8 to be measured. The rear end is gripped by the operator or attached to a holder for continuous measurement. In practice, the lead wires 13 and 13 ′ are formed by a shield wire that is continuous with the shield wire 64, and are fixed to the rear end of the sensor 6 by the cable fixture 63, and Even if an external force is applied to the wire 6 4, it is prevented from affecting the inside.
上記した実施例中には示されてはいないが、 電解質水溶液 8の温 度により発振回路 1 1 の発振状態が変化して濃度の値が変動するこ とを補償するために、 発振回路 1 1 に近接して温度センサを設け、 その検出出力をシール ド線 6 4を介して取り出して比較回路 1 5 に 伝送し、 濃度の値を調整することにより補儍を行って測定精度を高 めることができる。 また、 発振回路 1 1 は例えばコンパク トなプリ ン ト板回路あるい は集積回路で構成し、 更に、 筒状体 6 1 内にエポキシ注型樹脂等に よりモール ドして装着することにより強固に固定すれば、 振動など によって回路要素の相対関係が変化して発振状態が変化し、 測定精 度が低下することを防止することができる。 そして、 発振用のコィ ル 1 2は、 測定すべき電解質水溶液 8 との電磁気的な結合が可能な ものであれば、 いかなる形状、 構造であってもよいことはいうまで もない。 Although not shown in the above-described embodiment, in order to compensate for a change in the concentration value due to a change in the oscillation state of the oscillation circuit 11 due to the temperature of the electrolyte aqueous solution 8, the oscillation circuit 11 A temperature sensor is provided in close proximity to the sensor, and its detection output is taken out via a shielded wire 64 and transmitted to the comparison circuit 15 to increase the measurement accuracy by adjusting the concentration value to compensate. be able to. The oscillation circuit 11 is made of, for example, a compact printed circuit or an integrated circuit, and is further strengthened by being molded into the cylindrical body 61 with epoxy casting resin or the like. If fixed to, it is possible to prevent the relative state of the circuit elements from changing due to vibration or the like and the oscillation state from changing, thereby preventing the measurement accuracy from lowering. Needless to say, the oscillation coil 12 may have any shape and structure as long as the coil 12 can be electromagnetically coupled to the electrolyte aqueous solution 8 to be measured.
図 4 Aおよび図 4 Bは、 それぞれ、 本発明による濃度計における センサ 6の他の実施例の構成を示すための先端部を拡大して示す内 部構造図および外観斜視図である。 図中、 1 1 ' および 1 2 ' は、 それぞれ、 図 2および図 3における検出端部を構成する発振回路 1 1 およびコイル 1 2 と同等の発振回路およびコイルである。 発振回 路 1 1 ' は例えばコンパク トなプリ ン ト板回路あるいは集積回路で 平板状に構成し、 コイル 1 2 ' は例えば最外径は 1 0〜 3 O m m程 度の平板状の渦巻き状コイルに形成されており、 図 4 Aに示されて いるように、 平板状の発振回路 1 1 ' の一端において、 その端縁に 平行で、 かつ、 発振回路 1 1 ' の板面に対して直交するような向き をもって結合されている。 これらの発振回路 1 1 ' およびコイル 1 2 ' は、 図 4 Bに示されているように、 エポキシ注型樹脂 6 5等に よりモール ドされて一体化されてセンサ 6の検出端部を構成してお り、 この場合、 平板状の渦巻き状コイル 1 2 ' はセンサ 6の接液部 6 2の面に対面するように配置される。  FIGS. 4A and 4B are an internal structural view and an external perspective view, respectively, showing an enlarged tip portion for illustrating the configuration of another embodiment of the sensor 6 in the densitometer according to the present invention. In the figure, 1 1 ′ and 1 2 ′ are an oscillation circuit and a coil equivalent to the oscillation circuit 11 and the coil 12 constituting the detection end in FIGS. 2 and 3, respectively. The oscillating circuit 11 'is composed of, for example, a compact printed circuit board or an integrated circuit in the form of a flat plate, and the coil 12' is, for example, a flat spiral having an outermost diameter of about 10 to 3 O mm. As shown in FIG. 4A, the coil is formed at one end of the plate-like oscillation circuit 11 ′, in parallel with the edge thereof, and with respect to the plate surface of the oscillation circuit 11 ′. They are joined with orthogonal directions. As shown in FIG. 4B, the oscillation circuit 11 ′ and the coil 12 ′ are molded and integrated with an epoxy casting resin 65 or the like to constitute a detection end of the sensor 6. In this case, the flat spiral coil 12 ′ is disposed so as to face the surface of the liquid contact portion 62 of the sensor 6.
このように構成された本実施例のセンサ 6 は、 発振用コイル 1 2 ' と測定されるべき電解質水溶液 8 (図 1 ) である試料液とが広い面 積で、 かつ、 極めて接近した状態で対面するこ ととなるので、 両者 の間の電磁結合が良好なものとなり、 したがって、 濃度測定の精度 を高めることができる。 The sensor 6 of the present embodiment configured as described above has a wide area and a very close proximity between the oscillation coil 12 ′ and the sample solution which is the aqueous electrolyte solution 8 (FIG. 1) to be measured. Since they face each other, the electromagnetic coupling between them is good, and the accuracy of the concentration measurement is therefore high. Can be increased.
図 5 Aおよび図 5 Bは、 それぞれ、 本発明による濃度計における センサ 6の更に他の実施例の構成を示すための先端部を拡大して示 す内部構造図および外観斜視図である。 図中、 1 1 " および 1 2 " は、 それぞれ、 図 2および図 3における検出端部を構成する発振回 路 1 1 およびコイル 1 2 と同等の発振回路およびコイルである。 上 述の他の実施例と同様に、 発振回路 1 1 " は例えばコンパク トなプ リ ン ト板回路あるいは集積回路で平板状に構成し、 コイル 1 2 " は 例えば最外径は 1 0〜 3 O m m程度の平板状の渦巻き状コイルに形 成されており、 図 5 Aに示されているように、 平板状の発振回路 1 1 " の板面に平行となるように一端に結合されている。 これらの発 振回路 1 1 " およびコイル 1 2 " は、 図 5 Bに示されているように. エポキシ注型樹脂 6 6等によりモール ドされてセンサ 6の検出端部 を構成しており、 この場合、 平板状の渦巻き状コイル 1 2 " は筒状 のセンサ 6の端面から突き出すようにモールドされて一体化され、 これにより接液部 6 2 ' が構成される。  FIGS. 5A and 5B are an internal structural view and an external perspective view, respectively, showing an enlarged tip portion for showing the configuration of still another embodiment of the sensor 6 in the densitometer according to the present invention. In the figure, reference numerals 1 1 "and 1 2" denote oscillation circuits and coils equivalent to the oscillation circuit 11 and the coil 12 constituting the detection end in FIGS. 2 and 3, respectively. As in the other embodiments described above, the oscillating circuit 11 "is formed, for example, in a flat plate shape from a compact printed circuit or an integrated circuit, and the coil 12" is formed, for example, from 10 to 10 mm in outermost diameter. It is formed into a flat spiral coil of about 3 Omm, and as shown in Fig. 5A, is connected to one end of the flat oscillation circuit 11 "so as to be parallel to the plate surface. The oscillation circuit 11 "and the coil 12" are molded by epoxy casting resin 6 or the like to form the detection end of the sensor 6 as shown in Fig. 5B. In this case, the plate-shaped spiral coil 12 "is molded and integrated so as to protrude from the end face of the cylindrical sensor 6, thereby forming a liquid contact part 6 2 '.
このように構成された本実施例のセンサ 6は、 その検出端部が試 料液中に浸漬されると、 発振用コイル 1 2 " の両面に試料液である 測定されるべき電解質水溶液 8 (図 1 ) が存在することとなり、 上 述した他の実施例のものより も広い面積で、 かつ、 より接近した状 態で電解質水溶液 8 と対面することとなるので、 両者の間の電磁結 合が更に良好なものとなり、 したがって、 より高精度な濃度測定を 可能とすることができる。 ,  When the detection end of the sensor 6 configured as described above is immersed in the sample solution, the sample solution is the electrolyte solution to be measured 8 ( (Fig. 1) is present and faces the aqueous electrolyte solution 8 in a wider area and closer to those of the other embodiments described above. Is further improved, so that a more accurate concentration measurement can be performed.
上述した図 4 Aおよび図 5 Aに示されている平板状の渦巻き状コ ィル 1 2 , あるいは 1 2 " は、 一本の導線を螺旋状に巻いて形成さ れているが、 印刷配線技術を用いてプリ ン ト板上に印刷配線するこ とにより形成するこ とも可能である。 また、 渦巻き状コイル 1 2 ' あるいは 1 -2 " は、 平板状のものが好適であり、 表面が歪んだ形状 のものは発振波形を歪ませて高調波を発生することとなり、 検出感 度低下の原因となる。 The flat spiral coil 12 or 12 "shown in FIGS. 4A and 5A described above is formed by spirally winding a single conductive wire. It can also be formed by printing and wiring on a printed board using technology. Alternatively, for 1-2 ", a flat plate is preferable, and a plate with a distorted surface distorts the oscillation waveform to generate harmonics, which causes a reduction in detection sensitivity.
また、 図 6 Aおよび図 6 Bは、 それぞれ、 図 4 Aあるいは図 5 A に示されている平板状の渦巻き状コィル 1 2 ' あるいは 1 2 " の巻 回態様を説明するための説明図であり、 渦巻き状コイルの巻回態様 としては、 図 6 Aに示されているように、 密に巻回されたものおよ び図 6 Bに示されているように、 粗に巻回されたものがある。 とこ ろで、 前述したように本センサの発振周波数が数 M H z乃至数十 M H zの高周波であるために、 発振周波数を決定するキャパシタ ンス 成分は発振回路 1 1 ' ( 1 1 " ) の構成およびそれと発振コイル 1 2 ' ( 1 2 " ) との配置関係等により大き く制限を受けるこ とと なり、 実際上、 或る範囲の値以下には小さ くすることができず、 し かも、 限られた範囲の値しか持ちえないという事情がある。  FIGS. 6A and 6B are explanatory diagrams for explaining the winding mode of the flat spiral coil 12 ′ or 12 ″ shown in FIG. 4A or 5A, respectively. There are two types of spiral coil windings, as shown in FIG. 6A and densely wound as shown in FIG. 6A and coarsely wound as shown in FIG. 6B. As described above, since the oscillation frequency of this sensor is a high frequency of several MHz to several tens of MHz as described above, the capacitance component that determines the oscillation frequency is determined by the oscillation circuit 1 1 ′ (1 1 ) And the positional relationship between it and the oscillating coil 12 '(1 2 ") are greatly restricted, and in practice, it cannot be reduced below a certain range. However, there are circumstances in which they can only have a limited range of values.
そのために、 図 6 Aに示されている密に巻回されたコイルの場合 は、 巻回数を大き く してコイル径を大き くすると、 却って検出感度 が低下することとなる。 しかし、 このように密に巻回されたコイル は、 試料液の濃度対検出出力特性が飽和しにく く、 広い測定範囲を 有している。 そこで、 このような密に巻回されたコイルは、 コイル 径を小さ く、 例えば、 直径 9 m m程度にして、 細長く形成する必要 のあるセンサに適用するのが好適である。 また、 図 6 Bに示されて いるように、 コイルの巻回密度を一様に粗にしていく と、 検出感度 は向上するが、 試料液の濃度対検出出力特性が飽和し易くなり、 測 定範囲が狭く なる。 したがって、 これらの粗に巻回されたコイルは 比較的濃度の低い試料液に対し、 コイル径を大き く して用いること により、 高感度な測定を可能とすることができる。  For this reason, in the case of the densely wound coil shown in FIG. 6A, increasing the number of windings and increasing the coil diameter will rather decrease the detection sensitivity. However, such a tightly wound coil has a wide measurement range since the concentration-to-detection output characteristics of the sample liquid are not easily saturated. Therefore, such a densely wound coil is preferably applied to a sensor having a small coil diameter, for example, a diameter of about 9 mm, and which needs to be elongated. Also, as shown in Fig. 6B, if the coil winding density is made coarser uniformly, the detection sensitivity is improved, but the concentration vs. detection output characteristics of the sample liquid easily saturates, and the The fixed range becomes narrow. Therefore, these coarsely wound coils can be used for a sample solution having a relatively low concentration and by increasing the coil diameter, thereby enabling highly sensitive measurement.
図 7 Aおよび図 7 Bは、 本発明による濃度計におけるセンサ用発 振コイルの変形例を示す説明図である。 本変形例のコイルは、 リ ン グ状に形成されており、 そのリ ング状のコィル部分は平板状 (図 7 A ) あるいは筒状 (図 7 B ) に形成されることが可能である。 本例 のコイルは、 図 4 Aおよび図 5 Aに示されている平板状の渦巻き状 コイルと比較すれば、 図 6 Bに示されているような粗に巻回された ものと同等以上の検出感度を持ち、 しかも、 コイルの製作が容易に なるという利点がある。 FIGS. 7A and 7B show a sensor for a densitometer according to the present invention. It is explanatory drawing which shows the modification of a vibration coil. The coil of this modification is formed in a ring shape, and the ring-shaped coil portion can be formed in a flat plate shape (FIG. 7A) or a tubular shape (FIG. 7B). Compared to the flat spiral coil shown in Figs. 4A and 5A, the coil of this example is equivalent to or more than the roughly wound coil shown in Fig. 6B. It has the advantage of high detection sensitivity and easy coil fabrication.
上述した各実施例においては、 筒状体 6 1 および接液部 6 2を、 例えばモールドして、 塩化ビニールやエポキシ樹脂等により被覆あ るいは包囲して形成したが、 高温の電解質水溶液に対する長時間連 繞測定のためには、 更に耐熱性の強い材料を使用することができる ( また、 センサ 6の後端部の構造としては、 円筒状 (図 1 ) のものが 示されているが、 測定対象あるいは測定場所に応じて、 例えば図 8 Aおよび図 8 Bに示すような変形が必要となる。 すなわち、 図 8 A には、 夕ンクなどの中の試料液の濃度を夕ンク上部あるいは側部に 取り付けて測定する場合に用いられる構造が示されており、 セ ンサ 6の後部にタンク内部を密閉するとともにセンサ自体をも支持する ためのフランジ部 6 8が設けられている。 図 8 Bには、 配管の途中 において管中を流れる試料液の濃度を測定するために用いられる構 造が示されており、 配管の途中に設けた取り付け部に内部を密封し つつ装着するために、 例えば図示したようにテ一パを付して、 ネジ 部 6 9が形成されている。 In each of the above-described embodiments, the cylindrical body 61 and the liquid contact part 62 are formed, for example, by molding and covering or surrounding with vinyl chloride, epoxy resin, or the like. For time-course measurement, a more heat-resistant material can be used. ( Also, the structure of the rear end of the sensor 6 is shown in a cylindrical shape (Fig. 1). Depending on the measurement target or measurement location, deformations are required, for example, as shown in Figures 8A and 8B. The structure used for measurement attached to the side is shown, and a flange 68 is provided at the rear of the sensor 6 to seal the inside of the tank and also support the sensor itself. B, in the middle of the piping The structure used to measure the concentration of the sample solution flowing in the pipe is shown. For example, as shown in FIG. A screw portion 69 is formed by attaching a screw.
なお、 本発明の濃度計におけるメータ 1 が装着された指示 · 調整 部である測定器の外形としては、 図 1 には通常の載置型あるいは携 帯可能な箱状体であって、 その前面部にメータ 1 や調整用ツマミ 4 5等が配置されたものが示されているが、 図 9に示すように、 製造 工程の運転管理室などにおける制御盤に取り付けるためのものとし :. In addition, the outer shape of the measuring instrument, which is the indicating / adjusting unit in which the meter 1 is mounted in the concentration meter of the present invention, is shown in FIG. Fig. 9 shows a case where a meter 1 and adjustment knobs 45 are arranged, but as shown in Fig. 9, it is intended to be attached to a control panel in an operation control room or the like in the manufacturing process. :.
て、 測定器箱体 9の前面パネル 1 0が鍔状に張り出した形状に構成 されて前面パネル 1 0 に一体的に取り付け部材が設けられ、 制御盤 面に指示 · 調整部が埋め込み形に装着されるような構造のものとす ることができる。  The front panel 10 of the measuring instrument box 9 is formed in a shape that protrudes in a flange shape, and the front panel 10 is provided with an integral mounting member.Instruction on the control panel surface The structure can be as follows.
図 1 O A乃至図 1 0 Eは、 本発明の濃度計による測定例を示す特 性図である。 図 1 O Aは、 各種の電解質水溶液について広範囲にわ たって測定した結果を示しており、 殆どの試料液について中間の濃 度域で極大点が現れる。 各試料液とも、 0 〜 1 0数 w t %の範囲に おいて単調に増加する特性を有することが示されている。 図 1 0 B 図 1 0 C、 図 1 0 Dおよび図 1 0 Eは、 それぞれ、 N a C 1 、 H C 1 、 Z n C 1 2 および N a O Hの試料液について、 希薄な濃度範囲 における特性を拡大して示すものである。 産業上の利用可能性  10A to 10E are characteristic diagrams showing measurement examples using the densitometer of the present invention. Fig. 1 OA shows the results of a wide range of measurements for various aqueous electrolyte solutions, and the maximum point appears in the middle concentration range for most of the sample solutions. It is shown that each of the sample liquids has a characteristic that monotonically increases in the range of 0 to 10 several wt%. Fig. 10B Fig. 10C, Fig. 10D and Fig. 10E show the characteristics of NaC1, HC1, ZnC12 and NaOH in the dilute concentration range, respectively. Is enlarged. Industrial applicability
以上説明したように、 本発明によれば、 小型、 かつ、 安価でオン ライ ン計測可能な濃度計を得ることができ、 加えて、 検出端部に金 属電極が露出することがなく、 また、 電磁濃度計のように測定部分 に貫通孔がないので、 極めて簡素な形状であり、 扱い易いものとな つている。  As described above, according to the present invention, a compact, inexpensive densitometer capable of online measurement can be obtained. In addition, the metal electrode is not exposed at the detection end, and However, since there is no through hole in the measurement part like an electromagnetic densitometer, it has a very simple shape and is easy to handle.
また、 接液部および筒状体の材質に耐熱性のものを使用すれば、 数十度から約 1 4 0度までの比較的高温の試料液の濃度測定が可能 となり、 しかも、 長時間の連続使用も可能である。  Also, if heat-resistant materials are used for the liquid contact part and the cylindrical body, it is possible to measure the concentration of the sample liquid at a relatively high temperature from several tens of degrees to about 140 degrees. Continuous use is also possible.

Claims

請 求 の 範 囲 The scope of the claims
1 . 電解質水溶液である試料液中に浸潰される濃度検出器の検出 端部に、 コイルと、 該コイルを発振要素として含む高周波発振回路 とを装着し、 検出器が試料液中に浸潰されたときの該高周波発振回 路の発振状態の変化を検出することによつて試料液の濃度を測定す ることを特徵とする濃度計。 1. A coil and a high-frequency oscillation circuit including the coil as an oscillating element are attached to the detection end of the concentration detector immersed in the sample solution which is an aqueous electrolyte solution, and the detector is immersed in the sample solution. A concentration meter that measures the concentration of the sample liquid by detecting a change in the oscillation state of the high-frequency oscillation circuit when the oscillation occurs.
2 . 請求項 1 に記載の濃度計において、  2. In the densitometer according to claim 1,
少なく ともコイルおよび高周波発振回路が樹脂により一体化され て、 試料液中に浸漬される濃度検出器の検出端部を形成しているこ とを特徴とする濃度計。  A densitometer characterized in that at least a coil and a high-frequency oscillation circuit are integrated with a resin to form a detection end of a concentration detector immersed in a sample solution.
3 . 請求項 1 あるいは請求項 2に記載の濃度計において、 コィルが平板状の渦巻き状であることを特徵とする濃度計。  3. The densitometer according to claim 1 or 2, wherein the coil has a flat spiral shape.
4 . 請求項 3に記載の濃度計において、  4. The densitometer according to claim 3,
平板状の渦巻き状コィルが試料液中に浸漬される濃度検出器の検 出端部の端面に平行に配置されていることを特徵とする濃度計。  A densitometer characterized in that a flat spiral coil is disposed parallel to an end face of a detection end of a concentration detector immersed in a sample liquid.
5 . 請求項 3に記載の濃度計において、  5. The densitometer according to claim 3,
平板状の渦巻き状コィルが試料液中に浸漬される濃度検出器の検 出端部の端面から垂直に突き出すように配置されていることを特徴 とする濃度計。  A densitometer characterized in that a flat spiral coil is disposed so as to protrude vertically from an end face of a detection end of a concentration detector immersed in a sample liquid.
6 . 請求項 1 あるいは請求項 2に記載の濃度計において、 コイルがリ ング状であることを特徴とする濃度計。  6. The densitometer according to claim 1 or 2, wherein the coil has a ring shape.
7 . 請求項 1 乃至請求項 6のいずれかに記載の濃度計であって、 濃度検出器が、 試料液を内包する機材への取り付けとともに、 機 材内部を密封するための装着部材を更に有することを特徵とする濃 度計。  7. The concentration meter according to any one of claims 1 to 6, wherein the concentration detector further includes a mounting member for sealing the inside of the device while attaching the device to the device containing the sample liquid. A densitometer that specializes in this.
8 . 請求項 1 乃至請求項 7のいずれかに記載の濃度計であって、 濃度測定の指示および調整のための指示 · 調整部を収納する箱体 と、 該箱体の前面に一体に形成された該指示 ·調整部を取り付ける ための取り付け部材とを更に有することを特徴とする濃度計。 8. The densitometer according to any one of claims 1 to 7, wherein Instructions for concentration measurement and instructions for adjustment · A box accommodating the adjustment unit, and a mounting member integrally formed on the front surface of the box for attaching the instruction · adjustment unit. Densitometer.
PCT/JP1993/001816 1992-12-15 1993-12-15 Densitometer WO1994014056A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU57145/94A AU5714594A (en) 1992-12-15 1993-12-15 Densitometer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP33461992 1992-12-15
JP4/334619 1992-12-15

Publications (1)

Publication Number Publication Date
WO1994014056A1 true WO1994014056A1 (en) 1994-06-23

Family

ID=18279407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/001816 WO1994014056A1 (en) 1992-12-15 1993-12-15 Densitometer

Country Status (3)

Country Link
AU (1) AU5714594A (en)
TW (1) TW295621B (en)
WO (1) WO1994014056A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013009251A1 (en) * 2011-07-08 2013-01-17 Imego Ab Method to use a probe to monitor interfacial changes of capacitance and resistance
JP2017053716A (en) * 2015-09-09 2017-03-16 シャープ株式会社 Sensor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60135753A (en) * 1983-12-23 1985-07-19 Koa Sangyo Kk Noncontacting moisture detector
JPS60161554A (en) * 1984-02-01 1985-08-23 Furuno Electric Co Ltd Salinometer
JPH0284155A (en) * 1989-05-02 1990-03-26 Togami Electric Mfg Co Ltd Method for controlling salt concentration of mixture of raw laver in storage tank

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60135753A (en) * 1983-12-23 1985-07-19 Koa Sangyo Kk Noncontacting moisture detector
JPS60161554A (en) * 1984-02-01 1985-08-23 Furuno Electric Co Ltd Salinometer
JPH0284155A (en) * 1989-05-02 1990-03-26 Togami Electric Mfg Co Ltd Method for controlling salt concentration of mixture of raw laver in storage tank

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Microfilm of the Specification and Drawings Annexed to the Written Application of Japanese Utility Model Application No. 93986/1985, (Laid-Open No. 8443/1987), (Omron Corp.), 21 January 1977. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013009251A1 (en) * 2011-07-08 2013-01-17 Imego Ab Method to use a probe to monitor interfacial changes of capacitance and resistance
JP2017053716A (en) * 2015-09-09 2017-03-16 シャープ株式会社 Sensor device

Also Published As

Publication number Publication date
TW295621B (en) 1997-01-11
AU5714594A (en) 1994-07-04

Similar Documents

Publication Publication Date Title
KR100216646B1 (en) Electronic flow meter
US4204427A (en) Device for the capacitive level height measurement of liquids or solids
JP2006506621A (en) Non-contact type surface conductivity measurement probe
US4733560A (en) Liquid sensing system
US20230168114A1 (en) Magnetically inductive flow measuring device and method for determining a fill level
KR102190189B1 (en) Electronic flow meter
JPH0238988A (en) Liquid sensor
US5266899A (en) Salt analyzer switchably capable of employing contact and non-contact conductivity probes
KR100518896B1 (en) Distance measuring IC
US4357835A (en) Electromagnetic flowmeter in shielded lines
WO1994014056A1 (en) Densitometer
CN113758823B (en) Integrated type pollutant measurement quartz crystal microbalance
JP4532357B2 (en) Concentration measuring device
JP2005147779A (en) Liquid level sensor
US2724798A (en) Apparatus for measuring characteristics of materials
CN110646061A (en) Double-path redundant intelligent calibration radio frequency admittance anti-overflow liquid level meter and measurement method thereof
KR20230044932A (en) Apparatus for sensing water level and electrical conductivity, apparatus for sensing electrical conductivity, apparatus for generating hydrogen, method for sensing water level and electrical conductivity, and method for sensing electrical conductivity
KR100511624B1 (en) Sheet resistance measuring instrument of non contact
JPS60186751A (en) Ph meter
JPH07209228A (en) Concentration meter
JP3065114B2 (en) Method and apparatus for balancing a displacement transducer measurement sequence by eddy current measurement
Light et al. Electrodeless conductivity
WO2000034794A1 (en) Volume charge density measuring system
RU2054685C1 (en) Device for measuring electric conductivity and density of liquid electrolytes
JPH0227974Y2 (en)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BB BG BR BY CA CZ FI HU JP KR KZ LK LV MG MN MW NO NZ PL RO RU SD SK UA US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA