WO1994013941A1 - Procede pour moteur a combustion - Google Patents
Procede pour moteur a combustion Download PDFInfo
- Publication number
- WO1994013941A1 WO1994013941A1 PCT/FI1993/000536 FI9300536W WO9413941A1 WO 1994013941 A1 WO1994013941 A1 WO 1994013941A1 FI 9300536 W FI9300536 W FI 9300536W WO 9413941 A1 WO9413941 A1 WO 9413941A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- kinetic pump
- engine process
- combustion engine
- medium
- cylinder space
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B47/00—Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/005—Exhaust driven pumps being combined with an exhaust driven auxiliary apparatus, e.g. a ventilator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/12—Control of the pumps
- F02B37/16—Control of the pumps by bypassing charging air
- F02B37/164—Control of the pumps by bypassing charging air the bypassed air being used in an auxiliary apparatus, e.g. in an air turbine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B43/00—Engines characterised by operating on gaseous fuels; Plants including such engines
- F02B43/02—Engines characterised by means for increasing operating efficiency
- F02B43/04—Engines characterised by means for increasing operating efficiency for improving efficiency of combustion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D19/00—Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D19/06—Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
- F02D19/08—Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
- F02D19/082—Premixed fuels, i.e. emulsions or blends
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M25/00—Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2430/00—Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
- F01N2430/04—Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by adding non-fuel substances to combustion air or fuel, e.g. additives
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B3/00—Engines characterised by air compression and subsequent fuel addition
- F02B3/06—Engines characterised by air compression and subsequent fuel addition with compression ignition
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/30—Use of alternative fuels, e.g. biofuels
Definitions
- the present invention is closely but not solely related to combustion engine processes with ignition by compression, particularly the so-called diesel process.
- fuel is injected at the beginning of the working phase to the combustion gas compressed to a high pressure by the piston in the cylinder space.
- Injection of fuel into the cylinder space under a high pressure is problematic in many respects.
- the injection of the fuel must take place at precisely defined points of time, synchronised with the movements of the piston.
- the injection of the fuel is particularly problematic when, for producing a pressure in the fuel to be injected, pumps are used which operate by the principle of positive displace ⁇ ment, because a circulation arrangement must be provided for the pressurized fuel.
- blow arrangements are known which are used to transfer a gaseous medium to the combustion process.
- the aim of the present invention to present an improved method for combustion engine processes, whereby a combination of liquid maximn is fed into the cylinder space, at least fuel and possibly also a liquid medium increasing the efficiency of the combus- tion engine process or active in the process or effective in the combustion result in another way.
- the main purpose of the invention is to raise the state of art in the field, whereby the method can be used to secure the continuous action of the combus- tion engine process with no disturbances.
- the method of the invention is primarily characterized in that a kinetic pump is used in connection with the work stage in feeding at least one liquid medium of the medium combination.
- the liquid medium can be fed by very simple control operations.
- the disadvantages of known techniques are avoided.
- an impulse-free fuel injection which is easily controlled with respect to time, is achieved without pressure accumulators.
- pressure strokes caused in the medium injection system are insignificant, because they are only caused at the stage when the means for controlling the injection of the medium is closed.
- the control system required for maintaining the pressure of the liquid medium is simple.
- the method of the invention is characterized in that the liquid medium is fed into the cylinder space at least during the operational stage in a way that the control system in connection with the combustion engine process is used to open the on/off valve means between the kinetic pump and the cylinder space.
- the method of the invention is characterized in that the power source of the kinetic pump is a gaseous medium, preferably a gaseous medium used and/or produced in the combustion engine process.
- the power source of the kinetic pump is a gaseous medium, preferably a gaseous medium used and/or produced in the combustion engine process.
- part of the compressed air is led to the driving unit of the kinetic pump to be used as the power source of the kinetic pump.
- the dimensions of the compressor unit can be arranged in a way that part of the com- pressed air can be used as the power source of the kinetic pump in addition to the fact that part, most often a major part, of the compressed air is used as the combustion air of the combustion engine process, particularly in processes with ignition by compression.
- the power source of the kinetic pump can be exhaust gases of the combustion engine process instead of, or in addition to, compressed air. This option is one alternative in the design of a combustion engine process applying the method of the invention.
- one advantageous embodiment is that at least one turbine unit is arranged in a transmission connection with the kinetic pump, through which unit the said gaseous medium is conveyed.
- one particularly advantageous liquid medium for use in the method is diesel oil used in the diesel process.
- the method of the invention can be applied in the Otto process, whereby said at least one liquid medium fed into the cylinder space is a mixture of gasoline and/or corresponding fuel suitable for the Otto-cycle engine process.
- the said at least one fluid medium used for feeding into the cylinder space is at least one medium making the combustion engine process more effective, particularly by limiting the exhaust gas emissions, such as nitrogen oxide emissions.
- the exhaust gas emissions such as nitrogen oxide emissions.
- nitrogen oxide emissions particularly in combustion engine processes based on ignition by compression, such as in the diesel process, one difficult problem has been the high nitrogen oxide (N0 ⁇ ) contents of the exhaust gases.
- N0 ⁇ nitrogen oxide
- the method of the invention it is possible to provide separate injection of additives reducing nitrogen oxide emissions, particularly at the beginning of and/or during the operation, to increase the efficiency of the combustion process and thus to reduce the exhaust gas emissions. It is obvious that the method of the invention can also be applied in the feeding of other media used in the combustion engine process.
- the kinetic pump used is a centrifugal pump and/or a pump driven on Pitot's principle.
- the kinetic pump refers in general to a non-displacement pump.
- This kind of a pump is characterized in that its pressure side can be compressed during its opera ⁇ tion, and it can even be closed without damage to the pump or a need for an internal by-pass circulation during throttling or closing.
- the pump functioning on the kinetic principle and/or the actuator on the same shaft must have a very high rotational speed, e.g. more than 10 000 rpm.
- Fig. 1 shows schematically the main principle of the method according to the invention
- Figs. 2—4 show also schematically some advantageous embodiments of the method according to the method. ' '
- FIG. 1 shows schematically the main principle of the method according to the invention.
- the structure shown in Fig. 1 comprises two cylinders la, lb with each a piston 3a, 3b moving in the cylinder spaces 2a, 2b.
- the left piston 3a is beginning the work stage and still moving upwards at the beginning of ignition by compression, and the right piston 3b is moving downwards at the end of the work stage.
- the cylinder spaces 2a, 2b are coupled with a fuel feeding arrangement 4 comprising valve means 5a, 5b connected to both cylinders, particularly injection nozzles operating on the electromagnetic principle.
- the valve means 5a, 5b comprise nozzle heads, through which a fluid medium is injected to the respective cylinder space 2a or 2b.
- the valve means 5a, 5b are connected by means of a tubing or the like 6 to a kinetic pump 7 coupled with an actuator 8.
- the kinetic pump 7 is further connected by a tubing 6 to a tank 9 of the fuel to be injected.
- the fuel feeding arrangement 4 comprises also a control system 10 controlling e.g. by means of an electric or corresponding control 11 the opening and closing of the valve means 5a, 5b in a synchronized manner by the on-off principle so that the injection (cylinder space 2a) takes place at the beginning of or during the operational stage, as shown by lines 12 in Fig. 1. As shown in Fig.
- the kinetic pump particularly a centrifugal pump and/or a pump driven on Pitot's principle, does not require a separate circulation arrangement, and the system will operate even though both valve means are some ⁇ times closed simultaneously.
- the actuator 8 can be e.g. an electric alternating- or direct-current motor, as shown in Fig. 1.
- Other alternative actuator arrange ⁇ ments are shown particularly in the appended Figs. 2 to 4.
- the fuel feeding arrangement 4 is in the embodi ⁇ ment of Fig. l intended particularly for injection of diesel oil.
- Figure 2 shows an embodiment of the method according to the invention, using combustion air compressed in a combustion engine process on the principle of igni ⁇ tion by compression, particularly in a diesel process.
- a shaft 13 provided with bearings 12 and coupled with a compressor unit 14 and a turbine unit 15, is arranged in connection with the cylinder 1, the cylinder space 2 and the piston 3.
- the compressor unit 14 is connected by a main line 16 to the cylinder space 2 for feeding the combustion air to the cylinder space.
- the cylinder 1 is equipped with a valve means 5, a tubing 6 as well as a control system 10, by which the injection of the diesel fuel into the cylinder space 2 is arranged in this embodiment e.g. by an arrangement of Fig. 1.
- the fuel feeding arrangement 4 is par ⁇ ticularly provided with a kinetic pump 7 for additional injection of a medium for making the combustion engine process more effective.
- the medium injected by the kinetic pump 7 can be particularly an additive for reducing nitrogen oxide emissions.
- the additive is fed by the kinetic pump via the feeding line 17 to the cylinder space 2.
- the feeding line 17 is provided with a valve means 18, opened and closed by a control arrangement 10 in a manner that the injection of the medium into the cylinder space 2 takes place in a synchronized manner, particularly so that the medium is injected into the cylinder space 2 during the work stage.
- the second valve means 18 can be an electrically controlled valve means operating by the on-off prin- ciple, particularly an electromagnetic valve which is controlled by the control system 10 via an electric control line 19. It should be noted that the two extended lines shown in Fig. 2 by three broken lines extending from the control system 10 illustrate the possibility of synchronized control by the control system of the engine, in this case with four cylinders (broken lines 11' and 19').
- the power source of the actuator 8 is part of the compressed combustion air produced by the compressor unit 14.
- the main line 16 is provided with a tapping line 20, whereby part of the compressed combustion air is conveyed to the second turbine unit 21 in the actuator 8, connected by bearings 22 and a shaft 23 for use as the driving unit of the kinetic pump.
- the tapping line 20 is provided with e.g. an electromotor- controlled control valve 24, whereby the efficiency of the second turbine unit can be controlled.
- the turbine unit 15 is connected to the exhaust gas outlet 28, and the exhaust gas outlet 28 is further connected after the turbine unit 15 to the outlet 25 of the second turbine unit 21.
- the actuator 8 (Fig. 1) comprises a third turbine unit 29 using exhaust gas as the power source.
- a tapping line 30 is formed in the exhaust gas outlet 28.
- the embodiment shown in Fig. 3 corresponds substan ⁇ tially to the embodiment of Fig. 2.
- the tapping line 30 can be equipped with a valve corresponding with the valve 24 of Fig. 2 as well as with an arrangement corresponding to the actuator unit 26 and the connector means 27. These alternatives, being part of the know-how of a profes- sional in the field, are omitted in this context for simplifying the schematic view.
- the kinetic pump 7 is arranged to inject a medium for increasing the efficiency of the combustion engine process into the cylinder space 2.
- Fig. 4 shows another embodiment of the method according to the invention, whereby the kinetic pump 7 is placed coaxially (shaft 31) with the common shaft 13 of the compressor unit 14 and the turbine unit 15.
- the kinetic pump 7, which is provided in duplicate, is in this context intended for use as a fuel injection pump 7a on one hand and as a pump 7b for injecting a medium for increasing the effiency of the combustion engine process on the other hand.
- the reference numbers in Fig. 4 cor ⁇ respond particularly to the reference numbers of Figs. 1 and 2.
- the method of the invention can be modified within the scope of the basic idea even to a considerable degree, particularly by combining the single solutions shown in Figs. 1 to 4 into a combina ⁇ tion needed for each use.
- a gaseous medium used and/or produced in the combustion engine process is used as the power source of the actuator 8 upon feeding fuel into the combustion engine process
- the combination of the kinetic pump 7 and the actuator 8 must be provided with a separate actuator unit 26, such as an electric motor (shown by broken lines in Fig. 2 ) , for use particularly at starting up the combustion engine process.
- One par ⁇ ticular advantage of the method is the fact that the apparatus for applying the method can be constructed so that the leakages from the mechanical outlets remain within the process; in other words, e.g. the sealings of the driving shaft of the pump leak through the shaft space to the turbine space and from there out through the normal outlet of the process. Conse- quently, there are no leaks in the machine space.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Supercharger (AREA)
Abstract
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP94901972A EP0774056A1 (fr) | 1992-12-15 | 1993-12-14 | Procede pour moteur a combustion |
AU56520/94A AU5652094A (en) | 1992-12-15 | 1993-12-14 | Method in a combustion engine process |
FI952909A FI952909A (fi) | 1992-12-15 | 1995-06-14 | Menetelmä polttomoottoriprosessissa |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FI925685 | 1992-12-15 | ||
FI925685A FI925685A0 (fi) | 1992-12-15 | 1992-12-15 | Foerfarande i foerbraenningsmotorprocess |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1994013941A1 true WO1994013941A1 (fr) | 1994-06-23 |
Family
ID=8536397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FI1993/000536 WO1994013941A1 (fr) | 1992-12-15 | 1993-12-14 | Procede pour moteur a combustion |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0774056A1 (fr) |
AU (1) | AU5652094A (fr) |
FI (1) | FI925685A0 (fr) |
WO (1) | WO1994013941A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997042405A1 (fr) * | 1996-05-04 | 1997-11-13 | Degussa Aktiengesellschaft | Procede permettant de reduire la teneur en suies dans les gaz d'echappement d'un moteur et dispositif approprie pour mettre ledit procede en oeuvre |
FR2849895A1 (fr) * | 2003-01-13 | 2004-07-16 | Renault Sa | Dispositif de reglage du taux de compression d'un moteur thermique suralimente |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE918299C (de) * | 1940-03-02 | 1954-09-23 | Daimler Benz Ag | Regelung einer mit einem Betriebsbrennstoff und einem Zuendbrennstoff betriebenen Brennkraftmschinen |
SE343920B (fr) * | 1968-11-11 | 1972-03-20 | Plessey Co Ltd | |
FR2478746A1 (fr) * | 1980-03-24 | 1981-09-25 | Peugeot | Dispositif d'alimentation a double carburant pour moteur a combustion interne a injection |
EP0079736A1 (fr) * | 1981-11-12 | 1983-05-25 | Kenji Watanabe | Moteur à combustion interne pour gaz hydrogène |
US4714065A (en) * | 1984-08-14 | 1987-12-22 | Latimer N.V. | Method and device for supplying fuel and air to an internal combustion engine |
US4955326A (en) * | 1989-04-12 | 1990-09-11 | Cooper Industries, Inc. | Low emission dual fuel engine and method of operating same |
-
1992
- 1992-12-15 FI FI925685A patent/FI925685A0/fi not_active Application Discontinuation
-
1993
- 1993-12-14 WO PCT/FI1993/000536 patent/WO1994013941A1/fr not_active Application Discontinuation
- 1993-12-14 EP EP94901972A patent/EP0774056A1/fr not_active Withdrawn
- 1993-12-14 AU AU56520/94A patent/AU5652094A/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE918299C (de) * | 1940-03-02 | 1954-09-23 | Daimler Benz Ag | Regelung einer mit einem Betriebsbrennstoff und einem Zuendbrennstoff betriebenen Brennkraftmschinen |
SE343920B (fr) * | 1968-11-11 | 1972-03-20 | Plessey Co Ltd | |
FR2478746A1 (fr) * | 1980-03-24 | 1981-09-25 | Peugeot | Dispositif d'alimentation a double carburant pour moteur a combustion interne a injection |
EP0079736A1 (fr) * | 1981-11-12 | 1983-05-25 | Kenji Watanabe | Moteur à combustion interne pour gaz hydrogène |
US4714065A (en) * | 1984-08-14 | 1987-12-22 | Latimer N.V. | Method and device for supplying fuel and air to an internal combustion engine |
US4955326A (en) * | 1989-04-12 | 1990-09-11 | Cooper Industries, Inc. | Low emission dual fuel engine and method of operating same |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997042405A1 (fr) * | 1996-05-04 | 1997-11-13 | Degussa Aktiengesellschaft | Procede permettant de reduire la teneur en suies dans les gaz d'echappement d'un moteur et dispositif approprie pour mettre ledit procede en oeuvre |
FR2849895A1 (fr) * | 2003-01-13 | 2004-07-16 | Renault Sa | Dispositif de reglage du taux de compression d'un moteur thermique suralimente |
Also Published As
Publication number | Publication date |
---|---|
AU5652094A (en) | 1994-07-04 |
FI925685A0 (fi) | 1992-12-15 |
EP0774056A1 (fr) | 1997-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8596230B2 (en) | Hydraulic internal combustion engines | |
KR101602841B1 (ko) | 파일럿 오일 분사용 및 자기 점화 내연 기관의 연소실로의 가스 연료 분사용 연료 밸브 | |
CN103080525B (zh) | 燃气发动机 | |
US5339632A (en) | Method and apparatus for increasing the efficiency of internal combustion engines | |
EP2406479B1 (fr) | Moteur à allumage par compression à double carburant et procédés | |
US7201128B2 (en) | Fuel supply system for internal combustion engine with direct fuel injection | |
EP1198663B1 (fr) | Groupe propulseur a turbine a gaz haute pression employant un compresseur a pistons haute pression | |
US8613269B2 (en) | Internal combustion engine with direct air injection | |
JPS58113536A (ja) | 低温液体の蒸発ガスを複式ガス/油燃焼デイ−ゼル機関に利用する方法と装置 | |
GB2401402A (en) | Reversible internal combustion rotary engine | |
US20030140902A1 (en) | CNG direct-injection into IC engine | |
GB2211551A (en) | I.c. engine with fuel injection by compressed stored gas | |
KR0165563B1 (ko) | 피스톤 기관형 연소기관 | |
AU713009B2 (en) | Internal combustion engines | |
EP0774056A1 (fr) | Procede pour moteur a combustion | |
RU2689239C1 (ru) | Топливный клапан и способ впрыска газообразного топлива в камеру сгорания большого двухтактного двигателя внутреннего сгорания с турбонаддувом с воспламенением от сжатия | |
JP3249226B2 (ja) | トーチ点火式ガスエンジンの燃料ガス供給装置 | |
GB2312245A (en) | Engine braking decompression valve actuation system for a multi-cylinder fuel-injected i.c. engine | |
EP0825337B1 (fr) | Méthode pour le démarrage d'un moteur à combustion interne | |
CN117988974B (zh) | 大型涡轮增压二冲程单流十字头内燃机及用于运行该内燃机的方法 | |
CN113924414A (zh) | 用于启动内燃发动机的运行的方法 | |
EP4001628A1 (fr) | Procédé de contrôle d'injection dans un moteur à combustion | |
JPH08165967A (ja) | 燃料噴射装置 | |
KR930007546B1 (ko) | 엔진의 흡 배기압력을 이용한 보기구동장치 | |
UA20079C2 (uk) | Пристрій для полегшеhhя пуску високофорсоваhого дизеля з hизьким ступеhем стиску |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU CA FI JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 952909 Country of ref document: FI |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1994901972 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref country code: US Ref document number: 1995 454287 Date of ref document: 19950803 Kind code of ref document: A Format of ref document f/p: F |
|
NENP | Non-entry into the national phase |
Ref country code: CA |
|
WWP | Wipo information: published in national office |
Ref document number: 1994901972 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1994901972 Country of ref document: EP |