WO1994006165A1 - Gel electrolyte - Google Patents

Gel electrolyte Download PDF

Info

Publication number
WO1994006165A1
WO1994006165A1 PCT/JP1993/001272 JP9301272W WO9406165A1 WO 1994006165 A1 WO1994006165 A1 WO 1994006165A1 JP 9301272 W JP9301272 W JP 9301272W WO 9406165 A1 WO9406165 A1 WO 9406165A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
weight
gel electrolyte
parts
inorganic
Prior art date
Application number
PCT/JP1993/001272
Other languages
French (fr)
Japanese (ja)
Inventor
Takushi Yamamoto
Kohji Sekai
Morio Nakamura
Yoshio Nishi
Hitoshi Tanaka
Hitoshi Ozawa
Nobuhiro Maeda
Original Assignee
Sumitomo Seika Chemicals Co., Ltd.
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Seika Chemicals Co., Ltd., Sony Corporation filed Critical Sumitomo Seika Chemicals Co., Ltd.
Publication of WO1994006165A1 publication Critical patent/WO1994006165A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/22Immobilising of electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/181Cells with non-aqueous electrolyte with solid electrolyte with polymeric electrolytes

Definitions

  • the present invention relates to a gel electrolyte. More particularly, it relates to a gel electrolyte suitable as a material for batteries and electrochemical devices.
  • lithium batteries and electrochemical devices have been actively studied.
  • lithium batteries have characteristics such as high voltage, large electric capacity, flat discharge characteristics, good low temperature characteristics, and can be used in a wide temperature range, and are used in a wide range of applications.
  • These Lithium batteries usually L i C l 0 4 non-aqueous electrolyte an electrolyte dissolved in carbonate such as solutions are used.
  • Japanese Patent Application Laid-Open No. H11-126667 describes an example in which these non-aqueous electrolyte solutions are solidified and used. That is, a method is described in which a cross-linked polyethylene oxide obtained by reacting a polyethylene oxide with a moso or polyisocyanate compound is used by absorbing the non-aqueous electrolyte solution.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, when a composition obtained by adding an inorganic oxide to cross-linked polyalkylene oxide is used as a gel electrolyte base material, the ionic conductivity is dramatically increased. It has been found that an improved product having high gel strength and good processability can be obtained, and the present invention has been completed. Summary of the Invention
  • the present invention provides 100 parts by weight of a crosslinked polyalkylene oxide obtained by reacting a polyalkylene oxide having a weight average molecular weight of 1,000 to 1,000,000 with an isocyanate compound and 0.1 part by weight of an inorganic oxide.
  • An object of the present invention is to provide a gel electrolyte obtained by impregnating a composition comprising 20 parts by weight with a non-aqueous electrolyte solution comprising an inorganic electrolyte and a non-aqueous organic solvent.
  • Examples of the polyalkylene oxide used in the present invention include polyalkylene oxides having a weight-average molecular weight of 100,000 to 100,000, and examples thereof include polyethylene oxide and polypropylene oxide. And ethylene oxide propylene oxide copolymer and polybutylene oxide. Of these, polyethylene oxide, polypropylene oxide, ethylene oxide and ethylene propylene oxide copolymers having a weight average molecular weight of 2000 to 100,000 are preferably used. If the weight-average molecular weight is less than 1000, the processing temperature becomes high when forming the resulting crosslinked polyalkylene oxide into a film, which makes film formation difficult, which is not preferable. On the other hand, if the weight average molecular weight exceeds 100,000, the cross-linking density of the obtained cross-linked polyalkylene oxide decreases, and the gel strength decreases, which is not preferable.
  • the above-mentioned isocyanate compound used for crosslinking the polyalkylene oxide is an organic compound containing one or more isocyanate groups (one NCO) in the same molecule, for example, n-propyl isocyanate.
  • Urethane iso Xia sulfonate compound obtained by reacting an over bets include a port Li iso Xia sulfonates ⁇ duct or the like.
  • a port Li iso Xia sulfonates ⁇ duct or the like Preferably, 4,4-diphenylmethane diisocyanate (MDI) hexamethylene diisocyanate and 2,4-tolylene diisocyanate (TDI :) are used.
  • MDI 4,4-diphenylmethane diisocyanate
  • TDI 2,4-tolylene diisocyanate
  • the amount of the isocyanate compound used depends on the type of the isocyanate compound and the conditions such as the reaction. % Range
  • the amount is less than 1% by weight, the crosslinked density of the obtained crosslinked polyalkylene oxide becomes low, and the gel strength becomes low.
  • the content exceeds 80% by weight, the processing temperature becomes high when the obtained crosslinked polyalkylene oxide is formed into a film, which makes film formation difficult.
  • a method of reacting the polyalkylene oxide with the isocyanate compound a method of reacting in a solution using an appropriate solvent is generally used.However, a method of reacting in a dispersed state, a method of forming a powder or a solid, and the like. After the two are uniformly mixed, the mixture can be heated to the required temperature for the reaction.
  • the reaction temperature is usually 50 to 150 ° C.
  • the reaction may be further promoted by adding a small amount of triethylamine, triethanolamine, dibutyltin laurate, dibutyltin diacetate, triethylenediamine, or the like to the reaction system.
  • Examples of the inorganic oxide that is a feature of the present invention include silica, titanium oxide, zinc oxide, magnesium oxide, and aluminum oxide. From the viewpoint of uniform dispersibility, the particle size of the inorganic oxide is usually 100 or less, preferably 80 im or less.
  • silica for example, powdered amorphous silica mainly composed of silicon dioxide, surface-hydrated amorphous silica whose surface is hydrophobized by covering with a methyl group, octylsilyl group or trimethylsilyl group, etc. can be used. .
  • titanium oxide examples include fine particle titanium oxide containing any one of rutile-type titanium oxide and anatase-type titanium oxide as a main component.
  • silica titanium oxide, zinc oxide, magnesium oxide and aluminum oxide are preferred.
  • the inorganic oxide may be added by any method as long as it can be uniformly mixed, such as a method of mixing with stirring during the production of the cross-linked polyalkylene oxide, or a method of mixing the powder with the cross-linked polyalkylene oxide and then melt-mixing. However, the deviation method may be used.
  • the amount of these inorganic oxides is 0.1 to 20 parts by weight, preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the crosslinked polyalkylene oxide. If the amount is less than 0.1 part by weight, a sufficient effect of improving the ionic conductivity cannot be obtained, and the gel strength when a gel electrolyte is used cannot be improved.
  • the amount exceeds 20 parts by weight, the fluidity of the mixture of the crosslinked polyalkylene oxide and the inorganic oxide at the time of melting is deteriorated, and the molding of the film becomes difficult.
  • the non-aqueous electrolyte solution in the present invention is a solution obtained by dissolving an electrolyte in a non-aqueous organic solvent.
  • L'iC10 4 LiBF 4, LiAsF 6, LiCF 3 S0 3, LiPF 6, Lil, LiBr, LiSCN, Na I, Li 2 B 10 Cl 10, LiCF 3 C0 2, NaBr, NaSCN, KSCN, MgCl 2 , Mg (C10 4 ) 2 , (CH 3 ) 4 NBF 4 , (CH 3 ) 4 NBr, (C 2 H 5 ) 4 NI, (C 3 H 7 ) 4 N Br, (n-C 4 H 9) 4 NI, mention may be made of (n-CsH NI like. preferably, LiCl 0 4, LiBF 4 is used.
  • Non-aqueous organic solvents include propylene carbonate, y-butyrolactone, ethylene carbonate, butylene carbonate, tetrahydrofuran, 2-tetrahydrofuran, 1,3-dioxolan, 4,4-dimethyl-1,3-dioxolan, sulfolane, and 3-methylsulfolane Tert-butyl ether, iso-butyl ether, 1,2-dimethoxetane, 1,2-ethoxymethoxetane, methyldiglyme, methyltetraglyme, ethigrime, ethidiglyme.
  • propylene carbonate or arptyrolactone is used.
  • the gel electrolyte was added to a composition comprising 100 parts by weight of the crosslinked polyalkylene oxide and 0.1 to 20 parts by weight of an inorganic oxide. Beauty nonaqueous inorganic electrolyte concentration made of an organic solvent (about 10 -3 to 3 mol / non-aqueous electrolyte solution was 0.001 to 20 g impregnated to crosslinked polyalkylene O wherein de composition lg is prepared.
  • the resulting film was in the, by the thickness of this film is about 200 tm urchin, 1M LiC10 4 (anhydrous) or 1M LiBF 4 crush immersed for 24 hours (anhydrous) Z propylene alkylene carbonate solution or Apuchiroraku tons solution, After impregnation, the gel electrolyte film was punched to a diameter of 0.5 cm.
  • This film about 200 m thick, is sandwiched between platinum electrodes on both sides to form a cell, and an impedance gain phase analyzer (Schlumberger
  • R film is the electrical resistance of the film obtained from the measured AC impedance, s is the area (cm 2 ), and d is the thickness (cm))
  • the resulting film in the above, this by the thickness of the film is about 200 zm urchin, 1M LiC10 4 (anhydrous) or 1M LiBF 4 (anhydrous) was immersed for 24 hours in propylene alkylene carbonate solution or Apuchiroraku tons solution, impregnation And lcmx cut into 5cm size.
  • the gel strength was evaluated using a precision type leo robot (KA-300P manufactured by Kyowa Seie Co., Ltd.) by the stickiness test by the penetration test method under the following conditions.
  • a 1 liter 4-separable flask equipped with a reflux condenser and stirring blades was charged with 100 g of polyethylene oxide having an average molecular weight of 20000, 550 ml of toluene was added, and then 200 ml of toluene was distilled off to remove water. Distilled. Thereto, 12 g of 4,4, diphenylmethane diisocyanate (MDI) and 0.4 g of triethylamine were added, reacted at 80 ° C. for 3 hours, and then 175 ml of hexane was added. Upon cooling to room temperature, the polymer was precipitated. The slurry was filtered and dried under reduced pressure to obtain 100 g of white crosslinked polyethylene oxide.
  • MDI diphenylmethane diisocyanate
  • triethylamine triethylamine
  • a 1 liter 4-separable flask equipped with a reflux condenser and stirring blades was charged with 100 g of polyethylene oxide having an average molecular weight of 20000, 550 ml of toluene was added, and then 200 ml of toluene was distilled off to remove water. Distilled. To this, 24 g of hexamethylene diisocyanate and 0.8 g of triethylamine were added, and the mixture was reacted at 80 ° C for 3 hours.Then, 175 ml of hexane was added, and the mixture was cooled to room temperature to precipitate a polymer. I let it. The slurry was filtered and dried under reduced pressure to obtain 100 g of white crosslinked polyethylene oxide.
  • Silica Toxil P manufactured by Tokuyama Soda Co., Ltd.
  • silica was powder-mixed to 3 parts by weight with respect to 100 parts by weight of the crosslinked polyethylene oxide, and then melt-mixed at 120 ° C. to obtain a composition.
  • I got The resulting composition was Fi Lum by the method, 1M LiC10 4 (anhydrous) Bruno propylene carbonate solution accordance connexion Ion conductivity on the measurement method was immersed including to measure the gel strength.
  • the inorganic oxide type and composition of the added amount was obtained by the same procedure except that instead of those in Table 1, wherein the actual Example 1 into a film by the method, 1M LiC10 4 (anhydrous) / propylene carbonate solution And ionic conductivity and gel strength were measured according to the above-mentioned measuring methods.
  • Example 11 A 1-liter 4-separable flask equipped with a reflux condenser and stirring blades was charged with 100 g of polyethylene oxide having an average molecular weight of 8,500, and toluene (5 ⁇ 0 ml) was added.Then, 200 ml of toluene was distilled off to remove water. Was distilled off. There, 30 g of 4,4-diphenylmethane diisocyanate and 1.0 g of triethylamine were added and reacted at 80 ° C for 3 hours, 175 ml of hexane was added, and the mixture was cooled to room temperature. The polymer was precipitated. The slurry was filtered and dried under reduced pressure to obtain 100 g of a white polymer. .
  • Silica (Toxil P, manufactured by Tokuyama Soda Co., Ltd.) was powder-mixed to 3 parts by weight with respect to 100 parts by weight of the cross-linked polyethylene oxide, and then melt-mixed at 120 ° C. A composition was obtained. The resulting composition was Fi Lum by the method, 1M LiC10 4 (anhydrous) Supporting propylene carbonate solution in the measuring method was immersed containing connexion Ion conductivity was measured gel strength.
  • the powder was mixed with 100 parts by weight of this crosslinked polyethylene oxide to 1 part by weight of titanium oxide (manufactured by MT-500B Tika Co., Ltd.), and then melt-mixed at 120 ° C to obtain a composition. Obtained.
  • the resulting composition was by Ri film into the method, 1M LiC10 4 (anhydrous) Z propylene carbonate solvent The solution was impregnated, and the ionic conductivity and gel strength were measured according to the above-described measurement methods. Table 1 shows the results.
  • a 1 liter 4-separable flask equipped with a reflux condenser and stirring blades was charged with 100 g of polyethylene oxide having an average molecular weight of 100,000, 550 ml of toluene was added, and then 200 ml of toluene was distilled off to remove water. Distilled. Thereto, 6 g of 4.4-diphenylmethanediisocyanate and 0.2 g of triethylamine were added, and reacted at 80 ° C. for 3 hours, 175 ml of hexane was added, and the mixture was cooled to room temperature, and polymer was cooled. Was precipitated. The slurry was filtered and dried under reduced pressure to obtain 100 g of a white polymer.
  • Titanium oxide manufactured by MT-500 B Tika Co., Ltd. was powder-mixed to 100 parts by weight of this crosslinked polyethylene oxide so as to be 3 parts by weight, and then melt-mixed at 120 ° C to obtain a composition. I got something.
  • the resulting composition was by Ri film into the method, ion conductivity, the gel strength was measured according to the measuring method is impregnated with a 1M LiC10 4 (anhydrous) propylene carbonate solvent liquid. Table 1 shows the results.
  • a 1-liter 4-separable flask equipped with a reflux condenser and stirring blades was charged with 100 g of polyethylene oxide having an average molecular weight of 3000, 550 ml of toluene was added, and then 200 ml of toluene was distilled by distillation to remove water. Let out. There, 20 g of 2,4-tolylene diisocyanate and 0.6 g of triethylamine were added, and the mixture was reacted at 80 ° C. for 3 hours, 175 ml of hexane was added, and the mixture was cooled to room temperature. The polymer was precipitated. The slurry was filtered and dried under reduced pressure to obtain 100 g of a white polymer.
  • this cross-linked polyethylene oxide 100 parts by weight of this cross-linked polyethylene oxide is mixed with silica (Toxi Was mixed with powder so as to be 1 part by weight, and then melt-mixed at 120 ° C. to obtain a composition.
  • the resulting composition was filled beam by said method, ion conductivity, the gel strength was measured in accordance with 1M LiC10 4 the measuring method impregnated with (anhydride) Z propylene carbonate solution.
  • Titanium oxide (MT-500B, manufactured by Tika Co., Ltd.) was powder-mixed to 6 parts by weight with respect to 100 parts by weight of the crosslinked ethylene oxide Z propylene oxide copolymer, and then 120 ° C.
  • the composition was obtained by melting and mixing at C.
  • the resulting composition into a film by the method, ion conductivity, the gel strength was measured in accordance with 1 M LiC10 4 the measuring method impregnated with (anhydride) propylene carbonate solution.
  • a 1-liter 4-separable flask equipped with a reflux condenser and stirring blades was charged with 50 g of polyethylene oxide having an average molecular weight of 11000 and 50 g of polypropylene oxide having an average molecular weight of 4000, and 550 ml of toluene was added. After that, 200 ml of toluene was distilled off by distillation to remove water. Thereto, 18 g of 4,4-diphenylmethane diisocyanate and 0.6 g of triethylamine were added and reacted at 80 ° C for 3 hours. Then, 175 ml of hexane was added, and the mixture was cooled to room temperature. Upon cooling, the polymer precipitated. The slurry was filtered and dried under reduced pressure to obtain 10 Og of a white polymer.
  • Powder was mixed with 3 parts by weight of silica (FINE SEAL T-32 manufactured by Tokuyama Soda Co., Ltd.) to 100 parts by weight of the crosslinked polyethylene oxide / polypropylene oxide mixture mixture, and then heated to 120 ° C. To obtain a composition. Resulting into a film by a composition the method, 1M LiCl 0 4 (anhydrous) propylene carbonate solution Te ⁇ Tsu the measuring method impregnated with ion conductivity was measured gel strength.
  • silica FINE SEAL T-32 manufactured by Tokuyama Soda Co., Ltd.
  • This crosslinked polyethylene oxide was formed into a film by the above method, and 1M
  • LiC10 4 (anhydrous) / propylene carbonate solution ionic conductivity according to the measuring method impregnated was measured gel strength.
  • This crosslinked polyethylene oxide was formed into a film by the above method, and the ionic conductivity and gel strength were measured according to the above measurement method.
  • Titanium oxide (Taika Corporation 1.0 inn 210 3.2 6400 MT-500B)
  • Titanium oxide (Tika Corporation 1.0 100 190 2.9 6700 MT-500B)
  • Titanium oxide (Tika Corporation 3.0 110 200 3.6 7200 HT-500B)
  • Titanium oxide (Tika Corporation 6.0 110 220 3.8 9200 MT-500B)
  • Example 2 100 parts by weight of the cross-linked polyethylene oxide obtained in Example 1 was powder-mixed with 3 parts by weight of Siri force (Toksil P manufactured by Tokuyama Soda Co., Ltd.), and then melt-mixed at 120 ° C. Thus, each composition was obtained.
  • a composition was obtained in the same manner as in Example 19 except that the inorganic oxide was titanium oxide (manufactured by MT-500 B Tika Co., Ltd.) and the amount added was 1 part by weight, and the composition was formed into a film by the above method. Ionic conductivity and gel strength were measured according to the measurement method.
  • Titanium oxide (Tika Corporation 1.0 100 190 2.0 6700
  • a film was formed in the same manner as in Example 1 except that the inorganic oxide was not added to the crosslinked polyethylene oxide obtained in Example 1, and the ion conductivity and the gel strength were measured according to the above-described measurement methods.
  • Example 2 To 100 parts by weight of the crosslinked polyethylene oxide obtained in Example 1, 0.05 parts by weight of silicic acid (Tokusil P manufactured by Tokuyama Soda Co., Ltd.) was added, and after mixing with powder, 1 part by weight was added. The composition was obtained by melt mixing at 20 ° C. The obtained composition was formed into a film by the above method, and the ion conductivity and the gel strength were measured according to the measurement method.
  • silicic acid Tokyosil P manufactured by Tokuyama Soda Co., Ltd.
  • Example 1 100 parts by weight of the crosslinked polyethylene oxide obtained in Example 1 was added with 25 parts by weight of silicic acid (Toksil P, manufactured by Tokuyama Soda Co., Ltd.), and the powder was mixed. The composition was obtained by melt mixing at 20 ° C. The resulting composition, An attempt was made to form a film by the above method, but the thickness was 2 mm and a thin film could not be formed.
  • silicic acid Toksil P, manufactured by Tokuyama Soda Co., Ltd.
  • the gel electrolyte obtained by the present invention has a high ion conductivity and a high mechanical strength, so that it can be used with a reduced thickness when used. Therefore, when used as an electrolyte, thinner batteries and electrochemical materials are used.In particular, when used as a gel electrolyte for lithium batteries, high voltage, large electric capacity, and flatness are achieved despite their small size. A thin lithium battery with discharge characteristics and good low-temperature characteristics that can be used in a wide temperature range will be possible. Therefore, the gel electrolyte obtained by the present invention is excellent as a material for batteries and other electrochemical devices, and is particularly suitably used as a gel electrolyte for lithium batteries.

Abstract

A gel electrolyte prepared by impregnating a composition comprising 100 parts by weight of a cross-linked polyalkylene oxide, prepared by the reaction between a polyalkylene oxide having a weight-average molecular weight of 1,000 to 1,000,000 and an isocyanate, and 0.1-20 parts by weight of an inorganic oxide with a solution of an inorganic electrolyte in a nonaqueous organic solvent. It is excellent in ionic conductivity and mechanical strengths and useful as the material of cells and electrochemical devices.

Description

明 細 書 ゲル状電解質 発明の分野  Description Gel Electrolyte Field of the Invention
本発明は、 ゲル状電解質に関する。 さらに詳しくは電池および電気化学 デバイス用材料として好適なゲル状電解質に関する。  The present invention relates to a gel electrolyte. More particularly, it relates to a gel electrolyte suitable as a material for batteries and electrochemical devices.
背景技術  Background art
近年、 リチウム電池や電気化学用デバイスが活発に研究されている。 特にリチウム電池は電圧が高い、 電気容量が大きい、 放電特性が平坦で ある、 低温特性がよい、 広い温度範囲で使用できる等の特徴を有しており、 広範囲の用途に用いられている。 これらのリチウム電池には、 通常 L i C l 04等の電解質を炭酸エステル等に溶解した非水電解質溶液が用いられて いる。 In recent years, lithium batteries and electrochemical devices have been actively studied. In particular, lithium batteries have characteristics such as high voltage, large electric capacity, flat discharge characteristics, good low temperature characteristics, and can be used in a wide temperature range, and are used in a wide range of applications. These Lithium batteries usually L i C l 0 4 non-aqueous electrolyte an electrolyte dissolved in carbonate such as solutions are used.
また、 特開平 1一 1 1 2 6 6 7号には、 これらの非水電解質溶液を固体 化して用いる例が記載されている。 すなわち、 ポリエチレンオキサイ ドに モソまたはポリイソシァネート化合物を反応させて得られる架橋ポリェチ レンォキサイ ドに前記非水電解質溶液を吸収させて用いる方法が記載され ている。  Further, Japanese Patent Application Laid-Open No. H11-126667 describes an example in which these non-aqueous electrolyte solutions are solidified and used. That is, a method is described in which a cross-linked polyethylene oxide obtained by reacting a polyethylene oxide with a moso or polyisocyanate compound is used by absorbing the non-aqueous electrolyte solution.
発明の目的  Purpose of the invention
しかしながら、 特開平 1—1 1 2 6 6 7号に記載のポリエチレンォキサ イ ドにモノまたはポリイソシァネート化合物を反応させて得られる架橋ポ リェチレンォキサイ ドを用いるゲル状電解質のィォン伝導率は室温で 1 O -s S cnr 1以下であり、 電池の電解質として要求されている 1 0 - 4 S cm—1以上には程遠いものである。 さらに近年リチウム電池の厚みが薄型化しており、 両電極に挟まれたゲ ル状電解質の厚みが 1 0 0 in〜数 1 0 0 程度のものが要求されている。 従って、 折り曲げた際に両電極が短絡しやすくなつている。 これを防止す るためゲル状電解質としては、 ゲル強度の高いものが要求されている。 本発明者らは、 前記課題を解決すべく鋭意検討した結果、 架橋ポリアル キレンォキサイ ドに無機酸化物を添加した組成物をゲル状電解質基材とし て用いた場合に、 飛躍的にイオン伝導率が向上し、 ゲル強度が高い、 加工 性も良好なものが得られることを見出し、 本発明を完成するに至った。 発明の概要 However, ion conduction of a gel electrolyte using a cross-linked polyethylene oxide obtained by reacting a mono- or poly-isocyanate compound with a polyethylene oxide described in JP-A-1-112667. the rate is at 1 O -s S cnr 1 or less at room temperature, 1 are required as the electrolyte of the battery 0 - is 4 S cm- 1 or more far from. In recent years, the thickness of lithium batteries has become thinner, and a gel electrolyte sandwiched between both electrodes is required to have a thickness of about 100 in to several hundreds. Therefore, both electrodes are easily short-circuited when bent. To prevent this, a gel electrolyte having a high gel strength is required. The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, when a composition obtained by adding an inorganic oxide to cross-linked polyalkylene oxide is used as a gel electrolyte base material, the ionic conductivity is dramatically increased. It has been found that an improved product having high gel strength and good processability can be obtained, and the present invention has been completed. Summary of the Invention
本発明は、 重量平均分子量が 1 0 0 0〜1 0 0万のポリアルキレンォキ サイ ドにイソシァネート化合物を反応させて得られる架橋ポリアルキレン ォキサイ ド 1 0 0重量部と無機酸化物 0. 1〜2 0重量部からなる組成物 に、 無機電解質および非水系有機溶剤からなる非水電解質溶液を含浸させ てなるゲル状電解質を提供するものである。  The present invention provides 100 parts by weight of a crosslinked polyalkylene oxide obtained by reacting a polyalkylene oxide having a weight average molecular weight of 1,000 to 1,000,000 with an isocyanate compound and 0.1 part by weight of an inorganic oxide. An object of the present invention is to provide a gel electrolyte obtained by impregnating a composition comprising 20 parts by weight with a non-aqueous electrolyte solution comprising an inorganic electrolyte and a non-aqueous organic solvent.
発明の詳細な説明  Detailed description of the invention
本発明で用いられるポリアルキレンォキサイ ドとしては、 重量平均分子 量が 1 0 0 0〜1 0 0万のポリアルキレンォキサイ ドが挙げられ、 その例 としては、 ポリエチレンォキサイ ド、 ポリプロピレンォキサイ ド、 ェチレ ンォキサイ ド プロピレンォキサイ ド共重合体およびポリブチレンォキサ ィ ド等を挙げることができる。 なかでも、 重量平均分子量が 2 0 0 0〜 1 0万のポリエチレンォキサイ ド、 ポリプロピレンォキサイ ドおよびェチ レンォキサイ ド Zプロピレンォキサイ ド共重合体等が好ましく用いられる。 重量平均分子量が 1 0 0 0未満の場合、 得られる架橋ポリアルキレンォ キサイ ドをフィルム成型する際に加工温度が高くなり、 フィルム成型が困 難になるため好ましくない。 また、 重量平均分子量が 1 0 0万を超えると、 得られる架橋ポリアルキ レンォキサイ ドの架橋密度が低くなつて、 ゲル強度が弱くなるため好まし くない。 Examples of the polyalkylene oxide used in the present invention include polyalkylene oxides having a weight-average molecular weight of 100,000 to 100,000, and examples thereof include polyethylene oxide and polypropylene oxide. And ethylene oxide propylene oxide copolymer and polybutylene oxide. Of these, polyethylene oxide, polypropylene oxide, ethylene oxide and ethylene propylene oxide copolymers having a weight average molecular weight of 2000 to 100,000 are preferably used. If the weight-average molecular weight is less than 1000, the processing temperature becomes high when forming the resulting crosslinked polyalkylene oxide into a film, which makes film formation difficult, which is not preferable. On the other hand, if the weight average molecular weight exceeds 100,000, the cross-linking density of the obtained cross-linked polyalkylene oxide decreases, and the gel strength decreases, which is not preferable.
前記したポリアルキレンォキサイ ドを架橋するのに用いるイソシァネー ト化合物とは同一分子内にイソシァネート基(一 N C O)を 1個または 2個 以上含有する有機化合物であって、 例えば、 n—プロピルイソシァネート、 n—ブチルイソシァネー ト、 n—へキシルイソシァネー ト、 ドデシルイソシ ァネート、 シクロへキシルイソシァネー ト、 ベンジルイソシァネー ト、 フエ二ルイソシァネート、 4 , 4ージフエニルメタンジイソシァネート(M D I ) へキサメチレンジイソシァネ一ト、 1 , 8—ジメチルベンゾール一 2 , 4ージイソシァネート、 2 , 4— トリ レンジイソシァネート(T D 1 )、 T D Iの 3量体、 ポリメチレンポリフエ二ルイソシァネート、 トリメチロ ールプロパンなどのポリオールにその活性水素の数に対応するモル数のジ イソシァネートを反応させて得られるウレタンイソシァネート化合物、 ポ リイソシァネートァダク ト等を挙げることができる。 好ましくは、 4 , 4 一ジフエニルメタンジィソシァネー ト(MD I ) へキサメチレンジィソシ ァネート、 2 , 4— トリ レンジイソシァネート(T D I:)が用いられる。 かかるイソシァネート化合物の使用量は、 イソシァネート化合物の種類 および反応等の条件によっても異なるが、 一般的にはポリアルキレンォキ サイ ドに対して、 1〜8 0重量%、 好ましくは 5〜5 0重量%の範囲であ る  The above-mentioned isocyanate compound used for crosslinking the polyalkylene oxide is an organic compound containing one or more isocyanate groups (one NCO) in the same molecule, for example, n-propyl isocyanate. Nitrate, n-butyl isocyanate, n-hexyl isocyanate, dodecyl isocyanate, cyclohexyl isocyanate, benzyl isocyanate, phenyl isocyanate, 4,4-diphenylmethane diisocyanate Hexamethylene diisocyanate, 1,8-dimethylbenzoyl 1,2,4-diisocyanate, 2,4-tolylene diisocyanate (TD 1), trimer of TDI, A polyol such as polymethylenepolyphenylisocyanate and trimethylolpropane is added to a polyol having a mole number corresponding to the number of active hydrogens. Urethane iso Xia sulfonate compound obtained by reacting an over bets include a port Li iso Xia sulfonates § duct or the like. Preferably, 4,4-diphenylmethane diisocyanate (MDI) hexamethylene diisocyanate and 2,4-tolylene diisocyanate (TDI :) are used. The amount of the isocyanate compound used depends on the type of the isocyanate compound and the conditions such as the reaction. % Range
1重量%未満の場合、 得られる架橋ポリアルキレンォキサイ ドの架橋密 度が低くなつてゲル強度が弱くなるため好ましくない。 また、 8 0重量 %を超えると、 得られる架橋ポリアルキレンォキサイ ドをフィルム成型す る際に加工温度が高くなり、 フィルム成型が困難になるため、 好ましくな い。 · ポリアルキレンォキサイ ドにイソシァネート化合物を反応させる方法と しては適当な溶媒を用いた溶液状で反応させる方法が一般的であるが、 分 散状で反応させる方法、 粉末状または固体状で両者を均一に混合した後所 要温度に加熱して反応させることもできる。 If the amount is less than 1% by weight, the crosslinked density of the obtained crosslinked polyalkylene oxide becomes low, and the gel strength becomes low. On the other hand, if the content exceeds 80% by weight, the processing temperature becomes high when the obtained crosslinked polyalkylene oxide is formed into a film, which makes film formation difficult. No. As a method of reacting the polyalkylene oxide with the isocyanate compound, a method of reacting in a solution using an appropriate solvent is generally used.However, a method of reacting in a dispersed state, a method of forming a powder or a solid, and the like. After the two are uniformly mixed, the mixture can be heated to the required temperature for the reaction.
反応温度は通常 5 0〜1 5 0 °Cである。  The reaction temperature is usually 50 to 150 ° C.
なお、 この反応系にトリェチルァミン、 トリエタノールァミン、 ジブチ ルスズラウレート、 ジブチルスズジアセテート、 トリエチレンジァミンな どを少量添加することにより反応がより促進されることもある。  The reaction may be further promoted by adding a small amount of triethylamine, triethanolamine, dibutyltin laurate, dibutyltin diacetate, triethylenediamine, or the like to the reaction system.
本発明の特徴である無機酸化物としては、 シリカ、 酸化チタン、 酸化亜 鉛、 酸化マグネシウム、 酸化アルミニウム等を挙げることができる。 これ ら、 無機酸化物の粒径は、 均一分散性の点から通常 1 0 0 以下、 好ま しくは 8 0 i m以下の微細なものが好ましい。  Examples of the inorganic oxide that is a feature of the present invention include silica, titanium oxide, zinc oxide, magnesium oxide, and aluminum oxide. From the viewpoint of uniform dispersibility, the particle size of the inorganic oxide is usually 100 or less, preferably 80 im or less.
シリカとしては、 例えば、 粉末状の二酸化ケイ素を主成分とするァモル ファスシリカ、 表面をメチル基、 ォクチルシリル基、 あるいはトリメチル シリル基で覆って疎水化した表面踩水化ァモルファスシリカ等を用いるこ とができる。  As the silica, for example, powdered amorphous silica mainly composed of silicon dioxide, surface-hydrated amorphous silica whose surface is hydrophobized by covering with a methyl group, octylsilyl group or trimethylsilyl group, etc. can be used. .
酸化チタンとしては、 例えば、 ルチル型酸化チタン、 アナタース型酸化 チタンのいずれかを主成分とする微粒子酸化チタンが挙げられる。  Examples of the titanium oxide include fine particle titanium oxide containing any one of rutile-type titanium oxide and anatase-type titanium oxide as a main component.
これら、 無機酸化物の中で好ましくは、 シリカ、 酸化チタン、 酸化亜鉛、 酸化マグネシウム、 酸化アルミニウムが挙げられる。  Among these inorganic oxides, silica, titanium oxide, zinc oxide, magnesium oxide and aluminum oxide are preferred.
無機酸化物の添加は、 均一に混合できればいかなる方法によっても良く、 架橋ポリアルキレンォキサイ ドの製造時に撹拌下混合する方法、 もしくは 架橋ポリアルキレンォキサイ ドと粉体混合した後溶融混合する方法など 、 ずれの方法でも良い。 これら無機酸化物の配合量は、 架橋ポリアルキレンォキサイ ド 100重 量部に対して 0.1〜20重量部、 好ましくは 0.5〜10重量部である。 0.1重量部未満のときは、 充分なイオン伝導率向上の効果が得られず、 ゲル状電解質とした場合のゲル強度の向上が図れない。 The inorganic oxide may be added by any method as long as it can be uniformly mixed, such as a method of mixing with stirring during the production of the cross-linked polyalkylene oxide, or a method of mixing the powder with the cross-linked polyalkylene oxide and then melt-mixing. However, the deviation method may be used. The amount of these inorganic oxides is 0.1 to 20 parts by weight, preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the crosslinked polyalkylene oxide. If the amount is less than 0.1 part by weight, a sufficient effect of improving the ionic conductivity cannot be obtained, and the gel strength when a gel electrolyte is used cannot be improved.
また 20重量部を超えると、 架橋ポリアルキレンォキサイ ドと無機酸化 物の混合物を溶融させる際の流動性が悪化し、 フィルムの成型が困難にな るため望ましくない。  If the amount exceeds 20 parts by weight, the fluidity of the mixture of the crosslinked polyalkylene oxide and the inorganic oxide at the time of melting is deteriorated, and the molding of the film becomes difficult.
本発明における非水電解質溶液とは電解質を非水有機溶剤に溶解したも のである。  The non-aqueous electrolyte solution in the present invention is a solution obtained by dissolving an electrolyte in a non-aqueous organic solvent.
電解質としては、 L'iC104、 LiBF4、 LiAsF6、 LiCF3S03、 LiPF6、 Lil、 LiBr、 LiSCN、 Na I、 Li2B10Cl10、 LiCF3 C02、 NaBr、 NaSCN、 KSCN、 MgCl2、 Mg(C104)2、(C H3)4 NBF4、 (CH3)4NBr、 (C2H5)4N I、 (C 3H7)4N Br、(n - C 4H9)4 NI、 (n—CsH NI等を挙げることができる。 好ましくは、 LiCl 04、 LiBF4が用いられる。 As the electrolyte, L'iC10 4, LiBF 4, LiAsF 6, LiCF 3 S0 3, LiPF 6, Lil, LiBr, LiSCN, Na I, Li 2 B 10 Cl 10, LiCF 3 C0 2, NaBr, NaSCN, KSCN, MgCl 2 , Mg (C10 4 ) 2 , (CH 3 ) 4 NBF 4 , (CH 3 ) 4 NBr, (C 2 H 5 ) 4 NI, (C 3 H 7 ) 4 N Br, (n-C 4 H 9) 4 NI, mention may be made of (n-CsH NI like. preferably, LiCl 0 4, LiBF 4 is used.
非水有機溶剤としては、 プロピレンカーボネート、 y—プチロラク トン、 エチレンカーボネート、 ブチレンカーボネート、 テトラヒ ドロフラン、 2 ーテトラヒ ドロフラン、 1, 3—ジォキソラン、 4, 4一ジメチルー 1, 3 ージォキソラン、 スルホラン、 3—メチルスルホラン、 tert—ブチルエー テル、 iso—ブチルエーテル、 1, 2—ジメ トキシェタン、 1, 2—ェトキ シメ トキシェタン、 メチルジグライム、 メチルテトラグライム、 ェチルグ ライム、 ェチルジグライム等を挙げることができる。 好ましくは、 プロピ レンカーボネートもしくはァープチロラク トンが用いられる。  Non-aqueous organic solvents include propylene carbonate, y-butyrolactone, ethylene carbonate, butylene carbonate, tetrahydrofuran, 2-tetrahydrofuran, 1,3-dioxolan, 4,4-dimethyl-1,3-dioxolan, sulfolane, and 3-methylsulfolane Tert-butyl ether, iso-butyl ether, 1,2-dimethoxetane, 1,2-ethoxymethoxetane, methyldiglyme, methyltetraglyme, ethigrime, ethidiglyme. Preferably, propylene carbonate or arptyrolactone is used.
ゲル状電解質は、 前記架橋ポリアルキレンォキサイ ド 100重量部およ び無機酸化物 0.1〜20重量部からなる組成物に、 前記無機電解質およ び非水系有機溶剤からなる無機電解質濃度(約 10— 3〜 3モル/ の非水 電解質溶液を架橋ポリアルキレンォキサイ ド組成物 lgに対し 0.001〜 20g含浸させて作製する。 The gel electrolyte was added to a composition comprising 100 parts by weight of the crosslinked polyalkylene oxide and 0.1 to 20 parts by weight of an inorganic oxide. Beauty nonaqueous inorganic electrolyte concentration made of an organic solvent (about 10 -3 to 3 mol / non-aqueous electrolyte solution was 0.001 to 20 g impregnated to crosslinked polyalkylene O wherein de composition lg is prepared.
以下に実施例および比較例をあげて本発明をさらに詳しく説明するが、 本発明はこれらに限定されるものではない。  Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
なお、 得られた架橋ポリアルキレンォキサイ ド組成物のフィルム化およ び該フィルムのイオン伝導率の測定、 ゲル強度の測定は、 以下の方法に従つ てね _ /よつナ:。  The formation of the obtained crosslinked polyalkylene oxide composition into a film, the measurement of the ionic conductivity of the film, and the measurement of the gel strength were performed according to the following methods.
<フィルム化 >  <Film>
架橋ポリアルキレンオキサイ ドおよび無機酸化物からなる架橋ポリァル キレンォキサイ ド組成物 2 gを、 テフロンシートにはさみ、 120°C、 150 kg/cm2のプレス条件下で、 厚み約 100 mのフィルムを作製した。 Prepare crosslinked polyalkylene oxa Lee de and consisting of an inorganic oxide crosslinking Poriaru Kirenokisai de composition 2 g, scissors Teflon sheet, a press under conditions of 120 ° C, 150 kg / cm 2, a film having a thickness of about 100 m did.
<イオン伝導率の測定〉  <Measurement of ionic conductivity>
前記で得たフィルムを、 このフィルムの厚みが 200 t m程度になるよ うに、 1M LiC104(無水物)または 1M LiBF4(無水物) Zプロピ レンカーボネート溶液またはァープチロラク トン溶液に 24時間浸潰し、 含浸させ、 このゲル状電解質のフィルムを直径 0.5cmに打ち抜いた。 こ の厚み 200; m程度のフィルムの両面を白金電極ではさみ、 セルを構成 し、 インピーダンスゲインフヱイズアナライザー (Schlumberger The resulting film was in the, by the thickness of this film is about 200 tm urchin, 1M LiC10 4 (anhydrous) or 1M LiBF 4 crush immersed for 24 hours (anhydrous) Z propylene alkylene carbonate solution or Apuchiroraku tons solution, After impregnation, the gel electrolyte film was punched to a diameter of 0.5 cm. This film, about 200 m thick, is sandwiched between platinum electrodes on both sides to form a cell, and an impedance gain phase analyzer (Schlumberger
Instruments社 1260) により、 室温にて周波数 30 MHz〜 0.05 Hzで交流インピーダンスを測定し、 フィルムに関するイオン伝導率を Instruments, Inc. 1260) measures the AC impedance at a frequency of 30 MHz to 0.05 Hz at room temperature to determine the ionic conductivity of the film.
σ= (l/R,i lm)(d/s) σ = (l / R, i lm ) (d / s)
(但し、 Rf i lmは測定された交流インピーダンスから求められるフィル ムの電気抵抗、 sは面積 (cm2) 、 dは厚さ (cm) を表す) (However, R film is the electrical resistance of the film obtained from the measured AC impedance, s is the area (cm 2 ), and d is the thickness (cm))
として求めた。 くゲル強度〉 Asked. Ku gel strength>
前記で得たフィルムに、 このフィルムの厚みが 200 zm程度になるよ うに、 1M LiC104(無水物)または 1M LiBF4(無水物) プロピ レンカーボネート溶液またはァープチロラク トン溶液に 24時間浸漬し、 含浸させ、 lcmx 5cmの大きさに切り取った。 このゲル強度を精密型レオ ロボッ ト(協和精ェ株式会社製 KA— 300 P)を用いて、 以下に示す条 件にて針入度試験法による粘チョウ度により評価した。 The resulting film in the above, this by the thickness of the film is about 200 zm urchin, 1M LiC10 4 (anhydrous) or 1M LiBF 4 (anhydrous) was immersed for 24 hours in propylene alkylene carbonate solution or Apuchiroraku tons solution, impregnation And lcmx cut into 5cm size. The gel strength was evaluated using a precision type leo robot (KA-300P manufactured by Kyowa Seie Co., Ltd.) by the stickiness test by the penetration test method under the following conditions.
荷重 2 Οε  Load 2 Οε
1 mm  1 mm
負荷速度 SO mZmin  Load speed SO mZmin
圧子直径 2誦 ø  Indenter diameter 2 recitation ø
ロードセル 0.1 Kg  Load cell 0.1 Kg
実施例 1一 4  Example 11
還流冷却器と撹拌翼を備えた 1リッ トルの 4ッロセパラブルフラスコに 平均分子量 20000のポリエチレンォキサイ ド 100gを入れ、 トルェ ン 550mlを加えた後、 水分除去のため蒸留により 200mlのトルエンを 留出させた。 そこへ、 4, 4,ージフエニルメタンジイソシァネート(MD I ) 12gとトリエチルァミ ン 0.4 gを添加し、 80°Cにて 3時間反応を行つ た後、 へキサン 175mlを添加し、 室温まで冷却して、 ポリマーを析出さ せた。 このスラリーを濾過し、 減圧乾燥して白色の架橋ポリエチレンォキ サイ ド 100gを得た。  A 1 liter 4-separable flask equipped with a reflux condenser and stirring blades was charged with 100 g of polyethylene oxide having an average molecular weight of 20000, 550 ml of toluene was added, and then 200 ml of toluene was distilled off to remove water. Distilled. Thereto, 12 g of 4,4, diphenylmethane diisocyanate (MDI) and 0.4 g of triethylamine were added, reacted at 80 ° C. for 3 hours, and then 175 ml of hexane was added. Upon cooling to room temperature, the polymer was precipitated. The slurry was filtered and dried under reduced pressure to obtain 100 g of white crosslinked polyethylene oxide.
この架橋ポリエチレンォキサイ ド 100重量部に対してシリカ(トクシ ール P徳山曹達 (株)製)を 0.5、 1、 3、 6重量部になるように粉体混合 した後に、 120°Cにて溶融混合して各組成物を得た。 得られた各組成物 を前記方法によりフィルム化し、 1M LiC104(無水物)ノプロピレン カーボネート溶液を含浸させ前記測定方法に従ってイオン伝導率、 ゲル強 度を測定した。 Silica (Toxil P, manufactured by Tokuyama Soda Co., Ltd.) was mixed with the powder in an amount of 0.5, 1, 3, or 6 parts by weight with respect to 100 parts by weight of the crosslinked polyethylene oxide, and then the mixture was heated at 120 ° C. Each composition was obtained by melt mixing. Each composition obtained was a film by the method, 1M LiC10 4 (anhydrous) Bruno propylene The carbonate solution was impregnated, and the ionic conductivity and the gel strength were measured according to the above-described measurement methods.
結果を表 1に示す。  Table 1 shows the results.
実施例 5  Example 5
還流冷却器と撹拌翼を備えた 1リッ トルの 4ッロセパラブルフラスコに 平均分子量 20000のポリエチレンォキサイ ド 100gを入れ、 トルェ ン 550mlを加えた後、 水分除去のため蒸留により 200mlのトルエンを 留出させた。 そこへ、 へキサメチレンジイソシァネート 24gとトリエチ ルァミン 0.8 gを添加し、 80°Cにて 3時間反応を行った後、 へキサン 1 75mlを添加し、 室温まで冷却して、 ポリマーを析出させた。 このスラリ 一を濾過し、 減圧乾燥して白色の架橋ポリエチレンォキサイ ド 100gを 得た。  A 1 liter 4-separable flask equipped with a reflux condenser and stirring blades was charged with 100 g of polyethylene oxide having an average molecular weight of 20000, 550 ml of toluene was added, and then 200 ml of toluene was distilled off to remove water. Distilled. To this, 24 g of hexamethylene diisocyanate and 0.8 g of triethylamine were added, and the mixture was reacted at 80 ° C for 3 hours.Then, 175 ml of hexane was added, and the mixture was cooled to room temperature to precipitate a polymer. I let it. The slurry was filtered and dried under reduced pressure to obtain 100 g of white crosslinked polyethylene oxide.
この架橋ポリエチレンォキサイ ド 100重量部に対してシリカ(トクシ ール P徳山曹達 (株)製)を 3重量部になるように粉体混合した後に、 12 0°Cにて溶融混合し組成物を得た。 得られた組成物を前記方法によりフィ ルム化し、 1M LiC104(無水物)ノプロピレンカーボネート溶液を含 浸させ前記測定方法に従つてィォン伝導率、 ゲル強度を測定した。 Silica (Toxil P manufactured by Tokuyama Soda Co., Ltd.) was powder-mixed to 3 parts by weight with respect to 100 parts by weight of the crosslinked polyethylene oxide, and then melt-mixed at 120 ° C. to obtain a composition. I got The resulting composition was Fi Lum by the method, 1M LiC10 4 (anhydrous) Bruno propylene carbonate solution accordance connexion Ion conductivity on the measurement method was immersed including to measure the gel strength.
結果を表 1に示す。 '  Table 1 shows the results. '
実施例 6— 10  Example 6—10
無機酸化物の種類およびその添加量を表 1記載のものに替えた以外は実 施例 1と同様にして得た組成物を前記方法によりフィルム化し、 1M LiC104(無水物)/プロピレンカーボネート溶液を含浸させ前記測定方 法に従ってイオン伝導率、 ゲル強度を測定した。 The inorganic oxide type and composition of the added amount was obtained by the same procedure except that instead of those in Table 1, wherein the actual Example 1 into a film by the method, 1M LiC10 4 (anhydrous) / propylene carbonate solution And ionic conductivity and gel strength were measured according to the above-mentioned measuring methods.
結果を表 1に示す。  Table 1 shows the results.
実施例 11 還流冷却器と撹拌翼を備えた 1リッ トルの 4ッロセパラブルフラスコに 平均分子量 8500のポリエチレンォキサイ ド 100gを入れ、 トルエン 5 δ 0mlを加えた後、 水分除去のため蒸留により 200mlのトルエンを留 出させた。 そこへ、 4, 4ージフエニルメタンジイソシァネート 30gとト リエチルァミン 1.0gを添加し、 80°Cにて 3時間反応を行った後、 へキ サン 175mlを添加し、 室温まで冷却して、 ポリマーを析出させた。 この スラリーを濾過し、 減圧乾燥して白色のポリマー 100gを得た。 . Example 11 A 1-liter 4-separable flask equipped with a reflux condenser and stirring blades was charged with 100 g of polyethylene oxide having an average molecular weight of 8,500, and toluene (5δ0 ml) was added.Then, 200 ml of toluene was distilled off to remove water. Was distilled off. There, 30 g of 4,4-diphenylmethane diisocyanate and 1.0 g of triethylamine were added and reacted at 80 ° C for 3 hours, 175 ml of hexane was added, and the mixture was cooled to room temperature. The polymer was precipitated. The slurry was filtered and dried under reduced pressure to obtain 100 g of a white polymer. .
この架橋ポリエチレンォキサィ、ド 100重量部に対してシリカ(トクシ ール P徳山曹達 (株)製)を 3重量部になるように粉体混合した後に、 120 °Cにて溶融混合して組成物を得た。 得られた組成物を前記方法によりフィ ルム化し、 1M LiC104(無水物) プロピレンカーボネート溶液を含 浸させ前記測定方法に従つてィォン伝導率、 ゲル強度を測定した。 Silica (Toxil P, manufactured by Tokuyama Soda Co., Ltd.) was powder-mixed to 3 parts by weight with respect to 100 parts by weight of the cross-linked polyethylene oxide, and then melt-mixed at 120 ° C. A composition was obtained. The resulting composition was Fi Lum by the method, 1M LiC10 4 (anhydrous) Supporting propylene carbonate solution in the measuring method was immersed containing connexion Ion conductivity was measured gel strength.
結果を表 1に示す。  Table 1 shows the results.
実施例 12  Example 12
還流冷却器と撹拌翼を備えた 1リッ トルの 4ッロセパラブルフラスコに 平均分子量 8500のポリエチレンォキサイ ド 100gを入れ、 トルエン 550mlを加えた後、 水分除去のため蒸留により 200mlのトルエンを留 出させた。 そこへ、 2, 4—トリレンジィソシァネ一ト 12gとトリエチル ァミン 0.4 gを添加し、 80°Cにて 3時間反応を行った後、 へキサン 175mlを添加し、 室温まで冷却して、 ポリマーを析出させた。 このスラ リーを濾過し、 減圧乾燥して白色のポリマー 100gを得た。  100 g of polyethylene oxide having an average molecular weight of 8500 was placed in a 4-liter separable flask equipped with a reflux condenser and stirring blades, and 550 ml of toluene was added.After that, 200 ml of toluene was distilled off to remove water. Let out. There, 12 g of 2,4-tolylenediocyanate and 0.4 g of triethylamine were added and reacted at 80 ° C. for 3 hours, 175 ml of hexane was added, and the mixture was cooled to room temperature. The polymer was precipitated. The slurry was filtered and dried under reduced pressure to obtain 100 g of a white polymer.
この架橋ポリエチレンォキサイ ド 100重量部に対して酸化チタン(M T一 500Bティカ(株)製)を 1重量部になるように粉体混合した後に、 120°Cにて溶融混合して組成物を得た。 得られた組成物を前記方法によ りフィルム化し、 1M LiC104(無水物) Zプロピレンカーボネート溶 液を含浸させ前記測定方法に従ってイオン伝導率、 ゲル強度を測定した。 結果を表 1に示す。 The powder was mixed with 100 parts by weight of this crosslinked polyethylene oxide to 1 part by weight of titanium oxide (manufactured by MT-500B Tika Co., Ltd.), and then melt-mixed at 120 ° C to obtain a composition. Obtained. The resulting composition was by Ri film into the method, 1M LiC10 4 (anhydrous) Z propylene carbonate solvent The solution was impregnated, and the ionic conductivity and gel strength were measured according to the above-described measurement methods. Table 1 shows the results.
実施例 13  Example 13
還流冷却器と撹拌翼を備えた 1リッ トルの 4ッロセパラブルフラスコに 平均分子量 10万のポリエチレンォキサイ ド 100gを入れ、 トルエン 550mlを加えた後、 水分除去のため蒸留により 200mlのトルエンを留 出させた。 そこへ、 4.4ージフエニルメタンジイソシァネート 6gと トリ ェチルァミン 0.2gを添加し、 80°Cにて 3時間反応を行った後、 へキサ ン 175mlを添加し、 室温まで冷却して、 ポリマーを析出させた。 このス ラリーを濾過し、 減圧乾燥して白色のポリマ一 100gを得た。  A 1 liter 4-separable flask equipped with a reflux condenser and stirring blades was charged with 100 g of polyethylene oxide having an average molecular weight of 100,000, 550 ml of toluene was added, and then 200 ml of toluene was distilled off to remove water. Distilled. Thereto, 6 g of 4.4-diphenylmethanediisocyanate and 0.2 g of triethylamine were added, and reacted at 80 ° C. for 3 hours, 175 ml of hexane was added, and the mixture was cooled to room temperature, and polymer was cooled. Was precipitated. The slurry was filtered and dried under reduced pressure to obtain 100 g of a white polymer.
この架橋ポリエチレンォキサイ ド 100重量部に対して酸化チタン(M T-500 Bティカ(株)製)を 3重量部になるように粉体混合した後に、 120°Cにて溶融混合して組成物を得た。 得られた組成物を前記方法によ りフィルム化し、 1M LiC104(無水物) プロピレンカーボネート溶 液を含浸させ前記測定方法に従ってイオン伝導率、 ゲル強度を測定した。 結果を表 1に示す。 Titanium oxide (manufactured by MT-500 B Tika Co., Ltd.) was powder-mixed to 100 parts by weight of this crosslinked polyethylene oxide so as to be 3 parts by weight, and then melt-mixed at 120 ° C to obtain a composition. I got something. The resulting composition was by Ri film into the method, ion conductivity, the gel strength was measured according to the measuring method is impregnated with a 1M LiC10 4 (anhydrous) propylene carbonate solvent liquid. Table 1 shows the results.
実施例 14  Example 14
還流冷却器と撹拌翼を備えた 1リッ トルの 4ッロセパラブルフラスコに 平均分子量 3000のポリエチレンォキサイ ド 100gを入れ、 トルエン 550mlを加えた後、 水分除去のため蒸留により 200mlのトルエンを留 出させた。 そこへ、 2, 4—トリレンジイソシァネー卜 20gとトリエチル ァミン 0.6 gを添加し、 80°Cにて 3時間反応を行った後、へキサン 175 mlを添加し、 室温まで冷却して、 ポリマーを析出させた。 このスラリーを 濾過し、 減圧乾燥して白色のポリマー 100gを得た。  A 1-liter 4-separable flask equipped with a reflux condenser and stirring blades was charged with 100 g of polyethylene oxide having an average molecular weight of 3000, 550 ml of toluene was added, and then 200 ml of toluene was distilled by distillation to remove water. Let out. There, 20 g of 2,4-tolylene diisocyanate and 0.6 g of triethylamine were added, and the mixture was reacted at 80 ° C. for 3 hours, 175 ml of hexane was added, and the mixture was cooled to room temperature. The polymer was precipitated. The slurry was filtered and dried under reduced pressure to obtain 100 g of a white polymer.
この架橋ポリエチレンォキサイ ド 100重量部に対してシリカ(トクシ ール P徳山曹達 (株)製)を 1重量部になるように粉体混合した後に、 120 °Cに溶融混合して組成物を得た。 得られた組成物を前記方法によりフィル ム化し、 1M LiC104(無水物) Zプロピレンカーボネート溶液を含浸 させ前記測定方法に従ってイオン伝導率、 ゲル強度を測定した。 100 parts by weight of this cross-linked polyethylene oxide is mixed with silica (Toxi Was mixed with powder so as to be 1 part by weight, and then melt-mixed at 120 ° C. to obtain a composition. The resulting composition was filled beam by said method, ion conductivity, the gel strength was measured in accordance with 1M LiC10 4 the measuring method impregnated with (anhydride) Z propylene carbonate solution.
結果を表 1に示す。  Table 1 shows the results.
実施例 15  Example 15
還流冷却器と撹拌翼を備えた 1リッ トルの 4ッロセパラブルフラスコに 平均分子量 15000のエチレンォキサイ ド Zプロピレンォキサイ ド共重 合体 (共重合比 =80ノ 20)100gを入れ、 トルエン 550mlを加えた 後、 水分除去のため蒸留により 200mlのトルエンを留出させた。 そこへ、 4, 4ージフエニルメタンジイソシァネート 6.5gとトリエチルァミン 0.22gを添加し、 80°Cにて 3時間反応を行った後、 へキサン 175ml を添加し、 室温まで冷却して、 ポリマーを析出させた。 このスラリーを濾 過し、 減圧乾燥して白色のポリマー 100gを得た。  100 g of an ethylene oxide Z-propylene oxide copolymer having an average molecular weight of 15,000 (copolymerization ratio = 80 to 20) was placed in a 1-liter 4-separable flask equipped with a reflux condenser and stirring blades, and toluene was added. After adding 550 ml, 200 ml of toluene was distilled off by distillation to remove water. Thereto, 6.5 g of 4,4-diphenylmethane diisocyanate and 0.22 g of triethylamine were added, and the mixture was reacted at 80 ° C. for 3 hours. Then, 175 ml of hexane was added, and the mixture was cooled to room temperature. To precipitate the polymer. The slurry was filtered and dried under reduced pressure to obtain 100 g of a white polymer.
この架橋エチレンォキサイ ド Zプロピレンォキサイ ド共重合体物 100 重量部に対して酸化チタン(MT— 500Bティカ(株)製)を 6重量部にな るように粉体混合した後に、 120°Cにて溶融混合して組成物を得た。 得 られた組成物を前記方法によりフィルム化し、 1 M LiC104(無水物) プロピレンカーボネート溶液を含浸させ前記測定方法に従ってイオン伝導 率、 ゲル強度を測定した。 Titanium oxide (MT-500B, manufactured by Tika Co., Ltd.) was powder-mixed to 6 parts by weight with respect to 100 parts by weight of the crosslinked ethylene oxide Z propylene oxide copolymer, and then 120 ° C. The composition was obtained by melting and mixing at C. The resulting composition into a film by the method, ion conductivity, the gel strength was measured in accordance with 1 M LiC10 4 the measuring method impregnated with (anhydride) propylene carbonate solution.
結果を表 1に示す。  Table 1 shows the results.
実施例 16  Example 16
還流冷却器と撹拌翼を備えた 1リッ トルの 4ッロセパラブルフラスコに 平均分子量 11000のポリエチレンォキサイ ド 50gと平均分子量 40 00のポリプロピレンォキサイ ド 50gを入れ、 トルエン 550mlを加え た後、 水分除去のため蒸留により 200mlのトルエンを留出させた。 そこ へ、 4, 4—ジフヱニルメタンジイソシァネート 18gとトリエチルァミン 0.6gを添カ卩し、 80°Cにて 3時間反応を行った後、 へキサン 175mlを 添加し、 室温まで冷却して、 ポリマーを析出させた。 このスラリーを濾過 し、 減圧乾燥して白色のポリマー 10 Ogを得た。 A 1-liter 4-separable flask equipped with a reflux condenser and stirring blades was charged with 50 g of polyethylene oxide having an average molecular weight of 11000 and 50 g of polypropylene oxide having an average molecular weight of 4000, and 550 ml of toluene was added. After that, 200 ml of toluene was distilled off by distillation to remove water. Thereto, 18 g of 4,4-diphenylmethane diisocyanate and 0.6 g of triethylamine were added and reacted at 80 ° C for 3 hours. Then, 175 ml of hexane was added, and the mixture was cooled to room temperature. Upon cooling, the polymer precipitated. The slurry was filtered and dried under reduced pressure to obtain 10 Og of a white polymer.
この架橋ポリエチレンォキサイ ド、 ポリプロピレンォキサイ ド混合物 100重量部に対してシリカ(ファインシール T一 32徳山曹達 (株)製)を 3重量部になるように粉体混合した後に、 120°Cにて溶融混合して組成 物を得た。 得られた組成物を前記方法によりフィルム化し、 1M LiCl 04(無水物) プロピレンカーボネート溶液を含浸させ前記測定方法に従つ てイオン伝導率、 ゲル強度を測定した。 Powder was mixed with 3 parts by weight of silica (FINE SEAL T-32 manufactured by Tokuyama Soda Co., Ltd.) to 100 parts by weight of the crosslinked polyethylene oxide / polypropylene oxide mixture mixture, and then heated to 120 ° C. To obtain a composition. Resulting into a film by a composition the method, 1M LiCl 0 4 (anhydrous) propylene carbonate solution Te従Tsu the measuring method impregnated with ion conductivity was measured gel strength.
結果を表 1に示す。  Table 1 shows the results.
実施例 1 Ί  Example 1
還流冷却器と撹拌翼を備えた 1リッ トルの 4ッロセパラブルフラスコに 平均分子量 20000のポリエチレンォキサイ ド 10 Ogとシリカ(トクシ ール P徳山曹達(株)製) 1. Ogを入れ、 トルエン 550mlを加えた後、 水 分除去のため蒸留により 200mlのトルエンを留出させた。 そこへ、 4, 4一ジフヱニルメタンジイソシァネート 12gとトリエチルァミン 0.4g を添加し、 80°Cにて 3時間反応を行った後、 へキサン 175mlを添加し、 室温まで冷却し、 ポリマーを析出させた。 このスラリーを濾過し、 減圧乾 燥してポリマー 10 Ogを得た。  In a 1-liter 4-separable flask equipped with a reflux condenser and stirring blades, add 10 Og of polyethylene oxide having an average molecular weight of 20000 and silica (Toxil P, manufactured by Tokuyama Soda Co., Ltd.) After adding 550 ml of toluene, 200 ml of toluene was distilled off by distillation to remove water. Thereto, 12 g of 4,4-diphenylmethanediisocyanate and 0.4 g of triethylamine were added, and the mixture was reacted at 80 ° C. for 3 hours. Then, 175 ml of hexane was added, and the mixture was cooled to room temperature. The polymer was precipitated. The slurry was filtered and dried under reduced pressure to obtain 10 Og of a polymer.
この架橋ポリエチレンォキサイ ドを前記方法によりフィルム化し、 1M This crosslinked polyethylene oxide was formed into a film by the above method, and 1M
LiC104(無水物)/プロピレンカーボネート溶液を含浸させ前記測定 方法に従ってイオン伝導率、 ゲル強度を測定した。 LiC10 4 (anhydrous) / propylene carbonate solution ionic conductivity according to the measuring method impregnated was measured gel strength.
結果を表 1に示す。 実施例 18 Table 1 shows the results. Example 18
還流冷却器と撹拌翼を備えた 1リ ッ トルの 4ッロセパラブルフラスコに 平均分子量 20000のポリエチレンォキサイ ド 100gと微粒子状シリ 力(ァエロジル R— 805 日本ァエロジノレ(株)製) 3. Ogを入れ、 トルェ ン 550mlを加えた後、 水分除去のため蒸留により 200mlのトルエンを 留出させた。 そこへ、 4, 4ージフヱニルメタンジイソシァネート 3 Ogと トリェチルァミ ン 1. Ogを添加し、 80°Cにて 3時間反応を行った後、 へ キサン 175mlを添加し、 室温まで冷却し、 ポリマーを析出させた。 この スラリーを濾過し、 減圧乾燥してポリマー 10 Ogを得た。  100 g of polyethylene oxide with an average molecular weight of 20000 and fine silica particles (Aerozil R-805 manufactured by Nippon Aerozinole Co., Ltd.) in a 1-liter 4-separable flask equipped with a reflux condenser and stirring blades 3. Og After adding 550 ml of toluene, 200 ml of toluene was distilled off by distillation to remove water. To this, 3,4 diphenylmethane diisocyanate (3 Og) and triethylamine (1 Og) were added, reacted at 80 ° C for 3 hours, hexane (175 ml) was added, and the mixture was cooled to room temperature. Then, the polymer was precipitated. The slurry was filtered and dried under reduced pressure to obtain 10 Og of a polymer.
この架橋ポリエチレンォキサイ ドを前記方法によりフィルム化し、 前記 測定方法に従ってイオン伝導率、 ゲル強度を測定した。  This crosslinked polyethylene oxide was formed into a film by the above method, and the ionic conductivity and gel strength were measured according to the above measurement method.
結果を表 1に示す。 Table 1 shows the results.
実施例 1一 18 Example 11
フィノレム厚 ( m)  Finolem thickness (m)
実施 無機酸化物 添加量 1 LiC104 イオン伝導率 ゲル強度 例 (部) 吸収前 (無水物) /プロ m S cm"1 dyne* sec Implementation Inorganic oxide addition amount 1 LiC10 4 Ionic conductivity Gel strength Example (parts) Before absorption (anhydride) / pro m S cm " 1 dyne * sec
ピレン力-ボネ-ト (室温) /cm2 溶液吸収後 Pyrene force-bonate (room temperature) / cm 2 after solution absorption
1 シリカ (徳山曹達 (株) 0.5 90 200 2.9 5700 トクシ-ル P)  1 Silica (Tokuyama Soda Co., Ltd. 0.5 90 200 2.9 5700 Toxil P)
2 1.0 90 190 4.1 6200 2 1.0 90 190 4.1 6200
3 3.0 100 210 6.3 72003 3.0 100 210 6.3 7200
4 6.0 1 in 6.7 79004 6.0 1 in 6.7 7900
5 3.0 100 210 6.0 70005 3.0 100 210 6.0 7000
6シリカ (徳山曹達 (株) 5.0 no y 220 3.7 7700 フ了インシ-ル T- 32) 6 Silica (Tokuyama Soda Co., Ltd. 5.0 no y 220 3.7 7700 F-in seal T-32)
7 酸化チタン (Ϊイカ (株) 1.0 inn 210 3.2 6400 MT-500B)  7 Titanium oxide (Taika Corporation 1.0 inn 210 3.2 6400 MT-500B)
8 酸化亜鉛 (塄化学 1.0 90 200 3.4 5200 工業 FINEX-25)  8 Zinc oxide (塄 Chemical 1.0 90 200 3.4 5200 Industrial FINEX-25)
9 酸化マグネシウム 1.0 100 200 2.3 5000 (和光純薬工業)  9 Magnesium oxide 1.0 100 200 2.3 5000 (Wako Pure Chemical Industries)
10 酸化了ルミニゥム 3.0 100 190 2.5 6200 (和光純薬工業)  10 Oxidized Luminium 3.0 100 190 2.5 6200 (Wako Pure Chemical Industries)
11 シリカ (徳山曹達 (株) 3.0 110 210 4.5 7100 トクシ-ル P)  11 Silica (Tokuyama Soda Co., Ltd. 3.0 110 210 4.5 7100 Toxil P)
12 酸化チタン (ティカ (株) 1.0 100 190 2.9 6700 MT-500B)  12 Titanium oxide (Tika Corporation 1.0 100 190 2.9 6700 MT-500B)
13 酸化チタン (ティカ (株) 3.0 110 200 3.6 7200 HT-500B)  13 Titanium oxide (Tika Corporation 3.0 110 200 3.6 7200 HT-500B)
14 シリカ (徳山曹達 (株) 1.0 100 210 2.8 6200 フ了インシ-ル T-32)  14 Silica (Tokuyama Soda Co., Ltd. 1.0 100 210 2.8 6200 F-in seal T-32)
15 酸化チタン (ティカ (株) 6.0 110 220 3.8 9200 MT-500B)  15 Titanium oxide (Tika Corporation 6.0 110 220 3.8 9200 MT-500B)
16 シリカ (徳山曹達 (株) 3.0 120 220 3.0 9700 フ 7インシ-ル T-32)  16 Silica (Tokuyama Soda Co., Ltd. 3.0 120 220 3.0 9700 F 7 Seal T-32)
17 シリカ (徳山曹達 (株) 1.0 90 200 2.9 6200 トク'ン-ル P)  17 Silica (Tokuyama Soda Co., Ltd. 1.0 90 200 2.9 6200 Token P)
18 シリカ(日本了 IDジル 3.0 100 210 11.4 11000 (株) E-805) 実施例 19 18 Silica (Nippon Ryo ID Jill 3.0 100 210 11.4 11000 E-805) Example 19
実施例 1で得た架橋ポリエチレンォキサイ ド 100重量部に対してシリ 力(トクシール P 徳山曹達 (株)製)を 3重量部になるように粉体混合した 後に、 120°Cにて溶融混合して各組成物を得た。 得られた組成物を前記 方法によりフィルム化し、 1M LiBF4(無水物) ア一プチロラク トン 溶液を含浸させ前記測定方法に従ってイオン伝導率、 ゲル強度を測定した c 結果を表 2に示す。 100 parts by weight of the cross-linked polyethylene oxide obtained in Example 1 was powder-mixed with 3 parts by weight of Siri force (Toksil P manufactured by Tokuyama Soda Co., Ltd.), and then melt-mixed at 120 ° C. Thus, each composition was obtained. The resulting composition into a film by the method shown 1M LiBF 4 ion conductivity according to the measuring method impregnated with (anhydrous) A one Puchiroraku tons solution, c result of measuring the gel strength in Table 2.
実施例 20  Example 20
無機酸化物を酸化チタン(MT— 500 Bティカ(株)製)にし、 添加量を 1重量部にした以外は、 実施例 19と同様にして得た組成物を前記方法に よりフィルム化し、 前記測定方法に従ってイオン伝導率、 ゲル強度を測定 した。  A composition was obtained in the same manner as in Example 19 except that the inorganic oxide was titanium oxide (manufactured by MT-500 B Tika Co., Ltd.) and the amount added was 1 part by weight, and the composition was formed into a film by the above method. Ionic conductivity and gel strength were measured according to the measurement method.
結果を表 2に示す。  Table 2 shows the results.
表 2 実施例 19一 20  Table 2 Example 19--20
フィルム厚( m)  Film thickness (m)
実施 無機酸化物 添加量 1 LiBF4 イオン伝導率 ゲル強度 例 (部) 吸収前 (無水物)/ ffiScm"1 dyne* sec ァ-ブチ Dラクトン (室温) /cm' 溶液吸収後 Implementation Inorganic oxide addition amount 1 LiBF 4 Ionic conductivity Gel strength Example (parts) Before absorption (anhydride) / ffiScm " 1 dyne * sec arbuty D-lactone (room temperature) / cm 'After solution absorption
19 シリカ (徳山曹達 (株) 3.0 90 200 1.8 7200  19 Silica (Tokuyama Soda Co., Ltd. 3.0 90 200 1.8 7200
トクシ-ル P)  (Toksil P)
20 酸化チタン (ティカ (株) 1.0 100 190 2.0 6700  20 Titanium oxide (Tika Corporation 1.0 100 190 2.0 6700
ΜΤ-δΟΟΒ) 比較例 1 ΜΤ-δΟΟΒ) Comparative Example 1
実施例 1で得た架橋ポリェチレンォキサイ ドに無機酸化物を添加しない 以外は実施例 1と同様にしてフィルム化し、 前記測定方法に従って、 ィォ ン伝導率、 ゲル強度を測定した。  A film was formed in the same manner as in Example 1 except that the inorganic oxide was not added to the crosslinked polyethylene oxide obtained in Example 1, and the ion conductivity and the gel strength were measured according to the above-described measurement methods.
結果を表3に示す。 Table 3 shows the results.
比較例 2  Comparative Example 2
実施例 1で得た架橋ポリエチレンォキサイ ド 1 0 0重量部に対してシリ 力(トクシール P 徳山曹達 (株)製)を 0. 0 5重量部になるよう添加し、 粉体混合した後に 1 2 0 °Cにて溶融混合して組成物を得た。 得られた組成 物を前記方法によりフィルム化し、 前記測定方法に従つてィォン伝導率、 ゲル強度を測定した。  To 100 parts by weight of the crosslinked polyethylene oxide obtained in Example 1, 0.05 parts by weight of silicic acid (Tokusil P manufactured by Tokuyama Soda Co., Ltd.) was added, and after mixing with powder, 1 part by weight was added. The composition was obtained by melt mixing at 20 ° C. The obtained composition was formed into a film by the above method, and the ion conductivity and the gel strength were measured according to the measurement method.
結果を表 3に示す。  Table 3 shows the results.
表 3 比較例 1一 3 Table 3 Comparative Example 1 1 3
Figure imgf000018_0001
比較例 3
Figure imgf000018_0001
Comparative Example 3
実施例 1で得た架橋ポリェチレンォキサイ ド 1 0 0重量部に対してシリ 力(トクシール P 徳山曹達(株)製)を 2 5重量部になるよう添加し、 粉体 混合した後に 1 2 0 °Cにて溶融混合して組成物を得た。 得られた組成物を、 前記方法によりフィルム化しようとしたが、 厚みが 2 mmとなり薄膜ができ なかった。 100 parts by weight of the crosslinked polyethylene oxide obtained in Example 1 was added with 25 parts by weight of silicic acid (Toksil P, manufactured by Tokuyama Soda Co., Ltd.), and the powder was mixed. The composition was obtained by melt mixing at 20 ° C. The resulting composition, An attempt was made to form a film by the above method, but the thickness was 2 mm and a thin film could not be formed.
本発明によつて得られるゲル状電解質は、 高いィォン伝導率を有するこ と、 機械的強度が高いことより、 使用するに際してはその厚みを薄く して 使用できる。 そのため電解質に用いた場合には、 電池および電気化学用材 料の薄型化、 特にリチウム電池のゲル状電解質に用いた場合は、 小型であ るにもかかわらず、 高電圧、 大電気容量、 平坦な放電特性、 良好な低温特 性を有し、 広い温度範囲で使用できる薄型のリチウム電池が可能になる。 従って、 本発明によって得られるゲル状電解質は、 電池および他の電気 化学デバィス用材料として優れており、 特にリチウム電池のゲル状電解質 として好適に用いられる。  The gel electrolyte obtained by the present invention has a high ion conductivity and a high mechanical strength, so that it can be used with a reduced thickness when used. Therefore, when used as an electrolyte, thinner batteries and electrochemical materials are used.In particular, when used as a gel electrolyte for lithium batteries, high voltage, large electric capacity, and flatness are achieved despite their small size. A thin lithium battery with discharge characteristics and good low-temperature characteristics that can be used in a wide temperature range will be possible. Therefore, the gel electrolyte obtained by the present invention is excellent as a material for batteries and other electrochemical devices, and is particularly suitably used as a gel electrolyte for lithium batteries.

Claims

請 求 の 範 囲 The scope of the claims
1. 重量平均分子量が 1 0 0 0〜1 0 0万のポリアルキレンォキサイ ド にィソシァネート化合物を反応させて得られる架橋ポリアルキレンォキサ ィ ド 1 0 0重量部と無機酸化物 0. 1〜2 0重量部からなる組成物に、 無 機電解質および非水系有機溶剤からなる非水電解質溶液を含浸させてなる ゲル状電解質。 1. 100 parts by weight of a cross-linked polyalkylene oxide obtained by reacting a polyalkylene oxide having a weight-average molecular weight of 1,000 to 10,000 with an isocyanate compound and inorganic oxide 0.1 to A gel electrolyte obtained by impregnating a composition consisting of 20 parts by weight with a non-aqueous electrolyte solution containing an inorganic electrolyte and a non-aqueous organic solvent.
2. ポリアルキレンオキサイ ドがポリエチレンオキサイ ド、 ポリプロピ レンォキサイ ドおよびこれらの混合物またはこれらの共重合体からなる群 より選ばれた少なくとも 1種である請求項 1記載のゲル状電解質。  2. The gel electrolyte according to claim 1, wherein the polyalkylene oxide is at least one selected from the group consisting of polyethylene oxide, polypropylene oxide, a mixture thereof, and a copolymer thereof.
3. イソシァネート化合物が、 4 , 4ージフエニルメタンジイソシァネ 一ト、 へキサメチレンジイソシァネートおよび 2, 4一トリ レンジイソシ ァネートからなる群より選ばれた少なくとも 1種である請求項 1記載のゲ ル状電解質。  3. The isocyanate compound is at least one selected from the group consisting of 4,4-diphenylmethane diisocyanate, hexamethylene diisocyanate, and 2,4-tolylene diisocyanate. The gel electrolyte as described.
4. 無機酸化物が、 シリカ、 酸化チタン、 酸化亜鉛、 酸化マグネシウム、 酸化アルミニウムからなる群より選ばれた少なくとも 1種である請求項 1 記載のゲル状電解質。  4. The gel electrolyte according to claim 1, wherein the inorganic oxide is at least one selected from the group consisting of silica, titanium oxide, zinc oxide, magnesium oxide, and aluminum oxide.
5. 無機電解質が、 過塩素酸リチウムまたはテトラフッ化ホウ素リチウ ムである請求項 1記載のゲル状電解質。  5. The gel electrolyte according to claim 1, wherein the inorganic electrolyte is lithium perchlorate or lithium boron tetrafluoride.
6. 非水系有機溶剤が、 プロピレンカーボネートまたはァ一プチロラク トンである請求項 1記載のゲル状電解質。  6. The gel electrolyte according to claim 1, wherein the non-aqueous organic solvent is propylene carbonate or ester lactone.
PCT/JP1993/001272 1992-09-08 1993-09-08 Gel electrolyte WO1994006165A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP4/239418 1992-09-08
JP23941892 1992-09-08
JP5/206306 1993-08-20
JP5206306A JPH06140052A (en) 1992-09-08 1993-08-20 Gel-like electrolyte

Publications (1)

Publication Number Publication Date
WO1994006165A1 true WO1994006165A1 (en) 1994-03-17

Family

ID=26515574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/001272 WO1994006165A1 (en) 1992-09-08 1993-09-08 Gel electrolyte

Country Status (2)

Country Link
JP (1) JPH06140052A (en)
WO (1) WO1994006165A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5529707A (en) * 1994-11-17 1996-06-25 Kejha; Joseph B. Lightweight composite polymeric electrolytes for electrochemical devices
CN112271326A (en) * 2020-10-09 2021-01-26 中国科学院青岛生物能源与过程研究所 Polymer electrolyte with water removing function and application thereof
CN116505065A (en) * 2023-05-08 2023-07-28 深圳飞扬骏研新材料股份有限公司 Solid polymer electrolyte and preparation method thereof

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5965299A (en) * 1997-06-23 1999-10-12 North Carolina State University Composite electrolyte containing surface modified fumed silica
US6190805B1 (en) 1997-09-10 2001-02-20 Showa Denko Kabushiki Kaisha Polymerizable compound, solid polymer electrolyte using the same and use thereof
CA2333037A1 (en) 1999-03-23 2000-09-28 Nisshinbo Industries Inc. Electrolyte composition and solid polymer electrolyte for electric double-layer capacitors, polarizable electrode-forming composition, polarizable electrode, and electric double-layer capacitors
US6544689B1 (en) 1999-06-30 2003-04-08 North Carolina State University Composite electrolytes based on smectite clays and high dielectric organic liquids and electrodes
US6673273B2 (en) 2001-10-24 2004-01-06 3M Innovative Properties Company Crosslinked polymer electrolyte compositions
JP5122063B2 (en) * 2004-08-17 2013-01-16 株式会社オハラ Lithium ion secondary battery and solid electrolyte
JP5153065B2 (en) 2005-08-31 2013-02-27 株式会社オハラ Lithium ion secondary battery and solid electrolyte
JP2007134305A (en) 2005-10-13 2007-05-31 Ohara Inc Lithium ion conductive solid electrolyte and method for manufacturing same
JP5102056B2 (en) 2008-01-31 2012-12-19 株式会社オハラ Solid battery and method of manufacturing electrode thereof
KR101943647B1 (en) 2009-02-23 2019-01-29 가부시키가이샤 무라타 세이사쿠쇼 Nonaqueous electrolyte composition, nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery
JP5412937B2 (en) 2009-04-27 2014-02-12 ソニー株式会社 Non-aqueous electrolyte composition and non-aqueous electrolyte secondary battery
JP5533035B2 (en) 2010-03-02 2014-06-25 ソニー株式会社 Nonaqueous electrolyte composition and nonaqueous electrolyte battery
JP5578662B2 (en) * 2010-04-12 2014-08-27 日本曹達株式会社 Polymer solid electrolyte
WO2012077504A1 (en) * 2010-12-10 2012-06-14 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the power storage device
KR101359900B1 (en) * 2011-06-30 2014-02-11 주식회사 엘지화학 Novel Polymer Electrolyte and Lithium Secondary Battery Comprising the Same
KR101586536B1 (en) 2013-10-10 2016-01-19 한양대학교 산학협력단 Manufacturing method of carbon fiber sheet current collector for all solid state rechargeable thin film lithium secondary battery, and all solid state rechargeable thin film lithium secondary battery comprising carbon fiber sheet current collector
CN111212883B (en) 2017-12-04 2023-08-15 住友精化株式会社 Volatile material emitting composition
JP2019102301A (en) * 2017-12-04 2019-06-24 学校法人 工学院大学 Composition for solid electrolyte formation, polymer solid electrolyte, method for manufacturing composition for solid electrolyte formation, method for manufacturing polymer solid electrolyte, and all-solid battery
CN117981014A (en) 2021-09-21 2024-05-03 琳得科株式会社 Solid electrolyte, method for producing solid electrolyte, and battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01112667A (en) * 1987-10-23 1989-05-01 Sumitomo Chem Co Ltd Solidifying nonaqueous electrolyte solution
JPH04245170A (en) * 1991-01-31 1992-09-01 Yuasa Corp High polymer solid electrolyte

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01112667A (en) * 1987-10-23 1989-05-01 Sumitomo Chem Co Ltd Solidifying nonaqueous electrolyte solution
JPH04245170A (en) * 1991-01-31 1992-09-01 Yuasa Corp High polymer solid electrolyte

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5529707A (en) * 1994-11-17 1996-06-25 Kejha; Joseph B. Lightweight composite polymeric electrolytes for electrochemical devices
WO1997049106A1 (en) * 1994-11-17 1997-12-24 Lithium Technology Corporation Lightweight composite polymeric electrolytes for electrochemical devices
CN112271326A (en) * 2020-10-09 2021-01-26 中国科学院青岛生物能源与过程研究所 Polymer electrolyte with water removing function and application thereof
CN116505065A (en) * 2023-05-08 2023-07-28 深圳飞扬骏研新材料股份有限公司 Solid polymer electrolyte and preparation method thereof
CN116505065B (en) * 2023-05-08 2024-04-02 深圳飞扬骏研新材料股份有限公司 Solid polymer electrolyte and preparation method thereof

Also Published As

Publication number Publication date
JPH06140052A (en) 1994-05-20

Similar Documents

Publication Publication Date Title
WO1994006165A1 (en) Gel electrolyte
KR100332080B1 (en) Solid electrolyte and battery
US5622792A (en) Additives for extruding polymer electrolytes
US5527639A (en) Galvanic cell
US5599355A (en) Method for forming thin composite solid electrolyte film for lithium batteries
US5419984A (en) Solid electrolytes containing polysiloxane acrylates
US5187032A (en) Solid polymer electrolytes
US4740433A (en) Nonaqueous battery with special separator
WO1995015589A1 (en) Electrolyte activatable lithium-ion rechargeable battery cell and method of making same
WO1995034504A1 (en) THE USE OF ORGANIC SOLVENTS IN THE SYNTHESIS OF V6O13+x[0∫X≤2.0]
JP6475317B2 (en) SOLID ELECTROLYTE COMPOSITION, BATTERY ELECTRODE SHEET AND METHOD FOR MANUFACTURING SAME
US5358620A (en) Allyl polyelectrolytes
KR100271240B1 (en) Polyurethane Based Electrolytes for Electrochemical Cells and Electrochemical Cells using Same
JP2001502840A (en) Solid electrolyte containing toughener and electrolytic cell made therefrom
JP3481685B2 (en) Gel electrolyte
JP2940181B2 (en) Solid electrode composition
WO1994024711A1 (en) Allyl carbonate monomers and solid electrolytes derived by polymerization thereof
JPS6264073A (en) Ion conducting high polymer substance
WO1994029920A1 (en) Method of making a cathode for use in an electrolytic cell
US6159639A (en) Triple-polymer based composite electrolyte
JP2762145B2 (en) Ion conductive polymer electrolyte
KR100388563B1 (en) Thermohardening Electrolyte Composition Using Blocked Isocyanate and Preparation Method of Polyurethane-based Polymeric Gel Electrolyte Therefrom
JPH0588482B2 (en)
Xie et al. Electronic-ionic conducting interpenetrating polymer networks based on (castor oil-polyethylene glycol) polyurethane and poly (vinyl pyridine)
JPH0224975A (en) Lithium ion conducting polymer electrolyte

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase