JP2940181B2 - Solid electrode composition - Google Patents

Solid electrode composition

Info

Publication number
JP2940181B2
JP2940181B2 JP2855491A JP2855491A JP2940181B2 JP 2940181 B2 JP2940181 B2 JP 2940181B2 JP 2855491 A JP2855491 A JP 2855491A JP 2855491 A JP2855491 A JP 2855491A JP 2940181 B2 JP2940181 B2 JP 2940181B2
Authority
JP
Japan
Prior art keywords
electrode composition
solid
ion
electrode
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2855491A
Other languages
Japanese (ja)
Other versions
JPH04267055A (en
Inventor
正 外邨
佳子 佐藤
裕司 上町
輝寿 神原
宏夢 松田
健一 竹山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2855491A priority Critical patent/JP2940181B2/en
Publication of JPH04267055A publication Critical patent/JPH04267055A/en
Application granted granted Critical
Publication of JP2940181B2 publication Critical patent/JP2940181B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Polyethers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電池、キャパシタ、セ
ンサ、表示素子、記録素子等の電気化学素子に用いられ
る固形電極組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrode composition used for electrochemical devices such as batteries, capacitors, sensors, display devices and recording devices.

【0002】[0002]

【従来の技術】一般の電気化学素子においては、従来の
液体の電解質に代えて、固体の電解質を用いることによ
り液漏れがなく、小形薄形化された電池、電気二重層キ
ャパシタ等の固体の電気化学素子を得ることができる。
2. Description of the Related Art In a general electrochemical device, a solid electrolyte is used in place of a conventional liquid electrolyte without liquid leakage, and a solid electrolyte such as a small and thin battery or an electric double layer capacitor is used. An electrochemical device can be obtained.

【0003】しかしながら、これらの電気化学素子は弾
性に欠ける固体物質で素子が構成されることから、機械
的衝撃に対してはきわめて脆く、破損しやすいという欠
点がある。このような問題を解決するため、ポリエチレ
ンオキシド(PEO)とアルカリ金属塩とからなる高分
子固体電解質が提案されている("Fast Ion Transpor
t in Solid" P.Vanishstaet.al., Eds. P. 131(1979) N
orth Holand Publishing Co.) 。
[0003] However, since these electrochemical devices are composed of a solid material lacking in elasticity, they have a drawback that they are extremely brittle against mechanical shock and are easily broken. In order to solve such a problem, a solid polymer electrolyte composed of polyethylene oxide (PEO) and an alkali metal salt has been proposed ("Fast Ion Transpor").
t in Solid "P.Vanishstaet.al., Eds. P. 131 (1979) N
orth Holand Publishing Co.).

【0004】高分子固体電解質は無機系固体電解質に較
べ、軽量で、柔軟性、成形性に優れている。以来、優れ
た柔軟性、成形性を保持したままで無機系固体電解質に
匹敵する高いイオン伝導性を示す材料の研究開発が盛ん
に行われている。そして、これらの高分子電解質と五酸
化バナジウム等の無機化合物よりなる電極材料またはポ
リアニリン等の有機化合物よりなる電極材料と混合して
固体の電極組成物とし、高分子電解質を介して電極組成
物を接合することで固体状態の電池が現在提案されてい
る。
[0004] A polymer solid electrolyte is lighter, more flexible, and more excellent in moldability than an inorganic solid electrolyte. Since then, research and development of materials exhibiting high ionic conductivity comparable to inorganic solid electrolytes while maintaining excellent flexibility and moldability have been actively conducted. Then, these polymer electrolytes are mixed with an electrode material made of an inorganic compound such as vanadium pentoxide or an organic material such as polyaniline to form a solid electrode composition, and the electrode composition is formed through the polymer electrolyte. Batteries in solid state by joining are currently proposed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来のこれまで得られている電極組成物では必ずしも電極
材料と高分子電解質とが均質に分散混合されておらず、
イオン伝導と電子伝導のためのネットワークが十分でな
く、例えばJournal of Powder Sources, 28巻, 397〜40
8頁(1987年)に述べられているように、LiCF3SO3を溶解
したホ゜リエチレンオキサイト゛よりなる高分子固体電解質(SP
E)と、リチウム負極と、アモルファスV2O5とSPEと
カーホ゛ンフ゛ラックの配合物よりなる正極とから構成された電池
の正極の利用率は、約10%(放電電流密度:0.33 mA/
cm2, 温度:20℃)と低く電極材料が十分に利用され
ていないという課題があった。
However, in the above-mentioned conventional electrode compositions, the electrode material and the polymer electrolyte are not always homogeneously dispersed and mixed.
Insufficient networks for ionic and electronic conduction, for example, Journal of Powder Sources, Vol. 28, 397-40
As described on page 8 (1987), a polymer solid electrolyte (SP) composed of polyethylene oxide dissolved in LiCF 3 SO 3
E), a lithium anode, and a cathode composed of a mixture of amorphous V 2 O 5 , SPE, and carbon black, have a utilization rate of about 10% (discharge current density: 0.33 mA /
cm 2 , temperature: 20 ° C.), and there was a problem that the electrode material was not sufficiently used.

【0006】本発明は上記課題を解決するものであり、
均質な成形性の良いイオン伝導性、電子伝導性のともに
優れた固形電極組成物を提供することを目的とする。
[0006] The present invention is to solve the above problems,
It is an object of the present invention to provide a solid electrode composition having good uniform formability and excellent ion conductivity and electron conductivity.

【0007】[0007]

【課題を解決するための手段】本発明は上記目的を達成
するために、電極活物質と、必要により導電材と、ポリ
アミン化合物にエチレンオキサイド(EO)およびブチ
レンオキサイド(BO)を付加したポリエーテル化合物
と、イオン交換性の層状化合物と、式MXで表されるイ
オン性物質(ただし、Mは電界の作用で固形電極組成物
内を移動する金属イオン、プロトン、アンモニウムイオ
ンであり、Xは強酸のアニオンである)とを少なくとも
含有する電極組成物であり、さらに、電極組成物内のイ
オン伝導性を上げる目的でイオン伝導性の粒子を含有す
ることができる。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides an electrode active material, a conductive material if necessary, and a polyamine obtained by adding ethylene oxide (EO) and butylene oxide (BO) to a polyamine compound. A compound, an ion-exchangeable layered compound, and an ionic substance represented by the formula MX (where M is a metal ion, proton, or ammonium ion that moves in the solid electrode composition under the action of an electric field, and X is a strong acid ), And ion-conductive particles for the purpose of increasing ionic conductivity in the electrode composition.

【0008】[0008]

【作用】したがって本発明によればイオン性物質MXは
ポリエーテル化合物とイオン交換性の層状化合物とで複
合体を形成して層状化合物の結晶の層間または表面に高
濃度に保持されイオン伝導に有利な経路を形成し、また
電極活物質の粉末と、必要により導電材の粉末は、ポリ
エーテル化合物の界面活性剤の作用により溶媒とイオン
交換性の層状化合物と均一に混和され、電池反応に必要
な電子およびイオンの伝導経路を形成し、さらにイオン
伝導性粉末の添加混合に際してはポリエーテル化合物が
そのイオン伝導性粉末の凝集を防止し、溶媒とイオン交
換性の層状化合物および電子伝導性の電極活物質および
導電材との均一な混合分散を可能にするため、高い電子
・イオン伝導性と均質性を得ることができる。その結
果、分極の小さい、かつ電極利用率の高い電極組成物と
なる。また、ポリエーテル化合物のポリエチレンオキサ
イド鎖およびブチレンオキサイド鎖とイオン交換性の層
状化合物のマイクロポーラス構造とが絡まって良好な成
形性と十分な機械強度が付与される。
Therefore, according to the present invention, the ionic substance MX forms a complex between the polyether compound and the ion-exchangeable layered compound and is maintained at a high concentration between the layers or surfaces of the crystal of the layered compound, which is advantageous for ion conduction. The active material powder and, if necessary, the conductive material powder are uniformly mixed with the solvent and ion-exchangeable layered compound by the action of the polyether compound surfactant, and are necessary for the battery reaction. Forms a conductive path for electrons and ions, and furthermore, during addition and mixing of the ion-conductive powder, the polyether compound prevents the aggregation of the ion-conductive powder, and forms a layered compound and an electron-conductive electrode that are ion-exchangeable with the solvent. In order to enable uniform mixing and dispersion with the active material and the conductive material, high electron and ion conductivity and homogeneity can be obtained. As a result, an electrode composition having low polarization and high electrode utilization is obtained. Further, the polyethylene oxide chain and butylene oxide chain of the polyether compound are entangled with the microporous structure of the ion-exchangeable layered compound, so that good moldability and sufficient mechanical strength are provided.

【0009】[0009]

【実施例】以下、本発明の一実施例について、詳細に説
明する。また、以下の実施例において部、%、比は特に
断わらない限り重量部、重量%、重量比を表わす。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of the present invention will be described in detail. Further, in the following examples, parts,%, and ratio represent parts by weight,% by weight, and ratio by weight unless otherwise specified.

【0010】本発明における電極活物質または導電材と
しては、金属銅、金属銀、金属リチウム等の単体金属、
Li-Al,LaNi5等の合金、硫化銅、硫化銀、銅シュブレル
化合物、銀シュブレル化合物、硫化チタン、硫化ニオ
ブ、硫化モリブデン等の金属硫化物、二酸化マンガン、
酸化バナジウム、酸化コバルト、酸化クロム等の金属酸
化物、塩化銀、ヨウ化鉛、フッ化カーボン等のハロゲン
化物または活性炭、黒鉛、カーボンブラック等の炭素材
料など常温で固体状の材料を使用することができる。ま
た形状としては平均粒径が1μm以下の超微粒子から数
10μmの粒子のものまで何れも用いることができる。
In the present invention, the electrode active material or the conductive material may be a single metal such as metallic copper, metallic silver or metallic lithium;
Alloys such as Li-Al and LaNi 5 , copper sulfide, silver sulfide, copper sublel compounds, silver sublel compounds, titanium sulfide, niobium sulfide, metal sulfides such as molybdenum sulfide, manganese dioxide,
Use solid materials at room temperature, such as metal oxides such as vanadium oxide, cobalt oxide, and chromium oxide; halides such as silver chloride, lead iodide, and carbon fluoride; and carbon materials such as activated carbon, graphite, and carbon black. Can be. As the shape, any of ultrafine particles having an average particle diameter of 1 μm or less to particles of several tens μm can be used.

【0011】本発明におけるポリアミン化合物にエチレ
ンオキサイドおよびブチレンオキサイドを付加したポリ
エーテル化合物は、ポリアミン化合物をアルカリ触媒下
で100ー180℃、1〜10気圧でエチレンオキサイ
ドおよびブチレンオキサイドを付加反応することにより
得ることができる。ポリアミン化合物としては、ポリエ
チレンイミン、ポリアルキレンポリアミンまたはそれら
の誘導体を用いることができる。ポリアルキレンポリア
ミンとして、ジエチレントリアミン、トリエチレンテト
ラミン、ヘキサメチレンテトラミン、ジプロピレントリ
アミン等を挙げることができる。エチレンオキサイドと
ブチレンオキサイドの付加モル数はポリアミン化合物の
活性水素1個当り2〜150モルである。付加するエチ
レンオキサイド(EO)とブチレンオキサイド(BO)との比
は、80/20〜10/90(=EO/BO)である。この
ようにして得られるポリエーテルの平均分子量は100
0〜500万である。ポリエーテル化合物の添加量は、
固形電極組成物全量に対し、0.5から20%が好まし
い。
The polyether compound of the present invention obtained by adding ethylene oxide and butylene oxide to the polyamine compound is obtained by subjecting the polyamine compound to addition reaction of ethylene oxide and butylene oxide at 100-180 ° C. and 1-10 atm under an alkali catalyst. Obtainable. As the polyamine compound, polyethyleneimine, polyalkylenepolyamine or a derivative thereof can be used. Examples of the polyalkylene polyamine include diethylene triamine, triethylene tetramine, hexamethylene tetramine, dipropylene triamine and the like. The addition mole number of ethylene oxide and butylene oxide is 2 to 150 moles per active hydrogen of the polyamine compound. The ratio of ethylene oxide (EO) and butylene oxide (BO) to be added is 80/20 to 10/90 (= EO / BO). The polyether thus obtained has an average molecular weight of 100
0 to 5 million. The addition amount of the polyether compound is
It is preferably 0.5 to 20% based on the total amount of the solid electrode composition.

【0012】イオン性物質としては、特に制限はない
が、LiI,LiClO4,LiCF3SO3,LiPF6,LiBF 4,LiSCN,LiAsF6,N
aI,NaSCN,NaBr,KI,AgNO3,CuCl2,Mg(ClO4)2,ZnCl2,AlCl3
等の可溶性の塩が用いられる。
[0012] The ionic substance is not particularly limited.
But LiI, LiClOFour, LiCFThreeSOThree, LiPF6, LiBF Four, LiSCN, LiAsF6, N
aI, NaSCN, NaBr, KI, AgNOThree, CuClTwo, Mg (ClOFour)Two, ZnClTwo, AlClThree
Soluble salts are used.

【0013】イオン交換性の層状化合物としては、モン
モリロナイト、ヘクトライト、サポナイト、スメクタイ
ト等のけい酸塩を含む粘土鉱物、りん酸ジルコニウム、
りん酸チタニウム等のりん酸エステル、バナジン酸、ア
ンチモン酸、タングステン酸またはそれらを第4級アン
モニウム塩等の有機カチオンまたはエチレンオキサイ
ド、ブチレンオキサイド等の有機の極性化合物で変性し
たものが挙げられる。
Examples of the ion-exchangeable layered compound include clay minerals including silicates such as montmorillonite, hectorite, saponite, smectite, zirconium phosphate,
Examples thereof include phosphoric esters such as titanium phosphate, vanadic acid, antimonic acid, tungstic acid, and those modified with organic cations such as quaternary ammonium salts or organic polar compounds such as ethylene oxide and butylene oxide.

【0014】さらに本発明の固形電極組成物の中に下記
のイオン伝導性の粉末を添加することも可能である。す
なわちイオン伝導性の粉末としては、MeCu4I2-xCl3+x(x
=0.25〜1.0,Me=Rb,K,NH4またはそれらを混合したもの)
やCuI-Cu2O-MoO3ガラス等の銅イオン伝導性固体電解
質、RbAg4I5、Ag3Si、AgI-Ag2O-MoO3ガラス、Ag6I4WO4
等の銀イオン伝導性固体電解質、LiI、LiI・H2O、Li-β
-Al2O3、LiI-Li2S-B2S3、PEO-LiCF3SO3等のリチウムイ
オン伝導性固体電解質、H3Mo12PO40・29H2O、H3W 12PO40
・29H2O等のプロトン伝導性固体電解質を用いることが
できる。その形状としては平均粒径が1μm以下の超微
粒子から数10μmの粒子のものまで何れも用いること
ができる。上記のイオン伝導性粉末の添加量は、固形電
極組成物の成形性が損なわれない限り制限はない。
Further, in the solid electrode composition of the present invention,
It is also possible to add an ion-conductive powder of You
That is, MeCu is used as the ion conductive powder.FourI2-xCl3 + x(x
= 0.25-1.0, Me = Rb, K, NHFourOr a mixture of them)
And CuI-CuTwoO-MoOThreeCopper ion conductive solid electrolysis of glass etc.
Quality, RbAgFourIFive, AgThreeSi, AgI-AgTwoO-MoOThreeGlass, Ag6IFourWOFour
Silver ion conductive solid electrolytes such as LiI, LiI.HTwoO, Li-β
-AlTwoOThree, LiI-LiTwoS-BTwoSThree, PEO-LiCFThreeSOThreeSuch as lithium ion
On-conductive solid electrolyte, HThreeMo12PO40・ 29HTwoO, HThreeW 12PO40
・ 29HTwoUse of proton conductive solid electrolytes such as O
it can. Its shape is ultrafine with an average particle size of 1 μm or less.
Use any particle size from several tens of μm
Can be. The amount of the above ion conductive powder is
There is no limitation as long as the moldability of the polar composition is not impaired.

【0015】本発明の固形電極組成物は次のようにして
得られる。イオン性物質を1から50%溶解した溶剤に
イオン交換性の層状化合物の粉末を1〜50%となるよ
うに加え、次にEO鎖およびBO鎖を有するポリエーテ
ル化合物をスラリー全体に対して0.1〜20%の割合
になるように加え、ディスパーサ等の混合粉砕機により
粉砕混合して固形分含量が5〜95%の電解質スラリー
を調製する。
The solid electrode composition of the present invention is obtained as follows. A powder of an ion-exchangeable layered compound is added to a solvent in which 1 to 50% of an ionic substance is dissolved so as to have a concentration of 1 to 50%. The mixture is pulverized and mixed by a mixing pulverizer such as a disperser to prepare an electrolyte slurry having a solid content of 5 to 95%.

【0016】また、イオン性物質を1から50%溶解し
た溶剤にEO鎖およびBO鎖を有するポリエーテル化合
物を0.1〜20%含むポリエーテル化合物溶液に、電
極活物質の粉末および必要に応じ電極活物質の粉末と導
電材をあらかじめ混合した粉末を添加し、電極スラリー
とする。次に、電解質スラリーと電極スラリーを混合し
て電極組成物スラリーを得る。混合は、直径が3〜10
mmアルミナ球と一緒にアルミナボールミル中で行うの
が好ましい。このようにして得られた電極組成物スラリ
ーを、フッ素樹脂板とかナイロンメッシュシートとかの
支持体上に流延または塗布して成形した後、溶剤を一部
または全部散逸させることによって固形電解質組成物を
得ることができる。支持体がメッシュ状であれば支持体
を一体化したままで固形電極組成物として用いることも
可能である。
Further, a powder of an electrode active material and, if necessary, a polyether compound solution containing 0.1 to 20% of a polyether compound having an EO chain and a BO chain in a solvent in which 1 to 50% of an ionic substance is dissolved. A powder obtained by previously mixing a powder of an electrode active material and a conductive material is added to form an electrode slurry. Next, the electrolyte slurry and the electrode slurry are mixed to obtain an electrode composition slurry. Mixing has a diameter of 3-10
It is preferably carried out in an alumina ball mill together with mm alumina spheres. The electrode composition slurry thus obtained is cast or molded on a support such as a fluororesin plate or a nylon mesh sheet, and then molded, and then the solid electrolyte composition is formed by dispersing a part or all of the solvent. Can be obtained. If the support is in a mesh form, it can be used as a solid electrode composition while the support is integrated.

【0017】必要に応じ、これらの工程は相対湿度が4
0%以下の乾燥雰囲気中で行われる。また、溶剤として
は、アセトン、メチルエチルケトン、メチルイソブチル
ケトン等のケトン系溶剤、n-ヘキサン、n−ヘプタン、
n-オクタン、シクロヘキサン等の飽和炭化水素系溶剤、
ベンゼン、トルエン、キシレン等の芳香族系溶剤、酢酸
エチル、酢酸プチル、プロピレンカーボネート等のエス
テル系溶剤、メタノール、エタノール、イソプロピルア
ルコール、エチレングリコール、グリセリン、ポリエチ
レングリコール等のアルコール系溶剤、アセトニトリル
等のニトリル類、あるいは水が用いられる。
If necessary, these steps may be performed at a relative humidity of 4
It is performed in a dry atmosphere of 0% or less. Further, as the solvent, acetone, methyl ethyl ketone, ketone solvents such as methyl isobutyl ketone, n-hexane, n-heptane,
saturated hydrocarbon solvents such as n-octane and cyclohexane,
Aromatic solvents such as benzene, toluene and xylene; ester solvents such as ethyl acetate, butyl acetate and propylene carbonate; alcohol solvents such as methanol, ethanol, isopropyl alcohol, ethylene glycol, glycerin and polyethylene glycol; nitriles such as acetonitrile Or water.

【0018】(実施例1)分子内に10個のN原子を含
有するポリエチレンイミンにエチレンオキサイド(E
O)とブチレンオキサイド(BO)とをEOとBOの比
が30/70となるように付加して得た平均分子量が1
80000のポリエーテル化合物をアセトニトリルに溶
解し20%のポリエーテル溶液を調製した。
(Example 1) Polyethyleneimine containing 10 N atoms in a molecule was converted to ethylene oxide (E
O) and butylene oxide (BO) are added so that the ratio of EO to BO is 30/70, and the average molecular weight obtained is 1
An 80,000 polyether compound was dissolved in acetonitrile to prepare a 20% polyether solution.

【0019】さらに、イオン性物質としてLiCF3SO3を1
0%溶解したポリエーテル溶液に、固形分含量が30%
となるように平均粒径が15μmのγーりん酸ジルコニ
ウム粉末を添加し、40℃で24時間撹拌混合し、電解
質スラリーを得た。次に、ポリエーテル溶液に平均粒径
が6μmの硫化ニオブ粉末(NbS2)を固形分含量が50
%となるように加え、40℃で24時間混合し、電極ス
ラリーを得た。電解質スラリーと電極スラリーとを固形
分比が1:2となるようにアルミナボールミル中で24
時間混合して電極組成物スラリーを得た。電極組成物ス
ラリーを平滑なフッ素樹脂製の板の上でドクターブレー
ドを用い塗布した後、130℃の乾燥アルゴン気流中で
1時間乾燥しさらに5時間真空乾燥することで、大きさ
80x80mm、厚さ140μmのシート状の固形電極
組成物を得た。また、電池を構成するために、電解質ス
ラリーのみを同様にして塗布乾燥して大きさ80x80
mm、厚さ55ミクロンの電解質シートを作製した。
Further, LiCF 3 SO 3 is used as an ionic substance.
30% solid content in 0% dissolved polyether solution
Γ-zirconium phosphate powder having an average particle size of 15 μm was added thereto and stirred and mixed at 40 ° C. for 24 hours to obtain an electrolyte slurry. Next, niobium sulfide powder (NbS 2 ) having an average particle size of 6 μm was added to the polyether solution at a solid content of 50 μm.
%, And mixed at 40 ° C. for 24 hours to obtain an electrode slurry. The electrolyte slurry and the electrode slurry are mixed in an alumina ball mill at a solid content ratio of 1: 2.
After mixing for an hour, an electrode composition slurry was obtained. The electrode composition slurry was applied on a smooth fluororesin plate using a doctor blade, then dried in a dry argon gas stream at 130 ° C. for 1 hour, and further vacuum-dried for 5 hours to obtain a size of 80 × 80 mm and a thickness of 80 × 80 mm. A 140 μm sheet-shaped solid electrode composition was obtained. In addition, in order to construct a battery, only the electrolyte slurry is coated and dried in the same manner, and the size is 80 × 80.
An electrolyte sheet having a thickness of 55 mm and a thickness of 55 microns was prepared.

【0020】(実施例2)電極活物質としてバナジウム
ブトキサイドの加水分解により得た平均粒径が0.5μ
mのバナジウム酸化物粉末1部と平均粒径が0.02μ
mのファーネスブラック0.1部とをエタノールを分散
媒として混合乾燥したものを電極粉末として用い、トリ
エチレンテトラミンにEOとBOとをEO/BO=80
/20(重量比)の割合で付加することにより得た平均
分子量が8000のポリエーテル化合物をアセトニトリ
ルに溶解した10%のポリエーテル溶液と、平均粒径が
5μmのモンモリロナイト粉末と、イオン性物質として
トリフルオロスルフォン酸リチウム(LiCF3SO3)とを用
いた以外は実施例1と同様にして、厚さが135μmの
シート状の固形電極組成物と厚さが60μmのシート状
電解質を作製した。
Example 2 The average particle diameter obtained by hydrolysis of vanadium butoxide as an electrode active material was 0.5 μm.
1 part of vanadium oxide powder having an average particle size of 0.02 μm
m and 0.1 parts of furnace black mixed with ethanol as a dispersion medium and dried was used as an electrode powder, and EO and BO were added to triethylenetetramine at EO / BO = 80.
/ 20 (weight ratio) obtained by dissolving a polyether compound having an average molecular weight of 8000 in acetonitrile, a 10% polyether solution, a montmorillonite powder having an average particle size of 5 μm, and an ionic substance. A sheet-like solid electrode composition having a thickness of 135 μm and a sheet-like electrolyte having a thickness of 60 μm were produced in the same manner as in Example 1 except that lithium trifluorosulfonate (LiCF 3 SO 3 ) was used.

【0021】(実施例3)炭酸リチウムと炭酸マンガン
の混合物を加熱分解することにより得た平均粒径7ミク
ロンのリチウム・マンガン複合酸化物(LiMn2O4)粉末
1部と平均粒径0.02ミクロンのファーネスブラック
0.2部との混合物を電極活物質として用い、ヘキサメ
チレンテトラミンにEOとBOとをEO/BO=60/
40の割合で付加することにより得た平均分子量が15
000のポリエーテル化合物をアセトニトリルに溶解し
た10%のポリエーテル溶液と、平均粒径が8μmのγ
ーりん酸ジルコニウム粉末と、イオン性物質として過塩
素酸リチウム(LiClO4)とを用い、さらに、イオン伝導
性の固体電解質としてLi3NとLiIとB2O3からなるリチウ
ム化合物を固形分重量として5%混合した以外は実施例
1と同様にして大きさが80x80mm、厚さが155
μmのシート状の固形電極組成物と、厚さが50μmの
シート状電解質を作製した。
Example 3 One part of a lithium-manganese composite oxide (LiMn 2 O 4 ) powder having an average particle diameter of 7 μm obtained by thermally decomposing a mixture of lithium carbonate and manganese carbonate, and an average particle diameter of 0.1 μm. A mixture of 0.2 parts of 02 micron furnace black was used as an electrode active material, and EO and BO were added to hexamethylenetetramine as EO / BO = 60 /
The average molecular weight obtained by adding at a ratio of 40 is 15
000 polyether compound dissolved in acetonitrile, a 10% polyether solution, and γ having an average particle size of 8 μm.
-Using zirconium phosphate powder, lithium perchlorate (LiClO 4 ) as an ionic substance, and a lithium compound composed of Li 3 N, LiI, and B 2 O 3 as an ion-conductive solid electrolyte. As in Example 1, the size was 80 × 80 mm, and the thickness was 155, except that 5% was mixed.
A sheet-shaped solid electrode composition having a thickness of μm and a sheet-shaped electrolyte having a thickness of 50 μm were prepared.

【0022】[0022]

【比較例】LiCF3SO3をエチレンオキサイド1分子当り8
分の1個溶解した平均分子量が480万のポリエチレン
オキサイドよりなる高分子固体電解質と、実施例2と同
様の電極活物質とを混合・乾燥することで厚さ135μ
mシート状の固形電極組成物を作製した。また、厚さ6
0μmのシート状電解質を作製した。
[Comparative Example] LiCF 3 SO 3 was added in an amount of 8 per ethylene oxide molecule.
One-third of the polymer solid electrolyte made of polyethylene oxide having an average molecular weight of 4.8 million was mixed with the same electrode active material as in Example 2, and dried to a thickness of 135 μm.
An m-sheet solid electrode composition was prepared. In addition, thickness 6
A sheet electrolyte of 0 μm was produced.

【0023】固形電極組成物の特性評価 実施例1〜3と比較例で得られた固形電極組成物を用い
て直径10mmの円板を打ち抜き、特性試験用の試料と
した。また、各々の実施例において作製したシート状電
解質を直径10mmに打ち抜き電池構成用に用いた。電
解質円板の一方の面に厚さ2mm直径10mmの金属リ
チウム円板を配置し、他方の面に固形電極組成物の円板
を配置し、さらにその上下に白金円板を配置した後、全
体を50kg/cm2の圧力で上下から加圧した状態
で、水分が2ppm以下のアルゴンガス雰囲気中で80
℃で3時間加熱し、試験電池A(実施例1)、試験電池
B(実施例2)、試験電池C(実施例3)、試験電池
B’(比較例)を各々10個づつ組み立てた。試験電池
を3.5Vの一定電圧で17時間充電した後、0.05
mAの一定電流で10秒間放電を行い、放電直前および
放電直後の電池電圧の差(分極)を測定し10個の電池
について平均値と標準偏差値を求めた。また、同じ電流
値で0.3ボルトまで連続放電を行い放電容量を求め、
理論容量(100%)に対する電極活物質の利用率を求
めた。分極値の結果を(表1)に、電極の利用率を(表
2)に示す。電極利用率は、NbS2、V2O5、LiMn2O41モ
ルに対し、Liが1モル反応した場合を100%として評
価した。
Evaluation of Characteristics of Solid Electrode Composition Using the solid electrode compositions obtained in Examples 1 to 3 and Comparative Example, a disk having a diameter of 10 mm was punched out to obtain a sample for a characteristic test. In addition, the sheet electrolyte prepared in each of the examples was punched into a 10 mm diameter and used for a battery configuration. After disposing a metal lithium disc having a thickness of 2 mm and a diameter of 10 mm on one surface of the electrolyte disc, disposing a disc of the solid electrode composition on the other face, and further disposing platinum discs above and below the whole, Is pressurized from above and below at a pressure of 50 kg / cm 2 , and 80 wt.
C. for 3 hours to assemble 10 test batteries A (Example 1), 10 test batteries B (Example 2), 10 test batteries C (Example 3), and 10 test batteries B '(Comparative Example). After charging the test battery at a constant voltage of 3.5 V for 17 hours, 0.05
Discharge was performed at a constant current of mA for 10 seconds, and a difference (polarization) between the battery voltages immediately before and immediately after the discharge was measured, and an average value and a standard deviation value were obtained for 10 batteries. In addition, a continuous discharge was performed to 0.3 volt at the same current value to obtain a discharge capacity,
The utilization rate of the electrode active material with respect to the theoretical capacity (100%) was determined. The results of the polarization values are shown in (Table 1), and the utilization rates of the electrodes are shown in (Table 2). The electrode utilization was evaluated assuming that 1 mol of Li reacted with 1 mol of NbS 2 , V 2 O 5 , and LiMn 2 O 4 as 100%.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】上記実施例および(表1)、(表2)に示
した結果から明らかなように、本実施例による固形電極
組成物は、電極利用率が30%以上あり、また分極の標
準偏差値は小さく電極活物質と固体電解質とが均一に混
合された均質な電極組成物であることを示している。
As is clear from the above examples and the results shown in (Table 1) and (Table 2), the solid electrode composition according to this example has an electrode utilization rate of 30% or more and a standard deviation of polarization. The value is small, indicating that the electrode active material and the solid electrolyte are a homogeneous electrode composition that is uniformly mixed.

【0027】また、本実施例の固形電極組成物の機械強
度を、長さ40mm、幅5mmの成形体を用いて半径が
50mmの曲面に沿って1秒間に2回の割合で繰り返し
折り曲げた際、破断に至るまでの回数で評価したとこ
ろ、800回の折り曲げ試験後でも破断することなく元
の形状を保っており、優れた機械強度を有していること
がわかった。
Further, the mechanical strength of the solid electrode composition of the present example was determined by repeatedly bending a molded body having a length of 40 mm and a width of 5 mm along a curved surface having a radius of 50 mm at a rate of twice per second. When evaluated by the number of times up to breakage, it was found that even after 800 times of the bending test, the original shape was maintained without breakage, and that it had excellent mechanical strength.

【0028】[0028]

【発明の効果】上記実施例より明らかなように本発明に
よれば、エチレンオキサイド鎖およびブチレンオキサイ
ド鎖を有する特定のポリエーテル化合物の作用により電
極活物質および導電材が均一に分散された均質な固形電
極組成物を提供することができる。このポリエーテル化
合物は、イオン交換性の層状化合物と複合体を形成し層
状化合物の結晶の層間または表面に高濃度に保持されイ
オン伝導に有利な経路を形成し、固形電極組成物内にあ
って電池反応の円滑な進行に必要なイオン伝導の経路を
形成でき、また電子およびイオンの伝導経路が均一に形
成されるため、電極利用率の高い、分極の小さい、かつ
均一な特性を得ることができる。
As is apparent from the above examples, according to the present invention, a uniform polyelectrode active material and a conductive material are uniformly dispersed by the action of a specific polyether compound having an ethylene oxide chain and a butylene oxide chain. A solid electrode composition can be provided. The polyether compound forms a complex with the ion-exchangeable layered compound, and is maintained at a high concentration between layers or on the surface of the crystal of the layered compound to form a favorable path for ion conduction. The ion conduction path necessary for the smooth progression of the battery reaction can be formed, and the electron and ion conduction paths are formed uniformly, so that high electrode utilization, small polarization, and uniform characteristics can be obtained. it can.

フロントページの続き (72)発明者 神原 輝寿 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 松田 宏夢 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 竹山 健一 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平4−248258(JP,A) 特開 平1−169875(JP,A) 特開 昭59−160963(JP,A) 特開 昭59−143268(JP,A) 特開 平3−95802(JP,A) 特開 平4−33261(JP,A) 特開 平4−33262(JP,A) 特開 平4−33263(JP,A) 特開 昭63−245871(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 4/62 C08G 65/26 C09K 3/00 H01M 4/02 H01M 4/06 Continuing on the front page (72) Inventor Teruhisa Kamihara 1006 Kadoma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (72) Inventor Kenichi Takeyama 1006 Kadoma, Kazuma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (56) References JP-A-4-248258 (JP, A) JP-A-1-169875 (JP, A) JP-A-59-160963 (JP, A) JP-A-59-143268 (JP, A) JP-A-3-95802 (JP, A) JP-A-4-33261 (JP, A) JP-A-4-33262 ( JP, A) JP-A-4-33263 (JP, A) JP-A-63-245871 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01M 4/62 C08G 65/26 C09K 3/00 H01M 4/02 H01M 4/06

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電極活物質と、ポリアミン化合物にエチレ
ンオキサイドおよびブチレンオキサイドを付加したポリ
エーテル化合物と、イオン交換性の層状化合物と、式M
Xで表されるイオン性物質(ただし、Mは電界の作用で
固形電極組成物内を移動する金属イオン、プロトン、ア
ンモニウムイオンであり、Xは強酸のアニオンである)
とを少なくとも含有することを特徴とする固形電極組成
物。
1. An electrode active material, a polyether compound obtained by adding ethylene oxide and butylene oxide to a polyamine compound, an ion-exchangeable layered compound,
An ionic substance represented by X (where M is the action of an electric field)
A metal ion, a proton, and an ammonium ion that move in the solid electrode composition , and X is an anion of a strong acid)
And a solid electrode composition comprising:
【請求項2】導電材を混入した請求項1記載の固形電極
組成物。
2. The solid electrode composition according to claim 1, wherein a conductive material is mixed.
JP2855491A 1991-02-22 1991-02-22 Solid electrode composition Expired - Fee Related JP2940181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2855491A JP2940181B2 (en) 1991-02-22 1991-02-22 Solid electrode composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2855491A JP2940181B2 (en) 1991-02-22 1991-02-22 Solid electrode composition

Publications (2)

Publication Number Publication Date
JPH04267055A JPH04267055A (en) 1992-09-22
JP2940181B2 true JP2940181B2 (en) 1999-08-25

Family

ID=12251876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2855491A Expired - Fee Related JP2940181B2 (en) 1991-02-22 1991-02-22 Solid electrode composition

Country Status (1)

Country Link
JP (1) JP2940181B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5401963A (en) * 1993-11-01 1995-03-28 Rosemount Analytical Inc. Micromachined mass spectrometer
US10559827B2 (en) 2013-12-03 2020-02-11 Ionic Materials, Inc. Electrochemical cell having solid ionically conducting polymer material
US11152657B2 (en) 2012-04-11 2021-10-19 Ionic Materials, Inc. Alkaline metal-air battery cathode
US11251455B2 (en) 2012-04-11 2022-02-15 Ionic Materials, Inc. Solid ionically conducting polymer material
US9819053B1 (en) 2012-04-11 2017-11-14 Ionic Materials, Inc. Solid electrolyte high energy battery
US11319411B2 (en) 2012-04-11 2022-05-03 Ionic Materials, Inc. Solid ionically conducting polymer material
CN106165154B (en) 2013-12-03 2020-03-13 离子材料公司 Solid ionically conductive polymer material and uses thereof
CN106489217B (en) 2014-04-01 2021-07-30 离子材料公司 High capacity polymer cathode and high energy density rechargeable battery including the same
WO2016196873A1 (en) 2015-06-04 2016-12-08 Ionic Materials, Inc. Lithium metal battery with solid polymer electrolyte
EP3304620A4 (en) 2015-06-04 2018-11-07 Ionic Materials, Inc. Solid state bipolar battery
JP6991861B2 (en) 2015-06-08 2022-02-03 イオニツク・マテリアルズ・インコーポレーテツド Battery with aluminum negative electrode and solid polymer electrolyte
US11342559B2 (en) 2015-06-08 2022-05-24 Ionic Materials, Inc. Battery with polyvalent metal anode
JP7198762B2 (en) 2017-01-26 2023-01-04 イオニツク・マテリアルズ・インコーポレーテツド Alkaline battery cathode containing solid polymer electrolyte

Also Published As

Publication number Publication date
JPH04267055A (en) 1992-09-22

Similar Documents

Publication Publication Date Title
Chen et al. Recent advances in lithium–sulfur batteries
US10818963B2 (en) Solid electrolyte composition, electrode sheet for all-solid-state secondary battery, all-solid-state secondary battery, and methods for manufacturing electrode sheet for all-solid-state secondary battery and all-solid-state secondary battery
DE69206638T2 (en) A reversible electrode material
US5419890A (en) Use of organic solvents in the synthesis of V6 O13+x [0<x≦2]
JP6452814B2 (en) Material for positive electrode, electrode sheet for all-solid-state secondary battery, all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and method for producing all-solid-state secondary battery
US8333911B2 (en) Co-crushed mixture of an active material and of a conductive material, preparation methods and uses thereof
JP2940181B2 (en) Solid electrode composition
EP3467846B1 (en) Solid electrolyte composition, solid electrolyte-containing sheet as well as method for manufacturing the same, and all-solid-state secondary battery as well as method for manufacturing the same
EP2936592B1 (en) Lmfp cathode materials with improved electrochemical performance
KR101367217B1 (en) High performance litmus-polymer cell comprising silicon nano-particles substituted with polymer and self-assemble block copolymer
KR20130095228A (en) Non-aqueous secondary battery having a blended cathode active material
Novikova et al. Electrical conductivity and electrochemical characteristics of Na 3 V 2 (PO 4) 3-based NASICON-type materials
JPWO2017104405A1 (en) Electrode material, electrode sheet for all-solid-state secondary battery, all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and method for producing all-solid-state secondary battery
TW201448325A (en) Electrode formulation, method for preparing the same, and electrode comprising the same
JPH04267056A (en) Solid electrode composition
JP3038945B2 (en) Lithium secondary battery
JPS63102162A (en) Secondary battery
JP2001210375A (en) Solid electrolyte battery
JP2529474B2 (en) Solid electrode composition
KR101693930B1 (en) Fabricating method of electrode for electrochemical device, electrode slurry, and electrode for electrochemical device fabricated thereby
JP3139072B2 (en) Battery
JPH04272654A (en) Composition of solid electrode
JP2929726B2 (en) Solid electrode composition
JPH04248258A (en) Solid electrode composition
JP2605989B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees