WO1994013742A1 - Stable plastisol - Google Patents

Stable plastisol Download PDF

Info

Publication number
WO1994013742A1
WO1994013742A1 PCT/JP1993/001760 JP9301760W WO9413742A1 WO 1994013742 A1 WO1994013742 A1 WO 1994013742A1 JP 9301760 W JP9301760 W JP 9301760W WO 9413742 A1 WO9413742 A1 WO 9413742A1
Authority
WO
WIPO (PCT)
Prior art keywords
plastisol
compound
weight
polymer
parts
Prior art date
Application number
PCT/JP1993/001760
Other languages
French (fr)
Japanese (ja)
Inventor
Soichi Muroi
Original Assignee
W.R. Grace & Co. - Conn.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by W.R. Grace & Co. - Conn. filed Critical W.R. Grace & Co. - Conn.
Priority to AU55756/94A priority Critical patent/AU5575694A/en
Publication of WO1994013742A1 publication Critical patent/WO1994013742A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers

Definitions

  • the present invention relates to a non-vinyl chloride plastisol that can withstand long-term room temperature storage.
  • a plastisol is a liquid or paste-like product made by dispersing polymer particles in a liquid plasticizer and adding a filler and other additives as necessary.
  • the material becomes a soft solid at room temperature by heating. Change. That is, the polymer particles maintain their original shape without dissolving or swelling in the plasticizer when stored at room temperature, but quickly absorb the plasticizer and gel when heated. Utilizing this property, which is suitable for painting and bonding, plastisols are usefully used in fields such as transportation vehicles, ships, toys, and processed textile products.
  • vinyl chloride polymer By far the best polymer for plastisols is vinyl chloride polymer. This polymer provides a stable plastisol for more than a few months at room temperature, with the most common dioctyl phthalate as the plasticizer. The soft plastic obtained by heating this vinyl chloride-based plastisol is tough.
  • problems of vinyl chloride polymer products have come to be increasingly highlighted. In other words, when vinyl chloride polymer products are incinerated, hydrochloric acid and dioxin are generated, but these substances are both harmful to the human body and not only severely pollute the environment, but also have the problem that hydrochloric acid corrodes incineration equipment. . From this perspective, there is a movement to exclude vinyl chloride polymers from products that may enter municipal solid waste. Vinyl chloride It is natural that luplastisol is also included in them.
  • Yet another object of the present invention is to provide a method for producing a plastisol having the characteristics described above.
  • the plastisol according to the present invention comprises 100 parts by weight of copolymer particles having a number average particle diameter of 0.1 to 100 m dispersed in 50 to 200 parts by weight of a plasticizer.
  • a copolymer is formed from 3 to 20 parts by weight of an unsaturated carboxylic acid compound and 97 to 80 parts by weight of a polymerizable unsaturated compound, and at least 10% of its carboxyl groups are neutralized with an alkaline metal compound. It is characterized by having.
  • Another embodiment of the present invention comprises the following steps:
  • the present invention relates to a method for producing a plastisol, comprising the steps of:
  • the ratio of the unsaturated carboxylic acid compound to the polymerizable unsaturated compound constituting the copolymer is 3 to 20 parts by weight of the unsaturated carboxylic acid compound per 97 to 80 parts by weight of the polymerizable unsaturated compound, preferably polymerizable.
  • the amount is from 4 to 12 parts by weight of the unsaturated carboxylic acid compound to 96 to 88 parts by weight of the unsaturated compound.
  • the unsaturated carboxylic acid compound is a single compound Or a mixture of two or more different compounds.
  • the polymerizable unsaturated compound may be a single compound or a mixture of two or more different compounds.
  • the viscosity stability of the obtained plastizol becomes poor, while if the relative amount of the unsaturated carboxylic acid exceeds 20 parts by weight, Film formation is poor.
  • Examples of the polymerizable unsaturated compound which can be used as a monomer constituting the copolymer particles of the blastisol of the present invention include styrene and its derivatives, for example, methyl styrene; methacrylate and acrylate, for example, methyl methacrylate.
  • Vinyl esters such as vinyl acetate, vinyl propionate, vinyl butyrate, vinyl valerate, vinyl propronate, vinyl enanthate, vinyl prillate and vinyl pelargonate; acrylonitrile and methacrylonitrile; and butadiene. No. These polymerizable unsaturated compounds may be used alone or as a mixture.
  • Examples of unsaturated carboxylic oxide compounds that provide the other monomer constituting the copolymer particles include acrylic acid, methacrylic acid, maleic acid and its monoester, itaconic acid and its monoester, fumaric acid and its monoester. Is received.
  • the copolymer particles according to the invention can be produced by emulsion polymerization or suspension polymerization.
  • Emulsion polymerization consists of 0.2 to 2% by weight of emulsifier and 0.05 to 5% by weight based on the total monomers. % Of the polymerization initiator is heated to 50 to 95 ° C. while stirring, and 25 to 60% by weight of the monomer is added thereto. It takes 3 to 8 hours to complete the polymerization.
  • polymerization initiators can be used in emulsion polymerization, for example, ammonium persulfate, sodium persulfate, potassium persulfate, hydrogen peroxide, t-butyl hydroperoxide, etc.
  • Water-soluble initiator the combination of such a water-soluble initiator with an oil-soluble initiator such as benzoyl peroxide, lauroyl peroxide, cumenehydropoxide, diazobisisobutyronitrile, and azobisdimethylnorelonitrile.
  • a combination of a water-soluble initiator or an oil-soluble initiator with a reducing agent such as sodium sulfite, ammonium sulfite, ferrous oxide, cuprous oxide, sorbic acid, and sucrose.
  • the size of the copolymer particles obtained in one emulsion polymerization is not so large. The size depends on the selected monomer composition and the method used, but is at most about 0.05 to 0.3 m. Therefore, if larger particles are desired, it is necessary to perform seed polymerization.
  • seed polymerization a new emulsifier is added to the dispersion of the already polymerized copolymer particles, the emulsifier is added in an amount that does not generate cells, and then the polymerization initiator is added to the stabilized dispersion.
  • Monomer under the conditions described in The polymerization can be carried out by adding the mixture to a dispersion and polymerizing the mixture. According to this seed polymerization method, the particles can be enlarged almost as calculated. In order to increase the size of the particles as calculated, it is desirable to repeat the seed polymerization as little as possible.
  • the monomer having the oil-soluble initiator described above in the amount of 0.05 to 5% by weight based on the total amount of the monomer is added in the amount of 0.5 to 5% by weight based on the total amount of the monomer.
  • the mixture was vigorously stirred at a monomer concentration of 15 to 50% by weight to emulsify in water, and the milk obtained with gentle stirring was used.
  • the suspension can be carried out by heating the suspension at 50-95 for 3-8 hours to complete the polymerization.
  • water-soluble polymers examples include salts of polyvinyl alcohol, hydroxyethyl cellulose, sodium polyacrylate and styrene-maleic acid copolymer.
  • examples of the inorganic particles include calcium phosphate, calcium carbonate, magnesium hydroxide, talc, and clay.
  • surfactants include sodium stearate, sodium oleate, sodium laurate, sodium lauryl sulfate, sodium polyoxyethylene nonylphenyl ether sulfate, sodium dodecylbenzenesulfonate, dibutyl sulfo succinate.
  • examples include sodium acid, polyoxyethylene nonylphenyl ether, polyoxyethylene lauryl ether, polyoxyethylene oleyl ether, and polyoxyethylene sorbitan monolaurate.
  • the diameter of the resulting copolymer particles is much larger than that produced by emulsion polymerization.
  • the particle size obtained is from a few to a few hundred / zm.
  • seed polymerization cannot be applied to suspension polymerization, so it is impossible to control the diameter of copolymer particles after the first suspension polymerization is completed.
  • the carboxyl group of the polymer particles obtained by the method described above is obtained by adding an alkali metal compound to the polymer dispersion obtained by the emulsion polymerization or suspension polymerization described above at a temperature of 5 ° C to 95 ° C. Neutralized by addition at temperature and pH 7-14. In the neutralization, an alkaline metal compound is added in the form of an aqueous solution, and the temperature is preferably 15 to 30 ° C.
  • the polymer particles thus neutralized are dried into powdery plastisol polymer particles, usually by using a spray dryer.
  • the number average particle diameter of the particles (primary particles) produced by emulsion polymerization or suspension polymerization is usually 0.1 to 100 / zm, preferably 0.3 to 20 m. If the particle size is less than 0.1 m, the viscosity stability of a plastisol is poor.
  • the diameter of the particles obtained by spray drying ranges from a few meters to several hundreds / m, but these particles are secondary particles in which many primary particles are agglomerated. When these secondary particles are dispersed in the plasticizer, they are dispersed into the primary particles except for a part by stirring.
  • the optimum number average particle size is 0.1 0m to 100 lm, preferably 0.3 ⁇ ⁇ ⁇ ⁇ m. m ⁇ 20 ⁇ m.
  • alkali metal compounds examples include monovalent alkali metal compounds such as sodium hydroxide and hydroxide hydroxide; divalent alkali metal compounds such as water Calcium oxide, barium hydroxide, magnesium acetate, zirconium acetate, zinc ammonium chloride, zinc ammonium acetate, zirconium ammonium acetate and zirconium ammonium carbonate; trivalent alkaline metal compounds, Examples include aluminum hydroxide and basic aluminum acetate. Alkaline metals, which are divalent rather than monovalent, and trivalent than divalent, are preferred in that they provide excellent stability and a high heat resistance temperature and also increase the film formation temperature. Therefore, the type of alkaline metal used must be selected according to the purpose of the plastisol.
  • monovalent alkali metal compounds such as sodium hydroxide and hydroxide hydroxide
  • divalent alkali metal compounds such as water Calcium oxide, barium hydroxide, magnesium acetate, zirconium acetate, zinc ammonium chloride, zinc ammonium
  • the degree of neutralization of the carboxy group also has a significant effect on important plastisol performance.
  • the degree of neutralization depends on the type of unsaturated carboxylic acid compound used and the particle size of the polymer. For example, if the number average particle size of the styrene polymer particles copolymerized with 7% by weight of methacrylic acid is about 0.5 / zm, the degree of neutralization is about 18%.
  • the degree of neutralization is 73% when the number average particle diameter is about 0.7 m. This is probably because only the carboxyl groups on the surface or near the surface of the polymer particles can be neutralized by the alkaline metal compound, and the alkaline metal ions penetrate deep inside the particle and remove the lipoxyl groups there. It is probably because it cannot be neutralized.
  • the copolymer particles copolymerized with acrylic acid which is more hydrophilic, have a much higher degree of neutralization than the copolymer particles copolymerized with methacrylic acid.
  • the degree of neutralization need not necessarily be 100%, but in the plastisol of the present invention, at least 10% of the carboxy groups of the polymer must be neutralized. If the degree of neutralization is 10% or less, a plastisol having storage stability sufficient for practical use and a plastisol film having sufficient heat resistance cannot be obtained. In practice, it is preferable to have a degree of neutralization of 10 to 80%.
  • the secondary particles produced by spray drying be as easily dispersible as possible in the primary particles during plastisol preparation. This is because the secondary particles are porous and absorb plasticizers that are not related to fluidization, so that the amount of plasticizer used increases. As the use of plasticizer increases, the plastisol film becomes more flexible and less adaptable to applications requiring a tough film.
  • the spray drying temperature be as low as possible and the Tg of the polymer be as high as possible.
  • the spray drying temperature is at least 50 ° C, so the Tg of the polymer is of course limited. As mentioned above, the spray drying temperature should be at least 50 ° C.
  • the plastisol copolymer particles thus obtained are dispersed in a plasticizer to form a blastisol.
  • suitable plasticizers include di-2-ethylhexyl phthalate, dibutyl phthalate, diisooctyl phthalate, butylcyclohexyl phthalate, butyl octyl phthalate, diisononyl phthalate, dicapryl phthalate, and diisodecyl phthalate.
  • Phthalates such as ethates; adipates such as di-2-ethylhexyl adipate and diisodecyl adipate; sebacates such as di-2-ethylhexyl sebaguet; dioctylase Azelaic acid esters such as citrate; Phosphate esters such as resyl phosphate and tree 2-ethylhexyl phosphate; citrate esters such as tree 2-ethylhexyl citrate and acetyl tributyl site; glycerol diacetate monolau And epoxidized glycerides such as epoxidized soybean oil and epoxidized linseed oil.
  • Plasticizers affect plastisol flow, film formation and film properties. Basically, the compatibility of the plasticizer with the polymer is an important factor. If the compatibility is extremely poor, it will not melt and form a continuous film even when heated, but even if the compatibility is slightly poor, there will be practical problems such as the plasticizer oozing out of the film surface from inside after the film is formed. Occurs. Therefore, it is important to carefully consider the compatibility of the plasticizer with the polymer and carefully select it.
  • the amount of the plasticizer is usually in the range of 50 to 200 parts by weight based on 100 parts by weight of the plastisol polymer particles.
  • the fluidity and film properties of plastisols can be adjusted with various additives. If necessary or desired, the above properties are adjusted by adding additives such as surfactants, pigments, fillers, foaming agents and solvents.
  • additives such as surfactants, pigments, fillers, foaming agents and solvents.
  • the solvent is functionally the same as the plasticizer, but volatilizes after the film is formed, so that the fluidity of the plastisol can be improved without softening the formed film.
  • the addition of too much solvent impairs the characteristics of the plastisol, so the amount of solvent added should be kept within 10 parts by weight per 100 parts by weight of the plastisol polymer.
  • Parts are “parts by weight” unless otherwise indicated.
  • Comparative Example 1 200 g of styrene (hereinafter referred to as “St”) and 592 g of distilled water were charged into a 1,000 ml glass polymerization apparatus equipped with a stirrer and a reflux condenser, and alkyl diphenyle as an emulsifier was added thereto. Add 4 g of a 50% aqueous solution of sodium terdisulfonate (trade name: Verex SS-L, manufactured by Kao Corporation) and 4 g of a 10% aqueous solution of ammonium persulfate, and stir the mixture at 250 rpm. ° C. After heating for 4 hours, no reflux of styrene was observed.
  • St styrene
  • the reaction was continued under the same conditions for 2 hours to complete the polymerization.
  • the solid content of the polystyrene dispersion thus obtained was 24.5% by weight (polymerization rate: 97%).
  • the number average particle diameter was 0.05 when measured with an electrophoretic light scattering photometer ELS-800 manufactured by Otsuka Electronics Co., Ltd.
  • the polymer powder for plastisol thus obtained was dispersed in di-2-ethylhexyl phthalate (hereinafter referred to as "DOP") to make it into a plastisol. No dispersion of polymer particles was obtained.
  • DOP di-2-ethylhexyl phthalate
  • Comparative Example 1 The procedure of Comparative Example 1 was repeated using a mixed monomer of StZ methacrylic acid (hereinafter referred to as “MAA”) (93Z7) to obtain a StZMAA (93/7) copolymer dispersion.
  • MAA StZ methacrylic acid
  • the polymerization rate was 98%, and the number average particle diameter was 0.06 ⁇ m.
  • the polymer dispersion thus obtained was divided into three parts.
  • Comparative Example 2 one of them was used as is, in Comparative Example 3, the other was neutralized with sodium hydroxide, and in Comparative Example 4, the other was neutralized with calcium hydroxide. .
  • Hydroxylation For neutralization with sodium, the pH was adjusted to 9.5 by adding a 5% aqueous NaOH solution. The amount of sodium hydroxide added here was equivalent to the amount that neutralized 29% of the carboxyl groups of the copolymerized methacrylic acid.
  • calcium hydroxide was used, a saturated aqueous solution of calcium hydroxide was neutralized with an equivalent amount of sodium hydroxide.
  • concentration of the solid content was adjusted to 12.5%, and the obtained polymer dispersion was spray-dried under the same conditions as in Comparative Example 1 to obtain plastisol polymer particles.
  • the plastisol polymer particles thus obtained were dispersed in D0P to obtain plastizol.
  • Tables 1 and 2 summarize the amount of DOP added to make a plastisol, its initial viscosity, storage stability at 23 ° C (viscosity increase rate), minimum film formation temperature, heat resistance temperature, and film transparency. Shown.
  • the storage stability, minimum film formation temperature and heat resistance temperature were measured by the following methods.
  • the viscosity of plastisol was measured at room temperature (23 ° C) using a B-type rotary viscometer manufactured by Tokyo Keiki Co., Ltd. Since plastisols exhibit thixotropic properties, the viscosity was taken as the value when equilibrium was reached.
  • the storage stability was expressed as a ratio obtained by dividing the viscosity measured after leaving the plastisol at room temperature for a predetermined period of time by the viscosity immediately after the preparation of the plastisol (initial viscosity).
  • the plastisol was heated at 180 ° C for 20 minutes to make a plastisol sheet about 4 mm thick. Using this sheet as a sample, TMA (120 C ) was used to measure the heat resistance temperature. The measurement was carried out at a weight of 1 Og using a probe with a needle of 2 mm in diameter as a probe.
  • the sample sheet was cooled to 15 ° C, set, and heated at a rate of 4 ° CZ. Waiting for the temperature to rise to 0 ° C started the penetration and measured the penetration as a function of temperature. The penetration will remain at zero at the beginning of the temperature rise or only at a slow speed, but once the temperature exceeds the heat resistance temperature of the sample sheet, the speed will increase rapidly and the quartz glass And stopped.
  • the heat-resistant temperature was the temperature at which the probe penetrated 50% of the thickness of the sample sheet.
  • the particle size of the polymer particles was enlarged by a commonly used seed polymerization method. Since the surface tension of the unneutralized copolymer dispersion of Comparative Example 2 used as a seed was 65 dyne Zcm, a 10% aqueous solution of sodium alkyldiphenyl ether disulfonate was added first to reduce the surface tension of this surfactant. The surface tension below the critical micelle concentration of was reduced to 30 dyne / cm to stabilize the copolymer monodisperse, and then the concentration was adjusted to 20%.
  • Plastisol polymer particles were obtained by the method described in Comparative Example 2, and then DOP was blended with the polymer particles to obtain a plastisol. Performance related to this plastisol are shown in Tables 1 and 2.
  • Example 5 sodium hydroxide was used in Example 1 as in Comparative Example 3, and calcium hydroxide was used in Example 2 in the same manner as in Comparative Example 4.
  • the neutralized polymer particles were spray-dried into plastisol polymer particles, and the polymer particles were dispersed in D0P to form plastisols, and their properties were measured.
  • Tables 1 and 2 The results are shown in Tables 1 and 2.
  • Example 1 The plastisol polymer particles of Example 1 were dispersed in glycerol diacetate monolaurate (hereinafter referred to as "GDML") in place of D0P to obtain a plastisol.
  • GDML glycerol diacetate monolaurate
  • the plastisol polymer particles obtained in Examples 1 and 2 were each dispersed in diisononyl diphthalate (hereinafter, referred to as “D INP”) in place of DOP to obtain a plastisol.
  • D INP diisononyl diphthalate
  • the performance of the plastisol thus obtained is shown in Tables 1 and 2.
  • Examples 6 and 7 A StZMAA (96/4) copolymer dispersion was synthesized according to the two-stage seed polymerization method of Comparative Example 5, except that a mixed monomer of StZMAA (96/4) was used as the monomer.
  • the obtained copolymer dispersion was neutralized with sodium hydroxide in Example 6 as in Comparative Example 3, and neutralized with calcium hydroxide in Example 7 as in Comparative Example 4. Thereafter, the neutralized polymer particles were spray-dried to obtain blastisol polymer particles.
  • Various properties were measured as a plastisol by dispersing the polymer particles in D0P. The results are shown in Tables 1 and 2.
  • c Examples 8 and 9 A StZMAA (96/4) copolymer dispersion was synthesized according to the two-stage seed polymerization method of Comparative Example 5, except that a mixed monomer of StZMAA (96/4) was used as the monomer.
  • the obtained copolymer dispersion was neutralized with sodium hydroxide
  • a StZMAA (91/9) copolymer dispersion was synthesized according to the two-stage seed polymerization method of Comparative Example 5, except that a mixed monomer of St / MAA (91/9) was used as the monomer. did.
  • the obtained copolymer dispersion was neutralized with sodium hydroxide in Example 8 as in Comparative Example 3 and neutralized with calcium hydroxide in Example 9 as in Comparative Example 4. Thereafter, the neutralized polymer particles were spray-dried to obtain plastisol polymer particles. Then, various properties were measured by dispersing the polymer particles in DOP to form a plastisol. The results are shown in Tables 1 and 2.
  • a St / MAA (88/12) copolymer dispersion was synthesized according to the two-stage seed polymerization method of Comparative Example 5, except that a monomer mixture of StZMAA (88/12) was used as the monomer. .
  • the obtained copolymer dispersion was neutralized with sodium hydroxide in Example 10 in the same manner as in Comparative Example 3 and neutralized with calcium hydroxide in Example 11 in the same manner as in Comparative Example 4. Thereafter, the neutralized polymer particles were spray-dried to obtain plastisol polymer particles. Next, the polymer particles were dispersed in DOP to form plastisols, and their properties were measured. The result is a table This is shown in Table 1 and Table 2.
  • a StZMAA (85/15) copolymer dispersion was synthesized according to the two-stage seed polymerization method of Comparative Example 5, except that a mixed monomer of the monomer St / MAA (85/15) was used.
  • the obtained copolymer dispersion was neutralized with sodium hydroxide in Example 12 in the same manner as in Comparative Example 3, and neutralized with calcium hydroxide in Example 13 in the same manner as in Comparative Example 4.
  • the neutralized polymer particles were spray-dried to obtain plastisol polymer particles.
  • the polymer particles were dispersed in DOP to obtain plastisols, and their properties were measured. The results are shown in Tables 1 and 2.
  • a StZAA (93/7) copolymer dispersion was synthesized according to the two-stage seed polymerization method of Comparative Example 5, except that a mixed monomer of StZAA (93/7) was used as the monomer.
  • the obtained copolymer dispersion was neutralized with sodium hydroxide in Example 16 in the same manner as in Comparative Example 3 and neutralized with calcium hydroxide in Example 17 in the same manner as in Comparative Example 4. And then spray-dry the neutralized polymer particles To obtain plastisol polymer particles. Next, the polymer particles were dispersed in D0P to obtain plastisols, and their properties were measured. The results are shown in Tables 1 and 2.
  • MMA / MAA (93/7) was used according to the two-stage seed polymerization method of Comparative Example 5, except that a monomer mixture of methyl methacrylate (hereinafter referred to as “MMA”) / MAA (93/1) was used as the monomer.
  • a copolymer dispersion was synthesized. In the obtained copolymer dispersion, sodium hydroxide was used in Example 20 as in Comparative Example 3, and calcium hydroxide was used in Example 21 as in Comparative Example 4. After the addition, the neutralized polymer particles were spray-dried to obtain plastisol polymer particles. Next, the polymer particles were dispersed in acetyltributyl citrate (hereinafter referred to as "ATBC") to measure various properties as a plastisol. The results are shown in Tables 1 and 2.
  • ATBC acetyltributyl citrate
  • Example 22 epoxidized soybean oil (hereinafter, referred to as “ESB”) (Asahi Denka Kogyo Co., Ltd., Nedo, Adeiki Saiza 1-130P) was used.
  • ELS epoxidized soybean oil
  • the polymer particles were dispersed in (Adeiki Sizer 1-118 OA manufactured by Asahi Denka Kogyo Co., Ltd.) to form plastisols, and their properties were measured. The results are shown in Tables 1 and 2.
  • Example 4 298 1.00 1.58 2.03 90 63 Translucent Example 5 284 1.00 1.09 1.47 110 84 Translucent Example 6 50 1.00 1.62 2.21 80 59 Almost Transparent Example 7 80 1.00 1.33 l. 83 100 77 Translucent Example 8 218 1.00 ⁇ . 10 ⁇ , 22 100 71 Translucent Example 9 231 1. ⁇ ⁇ U. n 9oo 1. U4 130 95 Translucent Example 10 1 ⁇ 1
  • the higher the valence of the alkali metal used for neutralization the more effective.
  • the particle size the larger the particle size, the better the storage stability.
  • the number average particle size exceeds 0.3 m, the effect of improving the storage stability is not so remarkable.
  • the amount ratio of the unsaturated carboxylic acid compound in the copolymer is from 80 to 97 parts by weight of the polymerizable unsaturated compound and from 3 to 20 parts by weight, preferably from 20 to 97 parts by weight of the polymerizable unsaturated compound.
  • Unsaturated calcium based on 8 to 96 parts by weight The boronic acid compound is 4 to 12 parts by weight, and the primary particles have a number average particle diameter of 0.1! ! ⁇ 100 ⁇ m, preferably 0.3 ⁇ 20 ⁇ m.
  • Such a copolymer is made into a water-dispersed liquid, the carboxyl groups in the copolymer are neutralized with an alkali metal compound that provides a required heat-resistant temperature, and then the dispersion is spray-dried to obtain a plastisol polymer. Prolonged storage stability at room temperature is ensured by forming the particles into a plastisol with the addition of plasticizers and, where appropriate, additives.
  • a plastisol having a high level of storage stability, which cannot be achieved by the conventional technology, and a high heat resistance and excellent weather resistance are obtained by a polymer composition containing no chlorine.
  • a plastisol film can be provided.
  • This plastisol substitutes for applications in the fields of transport vehicles, ships, toys, and processed textile products, where vinyl chloride-based plastisols were conventionally used, and contributes not only to environmental pollution but also to its high heat resistance temperature. Utilizing the excellent weather resistance and the new technology, it is possible to develop new applications that have not been possible with vinyl chloride plastisols.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

A stable plastisol comprising 100 parts by weight of polymer particles dispersed in 50-200 parts by weight of a plasticizer, wherein the polymer is a copolymer composed of 3-20 parts by weight of an unsaturated carboxylic acid compound and 97-80 parts by weight of an ethylenically unsaturated compound and at least 10 % of the carboxyl groups have been neutralized by an alkali metal compound, and the particles have a number-average diameter of 0.1-100 νm.

Description

明 細 書 安定なプラスチゾル 技術分野  Description Stable plastisol Technical field
本発明は長期の室温貯蔵に耐える非塩化ビニル系プラスチゾルに関するもので める。  The present invention relates to a non-vinyl chloride plastisol that can withstand long-term room temperature storage.
発明の背景技術 BACKGROUND OF THE INVENTION
プラスチゾルとは、 ポリマー粒子を液状可塑剤に分散し、 必要に応じてフイラ 一およびその他の添加物を加えて製造される液状またはペースト状の製品であり、 加熱することにより室温で軟質の固体に変化する。 すなわちポリマー粒子は、 室 温の貯蔵では可塑剤に溶解したり、 膨潤することなく、 もとの形状を維持するが、 加熱すれば速やかに可塑剤を吸収してゲル化する。 塗装および接着に適したこの 性質を利用して、 プラスチゾルは輸送車両、 船舶、 玩具、 加工繊維製品などの分 野で有用に利用されている。  A plastisol is a liquid or paste-like product made by dispersing polymer particles in a liquid plasticizer and adding a filler and other additives as necessary.The material becomes a soft solid at room temperature by heating. Change. That is, the polymer particles maintain their original shape without dissolving or swelling in the plasticizer when stored at room temperature, but quickly absorb the plasticizer and gel when heated. Utilizing this property, which is suitable for painting and bonding, plastisols are usefully used in fields such as transportation vehicles, ships, toys, and processed textile products.
プラスチゾル用のポリマーとして圧倒的にすぐれているのは、 塩化ビニルポリ マ一である。 このポリマーは、 最も汎用的なジォクチルフタレートを可塑剤とし て、 室温において、 数力月以上にわたって安定なプラスチゾルを与える。 この塩 化ビニル系プラスチゾルを加熱して得られた軟質プラスチックは強靭である。 と ころが環境汚染に対する関心の高まりとともに、 塩化ビニルポリマー製品の問題 点がしだいに大きくクローズアップされるようになった。 すなわち、 塩化ビニル ポリマー製品を焼却すると塩酸とダイォキシンが発生するが、 これらの物質は共 に人体に有害であり、 環境をひどく汚染するばかりでなく、 特に塩酸は焼却設備 を腐食させるという問題がある。 こういった観点から、 都市ごみに入る可能性の ある製品から塩化ビニルポリマーを締め出すという動きが起きている。 塩化ビニ ルプラスチゾルもその中に含められるのは当然のことである。 By far the best polymer for plastisols is vinyl chloride polymer. This polymer provides a stable plastisol for more than a few months at room temperature, with the most common dioctyl phthalate as the plasticizer. The soft plastic obtained by heating this vinyl chloride-based plastisol is tough. However, with the growing interest in environmental pollution, the problems of vinyl chloride polymer products have come to be increasingly highlighted. In other words, when vinyl chloride polymer products are incinerated, hydrochloric acid and dioxin are generated, but these substances are both harmful to the human body and not only severely pollute the environment, but also have the problem that hydrochloric acid corrodes incineration equipment. . From this perspective, there is a movement to exclude vinyl chloride polymers from products that may enter municipal solid waste. Vinyl chloride It is natural that luplastisol is also included in them.
プラスチゾルそのものは非常に利用価値の高い製品であるから、 当然のことと して塩素を含まないプラスチゾル、 すなわち非塩化ビニル系のプラスチゾルを求 める声は高い。 だが塩化ビニルポリマーに匹敵する性能、 特に貯蔵安定性に優れ たプラスチゾルを与えるポリマー粒子の合成は非常に困難である。 単純なポリマ ーゃコポリマーの粒子では到底実用的な域に達せず、 さまざまな工夫が凝らされ ている。  Since plastisol itself is a very valuable product, there is a strong demand for plastisols that do not contain chlorine, that is, non-vinyl chloride plastisols. However, it is very difficult to synthesize polymer particles that give plastisols with performance comparable to that of vinyl chloride polymers, especially storage stability. Simple polymer-copolymer particles have never reached the level of practical use, and various efforts have been made.
プラスチゾル用のポリマー粒子として、 塩化ビニルポリマーに代わるものとし てはァクリルポリマーやスチレンポリマーが提案されている。 もちろん単純なァ クリルポリマーではプラスチゾル粒子としての要求を満たすことができないので、 いろいろな条件がつけられている。 ドイツ国特許第 2, 4 5 4 , 2 3 5号および 第 2 , 5 2 9 , 7 3 2号においては、 T gが 3 5 °C以上で、 それに関連して定ま る粒子径と粒子組成を規定したァクリルポリマー粒子が提案されている。 米国特 許第 4 , 0 7 1 , 6 5 3号においては、 可塑剤との相溶性に優れたコアと可塑剤 との相溶性に乏しいシヱルとから構成されるコア シヱル構造のァクリルポリマ 一粒子が提案されている。 また、 米国特許第 4 , 1 7 6 , 0 2 8号においては、 カルボキシル基またはアミノ基を含有するァクリルポリマー粒子を、 気相で揮発 性のアル力リまたは酸で中和したプラスチゾル用粒子が提案されており、 米国特 許第 4 , 6 1 3, 6 3 9号においては、 保護コロイドを結合したスチレンコポリ マープラスチゾル粒子が提案されている。 しかしながら、 いずれのものも貯蔵安 定性に関しては塩化ビニルポリマーの域には達していない。  As polymer particles for plastisols, acryl polymers and styrene polymers have been proposed as alternatives to vinyl chloride polymers. Of course, simple acrylic polymers cannot satisfy the requirements for plastisol particles, so various conditions are imposed. In German Patent Nos. 2, 454, 235 and 2, 529, 732, the particle size and the particle size determined in relation to T g above 35 ° C. Acryl polymer particles with a defined composition have been proposed. In U.S. Pat.No. 4,071,6563, acryl polymer particles having a core seal structure composed of a core having excellent compatibility with a plasticizer and a seal having poor compatibility with a plasticizer are disclosed. Proposed. In U.S. Pat. No. 4,176,028, plastisol particles obtained by neutralizing acryl polymer particles containing a carboxyl group or an amino group with a volatile gas or a volatile acid in the gas phase. US Pat. No. 4,613,639 proposes a styrene copolymer plastisol particle bonded with a protective colloid. However, none of them have reached the level of vinyl chloride polymers in terms of storage stability.
発明の目的 Purpose of the invention
本発明の目的は、 塩素を含まないポリマー組成を有し、 従来の技術では達成し 得なかった高水準の貯蔵安定性を有するプラスチゾルを提供することである。 本発明の他の目的は、 加熱することによって改良された耐熱性を有するプラス チゾルフイルムを得ることができるプラスチゾルを提供することである。 It is an object of the present invention to provide a plastisol having a chlorine-free polymer composition and having a high level of storage stability that could not be achieved with the prior art. Another object of the present invention is to provide a resin having improved heat resistance by heating. An object of the present invention is to provide a plastisol from which a thisol film can be obtained.
本発明の更に他の目的は、 上記記載の特徴を有するプラスチゾルを製造する方 法を提供することである。  Yet another object of the present invention is to provide a method for producing a plastisol having the characteristics described above.
発明の概要 Summary of the Invention
本発明に係るプラスチゾルは、 5 0〜2 0 0重量部の可塑剤中に分散されてい る 0. 1〜1 0 0 mの数平均粒子径を有するコポリマ一粒子 1 0 0重量部を含 み、 かかるコポリマーは不飽和カルボン酸化合物 3〜2 0重量部及び重合性不飽 和化合物 9 7〜8 0重量部とから形成され、 そのカルボキシル基の少なくとも 1 0 %がアルカリ性金属化合物で中和されていることを特徴とするものである。 本発明の他の態様は、 以下の工程:即ち  The plastisol according to the present invention comprises 100 parts by weight of copolymer particles having a number average particle diameter of 0.1 to 100 m dispersed in 50 to 200 parts by weight of a plasticizer. Such a copolymer is formed from 3 to 20 parts by weight of an unsaturated carboxylic acid compound and 97 to 80 parts by weight of a polymerizable unsaturated compound, and at least 10% of its carboxyl groups are neutralized with an alkaline metal compound. It is characterized by having. Another embodiment of the present invention comprises the following steps:
( i )不飽和カルボン酸化合物 3〜 2 0重量部と重合性不飽和化合物 8 0〜9 7 重量部とを、 重合開始剤の存在下、 5 0〜9 5 °Cの温度において、 水中で重合し てポリマー分散液を形成し;  (i) 3 to 20 parts by weight of an unsaturated carboxylic acid compound and 80 to 97 parts by weight of a polymerizable unsaturated compound in water at a temperature of 50 to 95 ° C in the presence of a polymerization initiator. Polymerize to form a polymer dispersion;
( ii)ポリマ一分散液のポリマーのカルボキシル基の少なくとも 1 0 %を、 5〜 9 5 °Cの温度及び 7〜1 4の p Hにおいてアルカリ性金属化合物で中和し;  (ii) neutralizing at least 10% of the carboxyl groups of the polymer of the polymer monodispersion with an alkaline metal compound at a temperature of 5 to 95 ° C. and a pH of 7 to 14;
(ffi)ポリマー分散液から、 0. 1〜1 0 0 / mの数平均粒子径を有するポリマ 一粒子を回収し;  (ffi) recovering polymer particles having a number average particle size of 0.1 to 100 / m from the polymer dispersion;
(iv)回収されたポリマー粒子を乾燥し;  (iv) drying the recovered polymer particles;
( V )乾燥されたポリマー粒子 1 0 0重量部を可塑剤 5 0〜2 0 0重量部中に分 散する;  (V) 100 parts by weight of the dried polymer particles are dispersed in 50 to 200 parts by weight of a plasticizer;
工程を含むことを特徴とするプラスチゾルの製造方法に関する。 The present invention relates to a method for producing a plastisol, comprising the steps of:
コポリマーを構成する不飽和カルボン酸化合物と重合性不飽和化合物の比率は、 重合性不飽和化合物 9 7〜8 0重量部に対して不飽和カルボン酸化合物 3〜2 0 重量部、 好ましくは重合性不飽和化合物 9 6〜8 8重量部に対して不飽和カルボ ン酸化合物 4〜1 2重量部である。 ここで不飽和カルボン酸化合物は単一の化合 物でも 2以上の異なる化合物の混合物でもよい。 また重合性不飽和化合物につい ても、 単一の化合物であつても 2以上の異なる化合物の混合物であつてもよい。 不飽和カルボン酸の相対量が 3重量部未満である場合には、 得られるプラスチゾ ルの粘度安定性が不良となり、 一方不飽和カルボン酸の相対量が 2 0重量部を超 える場合には、 フィルム形成が不良となる。 The ratio of the unsaturated carboxylic acid compound to the polymerizable unsaturated compound constituting the copolymer is 3 to 20 parts by weight of the unsaturated carboxylic acid compound per 97 to 80 parts by weight of the polymerizable unsaturated compound, preferably polymerizable. The amount is from 4 to 12 parts by weight of the unsaturated carboxylic acid compound to 96 to 88 parts by weight of the unsaturated compound. Here, the unsaturated carboxylic acid compound is a single compound Or a mixture of two or more different compounds. The polymerizable unsaturated compound may be a single compound or a mixture of two or more different compounds. If the relative amount of the unsaturated carboxylic acid is less than 3 parts by weight, the viscosity stability of the obtained plastizol becomes poor, while if the relative amount of the unsaturated carboxylic acid exceeds 20 parts by weight, Film formation is poor.
本発明のブラスチゾルのコポリマ一粒子を構成するモノマーとして用いること のできる重合性不飽和化合物の例としては、 スチレン及びその誘導体、 例えばひ —メチルスチレン;メタクリル酸エステル及びァクリル酸エステル、 例えばメチ ルメタクリレート又はァクリレート、 ェチルメタクリレート又はァクリレー卜、 イソプロピルメタクリレート又はアタリレート、 n—ブチルメタクリレート又は ァクリレート、 イソブチルメタクリレー卜又はァクリレー卜、 t e r t—プチル メタクリレート又はァクリレート、 n—ァミルメタクリレ一ト又はァクリレート、 イソアミルメタクリレート又はァクリレート、 n—へキシルメタクリレート又は ァクリレート、 2—ェチルへキシルメタクリレート又はァクリレート、 及び n— ォクチルメタタリレート又はァクリレート ; ビニルエステル、 例えば酢酸ビニル、 プロピオン酸ビニル、 酪酸ビニル、 吉草酸ビニル、 力プロン酸ビニル、 ェナント 酸ビニル、 力プリル酸ビニル及びペラルゴン酸ビニル;ァクリロニトリル及びメ タクリロ二トリノレ;及びブタジエンが挙げられる。 これらの重合性不飽和化合物 は単独で用いても混合物として用いてもよい。  Examples of the polymerizable unsaturated compound which can be used as a monomer constituting the copolymer particles of the blastisol of the present invention include styrene and its derivatives, for example, methyl styrene; methacrylate and acrylate, for example, methyl methacrylate. Or acrylate, ethyl methacrylate or acrylate, isopropyl methacrylate or acrylate, n-butyl methacrylate or acrylate, isobutyl methacrylate or acrylate, tert-butyl methacrylate or acrylate, n-amyl methacrylate or acrylate, isoamyl methacrylate or acrylate N-hexyl methacrylate or acrylate, 2-ethylhexyl methacrylate or acrylate, and n-octyl methacrylate Vinyl esters, such as vinyl acetate, vinyl propionate, vinyl butyrate, vinyl valerate, vinyl propronate, vinyl enanthate, vinyl prillate and vinyl pelargonate; acrylonitrile and methacrylonitrile; and butadiene. No. These polymerizable unsaturated compounds may be used alone or as a mixture.
コポリマー粒子を構成するもう一方のモノマーを与える不飽和カルボン酸化合 物の例としては、 アクリル酸、 メタクリル酸、 マレイン酸及びそのモノエステル、 ィタコン酸およびそのモノエステル、 フマル酸およびそのモノエステルが挙げら れる。  Examples of unsaturated carboxylic oxide compounds that provide the other monomer constituting the copolymer particles include acrylic acid, methacrylic acid, maleic acid and its monoester, itaconic acid and its monoester, fumaric acid and its monoester. Is received.
本発明に係るコポリマー粒子は乳化重合又は懸濁重合で製造することができる。 乳化重合は、 全モノマーに対して 0. 2〜2重量%の乳化剤と 0. 0 5〜5重量 %の重合開始剤を含んだ水をかき混ぜながら 5 0〜9 5 °Cに加熱し、 この中に 2 5〜6 0重量%のモノマーを添加することによって行うことができる。 重合の完 了には 3〜 8時間が必要である。 The copolymer particles according to the invention can be produced by emulsion polymerization or suspension polymerization. Emulsion polymerization consists of 0.2 to 2% by weight of emulsifier and 0.05 to 5% by weight based on the total monomers. % Of the polymerization initiator is heated to 50 to 95 ° C. while stirring, and 25 to 60% by weight of the monomer is added thereto. It takes 3 to 8 hours to complete the polymerization.
乳化重合において用いることのできる乳化剤の例としては、 ステアリン酸ナト リウム、 ォレイン酸ナトリウム、 ラウリン酸ナトリウム、 ラウリル硫酸ナトリウ ム、 ポリオキシエチレンノニルフヱニルエーテル硫酸ナトリウム、 ドデシルペン ゼンスルホン酸ナトリウム、 ジブチルスルホコハク酸ナトリウム、 ポリオキシェ チレンノニルフヱニルエーテル、 ポリオキシエチレンラウリルエーテル、 ポリオ キシエチレンォレイルエーテル、 ポリオキシエチレンソルビタンモノラウレ一ト、 ポリビニルアルコール、 ヒドロキシェチルセルロース、 ポリアクリル酸ナトリウ ム、 及びスチレン一マレイン酸共重合体のナトリウム塩が挙げられる。  Examples of emulsifiers that can be used in the emulsion polymerization include sodium stearate, sodium oleate, sodium laurate, sodium lauryl sulfate, sodium polyoxyethylene nonylphenyl ether sulfate, sodium dodecyl benzene sulfonate, dibutyl sulfosuccinic acid Sodium, polyoxyethylene nonylphenyl ether, polyoxyethylene lauryl ether, polyoxyethylene oleyl ether, polyoxyethylene sorbitan monolaurate, polyvinyl alcohol, hydroxyethyl cellulose, sodium polyacrylate, and styrene A sodium salt of a maleic acid copolymer may be used.
様々なタイプの重合開始剤を乳化重合において用いることができるが、 例を挙 げれば、 過硫酸アンモニゥム、 過硫酸ナトリウム、 過硫酸カリウム、 過酸化水素、 t一ブチルハイドロパーォキサイドなどの水溶解性開始剤;かかる水溶解性開始 剤と、 過酸化べンゾィル、 過酸化ラウロイル、 キュメンハイ ドロパーォキシド、 Ύゾビスイソブチロニトリル及びァゾビスジメチルノくレロニトリルなどの油溶解 性開始剤との組合せ;及び、 水溶解性開始剤又は油溶解性開始剤と、 亜硫酸ナト リウム、 亜硫酸アンモニゥム、 酸化第一鉄、 酸化第一銅、 ソルビン酸及び庶糖な どの還元剤との組合せ;が挙げられる。  Various types of polymerization initiators can be used in emulsion polymerization, for example, ammonium persulfate, sodium persulfate, potassium persulfate, hydrogen peroxide, t-butyl hydroperoxide, etc. Water-soluble initiator; the combination of such a water-soluble initiator with an oil-soluble initiator such as benzoyl peroxide, lauroyl peroxide, cumenehydropoxide, diazobisisobutyronitrile, and azobisdimethylnorelonitrile. And a combination of a water-soluble initiator or an oil-soluble initiator with a reducing agent such as sodium sulfite, ammonium sulfite, ferrous oxide, cuprous oxide, sorbic acid, and sucrose.
1回の乳化重合で得られるコポリマー粒子のサイズはそれほど大きくない。 か かるサイズは、 選択されるモノマー組成と用いる方法によるが、 せいぜい 0. 0 5〜0. 3 m程度である。 したがって、 更に大きな粒子を所望の場合には、 は ん種重合を行う必要がある。 はん種重合は、 すでに重合したコポリマー粒子の分 散液に、 新たな乳化剤ミ.セルが発生しない量で乳化剤を加えて安定化してから、 安定化した分散液に重合開始剤を加え、 さきに述べた条件下でモノマーを得られ る分散液に添加して重合させることによって行うことができる。 このはん種重合 法によれば、 ほぼ計算どおりに粒子を肥大化させることができる。 粒子を計算ど おりに肥大化させるには、 出来る限り小刻みなはん種重合を繰り返すことが望ま しい。 The size of the copolymer particles obtained in one emulsion polymerization is not so large. The size depends on the selected monomer composition and the method used, but is at most about 0.05 to 0.3 m. Therefore, if larger particles are desired, it is necessary to perform seed polymerization. In seed polymerization, a new emulsifier is added to the dispersion of the already polymerized copolymer particles, the emulsifier is added in an amount that does not generate cells, and then the polymerization initiator is added to the stabilized dispersion. Monomer under the conditions described in The polymerization can be carried out by adding the mixture to a dispersion and polymerizing the mixture. According to this seed polymerization method, the particles can be enlarged almost as calculated. In order to increase the size of the particles as calculated, it is desirable to repeat the seed polymerization as little as possible.
懸濁重合は、 モノマーの全量を基準として 0. 0 5〜5重量%のさきに述べた 油溶性開始剤を溶解したモノマ一を、 モノマーの全量を基準として 0. 5〜5重 量%の水溶性ポリマー及び/又は無機微粒子あるいは水溶性ポリマー Z界面活性 剤混合物を用いて、 1 5〜5 0重量%のモノマー濃度で激しく撹拌して水中に乳 化させ、 緩く撹拌しながら得られた乳濁液を 5 0〜9 5でに3〜8時間加熱して 重合を完了させることによって行うことができる。  In the suspension polymerization, the monomer having the oil-soluble initiator described above in the amount of 0.05 to 5% by weight based on the total amount of the monomer is added in the amount of 0.5 to 5% by weight based on the total amount of the monomer. Using a water-soluble polymer and / or inorganic fine particles or a water-soluble polymer Z surfactant mixture, the mixture was vigorously stirred at a monomer concentration of 15 to 50% by weight to emulsify in water, and the milk obtained with gentle stirring was used. The suspension can be carried out by heating the suspension at 50-95 for 3-8 hours to complete the polymerization.
用いることのできる水溶解性ポリマーの例を挙げると、 ポリビニルアルコール、 ヒ ドロキシェチルセルロース、 ポリアクリル酸ナトリゥム及びスチレン一マレイ ン酸共重合体の塩が挙げられる。 また、 無機粒子の例を挙げると、 リン酸カルシ ゥム、 炭酸カルシウム、 水酸化マグネシウム、 タルク、 クレーが挙げられる。 更 に、 界面活性剤の例を挙げると、 ステアリン酸ナトリウム、 ォレイン酸ナトリウ ム、 ラウリン酸ナトリウム、 ラウリル硫酸ナトリウム、 ポリオキシエチレンノニ ルフヱ二ルェ一テル硫酸ナトリウム、 ドデシルベンゼンスルホン酸ナトリウム、 ジプチルスルホコハク酸ナトリゥム、 ポリオキシエチレンノニルフヱニルエーテ ル、 ポリオキシエチレンラウリルエーテル、 ポリオキシエチレンォレイルェ一テ ノレ及びポリオキシエチレンソルビタンモノラウレー卜が挙げられる。  Examples of water-soluble polymers that can be used include salts of polyvinyl alcohol, hydroxyethyl cellulose, sodium polyacrylate and styrene-maleic acid copolymer. Examples of the inorganic particles include calcium phosphate, calcium carbonate, magnesium hydroxide, talc, and clay. Further, examples of surfactants include sodium stearate, sodium oleate, sodium laurate, sodium lauryl sulfate, sodium polyoxyethylene nonylphenyl ether sulfate, sodium dodecylbenzenesulfonate, dibutyl sulfo succinate. Examples include sodium acid, polyoxyethylene nonylphenyl ether, polyoxyethylene lauryl ether, polyoxyethylene oleyl ether, and polyoxyethylene sorbitan monolaurate.
この方法によれば、 得られるコポリマー粒子の径は乳化重合で製造されるもの よりもはるかに大きい。 用いるモノマー組成及び選択される混合条件にもよるが、 得られる粒子サイズは数; から数百/ z mである。 乳化重合と異なり、 懸濁重合 に関してははん種重合が適用できないので、 最初の懸濁重合が完了した後にコポ リマー粒子の径を制御することは不可能である。 上記記載の方法によって得られるポリマー粒子のカルボキシル基は、 上記記載 の乳化重合又は懸濁重合によって得られたポリマー分散液に、 アル力リ性金属化 合物を 5 °C〜9 5 °Cの温度及び p H 7〜 l 4において加えることによって中和さ れる。 中和においては、 アルカリ性金属化合物を水溶液の形態で加え、 温度は 1 5〜3 0 °Cとすることが好ましい。 According to this method, the diameter of the resulting copolymer particles is much larger than that produced by emulsion polymerization. Depending on the monomer composition used and the mixing conditions chosen, the particle size obtained is from a few to a few hundred / zm. Unlike emulsion polymerization, seed polymerization cannot be applied to suspension polymerization, so it is impossible to control the diameter of copolymer particles after the first suspension polymerization is completed. The carboxyl group of the polymer particles obtained by the method described above is obtained by adding an alkali metal compound to the polymer dispersion obtained by the emulsion polymerization or suspension polymerization described above at a temperature of 5 ° C to 95 ° C. Neutralized by addition at temperature and pH 7-14. In the neutralization, an alkaline metal compound is added in the form of an aqueous solution, and the temperature is preferably 15 to 30 ° C.
次に、 かくして中和されたポリマー粒子を、 通常は噴霧乾燥機を用いることに よって乾燥して粉末状のプラスチゾルポリマー粒子にする。  Next, the polymer particles thus neutralized are dried into powdery plastisol polymer particles, usually by using a spray dryer.
乳化重合又は懸濁重合で製造される粒子 (1次粒子) の数平均粒子径は、 通常 は 0. l〜1 0 0 /z mであり、 好ましくは 0. 3〜2 0〃mである。 粒子径が 0. 1 m未満であると、 プラスチゾルとした場合の粘度安定性が劣る。 噴霧乾燥で 得られる粒子の直径は数 m〜数百/ mの範囲であるが、 この粒子は多数の 1次 粒子が凝結した 2次粒子である。 これらの 2次粒子を可塑剤中に分散するときに は、 撹拌によって一部を除いて 1次粒子に分散される。 したがって、 プラスチゾ ル化するのに必要な可塑剤の量、 プラスチゾルの流動性や貯蔵安定性およびフィ ルム形成速度 (すなわち可塑剤の吸収速度) などのプラスチゾルにかかわる重要 な性能を支配する重要なフアクターは 1次粒子の大きさである。 1次粒子は大き いほうが、 プラスチゾル化に必要な可塑剤の量は少なくなり、 プラスチゾルの貯 蔵安定性は向上するが、 可塑剤の吸収速度は遅くなつて、 フィルム形成に過大な 加熱時間を必要とするようになる。 したがって両極端を折衷したところに好適な 領域があるはずであるが、 本発明者の研究によれば、 最適な数平均粒子径は 0. 1〃m〜 l 0 0〃m、 好ましくは 0. 3 m〜2 0〃mである。  The number average particle diameter of the particles (primary particles) produced by emulsion polymerization or suspension polymerization is usually 0.1 to 100 / zm, preferably 0.3 to 20 m. If the particle size is less than 0.1 m, the viscosity stability of a plastisol is poor. The diameter of the particles obtained by spray drying ranges from a few meters to several hundreds / m, but these particles are secondary particles in which many primary particles are agglomerated. When these secondary particles are dispersed in the plasticizer, they are dispersed into the primary particles except for a part by stirring. Therefore, important factors that govern the important performance of the plastisol, such as the amount of plasticizer required for plastization, the flowability and storage stability of the plastisol, and the rate of film formation (ie, the rate of plasticizer absorption). Is the size of the primary particle. The larger the primary particles, the smaller the amount of plasticizer required for plastisol formation and the better the storage stability of the plastisol, but the slower the plasticizer absorption rate and the longer the heating time required for film formation. You will need it. Therefore, there should be a suitable region where the extremes are compromised, but according to the study of the present inventors, the optimum number average particle size is 0.1 0m to 100 lm, preferably 0.3 好 ま し く m. m〜20〃m.
重合性不飽和化合物と不飽和カルボン酸化合物との共重合によってポリマー中 にカルボキシル基を導入しただけでは、 望ましいプラスチゾル貯蔵安定性も高い プラスチゾルフィルムの耐熱性も得られない。 ポリマーのカルボキシル基をアル カリ性金属化合物で中和することではじめて、 プラスチゾルの貯蔵安定性及びプ ラスチゾルフイルムの耐熱性の向上という本発明の目的の達成が可能になる。 かかる目的で利用できるアル力リ性金属化合物の例を挙げれば、 1価のアル力 リ性金属化合物、 例えば水酸化ナトリウム、 水酸化力リウ厶; 2価のアル力リ性 金属化合物、 例えば水酸化カルシウム、 水酸化バリウム、 酢酸マグネシウム、 酢 酸ジルコニウム、 亜鉛アンモニゥムクロライド、 亜鉛アンモニゥムァセテ一ト、 ジルコニウムアンモニゥムァセテート及びジルコニウムアンモニゥムカーボネー ト ; 3価のアルカリ性金属化合物、 例えば水酸化アルミニウム及び塩基性酢酸ァ ルミ二ゥムが挙げられる。 1価よりも 2価、 2価よりも 3価のアルカリ性金属の 方が、 優れた安定性と高い耐熱温度を与えると共にフィルム形成温度も上昇する という点で好ましい。 したがって用いるアルカリ性金属の種類は、 プラスチゾル の目的に応じてもつとも適合するものが選ばれなければならない。 Simply introducing a carboxyl group into the polymer by copolymerization of a polymerizable unsaturated compound and an unsaturated carboxylic acid compound does not provide the desired plastisol storage stability and high heat resistance of the plastisol film. Only by neutralizing the carboxyl groups of the polymer with an alkali metal compound will the storage stability and It is possible to achieve the object of the present invention of improving the heat resistance of the plastisol film. Examples of the alkali metal compounds that can be used for this purpose include monovalent alkali metal compounds such as sodium hydroxide and hydroxide hydroxide; divalent alkali metal compounds such as water Calcium oxide, barium hydroxide, magnesium acetate, zirconium acetate, zinc ammonium chloride, zinc ammonium acetate, zirconium ammonium acetate and zirconium ammonium carbonate; trivalent alkaline metal compounds, Examples include aluminum hydroxide and basic aluminum acetate. Alkaline metals, which are divalent rather than monovalent, and trivalent than divalent, are preferred in that they provide excellent stability and a high heat resistance temperature and also increase the film formation temperature. Therefore, the type of alkaline metal used must be selected according to the purpose of the plastisol.
カルボキシノレ基の中和度も重要なプラスチゾル性能に大きな影響を及ぼす。 中 和度が高ければ高いほど、 貯蔵安定性とプラスチゾルフィルムの耐熱性は向上す るが、 同時にフィルム形成温度も高くなる。 また、 実際の中和においては、 ポリ マーのカルボキシル基を 1 0 0 %中和することは実質的に不可能である。 中和度 は、 用いる不飽和カルボン酸化合物の種類とポリマーの粒子サイズで異なる。 た とえば、 7重量%のメタクリル酸と共重合したスチレンポリマー粒子の数平均粒 子径が約 0. 5 /z mである場合には、 中和度は約 1 8 %となる。 また、 7重量% のァクリル酸を共重合したスチレンポリマー粒子であれば、 数平均粒子径が約 0. 7 mの場合には中和度は 7 3 %である。 これはおそらくアルカリ性金属化合物 で中和することができるのはポリマー粒子の表面または表面近くの層のカルボキ シル基だけであり、 アルカリ性金属イオンは、 粒子の内部深く侵入してそこの力 ルポキシル基を中和することができないからであろうと考えられる。 また、 メタ クリル酸と共重合したコポリマー粒子に比べてより親水性のァクリル酸と共重合 したコポリマー粒子のほうが格段に中和度が高いが、 これはより親水性のァクリ ル酸と共重合したポリマー粒子の表面又はその近傍により多くのカルボキシル基 が分布されるからであろうと考えられる。 実用的には中和度は必ずしも 1 0 0 % である必要はないが、 本発明のプラスチゾルにおいては、 ポリマーのカルボキシ ル基の少なくとも 1 0 %が中和されていなければならない。 中和度が 1 0 %以下 であると、 実用に耐える貯蔵安定性を有するプラスチゾル及び十分な耐熱性を有 するプラスチゾルフイルムが得られない。 実際には、 1 0〜8 0 %の中和度を有 することが好ましい。 The degree of neutralization of the carboxy group also has a significant effect on important plastisol performance. The higher the neutrality, the better the storage stability and the heat resistance of the plastisol film, but at the same time the higher the film formation temperature. Also, in actual neutralization, it is practically impossible to neutralize 100% of the carboxyl groups of the polymer. The degree of neutralization depends on the type of unsaturated carboxylic acid compound used and the particle size of the polymer. For example, if the number average particle size of the styrene polymer particles copolymerized with 7% by weight of methacrylic acid is about 0.5 / zm, the degree of neutralization is about 18%. Further, if the styrene polymer particles are copolymerized with 7% by weight of acrylic acid, the degree of neutralization is 73% when the number average particle diameter is about 0.7 m. This is probably because only the carboxyl groups on the surface or near the surface of the polymer particles can be neutralized by the alkaline metal compound, and the alkaline metal ions penetrate deep inside the particle and remove the lipoxyl groups there. It is probably because it cannot be neutralized. In addition, the copolymer particles copolymerized with acrylic acid, which is more hydrophilic, have a much higher degree of neutralization than the copolymer particles copolymerized with methacrylic acid. This is probably because more carboxyl groups are distributed on or near the surface of the polymer particles copolymerized with the phosphoric acid. In practice, the degree of neutralization need not necessarily be 100%, but in the plastisol of the present invention, at least 10% of the carboxy groups of the polymer must be neutralized. If the degree of neutralization is 10% or less, a plastisol having storage stability sufficient for practical use and a plastisol film having sufficient heat resistance cannot be obtained. In practice, it is preferable to have a degree of neutralization of 10 to 80%.
噴霧乾燥でつくられる 2次粒子は、 プラスチゾル調製に際してできるだけ 1次 粒子に分散しやすいものであることが望ましい。 なぜならば 2次粒子は多孔性で あり、 流動化に関係しない可塑剤を内部に吸収するため、 可塑剤の使用量が増加 するからである。 可塑剤の使用量が増えれば、 その分だけプラスチゾルフイルム は柔軟になり、 強靭なフィルムを必要とする用途に対する適応性が失われる。 1 次粒子に崩れやすい 2次粒子をつくるためには、 噴霧乾燥温度はできるだけ低く、 ポリマーの T gはできるだけ高いことが望ましい。 だが、 噴霧乾燥によって乾燥 されたポリマー粒子を得るためには噴霧乾燥温度の下限がある。 噴霧乾燥温度は 低くとも 5 0 °Cであり、 したがってポリマーの T gにも当然限界がある。 上記に 記載したように、 噴霧乾燥温度は低くとも 5 0 °Cとすることが望ましい。  It is desirable that the secondary particles produced by spray drying be as easily dispersible as possible in the primary particles during plastisol preparation. This is because the secondary particles are porous and absorb plasticizers that are not related to fluidization, so that the amount of plasticizer used increases. As the use of plasticizer increases, the plastisol film becomes more flexible and less adaptable to applications requiring a tough film. In order to produce secondary particles that easily break down into primary particles, it is desirable that the spray drying temperature be as low as possible and the Tg of the polymer be as high as possible. However, there is a lower limit on the spray drying temperature in order to obtain polymer particles dried by spray drying. The spray drying temperature is at least 50 ° C, so the Tg of the polymer is of course limited. As mentioned above, the spray drying temperature should be at least 50 ° C.
かくして得られたプラスチゾル用コポリマー粒子は、 可塑剤中に分散してブラ スチゾルとされる。 本発明において用いることのできる好適な可塑剤の例として は、 ジー 2—ェチルへキシルフタレート、 ジブチルフタレート、 ジイソォクチル フタレート、 ブチルシクロへキシルフタレート、 ブチルォクチルフタレート、 ジ イソノニルフタレート、 ジカプリルフタレート及びジイソデシルフタレ一トなど のフタル酸エステル; ジ一 2—ェチルへキシルアジぺート及びジイソデシルアジ ぺートなどのアジピン酸エステル; ジ一 2—ェチルへキシルセバゲ一トなどのセ バシン酸エステル; ジォクチルァゼレートなどのァゼライン酸エステル; トリク レジルホスフヱ一ト及びトリー 2—ェチルへキシルホスフヱートなどのリン酸ェ ステル; トリー 2—ェチルへキシルサイ トレート及びァセチルトリブチルサイ ト レ一トなどのクェン酸エステル; グリセロールジァセテートモノラウレートなど のァセチル化グリセライド;エポキシ化大豆油及びエポキシ化アマ二油などのェ ポキシ化グリセライドが挙げられる。 The plastisol copolymer particles thus obtained are dispersed in a plasticizer to form a blastisol. Examples of suitable plasticizers that can be used in the present invention include di-2-ethylhexyl phthalate, dibutyl phthalate, diisooctyl phthalate, butylcyclohexyl phthalate, butyl octyl phthalate, diisononyl phthalate, dicapryl phthalate, and diisodecyl phthalate. Phthalates such as ethates; adipates such as di-2-ethylhexyl adipate and diisodecyl adipate; sebacates such as di-2-ethylhexyl sebaguet; dioctylase Azelaic acid esters such as citrate; Phosphate esters such as resyl phosphate and tree 2-ethylhexyl phosphate; citrate esters such as tree 2-ethylhexyl citrate and acetyl tributyl site; glycerol diacetate monolau And epoxidized glycerides such as epoxidized soybean oil and epoxidized linseed oil.
可塑剤は、 プラスチゾルの流動性、 フィルム形成性およびフィルム物性に影響 を与える。 基本的には、 可塑剤とポリマーとの相溶性が重要なファクターである。 極端に相溶性が劣れば、 加熱しても溶融して連続フィルムを形成しないが、 相溶 性がわずかに劣ってもフィルム形成後に可塑剤が内部からフィルム表面ににじみ 出す等の実用上問題が生じる。 したがって、 可塑剤はポリマーとの相溶解性を十 分に見極めて、 慎重に選定することが肝要である。 可塑剤の添加量は、 通常、 プ ラスチゾル用ポリマー粒子 1 0 0重量部に対して、 5 0〜2 0 0重量部の範囲で あ 。  Plasticizers affect plastisol flow, film formation and film properties. Basically, the compatibility of the plasticizer with the polymer is an important factor. If the compatibility is extremely poor, it will not melt and form a continuous film even when heated, but even if the compatibility is slightly poor, there will be practical problems such as the plasticizer oozing out of the film surface from inside after the film is formed. Occurs. Therefore, it is important to carefully consider the compatibility of the plasticizer with the polymer and carefully select it. The amount of the plasticizer is usually in the range of 50 to 200 parts by weight based on 100 parts by weight of the plastisol polymer particles.
プラスチゾルの流動性およびフィルム物性は種々の添加剤で調整することがで きる。 必要に応じて又は所望の場合には、 界面活性剤、 顔料、 充填剤、 発泡剤お よび溶媒などの添加剤を加えることによつて上記諸特性の調整が行われる。 この うち、 溶媒は、 機能的には可塑剤と同じであるが、 フィルム形成後に揮散するの で、 形成されるフィルムを軟化することなく、 プラスチゾルの流動性を改良する ことができる。 但し、 あまり大量の溶媒の添加はプラスチゾルの特色を損なうの で、 溶媒の添加量はプラスチゾルポリマー 1 0 0重量部に対して 1 0重量部以内 にとどめるべきである。  The fluidity and film properties of plastisols can be adjusted with various additives. If necessary or desired, the above properties are adjusted by adding additives such as surfactants, pigments, fillers, foaming agents and solvents. Among them, the solvent is functionally the same as the plasticizer, but volatilizes after the film is formed, so that the fluidity of the plastisol can be improved without softening the formed film. However, the addition of too much solvent impairs the characteristics of the plastisol, so the amount of solvent added should be kept within 10 parts by weight per 100 parts by weight of the plastisol polymer.
実施例 Example
以下比較例および実施例により本発明をさらに詳細に説明する。 「部」 は他に 示さない限り 「重量部」 である。  Hereinafter, the present invention will be described in more detail with reference to Comparative Examples and Examples. “Parts” are “parts by weight” unless otherwise indicated.
比較例 1 かき混ぜ機と還流冷却器を取り付けた内容積 1, 000mlのガラス製重合装 置に、 スチレン (以下" S t" と称する) 200 g、 蒸留水 592 gを仕込み、 これに乳化剤としてアルキルジフヱ二ルェ一テルジスルホン酸ナトリウム (花王 (株) 製、 商品名べレックス SS— L) の 50%水溶液 4 gと過硫酸アンモニゥ ムの 10%水溶液 4 gとを加え、 250 r pmでかき混ぜながら、 温度を 90°C に上げた。 4時間加熱すると、 スチレンの還流が見られなくなった。 さらに同条 件で 2時間反応を続けて重合を完了させた。 かくして得られたポリスチレン分散 液の固形分は 24. 5重量% (重合率 97%) であった。 数平均粒子径は、 大塚 電子株式会社製電気泳動光散乱光度計 ELS— 800型で測定すると、 0. 05 であった。 Comparative Example 1 200 g of styrene (hereinafter referred to as “St”) and 592 g of distilled water were charged into a 1,000 ml glass polymerization apparatus equipped with a stirrer and a reflux condenser, and alkyl diphenyle as an emulsifier was added thereto. Add 4 g of a 50% aqueous solution of sodium terdisulfonate (trade name: Verex SS-L, manufactured by Kao Corporation) and 4 g of a 10% aqueous solution of ammonium persulfate, and stir the mixture at 250 rpm. ° C. After heating for 4 hours, no reflux of styrene was observed. Further, the reaction was continued under the same conditions for 2 hours to complete the polymerization. The solid content of the polystyrene dispersion thus obtained was 24.5% by weight (polymerization rate: 97%). The number average particle diameter was 0.05 when measured with an electrophoretic light scattering photometer ELS-800 manufactured by Otsuka Electronics Co., Ltd.
固形分濃度を 12. 5%に調節し、 711 /imの口径を有するノズルを取り付 けた噴霧乾燥機 (ャマト科学株式会社製、 パルビスミニ G S35型) を用いて、 入り口温度 120°C、 出口温度 60°Cで粒子を噴霧乾燥した。 得られた粒子は、 直径が 5 m〜 200 mの多孔性の 2次粒子であつた。  Adjust the solids concentration to 12.5% and use a spray dryer (Palvis mini G S35 type, manufactured by Yamato Scientific Co., Ltd.) equipped with a nozzle with a diameter of 711 / im, inlet temperature 120 ° C, outlet The particles were spray dried at a temperature of 60 ° C. The obtained particles were porous secondary particles having a diameter of 5 m to 200 m.
かくして得られたプラスチゾル用ポリマー粉末を、 ジー 2—ェチルへキシルフ タレート (以下 "DOP" と称する) に分散してプラスチゾルにしようとしたが、 プラスチゾル調製の過程でポリマー粉末が溶解して、 可塑剤中のポリマー粒子分 散液は得られなかった。  The polymer powder for plastisol thus obtained was dispersed in di-2-ethylhexyl phthalate (hereinafter referred to as "DOP") to make it into a plastisol. No dispersion of polymer particles was obtained.
比較例 2乃至 4 Comparative Examples 2 to 4
S tZメタクリル酸 (以下 "MAA" と称する) (93Z7) の混合モノマー を用いて比較例 1の手順を繰り返し、 S tZMAA (93/7)共重合体分散液 を得た。 重合率は 98%、 数平均粒子径は 0. 06〃mであった。  The procedure of Comparative Example 1 was repeated using a mixed monomer of StZ methacrylic acid (hereinafter referred to as “MAA”) (93Z7) to obtain a StZMAA (93/7) copolymer dispersion. The polymerization rate was 98%, and the number average particle diameter was 0.06 μm.
かくして得られた重合体分散液を 3分割した。 比較例 2においてはそのうちの —つをそのまま用い、 比較例 3においては他の一つを水酸化ナ卜リウムでまた比 較例 4においては残りの一つを水酸化カルシウムで、 それぞれ中和した。 水酸化 ナトリウムによる中和においては、 5 %N a O H水溶液を添加して p Hを 9. 5 に調節した。 ここで加えられた水酸化ナトリウムの量は、 共重合したメタクリル 酸のカルボキシル基の 2 9 %を中和する量に相当した。 水酸化カルシウムを用い る場合には、 水酸化カルシウムの飽和水溶液を水酸化ナトリウムと等量用いて中 和した。 最後に固形分の濃度を 1 2. 5 %に調節して、 得られたポリマー分散液 を比較例 1と同じ条件で噴霧乾燥してプラスチゾルポリマー粒子とした。 The polymer dispersion thus obtained was divided into three parts. In Comparative Example 2, one of them was used as is, in Comparative Example 3, the other was neutralized with sodium hydroxide, and in Comparative Example 4, the other was neutralized with calcium hydroxide. . Hydroxylation For neutralization with sodium, the pH was adjusted to 9.5 by adding a 5% aqueous NaOH solution. The amount of sodium hydroxide added here was equivalent to the amount that neutralized 29% of the carboxyl groups of the copolymerized methacrylic acid. When calcium hydroxide was used, a saturated aqueous solution of calcium hydroxide was neutralized with an equivalent amount of sodium hydroxide. Finally, the concentration of the solid content was adjusted to 12.5%, and the obtained polymer dispersion was spray-dried under the same conditions as in Comparative Example 1 to obtain plastisol polymer particles.
かくして得られたプラスチゾルポリマー粒子を D 0 P中に分散してプラスチゾ ルとした。 プラスチゾルにするために添加した D O Pの量、 その初期粘度、 2 3 °Cにおける貯蔵安定性 (粘度上昇率) 、最低フィルム形成温度、 耐熱温度、 フィ ルムの透明性を表 1及び表 2にまとめて示す。 なお貯蔵安定性、 最低フィルム形 成温度および耐熱温度の測定は以下の方法によった。  The plastisol polymer particles thus obtained were dispersed in D0P to obtain plastizol. Tables 1 and 2 summarize the amount of DOP added to make a plastisol, its initial viscosity, storage stability at 23 ° C (viscosity increase rate), minimum film formation temperature, heat resistance temperature, and film transparency. Shown. The storage stability, minimum film formation temperature and heat resistance temperature were measured by the following methods.
貯蔵安定性 Storage stability
プラスチゾルの粘度は東京計器 (株) 製 B型回転粘度計を用いて室温 (2 3 °C) で測定した。 プラスチゾルはチキソトロピックな性質を示すので、 粘度は平衡に 達したときの値とした。 貯蔵安定性は、 プラスチゾルを室温で所定時間放置して から測定した粘度をプラスチゾル調製直後の粘度 (初期粘度) で割った比率で表 した。  The viscosity of plastisol was measured at room temperature (23 ° C) using a B-type rotary viscometer manufactured by Tokyo Keiki Co., Ltd. Since plastisols exhibit thixotropic properties, the viscosity was taken as the value when equilibrium was reached. The storage stability was expressed as a ratio obtained by dividing the viscosity measured after leaving the plastisol at room temperature for a predetermined period of time by the viscosity immediately after the preparation of the plastisol (initial viscosity).
最低フィルム形成温度 Minimum film formation temperature
アルミニウムホイルの上にプラスチゾルを約 l mmの厚さに塗った試料数点を 作成した。 この試料を所定の温度で 1 0分間加熱してから冷却し、 連続フィルム 化しているかどうか視認検査した。 試験は、 8 0 °Cからはじめ、 1 0 °C刻みに加 熱温度を上げ、 連続フィルムが形成される最低の温度を決定した。  Several samples were prepared by coating plastisol on aluminum foil to a thickness of about 1 mm. This sample was heated at a predetermined temperature for 10 minutes, cooled, and visually inspected to see if it was formed into a continuous film. The test was started at 80 ° C, and the heating temperature was increased in 10 ° C increments to determine the lowest temperature at which a continuous film was formed.
耐熱温度 Heatproof temperature
プラスチゾルを 1 8 0 °Cで 2 0分間加熱して厚さ約 4 mmのプラスチゾルシー トを作成した。 このシートを試料として、 TMA (セイコー電子工業製 1 2 0 C 型) を用いて、 耐熱温度を測定した。 直径 2mmの針入プローブをプローブとし て加重 1 Ogで測定した。 The plastisol was heated at 180 ° C for 20 minutes to make a plastisol sheet about 4 mm thick. Using this sheet as a sample, TMA (120 C ) Was used to measure the heat resistance temperature. The measurement was carried out at a weight of 1 Og using a probe with a needle of 2 mm in diameter as a probe.
試料シートを一 5 °Cに冷却してセッ卜し、 4 °CZ分の速度で昇温した。 温度が 0°Cに上昇するのを待って針入を開始し、 温度の関数として針入度を測定した。 針入度は、 温度の上昇当初ゼロのままで推移するか、 あるいはゆつくりした速度 ですすむにしかすぎないが、 試料シートの耐熱温度を超えると、 その速度は急激 に速まり、 石英ガラス台に当たって停止した。 耐熱温度はプローブが測定試料シ 一卜の厚さの 50%侵入した温度とした。  The sample sheet was cooled to 15 ° C, set, and heated at a rate of 4 ° CZ. Waiting for the temperature to rise to 0 ° C started the penetration and measured the penetration as a function of temperature. The penetration will remain at zero at the beginning of the temperature rise or only at a slow speed, but once the temperature exceeds the heat resistance temperature of the sample sheet, the speed will increase rapidly and the quartz glass And stopped. The heat-resistant temperature was the temperature at which the probe penetrated 50% of the thickness of the sample sheet.
比較例 5 Comparative Example 5
比較例 2の未中和コポリマー分散液を種として用い、 通常行われるはん種重合 法でポリマー粒子の粒子径を肥大化させた。 種として使用する比較例 2の未中和 コポリマー分散液の表面張力は 65dyneZcmであったから、 まず 10%のアルキ ルジフヱニルエーテルジスルホン酸ナトリゥム水溶液を添加して、 表面張力をこ の界面活性剤の臨界ミセル濃度以下の表面張力、 30 dyne/cmに下げてコポリマ 一分散液を安定化し、 次に濃度を 20%に調節した。 この安定化した種コポリマ 一分散液 5 gに、 蒸留水 592 g、 S tZMAA (93/7)混合モノマー 20 0 g、 過硫酸アンモニゥムの 10%水溶液 4 gを加え、 250 r pmでかき混ぜ ながら、 温度を 90°Cに上げた。 90°Cで 4時間加熱すると、 スチレンの還流が 見られなくなった。 さらに同条件で 2時間反応を続けて重合を完了させた。 重合 率は 98 %、 数平均粒子径は 0. 23 /zmであった。 これを種ポリマー分散液と して用いて、 上記と同じ手順で、 もう一回種ポリマー粒子に対して 20倍の S t ノ MAA (93/7)混合モノマーではん種重合して、 ポリマー粒子を肥大化さ せた。 重合率は 98%、 数平均粒子径は 0. 53 / mであった。  Using the unneutralized copolymer dispersion of Comparative Example 2 as a seed, the particle size of the polymer particles was enlarged by a commonly used seed polymerization method. Since the surface tension of the unneutralized copolymer dispersion of Comparative Example 2 used as a seed was 65 dyne Zcm, a 10% aqueous solution of sodium alkyldiphenyl ether disulfonate was added first to reduce the surface tension of this surfactant. The surface tension below the critical micelle concentration of was reduced to 30 dyne / cm to stabilize the copolymer monodisperse, and then the concentration was adjusted to 20%. To 5 g of the stabilized seed copolymer monodispersion, add 592 g of distilled water, 200 g of StZMAA (93/7) mixed monomer, and 4 g of a 10% aqueous solution of ammonium persulfate, and stir at 250 rpm. The temperature was raised to 90 ° C. After heating at 90 ° C for 4 hours, no reflux of styrene was observed. Further, the reaction was continued under the same conditions for 2 hours to complete the polymerization. The polymerization rate was 98%, and the number average particle size was 0.23 / zm. Using this as a seed polymer dispersion, the same procedure as above was used to seed polymer the seed polymer particles once more with a 20-fold mixture of StNOMAA (93/7) and polymer particles. Was enlarged. The polymerization rate was 98%, and the number average particle size was 0.53 / m.
比較例 2で述べた方法によりプラスチゾルポリマー粒子とし、 次いで D 0 Pを ポリマー粒子に配合してプラスチゾルにした。 このプラスチゾルにかかわる性能 は表 1及び表 2に示す。 Plastisol polymer particles were obtained by the method described in Comparative Example 2, and then DOP was blended with the polymer particles to obtain a plastisol. Performance related to this plastisol Are shown in Tables 1 and 2.
比較例 6および 7 Comparative Examples 6 and 7
モノマーに S t/MAA (97. 8/2. 2) の混合モノマーを用いたほかは、 比較例 5の第 1段目のはん種重合法に準じて、 S tZMAA (97. 8/2. 2) 共重合体分散液を得た。 重合率は 98 %、 数平均粒子径は 0. 26 zmであった。 比較例 6においては比較例 3と同様にして水酸化ナトリウムで、 また比較例 7に おいては比較例 4と同様にして水酸化カルシウムでそれぞれ中和し、 生成物を噴 霧乾燥してブラスチゾルポリマー粒子とした。 ポリマー粒子を D O P中に配合し てプラスチゾルとした。 プラスチゾルにかかわる性能は表 1及び表 2に示す。 実施例 1および 2  Except that a mixed monomer of St / MAA (97.8 / 2.2) was used as the monomer, the StZMAA (97.8 / 2) was used in accordance with the first stage seed polymerization method of Comparative Example 5. .2) A copolymer dispersion was obtained. The polymerization rate was 98%, and the number average particle size was 0.26 zm. In Comparative Example 6, the product was neutralized with sodium hydroxide in the same manner as in Comparative Example 3, and in Comparative Example 7, the product was neutralized with calcium hydroxide in the same manner as in Comparative Example 4. Thisol polymer particles were obtained. The polymer particles were blended into DOP to form a plastisol. Tables 1 and 2 show the performance of plastisol. Examples 1 and 2
比較例 5で得られたコポリマー分散液について、 実施例 1においては比較例 3 と同様にして水酸化ナトリウムで、 また、 実施例 2においては比較例 4と同様に して水酸化カルシウムで、 それぞれ中和してから、 中和されたポリマー粒子を噴 霧乾燥してプラスチゾルポリマー粒子とし、 ポリマー粒子を D 0 P中に分散して プラスチゾルとして、 その諸性質を測定した。 結果は表 1及び表 2に示す。  Regarding the copolymer dispersion obtained in Comparative Example 5, sodium hydroxide was used in Example 1 as in Comparative Example 3, and calcium hydroxide was used in Example 2 in the same manner as in Comparative Example 4. After neutralization, the neutralized polymer particles were spray-dried into plastisol polymer particles, and the polymer particles were dispersed in D0P to form plastisols, and their properties were measured. The results are shown in Tables 1 and 2.
実施例 3 Example 3
実施例 1のプラスチゾルポリマー粒子を、 D 0 Pに代えてグリセロールジァセ テートモノラウレート (以下 "GDML" と称する) 中に分散してプラスチゾル とした。 かくして得られたプラスチゾルにかかわる性能は表 1及び表 2に示す。 実施例 4および 5  The plastisol polymer particles of Example 1 were dispersed in glycerol diacetate monolaurate (hereinafter referred to as "GDML") in place of D0P to obtain a plastisol. The performance of the plastisol thus obtained is shown in Tables 1 and 2. Examples 4 and 5
実施例 1および 2で得られたプラスチゾルポリマー粒子を、 それぞれ、 DOP に代えてジイソノニルジフタレート (以下 "D INP" と称する) 中に分散して プラスチゾルとした。 かくして得られたプラスチゾルにかかわる性能は表 1及び 表 2に示す。  The plastisol polymer particles obtained in Examples 1 and 2 were each dispersed in diisononyl diphthalate (hereinafter, referred to as “D INP”) in place of DOP to obtain a plastisol. The performance of the plastisol thus obtained is shown in Tables 1 and 2.
実施例 6および 7 モノマーに S tZMAA (96/4) の混合モノマーを用いたほかは、 比較例 5の 2段はん種重合法に準じて、 S tZMAA (96/4)共重合体分散液を合 成した。 得られた共重合体分散液について、 実施例 6においては比較例 3と同様 にして水酸化ナトリゥムで、 また実施例 7においては比較例 4と同様にして水酸 化カルシウムで、 それぞれ中和してから、 中和されたポリマー粒子を噴霧乾燥し てブラスチゾルポリマー粒子とした。 ポリマー粒子を D 0 P中に分散することに よってプラスチゾルとして、 その諸性質を測定した。 結果は表 1及び表 2に示す c 実施例 8および 9 Examples 6 and 7 A StZMAA (96/4) copolymer dispersion was synthesized according to the two-stage seed polymerization method of Comparative Example 5, except that a mixed monomer of StZMAA (96/4) was used as the monomer. The obtained copolymer dispersion was neutralized with sodium hydroxide in Example 6 as in Comparative Example 3, and neutralized with calcium hydroxide in Example 7 as in Comparative Example 4. Thereafter, the neutralized polymer particles were spray-dried to obtain blastisol polymer particles. Various properties were measured as a plastisol by dispersing the polymer particles in D0P. The results are shown in Tables 1 and 2. c Examples 8 and 9
モノマーに S t/MAA (91/9) の混合モノマーを用いたほかは、 比較例 5の 2段はん種重合法に準じて、 S tZMAA (91/9)共重合体分散液を合 成した。 得られた共重合体分散液について、 実施例 8においては比較例 3と同様 にして水酸化ナトリウムで、 また、 実施例 9においては比較例 4と同様にして水 酸化カルシウムで、 それぞれ中和してから、 中和されたポリマー粒子を噴霧乾燥 してプラスチゾルポリマー粒子とした。 次いでポリマー粒子を DOP中に分散す ることによってプラスチゾルとして、 その諸性質を測定した。 結果は表 1及び表 2に示す。  A StZMAA (91/9) copolymer dispersion was synthesized according to the two-stage seed polymerization method of Comparative Example 5, except that a mixed monomer of St / MAA (91/9) was used as the monomer. did. The obtained copolymer dispersion was neutralized with sodium hydroxide in Example 8 as in Comparative Example 3 and neutralized with calcium hydroxide in Example 9 as in Comparative Example 4. Thereafter, the neutralized polymer particles were spray-dried to obtain plastisol polymer particles. Then, various properties were measured by dispersing the polymer particles in DOP to form a plastisol. The results are shown in Tables 1 and 2.
実施例 10および 11 Examples 10 and 11
モノマーに S tZMAA (88/12) の混合モノマーを用いたほかは、比較 例 5の 2段はん種重合法に準じて、 S t/MAA (88/12)共重合体分散液 を合成した。 得られた共重合体分散液について、 実施例 10においては比較例 3 と同様にして水酸化ナトリウムで、 また、 実施例 11においては比較例 4と同様 にして水酸化カルシウムで、 それぞれ中和してから、 中和されたポリマー粒子を 噴霧乾燥してプラスチゾルポリマー粒子とした。 次いでポリマ一粒子を DO P中 に分散することによってプラスチゾルとして、 その諸性質を測定した。 結果は表 1及び表 2に示す。 A St / MAA (88/12) copolymer dispersion was synthesized according to the two-stage seed polymerization method of Comparative Example 5, except that a monomer mixture of StZMAA (88/12) was used as the monomer. . The obtained copolymer dispersion was neutralized with sodium hydroxide in Example 10 in the same manner as in Comparative Example 3 and neutralized with calcium hydroxide in Example 11 in the same manner as in Comparative Example 4. Thereafter, the neutralized polymer particles were spray-dried to obtain plastisol polymer particles. Next, the polymer particles were dispersed in DOP to form plastisols, and their properties were measured. The result is a table This is shown in Table 1 and Table 2.
実施例 12および 13 Examples 12 and 13
モノマー S t/MAA (85/15) の混合モノマーを用いたほかは、 比較例 5の 2段はん種重合法に準じて、 S tZMAA (85/15)共重合体分散液を 合成した。 得られた共重合体分散液について、 実施例 12においては比較例 3と 同様にして水酸化ナトリウムで、 また実施例 13においては比較例 4と同様にし て水酸化カルシウムで、 それぞれ中和してから、 中和されたポリマー粒子を噴霧 乾燥してプラスチゾルポリマー粒子とした。 次いでポリマー粒子を DO P中に分 散することによってでプラスチゾルとして、 その諸性質を測定した。 結果は表 1 及び表 2に示す。  A StZMAA (85/15) copolymer dispersion was synthesized according to the two-stage seed polymerization method of Comparative Example 5, except that a mixed monomer of the monomer St / MAA (85/15) was used. The obtained copolymer dispersion was neutralized with sodium hydroxide in Example 12 in the same manner as in Comparative Example 3, and neutralized with calcium hydroxide in Example 13 in the same manner as in Comparative Example 4. Thus, the neutralized polymer particles were spray-dried to obtain plastisol polymer particles. Next, the polymer particles were dispersed in DOP to obtain plastisols, and their properties were measured. The results are shown in Tables 1 and 2.
実施例 14および 15 Examples 14 and 15
モノマーに S tZアクリル酸 (以下 " AA" と称する) (94. 5/5. 5) の混合モノマーを用いたほかは、 比較例 5の 2段はん種重合法に準じて、 S tZ AA (94. 5/5. 5)共重合体分散液を合成した。 得られた共重合体分散液 について、 実施例 14においては比較例 3と同様にして水酸化ナトリウムで、 ま た、 実施例 15においては比較例 4と同様にして水酸化カルシウムで、 それぞれ 中和してから、 中和されたポリマー粒子を噴霧乾燥してプラスチゾルポリマー粒 子とした。 次いでポリマー粒子を DO P中に分散することによってでプラスチゾ ルとして、 その諸性質を測定した。 結果は表 1及び表 2に示す。  Except that a mixed monomer of StZ acrylic acid (hereinafter referred to as "AA") (94.5.5 / 5.5.5) was used as the monomer, the StZAA (94.5.5 / 5.5) A copolymer dispersion was synthesized. The obtained copolymer dispersion was neutralized with sodium hydroxide in Example 14 as in Comparative Example 3 and with calcium hydroxide in Example 15 as in Comparative Example 4, respectively. Then, the neutralized polymer particles were spray-dried to obtain plastisol polymer particles. Next, the polymer particles were dispersed in DOP to obtain plastizol, and their properties were measured. The results are shown in Tables 1 and 2.
実施例 16および 17 Examples 16 and 17
モノマーに S tZAA (93/7) の混合モノマーを用いたほかは、 比較例 5 の 2段はん種重合法に準じて、 S tZAA (93/7)共重合体分散液を合成し た。 得られた共重合体分散液について、 実施例 16においては比較例 3と同様に して水酸化ナトリウムで、 また実施例 17においては比較例 4と同様にして水酸 化カルシウムで、 それぞれ中和してから、 中和されたポリマー粒子を噴霧乾燥し てプラスチゾルポリマー粒子とした。 次いでポリマ一粒子を D 0 P中に分散する ことによってプラスチゾルとして、 その諸性質を測定した。 結果は表 1及び表 2 に示す。 A StZAA (93/7) copolymer dispersion was synthesized according to the two-stage seed polymerization method of Comparative Example 5, except that a mixed monomer of StZAA (93/7) was used as the monomer. The obtained copolymer dispersion was neutralized with sodium hydroxide in Example 16 in the same manner as in Comparative Example 3 and neutralized with calcium hydroxide in Example 17 in the same manner as in Comparative Example 4. And then spray-dry the neutralized polymer particles To obtain plastisol polymer particles. Next, the polymer particles were dispersed in D0P to obtain plastisols, and their properties were measured. The results are shown in Tables 1 and 2.
実施例 18および 19 Examples 18 and 19
モノマーに S tノブチルアタリレート (以下 "BA" と称する) MAA (8 8/5/7) の混合モノマーを用いたほかは、 比較例 5の 2段はん種重合法に準 じて、 S tZBAZMAA (88/5/7) 共重合体分散液を合成した。 得られ た共重合体分散液について、 実施例 18においては比較例 3と同様にして水酸化 ナトリウムで、 また実施例 19においては比較例 4と同様にして水酸化カルシゥ ムで、 それぞれ中和してから、 中和されたポリマー粒子を噴霧乾燥してプラスチ ゾルポリマー粒子とした。 次いでポリマー粒子を DO P中に分散することによつ てプラスチゾルとして、 その諸性質を測定した。 結果は表 1及び表 2に示す。 実施例 20および 21  According to the two-stage seed polymerization method of Comparative Example 5, except that a monomer mixture of St-nobutyl acrylate (hereinafter referred to as “BA”) MAA (88/5/7) was used as the monomer. A StZBAZMAA (88/5/7) copolymer dispersion was synthesized. The obtained copolymer dispersion was neutralized with sodium hydroxide in Example 18 in the same manner as in Comparative Example 3, and neutralized with calcium hydroxide in Example 19 in the same manner as in Comparative Example 4. Thereafter, the neutralized polymer particles were spray-dried to obtain plastisol polymer particles. Then, various properties were measured as a plastisol by dispersing the polymer particles in DOP. The results are shown in Tables 1 and 2. Examples 20 and 21
モノマーにメチルメタクリレート (以下 "MMA" と称する) /MAA (93 /1) の混合モノマーを用いたほかは、 比較例 5の 2段はん種重合法に準じて、 MMA/MAA (93/7) 共重合体分散液を合成した。 得られた共重合体分散 液について、 実施例 20においては比較例 3と同様にして水酸化ナトリウムで、 また、 実施例 21においては比較例 4と同様にして水酸化カルシウムで、 それぞ れ中和してから、 中和されたポリマー粒子を噴霧乾燥してプラスチゾルポリマー 粒子とした。 次いでポリマー粒子をァセチルトリブチルサイトレ一ト (以下 "A TBC" と称する) 中に分散することによってプラスチゾルとして、 その諸性質 を測定した。 結果は表 1及び表 2に示す。  MMA / MAA (93/7) was used according to the two-stage seed polymerization method of Comparative Example 5, except that a monomer mixture of methyl methacrylate (hereinafter referred to as “MMA”) / MAA (93/1) was used as the monomer. ) A copolymer dispersion was synthesized. In the obtained copolymer dispersion, sodium hydroxide was used in Example 20 as in Comparative Example 3, and calcium hydroxide was used in Example 21 as in Comparative Example 4. After the addition, the neutralized polymer particles were spray-dried to obtain plastisol polymer particles. Next, the polymer particles were dispersed in acetyltributyl citrate (hereinafter referred to as "ATBC") to measure various properties as a plastisol. The results are shown in Tables 1 and 2.
実施例 22及び 23 Examples 22 and 23
比較例 5で得られたラテツクスについて、 比較例 3と同様にして水酸化ナトリ ゥムで中和してから噴霧乾燥してプラスチゾルポリマー粒子とした。 実施例 22 においてはエポキシ化大豆油 (以下、 「ESB」 と称する) (旭電化工業株式会 ネ土製、 アデ力サイザ一 0—130P) で、 実施例 23においてはエポキシ化アマ 二油 (以下、 「ELS」 と称する) (旭電化工業株式会社製、 アデ力サイザ一 0 一 18 OA) 中にポリマー粒子を分散させて、 それぞれプラスチゾルとし、 その 諸性質を測定した。 結果を表 1及び表 2に示す。 The latex obtained in Comparative Example 5 was neutralized with sodium hydroxide in the same manner as in Comparative Example 3, and then spray-dried to obtain plastisol polymer particles. Example 22 In Example 23, epoxidized soybean oil (hereinafter, referred to as “ESB”) (Asahi Denka Kogyo Co., Ltd., Nedo, Adeiki Saiza 1-130P) was used. In Example 23, epoxidized soybean oil (hereinafter, “ELS”) The polymer particles were dispersed in (Adeiki Sizer 1-118 OA manufactured by Asahi Denka Kogyo Co., Ltd.) to form plastisols, and their properties were measured. The results are shown in Tables 1 and 2.
実施例 モノマー組成 1次 中和 可塑剤 粒子径 Example Monomer composition Primary neutralization Plasticizer Particle size
St MMA BA AA MAA アルカリ 中和化率 種類 phr St MMA BA AA MAA Alkaline Neutralization rate Type phr
•M HkJt¾O1例リ 1丄 丄 in linU n u. O uo• M HkJt¾O 1 example 1 丄 丄 in linU n u. O uo
n n
Figure imgf000021_0001
vpr 丄丄 u
Figure imgf000021_0001
vpr 丄 丄 u
7 1 U. Uo IaUn on  7 1 U. Uo IaUn on
Δ liUr 丄 lU ^ \A  Δ liUr 丄 lU ^ \ A
JX,l ly!j4 QQ 7  JX, l ly! J4 QQ 7
bo 1 U. Uo し 2 on UUr 丄 lU  bo 1 U. Uo shi 2 on UUr 丄 lU
7  7
X W V^lo DO 1 U. Do 木出甲壬不 U n UUr o 9nU  X W V ^ lo DO 1 U. Do Ki Deko Mibu U n UUr o 9nU
9 0 n U. O ZRD naUn lb o o ynu 9 0 n U. O ZRD naUn lb o o ynu
9 0 U. D し ノ 2 ID nnp 1 on 夫她 丄 bo 71 U. Oo iauii UUr yu 宝倫翩]Z 9 Q 99 η 10 9 0 U. D Shino 2 ID nnp 1 on Husband 71 bo 71 U. Oo iauii UUr yu
夫腿 W 1 U.00 し a 2 丄 δ 1 ΠΠ 夫她 15¾ο 7 Husband W 1 U.00 shi a 2 丄 δ 1 她 Husband 她 15¾ο 7
Ό 1 Π C  Ό 1 Π C
U, 00 INaUn 10 ΡΠΙΙΤ yu
Figure imgf000021_0002
INaUn 1 Q
U, 00 INaUn 10 ΡΠΙΙΤ yu
Figure imgf000021_0002
INaUn 1 Q
丄 8 T L1iT丄M IND yu 丄 8 T L1iT 丄 M IND yu
7 Π CO n nnヽ τ* χτη 1 U. Oo し a UiU τ 7 Π CO n nn ヽ τ * χτη 1 U. Oo then a UiU τ
2 lo 1UU 2 lo 1UU
A A
夫她 WJb o 4 U.04 INaUn 1 i UUr 9UHusband 她 WJb o 4 U.04 INaUn 1 i UUr 9U
^•■fefcia!7 no ^ • ■ fefcia! 7 no
4 U.04 し a uiu 2 11 UUr 1UU 4 U.04 shi a uiu 2 11 UUr 1UU
Q Q
b U, O naUn onU nnp 1 ΠΠ 夫腿 tyij ¾丄 Q  b U, O naUn onU nnp 1 ΠΠ Thigh tyij ¾ 丄 Q
U. O し 3、υιυ 2 onU nnp IlU 夫腿 yリ iu oo 19 p  U.O and 3, υιυ 2 onU nnp IlU
U. OZ iiaUJtl 91 n 1/nUr 1丄 Π uΠu tfEt^Uli οδ n CO  U. OZ iiaUJtl 91 n 1 / nUr 1 丄 Π uΠu tfEt ^ Uli οδ n CO
U. O ta Unj 2 UUr 丄丄 U 実施例 12 85 15 0.51 NaOH 23 D0P 110 実施例 13 85 15 0.51 Ca(0H)2 23 D0P 120 実施例 14 94.5 5.5 0.61 NaOH 67 D0P 120 実施例 15 94.5 5.5 0.61 Ca(0H)2 67 D0P 130 実施例 16 93 7 0.72 NaOH 73 D0P 120 実施例 17 93 7 0.72 Ca(0H)2 73 D0P 130 実施例 18 88 - 5 7 0,57 NaOH 18 D0P 90 実施例 19 88 - 5 7 0.57 Ca(0H)2 18 D0P 100 実施例 20 - 93 - 7 0.78 NaOH 22 ATBC 110 実施例 21 - 93 - 7 0.78 Ca(0H)2 22 ATBC 120 実施例 22 93 7 0.53 NaOH 18 ESB 90 実施例 23 93 7 0.53 NaOH 18 ELS 90 表 2 実施例 初期 23ΐでの粘度上昇率 (倍) ft ί£フィルム 耐 温度 フィルムの 番号 粘度 形成温度 (X) 透明性 ボイズ 7曰後 30曰後 60曰後 ( U.O ta Unj 2 UUr 丄 丄 U Example 12 85 15 0.51 NaOH 23 D0P 110 Example 13 85 15 0.51 Ca (0H) 2 23 D0P 120 Example 14 94.5 5.5 0.61 NaOH 67 D0P 120 Example 15 94.5 5.5 0.61 Ca (0H) 2 67 D0P 130 Example 16 93 7 0.72 NaOH 73 D0P 120 Example 17 93 7 0.72 Ca (0H) 2 73 D0P 130 Example 18 88-5 7 0,57 NaOH 18 D0P 90 Example 19 88 -5 7 0.57 Ca (0H) 2 18 D0P 100 Example 20-93-7 0.78 NaOH 22 ATBC 110 Example 21-93-7 0.78 Ca (0H) 2 22 ATBC 120 Example 22 93 7 0.53 NaOH 18 ESB 90 Example 23 93 7 0.53 NaOH 18 ELS 90 Table 2 Example Viscosity increase rate at the initial 23 ((fold) ft ί £ Film Temperature resistance Film number Viscosity Forming temperature (X) Transparency Boise 7 after 30 after 60 after (
ta 1  ta 1
比較例 1 一 一 一 比較 丄 4U il, レ Comparative Example 1 1 1 1 Comparison 一 4Uil,
ケル化 80以下 55 透明 Kellification 80 or less 55 Transparent
04 ゲ #ルrt, 1ノレ 04 Get #le rt, 1 note
し 90 62 ほぼ透明 ΐ>Δ 11 / レ 110 81 半透明 90 90 62 Almost transparent ΐ> Δ 11/110 110 81 Translucent
901 ズレ 901 gap
LLi. 80以下 55 透明 lob /τΊΐ,ノレ  LLi. 80 or less 55 Transparent lob / τΊΐ,
ケル 1し 80 53 ほぼ透明 比較例 7 202 ケル化 90 61 半透明 実施例 π  Kell 1 80 53 Almost transparent Comparative Example 7 202 Kellification 90 61 Translucent Example π
1 289 1. 00 丄. 53 2. 05 90 62 ほぼ透明 実施例 2 310 1. 00 1. 26 1. 88 110 81 半透明 実施例 3 308 1. 00 1. 67 2. 23 90 58 半透明 八  1 289 1.00 丄. 53 2.05 90 62 Almost transparent Example 2 310 1.00 1.26 1.88 110 81 Translucent Example 3 308 1.00 1.67 2.23 90 58 Translucent 8
実施例 4 298 1. 00 1. 58 2. 03 90 63 半透明 実施例 5 284 1. 00 1. 09 1. 47 110 84 半透明 実施例 6 50 1. 00 1. 62 2. 21 80 59 ほぼ透明 実施例 7 80 1. 00 1. 33 l. 83 100 77 半透明 実施例 8 218 1. 00 丄. 10 丄, 22 100 71 半透明 実施例 9 231 1. υυ π U. n 9oo 1. U4 130 95 半透明 実施例 10 1 η 1 Example 4 298 1.00 1.58 2.03 90 63 Translucent Example 5 284 1.00 1.09 1.47 110 84 Translucent Example 6 50 1.00 1.62 2.21 80 59 Almost Transparent Example 7 80 1.00 1.33 l. 83 100 77 Translucent Example 8 218 1.00 丄. 10 丄, 22 100 71 Translucent Example 9 231 1. π π U. n 9oo 1. U4 130 95 Translucent Example 10 1 η 1
228 1, UπU u. yy 1. 0 228 1, UπU u. Yy 1.0
o 110 79 半透明 実施例 11 262 1. UU n u, n yo 丄, uo 170 101 半透明 実施例 12 218 丄. υυ 丄. 1丄. 3 QfiD 190 86 半透明 実施例 13 132 1丄. π υπυ u. yo u. yo 200 114 半透明 実施例 14 187 1. 00 1. 13 1. 26 120 86 不透明 実施例 15 231 1. 00 1. 01 1. 01 140 92 不透明 実施例 16 222 1. 00 1. 22 1. 22 190 92 不透明 実施例 17 263 1. 00 0. 98 0. 98 200以上 123 不透明 実施例 18 278 1. 00 2. 32 ゲル化 80 53 ほぼ透明 実施例 19 281 1. 00 1. 98 ゲル化 90 78 半透明 実施例 20 195 1. 00 1. 78 3. 76 90 66 半透明 実施例 21 188 1. 00 1. 32 2. 62 110 87 半透明 実施例 22 68 1. 00 1. 24 1. 68 80 82 半透明 実施例 23 62 1. 00 1. 26 1. 72 80 78 半透明 以上の比較例と実施例から明らかなように、 プラスチゾルにとつて実用上もつ とも重要な性質である貯蔵安定性は、 用いる不飽和カルボン酸化合物の種類、 コ ポリマー中の不飽和カルボン酸の量、 中和用アル力リ性金属化合物の種類及び 1 次粒子サイズに支配される。 不飽和カルボン酸化合物に関しては、 コポリマーに おける不飽和カルボン酸化合物の量が多くなるほど貯蔵安定性は向上する。 また 同量であっても、 粒子表面に分布しやすいタイプ、 すなわちアルカリ性金属化合 物で高 t、中和率を与えるタイプの不飽和カルボン酸ほど高い貯蔵安定性を与える 不飽和力ルポン酸化合物を用いてポリマー中にカルボキシル基を導入しても、 力 ルボキシル基が未中和のままでは高い貯蔵安定性は期待できないが、 そのカルボ キシル基をアルカリ金属化合物で中和することによって、 プラスチゾルの貯蔵安 定性は著しく高められる。 安定性の向上に関していえば、 中和に用いるアルカリ 金属の原子価が高いほど効果的である。 粒子径についていえば、大きくなるほど 貯蔵安定性にすぐれるが、 数平均粒子径が 0. 3 mを越えると、 貯蔵安定性の 改良効果もそれほど顕著でなくなる。 o 110 79 Translucent Example 11 262 1. UU nu, n yo 丄, uo 170 101 Translucent Example 12 218 丄. υυ 丄. 1 丄. 3 QfiD 190 86 Translucent Example 13 132 1 丄. π υπυ u.yo u.yo 200 114 Translucent Example 14 187 1.00 1.13 1.26 120 86 Opaque Example 15 231 1.00 1.01 1.01 140 92 Opaque Example 16 222 1.00 1 22 1.22 190 92 Opaque Example 17 263 1.00 0.98 0.98 200 or more 123 Opaque Example 18 278 1.00 2.32 Gelation 80 53 Almost transparent Example 19 281 1.00 1. 98 Gelation 90 78 Translucent Example 20 195 1.00 1.78 3.76 90 66 Translucent Example 21 188 1.00 1.32 2.62 110 87 Translucent Example 22 68 1.00 1. 24 1.68 80 82 Translucent Example 23 62 1.00 1.26 1.72 80 78 Translucent As is clear from the above Comparative Examples and Examples, storage stability, which is an important property of plastisols for practical use, depends on the type of unsaturated carboxylic acid compound used and the amount of unsaturated carboxylic acid in the copolymer. It is governed by the type of neutralizing alkaline metal compound and the primary particle size. For unsaturated carboxylic acid compounds, the greater the amount of unsaturated carboxylic acid compound in the copolymer, the better the storage stability. Even if the amount is the same, an unsaturated carboxylic acid compound that easily distributes on the particle surface, that is, an unsaturated carboxylic acid of an alkaline metal compound that provides a high t and a neutralization rate provides a higher storage stability. Even if a carboxyl group is introduced into the polymer by using the compound, high storage stability cannot be expected if the carboxyl group remains unneutralized, but the carboxyl group is neutralized with an alkali metal compound to store the plastisol. Stability is significantly improved. In terms of improving stability, the higher the valence of the alkali metal used for neutralization, the more effective. Regarding the particle size, the larger the particle size, the better the storage stability. However, when the number average particle size exceeds 0.3 m, the effect of improving the storage stability is not so remarkable.
この貯蔵安定性を高める手だてのうち、 粒子表面に分布しやすい不飽和カルボ ン酸化合物の選択、 共重合における高い不飽和カルボン酸化合物の量およびより 高い原子価のアル力リ性金属化合物による中和は、 プラスチゾルフイルムの耐熱 性を高める方向でもある。 ところがこの方尚はプラスチゾルフイルムの形成性を 損なう方向でもある。 最低フィルム形成温度も、 5分間の加熱で 2 5 0 °Cを越え ると、 実用上問題が生じるようになる。 したがって、 プラスチゾルとしての性能 として重要な貯蔵安定性、 フィルム形成性およびフィルムの耐熱性をバランスさ せるためには適当な折衷を必要とする。  Among the ways to increase this storage stability are the selection of unsaturated carboxylic acid compounds that are easily distributed on the particle surface, the amount of highly unsaturated carboxylic acid compounds in copolymerization, and the use of higher valent alkali metal compounds. Sum also tends to increase the heat resistance of the plastisol film. However, this direction also impairs the formability of the plastisol film. If the minimum film formation temperature exceeds 250 ° C. by heating for 5 minutes, practical problems will arise. Therefore, an appropriate compromise is needed to balance storage stability, film formability, and film heat resistance, which are important for the performance as a plastisol.
本発明においては、 コポリマー中の不飽和カルボン酸化合物の量比としては、 重合性不飽和化合物 8 0〜9 7重量部に対して不飽和カルボン酸化合物を 3〜 2 0重量部、 好ましくは重合性不飽和化合物 8 8〜9 6重量部に対して不飽和カル ボン酸化合物 4〜1 2重量部であり、 1次粒子の大きさとしては、 数平均粒子径 が 0. 1 !!!〜 1 0 0〃m、 好ましくは 0. 3〃m〜2 0〃mである。 このよう なコポリマーを水分散液状にして、 必要とする耐熱温度を与えるアル力リ金属化 合物でコポリマー中のカルボキシル基を中和してから、 分散液を噴霧乾燥してプ ラスチゾルポリマー粒子とし、 可塑剤および必要に応じて添加剤を加えてプラス チゾルとすれば、 室温において長期の貯蔵安定性が保証される。 In the present invention, the amount ratio of the unsaturated carboxylic acid compound in the copolymer is from 80 to 97 parts by weight of the polymerizable unsaturated compound and from 3 to 20 parts by weight, preferably from 20 to 97 parts by weight of the polymerizable unsaturated compound. Unsaturated calcium based on 8 to 96 parts by weight The boronic acid compound is 4 to 12 parts by weight, and the primary particles have a number average particle diameter of 0.1! ! 〜100〃m, preferably 0.3〃20〜m. Such a copolymer is made into a water-dispersed liquid, the carboxyl groups in the copolymer are neutralized with an alkali metal compound that provides a required heat-resistant temperature, and then the dispersion is spray-dried to obtain a plastisol polymer. Prolonged storage stability at room temperature is ensured by forming the particles into a plastisol with the addition of plasticizers and, where appropriate, additives.
以上に説明したように、 本発明により、 塩素を含まないポリマー組成で、 従来 の技術では達成し得なかった高水準の貯蔵安定性をもつプラスチゾルと、 高い耐 熱温度とすぐれた耐候性をもつプラスチゾルフイルムを提供することができる。 このプラスチゾルは、 従来、 塩化ビニル系プラスチゾルが利用されていた輸送車 両、 船舶、 玩具、加工繊維製品などの分野の用途でそれを代替して、 環境汚染に 寄与するばかりか、 その高い耐熱温度と優れた耐候性を活用して、 これまで塩化 ビニル系プラスチゾルではなし得なかった新しい用途の開拓を可能にする。  As described above, according to the present invention, a plastisol having a high level of storage stability, which cannot be achieved by the conventional technology, and a high heat resistance and excellent weather resistance are obtained by a polymer composition containing no chlorine. A plastisol film can be provided. This plastisol substitutes for applications in the fields of transport vehicles, ships, toys, and processed textile products, where vinyl chloride-based plastisols were conventionally used, and contributes not only to environmental pollution but also to its high heat resistance temperature. Utilizing the excellent weather resistance and the new technology, it is possible to develop new applications that have not been possible with vinyl chloride plastisols.

Claims

請求の範囲 The scope of the claims
1. 不飽和カルボン酸化合物 3〜2 0重量部と重合性不飽和化合物 9 7〜8 0重量部との共重合体であって、 そのカルボキシル基の少なくとも 1 0 %がアル カリ性金属化合物で中和されている、 0. l z m〜1 0 0 / mの数平均粒子径を 有するコポリマー粒子 1 0 0重量部が 5 0〜2 0 0重量部の可塑剤に分散されて いることを特徴とするプラスチゾル。 1. A copolymer of 3 to 20 parts by weight of an unsaturated carboxylic acid compound and 97 to 80 parts by weight of a polymerizable unsaturated compound, wherein at least 10% of the carboxyl groups are alkali metal compounds. 100 parts by weight of copolymer particles having a number average particle diameter of 0.1 lzm to 100 / m, which is neutralized, are dispersed in 50 to 200 parts by weight of a plasticizer. Plastisol.
2. 該コポリマーを構成する該不飽和カルボン酸化合物が、 アクリル酸、 メ タクリル酸、 マレイン酸及びそのモノエステル、 ィタコン酸及びそのモノエステ ル、 フマル酸及びそのモノエステルからなる群から選択される請求の範囲第 1項 に記載のプラスチゾル。  2. The unsaturated carboxylic acid compound constituting the copolymer is selected from the group consisting of acrylic acid, methacrylic acid, maleic acid and its monoester, itaconic acid and its monoester, fumaric acid and its monoester. The plastisol according to claim 1.
3. 該不飽和カルボン酸化合物がアクリル酸である請求の範囲第 2項に記載 のプラスチゾル。  3. The plastisol according to claim 2, wherein the unsaturated carboxylic acid compound is acrylic acid.
4. 該不飽和カルボン酸化合物がメタクリル酸である請求の範囲第 2項に記 載のプラスチゾル。  4. The plastisol according to claim 2, wherein the unsaturated carboxylic acid compound is methacrylic acid.
5. 該重合性不飽和化合物が、 スチレン及びその誘導体、 メタクリル酸エス テル、 ァクリル酸エステル、 ビニルエステル、 アクリロニトリル、 メタクリロニ トリル及びブタジエンからなる群から選択される請求の範囲第 1項に記載のブラ スチゾル。  5. The brass according to claim 1, wherein said polymerizable unsaturated compound is selected from the group consisting of styrene and its derivatives, methacrylic acid ester, acrylic acid ester, vinyl ester, acrylonitrile, methacrylonitrile and butadiene. Stisol.
6. 該重合性不飽和化合物がスチレンである請求の範囲第 5項に記載のブラ スチゾル。  6. The blastisol according to claim 5, wherein the polymerizable unsaturated compound is styrene.
7. 該メタクリル酸エステルがメチルメタクリレートである請求の範囲第 5 項に記載のプラスチゾル。  7. The plastisol according to claim 5, wherein the methacrylate is methyl methacrylate.
8. 該ァクリル酸エステルが n—プチルァクリレートである請求の範囲第 5 項に記載のプラスチゾル。 8. The plastisol according to claim 5, wherein the acrylate is n-butyl acrylate.
9. 該アルカリ性金属化合物が 1価のアルカリ性金属化合物である請求の範 囲第 1項に記載のプラスチゾル。 9. The plastisol according to claim 1, wherein the alkaline metal compound is a monovalent alkaline metal compound.
10. 該 1価のアル力リ性金属化合物が水酸化ナトリウムである請求の範囲第 9項に記載のプラスチゾル。  10. The plastisol according to claim 9, wherein said monovalent alkali metal compound is sodium hydroxide.
11. 該ァルカリ性金属化合物が 2価のアル力リ性金属化合物である請求の範 囲第 1項に記載のプラスチゾル。  11. The plastisol according to claim 1, wherein the alkali metal compound is a divalent alkali metal compound.
12. 該 2価のアル力リ性金属化合物が水酸化カルシウムである請求の範囲第 1 1項に記載のプラスチゾル。  12. The plastisol according to claim 11, wherein said divalent alkaline metal compound is calcium hydroxide.
13. 該可塑剤が、 フタル酸エステル、 アジピン酸エステル、 セバシン酸エス テル、 ァゼライン酸エステル、 リン酸エステル、 クェン酸エステル、 ァセチル化 グリセライド及びエポキシ化グリセライドからなる群から選択される請求の範囲 第 1項に記載のプラスチゾル。  13. The plasticizer according to claim 11, wherein said plasticizer is selected from the group consisting of phthalates, adipic esters, sebacic esters, azelaic esters, phosphoric esters, citrate esters, acetylated glycerides and epoxidized glycerides. The plastisol according to item 1.
14. 該フタル酸エステルが、 ジ一 2—ェチルへキシルフタレート、 ジブチル フタレート、 ジイソォクチルフタレート、 ブチルシクロへキシルフタレート、 ブ チルォクチルフタレート、 ジイソノニルフタレート、 ジカプリルフタレート及び ジイソデシルフタレ一卜からなる群から選択される請求の範囲第 1 3項に記載の プラスチゾル。  14. The phthalic acid ester is a group consisting of di-2-ethylhexyl phthalate, dibutyl phthalate, diisooctyl phthalate, butylcyclohexyl phthalate, butyoctyl phthalate, diisononyl phthalate, dicapryl phthalate and diisodecyl phthalate The plastisol according to claim 13, which is selected from the group consisting of:
15. 該フタル酸エステルがジ一 2—ェチルへキシルフタレ一トである請求の 範囲第 1 4項に記載のプラスチゾル。  15. The plastisol according to claim 14, wherein said phthalic acid ester is di-2-ethylhexyl phthalate.
16. 該フタル酸エステルがジイソノニルジフタレートである請求の範囲第 1 4項に記載のプラスチゾル。  16. The plastisol according to claim 14, wherein said phthalic acid ester is diisononyl diphthalate.
17. 該クェン酸エステルがァセチルトリブチルサイ トレートである請求の範 囲第 1 3項に記載のプラスチゾル。  17. The plastisol according to claim 13, wherein said citrate is acetyltributyl citrate.
18. 該ァセチル化グリセライドがグリセロールジアセテートモノラウレート である請求の範囲第 1 3項に記載のプラスチゾル。 18. The plastisol according to claim 13, wherein said acetylated glyceride is glycerol diacetate monolaurate.
19. 該エポキシ化グリセライドがエポキシ化大豆油である請求の範囲第 1 3 項に記載のプラスチゾル。 19. The plastisol according to claim 13, wherein said epoxidized glyceride is epoxidized soybean oil.
20. 該エポキシ化グリセライドがエポキシ化アマ二油である請求の範囲第 1 3項に記載のプラスチゾル。  20. The plastisol according to claim 13, wherein the epoxidized glyceride is an epoxidized linseed oil.
21. コポリマーの粒子が 0. 3〜2 0 z mの数平均粒子径を有する請求の範 囲第 1項に記載のブラスチゾル。  21. A blastisol according to claim 1 wherein the particles of the copolymer have a number average particle size of 0.3 to 20 zm.
22. 以下の工程:即ち  22. The following steps:
( i )不飽和カルボン酸化合物 3〜 2 0重量部と重合性不飽和化合物 8 0〜 9 7 重量部とを、 重合開始剤の存在下、 5 0〜9 5 °Cの温度において、 水中で重合し てポリマー分散液を形成し;  (i) 3 to 20 parts by weight of an unsaturated carboxylic acid compound and 80 to 97 parts by weight of a polymerizable unsaturated compound in water at a temperature of 50 to 95 ° C in the presence of a polymerization initiator. Polymerize to form a polymer dispersion;
( ii)ポリマー分散液のポリマーのカルボキシル基の少なくとも 1 0 %を、 5〜 9 5 °Cの温度及び 7〜1 4の ρ Ηにおいてアル力リ性金属化合物で中和し; (ii) neutralizing at least 10% of the carboxyl groups of the polymer of the polymer dispersion with an alkali metal compound at a temperature of 5 to 95 ° C. and a ρ of 7 to 14;
(iii)ポリマー分散液から、 0. 1〜1 0 0 mの数平均粒子径を有するポリマ 一粒子を回収し; (iii) recovering a polymer particle having a number average particle diameter of 0.1 to 100 m from the polymer dispersion;
(iv)回収されたポリマー粒子を乾燥し;  (iv) drying the recovered polymer particles;
( V )乾燥されたポリマー粒子 1 0 0重量部を可塑剤 5 0〜2 0 0重量部中に分 散する;  (V) 100 parts by weight of the dried polymer particles are dispersed in 50 to 200 parts by weight of a plasticizer;
工程を含むことを特徵とするプラスチゾルの製造方法。 A method for producing a plastisol, comprising a step.
23. 工程( i )を、 不飽和カルボン酸化合物及び重合性不飽和化合物の全量を 基準として 0. 2〜 2重量%の乳化剤の存在下、 2 5〜6 0重量%のモノマー濃 度で、 乳化重合によって行う請求の範囲第 2 2項に記載の方法。  23. Step (i) is carried out in the presence of 0.2 to 2% by weight of emulsifier, based on the total amount of unsaturated carboxylic acid compound and polymerizable unsaturated compound, at a monomer concentration of 25 to 60% by weight, The method according to claim 22, which is carried out by emulsion polymerization.
24. 工程(i )を少なくとも 2回繰り返す請求の範囲第 2 3項に記載の方法。 24. The method according to claim 23, wherein step (i) is repeated at least twice.
25. 工程( i )を、 不飽和カルボン酸化合物及び重合性不飽和化合物の全量を 基準として 0. 5〜5重量%の、水溶性ポリマー、 無機微粒子及び水溶性ポリマ 一と界面活性剤の混合物からなる群から選択される少なくとも一つの存在下、 1 5〜5 0重量%のモノマー濃度で、 懸濁重合によって行う請求の範囲第 2 2項に 記載の方法。 25. In step (i), 0.5 to 5% by weight, based on the total amount of the unsaturated carboxylic acid compound and the polymerizable unsaturated compound, of a mixture of a water-soluble polymer, inorganic fine particles and a water-soluble polymer and a surfactant. In the presence of at least one selected from the group consisting of 1 22. The process according to claim 22, which is carried out by suspension polymerization at a monomer concentration of 5 to 50% by weight.
26. 工程(ffi)及び(i を噴霧乾燥によって同時に行う請求の範囲第 2 2項に 記載の方法。  26. The method according to claim 22, wherein steps (ffi) and (i) are performed simultaneously by spray drying.
27. 工程(i )における不飽和カルボン酸化合物が、 アクリル酸、 メタクリル 酸、 マレイン酸及びそのモノエステル、 ィタコン酸及びそのモノエステル、 フマ ル酸及びそのモノエステルからなる群から選択される請求の範囲第 2 2項に記載 の方法。  27. The method of claim 1, wherein the unsaturated carboxylic acid compound in step (i) is selected from the group consisting of acrylic acid, methacrylic acid, maleic acid and its monoester, itaconic acid and its monoester, fumaric acid and its monoester. Method according to paragraph 22.
28. 工程(i )における重合性不飽和化合物が、 スチレン及びその誘導体、 メ タクリル酸エステル、 アタリル酸エステル、 ビニルエステル、 アクリロニトリル、 メタクリロニトリル及びブタジエンからなる群から選択される請求の範囲第 2 2 項に記載の方法。  28. The method according to claim 2, wherein the polymerizable unsaturated compound in step (i) is selected from the group consisting of styrene and its derivatives, methacrylic acid esters, acrylic acid esters, vinyl esters, acrylonitrile, methacrylonitrile, and butadiene. The method described in paragraph 2.
29. 工程(ii)におけるアル力リ性金属化合物が、 水溶液の形態でポリマー分 散液に加えられる請求の範囲第 2 2項に記載の方法。  29. The method according to claim 22, wherein the alkaline metal compound in step (ii) is added to the polymer dispersion in the form of an aqueous solution.
30. 工程(ϋ)におけるアルカリ性金属化合物が、 1価のアルカリ性金属化合 物、 2価のアル力リ性金属化合物及び 3価のアル力リ性金属化合物からなる群か ら選択される請求の範囲第 2 2項に記載の方法。  30. The claim wherein the alkaline metal compound in step (ϋ) is selected from the group consisting of a monovalent alkaline metal compound, a divalent alkaline metal compound, and a trivalent alkaline metal compound. The method of paragraph 22.
31. 工程(V )における可塑剤が、 フタル酸エステル、 アジピン酸エステル、 セバシン酸エステル、 ァゼライン酸エステル、 リン酸エステル、 クェン酸エステ ル、 ァセチル化グリセライド及びエポキシ化グリセライドからなる群から選択さ れる請求の範囲第 2 2項に記載の方法。  31. The plasticizer in step (V) is selected from the group consisting of phthalates, adipates, sebacates, azelates, phosphates, esters of citrate, acetylated glycerides, and epoxidized glycerides. 22. The method according to claim 22.
PCT/JP1993/001760 1992-12-04 1993-12-03 Stable plastisol WO1994013742A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU55756/94A AU5575694A (en) 1992-12-04 1993-12-03 Stable plastisol

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP32515192 1992-12-04
JP4/325151 1992-12-04
JP26855393A JPH06220336A (en) 1992-12-04 1993-10-27 Stable plastisol
JP5/268553 1993-10-27

Publications (1)

Publication Number Publication Date
WO1994013742A1 true WO1994013742A1 (en) 1994-06-23

Family

ID=26548368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/001760 WO1994013742A1 (en) 1992-12-04 1993-12-03 Stable plastisol

Country Status (3)

Country Link
JP (1) JPH06220336A (en)
AU (1) AU5575694A (en)
WO (1) WO1994013742A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5944798B2 (en) * 2012-09-05 2016-07-05 ジャパンコーティングレジン株式会社 Aqueous dispersion and floor brightener using the same
JP6457898B2 (en) * 2015-07-21 2019-01-23 東洋スチレン株式会社 Styrenic resin for molding, molded product, and manufacturing method of molded product
JP2016106172A (en) * 2016-03-23 2016-06-16 ジャパンコーティングレジン株式会社 Aqueous dispersion

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53140342A (en) * 1977-03-22 1978-12-07 Du Pont Nonnaqueous resin dispersion
JPS61106224A (en) * 1984-10-30 1986-05-24 Asahi Chem Ind Co Ltd Shrinkable film at low temperature
JPS61123517A (en) * 1984-11-21 1986-06-11 Asahi Chem Ind Co Ltd Packaging film shrinkable at low temperature
JPS63341A (en) * 1986-06-19 1988-01-05 Idemitsu Petrochem Co Ltd Copolymer solution
JPH0245643B2 (en) * 1978-10-16 1990-10-11 Goodrich Co B F

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53140342A (en) * 1977-03-22 1978-12-07 Du Pont Nonnaqueous resin dispersion
JPH0245643B2 (en) * 1978-10-16 1990-10-11 Goodrich Co B F
JPS61106224A (en) * 1984-10-30 1986-05-24 Asahi Chem Ind Co Ltd Shrinkable film at low temperature
JPS61123517A (en) * 1984-11-21 1986-06-11 Asahi Chem Ind Co Ltd Packaging film shrinkable at low temperature
JPS63341A (en) * 1986-06-19 1988-01-05 Idemitsu Petrochem Co Ltd Copolymer solution

Also Published As

Publication number Publication date
AU5575694A (en) 1994-07-04
JPH06220336A (en) 1994-08-09

Similar Documents

Publication Publication Date Title
AU2001249603B2 (en) Polymerizable compounds and uses thereof
JPH07165843A (en) Water-base latex polymer composition
US6897257B2 (en) Process for forming latex polymers
JP3349486B2 (en) Polymers based on vinyl chloride to be plastisols with special properties and methods for their production.
WO1994013742A1 (en) Stable plastisol
EP0784060B1 (en) Copolymer latex and process for producing the same
JPS62232403A (en) Polymerization of vinyl monomer and production of porous polyvinyl chroride resin particles
JP2003301083A (en) Vinyl chloride-based resin latex, vinyl chloride-based resin for paste processing and production method thereof, and vinyl chloride-based resin composition for paste processing and use thereof
WO1994014898A1 (en) Stable plastisol which gives film with excellent heat resistance
US3632562A (en) Process for polymerizing and copolymerizing vinyl chloride in aqueous emulsions
JP2001040012A (en) Vinyl chloride resin for paste, method for producing the same and vinyl chloride resin composition used for paste and comprising the same
WO1995027006A1 (en) Stable plastisol which gives film excellent in toughness and heat resistance
US3554953A (en) Process for the production of polyvinyl halide
JPH1067810A (en) Latex mainly comprising vinyl chloride copolymer of special structure, and its manufacture and application
JPS6254806B2 (en)
JPH06322225A (en) Plastisol composition of excellent pot life
JP3676572B2 (en) Vinylidene chloride emulsion and aqueous resin composition for undercoat
JPH02110108A (en) Manufacture of vinyl chloride polymer composition
WO2018180393A1 (en) Vinyl chloride-vinyl acetate copolymer resin composition
JP2003238621A (en) Polyvinyl chloride resin for paste processing
JP2947268B2 (en) Paste vinyl chloride resin and paste vinyl chloride resin composition
JP2003012882A (en) Vinylchloride-based resin for matte paste coating and matte paste composition comprising the same
JP4481483B2 (en) Method for producing plastisol acrylic resin
CA2091880A1 (en) Process for the preparation of a finely divided vinyl chloride graft copolymer and its use as viscosity-reducing agent and flatting agent
WO2005061569A1 (en) Method for producing vinyl chloride copolymer resin

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BB BG BR BY CA CZ FI HU KR KZ LK LV MG MN MW NO NZ PL RO RU SD SK UA US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA