WO1994012594A1 - Ammonia refrigerating unit, working fluid composition to be used in said unit, and lubrication of ammonia compressor - Google Patents

Ammonia refrigerating unit, working fluid composition to be used in said unit, and lubrication of ammonia compressor Download PDF

Info

Publication number
WO1994012594A1
WO1994012594A1 PCT/JP1992/001551 JP9201551W WO9412594A1 WO 1994012594 A1 WO1994012594 A1 WO 1994012594A1 JP 9201551 W JP9201551 W JP 9201551W WO 9412594 A1 WO9412594 A1 WO 9412594A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
working fluid
compressor
fluid composition
refrigerant
Prior art date
Application number
PCT/JP1992/001551
Other languages
French (fr)
Japanese (ja)
Inventor
Keisuke Kasahara
Kuniaki Kawamura
Takashi Kaiwai
Hisashi Yano
Original Assignee
Kyodo Oil Technical Research Center Co., Ltd.
Maekawa Mfg. Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1019970702556A priority Critical patent/KR0145952B1/en
Application filed by Kyodo Oil Technical Research Center Co., Ltd., Maekawa Mfg. Co., Ltd filed Critical Kyodo Oil Technical Research Center Co., Ltd.
Priority to DE69228322T priority patent/DE69228322T2/en
Priority to US08/675,513 priority patent/US5688433A/en
Priority to PCT/JP1992/001551 priority patent/WO1994012594A1/en
Priority to JP6502675A priority patent/JP2977046B2/en
Priority to EP92924018A priority patent/EP0626443B1/en
Priority to AU29563/92A priority patent/AU666505B2/en
Priority claimed from CA002111196A external-priority patent/CA2111196C/en
Priority to CA002111196A priority patent/CA2111196C/en
Priority to KR1019940700127A priority patent/KR0128719B1/en
Publication of WO1994012594A1 publication Critical patent/WO1994012594A1/en
Priority to US08/469,707 priority patent/US5651257A/en
Priority to AU40850/96A priority patent/AU681318B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/008Lubricant compositions compatible with refrigerants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/20Lubricating compositions characterised by the base-material being a macromolecular compound containing oxygen
    • C10M107/30Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M107/32Condensation polymers of aldehydes or ketones; Polyesters; Polyethers
    • C10M107/34Polyoxyalkylenes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/105Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/107Polyethers, i.e. containing di- or higher polyoxyalkylene groups of two or more specified different alkylene oxides covered by groups C10M2209/104 - C10M2209/106
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/32Wires, ropes or cables lubricants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/34Lubricating-sealants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/36Release agents or mold release agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/38Conveyors or chain belts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/40Generators or electric motors in oil or gas winning field
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/42Flashing oils or marking oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/44Super vacuum or supercritical use
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/50Medical uses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant

Definitions

  • the present invention relates to a refrigeration and heat pump apparatus using a refrigerant containing ammonia as a main component, a working fluid composition obtained by mixing a refrigerant and lubricating oil used in the refrigeration apparatus, and a method for lubricating an ammonia compressor.
  • Freon which has been widely used as a refrigerant in refrigeration and heat pump devices (hereinafter referred to as refrigeration devices), is released into the atmosphere and accumulates. This has resulted in the destruction of the layers of the Earth, which serve to protect the Earth from the sun's intense UV light, thereby limiting its use. Therefore, in recent years, ammonia has been reviewed as an alternative refrigerant.
  • ammonia refrigerant has no danger of destruction of the global environment like a humid refrigerant, and its refrigeration effect is not less than that of chlorofluorocarbon, and it is also inexpensive.
  • amplifiers have drawbacks such as toxicity, flammability, insolubility in mineral oil used as compressor lubricating oil, and higher discharge temperature from compressor.
  • the refrigeration system is configured so that no problems occur due to these shortcomings.
  • Fig. 6, 50 is the evaporator side for example-10 t, and the condenser side is a single-stage compression type for obtaining heat of around +35 ° C.
  • the configuration of the direct expansion refrigeration system will be described mainly with regard to its operation.
  • the oil-mixed ammonia refrigerant compressed by the refrigerant compressor 51 is separated into oil by the oil separator 52, and then separated by the condenser 53. It is condensed and liquefied in the condenser 53 by heat exchange with the cooling water 64 (acquired heat: 3 ⁇ X: before and after).
  • the liquor separated at the time of the condensation is further separated by the oil reservoir 55 provided at the bottom of the high-pressure receiver 54, and the ammonia refrigerant is decompressed and vaporized by the expansion valve 56.
  • the blast load supplied by fan 58 obtained heat: — i O "C
  • it is further sucked into the intake side of compressor 51 through ammonia liquid oil separator 59. Repeat the frozen cycle.
  • the oil collected at the bottom of the oil separator 52, the oil sump 55 at the bottom of the receiver, and the bottom of the evaporator 57 are all oil drain valves 60a, 60b, 6 ⁇ c, 60 Then, the liquid accumulates in the oil receiver 61 via the d and is returned into the compressor 52 again from the oil spraying section 52 of the compressor 51 to clean, seal, and cool the movable parts.
  • the liquid accumulates in the oil receiver 61 via the d and is returned into the compressor 52 again from the oil spraying section 52 of the compressor 51 to clean, seal, and cool the movable parts.
  • the refrigerating device i 50 can be applied as a heat pump device by extracting heat from the condenser 53 side, and therefore these are collectively referred to as a refrigerating device.
  • the lubricating oil generally uses mineral lubricating oils such as paraffinic and naphthenic oils. Since these lubricating oils do not dissolve in ammonia, an oil separator is installed on the discharge side of the compressor. To separate the ammonia gas and the lubricating oil discharged from the compressor, and even if the separator is provided, the mist-shaped lubricating oil cannot be completely removed, and the discharge of the compressor The lubricating oil slightly dissolves or mixes in the ammonia due to the high temperature on the side, and enters the refrigeration cycle along with the ammonia, and then in the cycle. Since the lubricating oil that has entered is insoluble in ammonia and has a high specific gravity, it tends to accumulate in the piping path of the cycle.
  • mineral lubricating oils such as paraffinic and naphthenic oils. Since these lubricating oils do not dissolve in ammonia, an oil separator is installed on the discharge side of the compressor. To separate the ammonia gas and the lubricating oil discharged
  • the fact that the lubricating oil is insoluble in the refrigerant as described above means that the oil adheres to the wall of the heat exchange coil in the condenser 53 and the evaporator 57 and the heat transfer efficiency is reduced.
  • the viscosity of Shant becomes high, the oil drainage fluidity is reduced, and the heat transfer efficiency is further reduced.
  • the ammonia i-system mentioned earlier has a use limit of around 20 '. In recent years, the intensity of the amusement process has dropped significantly.
  • the required cooling temperature is lower than that of rii, which prevents leaching of j, ik and other qualities, and most of the following, especially in high-priced foods such as tuna.
  • the cryopreservation temperature is significantly lower from-50 ° C to 160 ° C.
  • Such a freezing temperature cannot be obtained with the single-stage compressor as described above.
  • a two-stage compressor is used.
  • the evaporator temperature is ⁇ 40.
  • the fluidity of the lubricating oil is greatly reduced, as shown in Table 3 below, and the evaporator becomes clogged.
  • the inside of the liquid pipe 66 is cooled, while the terminal side of the liquid pipe 66 is introduced into a supercooling pipe 69 in the intercooler 68, and is cooled to about 110 ° C in the supercooling pipe 69. After cooling, it is decompressed and vaporized by the expansion valve 74 and introduced into the low-pressure receiver 70.
  • This refrigerant liquid is supplied to the evaporator via the liquid pump 71 and the flow control valve 72.
  • the vaporized refrigerant in the low-pressure receiver 70 is sucked into the low-stage compressor 75, is compressed, and the compressed gas is cooled in the intermediate cooler 68, and is cooled in the intermediate cooler 68.
  • the condensed refrigerant from the liquid pipe 66 is introduced into the heat exchange supercooling pipe 69 to be supercooled to about 110 ° C, and is decompressed and vaporized by the expansion valve 74 so as to be low-pressure receiver. Introduce within 70.
  • the vaporized refrigerant in the intercooler 68 is compressed by the high-stage compressor 51 ′, and the cycle is repeated.
  • Oil reservoirs 55, 68a, and 7 ⁇ a are also provided at the bottoms of the high-pressure receiver 54, the intercooler 68, and the low-pressure receiver 70, respectively. After the oil is collected by the oil receiver 61, it is returned to the Shantou injection parts 51a, 75a on the high-pressure compressors 5, 75 side.
  • the liquid floating valve is
  • the low-pressure receiver 70 side particularly has the following problems.
  • 0 X Coolant liquid stored in the reservoir is stored, and the lubricating oil stored in the oil reservoir is also cooled back and forth between 140 and 150, greatly reducing fluidity.
  • the temperature of the oil must be temporarily increased, and as a result, the continuous operation of the cooling cycle is required. A hindrance occurs, and maintenance is required to stop the cycle and recover oil every time the oil is stored at a predetermined ffi.
  • ammonia is advantageous because of its high cost, the expansion valve is not clogged because it dissolves in water, and the latent heat of vaporization is large and the refrigeration effect is large. Ammonia is corrosive to copper-based materials Therefore, it cannot be used at present because the recovery and circulation of oil alone is extremely difficult due to the insolubility of ammonia and lubricating oil.
  • Lubricating oils having such compatibility have already been proposed in the field of fluorocarbons.
  • polyhydric alcohol esters and polyoxyalkylene glycol compounds are known.
  • refrigerant There is no example for refrigerant.
  • Ammonia is highly reactive: If any hydrolysis of the ester occurs, it will form an acid amide, causing sludge precipitation, and poor solubility with ammonia. However, it is difficult to use these lubricants in combination with ammonia refrigerant.
  • the wood invention is a working fluid composition for a refrigerator, which is obtained by mixing a lubricating oil having excellent compatibility with an ammonia refrigerant and also having excellent lubricity and stability and an ammonia refrigerant. (Hereinafter simply referred to as working fluid composition).
  • Another object of the present invention is to use the above-described stimulating fluid composition and further advance the elimination of the above-mentioned disadvantages of ammonia, and a refrigeration apparatus incorporated in the equipment. ⁇ Provides a method for contracting the machine. "Disclosure of the invention"
  • the inventors of the present invention have prepared a polyoxyalkylene glycol having a specific structure, in which all terminal ⁇ H groups are substituted with ⁇ R groups (hereinafter simply referred to as poly It has been found that they have excellent compatibility with ammonia and exhibit excellent lubricity and stability even in the presence of ammonia, and have completed the present invention.
  • the first invention is a working fluid composition
  • a working fluid composition comprising a mixture of ammonia and a lubricating oil for an ammonia compressor using a compound of the following general formula (I) as a base oil of a lubricating oil.
  • R i is a hydrocarbon group having 1 to 6 carbon atoms
  • R 2 is an alkyl group having 16 carbon atoms
  • P 0 is oxypropylene
  • E 0 is oxyethylene.
  • the group, X is an integer from 1 to 4
  • m is a positive integer
  • is () or still a positive integer.
  • the second invention is characterized in that an ammonia refrigerant and a lubricating oil that can be dissolved in the ammonia refrigerant and do not separate into two layers even at the evaporating temperature of the refrigerant are filled in the refrigeration system,
  • the refrigeration or heat pump cycle is made by filling lubricating oil in an ammonia refrigerant at 2% by weight or more.
  • ammonia refrigerant and the lubricating oil may be mixed in advance to form a working fluid composition, or they may be separately charged into a refrigeration or heat pump cycle, respectively.
  • a working fluid composition may be comprised.
  • the lubricating oil of the present invention is not limited to the first invention alone, and may be any lubricating oil that can be easily dissolved in ammonia refrigerant and does not separate into two layers even at the evaporation temperature of the refrigerant.
  • a stator core around a rotor on the motor side is surrounded by a hermetic diaphragm, and is surrounded by a predetermined gap with the rotor, and the rotor core is provided between the rotor inner space and a compressor.
  • a lubricating oil using the compound of the general formula (I) as an oil is not necessarily used only as a working fluid to be compatible with ammonia, but is used as a lubricating oil for an ammonia compressor. You can also. This is the third invention, Next, the respective inventions will be described in detail.
  • the compound represented by the above general formula (I) is a polyether of a desired propylene oxide or a random or block copolymer of propylene and ethylene glycol.
  • the compound of the formula (I) is collectively referred to as a so-called polyoxyalkylene glycol-based compound, and many examples of using the compound as a lubricating oil for a refrigerator using HCFC or CC as a refrigerant are known. .
  • S 4 9 4 8 5 2 5 (corresponding Japanese application: Publication 2 - 4 3 2 9 0, the 2 - 8 4 4 9 ⁇ ), the - general formula R t - (0 R 2) a — Polyoxyalkylene glycol monoether having a structure of 0 H (R is an alkyl group having 1 to 18 carbon atoms, R 2 is an alkylene group of C 1 to C 4), and S 4 2 6 7 0 6 4 (corresponding Japanese application: public announcement 6 1 — 5 2 8 8 0) and US 4 2 4 8 7 2 6 (corresponding Japanese application: public publication
  • the polyether represented by the general formula (I) has a viscosity required as a lubricating oil.
  • the polyether is 22-68 cSt at 100 ° C and 5-100 C at 100 ° C. It has a viscosity of 15 cSt.
  • the factor that greatly affects the viscosity is the molecular weight, and the molecular weight is preferably from 300 to 180 to set the above viscosity.
  • Polyethers of the general formula (I) is a polyether which all end by R t and R 2 are Kusarisa sealed.
  • R t is a hydrocarbon group having 1 to 6 carbon atoms.
  • the hydrocarbon group means the following (i) or (ii). That is, R i is (i) a C 1 -C 6 chain derived from a saturated linear or branched C 1 -C 6 chain hydrocarbon group, specifically, a C 1 -C 6 aliphatic monohydric alcohol.
  • alkyl i.e., methyl, ethyl, propyl, isopropyl, butyl, isobutyl, pentyl, isopentyl, hexyl, or isohexyl
  • an alkyl group having 14 to 14 carbon atoms more preferably an alkyl group having 1 to 2 carbon atoms, ie, a methyl or ethyl group, or (ii) 2 — 4 Saturated aliphatic polyhydric alcohols, specifically ethylene glycol, propylene glycol, diethyl glycol, 1,3-propanediol, 1,2-butanediol, 1,6-hexanedioxide Le, 2 — etil — 1, 3 Hydrocarbon residues derived from hexanediol, neopentylglycol, trimethyl-l-propane, trimethyll-l-l
  • X in the general formula (I) is an integer of 114 corresponding to the valence of the alcohol that becomes ⁇ of the hydrocarbon ⁇ of Rx .
  • X is 1 and R is preferably methyl or ethyl ,,,
  • R 2 is an alkyl group having 1 to 6 carbon atoms. With an alkyl group of 7 or more, the temperature of two-way separation from ammonia is too high to achieve the object of the present invention. Has 1 to 4 carbon atoms, and 1 to 2 carbon atoms. The compatibility, that is, the bilayer separation temperature is further reduced, so that it is preferable.
  • R 2 takes 2 to 4 alkyl groups, which may be the same or different, and still maintain a favorable compatibility with R 2 2 is 1 to 4, especially 1 to 2 is preferred.
  • the hydroxyl group of the 1- to 4-valent alcohol When synthesizing the compound of the general formula (I), if the hydroxyl group of the 1- to 4-valent alcohol remains partially unreacted, the obtained polyol can be used for a long period of time. Not good because it creates sludge. Therefore, the hydroxyl group of the alcohol should not remain as much as possible.
  • the hydroxyl value of the compound of the general formula (I) is 10 mgK ⁇ HZg or less, and furthermore, 5 mgK0H / g or less is preferred.
  • the viscosity of a lubricating oil containing a polyester compound represented by the general formula (I) as a base oil is 22-68 cS1: at 40 ° C and 5 at 100 ° C. — 16 cSt.
  • This viscosity is necessary to maintain good lubricity in the presence of ammonia.
  • the average molecular weight is preferably from 300 to 180, and if the average molecular weight is less than 300, the viscosity is low and the lubrication is good. However, if it exceeds ⁇ , 800, the compatibility with ammonia deteriorates.
  • the control of the average molecular weight is achieved by appropriately selecting the polymerization degrees m and n in addition to R 1 , R 2 .
  • the relative ratio of the degree of polymerization (m) of the oxypropylene group and the degree of polymerization (n.) Of the oxyethylene group determines the lubricity, low-temperature fluidity and ammonia.
  • the value of niZ (m + n) is preferably 0.5 or more.
  • the compound of the general formula (I) in which n is 0 has good compatibility with ammonia and good lubricity.
  • the polyether that is IB-mixed in (4) has a high pour point and a high hygroscopicity, and requires attention.
  • the preferable range of the value of m / (m + n) is 0.5 to 1.0, more preferably 0.5 to 0.9. , And more preferably 0.7 — 0.9.
  • the copolymer of oxyethylene and oxypropylene is not limited to the block copolymer, but it is not limited to the block copolymer in general formula (I). But it can be an alternating copolymer.
  • the binding order of old Kishiechiren portion and Okishipuro Pile emission portion in pro click copolymerization, even Ceri Ragasaki may bind other words R t and Docki et al.
  • a polyether compound such as oxybutylene, which is a compound of xylylene having 4 or more carbon atoms, is not preferred because it is incompatible with ammonia.
  • the setting of the compatibility with the ammonia refrigerant is determined based on the intended use.
  • a cryogenic refrigerator requires lubricating oil having a two-layer separation temperature of 150 ° C. or less, a conventional refrigerator of 13 ° C. or less is sufficient, and an air conditioner of —20 C
  • the following lubricating oils may be used.
  • R 1 is most preferably a methyl group.
  • the compounds of the general formula (I) can be used alone or in combination of two or more.
  • a polyoxypropylene dimethyl ether having a molecular weight of 800-1 OO 0 and a polyoxyethylene propylene diethylene ester having a molecular weight of 1200-130 are used alone or in a ratio of 10: 90-0: 10 (weight). ), And a viscosity at 40 ° C of 32 to 50 cSt is exemplified.
  • the polyether compound of the general formula (I) is obtained by starting from an i-tetravalent alcohol having 1 to 6 carbon atoms or an alkali metal salt thereof, and starting from an alkylene alkyd having 2 to 3 carbon atoms. After the IS compound, an ether compound having one end of the chain-like polyalkylene group bonded to the hydrocarbon group of the raw material alcohol by an ether bond and the other end of which is hydroxyl is obtained. It can be obtained by etherifying hydroxyl.
  • an alkali metal salt of a lower alcohol such as an alkali metal salt such as metal sodium is used.
  • an alkali metal salt of the ether compound and then react the alkyl halide with an alkyl halide having 1 to 6 carbon atoms.
  • polyoxyalkylene glycol having hydroxyl groups at both ends can be used as a starting material without necessarily using alcohol as a starting material.
  • the polyether compound of the general formula (I) may be produced by an appropriate known method.
  • the refrigerating machine oil of the wood invention stably dissolves in a very wide mixing ratio with ammonia. Also exhibits good lubricity in the presence of ammonia.
  • the mixing ratio of the lubricating oil can be further reduced while the lubricating property is secured.
  • the lubricating oil for refrigerators of the present invention is based on the compound represented by the general formula (I), and the composition of the working fluid circulating through the refrigeration and heat pump cycle of the present invention. It is preferable that the mixing ratio of ammonia and the polyether compound of the general formula (I) is 98: 2 (weight ratio) or more.
  • the lubricating oil and the working fluid composition for refrigerators of the present invention may contain various additives such as a load-bearing agent such as triglyceryl phosphate, an amine-based antioxidant, and a benzotriazole-based agent.
  • a load-bearing agent such as triglyceryl phosphate
  • an amine-based antioxidant such as a benzotriazole-based agent
  • a metal deactivator, a defoaming agent for silicones, etc. that can be added as necessary. Those that do not form solids by reaction with ammonia should be selected. Therefore, phenolic antioxidants cannot be used.
  • lubricating oils that may react with ammonia such as polyol esters, should not be mixed, and mineral oil-based lubricating oils that do not dissolve in ammonia should not be mixed.
  • an ammonia refrigerant and a lubricating oil that can be dissolved in the ammonia refrigerant and do not separate into two layers even at the evaporation temperature of the refrigerant are filled in a refrigeration apparatus, and the charging ratio of the two is ammonia.
  • a refrigerant is filled with lubricating oil at least 2% by weight to constitute a refrigeration or heat pump cycle.
  • ammonia and lubricating oil vary depending on the type of compressor. Basically, as long as lubricating performance is maintained, it is preferable to reduce lubricating oil as much as possible to increase heat transfer efficiency,
  • the IB mixing ratio of the ammonia refrigerant and the oil is 70 to 97:;-] Even if it is set to about 0 to 3, sufficient lubricity and refrigeration capacity can be obtained, leading to a significant improvement in performance as described later.
  • the ultrafine diamond having an average particle diameter of at least 150 A or less, preferably about 50 A or less in the lubricating oil constituting the working fluid composition.
  • Such a diamond is, for example, (NEW DA I AMO D 199 1 V0 L8
  • the lubricating oil does not separate into two layers even at the evaporating temperature of the refrigerant, and because of its excellent low-temperature fluidity, separated oil adheres to the heat exchange coil not only on the condenser side but also on the evaporator side. As a result, not only is the heat transfer efficiency greatly improved, but also the oil recovery mechanism and the oil separator do not need to be provided in the refrigeration cycle. Dramatically simplified.
  • the lubricating oil enters the sliding part while being dissolved in the refrigerant, which helps to further prevent galling.
  • the working fluid composition obtained by mixing the compressor and the lubricating oil after being compressed by the compressor is configured to circulate through a refrigeration and heat pump cycle without interposing an oil collector. You may.
  • the lubricating oil filling ratio is 10% by weight or more, a certain amount of lubricating oil is stored in the compressor, so that the blending of the lubricating oil in the refrigeration cycle should be adjusted especially in the evaporator.
  • the mixing ratio of the lubricating oil in the working fluid composition can be set to not more than%, and more preferable heat transfer efficiency can be obtained.
  • a part of the oil in the working fluid composition after being compressed by the compressor may be configured to be charcoalable into the compressor.
  • the mixing ratio of lubricating oil is increased on the compressor side, and lubrication guided to the circulation cycle, especially to the evaporator side It becomes easy to reduce the oil blending ratio as much as possible.
  • the present invention can be applied to a single-stage compression type refrigeration system and also to a two-stage compression type refrigeration system,
  • the composition has excellent lubricity and compatibility even at a temperature lower than the evaporation temperature of the refrigerant, the composition after passing through an expansion valve or an intercooler is introduced from above the evaporator.
  • This makes it possible to adopt a top-feed structure that reduces the amount of refrigerant (composition) cycled and achieves a high cooling / freezing effect without having to adopt a so-called full structure. I can do it.
  • composition is compatible with the lubricating oil even at a temperature lower than the evaporation temperature of the refrigerant, but may be separated under the severe conditions of low-temperature vaporization in the evaporator. With a feed-feed configuration, the separated oil is introduced directly into the compressor, causing knocking and other problems.
  • an oil sump for temporarily storing the separated oil, and a lubricating oil in the oil sump, for example, as in a double riser, are introduced into the introduction pipe for communicating between the evaporator and the compressor. It is preferable to provide a remixing section for remixing with the working fluid composition introduced into the compressor in the passage.
  • the present invention relates to an ammonia refrigeration apparatus using a hermetic-type amphibian compressor in which an electric motor is directly connected to an ammonia refrigerant compressor.
  • the rotor On the inner peripheral surface side of the stator core located on the periphery ffl of the rotor on the motor side, the rotor is surrounded by a predetermined gap with the rotor via a hermetic seal portion, and the rotor inner space and the compressor are A technology is proposed in which a conducting portion is provided between which the composition can be conducted.
  • the airtight seal may be constituted by a cylindrical can surrounding the
  • the stator core is configured as a pressure-resistant sealed structure container, and an insulating thin film is interposed on the inner peripheral side of the stator core, or the stator faces the rotor of the groove after the winding of the stator core is inserted.
  • a seal member may be provided on the front side to be sealed, and the inside of the groove may be hermetically sealed via the seal member.
  • the above-mentioned disadvantages of the can can be eliminated, and the stator core itself functions as a pressure-resistant container, so that the can becomes unnecessary, and the stator core is also formed of a thick field core. As a result, sufficient pressure resistance can be obtained.
  • composition is configured to be able to leak from the transmission shaft portion that transmits the rotation of the rotor to the compressor side, lubrication on the motor side is facilitated, and an incomplete seal is provided. Its configuration is easy.
  • FIG. 1 is a schematic view showing a single-stage compression type direct expansion refrigeration apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing a two-stage compression type cryogenic freezing apparatus according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing a single-stage compression type direct expansion refrigeration apparatus according to another embodiment of the present invention.
  • FIG. 4 is a vertical sectional view of a hermetic compressor directly connected to an electric motor according to an embodiment of the present invention.
  • the figure is an enlarged view of the main part showing the cross-sectional structure of the stator in FIG.
  • FIG. 6 is a schematic diagram showing a single-stage compression type direct expansion refrigeration apparatus according to the related art.
  • Fig. 7 is a schematic diagram showing a conventional two-stage compression type cryogenic freezing apparatus. "Best mode for carrying out the invention"
  • Flash point 180 178 The outline of various test methods used for evaluation of the composition of the present invention is as follows.
  • Average molecular weight 1. The weight average molecular weight was measured by [] PC (gel permeation chromatography).
  • Flex seizure load The flex seizure load was measured in accordance with ASTM D-3 2 3 3 —73.
  • Cylinder test 50 g of sample oil was placed in a 300 ml cylinder filled with 3 m of iron wire 1.6 mm in diameter as a catalyst, and pressurized with ammonia to 0.1 kg kg SGSG. Furthermore, the pressure was increased to 5.7 kg Z cm 2 G with nitrogen gas. Thereafter, the mixture was heated to 1 ⁇ (TC and kept at that temperature for 7 days. After cooling to room temperature, ammonia was removed from the sample oil under reduced pressure, and the hue and total acid value before and after the test were measured. Changes in the appearance were visually observed, and the stability of the sample was evaluated in an ammonia atmosphere.
  • Tables 1 and 2 show that the polyether compounds of Examples 1 to 8 are excellent in compatibility with ammonia, lubricity, and stability under an ammonia atmosphere.
  • a mixture of such a polyether compound and ammonia is filled into an ammonia compressor and used to exhibit its function sufficiently.
  • the ammonia compressor can be made compact and maintenance-free, which has a special effect such as expanding the application of the ammonia compressor.
  • FIG. 1 shows a single-stage compression-type direct expansion refrigeration apparatus according to an embodiment of the present invention, in which R-7117 (ammonia refrigerant) is used as a refrigerant and the polystyrene of Example 1 is used as a lubricating oil.
  • R-7117 ammonia refrigerant
  • Example 1 the polystyrene of Example 1 is used as a lubricating oil.
  • An example is shown in which ether is filled in a frozen cycle at a ratio of 90 parts by weight: 10 parts by weight.
  • reference numeral 11 denotes a refrigerant compressor.
  • the refrigerant working fluid formed by dissolving the ammonia refrigerant condensed by the compressor 11 and the lubricating oil passes directly to the condenser 12 without passing through the oil separator.
  • the condensed working fluid After the condensed working fluid is stored in the high-pressure receiver 14, it is decompressed and vaporized by the expansion valve ⁇ 3, and is discharged from the inlet 15 a provided at the upper end of the evaporator 15. After being introduced into the evaporator 15 by the top feed, it exchanges heat with the blast load supplied by the fan 16 (acquisition heat: about 15 to 120 ° C), The refrigerant is sucked into the intake side of the compressor 11 through the heater 17 and the refrigeration cycle is repeated.
  • the double riser 17 has a main pipeline 17 1 provided with a U-shaped local oil reservoir 17 2 provided at the outlet side of the evaporator 15 outlet 15 b. And a bypass line 173 that bypasses the main line, and the main line while the oil slightly separated by evaporation in the evaporator 15 is stored in the oil reservoir 172.
  • an oil separator or the like is not required. Therefore, unlike the prior art shown in FIG. 6, an oil reservoir is not provided at the bottom of the liquid receiver, and a double riser 17 is not provided. However, since a local oil sump 17 2 is provided, it is mixed and melted again and introduced into the compressor 11 ⁇ . becomes unnecessary, rhino r the present embodiment cycle structure is very simplified in order lubricating oil compatible refrigerant even less evaporation temperature, above the vacuum refrigerant expansion valve 1 3 after passing through the evaporator 1 5 Top feed to be introduced The structure allows the refrigerant to pass through the evaporator along with the IS force, which eliminates the need for a so-called liquid-filled structure. As compared with the conventional example shown in FIG. 6, even if the amount of the refrigerant was reduced by 10% or more in the II amount ratio, a higher cooling effect could be obtained as compared with the conventional example.
  • the ammonia refrigerant and the lubricating oil were filled at a ratio of 90 A: 10 parts by weight, a certain amount of the lubricating oil was stored in the compressor 11, so that the refrigeration system was not used. Since the ratio of the amount of the working fluid composition circulating in the vessel is lower than the above filling weight ratio, and particularly the mixing ratio of circulating in the evaporator is 5% or less, the heat transfer efficiency on the evaporator side is further improved.
  • the compressor is suitable for a variable blade type rotary compressor or a reciprocating compressor. 6
  • the evaporation temperature is set to 115 to 12 (TC and the force operated with a higher compression ratio than that of the conventional technique). For a long period of time without bridging !: High reliability can be obtained.
  • the lubricating oil does not adhere to the wall of the heat exchange coil in the pre-condenser 12 or evaporator i5, and the heat transfer efficiency is higher than that of the conventional example shown in Fig. 6 using a naphthenic mineral oil-based refrigerating machine oil. By more than 60%, it has improved.
  • ammonia and the lubricating oil constituting the working fluid have the ability to dissolve water, there is no need to provide a dehumidifying agent such as silica gel or a dehumidifying mechanism as in a fluorinated refrigeration cycle. Good.
  • the working fluid is required to increase the proportion of the refrigerant within a range where the lubricity of the compressor i i is not reduced.
  • the lubricating oil is set to 5% by weight or less, the lubricating ability is reduced.
  • a cluster diamond having an average particle size of about 50 A or less.
  • a carbon cluster in which the graphite is coated on the cluster diamond By adding 2 to 3% by weight of a diamond to the lubricating oil, the blending ratio of the lubricating oil in the working fluid could be further reduced.
  • the double riser 17 also uses a liquid refrigerant after passing through a condenser 14 to use a working fluid composition containing oil that has been slightly separated by evaporation in the evaporator 15. Is heated by the heat exchanger 150, so that the separated oil melts in the composition at once and the double riser becomes unnecessary.
  • the mixing ratio of the lubricating oil in the working fluid composition was increased, and the output of the compressor was changed to the Shan separator 25 and the separator.
  • a measure may be taken to provide a return circuit 2f; for returning the oil separated in 25 back to the compressor 11 side.
  • the oil separator 25 and the oil separated by the separator 25 are returned to the compressor side again at the outlet side of the compressor 11 1. 6 is better.
  • the filling weight specific gravity of the ammonia refrigerant and the lubricating oil is 90 to 80 parts by weight: Even if the filling is performed at a ratio of 10 to 20 parts by weight, the compressor 11 / oil separator 25 / powder Increase the mixing ratio of lubricating oil in the closed cycle of circuit 26, and minimize the mixing ratio of lubricating oil in other refrigeration cycles.For example, 90% or more of lubricating oil on compressor 11 side, evaporator 1 It is possible to set the mixing ratio of the lubricating oil on the 5 side to 3% or less, and further to about 0.5%.
  • the liquid pump is recirculated by forming the working fluid using a lubricating oil having a two-layer separation temperature of 150 ° C or less.
  • a cryogenic refrigeration system can be easily configured without taking a ring system configuration.
  • FIG. 2 shows a brief description of the structure based on FIG. 2.
  • R-717 (ammonia refrigerant) is used as a refrigerant and the polyether of Example 6 is used as a lubricating oil.
  • a cryogenic refrigeration system filled into a refrigeration cycle at a ratio of 5 parts by weight. 2) is a low-stage compressor, and the compressed working fluid in which the ammonia refrigerant and lubricating oil are compatible is mixed in an intercooler 22. 0. It is cooled to around C and guided to the high-stage compressor 11.
  • the refrigerant working fluid compressed by the high-stage compressor] 1 is directly led to the condenser 12, and exchanges heat with the cooling water (cooling water pipe 18) (condensed heat: 3) in the condenser 12. (Around 5 ° C).
  • the condensed working fluid is stored in the high-pressure receiver 14, it is decompressed and vaporized by the expansion valve 20 to cool the intermediate cooler 22 to about 110 ° C.
  • the re-liquefied working fluid is introduced into the evaporator 15 from the inlet 15a provided at the upper end of the evaporator 15 by a top feed, and the blast load supplied from the fan 16 After the heat exchange (acquisition heat: -50 "C), the refrigerant is sucked into the intake side of the compressor 21 through the double riser 17 and the refrigeration cycle is repeated.
  • the oil sump and the oil recovery structure in the high-pressure receiver 1 and the intercooler 22 become unnecessary, and the low-pressure receiver and evaporator shown in FIG.
  • a liquid pump recirculation cycle for circulating the refrigerant liquid is not required, and the configuration of the refrigeration cycle is greatly simplified.
  • the working fluid composition used in this example It has good compatibility with the refrigerant even at a temperature of 50 "C below the temperature, and has good fluidity.Because it is as good as 4.5 seconds ago, it can take a top feed structure and use less refrigerant. In particular, it is possible to obtain a higher refrigerating effect than in the conventional example of the bottom feed structure, and the heat transfer efficiency in the cryogenic evaporator is improved.
  • the first is the application of canned motors.
  • a cylindrical cylinder-shaped can is inserted and fixed between the stator and the rotor, and up to the stator located on the outer peripheral side of the can.
  • the use of a can-type motor that does not leak ammonia refrigerant is considered.
  • stator and the rotor can be partitioned without using a can and leakage of ammonia on the stator side can be sealed.
  • Fig. 4 and Fig. 5 show an embodiment of such a configuration, showing a main configuration of a hermetic compressor in which an electric motor and a screw compressor are directly connected.
  • 31 is a suction hole which is taken in to compress the compatible working fluid as shown by an arrow
  • 32 is a refrigerant gas compressed by the screw euro 30.
  • a discharge port for discharging to the condenser side, 33 is a rotor housing that covers this
  • 34 A is a bearing fitted to a disc-shaped bearing housing 35, and a rotating shaft 36 on the motor B side
  • the sprocket shaft mated with the mouth shaft 37a is supported.
  • the rotor shaft 37 b on the other side is supported by a bearing 34 B.
  • the rotor shaft 37a and the bearing 34a constitute an imperfectly sealed state so that the working fluid composition can be introduced from the compressor A side to the electric motor 13 side.
  • the operation flowed to motor B side A return hole 39 for fluid is provided to equalize the pressure in the rotor 41 space on the compressor A side and the motor side.
  • the motor B side includes a rotor 41 fixed to the rotating shaft 36, and a stator 42 surrounding the rotor 41, and the stator 42 shown in FIG.
  • a stator core 43 formed by laminating a large number of field core plates 43a and a cross section extending in the axial direction on the inner peripheral surface side of the stator core 43.
  • the winding wire 45 housed in the U-shaped open groove 44 and 45 a located on both axial sides of the stator core 43 are portions where the winding coil is extended. Then, the stator core 43 is air-tightly sealed by applying an insulating resin coating agent or other adhesive 46 on the lamination of a large number of field core plates 43a.
  • both are solidified integrally by thermocompression bonding with a thermally fusible insulating film 46 interposed therebetween, and are airtightly maintained to withstand pressure 9.
  • the non-magnetic thin plate 47 or the resin thin film 47 is press-fitted on the inner peripheral surface side of the stator core 43 to form a coating, thereby further improving the airtightness.
  • the stator core 43 has a substantially cylindrical shape, and the both ends of the stator core 43 in the axial direction are fixed to the bearing housing 35 on the compressor A side in a gas-tight manner by the flange 48 a of the outer frame housing 48 and the flange 48 a.
  • the rotating shaft 36 is brought into contact with the flange portion 28a of the end plate housing 28 integrated with the free end bearing 29 of the rotating shaft 36 to be integrally and airtightly fixed.
  • stator core 43 is located on the free end side of the outer frame housing 48 and the rotary shaft 36 airtightly fixed to the compressor A side at both ends as described above.
  • end plate-shaped housing 2 8 acts as a by Li pressure vessel to the cooperative operation between these members to be integrally fixed obtained, therefore, the compressed refrigerant gas 2 0 K g Z m 2 Sufficient pressure resistance can be ensured even for refrigerators that extend over time.
  • the winding 45 housed in the groove 44 of the stator core 43 is located in the same space as the rotor 41, the compressor A in an imperfectly sealed state is provided. Since the working fluid composition containing the corrosive ammonia refrigerant intrudes into the electric motor B from between the rotor shaft 37a and the bearing 34, the winding 4 is provided together with the rotor 41. Corrosion-resistant insulation must be applied, but it is difficult to perform ammonium insulation treatment on windings.
  • the open groove 44 is filled with a binder tree ⁇ 49, and the insulating resin thin film 47 'is covered on the inner peripheral side thereof to be airtight.
  • the binder resin is filled into the opening 44, and both ends are placed at the open end of the opening 4 as shown in FIG.
  • a sealing plate 27 with a tapered side is fitted.
  • a back pressure is applied from the back side of the sealing plate 27 by the refrigerant gas pressure in the container.
  • the ends can be fitted and hermetically sealed.
  • the lubricating working fluid composition for a lubricating shroud and a refrigerator according to the present invention has excellent dissolution stability even at a low temperature with ammonia, and exhibits excellent lubricating properties in an ammonia refrigerant atmosphere, and is compressed. No solid matter is generated during the C operation, and therefore, the Shane recovery equipment, which was indispensable in the conventional ammonia refrigerant refrigeration system, can be omitted, and therefore, it can also be applied as a small refrigerator. This will be possible.
  • the refrigeration apparatus of the second invention is configured such that the working fluid composition of the lubricating oil and ammonia circulates through a refrigeration or heat pump cycle, thereby simplifying the apparatus configuration and improving heat transfer efficiency. Thus, it is possible to provide a cooling device that is extremely advantageous in practice.
  • ammonia is insoluble in the lubricating oil and the erosion is eliminated, whereby an ammonia sealed compressor can be easily provided. Is extremely large.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Lubricants (AREA)
  • Compressor (AREA)

Abstract

A refrigerator working fluid composition comprising an ammonia refrigerant and a lubricating oil which has a remarkably good compatibility therewith, and a method of lubricating a refrigerating unit suitable when the above composition is used. The composition comprises a mixture of ammonia with one or more polyether compounds represented by the general formula (I): R1-[-O-(PO)m-(EO)n-R2]x wherein R1 represents C1-C6 hydrocarbon group; R2 represents C1-C6 alkyl; PO represents oxypropylene; EO represents oxyethylene; x represents an integer of 1 to 40; m represents a positive integer; and n represents 0 or a positive integer. The refrigerating unit comprises circulating the above composition in a circulatory cycle and constituting a refrigeration or heat pump cycle. The method of lubricating an ammonia refrigerant compressor comprises the use of a lubricating oil comprising one or more ether compounds of general formula (I).

Description

Figure imgf000003_0001
糸 in
Figure imgf000003_0001
Thread in
アンモニア冷凍装置、 該冷凍装置に用いる作動流体組成物及びァンモ ニァ圧縮機の潤滑方法 _ Ammonia refrigeration system, lubrication of the working fluid composition used in the refrigeration apparatus and Anmo Nia compressor _
「技術分野」  "Technical field"
本発明は、 アンモニアを主成分とする冷媒を用いた冷凍及びヒ一 卜ポ ンプ装置、 該冷凍装置に用いる冷媒と潤滑油を混合した作動流体組成物 及びアンモニア圧縮機の潤滑方法に関する。  The present invention relates to a refrigeration and heat pump apparatus using a refrigerant containing ammonia as a main component, a working fluid composition obtained by mixing a refrigerant and lubricating oil used in the refrigeration apparatus, and a method for lubricating an ammonia compressor.
「背景技術」  "Background technology"
従来より冷凍及びヒー トポンプ装置 (以下冷凍装置という) の冷媒と してフロンが広く用いられていた力 フ口ンは大気中に放出され蓄積さ れると、 太陽の紫外線によって分解して塩素原子を生じ、 地球を太陽の 強い紫外線から守る働きをもつ才ゾン層を破壊するこ とから、 その使用 が制限されるようになつてきた。 そこで、 近年フ ロンの代替冷媒と して のアンモニアが見直されてきている。  Freon, which has been widely used as a refrigerant in refrigeration and heat pump devices (hereinafter referred to as refrigeration devices), is released into the atmosphere and accumulates. This has resulted in the destruction of the layers of the Earth, which serve to protect the Earth from the sun's intense UV light, thereby limiting its use. Therefore, in recent years, ammonia has been reviewed as an alternative refrigerant.
即ちアンモ二ァ冷媒はフ口ンの様な地球環境破壊の恐れはな く、 その 冷凍効果はフ ロンに勝るとも劣らず、 而も安価である。 しかし、 アン乇 二ァは毒性、 可燃性、 圧縮機の潤滑油と して使用する鉱物油に非溶解性 であり、 さ らに圧縮機よりの吐出温度が高い等の欠点を有するために、 これらの欠点によ り不具合が生じないような冷凍システム構成がと られ ている。  In other words, ammonia refrigerant has no danger of destruction of the global environment like a humid refrigerant, and its refrigeration effect is not less than that of chlorofluorocarbon, and it is also inexpensive. However, amplifiers have drawbacks such as toxicity, flammability, insolubility in mineral oil used as compressor lubricating oil, and higher discharge temperature from compressor. The refrigeration system is configured so that no problems occur due to these shortcomings.
その具体的構成を図 6 に基づいて説明するに、 5 0 は蒸発器側で例え ば— 1 0 t 、 凝縮器側で + 3 5 °C前後の熱を得るための単段圧縮タイ プ の直接膨張式冷凍システムで、 その構成を作用を中心に説明すると、 冷 媒圧縮機 5 1 で圧縮された油混合アンモニア冷媒は、 油分離器 5 2で油 分離した後、 凝縮器 5 3 内で冷却水 6 4 との熱交換 (取得熱 : 3 δ X:前 後 ) によ り凝縮器 5 3内で凝縮液化される。  Explaining the specific structure based on Fig. 6, 50 is the evaporator side for example-10 t, and the condenser side is a single-stage compression type for obtaining heat of around +35 ° C. The configuration of the direct expansion refrigeration system will be described mainly with regard to its operation.The oil-mixed ammonia refrigerant compressed by the refrigerant compressor 51 is separated into oil by the oil separator 52, and then separated by the condenser 53. It is condensed and liquefied in the condenser 53 by heat exchange with the cooling water 64 (acquired heat: 3δX: before and after).
そして該凝縮時に液化分離した汕を更に高圧受液器 5 4底部に設けた 油溜め 5 5 で分離した後、 アンモニア冷媒を膨張弁 5 6 によ り減圧気化 させ、 蒸発器 5 7 内でフ ァ ン 5 8 よ り供給された送風負荷と熱交換 (取 得熱 : — i O "C ) した後、 更にアンモニア液 油分離器 5 9 を介して圧 縮機 5 1 の吸気側に吸引され前記冷凍サイ クルを繰り返す。  Then, the liquor separated at the time of the condensation is further separated by the oil reservoir 55 provided at the bottom of the high-pressure receiver 54, and the ammonia refrigerant is decompressed and vaporized by the expansion valve 56. After heat exchange with the blast load supplied by fan 58 (obtained heat: — i O "C), it is further sucked into the intake side of compressor 51 through ammonia liquid oil separator 59. Repeat the frozen cycle.
そ して前記油分離器 5 2、 受液器底部の油溜め 5 5及び蒸発器 5 7 の 底部に溜まった油はいずれも油抜き弁 6 0 a 、 6 0 b 、 6 ϋ c 、 6 0 d を介して油受液器 6 1 に溜まり、 再度圧縮機 5 1 の油喷射部 5 2 ϋ よ り 前記圧縮機 5 2内に戻入され、 可動部分の潤 ¾、 シール及び冷却等を行 つ。 The oil collected at the bottom of the oil separator 52, the oil sump 55 at the bottom of the receiver, and the bottom of the evaporator 57 are all oil drain valves 60a, 60b, 6ϋc, 60 Then, the liquid accumulates in the oil receiver 61 via the d and is returned into the compressor 52 again from the oil spraying section 52 of the compressor 51 to clean, seal, and cool the movable parts. One.
尚、 前記冷凍装 i 5 0 は凝縮器 5 3側よ り熱を取り 出す事に よ り ヒー 卜ポンプ装置と して応用できる事は周知であり 、 従っ てこれら を総称し て冷凍装置と いう„  It is well known that the refrigerating device i 50 can be applied as a heat pump device by extracting heat from the condenser 53 side, and therefore these are collectively referred to as a refrigerating device. „
さて前記潤滑油には一般にパラ フ ィ ン系、 ナフテン系等の鉱物系潤滑 油を用いている力 これらの潤滑油はアンモニアと溶解しない為に、 前 記圧縮機の吐出側に油分離器を設け、 前記圧縮機よ り 吐出されたアンモ ニァガスと潤滑油を分離し、 更に前記分離器を設けていても ミ ス 卜状 化した潤滑油を完全に取り切れず、 又、 前記圧縮機の吐出側は高温化し ているために、 アンモニア中に潤滑油が僅かに溶解若 し く は ミ ス 卜が混 入し、 該アンモニアに同伴して冷凍サイ クル内に入り 込み、 そ してサイ クル内に入り込んだ潤滑油は、 アンモニアに対し非溶性で且つ比重が重 い為に、 前記サイ クルの配管経路に溜ま りやす く 、 こ の為前記高圧受液 器 5 4の底部、 蒸発器 5 7 の下部入口側に夫々油抜き部 5 5 、 6 0 を、 又圧縮機 5 1 の吸気側にも油分離器 5 9 を設けねばな らず、 而もこれら の分離油は油受液器 6 1 で回収した後、 再度圧縮機側に戻す必要があ り、 構成が極めて煩雑化する。  The lubricating oil generally uses mineral lubricating oils such as paraffinic and naphthenic oils. Since these lubricating oils do not dissolve in ammonia, an oil separator is installed on the discharge side of the compressor. To separate the ammonia gas and the lubricating oil discharged from the compressor, and even if the separator is provided, the mist-shaped lubricating oil cannot be completely removed, and the discharge of the compressor The lubricating oil slightly dissolves or mixes in the ammonia due to the high temperature on the side, and enters the refrigeration cycle along with the ammonia, and then in the cycle. Since the lubricating oil that has entered is insoluble in ammonia and has a high specific gravity, it tends to accumulate in the piping path of the cycle. Therefore, the bottom of the high-pressure receiver 54 and the evaporator 57 At the lower inlet side of the An oil separator 59 must also be provided on the intake side of the machine 51, and these separated oils must be recovered by the oil receiver 61 and then returned to the compressor again. Is extremely complicated.
又前記のよ う に潤滑油が冷媒に対し非溶性である事は、 凝縮器 5 3 や 蒸発器 5 7 内の熱交換コ ィ ル壁面に前記油が付着し伝熱効率が低下する のみな らず、 特に低温度の蒸発器においては、 汕の粘度が高く なり 且つ 油抜き流動性が下がり、 伝熱効率が一層低下する。  In addition, the fact that the lubricating oil is insoluble in the refrigerant as described above means that the oil adheres to the wall of the heat exchange coil in the condenser 53 and the evaporator 57 and the heat transfer efficiency is reduced. In particular, in a low-temperature evaporator, the viscosity of Shant becomes high, the oil drainage fluidity is reduced, and the heat transfer efficiency is further reduced.
この為前記非溶性の油を蒸発器 5 7 の人口側で極力分離する必要があ る力^ それには膨張弁 5 6通過後の減圧冷媒を蒸発器 5 7の上方よ り 導 入し ょ う とすると、 例え特別な分離器を用いても比重差によ り蒸発器 5 7 内に入り込むのを防ぐ事が出来ず、 この為前記構成のシステムにおい ては蒸発器 5 7 の底側に導入部を設けたいわゆるボ ト ムフィ 一 ド構造を 取ら ざるを得ない。  Therefore, it is necessary to separate the insoluble oil on the artificial side of the evaporator 57 as much as possible ^ For this purpose, introduce the decompressed refrigerant after passing through the expansion valve 56 from above the evaporator 57. In this case, even if a special separator is used, it cannot be prevented from entering the evaporator 57 due to a difference in specific gravity. It is inevitable to adopt a so-called bottom feed structure with a section.
しかしながらボ トムフ ィ ー ド構造を取る と、 必然的に冷媒を蒸発器 5 7 の高さ に対応する重力に抗して蒸発器上端よ り排出可能な、 いわゆる 満液構造を取らざる を得ず、 結 ¾と して冷凍サイ クル内に多 く の冷媒を 必要とする ,,  However, if the bottom feed structure is adopted, it is inevitable to take a so-called full structure, in which the refrigerant can be discharged from the upper end of the evaporator against the gravity corresponding to the height of the evaporator 57. As a result, a large amount of refrigerant is required in the refrigeration cycle.
さて前 したアンモニア泠 iシ ステムはその使用限界が一 2 0 'じ前後 である力 近年遊業用プロセスの ¾度が著し く 低下し、 特に食品業界に おいては解凍時の脂 JJ/jの融出防 ikその他の品質保持の riiよ り要求冷涑温 度が一 3 0て:から以下が殆どであ り 、 特にマグロ等の高価格食品におい ては凍結保存温度は— 5 0 °C〜一 6 0 °Cと大幅に低く なっている。 The ammonia i-system mentioned earlier has a use limit of around 20 '. In recent years, the intensity of the amusement process has dropped significantly. The required cooling temperature is lower than that of rii, which prevents leaching of j, ik and other qualities, and most of the following, especially in high-priced foods such as tuna. In addition, the cryopreservation temperature is significantly lower from-50 ° C to 160 ° C.
そしてこの様な凍結温度は前記の様な単段圧縮機では得る事が出来ず、 通常は 2段圧縮機を用いているが、 前記従来技術の様に、 前記蒸発器温 度が— 4 0 ° 以下に冷却した場合、 後記表 3 に示すように、 潤滑油の流 動性が大幅に低下し、 蒸発器内に詰ま リ等が生じゃすい。  Such a freezing temperature cannot be obtained with the single-stage compressor as described above. Usually, a two-stage compressor is used. However, as in the conventional technique, the evaporator temperature is −40. When cooled below °, the fluidity of the lubricating oil is greatly reduced, as shown in Table 3 below, and the evaporator becomes clogged.
かかる欠点を解消する為に、 図 7 に示す様な極低温アンモニア二段圧 縮式液ポンプ再循環システムが提案されている。  To remedy this drawback, a cryogenic ammonia two-stage compression liquid pump recirculation system as shown in Fig. 7 has been proposed.
その構成を前記従来技術の差異を中心に簡 に説明するに、 高圧受液 器 5 4 よ り液管 6 6 に排出された凝縮液は膨張弁 6 7 によ り中問冷却器 The structure of the condensate discharged from the high-pressure receiver 54 to the liquid pipe 66 will be briefly described with a focus on the difference between the above-mentioned conventional technologies.
6 8内を冷却し、 一方前記液管 6 6 の終端側は、 中間冷却器 6 8内の過 冷却管 6 9 内に導入され、 該過冷却管 6 9 内で一 1 0 °C前後に冷却した 後、 膨張弁 7 4 によ り減圧気化させて低圧受液器 7 0 内に導入する。 The inside of the liquid pipe 66 is cooled, while the terminal side of the liquid pipe 66 is introduced into a supercooling pipe 69 in the intercooler 68, and is cooled to about 110 ° C in the supercooling pipe 69. After cooling, it is decompressed and vaporized by the expansion valve 74 and introduced into the low-pressure receiver 70.
この結果前記受液器 7 0内には一 4 0 〜一 5 0 以下に冷却された冷 媒液が貯溜される事になる。 ·  As a result, the liquid coolant cooled to 140 to 150 or less is stored in the liquid receiver 70. ·
そしてこの冷媒液を液ポンプ 7 1 及び流量調整弁 7 2 を介して蒸発器 This refrigerant liquid is supplied to the evaporator via the liquid pump 71 and the flow control valve 72.
7 3 に導き、 該蒸発器 7 3 内でファン 7 4 より供給された送風食荷との 熱交換 (取得熱例 : 一 4 (TC ) によ り蒸発した冷媒は、 再度低圧受液器 7 0内に導入されて冷却且つ凝縮液化される。 7 3, heat exchange with the blast load supplied from the fan 7 4 in the evaporator 7 3 (Example of acquired heat: The refrigerant evaporated by 14 (TC) is re-heated to the low-pressure receiver 7). It is introduced into 0 and cooled and liquefied.
一方前記低圧受液器 7 0内の気化冷媒は、 低段圧縮機 7 5 に吸入され ϋつ圧縮されてその圧縮ガスは中間冷却器 6 8 内で冷却されて、 中間冷 却器 6 8内の熱交換用過冷却管 6 9 に導入されて前記液管 6 6 よりの凝 縮冷媒を一 1 0 °C前後に過冷却し、 膨張弁 7 4 によ り減圧気化させて低 圧受液器 7 0内に導入する。  On the other hand, the vaporized refrigerant in the low-pressure receiver 70 is sucked into the low-stage compressor 75, is compressed, and the compressed gas is cooled in the intermediate cooler 68, and is cooled in the intermediate cooler 68. The condensed refrigerant from the liquid pipe 66 is introduced into the heat exchange supercooling pipe 69 to be supercooled to about 110 ° C, and is decompressed and vaporized by the expansion valve 74 so as to be low-pressure receiver. Introduce within 70.
そして中間冷却器 6 8内の気化冷媒は、 高段圧縮機 5 1 ' で圧縮され て前記サイ クルを繰り返す。  Then, the vaporized refrigerant in the intercooler 68 is compressed by the high-stage compressor 51 ′, and the cycle is repeated.
そ して前記高圧受液器 5 4、 中間冷却器 6 8、 低圧受液器 7 0のいず れの底部にも油溜ま り 5 5 , 6 8 a , 7 ϋ aを設け、 これらの分離油は 油受液器 6 1 で回収した後、 ¾度圧縮機 5 、 7 5側の汕噴射部 5 1 a, 7 5 aに戻す。 尚、 図中つ は液而フロー 卜弁である,,  Oil reservoirs 55, 68a, and 7ϋa are also provided at the bottoms of the high-pressure receiver 54, the intercooler 68, and the low-pressure receiver 70, respectively. After the oil is collected by the oil receiver 61, it is returned to the Shantou injection parts 51a, 75a on the high-pressure compressors 5, 75 side. In the figure, the liquid floating valve is
しかしながらかかる従来技術においても、 汕回収構成の煩雑化や、 伝 熱効率の低下等の ¾本的な欠点が解消されないのみならず、 特に前記低 圧受液器 7 0側では、 — 4 0 〜一 5 0 X:に冷却された冷媒液が貯溜され る事になる為に、 その油溜めに貯溜された潤滑油も同じ く 一 4 0〜一 5 0で前後に冷却され、 流動性が大幅に低下し前記油抜きを行う には油の 温度を一時的に上げねばならず、 結果と して冷涑サイ クルの述続運転に 支障が生じ、 前記油が所定 ffi貯溜される毎に前記サイ クルを停止し油回 収を図るためのメ ンテナンスが必要となる。 However, even in this conventional technique, not only the fundamental disadvantages such as the complicated configuration of the recovery of the shanks and the reduction of the heat transfer efficiency are not solved, but also the low-pressure receiver 70 side particularly has the following problems. 0 X: Coolant liquid stored in the reservoir is stored, and the lubricating oil stored in the oil reservoir is also cooled back and forth between 140 and 150, greatly reducing fluidity. However, in order to perform the oil drainage, the temperature of the oil must be temporarily increased, and as a result, the continuous operation of the cooling cycle is required. A hindrance occurs, and maintenance is required to stop the cycle and recover oil every time the oil is stored at a predetermined ffi.
一方、 家庭用の冷蔵庳ゃ空調機には密閉型圧縮機が多 く 採用 され、 従 来からジク ロ ロ ジフル才ロ メ タ ン ( R 1 2 ) やク ロ ロ ジフルォ ロ メ タ ン ( R 2 2 ) などの C F Cや H C F C冷媒が使用 され、 将来は塩素を含有 しない H F C例えば 丄 、 1 、 1 、 2 —テ ト ラフル才ロ カ一ボン ( R 1 3 4 a ) などが使用される事になっている力 かかるフ ロ ンガスは高価で あり、 一方ア ンモニアは前記フ ロ ンに比較して安価で、 しかも熱伝達率 がよい、 冷媒と しての許容温度 (臨界温度) や圧力が高い、 水に溶解す る為膨張弁の詰りがない、 蒸発潜熱が大き く 冷凍効果が大きい等の理由 によ り アンモニアの採用が有利である力 密封型圧縮機は電動機と圧縮 機を一体的に密封する構造の為に、 アンモニア 向身が銅系統の材料に腐 触性を有するために使用不可能であ り、 且つア ンモニア と潤滑油が非溶 融性の為に、 油のみの回収循環が極めて困難等の理由によ り現状では使 用できない。  On the other hand, many closed-type compressors are used in refrigeration and air-conditioning units for home use, and since then, dichlorodifluoromethane (R12) and chlorodifluoromethane (R) have been used. CFC and HCFC refrigerants such as 2 2) will be used, and HFCs that do not contain chlorine in the future, such as —, 1, 1, 2—Tetrafluca (R134a) Fluorine gas is expensive, while ammonia is cheaper and has a better heat transfer coefficient than the above-mentioned fluorocarbons, and has an allowable temperature (critical temperature) and pressure as a refrigerant. The use of ammonia is advantageous because of its high cost, the expansion valve is not clogged because it dissolves in water, and the latent heat of vaporization is large and the refrigeration effect is large. Ammonia is corrosive to copper-based materials Therefore, it cannot be used at present because the recovery and circulation of oil alone is extremely difficult due to the insolubility of ammonia and lubricating oil.
しかしながら前記アンモニア と優れた溶解性を持ち、 しかも長期間使 用によっても品質的に劣化を しない潤滑油が開発されれば、 前記問題点 の殆どの部分が解決される。  However, if a lubricating oil having excellent solubility with ammonia and not deteriorating in quality even after long-term use is developed, most of the above problems can be solved.
そしてこ の様な相溶性を有する潤滑油はフ ロ ンの分野では既に提案さ れてお り、 例えば多価アルコールのエステルや、 ポリ オキシアルキ レン グリ コ ール系化合物が知られている力 アンモニア冷媒用と しては例が 無い。 アンモニアは反応性が強いため: エステルは加水分解が少しでも 起こ る と、 酸ア ミ ドを形成してス ラ ッ ジ析出の原因になる し、 アン乇ニ ァとの溶解性が劣る為に、 これらの潤滑油をア ンモニア冷媒と組合せて 使用する事は困難である。  Lubricating oils having such compatibility have already been proposed in the field of fluorocarbons. For example, polyhydric alcohol esters and polyoxyalkylene glycol compounds are known. There is no example for refrigerant. Ammonia is highly reactive: If any hydrolysis of the ester occurs, it will form an acid amide, causing sludge precipitation, and poor solubility with ammonia. However, it is difficult to use these lubricants in combination with ammonia refrigerant.
木発明はかかる技術的課題に鑑み、 ア ンモニア冷媒と相溶性が極めて J¾好で、 しかも潤滑性および安定性にも優れた潤滑油と アンモニア冷媒 と を混合してなる冷凍機用作動流体組成物 (以下単に作動流体組成物と いう) を提供するこ と を 目的とする。  In view of such technical problems, the wood invention is a working fluid composition for a refrigerator, which is obtained by mixing a lubricating oil having excellent compatibility with an ammonia refrigerant and also having excellent lubricity and stability and an ammonia refrigerant. (Hereinafter simply referred to as working fluid composition).
本発明の他の目的は前記作動流体組成物を用いた場合に好適な冷凍装 itを提供する事にある。  It is another object of the present invention to provide a refrigerating apparatus it suitable for using the working fluid composition.
又本発明の他の Θ的は前記作励流体組成物を用いる と と も に、 更に一 歩進めて前記したア ンモニアの持つ欠点をも解消し得る冷凍装置とその 装遛内に組込まれる冷涑压縮機の^ ¾方法を提供する ¾¾·にある . 「発明の開示」 Another object of the present invention is to use the above-described stimulating fluid composition and further advance the elimination of the above-mentioned disadvantages of ammonia, and a refrigeration apparatus incorporated in the equipment. ^ Provides a method for contracting the machine. "Disclosure of the invention"
本発明者達は前記作動流体の作動流体組成物を得るために、 特定の構 造を有するポリ オキシアルキレングルコ —ルの末端〇 H基の全てを 〇 R 基で置換したエーテル化合物 (以下単にポリ エーテルと称する) 力 アンモニアとの相溶性に優れ、 アンモニア存在下でも優れた潤滑性およ び安定性を発揮するこ と を見出 し、 本発明を完成するに至っ た。  In order to obtain a working fluid composition of the working fluid, the inventors of the present invention have prepared a polyoxyalkylene glycol having a specific structure, in which all terminal 〇H groups are substituted with 〇R groups (hereinafter simply referred to as poly It has been found that they have excellent compatibility with ammonia and exhibit excellent lubricity and stability even in the presence of ammonia, and have completed the present invention.
すなわち本第 1 の発明は、 以下の一般式 ( I ) の化合物を潤滑油の基 油とするアンモニァ圧縮機用潤滑油とアンモニアとの混合物よ り なる作 動流体組成物である。  That is, the first invention is a working fluid composition comprising a mixture of ammonia and a lubricating oil for an ammonia compressor using a compound of the following general formula (I) as a base oil of a lubricating oil.
R - C-0- ( P0 ) m- ( E0 ) n- R2 ]x ( I ) R-C-0- (P0) m- (E0) n -R 2 ] x (I)
(一般式 ( I ) において、 R i は炭素数 1 — 6 の炭化水素基、 R 2 は炭 素数 1 一 6個のアルキル基であ り、 P 0はォキシプロ ピ レン ¾、 E 0は ォキシエチ レン基、 X は 1 — 4 の整数、 mは、 正の整数であり 、 ηは () ま だは正の整数である。 ) (In the general formula (I), R i is a hydrocarbon group having 1 to 6 carbon atoms, R 2 is an alkyl group having 16 carbon atoms, P 0 is oxypropylene, and E 0 is oxyethylene. The group, X is an integer from 1 to 4, m is a positive integer, and η is () or still a positive integer.)
又本第 2 の発明は、 アンモニア冷媒と、 該アンモニア冷媒に溶解し得 且つ冷媒の蒸発温度でも 2層分離する事のない潤滑油と を冷凍装置内に 充填させる と ともに、 前記両者の充填比がアンモニア冷媒に対し潤滑油 を 2重量%以上充填させて冷凍若し く はヒー トポンプサイ クルを構成す るものである。  Further, the second invention is characterized in that an ammonia refrigerant and a lubricating oil that can be dissolved in the ammonia refrigerant and do not separate into two layers even at the evaporating temperature of the refrigerant are filled in the refrigeration system, The refrigeration or heat pump cycle is made by filling lubricating oil in an ammonia refrigerant at 2% by weight or more.
この場合、 前記アンモニア冷媒と潤滑油と は前もって混合して作動流体 組成物とな してもよ く 、 又夫々別個に冷凍若し く はヒー トポンプサイ ク ル中に充填し、 該サイ クル中で作動流体組成物を構成してもよい。 In this case, the ammonia refrigerant and the lubricating oil may be mixed in advance to form a working fluid composition, or they may be separately charged into a refrigeration or heat pump cycle, respectively. A working fluid composition may be comprised.
又、 本発明の潤滑油は第 1 発明のみに限定される事な く 、 アンモニア 冷媒に容易に溶解し得、 且つ冷媒の蒸発温度でも 2層分離する事のない 潤滑油であればよい。  The lubricating oil of the present invention is not limited to the first invention alone, and may be any lubricating oil that can be easily dissolved in ammonia refrigerant and does not separate into two layers even at the evaporation temperature of the refrigerant.
尚、 前記圧縮機に電動機を直結してなる密封型アンモニア圧縮機を用 いたアンモニァ冷凍装置において、  In an ammonia refrigerating apparatus using a sealed ammonia compressor in which an electric motor is directly connected to the compressor,
前記電動機側に回転子の周囲に固定子鉄心を、 気密性隔膜を介して囲 繞する と共に、 前記回転子と所定空隙を介して囲繞する と共に、 前記回 転子内空間と圧縮機間に前記組成物が導通可能な導通部を設ける事によ り 一層好ま しいアンモニア冷凍装置の提供が可能となる。  A stator core around a rotor on the motor side is surrounded by a hermetic diaphragm, and is surrounded by a predetermined gap with the rotor, and the rotor core is provided between the rotor inner space and a compressor. By providing a conducting portion through which the composition can pass, it is possible to provide a more preferable ammonia refrigeration apparatus.
更に前記一般式 ( I ) の化合物を ^油とする潤滑油は必ずしもアンモ ニァと相溶させる作動流体と してのみ用いるものではな く 、 アンモニア 圧縮機の潤滑油と して 独に fflいる Φも出来る。 これが本第 3 の発明で ある ,, 次に前記夫々の発明について詳細に説明する。 Further, a lubricating oil using the compound of the general formula (I) as an oil is not necessarily used only as a working fluid to be compatible with ammonia, but is used as a lubricating oil for an ammonia compressor. You can also. This is the third invention, Next, the respective inventions will be described in detail.
先ず、 前記一般式( I )で表わされる化合物は、 プロ ピ レンォキサイ ド の望合体のボリ エーテル、 あるいはプロ ピ レンォキサイ ドとエチレン才 キサイ ドのラ ンダムあるいはプロ ッ ク共重合体のボリ エーテルである。 前記式 ( I ) の化合物は、 いわゆるポリ オキシアルキ レングリ コ —ル 系化合物と総称され、 これを H C F Cあるいは C C を冷媒と する冷 '凍 機用潤滑油と して使用する例は多数知られている。 例えばし; S 4 9 4 8 5 2 5 (対応日本出願 : 公開公報 2 — 4 3 2 9 0 、 同 2 — 8 4 4 9 丄 ) には、 —-般式 Rt— ( 0 R2) a — 0 Hの構造のポリ オキシアルキレン グ リ コ —ルモノ エ—テル ( R は炭素数 1 — 1 8 のアルキル基、 R 2は C 1 一 C 4 のアルキ レン基) 、 し' S 4 2 6 7 0 6 4 (対応日本出願 : 公告公 報 6 1 — 5 2 8 8 0 ) や U S 4 2 4 8 7 2 6 (対応日本出願 : 公告公報First, the compound represented by the above general formula (I) is a polyether of a desired propylene oxide or a random or block copolymer of propylene and ethylene glycol. . The compound of the formula (I) is collectively referred to as a so-called polyoxyalkylene glycol-based compound, and many examples of using the compound as a lubricating oil for a refrigerator using HCFC or CC as a refrigerant are known. . For example teeth; S 4 9 4 8 5 2 5 (corresponding Japanese application: Publication 2 - 4 3 2 9 0, the 2 - 8 4 4 9丄), the - general formula R t - (0 R 2) a — Polyoxyalkylene glycol monoether having a structure of 0 H (R is an alkyl group having 1 to 18 carbon atoms, R 2 is an alkylene group of C 1 to C 4), and S 4 2 6 7 0 6 4 (corresponding Japanese application: public announcement 6 1 — 5 2 8 8 0) and US 4 2 4 8 7 2 6 (corresponding Japanese application: public publication
5 7 - 4 2 1 1 9 ) に、 [〇一 ( R2〇) m - R 3] nや R t— 0 — ( R〇) m — R3の構造のポリ グリ コール ( Rい R3は水素、 炭化水素 基、 ァ リ ール基) 力 U S 4 7 5 5 3 1 6 (対応日本出願 : 公表公報 25 7-4 2 1 1 9), [〇 1 (R 2 〇) m-R 3 ] n and R t — 0 — (R 〇) m — R 3 Polyglycol (R 3 is hydrogen, hydrocarbon group, aryl group) US 4 7 5 5 3 1 6 (corresponding Japanese application: Publication 2)
- 5 0 2 3 8 5 ) に、 少な く と も 2個の水酸基を有するポリ アルキ レン グリ コ —ルカ、 し' S 4 8 5 1 1 4 4 (対応日本出願 : 公開公報 2 — 2 7-5202385), a polyalkyleneglycol-luca having at least two hydroxyl groups, S'S48551144 (corresponding Japanese application: Published Japanese Patent Publication No.
6 8 9 0 ) に、 ポリエーテルポリ オールとエステルの組合せ力 U S 4 9 7 1 7 1 2 (対応日本出願 : 公開公報 3 — 1 0 3 4 9 7 ) に E O と P 〇を共重合して、 水酸基 1 個を有するポリ 才キシアルキ レングリ コ ール が紹介されている。 これらいずれも H F Cや H C F C との溶解性に優れ るこ とが述べられている。 Combining EO and P〇 with US Pat. No. 4,971,717,2 (corresponding Japanese application: Publication 3-103497) In addition, a polyalkylene glycol having one hydroxyl group is introduced. It is stated that all of these are excellent in solubility with HFC and HCFC.
一-方本願出願人は、 H F C用圧縮機用潤滑油と して、 R i—〇 一 (A O) n —ト I、 R , - 0 - (A O ) n— R 2の構造のポリ オキシアルキ レングリ コールモノ エーテル、 ポリ オキシアルキ レングリ コールジェ一テルに関 する特許、 日本公開公報 1 — 2 5 9 0 9 3 、 同 1 一 2 5 9 0 9 4、 同 1The applicant of the present application has proposed, as a lubricant for a compressor for HFC, a polyoxyalkylene grease having a structure of R i—〇 one (AO) n —t I, R, -0— (AO) n —R 2. Patents on coal monoether and polyoxyalkylene glycol polyester, published in Japan 1-259,093, 112
— 2 5 9 0 9 5、 同 3 — 1 0 9 4 9 2 を出願した。 — 259 995, and 3 — 109 492.
しかしながら、 これら公知文献には、 アンモニアとの関係については 何ら記載されていない。 H ド Cや H C F Cは不活性であ り、 一方アンモ ニァは反応性が大きいこ と、 溶解性も両者全く 異なるため、 アンモニア 冷媒との共存下で使用する本発明の完成には、 こ れら情報は参考にな ら な  However, these known documents do not describe any relationship with ammonia. Since H-C and HCFC are inactive, while ammonia has high reactivity and completely different solubility, it is necessary to complete the present invention to be used in the presence of ammonia refrigerant. Information is helpful
また、 アンモニア冷媒に関して、 "Synthel i c Lubricant and Thei r R e ΓΓ i gera 1. i on Λρρ 1 i ca t i ons", Lubr i ca L i on Ens' i neer i ng, Vo I .46, o .4, Page239-249 に、 アンモニア冷媒の潤滑油と して、 高粘度指数のポリ αーォ レフ ィ ン及びィ ソ ノ ラフ ィ ン系鉱油が有用であ り 、 エステルはス ラ ッ ジを生成し、 畏期使用で固ィヒすると記載さ れてお り 、 U S 4 4 7 4 0 1 9 (対応日本出願 : 公開公報 5 8 — 1 ϋ 6 3 7 0 ) にはアンモニア 冷媒の冷凍システムの改良について記述されている。 しかし、 これらの 公知文献にもアンモニア冷媒と ポリ エーテル化合物と の関係については 何も記載されていない。 Regarding the ammonia refrigerant, "Synthelic Lubricant and Their Rei ΓΓ igera 1.ion Λ ρρ1 i cations", Lubrica Lion Ens'inenerng, VoI.46, o. 4, Page 239-249, the high viscosity index poly US Pat. No. 4,447,097 describes that alpha -refined and isonoflavinous mineral oils are useful, esters form sludge, and are hard-working for acute use. 40 19 (corresponding Japanese application: Published Japanese Patent Application Publication No. 58-1-1ϋ630) describes improvement of a refrigeration system for ammonia refrigerant. However, none of these known documents describes the relationship between the ammonia refrigerant and the polyether compound.
一般式 ( I ) のポリ エーテルは、 潤滑油と して必要な粘度を有するも のであ り、 用途によ り 4 0 °Cで 2 2 — 6 8 c S t , 1 0 0 Cで 5 — 1 5 c S t の粘度を有するものである。 この粘度に大き く 影響する要因は分 子量であ り、 上記粘度に設定するためには分子量は 3 0 0 — 1 8 0 0 が 好ま しい。  The polyether represented by the general formula (I) has a viscosity required as a lubricating oil. Depending on the application, the polyether is 22-68 cSt at 100 ° C and 5-100 C at 100 ° C. It has a viscosity of 15 cSt. The factor that greatly affects the viscosity is the molecular weight, and the molecular weight is preferably from 300 to 180 to set the above viscosity.
一般式 ( I ) のポリ エーテルは、 R tおよび R 2によって全ての末端が封 鎖されているポリ エーテルである。 こ こで R t は炭素数 1 — 6 を有する 炭化水素基である。 こ こで炭化水素基と は、 以下の ( i ) あるいは ( i i ) を意味する。 すなわち R i は、 ( i ) 飽和の直鎖あるいは分岐の C 1 - C 6鎖状炭化水素基、 具体的には C 1 一 C 6 の脂肪族 1価アルコー ルから誘導される C 1 — C 6 のアルキル基、 すなわち メ チル基、 ェチル 基、 プロ ピル基、 イ ソプロ ピル基、 ブチル基、 イ ソブチル基、 ペンチル 基、 イ ソペンチル基、 へキシル基、 イ ソへキシル基のいずれかであるが、 特に二層分離温度を低下させる観点からは、 炭素数が 1 一 4、 更に好ま し く は炭素数 1 ― 2 のアルキル基すなわちメ チルまたはェチル基、 ある いは ( i i ) 2 — 4価の飽和脂肪族多価アルコ ―ル、 具体的にはェチ レ ングリ コール、 プロ ピレングリ コール、 ジエチ レングリ コール、 1 , 3 —プロパンジオール、 1 , 2 — ブタ ンジオール、 1 , 6 —へキサンジォ —ル、 2 —ェチル— 1 , 3 —へキサンジオール、 ネオペンチルグリ コ — ル、 ト リ メ チ口一ルェタ ン、 ト リ メ チ口一ルプロノ ン、 卜 リ メ チロール ブタ ン、 ペンタエ リ ス リ トールから誘導される炭化水素残基、 すなわち これら 2 — 4 価アルコ —ルが有する 2 — 4個の水酸基の水素が全て置換 された炭化水素 Sを意味する。 したがって一般式 ( I ) の X は、 前記 R x の炭化水素 ¾の δになるアルコ ールの価数に対応した 1 一 4 の整数で ある。 アンモニアとの溶解性を特に高めるためには、 X は 1 で、 R は メ チルあるいはェチル ¾が好ま しい,, Polyethers of the general formula (I) is a polyether which all end by R t and R 2 are Kusarisa sealed. Here, R t is a hydrocarbon group having 1 to 6 carbon atoms. Here, the hydrocarbon group means the following (i) or (ii). That is, R i is (i) a C 1 -C 6 chain derived from a saturated linear or branched C 1 -C 6 chain hydrocarbon group, specifically, a C 1 -C 6 aliphatic monohydric alcohol. 6, alkyl, i.e., methyl, ethyl, propyl, isopropyl, butyl, isobutyl, pentyl, isopentyl, hexyl, or isohexyl However, particularly from the viewpoint of lowering the two-layer separation temperature, an alkyl group having 14 to 14 carbon atoms, more preferably an alkyl group having 1 to 2 carbon atoms, ie, a methyl or ethyl group, or (ii) 2 — 4 Saturated aliphatic polyhydric alcohols, specifically ethylene glycol, propylene glycol, diethyl glycol, 1,3-propanediol, 1,2-butanediol, 1,6-hexanedioxide Le, 2 — etil — 1, 3 Hydrocarbon residues derived from hexanediol, neopentylglycol, trimethyl-l-propane, trimethyll-l-pronone, trimethylol-butane, pentaerythritol, In other words, it means a hydrocarbon S in which all of the hydrogens of the 2 to 4 hydroxyl groups possessed by these 2 to 4 valent alcohols are substituted. Therefore, X in the general formula (I) is an integer of 114 corresponding to the valence of the alcohol that becomes δ of the hydrocarbon の of Rx . In order to particularly enhance the solubility with ammonia, X is 1 and R is preferably methyl or ethyl ,,,
また R 2 は炭素数 1 ― 6 個のアルキル基である。 7 以上のアルキル基 では、 アンモニアとの二照分離温度が高く なリ 、 本発明の 的を達成で きない,, R。 が炭素数 1 — 4 、 さ ら には 1 — 2 の場合、 アンモニアと の 相溶性、 すなわち二層分離温度は一層低下するので好ま しい。 Xが 2 — 4の場合、 R 2 は 2 〜 4個のアルキル基を と り 、 該アルキル基は同一で あっても異なっていても良 く 、 まだ好ま しい相溶性を維持するのは、 R 2 は 1 — 4 、 特には 1 一 2 が好ま しい。 R 2 is an alkyl group having 1 to 6 carbon atoms. With an alkyl group of 7 or more, the temperature of two-way separation from ammonia is too high to achieve the object of the present invention. Has 1 to 4 carbon atoms, and 1 to 2 carbon atoms. The compatibility, that is, the bilayer separation temperature is further reduced, so that it is preferable. When X is 2—4, R 2 takes 2 to 4 alkyl groups, which may be the same or different, and still maintain a favorable compatibility with R 2 2 is 1 to 4, especially 1 to 2 is preferred.
概して R t 及び R 2 の炭素数が多 く なる とアンモニアとの二照分離温 度は高く なる傾向にあるから、 1¾好な相溶性を維持するには、 R と R Ξ の炭素数の合計は 1 0 以下、 よ り好ま し く 6 以下、 更に好ま し く は 4 以下、 最も好ま し く は 2 である ,, なお R tあるいは R 2の-一方も し く は両 方が水素の場合、 アンモニアと の反応でス ラ ッ ジを生成し、 木発明の 13 的を達成できなレ、。 Generally because in NiTeru separation temperature increases the tendency of ammonia the number of carbon atoms of R t and R 2 is rather large, to maintain 1¾ good compatibility, the total number of carbon atoms in R and R .XI 1 0 or less, good Ri preferred to rather than 6, further preferable to rather 4 or less, the ,, Note R t or R 2 is most preferred to rather 2 - If one also rather has both the hydrogen The reaction with ammonia produces sludge, failing to achieve the objective of the invention.
一般式 ( I ) の化合物を合成する際に、 1 ― 4価アルコ一ルの水酸基: 力 一部分でも未反応のま まで残存するな ら、 得られたポリ オールは、 長期問使用する間で、 ス ラ ッ ジを生成するため、 好ま し く ない。 したが つてアルコ ールの水酸基は可能な限り残存しないこ と、 具体的には、 - 般式 ( I ) の化合物の水酸基価は 1 0 m g K〇 H Z g以下、 更には 5 m g K 0 H / g以下が好ま しい。  When synthesizing the compound of the general formula (I), if the hydroxyl group of the 1- to 4-valent alcohol remains partially unreacted, the obtained polyol can be used for a long period of time. Not good because it creates sludge. Therefore, the hydroxyl group of the alcohol should not remain as much as possible. Specifically, the hydroxyl value of the compound of the general formula (I) is 10 mgK〇HZg or less, and furthermore, 5 mgK0H / g or less is preferred.
前記のとお り、 一般式( I )で表わされるポリ エ一テル化合物を基油と する潤滑油の粘度は、 4 0 °Cで 2 2 — 6 8 c S 1: , 1 0 0 Cで 5— 1 6 c S t である。 この粘度はアンモニア共存下で良好な潤滑性を維持のた めに必要である。 またアンモニアとの良好な溶解性の維持のためには、 平均分子量は、 3 0 0 〜 1 8 0 0 が好ま し く 、 平均分子量が 3 0 0未満 では、 粘度が低く な り、 良好な潤滑性が得られず、 一方、 】 , 8 0 0 を 超える と、 アンモニアとの相溶性が悪く なる。 該¥-均分子量の制御は、 R , 、 R 2 の他、 重合度 m及び n を適宜選択するこ と によって逑成さ れ る。 As described above, the viscosity of a lubricating oil containing a polyester compound represented by the general formula (I) as a base oil is 22-68 cS1: at 40 ° C and 5 at 100 ° C. — 16 cSt. This viscosity is necessary to maintain good lubricity in the presence of ammonia. Further, in order to maintain good solubility with ammonia, the average molecular weight is preferably from 300 to 180, and if the average molecular weight is less than 300, the viscosity is low and the lubrication is good. However, if it exceeds】, 800, the compatibility with ammonia deteriorates. The control of the average molecular weight is achieved by appropriately selecting the polymerization degrees m and n in addition to R 1 , R 2 .
さ らにはォキシプロ ピ レン基の.道合度 ( m ) 及びォキシエチ レン基の 重合度 ( n. ) の相対割合、 すなわち m ( m + n ) の値が、 潤滑性、 低 温流動性およびアンモニアとの相溶性に重要である。 すなわち mに対し て、 n が大き過ぎる と、 低温流動点が高く なつた り、 アンモニアとの相 溶性が低下する。 この観点から ni Z ( m + n ) の値は 0 . 5以上が好ま しい, nが 0 の一般式 ( I ) の化合物は、 アンモニア との相溶性も潤滑 性も良好である, しかしながらォキシプロ ピレン ( P 〇) の単独 H合体 よ り も、 ォキシプロ ピレン ( P 0 ) と ォキシエチレン ( E〇) との共: 合体で、 しかも rn Z ( rn + n ) を 0 . 5以上に したポ リ エーテルは、 相 溶性を J¾好に保持しながら、 性が - 向 [:. したものになる ,, 一方ォ キシエチレンのみ、 あるいは才キシエチレンを ォキシプロ ピ レンよ り 多Furthermore, the relative ratio of the degree of polymerization (m) of the oxypropylene group and the degree of polymerization (n.) Of the oxyethylene group, that is, the value of m (m + n), determines the lubricity, low-temperature fluidity and ammonia. Important for compatibility with In other words, if n is too large with respect to m, the low-temperature pour point will increase and the compatibility with ammonia will decrease. From this viewpoint, the value of niZ (m + n) is preferably 0.5 or more. The compound of the general formula (I) in which n is 0 has good compatibility with ammonia and good lubricity. Polyether with oxypropylene (P 0) and oxyethylene (E 〇), which is higher than 0.5 in rn Z (rn + n), is more preferable than the single H-merification of (P 〇). , While maintaining good compatibility, the compatibility becomes negative. Xylene alone or more xylene than propylene
¾に IB合したポリ エーテルは、 流動点及び吸湿性が高 く なり 、 注意を要 する。 アンモニアとの相溶性、 潤滑性、 流動性の見地から、 m / ( m + n ) の値の好ま しい範囲は 0 . 5 〜 1 . 0、 よ り好ま し く は 0 . 5 〜 0 . 9、 更に好ま し く は 0 . 7 — 0 . 9 である。 The polyether that is IB-mixed in (4) has a high pour point and a high hygroscopicity, and requires attention. From the viewpoint of compatibility with ammonia, lubricity, and fluidity, the preferable range of the value of m / (m + n) is 0.5 to 1.0, more preferably 0.5 to 0.9. , And more preferably 0.7 — 0.9.
また、 ォキシエチ レンとォキシプロ ピレンの共重合体は、 一般式 ( I ) において便宜上プロ ッ ク共重合体が表示されている力 実際にはプロ ッ ク共重合体に限らず、 ラ ンダム共重合体でも交互共重合体でも構わなレ、。 また、 プロ ッ ク共重合における才キシエチレン部分と ォキシプロ ピレ ン 部分の結合順序は、 どち らが先であっても、 つま り R t と どち らが結合 してもよい。 なおォキシブチレンなど炭素数 4以上の才キシアルキ レン を道合したポリ エーテル化合物は、 アンモニア と相溶しないため好ま し く ない。 In addition, the copolymer of oxyethylene and oxypropylene is not limited to the block copolymer, but it is not limited to the block copolymer in general formula (I). But it can be an alternating copolymer. The binding order of old Kishiechiren portion and Okishipuro Pile emission portion in pro click copolymerization, even Dochi Ragasaki may bind other words R t and Dochi et al. A polyether compound such as oxybutylene, which is a compound of xylylene having 4 or more carbon atoms, is not preferred because it is incompatible with ammonia.
次にアンモニア冷媒との相溶性すなわち二層分離温度の設定は、 使用 される用途に基づいて決定される。 例えば極低温冷凍機には、 二層分離 温度が一 5 0 C以下の潤滑油が必要であ り 、 通常の冷蔵庫では一 3 ◦ C 以下であれば充分であり 、 空調機では— 2 0 C以下の潤滑油でよい。 特に二層分離温度が低いものが必要な場合、 R 1はメ チル基が最も好 ま しい。  Next, the setting of the compatibility with the ammonia refrigerant, that is, the two-layer separation temperature, is determined based on the intended use. For example, a cryogenic refrigerator requires lubricating oil having a two-layer separation temperature of 150 ° C. or less, a conventional refrigerator of 13 ° C. or less is sufficient, and an air conditioner of —20 C The following lubricating oils may be used. Particularly when a compound having a low bilayer separation temperature is required, R 1 is most preferably a methyl group.
一般式( I )の化合物は、 単独も し く は 2種以上を混合して組み合わせ て用いるこ とが出来る。 例えば分子量 8 0 0— 1 ◦ 0 0 のポリ オキシプ ロピレンジメ チルエーテルと分子量 1 2 0 0— 1 3 0 0 のポリ オキシェ チレンプロ ピレンジェチルェ一テルを、 それぞれ単独あるいは 1 0 : 9 0 - 0 : 1 0 (重量) などの混合物で、 4 0 °C粘度が 3 2 — 5 0 c S t が例示される。  The compounds of the general formula (I) can be used alone or in combination of two or more. For example, a polyoxypropylene dimethyl ether having a molecular weight of 800-1 OO 0 and a polyoxyethylene propylene diethylene ester having a molecular weight of 1200-130 are used alone or in a ratio of 10: 90-0: 10 (weight). ), And a viscosity at 40 ° C of 32 to 50 cSt is exemplified.
一般式 ( I ) のポリ エーテル化合物は、 炭素数 1 — 6 の i 一 4価のァ ルコール又はそのアル力 リ金属塩を出発原料と して、 炭素数 2 — 3 のァ ルキレン才キサイ ドを IS合させ、 鎖状のポリ ア レキレン基の -一方の端せ エーテル結合によ り前記原料アルコールの炭化水素基に結合し、 他方の 末端が水酸 ¾であるエーテル化合物を得た後、 この水酸 ¾をエーテル化 する こ と によ り得る こ とができ る。  The polyether compound of the general formula (I) is obtained by starting from an i-tetravalent alcohol having 1 to 6 carbon atoms or an alkali metal salt thereof, and starting from an alkylene alkyd having 2 to 3 carbon atoms. After the IS compound, an ether compound having one end of the chain-like polyalkylene group bonded to the hydrocarbon group of the raw material alcohol by an ether bond and the other end of which is hydroxyl is obtained. It can be obtained by etherifying hydroxyl.
末端に水酸 -基を有するエーテル化合物の水酸基をエーテル化するには、 金属ナ 卜 リ ウ ムなどのアルカ リ金屈ゃナ 卜 リ ウ ムメ チラ一 トな どの低級 アルコールのアル力 リ金属塩を反応させて、 前記エーテル化合物のァル 力 リ金屈塩を得た後、 該ァルカ リ金屈塩に炭素数 1 ― 6 のアルキルハ口 ゲン化物を反応させる方法、 あるいはエーテル化合物の水酸 ¾をハロ ゲ ン化物に変換した後、 炭素数 1 一 6 の 1 価アルコールを反応させる方法 などがある。 In order to etherify the hydroxyl group of an ether compound having a hydroxyl-group at the terminal, an alkali metal salt of a lower alcohol such as an alkali metal salt such as metal sodium is used. To obtain an alkali metal salt of the ether compound, and then react the alkyl halide with an alkyl halide having 1 to 6 carbon atoms. There is a method of reacting a genide, or a method of converting hydroxyl of an ether compound into a halide and then reacting with a monohydric alcohol having 116 carbon atoms.
従つて、 必ずしもアルコールを出発原料とせずに、 両末端に水酸基を 有するポリ オキシアルキ レングリ コ一ルを出発原料に用いる こ ともでき る。 いずれにせよ、 一般式 ( I ) のポリ エーテル化合物は、 公知の適宜 の方法で製造すればよい。  Therefore, polyoxyalkylene glycol having hydroxyl groups at both ends can be used as a starting material without necessarily using alcohol as a starting material. In any case, the polyether compound of the general formula (I) may be produced by an appropriate known method.
木発明の冷凍機油は、 アンモニアと極めて広い混合割合で安定的に溶 解する。 またアンモニア存在下で、 良好な潤滑性発揮する。  The refrigerating machine oil of the wood invention stably dissolves in a very wide mixing ratio with ammonia. Also exhibits good lubricity in the presence of ammonia.
又更に後記するよ う にダイ ヤモン ドク ラスタ等の添加材を加える事に よ リ前記潤滑性を確保した状態で潤滑油の混合割合を更に低下させる事 が出来る。  Further, as will be described later, by adding an additive such as a diamond cluster, the mixing ratio of the lubricating oil can be further reduced while the lubricating property is secured.
したがつて本発明の冷凍機用潤滑油は、 一般式 ( I ) で表さ れる化合 物を基油とするものであ り、 また本発明の冷凍及びヒー トポンプサイ ク ルに循環する作動流体組成物は、 アンモニアと 一般式 ( I ) のポリ エー テル化合物が、 9 8 : 2 (重量比) 以上の混合割合がよい。  Therefore, the lubricating oil for refrigerators of the present invention is based on the compound represented by the general formula (I), and the composition of the working fluid circulating through the refrigeration and heat pump cycle of the present invention. It is preferable that the mixing ratio of ammonia and the polyether compound of the general formula (I) is 98: 2 (weight ratio) or more.
又本発明の潤滑油および冷凍機用作動流体組成物には、 各種の添加剤、 例えば 卜 リ ク レジルホスフヱ一 卜等の耐荷重向上剤、 ア ミ ン系酸化防止 剤、 ベンゾ ト リ ア ゾール系金属不活性化剤、 シ リ コーン類の消泡剤等を 必要に応じて添加するこ とが出来る力 アンモニアと の反応で固形物を 形成しないものを選択すべきである。 したがってフエ ノ ール系酸化防止 剤は使用できない。 又、 アンモニアと反応する危険のある潤滑油, 例え ばポリ オールエステルは混合すべきでな く 、 又アンモニアと溶解しない 鉱油系潤滑油も混合すべきでない。  The lubricating oil and the working fluid composition for refrigerators of the present invention may contain various additives such as a load-bearing agent such as triglyceryl phosphate, an amine-based antioxidant, and a benzotriazole-based agent. A metal deactivator, a defoaming agent for silicones, etc. that can be added as necessary. Those that do not form solids by reaction with ammonia should be selected. Therefore, phenolic antioxidants cannot be used. Also, lubricating oils that may react with ammonia, such as polyol esters, should not be mixed, and mineral oil-based lubricating oils that do not dissolve in ammonia should not be mixed.
次に前記作動流体組成物を用いた第 2発明について詳細に説明する。 本発明は、 アンモニア冷媒と、 該アンモニア冷媒に溶解し得且つ冷媒の 蒸発温度でも 2層分離する事のない潤滑油と を冷凍装置内に充填させる と と もに、 前記両者の充填比がアンモニア冷媒に対し潤滑油を 2重¾ % 以上充填させて冷凍若し く はヒー 卜ポンプサイ クルを構成するものであ る  Next, the second invention using the working fluid composition will be described in detail. In the present invention, an ammonia refrigerant and a lubricating oil that can be dissolved in the ammonia refrigerant and do not separate into two layers even at the evaporation temperature of the refrigerant are filled in a refrigeration apparatus, and the charging ratio of the two is ammonia. A refrigerant is filled with lubricating oil at least 2% by weight to constitute a refrigeration or heat pump cycle.
アンモニアと潤滑油の j合は、 圧縮機の種類によ り 異なる力 基本的 には潤滑性能を維持する限り において、 極力潤滑油を 少な く するのが伝 熱効率を上げる上で好ま しい,,  The combination of ammonia and lubricating oil varies depending on the type of compressor.Basically, as long as lubricating performance is maintained, it is preferable to reduce lubricating oil as much as possible to increase heat transfer efficiency,
例えば 転圧縮機を川いた木発 Wにおける冷 ¾装置においては、 般 的にはアンモニア冷媒と泗滑油との充 ¾ IB ¾配合比を、 7 0 〜 9 7 : ;-] 0〜 3程度に設定しても充分なる潤滑性と冷凍能力を得る事が出来、 更 に後記する よ う性能の大幅向上につながる。 For example, in a cooling device at Kibashi W, where a rotary compressor is used, generally, the IB mixing ratio of the ammonia refrigerant and the oil is 70 to 97:;-] Even if it is set to about 0 to 3, sufficient lubricity and refrigeration capacity can be obtained, leading to a significant improvement in performance as described later.
即ち、 潤滑油が 3 %以上溶解しておれば、 油の溶解が圧縮機の滑動部 に入りやす く かじ り が少な く なる と ともに冷凍サイ クル構成が極めて簡 単化しする。  In other words, if the lubricating oil is dissolved by 3% or more, the dissolution of the oil easily enters the sliding part of the compressor, and the amount of galling is reduced, and the configuration of the refrigeration cycle is extremely simplified.
而も前記作動流体組成物を構成する潤滑油中に少な く とも平均粒径が 1 5 0 A以下、 好ま し く は平均粒径が略 5 0 A以下の超微粒ダイ ヤモン ド若し く はグラフ ア イ 卜 に被覆された超微粒子ダィ ャモン ドを添加する 事によ り、 前記潤滑油の配合割合を略 2 %程度まで落と しても問題が生 じない。  In addition, the ultrafine diamond having an average particle diameter of at least 150 A or less, preferably about 50 A or less in the lubricating oil constituting the working fluid composition. By adding the coated ultrafine diamond to the graphite, no problem occurs even if the blending ratio of the lubricating oil is reduced to about 2%.
そ してこの様なダィ ャモン ドは、 例えば ( N EW DA I AMO D 1 99 1 V0 L8 Such a diamond is, for example, (NEW DA I AMO D 199 1 V0 L8
N o . 1 , 新しい爆発法によ る超微粒子ダイ ャモン ドパゥ ダの特性と その応用) に記載されているよ う に、 不活性ガスを満した爆発室の中で 爆発性物質を爆発させて合成させた超微粒子ダイ ャモン ドを精製して得 られる ク ラスタ ダイ ヤモン ドゃ該ク ラスタ ダイ ヤモン ドにグラ フ ア イ 卜 が被膜されている炭素ク ラスタ ダイ ヤモン ドを用いるのがよ く 、 これを 前記潤滑油中に 2〜 3重量%添加する事によ り、 前記作動流体中の潤滑 油の配合割合を 2重量%にまで低減させる事が可能と なる。 No. 1, Characteristics of ultrafine particle diamond padder by new explosion method and its application), explosive substances are exploded in an explosion chamber filled with inert gas. A cluster diamond obtained by refining the synthesized ultrafine particle diamond. A carbon cluster diamond in which the graphite diamond is coated on the cluster diamond is often used. By adding 2 to 3% by weight of this to the lubricating oil, it is possible to reduce the blending ratio of the lubricating oil in the working fluid to 2% by weight.
又前記潤滑油は冷媒の蒸発温度でも 2層分離する事がな く 、 低温流動 性に優れているために、 凝縮器側は勿論蒸発器側でも熱交換コ ィルに分 離した油が付着する恐れがな く 、 これによ り伝熱効率が大幅に向上する のみな らず、 前記油回収機構や油分離器を前記冷凍サイ クル中に設ける 必要がな く 、 これによ り 回路構成も大幅に簡単化する。  The lubricating oil does not separate into two layers even at the evaporating temperature of the refrigerant, and because of its excellent low-temperature fluidity, separated oil adheres to the heat exchange coil not only on the condenser side but also on the evaporator side. As a result, not only is the heat transfer efficiency greatly improved, but also the oil recovery mechanism and the oil separator do not need to be provided in the refrigeration cycle. Dramatically simplified.
又圧縮機内では潤滑油は冷媒に溶解しながら摺動部に入り込み、 一層 のかじ り 防止に役立つ。  Also, in the compressor, the lubricating oil enters the sliding part while being dissolved in the refrigerant, which helps to further prevent galling.
この場合前記圧縮機で圧縮後の前記アン乇ニァ冷媒と潤滑油と を混合 してなる作動流体組成物を油回収器を介在させる事な く 冷凍及びヒー ト ポンプサイ クルを循環させるよ う構成してもよい。  In this case, the working fluid composition obtained by mixing the compressor and the lubricating oil after being compressed by the compressor is configured to circulate through a refrigeration and heat pump cycle without interposing an oil collector. You may.
この場合前記潤滑油の充填比が 1 0重量%以上でも圧縮機内である程 度の潤 m油が貯汕されるために、 冷凍サイ クル中の潤滑油の配合 '合を 特に蒸発器内の作動流体組成物の潤滑油の配合割合を %以下に設足す る ¾ が出来、 よ り好ま しい伝熱効率を得る ΐが出来る。  In this case, even if the lubricating oil filling ratio is 10% by weight or more, a certain amount of lubricating oil is stored in the compressor, so that the blending of the lubricating oil in the refrigeration cycle should be adjusted especially in the evaporator. The mixing ratio of the lubricating oil in the working fluid composition can be set to not more than%, and more preferable heat transfer efficiency can be obtained.
、 又前記压縮機で圧縮後の前記作動流体組成物中の潤 油の一部を圧縮 機側に炭入可能に構成してもよ い。 特に後者の場合は、 圧縮機側では潤 滑油の配合比を多 く し、 循環サイ クル、 特に蒸発器側に導人さ れる潤滑 油の配合比を極力少な く する事が容易となる。 Further, a part of the oil in the working fluid composition after being compressed by the compressor may be configured to be charcoalable into the compressor. In the latter case, in particular, the mixing ratio of lubricating oil is increased on the compressor side, and lubrication guided to the circulation cycle, especially to the evaporator side It becomes easy to reduce the oil blending ratio as much as possible.
勿論本発明は、 単段圧縮タィ プの冷凍装置においても、 又 2 段圧縮タ ィ プの冷凍装 にも適用可能である,:  Of course, the present invention can be applied to a single-stage compression type refrigeration system and also to a two-stage compression type refrigeration system,
又前記組成物が冷媒の蒸発温度以 'ト 'でも優れた潤滑性と相溶性を有す る為に、 膨張弁若し く は中間冷却器通過後の組成物を蒸発器の上方よ リ 導入する ト ッ プフ ィ ー ド構造を取る事が出来、 これに よ り いわゆる満液 構造を取る必要がな く 冷媒 (組成物) のサイ ク ル循環量の低減と高い冷 凍効果を得る事が出来る。  In addition, since the composition has excellent lubricity and compatibility even at a temperature lower than the evaporation temperature of the refrigerant, the composition after passing through an expansion valve or an intercooler is introduced from above the evaporator. This makes it possible to adopt a top-feed structure that reduces the amount of refrigerant (composition) cycled and achieves a high cooling / freezing effect without having to adopt a so-called full structure. I can do it.
又前記組成物は冷媒の蒸発温度以下でも潤滑油と相溶性を有するが、 蒸発器内の低温気化という苛酷な条件下で分離してし ま う恐れがあ り 、 而も前記蒸発器で ト ッ プフ ィ ー ド構成を取ると、 分離した油が直接圧縮 機内に導入され、 ノ ッ キングその他の問題を生 じさせて しま う。  Further, the composition is compatible with the lubricating oil even at a temperature lower than the evaporation temperature of the refrigerant, but may be separated under the severe conditions of low-temperature vaporization in the evaporator. With a feed-feed configuration, the separated oil is introduced directly into the compressor, causing knocking and other problems.
そこでを前記蒸発器よ り圧縮機間を連絡する導入管路途中に、 例えば ダブルライ ザの様に、 前記分離した油を 一時貯溜する油溜ま り と該油溜 ま り 中の潤滑油を前記管路中で圧縮機に導入される作動流体組成物と再 混合させる再混合部と を設けるのがよい。  There, an oil sump for temporarily storing the separated oil, and a lubricating oil in the oil sump, for example, as in a double riser, are introduced into the introduction pipe for communicating between the evaporator and the compressor. It is preferable to provide a remixing section for remixing with the working fluid composition introduced into the compressor in the passage.
さて前記搆成を取る事によ り アンモニアと冷媒の非溶性に対する問題 は解決した。  The problem of insolubility of ammonia and refrigerant has been solved by taking the above-mentioned method.
アンモニアの強い腐食性と導電性、 特に銅材に対する腐触性の問題が 解決しておらず、 その解決を行わなければ密封型圧縮機、 特に家庭用の 冷凍機への適用は困難である。  The problem of the strong corrosiveness and conductivity of ammonia, especially the corrosion of copper, has not been solved, and it is difficult to apply it to hermetic compressors, especially household refrigerators, unless the problems are solved.
そこで本発明はアンモニア冷媒圧縮機に電動機を直結してなる密封型 アン乇ニァ圧縮機を用いたアンモニア冷凍装置において、  Therefore, the present invention relates to an ammonia refrigeration apparatus using a hermetic-type amphibian compressor in which an electric motor is directly connected to an ammonia refrigerant compressor.
前記電動機側に回転子の周 fflに位置する固定子鉄心内周面側に、 気密 性シール部を介して前記回転子と所定空隙を介して囲繞する と共に、 前 記回転子内空間と圧縮機間に前記組成物が導通可能な導通部を設けた技 術を提案する ,,  On the inner peripheral surface side of the stator core located on the periphery ffl of the rotor on the motor side, the rotor is surrounded by a predetermined gap with the rotor via a hermetic seal portion, and the rotor inner space and the compressor are A technology is proposed in which a conducting portion is provided between which the composition can be conducted.
かかる発明によれば卷線が装 ¾されている固定子側は気密性シール部 によ り アンモニア冷媒等が流入する回転子収納空問と隔絶されている為 に、 前記卷線等が侵される恐れはな く 、 而も該回転子収納空問側は潤滑 油含有組成物が流入されるために、 該回転子の回転軸等の軸受部の m m に支障が生 じる恐れがな且つ前記両空間における流体組成物の均圧化を 図る事が出来る - この場合前 ' 気密性シール部を、 |π|転子の周園に而繞する円筒状キャ ン で構成してもよい力 キャ ンを川いた場合は、 固^子線輪の励磁によ る 交番磁束は回転磁束をなして前記空隙部のキャ ンを透過し、 固定子を回 転させる力 キャ ンには渦電流が流れ、 渦流損失を発生させ、 その損失 はモータ損失の半ば程度を占め、 モータ を加熱し、 効率を低下させる。 そこで固定子鉄心を耐圧密封構造体容器と して構成すると ともに、 該 固定鉄心の内周側に絶縁性薄膜を介在させるか、 該固定鉄心の卷線揷入 後の開溝の回転子と対面する前面側にシ一ル部材を配設し、 該シール部 材を介して前記開溝内を気密シール可能に構成してもよい。 According to this invention, since the stator side on which the winding is mounted is isolated from the rotor storage space through which the ammonia refrigerant and the like flows by the airtight seal portion, the winding and the like are affected. There is no danger that the lubricating oil-containing composition flows into the rotor storage space side, so there is no danger that the mm of the bearing portion such as the rotating shaft of the rotor will be affected. It is possible to equalize the fluid composition in both spaces-in this case, the airtight seal may be constituted by a cylindrical can surrounding the | π | trochanter. In the case of a river flow, the excitation of the stator wire loop The alternating magnetic flux forms a rotating magnetic flux and penetrates the can in the gap, and the force for rotating the stator An eddy current flows through the can, causing eddy current loss, and the loss accounts for about half of the motor loss. Heats the motor and reduces efficiency. Therefore, the stator core is configured as a pressure-resistant sealed structure container, and an insulating thin film is interposed on the inner peripheral side of the stator core, or the stator faces the rotor of the groove after the winding of the stator core is inserted. A seal member may be provided on the front side to be sealed, and the inside of the groove may be hermetically sealed via the seal member.
これによ りキャンの有する前記欠点を解消し得ると共に、 固定子鉄心 自体が耐圧容器と して機能する為に、 キャンが不用になり、 而も固定子 鉄心は厚肉の界磁鉄心で形成されている為に、 充分なる耐圧強度をもた すことが出来る。  As a result, the above-mentioned disadvantages of the can can be eliminated, and the stator core itself functions as a pressure-resistant container, so that the can becomes unnecessary, and the stator core is also formed of a thick field core. As a result, sufficient pressure resistance can be obtained.
前記回転子の回転を圧縮機側に伝達 3 する伝達軸部よ り前記組成物が漏 洩可能に構成することによ り電動機側の潤滑等が容易になると ともに、 不完全シールであるためにその構成が容易である。  Since the composition is configured to be able to leak from the transmission shaft portion that transmits the rotation of the rotor to the compressor side, lubrication on the motor side is facilitated, and an incomplete seal is provided. Its configuration is easy.
「図面の簡単な説明」  "Brief description of the drawings"
図 1 は、 本発明の実施例に係る単段圧縮タィ プの直接膨張式冷凍装置 を示す概略図。  FIG. 1 is a schematic view showing a single-stage compression type direct expansion refrigeration apparatus according to an embodiment of the present invention.
図 2は本発明の実施例に係る 2段圧縮タィプの極低温凍装置を示す概 略図。  FIG. 2 is a schematic view showing a two-stage compression type cryogenic freezing apparatus according to an embodiment of the present invention.
図 3 は、 本発明の他の実施例に係る単段圧縮タィプの直接膨張式冷凍 装置を示す概略図。  FIG. 3 is a schematic diagram showing a single-stage compression type direct expansion refrigeration apparatus according to another embodiment of the present invention.
図 4は本発明の実施例に係る電動機直結型の密封型圧縮機の縦断面図。 図 は図 4 の固定子の断面構造を示す要部拡大図。  FIG. 4 is a vertical sectional view of a hermetic compressor directly connected to an electric motor according to an embodiment of the present invention. The figure is an enlarged view of the main part showing the cross-sectional structure of the stator in FIG.
図 6 は、 従来技術に係る単段圧縮タィ プの直接膨張式冷凍装置を示す 概略図。  FIG. 6 is a schematic diagram showing a single-stage compression type direct expansion refrigeration apparatus according to the related art.
図 7 は従来技術に係る 2段圧縮タィプの極低温凍装置を示す概略図。 「発明を実施するための最良の形態」  Fig. 7 is a schematic diagram showing a conventional two-stage compression type cryogenic freezing apparatus. "Best mode for carrying out the invention"
先ず、 潤滑油と して、 表 1 に示すポリエーテル化合物 (実施例 1 〜 8 ) 、 及び表 2 に示すナフテン鉱油系冷凍機油 (比較例 I ) 、 分岐鎖型アル キルベンゼン (比較例 2 ) 及び (ポリ) エーテル化合物 (比較例 3 ~ 8 ) を川い、 アンモニアとの相溶性、 ファ レ ッ ク ス焼付荷靈、 アンモニア雰 四気下でのボンべテス ト前後における試料の色相、 全酸価及び外観の変 化を測定して評価した。  First, as lubricating oils, polyether compounds shown in Table 1 (Examples 1 to 8), naphthenic mineral oil-based refrigerating machine oil shown in Table 2 (Comparative Example I), branched-chain alkylbenzene (Comparative Example 2) and Applying (poly) ether compounds (Comparative Examples 3 to 8), compatibility with ammonia, sintering of pholex, color of sample before and after bomb test in ammonia atmosphere, total acid Changes in the value and appearance were measured and evaluated.
なお、 數 2の比 I咬例 1 のナフテン鉱汕系冷凍機汕及び比較例 の分岐 鎖型アルキルベンゼンの物性は次のとう りである,, ナフテン鉱油系 分岐鎖型 The physical properties of the naphthenic ore-based refrigerating machine Shane of Example 1 and the branched-chain alkylbenzene of Comparative Example are as follows. Naphthenic mineral oil type branched chain type
冷凍機油 アルキルベンゼン  Refrigeration oil Alkylbenzene
密度 0.888 0.870  Density 0.888 0.870
動粘度 cSt (100°C ) 4.96 4.35  Kinematic viscosity cSt (100 ° C) 4.96 4.35
引火点 180 178 まだ、 本発明の組成物の評価等に用いた各種試験方法の概要は次の通 りである。  Flash point 180 178 The outline of various test methods used for evaluation of the composition of the present invention is as follows.
均分子量 : ®量平均分子量を 〔〕 P C (ゲル浸透ク ロ マ 卜 グラ フ ィ ー) で測定した。  Average molecular weight: 1. The weight average molecular weight was measured by [] PC (gel permeation chromatography).
動粘度 : J I S K 2 2 8 3 に基づいて測定した。 Kinematic viscosity: Measured based on JIS K2283.
アンモニアとの相溶性 : 試料油 5 g と アンモニア 1 g を ガラスチューブ に封入した後、 室温から毎分 1 °Cの速度で冷却を行い、 二層分離を起こ す温度を測定した。 Compatibility with ammonia: 5 g of sample oil and 1 g of ammonia were sealed in a glass tube, cooled at a rate of 1 ° C / min from room temperature, and the temperature at which two layers were separated was measured.
ファ レ ッ クス焼付荷重 : A S T M D - 3 2 3 3 — 7 3 に準拠してフ ァ レッ クス焼付荷重を測定した。 Flex seizure load: The flex seizure load was measured in accordance with ASTM D-3 2 3 3 —73.
ボンべテス ト : 触媒と して径 1 . 6 ■の鉄線 3 m を装填した 3 0 0 m 1 のボンベに試料油を 5 0 g入れ、 アンモニアで 0 . S kgZ c mSGまで 加圧し、 さ らに窒素ガスで 5. 7 kg Z c m 2G まで加圧した。 その後、 1 δ (TCまで加熱して、 その温度にて 7 日問保持した。 室温に冷却後、 試料油からアンモニアを減圧下で除去し、 テス 卜前後における色相及び 全酸価を測定し、 外観の変化を 目視にて観察し、 アンモニア雰囲気下で の試料の安定性を評価した。 なお、 外観は次の基《で評価した。 Cylinder test: 50 g of sample oil was placed in a 300 ml cylinder filled with 3 m of iron wire 1.6 mm in diameter as a catalyst, and pressurized with ammonia to 0.1 kg kg SGSG. Furthermore, the pressure was increased to 5.7 kg Z cm 2 G with nitrogen gas. Thereafter, the mixture was heated to 1 δ (TC and kept at that temperature for 7 days. After cooling to room temperature, ammonia was removed from the sample oil under reduced pressure, and the hue and total acid value before and after the test were measured. Changes in the appearance were visually observed, and the stability of the sample was evaluated in an ammonia atmosphere.
変化な し : テス ト前後において、 外観に変化がない  No change: No change in appearance before and after the test
固化 : テス ト後試料が固結した  Solidification: The sample solidified after the test
前記試験の結果を表 1 及び表 2 に示す。  The results of the test are shown in Tables 1 and 2.
表 丄 及び表 2から実施例 1 乃至 8 のポリ エーテル化合物は、 アンモニ ァとの相溶性、 潤滑性、 及びにアンモニア雰囲気下での安定性に優れて いるこ とが分かる。 このよ うなボリ エーテル化合物と アンモニアの混合 物は、 アンモニア圧縮機に充填、 使用されてその機能を十分に発揮する。 その結果アンモニア圧縮機を コ ンパク 卜、 メ ンテナンスフ リーなものと する こ とができ、 アンモニア圧縮機の用途を広げる等の格別の効果を有 する„  Tables 1 and 2 show that the polyether compounds of Examples 1 to 8 are excellent in compatibility with ammonia, lubricity, and stability under an ammonia atmosphere. A mixture of such a polyether compound and ammonia is filled into an ammonia compressor and used to exhibit its function sufficiently. As a result, the ammonia compressor can be made compact and maintenance-free, which has a special effect such as expanding the application of the ammonia compressor.
しかしながら、 表 2 に示すナフテン鉱汕系冷 ¾機汕、 分岐鎖型アルキ ルベンゼン及び比較例 3 〜 Sの (ボリ ) エーテルは室温で不溶である 、 若し く は一 5 0 °Cの低温で相溶性を有していてもボンべテス 卜で個 化する こ とが分かる。 この結果これらの油は圧縮/凝縮ノ膨張を繰リ 返 す冷凍サイ クルに使用できないものである。 However, the naphthenic ore-based chillers, the branched-chain alkylbenzenes, and the (poly) ethers of Comparative Examples 3 to S shown in Table 2 are insoluble at room temperature. However, it can be seen that even if it is compatible at a low temperature of 150 ° C., it is individualized by a bomb test. As a result, these oils cannot be used in refrigeration cycles that repeatedly undergo compression / condensation / expansion.
次にかかる潤滑油とァン乇ニァ冷媒を混合した作動流体組成物を用い た冷凍システムについて説明する。  Next, a refrigeration system using a working fluid composition obtained by mixing such a lubricating oil and a fangny refrigerant will be described.
図 1 は、 本発明の実施例に係る単段圧縮タイ プの直接膨張式冷凍装置 で、 冷媒と して R — 7 1 7 (アンモニア冷媒) 及び潤滑油と して前記実 施例 1 のポリ エーテルを、 9 0 重量部 : 1 0重量部の割合で冷凍サイ ク ルに充填した一例を示す。  FIG. 1 shows a single-stage compression-type direct expansion refrigeration apparatus according to an embodiment of the present invention, in which R-7117 (ammonia refrigerant) is used as a refrigerant and the polystyrene of Example 1 is used as a lubricating oil. An example is shown in which ether is filled in a frozen cycle at a ratio of 90 parts by weight: 10 parts by weight.
図中 1 1 は冷媒圧縮機で、 該圧縮機 1 1 で庄縮されたアンモニア冷媒 と潤滑油が相溶してなる冷媒作動流体は油分離器を介する事な く 、 直接 凝縮器 1 2 に導かれ、 該凝縮器 1 2 li  In the figure, reference numeral 11 denotes a refrigerant compressor. The refrigerant working fluid formed by dissolving the ammonia refrigerant condensed by the compressor 11 and the lubricating oil passes directly to the condenser 12 without passing through the oil separator. Led, the condenser 1 2 li
δ内で冷却水 (冷却水管 1 8 ) との熱 交換 (取得熱 : 3 0 °C前後) によ り凝縮液化される。  Within δ, it is condensed and liquefied by heat exchange with the cooling water (cooling water pipe 18) (acquisition heat: around 30 ° C).
そ して該凝縮された作動液を高圧受液器 1 4 に貯溜させた後、 膨張弁 丄 3 によ り減圧気化させ、 蒸発器 1 5 の上端に設けた導入口 1 5 a よ り ト ッ プフ ィ ー ドで該蒸発器 1 5 内に導入し、 フ ァ ン 1 6 よ り供給された 送風負荷と熱交換 (取得熱 : 一 1 5 〜一 2 0 °C前後) した後、 ダブルラ ィザ 1 7 を介して圧縮機 1 1 の吸気側に吸引され前記冷凍サイ クルを繰 り返す。  After the condensed working fluid is stored in the high-pressure receiver 14, it is decompressed and vaporized by the expansion valve 丄 3, and is discharged from the inlet 15 a provided at the upper end of the evaporator 15. After being introduced into the evaporator 15 by the top feed, it exchanges heat with the blast load supplied by the fan 16 (acquisition heat: about 15 to 120 ° C), The refrigerant is sucked into the intake side of the compressor 11 through the heater 17 and the refrigeration cycle is repeated.
こ こでダブルライザ 1 7 とは公知の様に、 蒸発器 1 5導出部 1 5 b の 出口側に設けた U字状の局部的な油溜ま り 1 7 2 を具えた主管路 1 7 1 と該主管路をバイパスするバイ パス管路 1 7 3 を有し、 前記蒸発器 1 5 内の蒸発によ り僅かに分離した油を前記油溜ま り 1 7 2 に油溜めを行い ながら主管路 1 7 1 を通して低圧吸入管 1 9側に導く と共に、 バイパス 管路 1 7 3 を細管に して絞り抵抗を与える事によ り前記主管路 1 7 1 が 油溜めによ リ 閉 ¾した場合にバィパス管路 1 7 3 を通過する潤滑油を含 む気化冷媒の流速によ り 閉塞した油が低圧吸入管 1 9 側に導出されて再 度混合溶解した状態で圧縮機 1 1 の吸入側に導く ものである。  Here, as known, the double riser 17 has a main pipeline 17 1 provided with a U-shaped local oil reservoir 17 2 provided at the outlet side of the evaporator 15 outlet 15 b. And a bypass line 173 that bypasses the main line, and the main line while the oil slightly separated by evaporation in the evaporator 15 is stored in the oil reservoir 172. When the main line 17 1 is closed by an oil sump by guiding the low-pressure suction pipe 19 side through 1 71 and making the bypass line 1 73 into a thin tube to provide throttling resistance, The blocked oil is led out to the low-pressure suction pipe 19 by the flow rate of the vaporized refrigerant containing the lubricating oil passing through the bypass passage 17 3, and is mixed and dissolved again into the suction side of the compressor 11. It is a guide.
従って係る実施例によれば、 油分離器等が不用であ り 、 而も図 6 に示 す従来技術の様に、 受液器底部に油溜めを設ける *な く 、 又ダブルラ イ ザ 1 7 による局部的な油溜ま り 1 7 2 を設けるも、 こ れは再度混合溶解 して圧縮機 1 1 侧に導入される為に、 汕回収機構や、 再度圧縮機 1 1 側 に す戻入回路等が不用になり 、 サイ クル構成が極めて簡単化する r 又本実施例は冷媒が蒸発温度以下でも潤滑油と相溶性の為に、 膨張弁 1 3通過後の減圧冷媒を蒸発器 1 5 の上方よ リ 導入する ト ッ プフ ィ ー ド 構造を取る事が出来るために、 IS力に沿つて蒸発器内 を冷媒が通過させ る :が出来、 これによ り いわゆる満液構造を取る必要がな く 、 本発明者 たちの実験では図 6 に示す従来例に比較して II量比で 1 0 %以上冷媒を 少な く しても前記従来例よ り高い冷涑効果を得る事が出来た。 Therefore, according to the embodiment, an oil separator or the like is not required. Therefore, unlike the prior art shown in FIG. 6, an oil reservoir is not provided at the bottom of the liquid receiver, and a double riser 17 is not provided. However, since a local oil sump 17 2 is provided, it is mixed and melted again and introduced into the compressor 11 侧. becomes unnecessary, rhino r the present embodiment cycle structure is very simplified in order lubricating oil compatible refrigerant even less evaporation temperature, above the vacuum refrigerant expansion valve 1 3 after passing through the evaporator 1 5 Top feed to be introduced The structure allows the refrigerant to pass through the evaporator along with the IS force, which eliminates the need for a so-called liquid-filled structure. As compared with the conventional example shown in FIG. 6, even if the amount of the refrigerant was reduced by 10% or more in the II amount ratio, a higher cooling effect could be obtained as compared with the conventional example.
尚、 本奘施例においてはアンモニア冷媒と潤滑油と を、 9 0 A部 : 1 0重量部の割合で充填しても圧縮機 1 1 中にある程度の潤滑油が貯油 されるために冷凍サイ クル中を循環する作動流体組成物の a量比は前記 充填重量比よ り低下し、 特に蒸発器を循環する配合比は 5 %以下と なる 為、 蒸発器側の伝熱効率は一層向上する。  In the present embodiment, even if the ammonia refrigerant and the lubricating oil were filled at a ratio of 90 A: 10 parts by weight, a certain amount of the lubricating oil was stored in the compressor 11, so that the refrigeration system was not used. Since the ratio of the amount of the working fluid composition circulating in the vessel is lower than the above filling weight ratio, and particularly the mixing ratio of circulating in the evaporator is 5% or less, the heat transfer efficiency on the evaporator side is further improved.
尚、 前記圧縮機は可変翼タイ プのロータ リ圧縮機や往復圧縮機に好適 である。 6  The compressor is suitable for a variable blade type rotary compressor or a reciprocating compressor. 6
又本実施例においては蒸発温度を 一 1 5 〜一 2 (TCと、 前記従来技術 よ り圧縮比を高く して運転した力 このよ うな構成を取っても作動流体 が劣化した り 、 ス ラ ッ ジ化する事な く 、 長期に!:つて高信頼性を得る事 が出来る。  Further, in this embodiment, the evaporation temperature is set to 115 to 12 (TC and the force operated with a higher compression ratio than that of the conventional technique). For a long period of time without bridging !: High reliability can be obtained.
又前凝縮器 1 2や蒸発器 i 5 内の熱交換コィ ル壁面に前記潤滑油が付 着する事な く 、 伝熱効率が、 ナフテン鉱油系冷凍機油を用いた図 6 に示 す従来例に比較して 6 0 %以上も向上した。  In addition, the lubricating oil does not adhere to the wall of the heat exchange coil in the pre-condenser 12 or evaporator i5, and the heat transfer efficiency is higher than that of the conventional example shown in Fig. 6 using a naphthenic mineral oil-based refrigerating machine oil. By more than 60%, it has improved.
又前記作動流体を構成するアンモニアと潤滑油は水を溶解する能力が あるために、 フ ロ ン系冷凍サイ クルの様に、 シ リ カゲル等の除湿剤や除 湿機構を設けな く てもよい。  In addition, since the ammonia and the lubricating oil constituting the working fluid have the ability to dissolve water, there is no need to provide a dehumidifying agent such as silica gel or a dehumidifying mechanism as in a fluorinated refrigeration cycle. Good.
さて前記作動流体は圧縮機 i i の潤滑性が低減しない範囲で冷媒の割 合を多 く する必要がある力 実際的には潤滑油を 5重量%以下にする と、 潤滑能力が低下する。  Now, the working fluid is required to increase the proportion of the refrigerant within a range where the lubricity of the compressor i i is not reduced. Actually, when the lubricating oil is set to 5% by weight or less, the lubricating ability is reduced.
そこでこの様な場合には前記したよ う に平均粒径が約 5 0 A以下のク ラス タ ダイ ヤモン ドゃ該ク ラス タ ダイ ヤモン ドにグラ フ アイ ト が被膜さ れている炭素ク ラスタ ダイ ヤモン ドを前記潤滑油中に 2 〜 3 重量%添加 する事によ り、 前記作動流体中の潤滑油の配合割合を更に低減させる事 が出来た。  Therefore, in such a case, as described above, a cluster diamond having an average particle size of about 50 A or less. A carbon cluster in which the graphite is coated on the cluster diamond. By adding 2 to 3% by weight of a diamond to the lubricating oil, the blending ratio of the lubricating oil in the working fluid could be further reduced.
又前記ダブルライ ザ 1 7 も例えば図 3 に しめすよう に、 凝縮器 1 4 通 過後の液冷媒を利用 して前記蒸発器 1 5 内の蒸発によ り僅かに分離した 油を含む作動流体組成物を熱交換器 1 5 0 によ り加温する事に よ り前記 分離油が Πΐ度組成物中に溶融し前記ダブルライ ザが不要になる。  Also, as shown in FIG. 3, for example, the double riser 17 also uses a liquid refrigerant after passing through a condenser 14 to use a working fluid composition containing oil that has been slightly separated by evaporation in the evaporator 15. Is heated by the heat exchanger 150, so that the separated oil melts in the composition at once and the double riser becomes unnecessary.
尚、 潤滑性の向 . を図るために、 前記作動流体組成物の潤滑油の配合 割合を多 く すると共に、 Γήί ^圧縮機の出 Iコ侧に汕分離器 2 5 と該分離器 2 5で分離した油を再度圧縮機 1 1 側に戻す戻入回路 2 f; を設ける方策 を取ってもよい。 In order to improve lubricity, the mixing ratio of the lubricating oil in the working fluid composition was increased, and the output of the compressor was changed to the Shan separator 25 and the separator. A measure may be taken to provide a return circuit 2f; for returning the oil separated in 25 back to the compressor 11 side.
特に、 油冷式ス ク リ ユー圧縮機の場合は、 前記圧縮機 1 1 の出口側に 油分離器 2 5 と該分離器 2 5で分離した油を再度圧縮機側に戻す戻入回 路 2 6 を設けたほうが好ま しい。  In particular, in the case of an oil-cooled screw compressor, the oil separator 25 and the oil separated by the separator 25 are returned to the compressor side again at the outlet side of the compressor 11 1. 6 is better.
この場合はアンモニア冷媒と潤滑油との充填重量比力 9 0 〜 8 0重 量部 : 1 0 ~ 2 0重量部の割合で充填しても圧縮機 1 1 /油分離器 2 5 /戾入回路 2 6の閉サイ クルにおける潤滑油の配合割合を多く し、 他の 冷凍サイ クルの潤滑油の配合割合を極力少なく 、 例えば圧縮機 1 1 側で 潤滑油を 9 0 %以上、 蒸発器 1 5側の潤滑油の配合割合を 3 %以下、 更 には 0 . 5 %程度に設定する事も可能である。  In this case, the filling weight specific gravity of the ammonia refrigerant and the lubricating oil is 90 to 80 parts by weight: Even if the filling is performed at a ratio of 10 to 20 parts by weight, the compressor 11 / oil separator 25 / powder Increase the mixing ratio of lubricating oil in the closed cycle of circuit 26, and minimize the mixing ratio of lubricating oil in other refrigeration cycles.For example, 90% or more of lubricating oil on compressor 11 side, evaporator 1 It is possible to set the mixing ratio of the lubricating oil on the 5 side to 3% or less, and further to about 0.5%.
又前記表中の実施例 4 、 6 、 7 、 8に示すよ う に、 二層分離温度が一 5 0 °C以下の潤滑油を用いて作動流体を構成する事によ り液ポンプ再循 環システム構成を取る事なく、 極低温冷凍装置を簡単に構成出来る。 その構成を図 2 に基づいて簡単に説明するに、 図 2は冷媒と して R — 7 1 7 (アンモニア冷媒) と潤滑油と して前記実施例 6 のポリエーテル を、 9 5重量部 : 5重量部の割合で冷凍サイ クル内に充填させた極低温 冷凍システムで、 2 】 は低段圧縮機でそのアンモニア冷媒と潤滑油が相 溶した圧縮作動流体は中間冷却器 2 2で一 i 0 。C前後に冷却して高段側 圧縮機 1 1 に導かれる。  Further, as shown in Examples 4, 6, 7, and 8 in the above table, the liquid pump is recirculated by forming the working fluid using a lubricating oil having a two-layer separation temperature of 150 ° C or less. A cryogenic refrigeration system can be easily configured without taking a ring system configuration. FIG. 2 shows a brief description of the structure based on FIG. 2. R-717 (ammonia refrigerant) is used as a refrigerant and the polyether of Example 6 is used as a lubricating oil. A cryogenic refrigeration system filled into a refrigeration cycle at a ratio of 5 parts by weight. 2) is a low-stage compressor, and the compressed working fluid in which the ammonia refrigerant and lubricating oil are compatible is mixed in an intercooler 22. 0. It is cooled to around C and guided to the high-stage compressor 11.
そして高段圧縮機】 1 で圧縮された前記冷媒作動流体は直接凝縮器 1 2 に導かれ、 該凝縮器 1 2内で冷却水 (冷却水管 1 8 ) との熱交換 (取 得熱 : 3 5 °C前後) によ り凝縮液化される。  The refrigerant working fluid compressed by the high-stage compressor] 1 is directly led to the condenser 12, and exchanges heat with the cooling water (cooling water pipe 18) (condensed heat: 3) in the condenser 12. (Around 5 ° C).
そして該凝縮された作動液を高圧受液器 1 4 に貯溜させた後、 膨張弁 2 0 により減圧気化させて中間冷却器 2 2 を一 1 0 °C前後に冷却させる と共に、 該冷却によ リ液化した作動液を、 蒸発器 1 5の上端に設けた導 入口 1 5 a よ り 卜 ップフ ィ 一ドで該蒸発器 1 5 内に導入し、 フ ァン 1 6 より供給された送風負荷と熱交換 (取得熱 : - 5 0 "C ) した後、 ダブル ライザ 1 7 を介して圧縮機 2 1 の吸気側に吸引され前記冷凍サイ クルを 繰り返す。  Then, after the condensed working fluid is stored in the high-pressure receiver 14, it is decompressed and vaporized by the expansion valve 20 to cool the intermediate cooler 22 to about 110 ° C. The re-liquefied working fluid is introduced into the evaporator 15 from the inlet 15a provided at the upper end of the evaporator 15 by a top feed, and the blast load supplied from the fan 16 After the heat exchange (acquisition heat: -50 "C), the refrigerant is sucked into the intake side of the compressor 21 through the double riser 17 and the refrigeration cycle is repeated.
従つて係る実施例においても、 高圧受液器 1 や中間冷却器 2 2内の 油溜ま リや油回収構成が不用になると共に、 図 7 に示す従来技術と異な リ低圧受液器と蒸発器問の冷媒液を循環させる液ボンプ再循環サイ クル が不用となり、 冷凍サイ クル構成が大幅に簡 -化される。  Therefore, in this embodiment as well, the oil sump and the oil recovery structure in the high-pressure receiver 1 and the intercooler 22 become unnecessary, and the low-pressure receiver and evaporator shown in FIG. A liquid pump recirculation cycle for circulating the refrigerant liquid is not required, and the configuration of the refrigeration cycle is greatly simplified.
又本実施例に用いる作動流体組成物は表 3 に示すよう に'、 流動性が蒸発 温度以下の一 5 0 "Cでも冷媒と相溶性がよ く 、 iiつ流動性も. 4 · 5秒前 後と良好なために、 ト ッ プフ ィ ー ド構造を取る事が出来冷媒を少な く し ても前記ボ トムフ ィ 一 ド構造の従来例よ り高い冷凍効果を得る寧が出来 ると と もに極低温の蒸発器内での伝熱効率も向上する。 As shown in Table 3, the working fluid composition used in this example It has good compatibility with the refrigerant even at a temperature of 50 "C below the temperature, and has good fluidity.Because it is as good as 4.5 seconds ago, it can take a top feed structure and use less refrigerant. In particular, it is possible to obtain a higher refrigerating effect than in the conventional example of the bottom feed structure, and the heat transfer efficiency in the cryogenic evaporator is improved.
又蒸発器 1 5の出口側に設けたダブルライザ等の局部的な油溜ま り と 再混合溶解構造を設けるのみで足り るために、 油抜きの為に一時停止さ せる事な く 冷凍サイ クルの連続遝転を: R期に亙って継続でき、 これによ り無人化及びフ リーメ イ ンテナンス化が容易である。  In addition, since it is sufficient to provide only a local oil reservoir such as a double riser provided on the outlet side of the evaporator 15 and a remixing / melting structure, there is no need to pause for oil drainage. Can be continued for the R period, which facilitates unmanned operation and free maintenance.
さて前記構成を取る事によ り アンモニアと冷媒の非溶性に対する問題 は解決した。  By adopting the above configuration, the problem of insolubility of ammonia and refrigerant has been solved.
アンモニアの強い腐食性と導電性、 特に電気銅線に対する腐触性の問 題が解決しておらず、 その解決を行わなければ密封型圧縮機、 特に家庭 用の冷凍機への適用は困難である ,,  The problem of the strong corrosiveness and conductivity of ammonia, especially the corrosion of electrolytic copper wire, has not been solved, and it is difficult to apply it to hermetic compressors, especially refrigerators for home use, unless these problems are solved. is there ,,
その第 1 がキャ ン ドモータの適用である。  The first is the application of canned motors.
即ちアンモニア冷媒を用いた流体機械と直結する密封型電動機におい ては、 固定子と回転子の間に円筒シ リ ンダ状のキャンを嵌入固定し、 キ ャンの外周側に位置する固定子までアンモニァ冷媒が漏洩しない構成と したキャ ン型モータの採用が検討される。  That is, in a sealed electric motor directly connected to a fluid machine using an ammonia refrigerant, a cylindrical cylinder-shaped can is inserted and fixed between the stator and the rotor, and up to the stator located on the outer peripheral side of the can. The use of a can-type motor that does not leak ammonia refrigerant is considered.
しかしながら前記キヤ ンは高密度の交流磁束が鎖交 してお り 、 渦電流 損失及びキヤ ンを含めた空隙における磁気抵抗を増加させて、 励磁損失 等による多量の熱が発生 し、 キャ ン ドモータの効率を低下させる。  However, high-density alternating magnetic flux is interlinked in the can, which increases eddy current loss and magnetic resistance in the air gap including the can, and generates a large amount of heat due to excitation loss and the like. Reduce the efficiency of
そこでキャ ンを用いな く ても前記固定子と回転子問を隔壁し、 固定子 側のアンモニアの漏洩を封止できれば特に問題が生じない。  Therefore, there is no particular problem if the stator and the rotor can be partitioned without using a can and leakage of ammonia on the stator side can be sealed.
図 4及び図 5 はかかる構成の実施例で、 電動機とス ク リ ュ一圧縮機を 直結してなる密封型圧縮機の本体構成を示し、 先ずス ク リ ユー圧縮機 A 側の横成を説明するに、 3 1 は矢示のよ う に前記した相溶性の作動流体 を圧縮するために取入れられる吸入孔、 3 2はス ク リ ユーロ一タ 3 0 に よ り圧縮された冷媒ガス を凝縮器側に吐出する吐出口、 3 3 はこれを包 被する ロータハウ ジング、 3 4 Aは円板状の軸受ハウ ジング 3 5 に嵌合 された軸受で、 電動機 B側の回転軸 3 6 をスプロケッ ト軸嵌合させた 口 一タ軸 3 7 a を支承する。 又他側のロータ軸 3 7 b は軸受 3 4 Bに支承 されている。  Fig. 4 and Fig. 5 show an embodiment of such a configuration, showing a main configuration of a hermetic compressor in which an electric motor and a screw compressor are directly connected. First, the horizontal structure of the screw compressor A side is shown. To explain, 31 is a suction hole which is taken in to compress the compatible working fluid as shown by an arrow, and 32 is a refrigerant gas compressed by the screw euro 30. A discharge port for discharging to the condenser side, 33 is a rotor housing that covers this, 34 A is a bearing fitted to a disc-shaped bearing housing 35, and a rotating shaft 36 on the motor B side The sprocket shaft mated with the mouth shaft 37a is supported. The rotor shaft 37 b on the other side is supported by a bearing 34 B.
この場合、 ロータ軸 3 7 a と軸受 3 4 A問は不完全シール状態を構成 し、 圧縮機 A側よ リ電動機 13側に作動流体組成物が導入可能に構成する 又前記円板状の軸受ハウ ジング 3 5 の ド側には電動機 B側に流れた作動 流体のリ ターン穴 3 9 を設け、 圧縮機 A側と電動機側の回転子 4 1 空間 の均圧化を図る。 In this case, the rotor shaft 37a and the bearing 34a constitute an imperfectly sealed state so that the working fluid composition can be introduced from the compressor A side to the electric motor 13 side. On the side of housing 35, the operation flowed to motor B side A return hole 39 for fluid is provided to equalize the pressure in the rotor 41 space on the compressor A side and the motor side.
一方電動機 B側は、 前記回転軸 3 6 に固定されだ回転子 4 1 、 該回転 子 4 1 の周囲を囲繞する固定子 4 2 とを具え、 そして前記固定子 4 2は、 図 5 に示すように、 多数枚の界磁鉄心板 4 3 a を積層してなる固定子鉄 心 4 3 と、 該固定子鉄心 4 3の内周面側に、 軸方向に延在してなる断面 コの字状の開溝 4 4に収納させた卷線 4 5 と、 前記固定子鉄心 4 3の軸 方向両側に位置する 4 5 aは卷線のコイルが延設された部分である。 そ して、 前記固定子鉄心 4 3 は、 多数枚の界磁鉄心板 4 3 aの積層而 上に絶縁性樹脂コ一ティ ング剤その他の接着剤 4 6 を塗布して気密的に シールさせるか若しく は熱溶融性の絶縁膜 4 6 を介在させて熱圧着によ り両者を一体的に固化させて耐圧的 9に気密保持させる。 又更に前記固定 子鉄心 4 3の内周面側に非磁性薄板 4 7若しく は樹脂薄膜 4 7 を圧着し て被覆形成する事により前記気密性の一層の増進を図る。  On the other hand, the motor B side includes a rotor 41 fixed to the rotating shaft 36, and a stator 42 surrounding the rotor 41, and the stator 42 shown in FIG. Thus, a stator core 43 formed by laminating a large number of field core plates 43a and a cross section extending in the axial direction on the inner peripheral surface side of the stator core 43. The winding wire 45 housed in the U-shaped open groove 44 and 45 a located on both axial sides of the stator core 43 are portions where the winding coil is extended. Then, the stator core 43 is air-tightly sealed by applying an insulating resin coating agent or other adhesive 46 on the lamination of a large number of field core plates 43a. Alternatively, both are solidified integrally by thermocompression bonding with a thermally fusible insulating film 46 interposed therebetween, and are airtightly maintained to withstand pressure 9. Further, the non-magnetic thin plate 47 or the resin thin film 47 is press-fitted on the inner peripheral surface side of the stator core 43 to form a coating, thereby further improving the airtightness.
そして前記固定子鉄心 4 3は略円筒状をなし、 その軸方向両端側を圧 縮機 A側の軸受ハゥジング 3 5 に気密的に固定された外枠ハウジング 4 8のフ ランジ 4 8 a と前記回転軸 3 6 の自由端側軸受 2 9 と一体化させ た鏡板状ハウジング 2 8のフランジ部 2 8 aに当接させて一体的に且つ 気密的に固着させる。  The stator core 43 has a substantially cylindrical shape, and the both ends of the stator core 43 in the axial direction are fixed to the bearing housing 35 on the compressor A side in a gas-tight manner by the flange 48 a of the outer frame housing 48 and the flange 48 a. The rotating shaft 36 is brought into contact with the flange portion 28a of the end plate housing 28 integrated with the free end bearing 29 of the rotating shaft 36 to be integrally and airtightly fixed.
かかる構成によれば前記固定子鉄心 4 3は、 その両端側を前記した ように圧縮機 A側に気密的に固定された外枠ハウジング 4 8 と前記回転 軸 3 6の自由端側に位置する鏡板状ハウジング 2 8に一体的に固着され ている為にこれらの部材との協動作用によリ耐圧容器と して機能し得、 従って、 冷媒ガスの圧縮が 2 0 K g Z m 2にも及ぶ冷凍機に対しても、 十分な耐圧性を確保することが出来る。 According to such a configuration, the stator core 43 is located on the free end side of the outer frame housing 48 and the rotary shaft 36 airtightly fixed to the compressor A side at both ends as described above. end plate-shaped housing 2 8 acts as a by Li pressure vessel to the cooperative operation between these members to be integrally fixed obtained, therefore, the compressed refrigerant gas 2 0 K g Z m 2 Sufficient pressure resistance can be ensured even for refrigerators that extend over time.
一方前記固定子鉄心 4 3 の開溝 4 4 に収納されている巻線 4 5は、 回 転子 4 1 と同一空間内に位置している為に、 不完全シール状態にある圧 縮機 Aのロータ軸 3 7 aと軸受 3 4部間より電動機 B 内に腐触性のア ン モニァ冷媒を含む作動流体組成物が侵入するために、 前記回転子 4 1 と ともに卷線 4 も併せて耐蝕絶縁処现を施す必耍があるが、 卷線の耐ァ ンモニァ絶縁処理は中々困難である„  On the other hand, since the winding 45 housed in the groove 44 of the stator core 43 is located in the same space as the rotor 41, the compressor A in an imperfectly sealed state is provided. Since the working fluid composition containing the corrosive ammonia refrigerant intrudes into the electric motor B from between the rotor shaft 37a and the bearing 34, the winding 4 is provided together with the rotor 41. Corrosion-resistant insulation must be applied, but it is difficult to perform ammonium insulation treatment on windings.
そこで図 5 ( B ) に示すよう に、 前記開溝 4 4 内にバイ ン ド樹^ 4 9 を充填するとともに、 その内周側に前記絶縁性樹脂薄膜 4 7 ' を被 ¾し て気密的にシールさせる力、、 又図 5 ( A ) に示すよう に、 前記開満 4 4 内にバイ ン ド樹脂を充填すると ともに、 前記開溝 4 の開口端にその両 側部をテーパ状に形成したシール板 2 7 を嵌着させる ¥によ り 容器内の 冷媒ガス圧によ り前記シール板 2 7 の背面側よ リ背圧が印加さ れて前記 Λ 4 口端を嵌着し気密的にシールする事が可能である。 この結果 固定子卷線 4 4 の^溝 1 2 内での固定と と もに、 その m口面が閉鎖さ れ て強靱な機械的強度と耐触性並びに気密性をも同時に保持せ しめるこ と ができる Therefore, as shown in FIG. 5 (B), the open groove 44 is filled with a binder tree ^ 49, and the insulating resin thin film 47 'is covered on the inner peripheral side thereof to be airtight. As shown in FIG. 5 (A), the binder resin is filled into the opening 44, and both ends are placed at the open end of the opening 4 as shown in FIG. A sealing plate 27 with a tapered side is fitted. A back pressure is applied from the back side of the sealing plate 27 by the refrigerant gas pressure in the container. The ends can be fitted and hermetically sealed. As a result, while the stator winding 4 4 is fixed in the ^ groove 12, the m-face is closed, and at the same time, strong mechanical strength, touch resistance and airtightness can be maintained. And can
「 槳上の利用性」  “Usability on 槳”
本発明の潤滑汕ぉよび冷凍機用作動流体組成物は、 アンモニアと低温 でも優れた溶解安定性を有し、 またアンモニア冷媒棼囲気 '卜'で俊れた潤 滑性を発揮し、 しかも圧縮機運 C転中に固形物の生成もなレ、, 従って、 従 来のアンモニア冷媒の冷凍装置で不可欠であつ た汕回収装置を省略する こ とができ、 そのため小型冷凍機と しても適用するこ とが可能になる。 本第 2発明の冷凍装置は前記潤滑油と アンモニアと の作動流体組成物 が冷凍若し く はヒー トポンプサイ クルを循環する よう に構成し、 これに よ り装置構成の簡単化と伝熱効率の向上等、 実用的に極めて有利な冷凉 装置を提供し得る。  INDUSTRIAL APPLICABILITY The lubricating working fluid composition for a lubricating shroud and a refrigerator according to the present invention has excellent dissolution stability even at a low temperature with ammonia, and exhibits excellent lubricating properties in an ammonia refrigerant atmosphere, and is compressed. No solid matter is generated during the C operation, and therefore, the Shane recovery equipment, which was indispensable in the conventional ammonia refrigerant refrigeration system, can be omitted, and therefore, it can also be applied as a small refrigerator. This will be possible. The refrigeration apparatus of the second invention is configured such that the working fluid composition of the lubricating oil and ammonia circulates through a refrigeration or heat pump cycle, thereby simplifying the apparatus configuration and improving heat transfer efficiency. Thus, it is possible to provide a cooling device that is extremely advantageous in practice.
特に本発明の好ま しい実施例においてはアンモニアの持つ潤滑油に対 する非溶性と ともに腐触性の解消し、 これによ り アンモニァ密封型圧縮 機を容易に提供でき、 その実用的佃 i値は極めて大であ o 。  In particular, in a preferred embodiment of the present invention, ammonia is insoluble in the lubricating oil and the erosion is eliminated, whereby an ammonia sealed compressor can be easily provided. Is extremely large.
表 3 ア ンモニアと冷凍機 ¾の溶解特性 特性 相溶性 C 流 ίώ性 Table 3 Dissolution characteristics of ammonia and refrigerator Characteristics Compatibility C Flowability
(二相分;;!温度) - 3 0 j - δ 0 ナフ テン系 物 ?Ί!] 室温分 g 1 0 3 1 3 〇 0以上 奥施例 6 - 0 ! 以下 ! (Two-phase;;! Temperature)-30 j-δ 0 naphthenic material? 物!] Room temperature g 1 0 3 1 3 〇 0 or more Oku Example 6-0! Less than !
1  1
( ;;!;  (;;!;
: で i ( δ 1 ) に Ν ( i ! ;;;::; 7:フ ス 二 一 フ' : Then i (δ1) to Ν (i! ;;; ::; 7:
2〜? c / m i nで冷却し , 二 i分 g ; 度を m 2 ~? cooled in c / mi n, two i min g; the degree m
:<;'l ί!: : () °Cで 1 分 !!ij振と う 、 (TC 'おで 1 ϋ'ί ,'.'!] ': 'Ά ( Sk :(i ) : <;'l ί !:: () ° C for 1 minute !! ij shake, (TC' Ode 1 で 'ί,'. '!]': 'Ά (Sk: (i)
m;-i ¾ で 0分!; ·'; ( Jfi ϋϊ )  m; -i 0 for 0 minutes !; · '; (Jfi ϋϊ)
; ¾ 後、 ';; !iが 5 0 m ;! ! ¾ ¾するのにかかる !;!!を After ¾, ';;! I is 50 m;!! ¾ に
1. 1.
Figure imgf000023_0001
Figure imgf000023_0001
Figure imgf000024_0001
Figure imgf000024_0001
才キシブチレ Talented Kisibuchire
1:1 ( !1 m 1: 1 (! 1 m

Claims

請求 の 範 囲 The scope of the claims
I . アンモニアと一般式( I )で表される 1種又は 2種以上のポリエーテ ル化合物との混合物よりなる、 アンモニアを冷媒と して使用する冷媒圧 縮機の作動流体組成物。  I. A working fluid composition for a refrigerant compressor using ammonia as a refrigerant, comprising a mixture of ammonia and one or more polyether compounds represented by the general formula (I).
Rt -[-0-(P0)m-(E0)n-R2 ]x ( I ) Rt-[-0- (P0) m- (E0) n -R 2 ] x (I)
(一般式 ( I ) において、 Rt は炭素数 1 一 6の炭化水素基、 R2 は炭 素数 1 一 6個のアルキル基であり、 P 0はォキシプロピレン基、 E 0は ォキシエチレン基、 Xは 1 一 4の整数、 mは、 正の整数であり、 nは 0 ま たは正の整数である。 ) (In the general formula (I), R t is a hydrocarbon group having 16 carbon atoms, R 2 is an alkyl group having 16 carbon atoms, P 0 is an oxypropylene group, E 0 is an oxyethylene group, X is an integer of 1 to 4, m is a positive integer, and n is 0 or a positive integer.)
2. 前記一般式( I )において、 と R2 の炭素数の合計が 1 0以下であ る請求項 1記載の作動流体組成物。 2. The working fluid composition according to claim 1, wherein in the general formula (I), the total number of carbon atoms of and R 2 is 10 or less.
3. 前記一般式( I )の と R2 力 それぞれ独立して、 炭素数 1 — 4個 のアルキル基である請求項 2記載の作動流体組成物。 3. The working fluid composition according to claim 2, wherein and R 2 in the general formula (I) are each independently an alkyl group having 1 to 4 carbon atoms.
4. 前記一般式( I )の と R2 力 それぞれ独立して、 メチル基またェ チル基であり、 しかも Xが 1である請求項 3記載の作動流体組成物。 4. The working fluid composition according to claim 3, wherein and R 2 in the general formula (I) are each independently a methyl group or an ethyl group, and X is 1.
5. 前記一般式( I )の と R2 力 それぞれ独立して、 炭素数 1 一 4の アルキル基であり、 しかも Xが 2— 4である請求項 1 記載の作動流体組 成物。 5. The working fluid composition according to claim 1, wherein and R 2 in the general formula (I) are each independently an alkyl group having 14 to 14 carbon atoms, and X is 2 to 4.
6. 前記一般式( I )において、 m Z (m + n ) の比が 0 · 5 — 1 . 0で ある請求項 1記載の作動流体組成物。  6. The working fluid composition according to claim 1, wherein in the general formula (I), a ratio of mZ (m + n) is 0.5 / 5-1.0.
7. 前記一般式( I )で表わされるポリエーテル化合物を 2重量%以上含 有する請求項 1記載の作動流体組成物。  7. The working fluid composition according to claim 1, comprising 2% by weight or more of the polyether compound represented by the general formula (I).
8、 ポリオキシアルキルエーテル化合物の平均分子量力 3 0 0〜 1 8 ◦ 0である請求項 1記載の作動流体組成物。  8. The working fluid composition according to claim 1, wherein the average molecular weight of the polyoxyalkyl ether compound is from 300 to 180 °.
9、 蒸発温度が一 4 0 °C以下の極低温冷凍装置に使用する場合に、 前 記一般式( I )の Rtにメチル基を用いた請求項 1記載の作動流体組成物。 9, when the evaporation temperature is used for the following cryogenic refrigeration apparatus-4 0 ° C, before Symbol working fluid composition of claim 1 wherein using a methyl group at R t of general formula (I).
1 0、 前記作動流体組成物中に平均粒径が 1 5 0 A以下、 好ま しく は平 均粒径が略 5 0 A以下の超微粒ダイャモン ドを添加した請求項 1記載の 作動流体組成物。  10.The working fluid composition according to claim 1, wherein an ultrafine diamond having an average particle size of 150 A or less, preferably an average particle size of approximately 50 A or less is added to the working fluid composition. .
I I 、 アンモニアと一般式( I )で表される 1種又は 2種以上のポリエー テル化合物とを冷媒圧縮機、 凝縮器、 膨張弁及び蒸発器を含む循環サイ クルを循環させながら冷凍若し く はヒー 卜ポンプサイ クルを構成するこ とを特徴とするァンモニァ冷凍装置。  II. Freeze the ammonia while circulating it with one or more polyether compounds represented by the general formula (I) through a circulation cycle including a refrigerant compressor, a condenser, an expansion valve and an evaporator. Is an ammonia refrigeration system comprising a heat pump cycle.
-[-0-(P0)m-(E0)n-R2 ]x ( I ) (一般式 U ) において、 は炭素数 〗 — 6 の炭化水素-;!、 R は炭 素数 1 — 6個のアルキル基であ り 、 P〇はォキシプロ ピ レン基、 E 〇は ォキシエチレン基、 X は 1 — 4 の整数、 πιは、 IEの整数であり 、 nは 0 ま たは正の整数である。 ) -[-0- (P0) m- (E0) n -R 2 ] x (I) In (general formula U), is a hydrocarbon having〗 —6 carbon atoms ;;!, R is an alkyl group having 1 to 6 carbon atoms, P〇 is an oxypropylene group, E〇 is an oxyethylene group, X is an integer of 1 to 4, πι is an integer of IE, and n is 0 or a positive integer. )
1 2 、 アンモニア冷媒と、 該ア ンモニア冷媒に溶解し得且つ冷媒の蒸発 温度でも 2層分離する事のない潤滑油と を冷凍装置内に充填させる と と もに、 前記両者の充填比を アンモニア冷媒に対し潤滑油を 2重量%以上 充填させて冷凍若し く はヒー ト ポンプサイ クルを構成するこ と を特徴と するア ンモニア冷凍装置  12. An ammonia refrigerant and lubricating oil that can be dissolved in the ammonia refrigerant and do not separate into two layers even at the evaporation temperature of the refrigerant are filled in the refrigeration apparatus, and the filling ratio of the two is adjusted to ammonia. Ammonia refrigeration system characterized in that a refrigerant or a heat pump cycle is configured by filling lubricating oil at 2% by weight or more with refrigerant.
1 3 、 前記圧縮機で圧縮後の前記ア ンモニア冷媒と潤滑油が溶解した作 動流体組成物中の潤滑油の一部を圧縮機側に戻入可能に構成 した請求項 1 2記載のァ ンモニァ冷凍装置  13. The ammonia according to claim 12, wherein a part of the lubricating oil in the working fluid composition in which the ammonia refrigerant and the lubricating oil are dissolved after being compressed by the compressor can be returned to the compressor side. Refrigeration equipment
1 4 、 前記圧縮機よ り凝縮器及び膨張弁を介して蒸発器に導かれるア ン 乇ニァ冷媒と潤滑汕が溶解した作動流体組成物中に含まれる潤滑油を ァ ン乇ニァ冷媒に対し、 Ί 重量%以下に設定した詰求项 1 2記載のア ンモ ニァ冷凍装置  14. The compressor and the lubricating oil contained in the working fluid composition in which the lubricating water is dissolved are introduced into the evaporator via the condenser and the expansion valve by the compressor.詰 詰 詰 詰 詰 装置 詰 ア ア ア 詰 ア ア ア ア ア ア
1 5 、 前記凝縮器で凝縮後のア ンモニア冷媒と潤滑油が溶解した作動流 体組成物を冷媒と潤滑油を分離させるこ と なく 膨張弁又はノ及び中間冷 却器に導入可能に構成した請求項 1 1 記載のァン乇ニァ冷凍装置  15.The working fluid composition in which the ammonia refrigerant and the lubricating oil condensed in the condenser are dissolved can be introduced into the expansion valve or the nozzle and the intermediate cooler without separating the refrigerant and the lubricating oil. Claim 11. The fan refrigerator according to claim 11.
1 6 、 前記膨張弁若し く は中間冷却器通過後のア ンモ ニア冷媒と潤滑油 が溶解した作動流体組成物を、 蒸発器上端側に設けた導入口 よ り底側に 設けた排出口側に向け ト ッ プフ ィ ー ドで導入可能に構成した請求項 1 2 記載のアンモニア冷凍装置  16.The working fluid composition, in which the ammonia refrigerant and the lubricating oil have passed after passing through the expansion valve or the intercooler, is used to discharge the working fluid composition from the inlet provided at the top of the evaporator to the outlet provided at the bottom of the evaporator. 3. The ammonia refrigeration apparatus according to claim 1, wherein the ammonia refrigeration apparatus is configured to be capable of being introduced with a top feed toward the side.
1 7 、 前記蒸発器よ り圧縮機間を連絡する導入管路途中に、 蒸発器側で 分離した潤滑油を - 時貯溜する油溜ま り と、 該油溜ま り 中の前記潤滑油 を適宜前記管路中で圧縮機に導入される作動流体組成物と再混合させる ϋ混合部と を設けた請求頃 1 2 記載のア ンモニア冷凍装置  17) An oil sump for storing the lubricating oil separated on the evaporator side at an intermediate point of the introduction pipe connecting the compressor from the evaporator, and the lubricating oil in the oil sump as appropriate. The ammonia refrigeration apparatus according to claim 1, further comprising a mixing section for remixing with the working fluid composition introduced into the compressor in the pipeline.
1 8 . 少な く と も平均粒径が 1 δ 0 Α以下、 好ま し く は平均粒径が略 5 0 A以下の超微粒ダイ ヤモン ドを前記潤滑油中に添加 した前記作動流体 組成物を用いた諧求项 1 2記戰のア ンモニア冷涑装 [ ; 18. The working fluid composition obtained by adding at least an ultrafine diamond having an average particle diameter of 1 δ 0 Α or less, preferably an average particle diameter of about 50 A or less, to the lubricating oil. The ambition used was the Ammonia refrigeration of the war [2 ]
1 9 、 前記前記蒸発器よ り導出 された作動流体組成物を、 凝縮器で凝 後の作動流体組成物の保有熱と熱交換させた後、 圧縮機側に導入可能に 構成した請求項 1 2記載のアンモニア冷涑装置  19.The method according to claim 1, wherein the working fluid composition derived from the evaporator is heat-exchanged with the retained heat of the working fluid composition after condensation in a condenser, and then introduced into the compressor. Ammonia cooling device described in 2
2 0 、 アンモニア冷媒圧縮機に電動機を直結してなる密封型ア ンモニマ 圧縮機を用いた諸求項 1 2記載のア ンモニア冷凍装廣において、 前記電動機側に回転子の周囲に位置する固定子鉄心内周面側に、 気密 性シール部を介して前記回転子と所定空隙介して囲繞すると共に、 前記 回転子内空間と圧縮機間に前記組成物が導通可能な導通部を設た事を特 徴とするアンモニア冷凍装置。 20.Ammonia refrigeration equipment according to claim 12, wherein a sealed-type ammonia compressor having an electric motor directly connected to the ammonia refrigerant compressor is used. On the inner peripheral side of the stator core located around the rotor on the motor side, the rotor is surrounded by a predetermined gap with the rotor via a hermetic seal, and the space between the rotor inner space and the compressor is provided. An ammonia refrigeration apparatus characterized by having a conducting portion through which a composition can pass.
2 1 、 前記気密性シール部が、 回転子の周囲に囲繞するキャ ンである請 求項 2 0記載のアンモニア冷凍装置。  21. The ammonia refrigeration apparatus according to claim 20, wherein said airtight seal portion is a can surrounding a rotor.
2 2、 前記電動機側に回転子の周囲に位置する固定子鉄心を耐圧密封構 造体容器と して構成すると共に、 該固定鉄心の内周側に絶縁性薄膜を介 在させた請求項 2 0記載のアンモニア冷凍装置。  22.The stator core located around the rotor on the motor side as a pressure-resistant sealed structure container, and an insulating thin film is interposed on the inner peripheral side of the stator core. The ammonia refrigeration apparatus according to 0.
2 3、 前記電動機側に回転子の周囲に位置する固定子鉄心を耐圧密封構 造体容器と して構成すると共に、 該固定鉄心の卷線挿入後の開溝の回転  23. A stator core located around the rotor on the motor side is configured as a pressure-resistant sealed structure container, and rotation of the groove after insertion of the winding of the stator core is performed.
2  Two
子と対而する前 ffi側にシール部材を配設し、 該シール部材を介して前記 開溝内を気密シール可能に構成した請求項 2 0記載のアンモニア冷凍装 ώ。 21. The ammonia refrigeration apparatus according to claim 20, wherein a seal member is disposed on the ffi side before the child, and the inside of the groove can be hermetically sealed via the seal member.
2 4、 一般式( I )で表されるエーテル化合物の 1 種も し く は 2種以上よ りなる潤滑油でアンモニア冷媒圧縮機を潤滑するこ と を特徴とする冷凍 圧縮機の潤滑方法。 24. A method of lubricating a refrigeration compressor, comprising lubricating an ammonia refrigerant compressor with one or more lubricating oils of the ether compound represented by the general formula (I).
-! -C-0-(P0)m-(E0)n-R2 ]x ( I ) -! -C-0- (P0) m- (E0) n -R 2 ] x (I)
(一般式 ( I ) において、 Rt は炭素数 1 — 6 の炭化水素基、 R2 は炭 素数 1 一 6個のアルキル基であり、 P〇はォキシプロ ピレン基、 E 0は ォキシエチレン基、 Xは 1 — 4の整数、 mは、 正の整数であり、 nは◦ ま たは正の整数である。 ) (In the general formula (I), R t is a hydrocarbon group having 1 to 6 carbon atoms, R 2 is an alkyl group having 16 carbon atoms, P〇 is an oxypropylene group, E 0 is an oxyethylene group, X Is an integer from 1 to 4, m is a positive integer, and n is ◦ or a positive integer.
2 5 . 前記一般式( I )において、 と R の炭素数の合計が 1 0以下で ある請求項 2 4記載の冷凍圧縮機の潤滑方法。 25. The lubricating method for a refrigeration compressor according to claim 24 , wherein in the general formula (I), the total number of carbon atoms of and R is 10 or less.
2 6. 前記一般式( I )の 1^ と R2 力 それぞれ独立して、 炭素数 1 ― 4 個のアルキル ¾である請求 ¾ 2 4記載のアンモニア冷凍圧縮機の潤滑方 法。 2 6. The 1 ^ and R 2 force independently of the general formula (I), having 1 carbon - four lubricating how ammonia refrigeration compressor according ¾ 2 4, wherein the alkyl ¾ of.
2 7. 前記一般式( I )の R t と R2 力 それぞれ独立して、 メ チル基、 又 はェチル基であり、 しかも Xが 1 である請求項 2 4記載の冷凍圧縮機の 潤滑方法。 27. The lubricating method for a refrigeration compressor according to claim 24, wherein R t and R 2 in the general formula (I) are each independently a methyl group or an ethyl group, and X is 1. .
2 8 . 前記一般式( I )の と R2 せ、 それぞれ独立して、 炭素数 1 — 4 のアルキル基であり、 しかも Xが 2 — 4である請求项 2 4記載の冷凍圧 縮機の潤滑方法。 . 2 8 Formula (I) of the R 2 were each independently having 1 carbon - an alkyl group of 4, moreover X 2 - 4 a is claimed paragraph 2 4 according refrigerating compressors Lubrication method.
PCT/JP1992/001551 1992-11-27 1992-11-27 Ammonia refrigerating unit, working fluid composition to be used in said unit, and lubrication of ammonia compressor WO1994012594A1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
EP92924018A EP0626443B1 (en) 1992-11-27 1992-11-27 Ammonia refrigerating unit, working fluid composition to be used in said unit, and lubrication of ammonia compressor
DE69228322T DE69228322T2 (en) 1992-11-27 1992-11-27 AMMONIA COOLING UNIT, WORKING FLUID COMPOSITION FOR USE IN THE AGGREGATE AND LUBRICATION OF AN AMMONIA COMPRESSOR
US08/675,513 US5688433A (en) 1992-11-27 1992-11-27 Ammonia refrigerating machine, working fluid composition and method
PCT/JP1992/001551 WO1994012594A1 (en) 1992-11-27 1992-11-27 Ammonia refrigerating unit, working fluid composition to be used in said unit, and lubrication of ammonia compressor
JP6502675A JP2977046B2 (en) 1992-11-27 1992-11-27 Ammonia refrigeration apparatus, working fluid composition used for the refrigeration apparatus, and method for lubricating ammonia compressor
KR1019970702556A KR0145952B1 (en) 1992-11-27 1992-11-27 Ammonia refrigeration apparatus
AU29563/92A AU666505B2 (en) 1992-11-27 1992-11-27 Ammonia refrigerating machine, working fluid composition for use in refrigerating machine, and method for lubricating ammonia refrigerating machine.
CA002111196A CA2111196C (en) 1992-11-27 1992-11-27 Ammonia refrigerating machine, working fluid composition for use in refrigerating machine, and method for lubricating ammonia refrigerating machine
KR1019940700127A KR0128719B1 (en) 1992-11-27 1994-01-15 Working fluid elements and ammonia refrigerator apparatus lubricating method for ammonia refrigerator apparatus
US08/469,707 US5651257A (en) 1992-11-27 1995-06-06 Working fluid composition and method for lubricating ammonia refrigerating machine
AU40850/96A AU681318B2 (en) 1992-11-27 1996-01-05 Ammonia refrigerating machine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
PCT/JP1992/001551 WO1994012594A1 (en) 1992-11-27 1992-11-27 Ammonia refrigerating unit, working fluid composition to be used in said unit, and lubrication of ammonia compressor
CA002111196A CA2111196C (en) 1992-11-27 1992-11-27 Ammonia refrigerating machine, working fluid composition for use in refrigerating machine, and method for lubricating ammonia refrigerating machine
US08/469,707 US5651257A (en) 1992-11-27 1995-06-06 Working fluid composition and method for lubricating ammonia refrigerating machine
AU40850/96A AU681318B2 (en) 1992-11-27 1996-01-05 Ammonia refrigerating machine

Publications (1)

Publication Number Publication Date
WO1994012594A1 true WO1994012594A1 (en) 1994-06-09

Family

ID=27423169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/001551 WO1994012594A1 (en) 1992-11-27 1992-11-27 Ammonia refrigerating unit, working fluid composition to be used in said unit, and lubrication of ammonia compressor

Country Status (1)

Country Link
WO (1) WO1994012594A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000005329A1 (en) * 1998-07-21 2000-02-03 Asahi Denka Kogyo Kabushiki Kaisha Lubricant for refrigerating machine with the use of ammonia refrigerant
WO2000063326A1 (en) * 1999-04-15 2000-10-26 Japan Energy Corporation Lubricant for refrigerating machine employing ammonia refrigerant
WO2001051594A1 (en) * 2000-01-12 2001-07-19 Japan Energy Corporation Ammonia refrigerating apparatus
WO2001053440A1 (en) * 2000-01-21 2001-07-26 Japan Energy Corporation Lubricant for refrigerating machine employing ammonia refrigerant
WO2022244665A1 (en) * 2021-05-17 2022-11-24 株式会社ダイセル Composition for freezer, and composition kit for freezer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58106370A (en) * 1981-12-18 1983-06-24 スタ−ル・レフリエルシヨ−ン・ア−ベ− Method of recirculating oil in refrigeration plant
JPS60179498A (en) * 1984-02-24 1985-09-13 Nisso Yuka Kogyo Kk Operating fluid composition
JPH02276894A (en) * 1989-01-10 1990-11-13 Dow Chem Co:The Lubricant for cooling compressor
JPH03109492A (en) * 1989-09-25 1991-05-09 Kiyouseki Seihin Gijutsu Kenkyusho:Kk Lubricating oil for fluorocarbon compressor
JPH04369355A (en) * 1991-06-17 1992-12-22 Mayekawa Mfg Co Ltd Ammonia refrigerator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58106370A (en) * 1981-12-18 1983-06-24 スタ−ル・レフリエルシヨ−ン・ア−ベ− Method of recirculating oil in refrigeration plant
JPS60179498A (en) * 1984-02-24 1985-09-13 Nisso Yuka Kogyo Kk Operating fluid composition
JPH02276894A (en) * 1989-01-10 1990-11-13 Dow Chem Co:The Lubricant for cooling compressor
JPH03109492A (en) * 1989-09-25 1991-05-09 Kiyouseki Seihin Gijutsu Kenkyusho:Kk Lubricating oil for fluorocarbon compressor
JPH04369355A (en) * 1991-06-17 1992-12-22 Mayekawa Mfg Co Ltd Ammonia refrigerator

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HIDEO UCHIDA: "Refrigerator Engineering Handbook", 1st edit., January 30, 1965 (30. 01. 65), Asakura Shoten K.K. (Tokyo), p. 148-156, 215-220. *
See also references of EP0626443A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000005329A1 (en) * 1998-07-21 2000-02-03 Asahi Denka Kogyo Kabushiki Kaisha Lubricant for refrigerating machine with the use of ammonia refrigerant
WO2000063326A1 (en) * 1999-04-15 2000-10-26 Japan Energy Corporation Lubricant for refrigerating machine employing ammonia refrigerant
US6548457B1 (en) 1999-04-15 2003-04-15 Japan Energy Corporation Lubricant for refrigerating machine employing ammonia refrigerant
KR100698924B1 (en) * 1999-04-15 2007-03-23 쟈판에나지 덴시자이료 가부시키가이샤 Lubricant for refrigeration system using ammonia refrigerant
WO2001051594A1 (en) * 2000-01-12 2001-07-19 Japan Energy Corporation Ammonia refrigerating apparatus
KR100752087B1 (en) 2000-01-12 2007-08-28 가부시키가이샤 저펜에너지 Ammonia refrigerating apparatus
WO2001053440A1 (en) * 2000-01-21 2001-07-26 Japan Energy Corporation Lubricant for refrigerating machine employing ammonia refrigerant
KR100752088B1 (en) 2000-01-21 2007-08-27 가부시키가이샤 저펜에너지 Lubricant for refrigerating machine employing ammonia refrigerant
WO2022244665A1 (en) * 2021-05-17 2022-11-24 株式会社ダイセル Composition for freezer, and composition kit for freezer

Similar Documents

Publication Publication Date Title
JP2977046B2 (en) Ammonia refrigeration apparatus, working fluid composition used for the refrigeration apparatus, and method for lubricating ammonia compressor
US5651257A (en) Working fluid composition and method for lubricating ammonia refrigerating machine
US6189322B1 (en) Refrigerant-circulating system, and refrigerant compressor and refrigeration cycle employing the refrigerant compressor
EP0343662B1 (en) Rotary displacement compression heat transfer systems incorporating highly fluorinated refrigerant-synthetic oil lubricant compositions
US6427479B1 (en) Refrigerating device utilizing carbon dioxide as a refrigerant
US5445753A (en) Lubricant for refrigeration compressors
CN105907376B (en) compressor for refrigeration and air-conditioning and refrigeration and air-conditioning device
CN114659288B (en) Refrigeration cycle device
US7628933B2 (en) Lubricating oil compositions using polyalkylene glycol derivatives
EP3306098B1 (en) Refrigeration cycle system
JPH0284491A (en) Lubricating oil composition for freezing refrigerator
CN101883957B (en) Refrigerant compressor and refrigerating cycle
WO1994012594A1 (en) Ammonia refrigerating unit, working fluid composition to be used in said unit, and lubrication of ammonia compressor
CN105473953A (en) Compressor and refrigeration cycle device
JP3241694B2 (en) Ammonia refrigeration equipment
CA2314130C (en) Ammonia refrigerating machine, working fluid composition for use in refrigerating machine, and method for lubricating ammonia refrigerating machine
JP3600108B2 (en) Refrigeration equipment
WO2016113993A1 (en) Refrigeration device and sealed electric compressor
JPH08231972A (en) Refrigerating unit
JPS60123577A (en) Refrigerating machine oil composition
JP2962675B2 (en) Refrigeration equipment
JPH1129766A (en) Refrigerator and coolant compressor
Sekiya et al. Alkylbenzenes for Split Air-Conditioners with R-410A Part 1: Reliability Evaluation of Compressors
JP2015140994A (en) Air conditioner, and refrigerator oil
JP2023103715A (en) Heat source machine, operating method for the same and refrigeration machine oil for heat source machine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2111196

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1992924018

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 1994 175391

Country of ref document: US

Date of ref document: 19940107

Kind code of ref document: A

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1992924018

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 1996 675513

Country of ref document: US

Date of ref document: 19960703

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019970702556

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019970702556

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1992924018

Country of ref document: EP