WO1994006037A1 - Color filter and production method therefor - Google Patents

Color filter and production method therefor Download PDF

Info

Publication number
WO1994006037A1
WO1994006037A1 PCT/JP1993/001269 JP9301269W WO9406037A1 WO 1994006037 A1 WO1994006037 A1 WO 1994006037A1 JP 9301269 W JP9301269 W JP 9301269W WO 9406037 A1 WO9406037 A1 WO 9406037A1
Authority
WO
WIPO (PCT)
Prior art keywords
dye
thin film
color
conductive thin
transparent conductive
Prior art date
Application number
PCT/JP1993/001269
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsuru Eida
Hideaki Kurata
Jun-Ichi Kantano
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Publication of WO1994006037A1 publication Critical patent/WO1994006037A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography

Definitions

  • the present invention relates to a color filter used for a large-sized indoor / outdoor screen image such as a color liquid crystal display and an aurora vision, an information display device, a solid-state imaging device (CCD), and the like.
  • the present invention relates to a color filter capable of improving the production efficiency (yield) as well as a color filter, and a method for manufacturing the same.
  • color liquid crystal displays have been used for displays such as liquid crystal televisions, liquid crystal projectors, laptop computers, and notebook personal computers.
  • a color filter is used in which a dye layer is patterned in a plane on an insulating transparent substrate, that is, separated and arranged.
  • Fig. 32 shows the configuration of a general color liquid crystal display.
  • This color liquid crystal display sandwiches liquid crystal between two substrates. That is, a color filter is used as one of the substrates, and liquid crystal 30 is sealed between the color filter substrate 10 and the driving substrate 20. After sealing the liquid crystal 30, it is sealed with adhesive (sealing material) 40a and 40b.
  • the color filter substrate 10 has three primary colors, namely, red (red, R), green (green, G), and blue (blue, B) (hereinafter referred to as necessary) on a glass substrate 1 as an insulating transparent substrate.
  • red, R red
  • green green
  • blue blue
  • B blue
  • the dye layers 5a, 5b, 5c are formed and repeated.
  • a black matrix hereinafter referred to as BM or BM as necessary
  • BL black matrix 2a, 2b, 2c, 2d are provided repeatedly.
  • black matrixes 2a to 2d and dye layers 5a to 5d are formed on the upper surface and flattened, and a liquid crystal driving transparent electrode is provided on the upper surface.
  • the driving substrate 20 is formed by repeatedly forming the driving transparent electrodes 22 a, 22 b, and 22 c on the insulating transparent substrate 21.
  • the dye layer of such a color filter is usually formed by printing an ink obtained by kneading a pigment or dye (dye) and resin of the three primary colors R, G, and B on an insulating transparent substrate such as a glass substrate using a printing machine. It is formed by a conventional printing method.
  • an ultraviolet-curable resin (resist) containing a pigment or dye (dye) dispersed therein is applied on a glass substrate, and mask exposure by photolithography, development, and heat curing are performed by R, G, and R, respectively.
  • a dispersion method in which a dye layer is formed by repeating three times for each B, or a photosensitive natural polymer such as gelatin is coated on a glass substrate, and mask exposure by photolithography is performed.
  • R, G, B The dyeing method of forming a dye layer by repeating the process of dyeing gelatin that has been buttered with one of the dyes and thermally curing the same for the remaining two colors is also used.
  • the electrodeposition polymer and pigment or dye (dye) are dispersed in a liquid such as water, and the R, G, and B are formed on this electrode using the conductive thin film pattern (electrode) formed on the substrate.
  • the dye layer is sequentially electrodeposited to form a dye layer composed of a pigment or paint (dye) and an electrodeposition polymer by an electrodeposition method, or a surfactant and a pigment or dye (dye) are mixed with water or the like.
  • a micellar electrolysis method is used in which a pigment layer is formed by sequentially dispersing R, G, and B pigments or dyes on a previous electrode to form a pigment layer. The case where a force filter is formed by this micelle electrolysis method will be described.
  • the structure of the force filter in the micellar electrolysis method is described in the following structure (1) disclosed in Japanese Unexamined Patent Publication No. 3-102302 and Japanese Unexamined Patent Application Publication No. Hei 4-110901.
  • the disclosed structure (2) and the structure (3) disclosed in Japanese Patent Application Laid-Open No. 5-142418 have been proposed.
  • FIG. 33 (a) is a front view showing the structure of the structure (1)
  • FIG. 33 (b) is a sectional view taken along the line AA in FIG. 33 (a).
  • the display section 41 is formed by laminating an insulating substrate, a transparent conductive thin film, a colorant layer, a protective film, a liquid crystal driving electrode, and the like. That is, first, a transparent conductive thin film such as indium or tin oxide (ITO) is patterned on an insulating transparent substrate 42 such as a glass substrate to form a dye layer to be connected to the electrode extraction portion 43. The transparent electrodes 44a, 44b, 44c are formed. Furthermore, an electrode take-out layer 43 and a black matrix layer 4 made of an acrylic acid-based photocurable resist cured product containing a black pigment (black pigment mixture) (Japanese Patent Application Laid-Open No. Hei 4-131106).
  • ITO indium or tin oxide
  • a protective film is formed using a protective film agent 50 containing an acrylic resin or a siloxane resin as a main component, and a transparent conductive thin film such as an oxide of indium or tin (IT0) is laminated on the upper surface.
  • a liquid crystal driving electrode 52 is provided.
  • FIG. 34 (a) is a front view of the structure (2)
  • FIG. 34 (b) is a sectional view taken along line C-C in FIG. 34 (a).
  • a black matrix 6 in which a metal or metal oxide thin film such as metal chrome and chromium oxide is patterned on an insulating transparent substrate 60 such as a glass substrate to form the display section 56 1 a, 6 lb, 61 c, 61 d, insulating film 62 such as silica or acrylic resin, and transparent conductive thin film such as oxides of indium and tin (IT0)
  • the dye layer forming electrodes 63a, 63b, and 63c are sequentially laminated.
  • electrode extraction layers 66a and 66b made of a cured acrylic acid-based photocurable resist containing a dye (pigment or dye) or a cured acrylic acid-based photocurable resist are used.
  • pigments or dyes of the three primary colors R, G and B are formed by micellar electrolysis to form the dye layers 64a and 64. b and 64c are formed.
  • a protective film 67 is formed using a protective film agent containing an acrylic resin or a siloxane resin as a main component, and a transparent conductive material such as indium or tin oxide (ITO) is formed on the protective film 67.
  • ITO indium or tin oxide
  • a thin film is laminated on the entire surface to form a liquid crystal driving electrode 68.
  • FIG. 35 (a) is a front view of the structure (3)
  • FIG. 35 (b) is a cross-sectional view taken along the line EE in FIG. 35 (a).
  • Forming electrodes 72a, 72b, and 72c are formed.
  • the electrode extraction layers 77a and 77b made of a cured acrylate-based photocurable resist or a cured acrylate-based photocurable resist containing a dye (pigment or dye) are displayed.
  • pigments or dyes of three primary colors of R, G, B are formed by micellar electrolysis to form dye layers 73a, 73b, 7 3c is formed.
  • the protective film 74 is formed using a protective film agent mainly composed of an acrylic resin or a siloxane resin. Further, a transparent conductive thin film such as an oxide of indium or tin (IT0) is laminated on one surface to form a transparent electrode 75 for driving a liquid crystal.
  • a transparent conductive thin film such as an oxide of indium or tin (IT0) is laminated on one surface to form a transparent electrode 75 for driving a liquid crystal.
  • black matrixes 76a, 76b, 76c, and 76d which are patterned metal or metal oxide thin films such as metal chrome and oxide chromium, are provided. In this structure 3, the order of lamination of the liquid crystal driving electrode and the black matrix may be reversed.
  • FIG. 36 (a) is a front view showing a configuration of a conventional force filter according to the dispersion method
  • FIG. 36 (b) is a cross-sectional view taken along line SS in FIG. 36 (a).
  • the display section 79c is formed by sequentially stacking 79b.
  • a transparent conductive thin film is patterned, and a dye layer forming electrode continuously connected to each color of RGB and an electrode extraction layer are indispensable.
  • patterning of transparent conductive thin film which is mainly ITO, requires high-definition patterning such as triangle-diagonal arrangement and fine processing according to the pattern of complex dye (pixel) arrangement. Except for simple patterns such as stripes, shorts or breaks in the transparent conductive thin film were likely to occur. In other words, the width of the lines of the electrode pattern for dye formation and the width of the gear between the lines became smaller in the case of the diagonal and triangle arrangements, and the probability of defects due to short-circuit and disconnection increased as compared with the stripe pattern. Next, it was necessary to similarly pattern the electrode extraction layer, and the process was complicated. As a result, the production yield of color filters and evenings had to be reduced.
  • the continuous connection of fine dye layer forming electrodes causes a voltage drop due to the resistance of the transparent conductive thin film, and forms a film near the electrode extraction layer and at a remote part by micellar electrolysis.
  • a difference in the thickness of the dye layer that is, color unevenness in a color filter was generated.
  • the difference in the thickness of the dye layer between the center and the end of the pattern line that is, the step between pixels, is reduced. May have occurred. As a result, the contrast of the color filter was reduced, and the image quality was sometimes reduced.
  • the color filter based on the dispersion method uses a dye-containing, that is, a photocurable resist in which the colorant is dispersed, so that the exposure sensitivity and the definition (resolution) of the dye pattern are determined by the light absorption of the dye. It had to be worse than the transparent registry.
  • the dye-containing resist is applied all over the surface of a color filter or a roll coater.
  • this difference in thickness causes color unevenness.
  • the dye is a dye
  • any of the above cases it was difficult to control the thickness step between the dye layers (step between pixels) to be small. That is, it is difficult to flatten the color filter, and cracks and disconnections are likely to occur when the conductive thin film for driving a liquid crystal is laminated.
  • the black matrix other than the force filter by the micellar electrolysis method, the color filters by the electrodeposition method, the dispersing method, the printing method, and the dyeing method also use the chromium and chromium oxide as described above.
  • a cured layer of a photocurable resist containing a metal or metal oxide thin film or a black dye has been used.
  • metal or metal oxide thin films have the advantage of being able to form a high-definition black matrix pattern because of their high light-shielding degree (optical density) required as a black matrix and small film thickness. is there.
  • the pattern of this black matrix is 2 0 o ° or c), must be by connexion made film deposition or spatter-ring under reduced pressure (hundreds Mi 7 Y Torr) there - because, formed condition stricter, accompanied by difficulty in manufacturing Was something.
  • the film thickness is small, the gap between the dye layers (R, G, ⁇ ) of the color filter is reduced, and the step between pixels is increased, so that it is difficult to flatten the color filter. .
  • oblique light leaks from the backlight of the color liquid crystal display, which inevitably results in a narrow viewing angle, and when a thin film with high reflectivity such as a metal chrome is used, the light is not reflected. The visibility had to be reduced by the light.
  • a cured product of a photocurable resist containing a black pigment has a low light-blocking degree (optical density) required as a black matrix, and contains a light-blocking black pigment.
  • the exposure sensitivity was low, and the resolution required to form a high-definition pattern was low. For this reason, it has been difficult to improve the definition of the color liquid crystal display.
  • the formation conditions are mild and the formation process is simple, and the gap between the dye layers (R, G, ⁇ ) is filled, and the color filter is flattened.
  • a light-shielding material capable of forming a high-definition (high-resolution) pattern, and improvement of these has been an issue.
  • the present invention has been made in view of the above-described problems, and it is possible to increase the definition of a display image using a color filter, for example, a color liquid crystal display, improve the image quality, and improve production efficiency ( It is an object of the present invention to provide a color filter capable of improving the yield and a method for manufacturing the same. Disclosure of Invention _ 8 —
  • a transparent conductive thin film formed by laminating the entire display area or a portion corresponding to a continuous pattern including the display pixel section.
  • the entire or a part of the transparent conductive thin film is formed by micellar electrolysis.
  • a color filter in which the plurality of color layers correspond to three primary colors.
  • a color filter in which the plurality of color layers correspond to three primary colors and four black colors.
  • a color filter further comprising a protective film formed by laminating on the cured product of the transparent photo-curable resist.
  • a) at least the entire display portion or the display pixel portion on the insulating substrate is A step of laminating and forming a transparent conductive thin film on a portion corresponding to a continuous pattern including
  • a layer of a photo-curable resist is laminated, exposed using a mask corresponding to the dye layer of one color selected from the above-mentioned plurality of colors, and before and / or after the heat treatment of the exposed portion, photo-curing of the unexposed portion Removing the resist and the dye layer to arrange a dye layer of one color
  • the step i) is further repeated one or more times to separate the dye layers of the remaining colors of the plurality of colors onto the entire surface or a part of the transparent conductive thin film, respectively. Disposing and forming a multi-color dye pattern,
  • a method for manufacturing a color filter wherein the plurality of color layers correspond to three primary colors and four black colors.
  • the pattern of the transparent conductive thin film is formed by etching the transparent conductive thin film in the portion where the dye pattern is not present using the dye pattern of a plurality of colors as a mask.
  • a method for producing a color filter is provided.
  • steps b) and c) are repeated one or more times, and the dye layers of the remaining three primary colors are separately arranged on the entire surface or a part of the transparent conductive thin film, respectively.
  • a photocurable material containing a black pigment before, during, or after each of the three primary color layers is separately disposed, at a position between the three primary color layers to be disposed, or between the disposed three primary color layers;
  • a photo-curable resist containing a dye of one color selected from the three primary colors is laminated on the entire surface or a part of the transparent conductive thin film, and a mask corresponding to the dye layer of one color selected from the three primary colors is used.
  • step b) Exposing and developing the resist, removing the unexposed resist, and arranging the dye layer of the first color, c) repeating the same step as step b) one or more times to obtain Disposing the dye layers of the remaining colors of the color on the entire surface or a part of the transparent conductive thin film, respectively, to form a dye pattern of three primary colors; d) separately disposing the dye layers of the three primary colors, After that, a black dye layer is formed in a predetermined shape at a position between the arranged three primary color dye layers by film formation by micellar electrolysis, thereby forming a black matrix.
  • a cured product of a photo-curable resist containing a black dye, or a metal at a position corresponding to the black dye layer formed in the step d) on the insulating substrate.
  • a method for manufacturing a color filter characterized by forming a metal oxide thin film.
  • the method of laminating the transparent photocurable resist is a film formation method by a micelle electrolysis method or an electrodeposition method.
  • the insulating substrate or the display portion on the transparent conductive thin film formed by laminating at least the entire display portion of the metal or metal oxide thin film or the portion corresponding to the continuous pattern including the display pixel portion is formed.
  • a method for manufacturing a filter is provided, wherein a protective film is formed by laminating a portion except for a corresponding portion.
  • a method for producing a color filter wherein a protective film is further formed by laminating after forming the dye pattern of a plurality of colors or the dye pattern of three primary colors and black matrix.
  • a black matrix manufacturing method characterized in that a black dye is formed on the conductive thin film between the three primary color dye patterns of the color filter by micellar electrolysis. Is done.
  • FIG. 1 (a) As shown in the plan view of FIG. 1 (a), the cross section taken along the line GG of FIG. 1 (b), and the cross section taken along the line H—H of FIG.
  • the color filter of Structure 5 is composed of insulating substrate, transparent conductive thin film, R, G, B, BL dye layer formed by the method of micellar electrolysis, and transparent photo-curable resist cured product (R, G, B, BL dye layer). ) And a protective film are sequentially laminated.
  • the color filter of structure 6 has an insulating substrate 90, a transparent conductive Functional thin film 92, R, G, B, BL dye layers 93a, 93b, 93c, 93d, 93e, 93f, 93g, transparent light curable Cured resist (formed on G, B, BL dye layers 93a to 93g) 94a, 94b, 94c, 94d, 94e, 94f, 94g, and liquid crystal drive Transparent conductive thin films 95 are sequentially laminated.
  • the color filter of Structure 7 consists of an insulating substrate, a transparent conductive thin film, R, G, B, B Layer, a transparent photocurable resist cured product (formed on the R, G, B, and BL dye layers), a protective film, and a transparent conductive thin film for driving a liquid crystal.
  • the color filter of Structure 8 is composed of insulating substrate, transparent conductive thin film, R, G, B, BL dye layer formed by the method of micellar electrolysis, and transparent photo-curable resist cured product (R, G, B, BL dye layer). And a protective film are formed in this order.
  • the color filter of structure 9 has an insulating substrate 101, a transparent conductive thin film 102, a micellar electrolytic cell.
  • Method R, G, B, BL dye layers 103a, 103b, 103c, 103d, 103e, 103f, 103g, and transparent light-curable resist curing Object formed on the three dyes in the R, G, B dye layers 103a to 103c) 104a, 104b, 104c, protective film 105, and transparent for driving liquid crystal
  • the display portions 107 are formed by sequentially stacking the conductive thin films 106.
  • the color filter of structure 10 is composed of an insulating substrate, a transparent conductive thin film, a micelle electrolytic R, G, B, BL dye layer, and a transparent photo-curable resist cured product (R, G, B, BL dye). Formed on the three dyes in the layer), and a transparent conductive thin film for driving a liquid crystal.
  • the color filter of structure 11 is composed of an insulating substrate, a transparent conductive thin film, a R, G, B dye layer formed by micellar electrolysis, and a transparent photo-curable resist cured product (formed on the R, G, B dye layer). ), And a BL dye-containing photocurable resist cured product are sequentially laminated.
  • the color filter of structure 12 is formed on an insulating substrate, a transparent conductive thin film, a R, G, B dye layer formed by micellar electrolysis, and a transparent photo-curable resist cured product (R, G, B dye layer). ), A BL dye-containing photocurable resist cured product, and a protective film are sequentially laminated.
  • the color filter of structure 13 has an insulating substrate 1 1 1 Thin film 112, micellar electrolytic film-forming "—G, B dye layer 113a, 113b, 113c, transparent photocurable resist cured product (micelle electrolytic film RG, B dye layer 1 13 a to 1 13 c layer) 1 1 4 a, 1 1 4 b, 1 1 4 c, BL dye-containing photo-curable resist cured product 1 1 5 a, 1 1 5 b,
  • the display section 117 is formed by sequentially stacking 115c, 115d and the transparent conductive thin film 116 for driving the liquid crystal.
  • the color filter of structure 14 is formed on an insulating substrate, a transparent conductive thin film, a R, G, B dye layer formed by micellar electrolysis, and a cured transparent photo-curable resist layer (R, G, B dye layer). ), A cured material of a photo-curable resist containing a BL dye, a protective film, and a transparent conductive thin film for driving a liquid crystal.
  • the color filter of Structure 15 is basically the same as the structure of Structure 12 described above, except that the cured transparent light-curable resist is applied to any two of the R, G, and B dye layers. Is different.
  • the color filter of structure 16 is basically the same as the structure of structure 13 described above, but the cured transparent light-curable resist is applied to any two of the R, G, and B dye layers. Is different.
  • the color filter of structure 17 is basically the same as the structure of structure 14 described above, except that the transparent light-curable resist cured product is applied on any two of the R, G, and B dye layers. Is different.
  • the photocurable resist cured product containing a BL dye is used as a black matrix.
  • the structure 18 color filter is composed of an insulating substrate, a metal or metal oxide thin film, a transparent conductive thin film, a R, G, B dye layer formed by micellar electrolysis, and a transparent photo-curable resist cured product (R, G , Formed on the B dye layer) in this order.
  • the color filter of structure 9 is composed of insulating substrate, metal or metal oxide thin film, transparent conductive thin film, micelle electrolytic film R, G, B dye layer, transparent photo-curable resist cured product (R, G, B Formed on the dye layer),, and A transparent conductive thin film for driving a liquid crystal is sequentially laminated.
  • the color filter of structure 20 is composed of an insulating substrate, a metal or metal oxide thin film, a transparent conductive thin film, a micelle electrolytic film R, G, B dye layer, and a transparent photo-curable resist cured product (R, G, B). And a protective film are sequentially laminated.
  • the color filter of the structure 21 has an insulating substrate 121, a metal or metal oxide thin film 1 2 2 a, 1 2 2 b, 1 2 2 c, Transparent conductive thin film 1 2 3, R, G, B dye layer formed by micellar electrolysis method 1 2 4 a, 1 24 b, 1 2 4 c, Transparent light curing Cured resist (formed on micelle electrolytic film R, G, B dye layers 124a to 124c) 125a, 125b, 125c, protective film 126, and
  • the display section 128 is formed by sequentially laminating the transparent conductive thin films 127 for driving the liquid crystal.
  • the color filter of Structure 22 is basically the same as the structure of Structure 19, except that a transparent photocurable resist cured product is laminated on any two of the R, G, and B dye layers. Is different.
  • the color filter of Structure 23 is basically the same as the structure of Structure 20, except that a transparent photo-curable resist cured product is laminated on any two of the R, G, and B dye layers. Are different.
  • the color filter of structure 24 is basically the same as the structure of structure 21 but is transparent light-cured as shown in the plan view of Fig. 6 (a) and the cross section taken along line M-M of Fig. 6 (b).
  • the cured resist 13 1 a, 13 1 1) is laminated on any two dyes (R, G) 1 32 a, 13 2 b of the 1 ⁇ , G, B dye layers, The difference is that the protective film 13 3 is laminated only on the display portion 1 38 including the upper part of B.
  • a metal or metal oxide thin film may be laminated on the liquid crystal driving transparent conductive thin film.
  • the color filter of structure 25 is composed of an insulating substrate, a transparent conductive thin film, micellar electrolytic R, G, and B dye layers, and a transparent photo-curable resist cured product ( R, G, and B dye layers), a protective film, a transparent conductive thin film for driving a liquid crystal, and a metal or metal oxide thin film.
  • the color filter of structure 26 is basically the same as the structure of structure 25, except that the transparent photocurable resist cured product is laminated on the two dyes in the R, G, and B dye layers. Are different.
  • the metal or metal oxide thin film in the above structures 18 to 26 is used as a black matrix.
  • At least the portion corresponding to the display portion on the transparent conductive thin film formed by laminating at least the entire display portion of the insulating substrate or the portion corresponding to the continuous pattern including the display pixel portion was removed. It can be formed by laminating a cured product of a photocurable resist or a protective film on the portion.
  • the transparent conductive thin film may be laminated on the entire surface of the insulating substrate, and an operation such as masking is not required. Furthermore, when the dye pattern is formed, the dye layer is formed and etched only on the transparent conductive thin film portion laminated on the entire display portion or the portion corresponding to the continuous pattern including the display pixel portion, so that the process efficiency is improved. Is improved.
  • the structure 27 color filter is composed of an insulating substrate, a transparent conductive thin film, a protective film, a micelle electrolytic R, G, B, and BL dye layer, a transparent photo-curable resist cured product, a protective film, and a A transparent conductive thin film for driving a liquid crystal is sequentially laminated.
  • the structure 28 color filter is composed of an insulating substrate, a transparent conductive thin film, a protective film, a film formed by micellar electrolysis R, G, and B dye layers, a transparent photocurable resist cured product, and a BL dye-containing photocurable resist.
  • a cured product and a transparent conductive thin film for driving a liquid crystal are sequentially laminated.
  • the color filter of the structure 29 has an insulating substrate 141, a metal or metal oxide thin film 1 42 a, 142 b, 142 c, 142 d, transparent conductive thin film 144, protective film 144 a, 144 b, micelle electrolytic film R, G, B dye layer 1 45 a, 1 45 b, 1 45 c, transparent light-curing resist
  • the display section 148 is formed by sequentially laminating a cured product 146a, 146b, 146c and a transparent conductive thin film 147 for driving a liquid crystal.
  • red and blue color filters formed by the dispersion method, printing method, dyeing method, etc. as well as the micellar electrolysis method. If the color filter is formed on the conductive thin film, the film is formed by the micelle electrolysis method. The black dye layer thus obtained can be used as a black matrix.
  • the color filter having the structure 30 has an insulating substrate 151, a transparent conductive thin film 152, Photocurable resist cured product containing R, G, B dyes 15 3 a, 15 3 b, 15 3 c, Micelle electrolytic process BL dye layer 154 a, 154 b, 154 c, 1
  • the display section 159 is formed by sequentially laminating 54 d, a protective film 157, and a transparent conductive thin film 158 for driving a liquid crystal.
  • a black matrix a cured product of a photocurable resist containing a black dye, a metal or metal oxide thin film, and a dye formed by micellar electrolysis on a conductive thin film.
  • layers not necessarily black dye
  • a dye pattern is formed by the dispersion method in three primary colors of R, G, and B, the following structure 31 can be given.
  • the color filter of the structure 31 has an insulating substrate 161, Metal or metal oxide thin film 162a, 162b, 162c, 162d, transparent conductive thin film 163, photocurable resist cured material containing R, G, B dye 163 a, 163b, 163c, film formed by micellar electrolysis method BL (formed on metal or metal oxide thin film 162a to l62d) Dye layer 164a, 164b, 164c , 1 64 d, protective film 1 65, and transparent conductive thin film 1 66 for driving liquid crystal 1 6 7 are formed.
  • the color filter of structure 32 has an insulating property.
  • 172c, 172d, insulating film 119 transparent electrode for film formation and liquid crystal drive 173a, 173b, 173c, micelle electrolytic film R, G, B color layers 174a, 174b, 174c, transparent photocurable resist 175a, 175b, 175c, and protective film 176 Has formed.
  • Transparent electrode for film formation and liquid crystal drive 18 2 Micellar electrolytic film formation R, G, B dye layers 18 3a, 18 3b, 18 3c, transparent photo-curable resist 18 4 a, 184b, and 184c are sequentially laminated, and a black matrix 185 is formed to form a display unit.
  • the color filter of the structure 34 has an insulating substrate 191, Transparent electrode 192 for film formation and liquid crystal drive, R, G, B dye layers 193a, 193b, 193c, transparent photocurable resist 194a, 194c b, 194c are sequentially laminated, and a black matrix 195 is formed to form a display section.
  • Transparent electrode 192 for film formation and liquid crystal drive R, G, B dye layers 193a, 193b, 193c, transparent photocurable resist 194a, 194c b, 194c are sequentially laminated, and a black matrix 195 is formed to form a display section.
  • Glass plate low expansion glass, alkali-free glass (Corning's 705 9; HOYA NA 45), etc., quartz glass plate, soda-lime glass), glass plate with microlenses, or plastic plate (poly Use ethylene terephthalate).
  • glass Plates are preferred and are preferably polished, but may be non-polished.
  • any metal or conductor that is nobler than the oxidation potential of the two-mouthedene derivative of the micellizing agent may be used.
  • a mixed oxide of indium and tin (IT0) tin dioxide, a transparent conductive polymer, or the like is used.
  • the visible light transmittance is 95% or more (thin film only), the film thickness is 1,000 to 2,000 A, and the sheet resistance is 500 or less.
  • This transparent conductive thin film is formed by a sputtering method, an evaporation method, a CVD method, a coating method, a biosol method, or the like.
  • a black matrix by forming a black dye film by the micelle electrolysis method, it is sufficient that a conductive thin film is formed at a place where the black matrix is formed.
  • Lightning lightning ⁇ ⁇ -Any metal or conductor that is nobler than the oxidation potential of the humic acid derivative of the micellizing agent is acceptable.
  • platinum, gold, silver oxide, tin dioxide, a conductive polymer, or the like can be used.
  • the above transparent conductive thin film or conductive thin film is formed on the entire surface of the insulating substrate or on at least the entire display portion or a portion corresponding to a continuous pattern including the display pixel portion by a masking method and a photolithography method. I do.
  • the metal or metal oxide for example, chromium (Cr), nickel (Ni), titanium (Ti), copper (Cu), or the like or an oxide thereof can be used. Alternatively, a mixture of a metal and a metal oxide may be used. It is preferable that the optical density be 3.0 or more (film thickness: 1,000 to 3000 A).
  • the entire insulating substrate is formed by sputtering, vapor deposition, CVD, or the like, or at least the entire display is formed by masking.
  • patterning is performed by a photolithography method. In other words, resist coating, exposure (using a black matrix forming mask), development, post baking, metal or metal oxide thin film etching, resist stripping
  • black pigment carbon black, titanium black, aniline black, berylen black, a pigment or a dye in which at least two or more kinds are mixed, or a mixture thereof can be used.
  • Black, red, blue, green, purple, cyanine, and magenta organic pigments are used in which at least two or more kinds are mixed. Blackening pigments or dye mixtures can also be used.
  • each of the above (A) and (B) may be used alone or as a mixture (Japanese Patent Application Laid-Open Nos. 4-131106 and 4-190362).
  • the photocurable resist for example, a mixture of an acrylic or methacrylic acid derivative and a copolymer (binder) thereof can be used.
  • a copolymer (binder) thereof for example, a copolymer (binder) thereof can be used.
  • the acrylic or methacrylic acid derivative Those into which an epoxy group, a siloxane group or a polyimide precursor is introduced can be suitably used.
  • a triazine type an acetophenone type, a benzine type, a benzophenone type, a thioxanthone type or the like can be suitably used.
  • a nonionic or ionic surfactant an organic pigment derivative, or a polyester-based material or a mixture of two or more thereof can be used.
  • a solvent a single substance or a mixture of two or more of ketones such as hexahexanone and esters such as cellosolve acetate can be used.
  • the oxygen barrier film (polyvinyl alcohol) after the application of the resist is preferably applied in a laminated manner in order to enhance the sensitivity of the resist, and is not necessarily required in the present invention.
  • exposure is performed (using a mask for forming a black matrix), followed by development and heat treatment (postbaking) to form a black matrix.
  • the R, G, B dye layer can be used as a mask for forming a black matrix.
  • the optical density is preferably set to 2.0 or more (film thickness: 1.0 m).
  • Specific product names include CK-2000 (manufactured by Fuji Handeltronics Technology), V-259 Black (manufactured by Nippon Steel), and the like.
  • A As a black pigment (BL), carbon black, titanium black, aniline black, berylen black, a metal such as cobalt or iron, or a pigment obtained by mixing two or more metals or metal oxides Alternatively, a dye or a mixture thereof can be used.
  • BL black pigment
  • carbon black titanium black, aniline black, berylen black
  • metal such as cobalt or iron
  • a pigment obtained by mixing two or more metals or metal oxides Alternatively, a dye or a mixture thereof can be used.
  • Black, red, blue, green, purple, cyanine, magenta organic pigments mainly pigments or dyes used in the film dye layer for micellar electrolytic method described below may be used.
  • Mixed pseudo-blackening pigments or dye mixtures can also be used.
  • each of the above (A) and (B) may be used alone or as a mixture.
  • the above dyes are formed into a film by micellar electrolysis.
  • the optical density is preferably set to 3.0 or more (film thickness: 1.0 m).
  • Perylene pigments lake pigments, azo pigments, quinacridone pigments-anthraquinone pigments, anthracene pigments, disazo pigments, isoindolin pigments, isoindolinone pigments And the like, or a mixture of at least two or more.
  • Halogen poly-substituted cyanine pigments Halogen poly-substituted copper lid cyanine-based pigments, triunilmethane-based basic dyes, disazo pigments, isoindolin pigments, isoindolinone pigments Or a mixture of at least two or more of these.
  • a copper phthalocyanine pigment, a phthalocyanine pigment, an indone pigment, an indanol pigment, a cyanine pigment, a dioxazine pigment or the like can be used alone or as a mixture of at least two or more.
  • each dye layer is as follows: R is 0.5 to 1.5 m (transmittance of 60% or more Z610nm), and G is 0.5 to 1. Transmittance should be 60% or more, 545 nm), and B should be 0.2 to: 1.5 m (transmittance should be 60% or more)
  • the pigment (dye or pigment) that has been subjected to the hydrophobic treatment is dispersed in an aqueous medium using a surfactant (micelleizing agent) composed of a fluorene derivative to prepare a micelle dispersion.
  • a surfactant micelleizing agent
  • the aqueous medium to be used includes various media such as water, a mixed solution of water and alcohol, and a mixed solution of water and acetone. I can raise my body.
  • the surfactant such as one kind of fluorene derivative may be used, or two or more kinds may be used in combination.
  • the ferrocene derivative may be combined with another surfactant.
  • surfactants include, for example, nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene fatty acid ester, polyoxyethylene alkyl phenyl ether, and polyoxyethylene polyoxybutene vinyl alkyl ether.
  • ionic and anionic surfactants such as alkyl sulfates, polyoxyethylene alkyl ether sulfates, alkyl trimethylammonium chloride, and fatty acid getylaminoethylamide.
  • a funicone derivative, other surfactants used as required, and a desired pigment (pigment) are placed in an aqueous medium, and a mechanical homogenizer, an ultrasonic homogenizer, a ball mill, a sand mill are prepared. And stir well.
  • the volume be 5 hours or less, and when centrifugation is used, the volume is 4 G or less.
  • the pigment is uniformly dispersed or formed into micelles in the aqueous medium by the action of the surfactant, and becomes a dispersion or a micelle solution.
  • concentration of the micellizing agent at this time is not particularly limited, but usually, the total concentration of the fluorene derivative and other surfactants is equal to or higher than the critical micelle concentration, preferably 0.1 miM Z liter. Select within the range of ⁇ 1 mol / liter c
  • the concentration of the pigment or dye is usually selected within a range of 1 to 500 gm.
  • a supporting salt (supporting electrolyte) can be added as needed to adjust the electric conductivity of the aqueous medium.
  • the amount of the supporting salt to be added may be within a range that does not hinder the precipitation of the dispersed pigment, and is usually selected in the range of 0.05 to 10 mol / liter.
  • Electrolysis can also be performed without adding this supporting salt.
  • a highly pure thin film (dye layer) containing no supporting salt can be obtained.
  • the type of the supporting salt is not particularly limited as long as the electric conductivity of the aqueous medium can be adjusted without hindering formation of micelles and precipitation of the pigment on the electrode.
  • salts such as lithium, potassium, sodium, norebidium, and aluminum
  • acetates lithium, potassium, and natrium
  • Salts such as tritium, norredium, beryllium, magnesium, calcium, strontium, norium, and aluminum
  • ammonium salts are suitable.
  • a filter of 0.5 // m or less it is preferable to filter with a filter of 0.5 // m or less.
  • a red pigment pigment (pigment or dye), a green pigment (pigment or dye), a blue pigment (pigment or dye), and a black pigment (pigment or dye) are dispersed are prepared. I do.
  • micellar dispersion of the mixed pigment may be prepared by adding and dispersing the pigment or paint to be mixed in the aqueous medium once with the micelle agent, or may be prepared by dispersing a single pigment to be mixed in the aqueous medium. May be added together with the micellizing agent, and the respective micellar dispersions obtained by dispersion may be mixed and prepared.
  • an insulating substrate formed on at least the entire surface of the display portion or a portion corresponding to a continuous pattern including the display pixel portion is inserted into one of the micelle dispersions, and Energize and conduct micellar electrolysis Is performed to form a desired thin film (dye layer) on the transparent conductive thin film of the substrate.
  • the electrolysis conditions may be appropriately selected according to various situations, but usually the solution temperature is selected within the range of 0 to 90 ° C, preferably 20 to 70 ° C.
  • the voltage is selected from the range of 0.3 to 0.5 V, preferably 0.1 to 0.9 V.
  • the current density is usually 1 0 m AZ cm 2 or less, preferable properly is selected in the range of 5 0 ⁇ 3 0 0 AZ cm 2 .
  • the thin film (dye layer) formed by micellar electrolytic treatment may be usually washed with pure water or the like, and then air-dried at room temperature or, if necessary, in a temperature range up to 220 ° C. May be used for heat treatment.
  • a mixture of an acrylic or methacrylic acid derivative and a copolymer (binder) thereof can be used.
  • a derivative obtained by introducing an epoxy group, a siloxane group, or a polyimide precursor into this acrylic or methacrylic acid derivative can be suitably used.
  • a triazine type an acetophenone type, a benzine type, a benzophenone type, a thioxanthone type or the like can be used.
  • a ketone such as cyclohexanone or an ester such as cellosolve acetate or a mixture of two or more thereof can be used.
  • the above is mixed and filtered to prepare a resist, and the resist is at least put on the micelle electrolytic film-forming dye layer using a roll coater or a sub coater. Is also applied over the entire display section.
  • photopolymerization and photocrosslinking (exposure) through a color filter mask pattern corresponding to the desired dye layer For example, after unetched portions are etched, they are completely cured by heat treatment.
  • a transparent light is applied by a micellar electrolysis method or an electrodeposition method instead of a conventional roll coat or svin coat.
  • CT Fluji Hunt
  • V259PA Nippon Steel
  • JNPC06 JNPC09
  • JNPC16 JSR
  • CFGR manufactured by Tokyo Ohkasha
  • Photo Nice UR310 manufactured by Toray Industries, Inc.
  • the film thickness and transmittance of the transparent photocurable resist cured product are preferably from 0.1 to 4.0 ⁇ ⁇ , transmittance of 90% or more and 460 nm.
  • the film thickness is controlled according to the resist viscosity and the number of rotations of the sine coat according to the film thickness of each dye layer, or by the film forming potential and the film forming time in the micelle electrolytic method or the electrodeposition method. It is possible and it is possible to minimize the step of the thickness of each dye layer and to make it flat.
  • Examples of the protective film include a cured transparent light-curable resist and a cured transparent thermosetting resin.
  • Transparent light-curable resist cured product (the same materials as those described above can be used)
  • the dye patterns of the three primary colors R, G Only the area where the matrix is present, that is, the display area is exposed through a mask for protective film, the unexposed area (outside the display area) is etched, and the resist remaining on the display area is completely treated by heat treatment. Let it cure.
  • the protective layer can be formed by etching the dye layer at the same time as the resist is etched or after the resist is thermally cured.
  • the resist is laminated and applied with a roll coater or a sbin coater, and only the outside of the display is exposed through a mask and the unexposed part (display) is etched to form a display.
  • the resist remaining outside may be completely cured by heat treatment, and a protective film may be laminated outside the display portion.
  • a mixture of an acrylic or methacrylic acid derivative and a copolymer thereof (a binder) can be used. Further, those obtained by introducing an epoxy group, a siloxane group, or a polyimide precursor into this acrylic or methacrylic acid derivative can be suitably used.
  • a triazine type an acetophenone type, a benzine type, a benzophenone type, a thioxanthone type, or the like can be used.
  • a single product of a ketone such as cyclohexanone and an ester such as cellosolp acetate or a mixture of two or more thereof can be used. After mixing, filtering and applying, they are completely cured by heat treatment.
  • the coating is performed on at least the entire display unit using a roll coater or a sub coater, but it is also possible to selectively print the display unit and the outside of the display unit with an offset printing machine to form a protective film. I can do it.
  • Specific product names are Obtomer SS-7265, JHR-8484, JSS-8119, JSS715 (manufactured by JSR), 0S-808 (manufactured by Nagase & Co., Ltd.) ), LC2001 (manufactured by Sanyo Chemical Industries, Ltd.) and the like.
  • the thickness and transmittance of the protective film are preferably 0.5 to 4.0 m and the transmittance is 90% or more / ⁇ 460 nm.
  • the film thickness can be controlled by the viscosity of the protective film agent and the number of rotations of the spin coat according to the film thickness of each dye layer.
  • a material and a formation method similar to those of the transparent conductive thin film can be used.
  • a substrate having a transparent conductive thin film 191 formed on at least the entire surface of the insulating substrate 190 or a portion corresponding to a continuous pattern including the display pixel portion is manufactured (FIG. 10 (a)). , (b)).
  • one dye 192 selected from dyes (R, G, B, BL) is formed into a film by micellar electrolysis (FIG. 10 (c)). After drying and baking at room temperature to 220 ° C, perform cleaning treatment such as high pressure water cleaning and UV cleaning.
  • the transparent photocurable resist 1993 is applied with a sub coater or a roll coater and heat-treated (room temperature to 150 (: pre-baked for 5 minutes to 2 hours). (FIG.
  • Exposure energy is preferably, for example, 10 to: L 200 mJZc m2 for ultraviolet i-ray (365 nm). No.
  • This etching method includes the following (1) dry etching, (2) jet etching, (3) etching with release material, and (4) electrolytic etching.
  • 1Dry etching includes UV ozone ashes, plasma etching, sbutter etching, and ion beam etching.
  • a developing solution dedicated to various resists a developing solution of alkali type (alkali carbonate salt and an alkali hydroxide type as inorganic type, and tetramethyl ammonium salt as an organic type).
  • alkali type alkali carbonate salt and an alkali hydroxide type as inorganic type
  • tetramethyl ammonium salt as an organic type
  • Etching method by static or dynamic contact with quaternary amine aqueous solution such as TMAH) or organic solvent (methanol, ethanol, acetone, etc.).
  • TMAH quaternary amine aqueous solution
  • organic solvent methanol, ethanol, acetone, etc.
  • Etching with a release material includes lamination of a solvent-soluble polymer, release, and sticking of an adhesive film.
  • a supporting salt is added to a water solution containing a surfactant (eg, non-ionic), or (2) a developer for organic etching or an organic solvent to apply a potential.
  • a surfactant eg, non-ionic
  • the dye layer formed by micellar electrolysis is a thin film of only a resist as a binder and a dye (pigment) containing no polymer, and is easily dissolved and peeled by these etchings. It can be performed under mild conditions in which the transparent conductive thin film is not damaged such as discoloration, insulation, and erosion.
  • the etching can be performed under the etching conditions in which the wet etching and the dry etching are used in combination.
  • C developer organic alkaline water; Tetramethylammonium hydroxide mouth oxide (TMAH) 2.38% aqueous solution
  • inorganic alkaline water sodium carbonate and carbonated aqueous solution
  • TMAH Tetramethylammonium hydroxide mouth oxide
  • the resist in the exposed area is heat-cured (150 ° C to 350 ° C) .c
  • UVZ Ozon'atsu the registry and the dye layer of the unexposed portion in single device correct preferred to remove by ozonolysis c in this case, UV dancing has a bright line of a mercury lamp, mainly 1 85 nm and 2 54 nm Things are preferred.
  • the substrate temperature is preferably room temperature to 250 ° C., ozone concentration: 10 ppm or more, and time: 30 seconds to 3 hours.
  • a black matrix 195 is formed as a dye pattern of the BL dye (FIG. 11 (c)).
  • a color filter is completed.
  • a protective film and a transparent conductive thin film for driving a liquid crystal may be laminated on a dye pattern of three primary colors and a black matrix.
  • a transparent conductive thin film is formed on at least the entire display portion or a portion corresponding to a continuous pattern including the display pixel portion of a metal or metal oxide thin film buttered in a black matrix shape. Then, on the transparent conductive thin film, red, blue and green Mihara A color dye pattern is formed to complete the color filter.
  • the three primary color dye patterns are similarly formed on a substrate on which a transparent conductive thin film is formed on at least the entire display portion or a portion corresponding to a continuous pattern including a display pixel portion on an insulating substrate.
  • the resist containing the black dye is patterned in a black matrix shape by a photolithography method at a position between the three primary color dye patterns to form a color filter.
  • the protective film and the transparent conductive thin film for driving the liquid crystal may be laminated on the three primary color dye patterns and the black matrix.
  • a color filter can be manufactured by the method described above.
  • a dye pattern of three primary colors of red, blue and green formed by the micellar electrolysis method is formed (in this case, a transparent photo-curable resist is formed on all the dye layers of the three primary colors formed by the micelle electrolysis method).
  • Laminating Three primary color dye patterns are formed on a conductive thin film by the method of the present invention, the dispersion method, the printing method, the dyeing method, or the like, or the conductive pattern is formed between the three primary color dye patterns by photolithography. Regardless of the method of forming the conductive thin film, if a conductive thin film exists between the three primary color dye patterns, a black dye can be formed on this conductive thin film by micellar electrolysis. Can form bear matrix.
  • a transparent electrode for film formation by micellar electrolysis is patterned into a stripe pattern in which only the tip is shorted, and a dye layer is formed by micellar electrolysis, a transparent photocurable resist is applied, and a dye layer is formed.
  • buttering etching
  • a liquid crystal panel is assembled using a MIM substrate or the like, and the liquid crystal can be driven using the electrodes used for film formation.
  • a transparent electrode formed on the entire surface forming a pigment layer by micellar electrolysis, applying a transparent photocurable resist, and patterning (etching) the pigment layer, the light on the pigment layer
  • the curable resin as a mask
  • the entire substrate is immersed in an etching solution, and the transparent electrode formed on the entire surface is patterned (etched) to produce a color filter substrate.
  • a liquid crystal using a MIM substrate etc. A liquid crystal can be driven by using electrodes (patterned) by using a panel and using it for film formation.
  • a display image using a color filter, for example, on a color liquid crystal display can be made high definition, image quality can be improved, and production efficiency can be improved. (Yield) is improved.
  • diagonal and triangular patterns can be easily applied to the dye layer (dye pattern) of the color filter.
  • the dye pattern of the color filter is formed using a transparent light-curable resist
  • the light absorption of the dye of a light-curable resist containing a dye (pigment or dye), such as a dispersion-type labyrinth filter is used.
  • the exposure sensitivity and resolution of the liquid crystal are not reduced, and a high-definition color liquid crystal display can be manufactured.
  • the film thickness between each dye (pattern) can be controlled. Steps can be reduced. That is, since the color filter can be flattened, cracks and disconnections in the laminated transparent conductive thin film for driving a liquid crystal can be reduced. In addition, variations in the gap of the liquid crystal cell are reduced, thereby reducing display unevenness and improving the contrast of the color filter.
  • one dye layer selected from the three primary colors is formed on the entire surface of the transparent conductive thin film and the dye layer is formed flat, the steps in the same dye pattern are reduced, and the scattering of transmitted light is reduced. In addition, the contrast of the color filter can be improved.
  • the pigment or dye of the pigment can be selected in the micelle electrolytic filter, the advantages of high heat resistance and high light resistance can be utilized.
  • the conductive thin film is formed by a micelle electrolytic method. It is possible to form a black matrix by forming a black pigment on the film, and it can be formed under mild conditions, for example, aqueous system, 100 or less at normal pressure.
  • the dye layer formed by the micellar electrolysis method has a configuration in which only a dye (pigment or dye) is laminated, the degree of light shielding that cannot be achieved with a cured product of a resist containing a black dye obtained by a dispersion method, for example, The optical density of 3.0 or more can be achieved.
  • the gap between the three primary color (R, G, B) dye patterns can be filled, and the flatness of the color filter can be improved. Further, since the leakage of white light due to oblique light from the backlight can be prevented, the visibility can be improved. Also, there is no decrease in visibility with reflected light as in the case of a metal thin film (metal chrome).
  • a metal thin film metal chrome
  • a black matrix The resist cured product containing a metal thin film and a black dye can be superimposed on the dye layer formed by micellar electrolysis to prevent the reflected light of the black matrix and fill the binhole You can also.
  • the dye layer is formed by forming a dye layer (dye pattern) with or after forming the dye pattern, using the dye pattern as a mask and etching the transparent conductive thin film in a region where the dye pattern is not formed.
  • the transparent conductive thin film underlying the (dye pattern) can also be applied as a liquid crystal drive electrode for a panel driven by a MIM or a panel driven by a simple matrix (STN, TN).
  • the dye layer formed by the micellar electrolysis method is subjected to UV washing to decompose foreign substances such as oils and fats present in the dye, thereby forming the photocurable resist.
  • FIG. 1 is a plan view and a sectional view schematically showing a structure 4 according to a color filter for a color liquid crystal display of the present invention
  • FIG. 2 is a plan view and a sectional view schematically showing a structure 6 in the present invention
  • FIG. 3 is a plan view and a sectional view schematically showing a structure 9 according to the present invention.
  • FIG. 4 is a plan view and a sectional view schematically showing the structure 13 according to the present invention.
  • FIG. 5 is a plan view and a sectional view schematically showing a structure 21 according to the present invention.
  • FIG. 6 is a plan view and a sectional view schematically showing a structure 24 according to the present invention.
  • FIG. 7 is a plan view and a sectional view schematically showing a structure 29 according to the present invention.
  • FIG. 8 is a plan view and a cross-sectional view schematically showing a dispersion force filter and a micelle electrolytic black matrix in structure 30 of the present invention.
  • FIG. 9 is a plan view and a cross-sectional view schematically showing a dispersion method force filter and a micelle electrolytic black matrix in Structure 31 of the present invention.
  • FIG. 10 is a cross-sectional view showing a manufacturing process of the color filter for a color liquid crystal display of the present invention.
  • FIG. 11 is a cross-sectional view showing a manufacturing process subsequent to FIG. 10
  • FIG. 12 is a schematic view showing a mask for forming a transparent conductive thin film
  • FIG. FIG. 3 is a schematic diagram showing a mask for forming a G dye pattern for explanation.
  • FIG. 14 is a schematic diagram showing a mask for forming a B dye pattern, which is provided for explanation of the embodiment,
  • FIG. 15 is a schematic diagram showing a mask for forming an R dye pattern, which is provided for explanation of an example,
  • FIG. 16 is a schematic view showing a mask for forming stripes and diagonal black matrix for use in the description of the embodiment.
  • FIG. 17 is a schematic view showing a diagonal black mask for use in the description of the embodiment.
  • FIG. 2 is a schematic view showing a mask for forming an R dye pattern
  • FIG. 18 is a schematic diagram showing a mask for forming a diagonal G dye pattern, which is used for describing the embodiment.
  • FIG. 19 is a schematic diagram showing a mask for forming a diagonal B dye pattern for use in explaining the embodiment
  • FIG. 20 is a schematic diagram showing a mask for forming a B dye pattern of a triangle, which is used for describing an example or a comparative example,
  • FIG. 21 is a schematic diagram showing a mask for forming a G dye pattern of a triangle, which is used for describing an example or a comparative example,
  • FIG. 22 is a schematic view showing a mask for forming an R dye pattern of a triangle, which is used for describing an example or a comparative example,
  • FIG. 23 is a schematic view showing a mask for forming a black matrix of a striped or diagonal metal or metal oxide thin film, which is provided for explanation of an example or a comparative example,
  • FIG. 24 is a schematic diagram showing a mask for forming a black matrix of a triangular metal or metal oxide thin film, which is used for explaining the example or the comparative example,
  • FIG. 25 is a schematic view showing a stripe transparent conductive thin film (IT0) buttering mask, which is provided for explanation of a comparative example.
  • FIG. 26 is a schematic diagram showing a black matrix and a mask for forming an electrode take-out, which is provided for explanation of a comparative example,
  • FIG. 27 is a schematic diagram illustrating a connection state of each of R, G, and B using a silver base at the time of producing a dye layer
  • FIG. 28 is a schematic view showing a diagonal I T0 patterning mask, which is used for explaining a comparative example.
  • FIG. 29 is a schematic view showing a mask of a diagonal electrode take-out portion, which is provided for explanation of a comparative example,
  • FIG. 30 is a schematic diagram showing a connection state for each of R, G, and B in the production of the dye layer, which is provided for describing a comparative example.
  • FIG. 31 shows a color filter for a color liquid crystal display of the present invention. It is a diagram for explaining the surface step in the,
  • FIG. 32 is a cross-sectional view showing the configuration of a general color liquid crystal display in the description of the conventional example.
  • FIG. 33 is a plan view and a sectional view schematically showing a structure 1 according to a conventional color filter for a color liquid crystal display,
  • FIG. 34 is a plan view and a sectional view schematically showing a structure 2 according to a conventional color filter for a color liquid crystal display,
  • FIG. 35 is a plan view and a sectional view schematically showing a structure 3 according to a conventional color filter for a liquid crystal display.
  • FIG. 36 is a plan view and a sectional view showing the structure of a color filter for a color liquid crystal display according to a conventional dispersion method.
  • FIG. 37 is a plan view and a cross-sectional view schematically showing a structure 32 according to the present invention.
  • FIG. 38 is a plan view and a cross-sectional view schematically showing a structure 33 according to the present invention.
  • FIG. 39 is a schematic diagram showing a mask for forming an R dye pattern, which is provided for explanation of an example,
  • FIG. 40 is a schematic diagram showing a mask for forming a G dye pattern, which is provided for explanation of an embodiment
  • FIG. 41 is a schematic diagram showing a mask for forming a B dye pattern, which is provided for explanation of an embodiment
  • FIG. 42 is a schematic view showing a mask for stripe transparent conductive thin film (ITO) patterning, which is provided for explanation of the embodiment,
  • FIG. 43 is a schematic diagram showing a mask for forming a black matrix, which is used for describing the embodiment
  • FIG. 44 is a plan view and a sectional view schematically showing a structure 34 in the present invention.
  • FIG. 12 is a plan view showing the state of production of a transparent conductive thin film-formed substrate.
  • an IT0 thin film is formed on a mirror-polished 300 mm square white glass substrate (7059, manufactured by Coatings Co., Ltd.) using a sputtering device (SDP-550 VT, manufactured by ULVAC, Inc.).
  • SDP-550 VT sputtering device
  • masking deposition was performed on a white glass substrate through a design metal mask connected to the entire surface of the display section 201 and the electrode extraction terminal sections 202 a and 202 b.
  • the substrate temperature was adjusted to 250, and the surface resistance of the ITO film was adjusted to 20 ⁇ .
  • dianthraquinonyl red manufactured by Ciba Geigy
  • the pigment concentration was 11.3 liter.
  • Oxyethylene ether and mixed at a concentration of 2.75 milliliters with lithium bromide as the supporting salt at a concentration of 0.1 molar, and as a pigment, disazoyellose (Dainippon Ink). Chemical Industry) was used.
  • the pigment concentration was mixed at a concentration of 12.45 g liter, FPEG at a concentration of 2.00 mmol / liter, and lithium bromide at a concentration of 0.1 mol Z liter.
  • the respective pigment dispersions are mixed at a weight ratio of 9: 1, and the mixture is further dispersed with an ultrasonic homogenizer for 30 minutes to obtain a mixed micelle dispersion of R. Was prepared.
  • copper halide phthalocyanine manufactured by BASF
  • BASF copper halide phthalocyanine
  • Toluene and FPEG were mixed at a concentration of 3.0 millimoles Z liter and lithium bromide as a supporting salt at a concentration of 0.1 mol / litre.
  • the respective pigment dispersions are mixed at a weight ratio of 6: 4, and the mixture is further mixed with an ultrasonic homogenizer.
  • the mixture was dispersed for 0 minutes to prepare a mixed micelle dispersion of G.
  • the respective pigment dispersions are mixed at a weight ratio of 7: 3, and the mixture is further dispersed for 30 minutes with an ultrasonic homogenizer.
  • the mixture was dispersed to prepare a mixed micelle dispersion of B.
  • carbon black was used as a pigment.
  • the substrate prepared in Production Example 1 was inserted into the micelle dispersion of G prepared in Production Example 1, and the electrode terminal of the transparent conductive thin film was connected to the anode of the potentiostat. After this connection, a constant potential of 0.4 V for 18 minutes Solved. In addition, a G dye layer (thin film) was formed on the transparent conductive film, washed with pure water, drained off with an air blow, and dried in a 50 ° C oven.
  • a transparent photocurable resist (V-259PA: manufactured by Nippon Steel Chemical Co., Ltd.) was spin-coated at 1300 rpm on the dye layer, and baked at 80 ° C hot plate for 5 minutes.
  • a mask for G dye pattern for stripes: (Fig. 13)
  • use a one-way exposure machine to expose 300 m J Zcm2 to i-line, then organic at room temperature. It was immersed in an alkaline aqueous solution developer (0.14% TM AH aqueous solution: FHD-15, manufactured by Fuji Hunt Electronics Technologies) for 1 minute to develop.
  • the substrate on which the G dye pattern was formed was inserted into the micelle dispersion of B prepared in Production Example 1, and the electrode terminal of the transparent conductive thin film was connected to the anode of the potentiostat. After connection, constant potential electrolysis was performed at 0.7 V for 10 minutes. Then, a dye layer (thin film) of B was formed on the transparent conductive thin film, washed with pure water, drained with an air blow, and dried with a 5 CTC oven.
  • a transparent photocurable resist (V-259PA: Nippon Steel Chemical Co., Ltd.) was spin-coated on the G-dye pattern and B-dye layer with l OOO rpm, and 80. We baked for 5 minutes with C's hot plate. I-line exposure at 300 mJ / cm2 with a proximity-type exposure machine (proximity gap 60 m) through a mask for B dye pattern (for stripes: (Fig. 14)) After that, a developer of an organic solvent-based aqueous solution at room temperature (0.14% TMAH aqueous solution: Fuji Hunterectronics Tech.) It was immersed for 1 minute in NORDIG Co., Ltd., FHD-5 diluted product) and developed.
  • V-259PA Nippon Steel Chemical Co., Ltd.
  • the substrate on which the G and B dye patterns were formed was inserted into the micelle dispersion of the length prepared in Production Example 1, and the electrode terminal portion of the transparent conductive thin film was connected to the anode of the potentiostat. . 8 V, 15 minutes of constant potential electrolysis was performed. Further, the dye layers of R (the thin film) is formed on the transparent conductive thin film, drained by air blow After washing with pure water and dried 5 0 e C O over oven.
  • a transparent photocurable resist (V-259 PA: manufactured by Nippon Steel Chemical Co., Ltd.) was spin-coated on the G and B dye patterns and the R dye at 150 rpm, and the temperature was adjusted to 80 ° C. Heat treatment (pre-bake) for 5 minutes using a hot plate.
  • the substrate on which the dye patterns of G, B, and R were formed was inserted into the micelle dispersion of BL prepared in Production Example 1, and the electrode terminal of the transparent conductive thin film was connected to the anode of the potentiostat. 0.7 V, 15 minutes constant potential electrolysis, BL dye layer on transparent conductive thin film (thin film) After washing with pure water, the water was removed by air blow and dried at 50 ° C even.
  • a transparent photocurable resist (V-259PA: Nippon Steel Chemical Co., Ltd.) was spin-coated at 1500 rpm on the G, B, and R dye patterns and the BL dye layer, and heated at 80 ° C. The plate was heat-treated (brybake) for 5 minutes.
  • a mask for BL dye pattern stripe, black matrix forming mask: Fig. 16
  • 300m JZ cm 2 with a proximity type exposure machine (proximity gap 60m)
  • a developing solution of an organic aqueous solution at room temperature (0.
  • TM AH aqueous solution immersed in Fuji Hunt Electronics Technology, FHD-5 diluted product) for 1 minute to develop, and then brush scrubbed with pure water.
  • the ITO thin film is sputtered on the protective film at about 1200 A using a sputtering device (Surveyed by ULVAC: SDP-550VT) to form a transparent conductive thin film for driving the liquid crystal. Formed.
  • the substrate temperature was adjusted to 200, and the surface resistance of the ITO film was adjusted to 20.
  • the substrate prepared in Production Example 1 was inserted into the micelle dispersion of R prepared in Production Example 1, and the electrode terminal of the transparent conductive thin film was connected to the anode of the potentiostat, and 0.8 V, 15 minutes Was performed. As a result, an R dye layer (thin film) was formed on the transparent conductive thin film, washed with pure water, drained with an air blow, and dried in a 50 eC oven.
  • a transparent light-curable resist (CT: Fuji Hunt Electronics) (Technology Co., Ltd.) was spin-coated on the R dye layer at 100 rpm and heat-treated (pre-baked) in a 100 ° C. oven for 30 minutes.
  • CT transparent light-curable resist
  • a mask for R dye pattern for diagonal: Fig. 17
  • i-line exposure with AO m JZ cmS using a proximity type exposure machine (proximity gap 60 / m)
  • room temperature The image was immersed for 1 minute in a developer of an inorganic alkaline aqueous solution (0.1 N sodium carbonate aqueous solution: manufactured by Fuji Hunt Electronics Technology Co., Ltd., diluted with CD). It was washed with a pure water shower.
  • the R colorants and the transparent light-curable resist in the exposed area remained, and the other transparent light-curable resist in the unexposed area was removed by etching.
  • the substrate on which the R dye pattern was formed was inserted into the micelle dispersion of G prepared in Production Example 1, and the electrode terminal portion of the transparent conductive thin film and the anode of the potentiostat were connected.
  • a transparent photocurable resist (CT: manufactured by Fuji Hunt Electronics Technology) was spin-coated at 800 rpm on the R dye pattern and the G dye layer, and then 100. Heat-treated (brybake) in oven C for 30 minutes.
  • CT transparent photocurable resist
  • a mask for the G dye pattern for diagonal: Fig. 18
  • proximity gap 60 m to expose 40m J Zcm2 to i-line
  • room temperature inorganic alcohol 1 solution with a 0.1% aqueous solution of sodium carbonate (manufactured by Fuji Hunt Electronics Technologies, Inc., diluted with CD) It was immersed for minutes and developed. After this, it is washed with pure water shower,
  • the G dye and the transparent photo-curable resist remain, and the remaining unexposed portions of the transparent photo-curable resist are removed by etching, and further heat-treated at 200 ° C for 60 minutes ( Post bake).
  • this substrate is passed through a UVZ ozone asher apparatus (manufactured by Toshiba Lighting & Technology Corporation) under a low-pressure mercury lamp generating a 254 nm emission line, at a substrate temperature of 100 (:, ozone concentration of 10,000 ppm, for 3 minutes).
  • a UVZ ozone asher apparatus manufactured by Toshiba Lighting & Technology Corporation
  • a low-pressure mercury lamp generating a 254 nm emission line
  • the electrode was inserted into the dispersion and the electrode terminal of the transparent conductive thin film was connected to the anode of the potentiostat.After this, constant potential electrolysis was performed at -0.7 V for 10 minutes, and B was placed on the transparent conductive thin film. A dye layer (thin film) was formed, washed with pure water, drained by air blow, and dried in a 50 eC oven.
  • a transparent photo-curable resist (CT: manufactured by Fuji Hunt Electronics Technology) was applied to the R and G dye patterns and the B dye layer at 700 rpm to obtain a value of 100.
  • 40m JZ cm2 is exposed to i-line with a proximity type exposure machine (Proximity gap 60m), then room temperature inorganic It was immersed in a developer (0.1 N sodium carbonate solution: Fuji Hunt Electronics Technology, Inc., CD) for 1 minute to develop, and then washed with pure water shower.
  • the remainder B dye and the transparent photocurable registry of the exposure unit, it transparent photocurable registry of other than unexposed portion is removed by etching, in the et, 200 e oven 6 0 C Heat treatment (postbaking) for minutes.
  • the substrate is passed through a UVZ ozone asher device (manufactured by Toshiba Lighting & Technology Corporation) for 1 minute under a low-pressure mercury lamp generating a 254 nm emission line at a substrate temperature of 100 ° C and an ozone concentration of 10,000 ppm. processing
  • the unexposed B dye layer was decomposed with ozone and etched to form R, G, and B dye patterns.
  • the substrate on which the R, G, and B dye patterns were formed was inserted into the BL micelle dispersion prepared in Production Example 1, and the electrode terminal of the transparent conductive thin film was connected to the anode of the potentiostat. , 0.7 V, 15 minutes of constant potential electrolysis to form a BL dye layer (thin film) on the transparent conductive thin film, wash with pure water, drain off the water with air blow, After drying in an oven, the R, G, B dye pattern and the BL (black matrix) dye layer were formed.
  • thermosetting resin (Obtomer SS7265: manufactured by Nippon Synthetic Rubber Co., Ltd.) was applied as a protective film agent on the substrate at 800 rpm to obtain a resin. It was heat-treated (post-baked) in a C oven for 60 minutes and heat-cured.
  • the ITO thin film was sputtered on the protective film at about 1,200 to form a transparent conductive thin film for driving a liquid crystal.
  • the substrate temperature was adjusted to 200, and the surface resistance of the ITO film was adjusted to 20 ⁇ .
  • the color filter according to the structure 9 shown in FIG. 3 was manufactured.
  • the substrate prepared in Production Example 1 was inserted into the micellar dispersion of ⁇ prepared in Production Example 1, and the electrode terminal of the transparent conductive thin film was connected to the anode of the potentiostat, and 0.7 V, 10 For a minute.
  • a ⁇ dye layer (thin film) was formed on the transparent conductive thin film, washed with pure water, drained by air blow, and dried in a 50 ° C oven.
  • a transparent photocurable resist JNPC06: manufactured by Nippon Synthetic Rubber Co., Ltd.
  • Heat treatment pre-bake was performed for 5 minutes using a hot plate of C.
  • a mask for B dye pattern (for triangle: 20th Through Figure), after i-line exposure with 3 OO m J cm 2 in Mi La one Purojiweku to emission schemes exposure machine, the developing solution of an organic alkali-based aqueous solution at room temperature (2. 3 8% TMAH solution: Fuji Han Toereku DOO Spin-developed with RHDIX Technology, FHD-5) for 2 minutes, brush-scrub-washed with pure water, B-dye in exposed area and transparent light-curable resist remain, and B-dye in other unexposed areas And the transparent photocurable resist were removed by etching.
  • an organic alkali-based aqueous solution at room temperature (2. 3 8% TMAH solution: Fuji Han Toereku DOO Spin-developed with RHDIX Technology, FHD-5) for 2 minutes, brush-scrub-washed with pure water, B-dye in exposed area and transparent light-curable resist remain, and B-dye in other unexposed areas And the transparent
  • the substrate on which the B dye pattern was formed was inserted into the micelle dispersion of G prepared in Production Example 1, and the electrode terminals of the transparent conductive thin film and the anode of the potentiostat were connected. Electrostatic potential electrolysis was performed at 4 V for 18 minutes. Thereafter, a G dye layer (thin film) was formed on the transparent conductive thin film, washed with pure water, then drained with an air blow, and dried in a 50 ° C oven.
  • a transparent photocurable resist (JNPC06: manufactured by Nippon Synthetic Rubber Co., Ltd.) is spin-coated at 2000 rpm on the B dye pattern and the G dye layer, and heated at 80 ° C for 5 minutes at a hot plate. Heat treated (pre-baked).
  • G dye pattern of the mask (for Triangle: second 1 view) the Through, 300 meters J // after i-line exposure in cm 2, organoaluminum force Li-based aqueous solution at room temperature with myristoyl Raab Logistics We click sucrose emission type exposure machine
  • the solution was spin-developed with a developer (2.38% TMA aqueous solution: FHD-5, manufactured by Fuji Hunt Electronics Technologies, Inc.) for 2 minutes, and brush-scrubbed with pure water.
  • a developer 2.38% TMA aqueous solution: FHD-5, manufactured by Fuji Hunt Electronics Technologies, Inc.
  • Heat treatment post bake
  • 60 minutes in a C oven was performed to form G and B dye patterns.
  • the substrate on which the G and B dye patterns were formed was inserted into the micelle dispersion of R prepared in Production Example 1, and the electrode terminal portion of the transparent conductive thin film was connected to the anode of the potentiostat to obtain 0 8 V, 15 minutes constant power Electrolysis was performed. Furthermore, an R dye layer (thin film) was formed on the transparent conductive thin film, washed with pure water, drained with an air blow, and dried at 50 ° C.
  • a black pigment (carbon black) -containing photocurable resist (CK1200: manufactured by Fuji Hunt Electronics Technologies, Inc.) was spin-coated on the substrate at 500 rpm, and 85. The sample was heat-treated (pre-baked) for 5 minutes using a C hotplate.
  • the substrate surface was exposed to i-line at 3 OO m JZ cm 2 through a mask that can expose only the display unit using a mirror projection type exposure machine using a mirror projection type exposure machine.
  • 1N sodium carbonate aqueous solution spin-developed with Fuji Hunt Electronics Technology, Inc., CD diluted product) for 2 minutes, and brush scrubbed with pure water.
  • Heat treatment was performed for 60 minutes in the oven of C, and the black dye-containing resist cured product was embedded between the R, G, and B dyes to form a black matrix.
  • the ITO thin film is sputtered on the protective film at about 1200 ⁇ using a sputtering device (manufactured by ULVAC, Inc .: SDP-550VT).
  • a sputtering device manufactured by ULVAC, Inc .: SDP-550VT.
  • the substrate temperature was adjusted to 200 and the surface resistance of the ITO film was adjusted to 20 ⁇ .
  • the color filter according to the structure 13 shown in FIG. 4 was manufactured.
  • a Cr thin film was applied to a thickness of about 1200 by using a sputtering device (manufactured by ULVAC: SDP-550 VT). A deposited. At this time, the substrate temperature was adjusted to 250 eC. Next, a UV-solubilized positive resist (HPR 204: manufactured by Fuji Hunt Electronix Technology Co., Ltd.) was coated on the evaporated Cr thin film to a thickness of 1.5 m using a roll coater. 1 10 ° oven at for 30 minutes heat treatment C was (pre-baking), through its mask ( Figure 23) for bra Kkuma bird box formation, i in contactor preparative exposure machine with 6 0 m J cm 2 Line exposure.
  • HPR 204 manufactured by Fuji Hunt Electronix Technology Co., Ltd.
  • a 1-liter concentration of a Cr etchant was prepared with 165 g of ceric ammonium nitrate, 42 ml of perchloric acid and pure water, and the substrate on which the resist pattern was formed was allowed to stand at room temperature. It was immersed for 2 minutes and washed with pure water. Then, the Cr thin film in the area without the resist pattern is etched, and further immersed in a resist release material (N-303: manufactured by Nagase & Co., Ltd.) of an organic alkaline aqueous solution at room temperature for 5 minutes. Then, the substrate was washed with pure water one by one to form a black matrix of a metal thin film (Cr).
  • a resist release material N-303: manufactured by Nagase & Co., Ltd.
  • a sputtering device made by ULVAC: SDP—550 V
  • T masking deposition
  • a metal mask of a design (Fig. 12) that connects the entire display area to the electrode extraction terminal at about 1300 A using a ⁇ ⁇ 0 thin film.
  • the substrate temperature was adjusted to 250 ° C.
  • the surface resistance of the IT0 film was adjusted to 20 ⁇ ].
  • thermosetting resin (LC2001: manufactured by Sanyo Kasei Kogyo Co., Ltd.) is spin-coated on this substrate at 700 rpm as a protective film agent, and heat-treated in a 220 oven for 60 minutes (postbaking). ) And heat cured.
  • the ITO thin film is sputtered on the protective film at about 1200 A to form a transparent conductive thin film for driving liquid crystals. did.
  • the substrate temperature was adjusted to 200 ° (the surface resistance of the ITO film was set to 20 ⁇ / ⁇ ).
  • the color filter according to the structure 21 shown in FIG. 5 was manufactured.
  • a transparent photocurable resist (V-259PA: manufactured by Nippon Steel Chemical Co., Ltd.) was spin-coated at 700 rpm on this substrate as a protective film agent, and the substrate was heated in an oven at 80 ° C for 3 minutes. Heat-treated (pre-bake) for 0 minutes, and exposed to i-line with a proximity exposure machine (proximity gap 500 m) at 300 mJZ cm2 through a mask that can expose only the display unit.
  • pre-bake pre-bake
  • i-line with a proximity exposure machine proximity gap 500 m
  • the ITO thin film is sputtered on the protective film at about 120 OA to form a transparent conductive thin film for driving liquid crystals. did. At this time, the substrate temperature was adjusted to 200 ° C, and the surface resistance of the ITO film was adjusted to 2 ⁇ .
  • the color filter according to the structure 24 shown in FIG. 6 was manufactured.
  • the substrate with the black matrix of the metal thin film (Cr) prepared in Production Example 2 was laminated with an IT0 thin film for about 130,000 using a sputtering device (manufactured by ULVAC, Inc .: SDP-550 VT). A vapor deposition was performed on the entire surface without using a metal mask.
  • a sputtering device manufactured by ULVAC, Inc .: SDP-550 VT.
  • a transparent photocurable resist (V-259 PA: manufactured by Nippon Steel Chemical Co., Ltd.) was spin-coated at 1500 rpm on a substrate with the surface resistance of this IT0 film adjusted to 20 ⁇ , and the temperature was adjusted to 80 °.
  • the IT0 thin film is sputtered on the protective film at about 1200 A to form a transparent conductive thin film for driving liquid crystal. Formed. At this time, the substrate temperature was adjusted to 200 ° C., and the surface resistance of the ITO film was adjusted to 20 ⁇ .
  • the color filter according to the structure 29 shown in FIG. 7 was manufactured.
  • R dye-containing photocurable resist (CR-2000: manufactured by Fuji Hunt Electronics Technologies, Ltd.) was spin-coated on the substrate prepared in Production Example 1 at 500 rpm, and 85.
  • Heat treatment pre-bake
  • a mask for R dye pattern formation for triangles: Fig. 22
  • a proximity exposure machine Proximity gap 6
  • l S Om JZ cn ⁇ for i-line exposure o
  • micellar dispersion Insert into the micellar dispersion, connect the electrode terminal of the transparent conductive thin film to the anode of the potentiostat, conduct 0.7 V, 15 minutes of constant potential electrolysis, and apply the BL dye on the transparent conductive thin film.
  • a layer (thin film) was formed, washed with pure water, drained off with an air blower, and dried in a 50 C oven to form a BL dye layer between the R, G, and B dye patterns.
  • a transparent thermosetting resin (Obtomer SS7265: manufactured by Nippon Synthetic Rubber Co., Ltd.) was spin-coated on this substrate at 800 rpm as a protective film agent, and 220. It was heat-treated (post-baked) in a C oven for 60 minutes and heat-cured. Finally, the ITO thin film is sputtered on the protective film at about 1200 A using a sputtering device (manufactured by ULVAC: SDP-550 VT), and the transparent conductive thin film for driving the liquid crystal is used. Was formed. At this time, the substrate temperature was adjusted to 200, and the surface resistance of the ITO film was adjusted to 20 ⁇ ].
  • the color filter having the black matrix manufactured by the micellar electrolysis method and having the structure 30 shown in FIG. 8 was completed.
  • a substrate manufactured in the same process as in Production Example 2 except that a black matrix of a Cr thin film was formed using a mask for forming a black matrix for a triangle (FIG. 24) was used. Further, in the same manner as in Example 7, a dye-containing photocurable resist was used to form R, G, and B dye patterns and a BL dye layer formed by micellar electrolysis.
  • thermosetting resin JSS-715: manufactured by Nippon Synthetic Rubber Co., Ltd.
  • JSS-715 manufactured by Nippon Synthetic Rubber Co., Ltd.
  • the ITO thin film is sputtered on the protective film at about 1,200 ⁇ to form a transparent conductive thin film for driving liquid crystals.
  • the substrate temperature was set to 200 eC , and the surface resistance of the ITO film was adjusted to 20 ⁇ / ⁇ .
  • the film was developed with a 2.38% TMAH developer for 30 seconds. After development, it was rinsed with pure water. 1 30 for the register. After post-baking with C, prepare an aqueous solution of 1 MF e C 13.6 NHC 1 .0. INHN Os 0. INC e (N 0 3 ) 4 as an etchant, was etched. The end point of the etching was measured by electric resistance. The etching required about 20 minutes. After the etching, the substrate was rinsed with pure water, and the resist was separated with separation liquid N-303 (Nagase Sangyo). Thus, an ITO patterned glass substrate was obtained.
  • a 300 mm square white plate glass substrate (Corning Co., Ltd., 7059) was used to deposit ITO 1300 A over the entire surface of the substrate by vapor deposition.
  • the substrate was spin-coated with a UV-solubilizing positive resist agent FH2130 (manufactured by Fuji Hunt Electronics Technologies) at a rotation speed of 1, O O r pm. 80 after spin coating.
  • a bake was performed for 15 minutes at C. After that, this substrate was set in the exposure machine.
  • the mask was a pattern in which the tip of a vertical stripe was shorted (Fig. 42).
  • the proximity gap was removed, exposed to i-ray at 120 mJZ cm2, and developed with a 2.38% TMAH developer. After development, it was rinsed with pure water. 1 30 for the register. After post-baking with C, an aqueous solution of 1 MF e C 13.6 NHC 1 .0. IN HN Os 0. INC e (N 0 3 ) 4 was prepared as an etchant. IT 0 was etched. The end point of the etching was measured by electric resistance. The etching required about 20 minutes. After the etching, the substrate was rinsed with pure water, and the resist was peeled off with N-303 (Nase Corporation). Thus, an IT0 patterned glass substrate was obtained.
  • a black matrix forming resist (a black pigment-containing resist)
  • the color CR, CG, and CB were added to Fuji Hunt Electronics Technologies, Inc.'s Color Mosaic CK in a 3: 1: 1: 1 ratio, respectively.
  • a mixture of parts by weight was used.
  • the IT0 patterning glass substrate prepared earlier was rotated at 10 rpm, and 30 cc of this resist agent was placed on top of this. Was added dropwise.
  • the rotation speed of the spin coat was set to 500 rpm, and a uniform film was formed on the substrate. This substrate was pre-baked at 880 for 15 minutes.
  • exposure was performed using a mask of the design of the black matrix shown in FIG. 43: (pixels having a width of about 90 x 310 / zm).
  • Fuji Hunt CD developer
  • the B, G, and R dye patterns were formed in the same manner as in Example 3 (the previously formed patterned transparent layer). (Because the system uses the electrodes to drive the liquid crystal, it is not necessary to further stack IT0 for driving the liquid crystal.) Finally, the short portions of the transparent electrodes were pressed to make each electrode independent, and a color filter having a structure 33 shown in FIG. 38 was manufactured.
  • ITO was deposited on the entire surface of a mirror-polished 3 O O mm square white glass substrate (Corning Co., Ltd., 7059) by evaporation of 130 O A.
  • a UV-solubilizing positive resist agent HPR204 manufactured by Fuji Hand Electronics Technologies was spin-coated on this substrate at a rotation speed of 1,000 rpm. 80 after spin coating. Prebaking was performed for 15 minutes at C. After that, this substrate was set in the exposure machine.
  • the mask was a pattern in which the tip of a vertical stripe was shorted (Fig. 42).
  • a proximity gap of 70 ⁇ m was taken, exposed to i-rays at 100 mJZ cm2, and then developed with 2.38% TM AH in developer. After development, it was rinsed with pure water. After post-baking the resist at 130 ° C, 1 MF e C 13 ⁇ 6 NHC 1 ⁇ 0.IN as an etch An aqueous solution of HN Os 0. INC e (N O3) 4 was prepared, and IT 0 of the substrate was etched. The end point of the etching was measured by electric resistance. The etching required about 20 minutes. After the etching, the substrate was rinsed with pure water, and the resist was separated with separation liquid N-303 (Nagase Sangyo). Thus, an IT0 buttering glass substrate was obtained.
  • a black matrix forming resist (a black pigment-containing resist)
  • the CR, CG, and CB were mixed in a ratio of 3: 1: 1: 1 parts by weight to the color mosquito CK of Fuji Hunt Electronics Technologies, Ltd. What was done was used.
  • the previously prepared IT0 buttering glass substrate was rotated at 10 rpm, and 30 cc of the resist agent was dropped thereon.
  • the rotation speed of the sub-coat was set to 5 O rpm, and a uniform film was formed on the substrate. This substrate was pre-baked at 80 ° C for 15 minutes. Then, while aligning with the exposure machine, i-line exposure was performed from the glass surface of the substrate using a mask capable of exposing only the display portion.
  • Fuji Hunt CD developer
  • the substrate was rinsed with pure water, and post-baked for 200 minutes (:, 100 minutes) to form black matrix at positions between the B, R, and G dye patterns.
  • Each electrode is made independent by cutting the short part.Since a liquid crystal drive is performed using the patterned transparent electrode formed here, further lamination of the liquid crystal drive IT0 is unnecessary. Thus, a color filter having a structure 33 shown in FIG. 38 was manufactured.
  • this lg was converted to FPEG: 2 mM, LiBr: 0.1 M solution 1
  • the emulsion was dispersed by ultrasonic irradiation to form an emulsion, and a substrate having a dye layer formed by micellar electrolysis was inserted into the solution, and 0.5 V, 30 V
  • the procedure was performed in the same manner as in Example 1 except that the transparent photocurable resist was laminated by electrolysis for one minute.
  • Example 1 the transparent light-curable resist was replaced with a transparent light-curable electrodeposited polymer (Japanese Patent Laid-Open No. 4-104102).
  • a substrate having a dye layer formed by micellar electrolysis was inserted into a neutral electrodeposited polymer electrolyte solution, and the solution was electrolyzed at 100 V for 1 minute to laminate a transparent photocurable electrodeposition polymer.
  • the operation was performed in the same manner as in Example 1.
  • Example 3 is the same as Example 3, except that the mask used for forming the RGB dye pattern was replaced with a design mask in which dye patterns of the same color were connected as shown in FIGS. The RGB dye pattern was formed on the surface.
  • an aqueous solution of 1 MF eC 13.6 NHC 1 .0.INHN Os 0.INCe (N Os) was prepared as an etchant, and the ITO of the non-laminated portion of the dye pattern on the substrate was etched. . The end point of the etching was measured by electric resistance. The etching required about 20 minutes. After etching, it was rinsed with pure water. Thus, IT 0 patterning was performed.
  • Fuji Hunt CD developer
  • Fuji Hunt CD developer
  • Example 1 was repeated in the same manner as in Example 1 except that each time R, G, and B colors were formed into a film by the micelle electrolysis method, UV cleaning was performed to decompose foreign substances on the pigment surface.
  • an aqueous solution of 1 MF eC 13.6 NHC 1 .0.IN ⁇ 0 3 .0.1 N Ce ( ⁇ 0 3 ) 4 was prepared.
  • the substrate IT0 was etched. The end point of the etching was measured by electric resistance. The etching required about 10 minutes.
  • the substrate was rinsed with pure water, and the resist was peeled off with a release agent ( ⁇ —303: manufactured by Nagase & Co., Ltd.). In this way, an I ⁇ 0 buttering glass substrate was obtained.
  • black matrix forming resist As a black matrix forming resist (register containing black pigment), the same CR, CG, and CB are added to Fuji Hunt Electronics Technological Co., Ltd.'s Rikmo Razaik CK in a ratio of 3: 1: 1: 1: 1, respectively. A partially mixed product was used.
  • the above resist was applied at 500 rpm on a previously prepared IT0 buttering glass substrate by a spin coater, and the resulting resist was applied at 80 rpm. Heat treated (prebaked) for 15 minutes in a C oven. Next, an aqueous solution of polyvinyl alcohol (PVA) for an oxygen barrier film (CP: manufactured by Fuji Hunt Electronics Technology) was applied in the same manner as the resist. Then, while aligning with an aligner using an aligner that has an alignment function, the black matrix and the mask for forming the electrode take-out (Fig. 26) are used to achieve 80 zm.
  • PVA polyvinyl alcohol
  • CP oxygen barrier film
  • the film After performing a proximity exposure (i-line), the film was developed with an inorganic alkaline developer (0.1 N sodium carbonate aqueous solution: Fuji Hunt Electronics Technology Co., Ltd., dilute CD). Furthermore, it was rinsed with pure water, and heat-treated (boss bake) in an oven at 220 ° C. In this way, the electrode take-out layer 230, the display portion 231 and the black matrix 232 in FIG. 26 were formed.
  • an inorganic alkaline developer 0.1 N sodium carbonate aqueous solution: Fuji Hunt Electronics Technology Co., Ltd., dilute CD.
  • the ITO patterning substrate with black matrix (Fig. 27), which has conduction for each color, such as silver bases 234a, 234b and 234c, is described in Manufacturing Example 1.
  • the silver paste was inserted into the micelle solution of R, and the anode of the potentiostat was connected to the silver paste led to the R row of the drive. Perform constant potential electrolysis at 0.8 V for 15 minutes to remove the R dye thin film. Obtained. Then, after washing with pure water, pre-bake in an oven (100 ° C
  • a thin film of G was obtained. After film formation, post-treatment was performed under the same conditions as for the film formation of R. Finally, insert the substrate of:; into the micelle solution of B, and then use 0.7 V, 1
  • Electrostatic potential electrolysis was performed for 0 minutes, and thin films of color filters R, G, and B were obtained. After film formation, post-treatment was performed under the same conditions as for the film formation of R. In this way, together with the electrode take-out layer 230, the display unit 231, and the black matrix 232 in FIG. 26, the IT0 patterns 23 3a, 233b, An R, G, B color filter dye layer was obtained on 233c.
  • the substrate on which the protective film was laminated was cut with a scriber with an accuracy of 0.3 mm or less on the upper chain line, and the cut surface was chamfered and polished with a chamfering machine.
  • the ITO thin film is sputtered on the protective film at about 1200 A using a sputtering device (ULDP: SDP-550VT) to form a transparent conductive thin film for driving liquid crystal. did.
  • ULDP sputtering device
  • the substrate temperature was adjusted to 200, and the surface resistance of the ITO film was adjusted to 20.
  • a color filter corresponding to the structure 1 described with reference to FIG. 33 is completed.
  • Black matrix formation A Cr thin film was sputtered on an alkali-free glass substrate (NA 45: manufactured by HOYA) at approximately 1,300 A (Alvac: SDP-550 VT). On top of this, a UV-soluble solubilizing positive resist (HPR204: manufactured by Fuji Hunt Electronics Technology Co., Ltd.) was spin-coated at 100 rpm.
  • NA 45 manufactured by HOYA
  • Alvac SDP-550 VT
  • prebaking was performed at 100 ° C for 5 minutes with a hot plate.
  • the substrate was set in an exposure machine, and a proximity gap of 60 m was taken through a black matrix pattern mask (Fig. 23), and i-line exposure was performed at 80 mJZ cm2. It was immersed in a developer of an aqueous alkaline solution (2.38% TMAH aqueous solution, Fuji HD Electronics Technology, FHD-5) and developed.
  • a silica dispersion (OCD TYPE-7; manufactured by Tokyo Ohka Co., Ltd.) was applied as a dielectric film on this black matrix by spin coating at 1,000 rpm and baked at 250 ° C for 60 minutes.
  • the substrate was set on SDP-550 VT manufactured by ULVAC, Inc., and IT0 was sputtered at about 1300 from above the substrate. At this time, the work is 200.
  • the surface resistance of I T0 was adjusted to 20 ⁇ .
  • a UV-solubilized positive resist (FH203M: manufactured by Fuji Hunt Electronics Technology) was spin-coated on the substrate at 1,000 rpm, and the substrate was subjected to spin coating. Heat treatment (brive bake) was performed in a C oven for 15 minutes. Next, through a diagonal pattern mask (Fig. 28) using a contact exposure machine, the alignment exposure (i-line exposure energy 6
  • the substrate was rinsed with a pure water shower, and further subjected to a heat treatment (post bake) at 150 ° C.
  • the substrate was subjected to etching for 3 minutes by using a mixture of an equal amount of an aqueous ferric chloride solution (Boume 42) and hydrochloric acid as an etchant for 3 minutes.
  • the end point of the etching was measured by electrical resistance.o
  • the substrate was rinsed with pure water, and the resist was peeled off with a release agent (N-303: manufactured by Nagase & Co., Ltd.) of an organic alkaline aqueous solution. Furthermore, it washes with pure water to confirm that there was no electrical leakage between adjacent I T0 electrodes.
  • a release agent N-303: manufactured by Nagase & Co., Ltd.
  • Acrylic acid-based resist (CT: manufactured by Fuji Hunt Electronics Technologies) was used to form an electrode take-out layer, and was spin-coated on the substrate at 85 Orm. It was heat-treated (brive bake) in a C oven for 45 minutes. Next, while aligning with a proximity exposure machine (proximity gap 60 m), the exposure (i-line) was performed through a mask (Fig. 29) of only the electrode extraction zone for the diagonal. Exposure energy of 40 mJ / cm2). Then, the film was immersed in a developer of an inorganic alkaline aqueous solution (0.1 N sodium carbonate aqueous solution: a CD-diluted product manufactured by Fuji Hunt Electronics Technologies, Inc.) for 1 minute and developed. Rinse with pure water and 200.
  • CT Cosmetic acid-based resist
  • Heat treatment post bake was performed in a C oven for 60 minutes to complete the substrate for color filter production.
  • the substrate is made of silver for each of R, G, and B.
  • the same steps as in Comparative Example 1 were performed except that the first 25 1 a, 25 1 b, and 25 1 c were formed and conduction was established.
  • thermosetting resin (Obtomer SS7265: manufactured by Nippon Synthetic Rubber Co., Ltd.) was spin-coated at 900 rpm as a protective film agent on the substrate on which the dye layer was formed. It was heat-treated (boss bake) in a C oven for 60 minutes.
  • the ITO thin film was sputtered on the protective film of about 1,200 to form a transparent conductive thin film for driving a liquid crystal.
  • the substrate temperature was set to 200, and the surface resistance of the I T0 film was adjusted to 20 ⁇ .
  • a color filter corresponding to the structure 2 described with reference to FIG. 34 was completed.
  • I ⁇ 0 thin vagina patterning formation of lightning for forming ft surface layer
  • a UV-solubilized positive resist (HPR 204: manufactured by Fuji Hunt Electronics Technology Co., Ltd.) was applied to the ITO film glass substrate (alkali-free glass; IT 0 film 20 ⁇ / ⁇ ) at 1,000 rpm. did. 80 after this spin coating.
  • Heat treatment (prebake) was performed in a C oven for 15 minutes. Then, the substrate was exposed to i-line at 80 mJZ cm 2 through a diagonal pattern mask (Fig. 28) using this substrate contact exposure machine, and then a developing solution (2.38% TMAH aqueous solution: developed by immersion in Fuji Hunt Electronics Technologies. After this development, the substrate was rinsed with pure water and postbaked at 150 ° C.
  • the second chloride at 37 ° C was used as an etchant.
  • the IT0 of the substrate was etched for 3 minutes with an equal amount mixture of an aqueous iron solution (Boume 42) and hydrochloric acid. The end point of this etching was measured by electrical resistance.
  • the substrate was rinsed with pure water, and the resist was peeled off with a separating agent (N-303: manufactured by Nagase & Co., Ltd.) of an organic solvent aqueous solution. Further, the substrate was washed with pure water, and it was confirmed that there was no electric leak between adjacent IT0 electrodes. Thus, a substrate for forming a color filter was completed.
  • This substrate cutting and chamfering were performed in the same steps as in Comparative Example 1 except that the cutting was performed by the dashed line shown in FIG. 35 described above.
  • the I ⁇ 0 thin film is sputtered on the protective film with a thickness of about 1200 0, and the liquid crystal is driven to be transparent. A conductive thin film was formed. At this time, the substrate temperature was adjusted to 200, and the surface resistance of the ITO film was adjusted to 20 ⁇ 1. Black matrix formation
  • a Cr thin film was spun on the substrate at about 150 A (manufactured by ULVAC, Inc .: SDP-550VT type).
  • an ultraviolet solubilizing type resist agent FH2130: manufactured by Fuji Hunt Electronics Technology Co., Ltd.
  • prebake was performed in a 90 ° C oven for 15 minutes.
  • the substrate is then set in a proximity-type exposure machine (proximity gap 80 // m) and aligned with the underlying ITO pattern through a black matrix pattern mask ( Figure 23).
  • i-line exposure was performed using SO m JZ cm 2 .
  • it was immersed in a developing solution of an inorganic alkaline aqueous solution LSI developer: manufactured by Fuji Hunt Electronics Technologies
  • This formation is performed in the same process as in Comparative Example 2 except that a black matrix is formed using a black matrix for a triangle (FIG. 24) using a chromium oxide thin film instead of the chromium thin film. went.
  • a red (R) dye-containing resist CR-2000 (manufactured by Fuji Hunt Electronics Technology) is spin-coated at 500 rpm on a substrate on which black matrix is formed, and heat-treated in an 85 ° C oven for 15 minutes.
  • an oxygen barrier film (CP: manufactured by Fuji Hunt Electronics Technology Co., Ltd.) was coated in the same manner as the resist. This substrate is set in a contact exposure machine, aligned with the black matrix, and aligned (aligned) with an R dye pattern mask (for triangles: Fig. 22).
  • Exposure to i-rays with cm2 using a developing solution of an inorganic alkaline aqueous solution (0.1 N sodium carbonate aqueous solution: CD: Fuji Hunt Electronics Technology Co., Ltd.) ). In addition, rinse with pure water shower and then 200. Heat treatment (postbaking) in a C oven for 60 minutes formed an R dye pattern.
  • an inorganic alkaline aqueous solution 0.1 N sodium carbonate aqueous solution: CD: Fuji Hunt Electronics Technology Co., Ltd.
  • the production yield is defined as the ratio (%) of the number of non-defective color filters when 20 insulating substrates (glass substrates) are loaded. As a condition of this non-defective product, it is assumed that there is no white defect or black defect having a size of 30 // m diameter or more.
  • the standard of color unevenness is ⁇ 10 or less.
  • a defect in the color element layer due to the disconnection of the ITO pattern corresponds to a white defect
  • a duplication of the dye layer due to a leak in the ITO pattern corresponds to a black defect.
  • the chromaticity of nine pixels on the substrate is measured separately for R, G, and B, and the one with the largest color difference is evaluated as ⁇ .
  • the surface step is measured by a surface roughness meter using the maximum value of the steps of the R, G, and B dye patterns and the black matrix (between pixels), and the center and edge of each of the R, G, and B color pattern.
  • the average of the maximum value (in pixels) of the step is denoted by ⁇ m.
  • the definition is the dimensional accuracy ("in”) for the design pattern.
  • a small piece of a power filter is sandwiched between two parallel polarizers, the polarizers are rotated 90 degrees, and the change in brightness (contrast) at that time is measured. Take the value rotated by 90 degrees in the denominator, and take the value without rotation in the numerator at that time. When no small piece of color filter is inserted, the value is 20000.
  • Heat resistance is defined as the percentage change in color purity (for the G dye pattern) by heat treatment at 260 CX for 1 hour (air atmosphere) (the ratio of the difference between the color purity before heat treatment and the color purity after heat treatment). .
  • Lightfastness is the percentage change in color purity (for the G dye pattern) of a 100,000 lux metalhalide drambe irradiated for 100 hours (the difference between the color purity before irradiation and the color purity after irradiation). ).
  • the color purity is calculated by taking the chromaticity coordinates for each color, connecting the C light source and the chromaticity coordinates with a straight line, and setting the intersection of the extrapolated line and the outer periphery to 100% color purity.
  • the ratio of the distance of the chromaticity coordinates from the C light source is explained.
  • the light-shielding property is defined as an absorbance at a wavelength of 460 nm, which is converted to a black matrix film thickness of 1.0 m.
  • the number of binholes shall be the average of the number of binholes of 30 / m or more in 20 input substrates.
  • the film surface reflectance is the ratio (%) of the reflected light intensity to the visible light (460 nm) intensity incident on the film surface.
  • Middle method SS Color BL register: ⁇ Color dye-containing resist cured 1 * M3 ⁇ 4KB: Mide ⁇ » ⁇ 3 ⁇ 4 Color ⁇ S Force filter ⁇ value plaque matrix, sox ⁇ value color ⁇ production color unevenness ⁇ fineness toughness light opacity «3) t ':' book- Ir effect surface /!') Reflectance comparison example 1 Strife 60 ⁇ S 0.?5 ⁇ 2 0 6? 0 0 0 BL rest n ⁇ 5,
  • FIG. 31 (a) shows Example 2, in which the step between pixels (max — min), which is the maximum value of the steps of the R, G, B dye patterns and black matrix measured by a surface roughness meter, is shown. ), And its value is 0.10 m from (Table 1 and Table 2).
  • Fig. 31 (b) shows the (average) step (maX-min) in the pixel, which is the maximum value of the step between the center and the end of each of the R, G, and B dye patterns. In Tables 1 and 2 is 0.02 / m.
  • Fig. 31 (c) shows the maximum value of the step of the R, G, B dye pattern and the black matrix measured by the surface roughness meter in Comparative Example 2, that is, the structure 2 described above. Indicates the step between pixels (max-min), and the value is 0.45 m from Tables 1 and 2.
  • Fig. 31 (d) shows the (average) step (max-min) in the pixel, which is the maximum value of the step between the center and the end of each of the R, G, and B dye patterns. (Table 1 and Table 2) It is 0.15 m.
  • both the step between pixels and the step within the pixel (average) are small. That is, since the dye layer is formed flat, the steps in the same dye pattern are reduced, the scattering of transmitted light is reduced, and the contrast is good.
  • the color filter of this embodiment can be produced with a high yield even with various dye pattern arrangements, reduces color unevenness, and improves flatness. Therefore, it was confirmed that the image quality was improved (contrast was improved) and that it was possible to sufficiently cope with future high definition.
  • the power filter and the method of manufacturing the same according to the present invention can be applied to various kinds of electric devices using a large-screen indoor / outdoor image information display device such as a color liquid crystal display, an aurora vision, etc. It can be suitably used in industry, information equipment industry, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Filters (AREA)

Abstract

A color filter having a display (81) produced by sequentially laminating an insulating substrate (80), a transparent conductive film (82), micelle electrolytic process film (R, G, B, BL) colorant layers (83a, 83b, 83c, 83d), and transparent resist films (84a, 84b, 84c and 84d) hardened through photo-curing (formed on the micelle electrolytic process films R, G, B, BL colorant layers (83a to 83d) (84a, 84b, 84c, 84d)) in order named. Further, a protective film (105) is formed in lamination on the transparent resist films (84a to 84d), whenever necessary.

Description

明 糸田 カラ一フィルタ及びその製造方法 技術分野  Akira Itoda Color filter and its manufacturing method
本発明は、 カラー液晶ディ スプレイ、 オーロラ ビジョ ン等の屋内 外大画面画像、 情報表示装置、 固体撮像素子 (C C D ) 等に使用す るカラーフィ ルタに関し、 特に、 表示画像の画質の向上及び高精細 化を図ることができるとともに生産効率 (歩留り) を向上するこ と ができるカラーフィルタ及びその製造方法に関する。 背景技術  The present invention relates to a color filter used for a large-sized indoor / outdoor screen image such as a color liquid crystal display and an aurora vision, an information display device, a solid-state imaging device (CCD), and the like. The present invention relates to a color filter capable of improving the production efficiency (yield) as well as a color filter, and a method for manufacturing the same. Background art
以下、 カラーフィ ルタの従来技術を、 カラー液晶ディ スプレイ に 用いられた場合を例にとって説明する。  In the following, a description will be given of a case where a conventional color filter is used in a color liquid crystal display as an example.
近時の液晶テレビジョ ン、 液晶ブロジヱクタ一、 ラップ トツブパ 一ソナルコ ンピュータ、 ノー ト型パーソナルコ ンピュータ等のディ スブレイにカラ一液晶ディ スブレイが用いられている。 このカラー 液晶ディ スブレイには、 絶縁性透明基板上に色素層を平面的にバタ ー ン化、 すなわち、 分離配置して形成したカラーフィ ルタが使用さ れている。  In recent years, color liquid crystal displays have been used for displays such as liquid crystal televisions, liquid crystal projectors, laptop computers, and notebook personal computers. In this color liquid crystal display, a color filter is used in which a dye layer is patterned in a plane on an insulating transparent substrate, that is, separated and arranged.
一般的なカラー液晶ディ スプレイの構成を第 3 2図示す。 この力 ラー液晶ディスブレイは、 二枚の基板の間に液晶を挟持している。 すなわち、 その一枚の基板と してカラーフィ ルタを用い、 カラーフ ィ ルタ基板 1 0 と駆動用基板 2 0の間に液晶 3 0を封入している。 液晶 3 0を封入した後、 接着剤 (封止材) 4 0 a, 4 0 bで封止し ている。  Fig. 32 shows the configuration of a general color liquid crystal display. This color liquid crystal display sandwiches liquid crystal between two substrates. That is, a color filter is used as one of the substrates, and liquid crystal 30 is sealed between the color filter substrate 10 and the driving substrate 20. After sealing the liquid crystal 30, it is sealed with adhesive (sealing material) 40a and 40b.
カラーフィ ルタ基板 1 0は、 絶縁性透明基板としてのガラス基板 1上に三原色、 すなわち、 赤 (レツ ド、 R ) 、 緑 (グリーン、 G ) 、 青 (ブルー、 B ) (以下、 必要に応じて単に R , G , Bと記載する) の色素層 5 a , 5 b , 5 cをそれぞれ形成し繰り返して構成されて いる。 さ らに、 この色素層 5 a〜5 c間に、 そこでの洩れ光による コ ン トラス トと色純度との低下を防止するためブラ ックマ ト リ ッ ク ス (以下、 必要に応じて B M又は B Lと記載する) 2 a , 2 b, 2 c, 2 dが繰り返して設けられている。 The color filter substrate 10 has three primary colors, namely, red (red, R), green (green, G), and blue (blue, B) (hereinafter referred to as necessary) on a glass substrate 1 as an insulating transparent substrate. Simply write R, G, B) The dye layers 5a, 5b, 5c are formed and repeated. In addition, a black matrix (hereinafter referred to as BM or BM as necessary) is provided between the dye layers 5a to 5c to prevent a decrease in contrast and color purity due to leakage light there. BL) 2a, 2b, 2c, 2d are provided repeatedly.
また、 ブラックマ ト リ ックス 2 a〜2 d、 色素層 5 a〜5 。上に 保護膜 6を形成して平坦化し、 その上面に液晶駆動用透明電極を設 けている。 一方、 駆動用基板 2 0は、 絶縁性透明基板 2 1 に駆動用 透明電極 2 2 a , 2 2 b , 2 2 cを繰り返し形成して構成されてい る  Also, black matrixes 2a to 2d and dye layers 5a to 5d. A protective film 6 is formed on the upper surface and flattened, and a liquid crystal driving transparent electrode is provided on the upper surface. On the other hand, the driving substrate 20 is formed by repeatedly forming the driving transparent electrodes 22 a, 22 b, and 22 c on the insulating transparent substrate 21.
このようなカラーフィルタの色素層は、 通常、 印刷機を用いてガ ラス基板等の絶縁性透明基板上に R, G, B三原色の顔料又は染料 (色素) と樹脂を混練したィ ンキを印刷する印刷法によって形成さ れている。  The dye layer of such a color filter is usually formed by printing an ink obtained by kneading a pigment or dye (dye) and resin of the three primary colors R, G, and B on an insulating transparent substrate such as a glass substrate using a printing machine. It is formed by a conventional printing method.
また、 顔料又は染料 (色素) を分散して含有させた紫外線硬化性 樹脂 (レジス ト) をガラス基板上に塗布し、 フォ ト リ ソグラフィ法 によるマスク露光、 現像、 及び熱硬化を R , G , Bごとに三回繰り 返して色素層を形成する分散法、 また、 ゼラチン等の感光性天然高 分子をガラス基板上に塗布し、 フォ トリ ソグラフィ 法によるマスク 露光、 現像後、 R, G , Bのうちの一色の染料でバターニングした ゼラチンを染色して熱硬化する工程を残りの二色についても同様に 繰り返して色素層を形成する染色法が用いられている。  Also, an ultraviolet-curable resin (resist) containing a pigment or dye (dye) dispersed therein is applied on a glass substrate, and mask exposure by photolithography, development, and heat curing are performed by R, G, and R, respectively. A dispersion method in which a dye layer is formed by repeating three times for each B, or a photosensitive natural polymer such as gelatin is coated on a glass substrate, and mask exposure by photolithography is performed. After development, R, G, B The dyeing method of forming a dye layer by repeating the process of dyeing gelatin that has been buttered with one of the dyes and thermally curing the same for the remaining two colors is also used.
さらに、 電着ポリマーと顔料又は染料 (色素) を水などの液体中 に分散させ、 基板上に形成された導電性薄膜のパターン (電極) を 利用してこの電極上に R, G, Bの色素層を順次電着塗装を行なつ て顔料又は塗料 (色素) と電着ポリマーとからなる色素層を形成す る電着法、 又は界面活性剤と顔料又は染料 (色素) とを水などの液 体中に分散させ、 先の電極上に顔料又は染料の R , G , Bの各色素 を順次製膜して、 色素層を形成する ミセル電解法が用いられている。 このミ セル電解法で力ラーフィ ルタを形成する場合について説明 する。 In addition, the electrodeposition polymer and pigment or dye (dye) are dispersed in a liquid such as water, and the R, G, and B are formed on this electrode using the conductive thin film pattern (electrode) formed on the substrate. The dye layer is sequentially electrodeposited to form a dye layer composed of a pigment or paint (dye) and an electrodeposition polymer by an electrodeposition method, or a surfactant and a pigment or dye (dye) are mixed with water or the like. A micellar electrolysis method is used in which a pigment layer is formed by sequentially dispersing R, G, and B pigments or dyes on a previous electrode to form a pigment layer. The case where a force filter is formed by this micelle electrolysis method will be described.
このミ セル電解法での力ラーフィ ルタの構成と しては、 以下の特 開平 3— 1 02 3 02号公報に開示された構造 (1 ) 、 特開平 4一 1 1 09 0 1号公報に開示された構造 (2) 、 特開平 5— 1 42 4 1 8号公報に開示された構造 (3) が提案されている。  The structure of the force filter in the micellar electrolysis method is described in the following structure (1) disclosed in Japanese Unexamined Patent Publication No. 3-102302 and Japanese Unexamined Patent Application Publication No. Hei 4-110901. The disclosed structure (2) and the structure (3) disclosed in Japanese Patent Application Laid-Open No. 5-142418 have been proposed.
第 33図 (a ) は、 構造 ( 1 ) の構成を示す正面図、 第 3 3図 ( b ) は第 3 3図 ( a) 中の A— A線断面図である。  FIG. 33 (a) is a front view showing the structure of the structure (1), and FIG. 33 (b) is a sectional view taken along the line AA in FIG. 33 (a).
この例は、 表示部 4 1として、 絶縁性基板、 透明導電性薄膜、 色 素層、 保護膜及び液晶駆動用電極等を積層して形成する。 すなわち、 まずガラス基板などの絶縁性透明基板 42上にイ ンジウム、 スズの 酸化物 ( I T O) などの透明導電性薄膜をパターン化して、 電極取 り出し部 4 3に接続される色素層形成用透明電極 44 a, 44 b, 44 cを形成している。 さらに、 黒色色素 (黒色顔料混合物) 含有 のァク リル酸系光硬化性レジス ト硬化物 (特開平 4一 1 3 1 06号 公報) からなる電極の取り出し層 4 3とブラックマ ト リ ックス層 4 6 a , 46 b, 46 c , 46 dをパターン化して同時に積層後、 ミ セル電解法で R, G, B三原色の顔料を製膜して色素層 4 8 a, 4 8 b, 4 8 cを形成している。 そして、 ァク リル樹脂やシロキサン 樹脂などを主剤として含む保護膜剤 50で保護膜を形成し、 この上 部にイ ンジウム、 スズの酸化物 ( I T 0) などの透明導電性薄膜を 一面に積層した液晶駆動用電極 5 2を設けている。  In this example, the display section 41 is formed by laminating an insulating substrate, a transparent conductive thin film, a colorant layer, a protective film, a liquid crystal driving electrode, and the like. That is, first, a transparent conductive thin film such as indium or tin oxide (ITO) is patterned on an insulating transparent substrate 42 such as a glass substrate to form a dye layer to be connected to the electrode extraction portion 43. The transparent electrodes 44a, 44b, 44c are formed. Furthermore, an electrode take-out layer 43 and a black matrix layer 4 made of an acrylic acid-based photocurable resist cured product containing a black pigment (black pigment mixture) (Japanese Patent Application Laid-Open No. Hei 4-131106). 6a, 46b, 46c and 46d are patterned and laminated simultaneously, and pigments of R, G and B primary colors are formed by micellar electrolysis to form dye layers 48a, 48b and 48c. Is formed. Then, a protective film is formed using a protective film agent 50 containing an acrylic resin or a siloxane resin as a main component, and a transparent conductive thin film such as an oxide of indium or tin (IT0) is laminated on the upper surface. A liquid crystal driving electrode 52 is provided.
第 34図 (a ) は、 構造 (2) における正面図、 第 34図 (b ) は第 34図 (a ) 中の C一 C線断面図である。  FIG. 34 (a) is a front view of the structure (2), and FIG. 34 (b) is a sectional view taken along line C-C in FIG. 34 (a).
この例は、 表示部 5 6を形成するため、 まずガラス基板などの絶 縁性透明基板 6 0にメ タルクロム及び酸化物クロムなどの金属又は 金属酸化物薄膜をパターン化したブラックマ ト リ ッ クス 6 1 a, 6 l b, 6 1 c, 6 1 d、 シリカ又はァク リル樹脂などの絶縁膜 6 2、 及び、 イ ンジウム、 スズの酸化物 ( I T 0) などの透明導電性薄膜 をパターン化した色素層形成用電極 6 3 a , 6 3 b , 6 3 cを順次 積層している。 さ らに、 色素 (顔料又は染料) 含有アク リ ル酸系光 硬化性レジス ト硬化物又はァク リル酸系光硬化性レジス ト硬化物か らなる電極取出層 6 6 a , 6 6 bを表示部 5 6の外に引のばした色 素層形成用電極上に形成後、 ミセル電解法で R, G, B三原色の顔 料又は染料を製膜して色素層 6 4 a , 6 4 b , 6 4 cを形成してい る。 In this example, a black matrix 6 in which a metal or metal oxide thin film such as metal chrome and chromium oxide is patterned on an insulating transparent substrate 60 such as a glass substrate to form the display section 56 1 a, 6 lb, 61 c, 61 d, insulating film 62 such as silica or acrylic resin, and transparent conductive thin film such as oxides of indium and tin (IT0) The dye layer forming electrodes 63a, 63b, and 63c are sequentially laminated. In addition, electrode extraction layers 66a and 66b made of a cured acrylic acid-based photocurable resist containing a dye (pigment or dye) or a cured acrylic acid-based photocurable resist are used. After being formed on the electrode for forming a color layer which is extended out of the display section 56, pigments or dyes of the three primary colors R, G and B are formed by micellar electrolysis to form the dye layers 64a and 64. b and 64c are formed.
そして、 ァク リル樹脂やシロキサン樹脂などを主剤として含む保 護膜剤で保護膜 6 7を形成し、 この保護膜 6 7上にイ ンジウム、 ス ズの酸化物 ( I T O) などの透明導電性薄膜を全面に積層して液晶 駆動用電極 6 8を形成している。  Then, a protective film 67 is formed using a protective film agent containing an acrylic resin or a siloxane resin as a main component, and a transparent conductive material such as indium or tin oxide (ITO) is formed on the protective film 67. A thin film is laminated on the entire surface to form a liquid crystal driving electrode 68.
第 3 5図 ( a ) は、 構造 ( 3 ) における正面図、 第 3 5図 ( b ) は、 第 3 5図 ( a ) 中の E— E線断面図'である。 この例は、 表示部 7 0を形成するため、 まず、 ガラス基板などの絶縁性透明基板 7 1 にイ ンジウム、 スズの酸化物 ( I T 0) などの透明導電性薄膜をパ ターン化した色素層形成用電極 7 2 a , 7 2 b , 7 2 cを形成して いる。 そして、 色素 (顔料又は染料) 含有ァク リル酸系光硬化性レ ジス ト硬化物又はァク リル酸系光硬化性レジス ト硬化物からなる電 極取出層 7 7 a , 7 7 bを表示部 7 0の外に引きのばした色素層形 成用電極上に積層後、 ミセル電解法で R, G, B三原色の顔料又は 染料を製膜して色素層 7 3 a, 7 3 b , 7 3 cを形成している。  FIG. 35 (a) is a front view of the structure (3), and FIG. 35 (b) is a cross-sectional view taken along the line EE in FIG. 35 (a). In this example, in order to form the display section 70, first, a dye layer in which a transparent conductive thin film such as indium or tin oxide (IT0) is patterned on an insulating transparent substrate 71 such as a glass substrate. Forming electrodes 72a, 72b, and 72c are formed. The electrode extraction layers 77a and 77b made of a cured acrylate-based photocurable resist or a cured acrylate-based photocurable resist containing a dye (pigment or dye) are displayed. After laminating on the electrode for forming a dye layer extended outside part 70, pigments or dyes of three primary colors of R, G, B are formed by micellar electrolysis to form dye layers 73a, 73b, 7 3c is formed.
この後、 ァク リル樹脂ゃシロキサン樹脂などを主剤とした保護膜 剤で保護膜 7 4を形成している。 さ らに、 イ ンジウム、 スズの酸化 物 ( I T 0) などの透明導電性薄膜を一面に積層し、 液晶駆動用透 明電極 7 5を形成している。 さらに、 メ タルクロム及び酸化物ク 口 ムなどの金属又は金属酸化物薄膜をパターン化したブラックマ ト リ ッ クス 7 6 a , 7 6 b , 7 6 c, 7 6 dを設けている。 この構造 3 では液晶駆動用電極とブラックマ ト リ ツクスの積層の順を逆にして もよい。 第 36図 ( a ) は、 分散法に係る従来の力ラーフィ ルタの構成を 示す正面図、 第 3 6図 (b) は第 3 6図 (a ) 中の S— S線断面図 である。 Thereafter, the protective film 74 is formed using a protective film agent mainly composed of an acrylic resin or a siloxane resin. Further, a transparent conductive thin film such as an oxide of indium or tin (IT0) is laminated on one surface to form a transparent electrode 75 for driving a liquid crystal. In addition, black matrixes 76a, 76b, 76c, and 76d, which are patterned metal or metal oxide thin films such as metal chrome and oxide chromium, are provided. In this structure 3, the order of lamination of the liquid crystal driving electrode and the black matrix may be reversed. FIG. 36 (a) is a front view showing a configuration of a conventional force filter according to the dispersion method, and FIG. 36 (b) is a cross-sectional view taken along line SS in FIG. 36 (a).
この例は、 絶縁性基板 7 8、 金属又は金属酸化物薄膜ブラックマ ト リ ックス B L (絶縁性基板 78上に形成する) 7 8 a, 7 8 b , 7 8 c, 7 8 dと、 R, G, B色素含有レジス ト硬化物 (絶縁性基 板 7 8上に形成する) 78 e , 7 8 f , 78 g、 保護膜 7 9 a、 及 び、 透明導電性薄膜 (液晶駆動用電極) 79 bを順に積層して表示 部 7 9 cを形成している。  In this example, the insulating substrate 78, the metal or metal oxide thin film black matrix BL (formed on the insulating substrate 78) 78a, 78b, 78c, 78d, and R, G, B dye-containing resist cured product (formed on insulating substrate 78) 78e, 78f, 78g, protective film 79a, and transparent conductive thin film (liquid crystal drive electrode) The display section 79c is formed by sequentially stacking 79b.
しかしながら、 上述した従来例の構造 (1 ) 〜構造 (3 ) では、 透明導電性薄膜をパターン化し、 R G Bの各色に対し連続して接続 した色素層形成用電極と、 電極取り出し層が不可欠であるという問 題があった (電着法も同様) 。 まず、 主に I T Oである透明導電性 薄膜のパタ一ン化には、 トライアングルゃダイァゴーナル配列など の高精細なパターン化や複雑な色素 (画素) 配列のパターンに応じ た微細加工が必要であり、 ス トライブなどの単純なパターン以外は、 透明導電性薄膜のショー ト又は断線による欠陥が発生し易かった。 すなわち色素形成用電極パターンのライ ン及びライ ン間のギヤ ッブ の巾が、 ダイァゴーナルと トライアングル配列の場合に小さく なり、 ス トライブパターンに比較して、 ショート、 断線による欠陥の確率 が増加した。 次に、 電極取り出し層も同様にパターン化する必要が あり、 工程が煩雑であつた。 その結果、 生産におけるカラーフィ ル 夕の歩留りが低下せざるを得なかった。  However, in the above-described conventional structures (1) to (3), a transparent conductive thin film is patterned, and a dye layer forming electrode continuously connected to each color of RGB and an electrode extraction layer are indispensable. (The same applies to the electrodeposition method). First, patterning of transparent conductive thin film, which is mainly ITO, requires high-definition patterning such as triangle-diagonal arrangement and fine processing according to the pattern of complex dye (pixel) arrangement. Except for simple patterns such as stripes, shorts or breaks in the transparent conductive thin film were likely to occur. In other words, the width of the lines of the electrode pattern for dye formation and the width of the gear between the lines became smaller in the case of the diagonal and triangle arrangements, and the probability of defects due to short-circuit and disconnection increased as compared with the stripe pattern. Next, it was necessary to similarly pattern the electrode extraction layer, and the process was complicated. As a result, the production yield of color filters and evenings had to be reduced.
さ らに、 微細な色素層形成用電極を連続的に接続することによつ て、 透明導電性薄膜の抵抗による電圧降下が発生し、 電極取り出し 層近辺と遠隔部に ミセル電解法で製膜した色素層の膜厚差、 すなわ ち、 カラーフィ ルタでの色斑が発生する場合があった。 また、 微細 な透明導電性薄膜のパターン上に色素層を製膜しているため、 バタ ーンライ ンの中央部と端部で色素層の膜厚差すなわち画素間段差が 生じる場合があった。 その結果、 カラーフィ ルタのコ ン ト ラス トの 低下を招き、 画質を低下させることがあった。 In addition, the continuous connection of fine dye layer forming electrodes causes a voltage drop due to the resistance of the transparent conductive thin film, and forms a film near the electrode extraction layer and at a remote part by micellar electrolysis. In some cases, a difference in the thickness of the dye layer, that is, color unevenness in a color filter was generated. In addition, since the dye layer is formed on the fine transparent conductive thin film pattern, the difference in the thickness of the dye layer between the center and the end of the pattern line, that is, the step between pixels, is reduced. May have occurred. As a result, the contrast of the color filter was reduced, and the image quality was sometimes reduced.
このような ミ セル電解法に基づく 問題だけではなく 、 それ以外の 方法で作製するカラ一フィ ルタについても次の問題点があった。 す なわち、 分散法によるカラーフィルタは、 色素含有、 すなわち、 色 素を分散させた光硬化性レジス トを使用するため色素の光吸収によ つて露光感度及び色素パターンの精細度 (解像度) が透明レジス ト に比較して悪化せざるを得なかった。  In addition to the problems based on the micellar electrolysis method, the following problems also exist with color filters manufactured by other methods. In other words, the color filter based on the dispersion method uses a dye-containing, that is, a photocurable resist in which the colorant is dispersed, so that the exposure sensitivity and the definition (resolution) of the dye pattern are determined by the light absorption of the dye. It had to be worse than the transparent registry.
さらに、 色素含有レジス トは、 スビンコ一ター又はロールコ一夕 一で塗布されるが、 カラーフィルタの中心部と末端部にレジス 卜の 膜厚差が生じ、 この膜厚差が色むらを引き起こす原因となっていた t 印刷法力ラーフィルタは、 R , G , Bを順次印刷する際の位置合 わせが難しく、 高解像度 (高精細) の色素パター を得ることが現 状では困難であった。 Furthermore, the dye-containing resist is applied all over the surface of a color filter or a roll coater. However, there is a difference in the thickness of the resist between the center and the end of the color filter, and this difference in thickness causes color unevenness. However, it was difficult to align the R, G, and B successively in the T- printing method, and it was difficult to obtain a high-resolution (high-definition) dye pattern.
染色法は、 色素が染料であるためカラーフィ ルタの後加工上の熱 処理及びカラーフィルタとしての耐光性に問題があった。  In the dyeing method, since the dye is a dye, there was a problem in heat treatment in post-processing of the color filter and in light resistance as a color filter.
また、 上記いずれの場合も色素層間の膜厚段差 (画素間段差) を 小さ く制御することが困難であつた。 すなわち、 カラーフィルタを 平坦化することが困難であり、 このため液晶駆動用導電性薄膜の積 層時にクラック、 断線が発生しやすかつた。  Further, in any of the above cases, it was difficult to control the thickness step between the dye layers (step between pixels) to be small. That is, it is difficult to flatten the color filter, and cracks and disconnections are likely to occur when the conductive thin film for driving a liquid crystal is laminated.
次に、 ブラックマ ト リ ックスに関しては、 ミセル電解法による力 ラーフィ ルタ以外の電着法、 分散法、 印刷法、 染色法によるカラー フィ ルタにおいても、 先の説明のようにクロムや酸化クロムなどの 金属もしく は金属酸化物薄膜、 又は黒色色素を含有させた光硬化性 レジス トの硬化物層が用いられてきた。  Next, regarding the black matrix, other than the force filter by the micellar electrolysis method, the color filters by the electrodeposition method, the dispersing method, the printing method, and the dyeing method also use the chromium and chromium oxide as described above. A cured layer of a photocurable resist containing a metal or metal oxide thin film or a black dye has been used.
これらの金属又は金属酸化物薄膜はブラックマ ト リ ックスと して 必要な遮光度 (光学濃度) が高く、 膜厚が小さいため、 高精細なブ ラ ックマ ト リ ッ クスのパターンを形成できる利点がある。  These metal or metal oxide thin films have the advantage of being able to form a high-definition black matrix pattern because of their high light-shielding degree (optical density) required as a black matrix and small film thickness. is there.
しかしながら、 このブラックマ ト リ ックスのパターンは、 高温 ( 2 0 o °c以上) 、 減圧下 (数百ミ 7ΰ トル) における蒸着又はスパッ タ リ ングによつて製膜する必要があ—るため、 形成条件が厳しく 、 製 造に困難性を伴う ものであった。 一方、 膜厚が小さいため、 カラー フィ ルタの各色素層 (R, G , Β ) 間のギャ ップが落ち込んで画素 間段差が大きく なりカラーフィ ルタの平坦化が困難とならざるを得 なかった。 その結果、 カラー液晶ディスプレイのバッ クライ トの斜 め光の漏れが発生し、 視野角が狭く ならざるを得ず、 また、 金属ク ロムなど反射率の高い薄膜を用いた場合には、 その反射光によつて 視認性が低下せざるを得なかった。 However, the pattern of this black matrix is 2 0 o ° or c), must be by connexion made film deposition or spatter-ring under reduced pressure (hundreds Mi 7 Y Torr) there - because, formed condition stricter, accompanied by difficulty in manufacturing Was something. On the other hand, since the film thickness is small, the gap between the dye layers (R, G, Β) of the color filter is reduced, and the step between pixels is increased, so that it is difficult to flatten the color filter. . As a result, oblique light leaks from the backlight of the color liquid crystal display, which inevitably results in a narrow viewing angle, and when a thin film with high reflectivity such as a metal chrome is used, the light is not reflected. The visibility had to be reduced by the light.
一方、 黒色色素を含有させた光硬化性レジス トの硬化物は、 ブラ ッ クマ ト リ ックスとして必要な遮光度 (光学濃度) が低く 、 また、 遮光性の黒色色素を含有するため、 レジス トの露光感度が低く 、 高 精細なバターンを形成するために必要な解像度も低かった。 このた め、 カラー液晶ディスプレイの高精細化が困難であった。  On the other hand, a cured product of a photocurable resist containing a black pigment has a low light-blocking degree (optical density) required as a black matrix, and contains a light-blocking black pigment. The exposure sensitivity was low, and the resolution required to form a high-definition pattern was low. For this reason, it has been difficult to improve the definition of the color liquid crystal display.
この露光感度及び解像度を上げるために、 ブラックマ ト リ ックス を形成する工程に、 黒色色素を含有するレジス トを塗布し、 その後、 酸素遮断膜を積層する工程を追加する方法が知られている。 しかし ながら、 この工程は煩雑さを免れ得なかった。  In order to increase the exposure sensitivity and the resolution, a method is known in which a black dye-containing resist is applied to the step of forming a black matrix, and then a step of laminating an oxygen barrier film is added. However, this process could not be spared.
したがって、 ブラックマ ト リ ックスは、 形成条件が温和かつ形成 の工程が簡易であり、 さらに各色素層 (R , G , Β ) 間のギャ ップ が埋められてカラーフィルタが平坦化、 すなわち、 高い遮光性で高 精細 (高解像度) のパターンを形成できるものが希求され、 これら の改善が課題となっていた。  Therefore, in the black matrix, the formation conditions are mild and the formation process is simple, and the gap between the dye layers (R, G, Β) is filled, and the color filter is flattened. There is a need for a light-shielding material capable of forming a high-definition (high-resolution) pattern, and improvement of these has been an issue.
本発明は、 上述の問題に鑑みてなされたものであり、 当該カラー フィ ルタを用いた、 たとえば、 カラー液晶ディ スプレイにおける表 示画像を高精細化できるとともに、 その画質の向上及び、 生産効率 (歩留り) の向上を図ることができるカラーフィルタ及びその製造 方法を提供することを目的とする。 発明の開示 _8The present invention has been made in view of the above-described problems, and it is possible to increase the definition of a display image using a color filter, for example, a color liquid crystal display, improve the image quality, and improve production efficiency ( It is an object of the present invention to provide a color filter capable of improving the yield and a method for manufacturing the same. Disclosure of Invention _ 8
上述の目的を達成するため、 本発明によれば、 絶縁性基板上に、 複数色の色素層を分離して配置し、 所定の色素パターンを形成した カラーフィ ルタにおいて、 絶縁性基板上の少なく と も表示部全面又 は表示画素部を含む連続するパターンに対応する部分に積層して形 成した透明導電性薄膜、 この透明導電性薄膜の全面又は一部上に ミ セル電解法による製膜によって分離して配置した複数色の色素層、 及び、 この色素層の上に積層して形成した透明な光硬化性レジス ト の硬化物をこの順で有することを特徴とするカラーフィルタが提供 される。  In order to achieve the above-mentioned object, according to the present invention, in a color filter in which a plurality of color dye layers are separately arranged on an insulating substrate and a predetermined dye pattern is formed, at least Also, a transparent conductive thin film formed by laminating the entire display area or a portion corresponding to a continuous pattern including the display pixel section. The entire or a part of the transparent conductive thin film is formed by micellar electrolysis. There is provided a color filter comprising a plurality of dye layers separately arranged and a cured product of a transparent photocurable resist formed by laminating on the dye layers in this order. .
また、 前記複数色の色素層が、 三原色に対応するものであるカラ ーフィルタが提供される。  Further, there is provided a color filter in which the plurality of color layers correspond to three primary colors.
また、 前記複数色の色素層が、 三原色及び黒色の四色に対応する ものであるカラーフィ ルタが提供される。  Further, there is provided a color filter in which the plurality of color layers correspond to three primary colors and four black colors.
また、 前記透明な光硬化性レジス 卜の硬化物の上に積層して形成 した保護膜をさ らに有することを特徴とするカラーフィルタが提供 される。  Further, there is provided a color filter further comprising a protective film formed by laminating on the cured product of the transparent photo-curable resist.
また、 絶縁性基板上に複数色の色素層を分離して配置し、 所定の 色素バターンを形成するカラーフィ ルタの製造方法において、 a ) 絶縁性基板上の少なく とも表示部全面又は表示画素部を含む連 続するパターンに対応する部分に、 透明導電性薄膜を積層して形成 する工程、  Further, in a method of manufacturing a color filter in which a plurality of color dye layers are separated and arranged on an insulating substrate to form a predetermined dye pattern, a) at least the entire display portion or the display pixel portion on the insulating substrate is A step of laminating and forming a transparent conductive thin film on a portion corresponding to a continuous pattern including
b ) 透明導電性薄膜の全面又は一部に、 ミセル電解法による製膜に よって、 複数色から選択した一つの色の色素層を形成する工程、 c ) 一つの色の色素層の上に透明な光硬化性レジス トを積層し、 前 記複数色から選択した一つの色の色素層に対応したマスクを用いて 露光し、 かつ露光部の熱処理の前及び 又は後に、 未露光部分の光 硬化性レジス ト及び色素層を除去して、 一つの色の色素層を配置す る工程、 d ) 前記工程 b ) 及び c ) と同 ¾)工程をさ らに一回以上繰り返し て、 複数色の残りの色の色素層を、 透明導電性薄膜の全面又は一部 に、 それぞれ分離して配置し、 複数色の色素パターンを形成するェ 程、 b) a step of forming a dye layer of one color selected from a plurality of colors on the entire surface or a part of the transparent conductive thin film by film formation by micellar electrolysis, c) transparent on the dye layer of one color A layer of a photo-curable resist is laminated, exposed using a mask corresponding to the dye layer of one color selected from the above-mentioned plurality of colors, and before and / or after the heat treatment of the exposed portion, photo-curing of the unexposed portion Removing the resist and the dye layer to arrange a dye layer of one color, d) The same as the above steps b) and c)) The step i) is further repeated one or more times to separate the dye layers of the remaining colors of the plurality of colors onto the entire surface or a part of the transparent conductive thin film, respectively. Disposing and forming a multi-color dye pattern,
を含むこ とを特徴とするカラーフィ ルタの製造方法が提供される。 And a method for producing a color filter, characterized by comprising:
また、 前記複数色の色素層が、 三原色に対応するものであるカラ ーフィ ルタの製造方法が提供される。  Also provided is a method for producing a color filter in which the plurality of color layers correspond to three primary colors.
また、 前記複数色の色素層が、 三原色及び黒色の四色に対応する ものであるカラーフィ ルタの製造方法が提供される。  Further, there is provided a method for manufacturing a color filter, wherein the plurality of color layers correspond to three primary colors and four black colors.
また、 前記工程 d ) のあとに、 複数色の色素パターンをマスク と して色素バターンの存在していない部分の透明導電性薄膜をエツチ ングすることによって、 透明導電性薄膜のパターンを形成するこ と を特徴とするカラーフィ ルタの製造方法が提供される。  Further, after the step d), the pattern of the transparent conductive thin film is formed by etching the transparent conductive thin film in the portion where the dye pattern is not present using the dye pattern of a plurality of colors as a mask. A method for producing a color filter is provided.
また、 絶縁性基板上に、 三原色の色素層を分離して配置し、 所定 の色素バタ一ンを形成するとともに、 ブラックマ ト リ ックスを形成 するカラーフィ ルタの製造方法において、  Further, in a method of manufacturing a color filter for forming a predetermined dye pattern by separately arranging three primary color dye layers on an insulating substrate and forming a black matrix,
a ) 絶縁基板上に、 ブラックマ トツ リ ックスと して、 所定の形状に 金属または金属酸化膜薄膜を積層して形成する工程、  a) a process of laminating a metal or metal oxide thin film in a predetermined shape on an insulating substrate as a black matrix,
b ) 金属または金属酸化膜薄膜の少なく とも表示部全面又は表示画 素部を含む連続するパターンに対応する部分に、 透明導霉性薄膜を 積層して形成する工程、 b) a step of laminating a transparent conductive thin film on at least the entire display portion or a portion corresponding to a continuous pattern including the display pixel portion of the metal or metal oxide film thin film,
c ) 透明導電性薄膜の全面又は一部に、 ミセル電解法による製膜に よって、 三原色から選択した一つの色の色素層を形成する工程、 d ) 色素層の上に透明な光硬化性レジス トを積層し、 前記三原色か ら選択した一つの色の色素層に対応したマスクを用いて露光し、 か つ露光部の熱処理の前及び Z又は後に、 未露光部分のレジス ト及び 色素層を除去して一色目の色素層を配置する工程、  c) a step of forming a dye layer of one of the three primary colors on the entire surface or a part of the transparent conductive thin film by film formation by micellar electrolysis, d) a transparent photocurable resist on the dye layer. Are exposed using a mask corresponding to the dye layer of one of the three primary colors, and before and / or after the heat treatment of the exposed portion, the unexposed portion of the resist and the dye layer are removed. Removing and placing the first color dye layer,
e ) 前記工程 c ) 及び d ) と同様の工程をさ らに一回以上繰り返し て、 三原色の残りの色の色素層を、 透明導電性薄膜の全面又は一部 に、 それぞれ分離して配置し、 三原色の色素パターンを形成するェ 程、 を含むことを特徴とするカラ一フィ ル夕の製造方法が提供されe) The same steps as the above steps c) and d) are further repeated one or more times so that the dye layers of the remaining three primary colors are entirely or partially covered by the transparent conductive thin film. And a method of forming a three-primary-color dye pattern.
Ό Ό
また、 絶縁性基板上に、 三原色の色素層を分離して配置し、 所定 の色素パ夕一ンを形成するとともに、 ブラックマ ト リ ックスを形成 するカラーフィ ルタの製造方法において、  Further, in a method of manufacturing a color filter for forming a predetermined dye pattern by separately arranging three primary color dye layers on an insulating substrate and forming a black matrix,
a ) 絶縁性基板上の少なく と も表示部全面又は表示画素部を含む連 続するパターンに対応する部分に、 透明導電性薄膜を積層して形成 する工程、  a) a step of laminating a transparent conductive thin film on at least the entire display portion or a portion corresponding to a continuous pattern including the display pixel portion on the insulating substrate;
b ) 透明導電性薄膜の全面又は一部に、 ミセル電解法による製膜に よって、 三原色から選択した一つの色の色素層を形成する工程、 c ) 色素層の上に透明な光硬化性レジス トを積層し、 前記三原色か ら選択した一つの色の色素層に対応したマスクを用いて露光し、 か つ露光部の熱処理の前及び Z又は後に、 未露光部分のレジス ト及び 色素層を除去して、 一色目の色素層を配置する工程、  b) a step of forming a dye layer of one of the three primary colors on the entire surface or a part of the transparent conductive thin film by film formation by micellar electrolysis, c) a transparent photocurable resist on the dye layer. Are exposed using a mask corresponding to the dye layer of one of the three primary colors, and before and / or after the heat treatment of the exposed portion, the unexposed portion of the resist and the dye layer are removed. Removing and placing the first color dye layer,
d ) 前記工程 b ) 及び c ) と同様の工程をさらに一回以上繰り返し て、 三原色の残りの色の色素層を、 透明導電性薄膜の全面又は一部 に、 それぞれ分離して配置し、 三原色の色素パターンを形成するェ 程、  d) The same steps as in steps b) and c) are repeated one or more times, and the dye layers of the remaining three primary colors are separately arranged on the entire surface or a part of the transparent conductive thin film, respectively. The process of forming the dye pattern of
e ) 前記三原色の色素層をそれぞれ分離して配置する前, 中間, 又 は後に、 配置される予定の、 又は配置された三原色の色素層の間の 位置に、 黒色色素を含有する光硬化性レジス トをフ ォ ト リ ソクラフ ィ 一法によって、 ブラ ックマ ト リ ックスとして所定の形状で形成し、 ブラックマ ト リ ツクスを形成する工程、 e) a photocurable material containing a black pigment before, during, or after each of the three primary color layers is separately disposed, at a position between the three primary color layers to be disposed, or between the disposed three primary color layers; Forming a resist in a predetermined shape as a black matrix by a photolithography method, and forming a black matrix;
を含むこ とを特徴とするカラーフィ ルタの製造方法が提供される。 And a method for producing a color filter, characterized by comprising:
また、 絶縁性基板上に、 三原色の色素層を分離して配置し、 所定 の色素パタ一ンを形成するとともに、 ブラックマ ト リ ックスを形成 するカラーフィ ルタの製造方法において、  In addition, in a method of manufacturing a color filter for forming a predetermined dye pattern by separately arranging three primary color dye layers on an insulating substrate and forming a black matrix,
a ) 絶縁性基板上の少なく とも表示部全面又は表示画素部を含む連 続するパターンに対応する部分 透明導電性薄膜を積層して形成 する工程、 a) On the insulating substrate, at least the entire display area or the area including the display pixel area A portion corresponding to the pattern that follows, a process of laminating and forming a transparent conductive thin film,
b ) 透明導電性薄膜の全面又は一部に、 三原色から選択した一つの 色の色素を含有する光硬化性レジス トを積層し、 前記三原色から選 択した一つの色の色素層に対応したマスクを用いて露光、 現像し、 未露光部分のレジス トを除去して、 一色目の色素層を配置する工程, c ) 前記工程 b ) と同様の工程をさ らに一回以上繰り返して、 三原 色の残りの色の色素層を、 透明導電性薄膜の全面又は一部に、 それぞれ分離して配置し、 三原色の色素パターンを形成する工程、 d ) 前記三原色の色素層をそれぞれ分離して配置した後に、 配置さ れた三原色の色素層の間の位置に、 黒色の色素層をミセル電解法に よる製膜によって所定の形状で形成し、 ブラ ックマ ト リ ックスを形 成する工程、  b) A photo-curable resist containing a dye of one color selected from the three primary colors is laminated on the entire surface or a part of the transparent conductive thin film, and a mask corresponding to the dye layer of one color selected from the three primary colors is used. Exposing and developing the resist, removing the unexposed resist, and arranging the dye layer of the first color, c) repeating the same step as step b) one or more times to obtain Disposing the dye layers of the remaining colors of the color on the entire surface or a part of the transparent conductive thin film, respectively, to form a dye pattern of three primary colors; d) separately disposing the dye layers of the three primary colors, After that, a black dye layer is formed in a predetermined shape at a position between the arranged three primary color dye layers by film formation by micellar electrolysis, thereby forming a black matrix.
を含むことを特徴とするカラーフィ ルタの製造方法が提供される。 And a method for producing a color filter, comprising:
また、 前記工程 a ) の前に、 前記絶縁性基板上の前記工程 d ) で 形成される黒色の色素層に対応する位置に、 黒色色素を含有する光 硬化性レジス トの硬化物、 又は金属もしく は金属酸化物薄膜を形成 することを特徴とするカラーフィルタの製造方法が提供される。  In addition, before the step a), a cured product of a photo-curable resist containing a black dye, or a metal, at a position corresponding to the black dye layer formed in the step d) on the insulating substrate. Or a method for manufacturing a color filter, characterized by forming a metal oxide thin film.
また、 前記透明な光硬化性レジス トを積層する方法が、 ミセル電 解法、 又は、 電着法による製膜方法であるこ とを特徴とするカラー フィ ルタの製造方法が提供される。  In addition, there is provided a method for producing a color filter, wherein the method of laminating the transparent photocurable resist is a film formation method by a micelle electrolysis method or an electrodeposition method.
また、 前記透明な光硬化性レジス トを積層する前に、 前記色素層 を紫外線洗浄することを特徴とする力ラーフィ ルタの製造方法が提 供される。  Further, there is provided a method for producing a force filter, wherein the dye layer is subjected to ultraviolet washing before laminating the transparent photocurable resist.
また、 前記絶縁性基板、 又は金属もしくは金属酸化物薄膜の少な く とも表示部全面又は表示画素部を含む連続するパターンに対応す る部分に積層して形成した透明導電性薄膜上の表示部に対応する部 分を除いた部分に、 保護膜を積層して形成したことを特徴とする力 ラーフィ ルタの製造方法が提供される。 また、 前記複数色の色素パターン、 または三原色の色素パター ン 及びブラ ッ クマ ト リ ッ クスを形成した後に、 さらに保護膜を積層形 成するこ とを特徴とするカラーフィ ルタの製造方法が提供される。 In addition, the insulating substrate or the display portion on the transparent conductive thin film formed by laminating at least the entire display portion of the metal or metal oxide thin film or the portion corresponding to the continuous pattern including the display pixel portion is formed. A method for manufacturing a filter is provided, wherein a protective film is formed by laminating a portion except for a corresponding portion. Further, there is provided a method for producing a color filter, wherein a protective film is further formed by laminating after forming the dye pattern of a plurality of colors or the dye pattern of three primary colors and black matrix. You.
さ らに、 カラーフィ ルタの三原色の色素パターンの間の導電性薄 膜上にミ セル電解法で黒色色素を製膜して形成することを特徴とす るブラッ クマ ト リ ツクスの製造方法が提供される。  Furthermore, there is provided a black matrix manufacturing method characterized in that a black dye is formed on the conductive thin film between the three primary color dye patterns of the color filter by micellar electrolysis. Is done.
以下、 本発明のカラーフィ ルタ及びその製造方法を図面を参照し て詳細に説明する。  Hereinafter, a color filter and a method of manufacturing the same according to the present invention will be described in detail with reference to the drawings.
まず、 本発明のカラーフィ ルタの構成の概要を構造 4〜構造 3 1 を例にとって説明する。  First, the outline of the configuration of the color filter of the present invention will be described by taking Structure 4 to Structure 31 as an example.
構造 4のカラーフィ ルタは、 第 1図 ( a) の平面図、 第 図 ( b ) の G— G線断面、 第 1図 ( c ) の H— H線断面に示すように、 表示 部 8 1と して、 絶縁性基板 8 0、 透明導電性薄膜 8 2、 ミ セル電解 法製膜 R, G, B, B L色素層 8 3 a, 83 b, 8 3 c, 8 3 d、 及び、 透明光硬化性レジス ト硬化物 (ミセル電解法製膜 R, G, B, B L色素層 8 3 a〜8 3 d上に形成する) 8 4 a, 84 b , 8 4 c, 8 4 dを順に積層している。  As shown in the plan view of FIG. 1 (a), the cross section taken along the line GG of FIG. 1 (b), and the cross section taken along the line H—H of FIG. Insulating substrate 80, transparent conductive thin film 82, micellar electrolytic R, G, B, BL dye layers 83a, 83b, 83c, 83d, and transparent light Curable resist cured product (formed on micelle electrolytic film R, G, B, BL dye layers 83a to 83d) 84a, 84b, 84c, 84d are laminated in this order ing.
構造 5のカラーフィ ルタは、 絶縁性基板、 透明導電性薄膜、 ミ セ ル電解法製膜 R, G, B, B L色素層、 透明光硬化性レジス ト硬化 物 (R, G, B, B L色素層上に形成する) 、 及び、 保護膜を順に 積層している。  The color filter of Structure 5 is composed of insulating substrate, transparent conductive thin film, R, G, B, BL dye layer formed by the method of micellar electrolysis, and transparent photo-curable resist cured product (R, G, B, BL dye layer). ) And a protective film are sequentially laminated.
構造 6のカラーフィ ルタは、 第 2図 ( a) の平面図、 第 2図 ( b) の I 一 I線断面に示すように、 表示部 9 1と して、 絶縁性基板 9 0、 透明導電性薄膜 9 2、 ミセル電解法製膜 R, G, B, B L色素層 9 3 a, 9 3 b, 9 3 c , 9 3 d, 9 3 e , 9 3 f , 9 3 g、 透明光 硬化性レジス ト硬化物 (G, B, B L色素層 9 3 a〜 93 g上に形 成する) 9 4 a, 94 b, 94 c, 94 d, 94 e , 94 f , 9 4 g、 及び液晶駆動用透明導電性薄膜 95を順に積層している。  As shown in the plan view of FIG. 2 (a) and the cross-section taken along the line I-I of FIG. 2 (b), the color filter of structure 6 has an insulating substrate 90, a transparent conductive Functional thin film 92, R, G, B, BL dye layers 93a, 93b, 93c, 93d, 93e, 93f, 93g, transparent light curable Cured resist (formed on G, B, BL dye layers 93a to 93g) 94a, 94b, 94c, 94d, 94e, 94f, 94g, and liquid crystal drive Transparent conductive thin films 95 are sequentially laminated.
構造 7のカラーフィ ルタは、 絶縁性基板、 透明導電性薄膜、 ミ セ ル電解法製膜 R, G, B, B
Figure imgf000015_0001
層、 透明光硬化性レジス ト硬化 物 (R, G, B, B L色素層上に形成する) 、 保護膜、 及び、 液晶 駆動用透明導電性薄膜を順に積層している。
The color filter of Structure 7 consists of an insulating substrate, a transparent conductive thin film, R, G, B, B
Figure imgf000015_0001
Layer, a transparent photocurable resist cured product (formed on the R, G, B, and BL dye layers), a protective film, and a transparent conductive thin film for driving a liquid crystal.
構造 8のカラーフィ ルタは、 絶縁性基板、 透明導電性薄膜、 ミ セ ル電解法製膜 R, G, B, B L色素層、 透明光硬化性レジス ト硬化 物 (R, G, B , B L色素層中の三色素上に形成する) 、 及び、 保 護膜を順に積層している。  The color filter of Structure 8 is composed of insulating substrate, transparent conductive thin film, R, G, B, BL dye layer formed by the method of micellar electrolysis, and transparent photo-curable resist cured product (R, G, B, BL dye layer). And a protective film are formed in this order.
構造 9のカラーフィ ルタは、 第 3図 (a) の平面図、 第 3図 ( b) の J一 J線断面に示すように、 絶縁性基板 1 01、 透明導電性薄膜 1 0 2、 ミセル電解法製膜 R, G, B, B L色素層 1 03 a, 1 0 3 b, 1 03 c, 1 0 3 d, 1 03 e , 1 0 3 f , 1 03 gと、 透 明光硬化性レジス ト硬化物 (R, G, B色素層 1 0 3 a〜 1 0 3 c 中の三色素上に形成する) 1 04 a, 1 04 b , 1 04 c、 保護膜 1 05、 及び、 液晶駆動用透明導電性薄膜 1 06を順に積層して表 示部 1 0 7を形成している。  As shown in the plan view of Fig. 3 (a) and the cross section taken along the line J-J in Fig. 3 (b), the color filter of structure 9 has an insulating substrate 101, a transparent conductive thin film 102, a micellar electrolytic cell. Method R, G, B, BL dye layers 103a, 103b, 103c, 103d, 103e, 103f, 103g, and transparent light-curable resist curing Object (formed on the three dyes in the R, G, B dye layers 103a to 103c) 104a, 104b, 104c, protective film 105, and transparent for driving liquid crystal The display portions 107 are formed by sequentially stacking the conductive thin films 106.
構造 1 0のカラーフィ ルタは、 絶縁性基板、 透明導電性薄膜、 ミ セル電解法製膜 R, G, B, B L色素層と、 透明光硬化性レジス ト 硬化物 (R, G, B, B L色素層中の三色素上に形成する) 、 及び、 液晶駆動用透明導電性薄膜を順に積層している。  The color filter of structure 10 is composed of an insulating substrate, a transparent conductive thin film, a micelle electrolytic R, G, B, BL dye layer, and a transparent photo-curable resist cured product (R, G, B, BL dye). Formed on the three dyes in the layer), and a transparent conductive thin film for driving a liquid crystal.
構造 1 1のカラーフィ ルタは、 絶縁性基板、 透明導電性薄膜、 ミ セル電解法製膜 R, G, B色素層と、 透明光硬化性レジス ト硬化物 (R, G, B色素層上に形成する) 、 及び、 B L色素含有光硬化性 レジス ト硬化物を順に積層している。  The color filter of structure 11 is composed of an insulating substrate, a transparent conductive thin film, a R, G, B dye layer formed by micellar electrolysis, and a transparent photo-curable resist cured product (formed on the R, G, B dye layer). ), And a BL dye-containing photocurable resist cured product are sequentially laminated.
構造 1 2のカラーフィ ルタは、 絶縁性基板、 透明導電性薄膜、 ミ セル電解法製膜 R, G, B色素層、 透明光硬化性レジス ト硬化物 ( R, G, B色素層上に形成する) 、 B L色素含有光硬化性レジス ト 硬化物、 及び、 保護膜を順に積層している。  The color filter of structure 12 is formed on an insulating substrate, a transparent conductive thin film, a R, G, B dye layer formed by micellar electrolysis, and a transparent photo-curable resist cured product (R, G, B dye layer). ), A BL dye-containing photocurable resist cured product, and a protective film are sequentially laminated.
構造 1 3のカラーフィ ルタは、 第 4図 (a ) の平面図、 第 4図 ( b ) の K一 K線断面に示すように、 絶縁性基板 1 1 1、 透明導電性 薄膜 1 1 2、 ミ セル電解法製膜 "— G, B色素層 1 1 3 a , 1 1 3 b, 1 1 3 c、 透明光硬化性レジス ト硬化物 (ミセル電解法製膜 R G, B色素層 1 1 3 a〜 1 1 3 c層上に形成する) 1 1 4 a, 1 1 4 b, 1 1 4 c、 B L色素含有光硬化性レジス 卜硬化物 1 1 5 a , 1 1 5 b , 1 1 5 c, 1 1 5 d、 及び、 液晶駆動用透明導電性薄膜 1 1 6を順に積層して表示部 1 1 7を形成している。 As shown in the plan view of Fig. 4 (a) and the cross section taken along line K-K in Fig. 4 (b), the color filter of structure 13 has an insulating substrate 1 1 1 Thin film 112, micellar electrolytic film-forming "—G, B dye layer 113a, 113b, 113c, transparent photocurable resist cured product (micelle electrolytic film RG, B dye layer 1 13 a to 1 13 c layer) 1 1 4 a, 1 1 4 b, 1 1 4 c, BL dye-containing photo-curable resist cured product 1 1 5 a, 1 1 5 b, The display section 117 is formed by sequentially stacking 115c, 115d and the transparent conductive thin film 116 for driving the liquid crystal.
構造 1 4のカラーフィ ルタは、 絶縁性基板、 透明導電性薄膜、 ミ セル電解法製膜 R, G, B色素層、 透明光硬化性レジス 卜硬化物 ( R, G, B色素層上に形成する) 、 B L色素含有光硬化性レジス ト 硬化物、 保護膜、 及び、 液晶駆動用透明導電性薄膜を順に積層して いる。  The color filter of structure 14 is formed on an insulating substrate, a transparent conductive thin film, a R, G, B dye layer formed by micellar electrolysis, and a cured transparent photo-curable resist layer (R, G, B dye layer). ), A cured material of a photo-curable resist containing a BL dye, a protective film, and a transparent conductive thin film for driving a liquid crystal.
構造 1 5のカラーフィルタは、 先に説明した構造 1 2の構成と基 本的に同じだが、 透明光硬化性レジス ト硬化物を R, G, B色素層 のうち、 任意の二つの色素上に積層している点が異なる。  The color filter of Structure 15 is basically the same as the structure of Structure 12 described above, except that the cured transparent light-curable resist is applied to any two of the R, G, and B dye layers. Is different.
構造 1 6のカラーフィルタは、 先に説明した構造 1 3の構成と基 本的に同じだが、 透明光硬化性レジス ト硬化物を R, G, B色素層 のうち、 任意の二つの色素上に積層している点が異なる。  The color filter of structure 16 is basically the same as the structure of structure 13 described above, but the cured transparent light-curable resist is applied to any two of the R, G, and B dye layers. Is different.
構造 1 7のカラーフィルタは、 先に説明した構造 1 4の構成と基 本的に同じだが、 透明光硬化性レジス ト硬化物を、 R, G, B色素 層のうち任意の二つの色素上に積層している点が異なる。  The color filter of structure 17 is basically the same as the structure of structure 14 described above, except that the transparent light-curable resist cured product is applied on any two of the R, G, and B dye layers. Is different.
以上の構造 4〜構造 1 7では B L色素含有光硬化性レジス ト硬化 物をブラ ックマ ト リ ックスとする。  In the structures 4 to 17 described above, the photocurable resist cured product containing a BL dye is used as a black matrix.
構造 1 8のカラーフィ ルタは、 絶縁性基板、 金属又は金属酸化物 薄膜、 透明導電性薄膜、 ミセル電解法製膜 R, G, B色素層、 及び、 透明光硬化性レジス ト硬化物 (R, G, B色素層上に形成する) を 順に積層している。  The structure 18 color filter is composed of an insulating substrate, a metal or metal oxide thin film, a transparent conductive thin film, a R, G, B dye layer formed by micellar electrolysis, and a transparent photo-curable resist cured product (R, G , Formed on the B dye layer) in this order.
構 i l 9のカラーフィルタは、 絶縁性基板、 金属又は金属酸化物 薄膜、 透明導電性薄膜、 ミセル電解法製膜 R, G, B色素層、 透明 光硬化性レジス ト硬化物 (R, G, B色素層上に形成する) 、 及び、 液晶駆動用透明導電性薄膜を順に積層している。 The color filter of structure 9 is composed of insulating substrate, metal or metal oxide thin film, transparent conductive thin film, micelle electrolytic film R, G, B dye layer, transparent photo-curable resist cured product (R, G, B Formed on the dye layer),, and A transparent conductive thin film for driving a liquid crystal is sequentially laminated.
構造 2 0のカラーフィルタは、 絶縁性基板、 金属又は金属酸化物 薄膜、 透明導電性薄膜、 ミセル電解法製膜 R, G, B色素層、 透明 光硬化性レジス ト硬化物 (R, G, B色素層上に形成する) 、 及び. 保護膜を順に積層している。  The color filter of structure 20 is composed of an insulating substrate, a metal or metal oxide thin film, a transparent conductive thin film, a micelle electrolytic film R, G, B dye layer, and a transparent photo-curable resist cured product (R, G, B). And a protective film are sequentially laminated.
構造 2 1のカラーフィ ルタは、 第 5図 (a ) の平面図、 第 5図 ( b ) の L一 L線断面に示すように、 絶縁性基板 1 2 1、 金属又は金 属酸化物薄膜 1 2 2 a , 1 2 2 b, 1 2 2 c、 透明導電性薄膜 1 2 3、 ミセル電解法製膜 R, G, B色素層 1 2 4 a, 1 24 b, 1 2 4 c、 透明光硬化性レジス ト硬化物 (ミセル電解法製膜 R, G, B 色素層 1 24 a〜 1 2 4 c上に形成する) 1 25 a , 1 2 5 b, 1 2 5 c、 保護膜 1 26、 及び、 液晶駆動用透明導電性薄膜 1 2 7を 順に積層して、 表示部 1 2 8を形成して.いる。  As shown in the plan view of FIG. 5 (a) and the cross section taken along line L-L in FIG. 5 (b), the color filter of the structure 21 has an insulating substrate 121, a metal or metal oxide thin film 1 2 2 a, 1 2 2 b, 1 2 2 c, Transparent conductive thin film 1 2 3, R, G, B dye layer formed by micellar electrolysis method 1 2 4 a, 1 24 b, 1 2 4 c, Transparent light curing Cured resist (formed on micelle electrolytic film R, G, B dye layers 124a to 124c) 125a, 125b, 125c, protective film 126, and The display section 128 is formed by sequentially laminating the transparent conductive thin films 127 for driving the liquid crystal.
構造 2 2のカラーフィ ルタは、 構造 1 9の構成と基本的には同じ だが、 透明光硬化性レジス ト硬化物を R, G, B色素層のうち、 任 意の二つの色素上に積層している点が異なる。  The color filter of Structure 22 is basically the same as the structure of Structure 19, except that a transparent photocurable resist cured product is laminated on any two of the R, G, and B dye layers. Is different.
構造 2 3のカラーフィ ルタは、 構造 20の構成と基本的には同じ だが、 透明光硬化性レジス ト硬化物を R, G, B色素層のうち、 任 意の二つの色素上に積層している点が異なる。  The color filter of Structure 23 is basically the same as the structure of Structure 20, except that a transparent photo-curable resist cured product is laminated on any two of the R, G, and B dye layers. Are different.
構造 2 4のカラーフィ ルタは、 構造 2 1の構成と基本的には同じ だが第 6図 (a ) の平面図、 第 6図 (b) の M— M線断面に示すよ う に透明光硬化性レジス ト硬化物 1 3 1 a , 1 3 1 1)を1^, G, B 色素層のうち、 任意の二つの色素 (R, G) 1 32 a, 1 3 2 b上 に積層し、 保護膜 1 3 3を B上を含む表示部 1 3 8の部分だけに積 層している点が異なる。  The color filter of structure 24 is basically the same as the structure of structure 21 but is transparent light-cured as shown in the plan view of Fig. 6 (a) and the cross section taken along line M-M of Fig. 6 (b). The cured resist 13 1 a, 13 1 1) is laminated on any two dyes (R, G) 1 32 a, 13 2 b of the 1 ^, G, B dye layers, The difference is that the protective film 13 3 is laminated only on the display portion 1 38 including the upper part of B.
なお、 この構造 4〜構造 24では、 金属又は金属酸化物薄膜を液 晶駆動用透明導電性薄膜上に積層した構成とするこ とも出来る。  In the structures 4 to 24, a metal or metal oxide thin film may be laminated on the liquid crystal driving transparent conductive thin film.
構造 2 5のカラーフィ ルタは、 絶縁性基板、 透明導電性薄膜、 ミ セル電解法製膜 R, G, B色素層、 透明光硬化性レジス ト硬化物 ( R, G, B色素層上に形成する) 、 保護膜と、 液晶駆動用透明導電 性薄膜、 及び、 金属又は金属酸化物薄膜を順に積層している。 The color filter of structure 25 is composed of an insulating substrate, a transparent conductive thin film, micellar electrolytic R, G, and B dye layers, and a transparent photo-curable resist cured product ( R, G, and B dye layers), a protective film, a transparent conductive thin film for driving a liquid crystal, and a metal or metal oxide thin film.
構造 2 6のカラ一フィ ルタは、 構造 25の構成と基本的には同じ だが、 透明光硬化性レジス ト硬化物を R, G, B色素層中の二つの 色素上に積層している点が異なる。  The color filter of structure 26 is basically the same as the structure of structure 25, except that the transparent photocurable resist cured product is laminated on the two dyes in the R, G, and B dye layers. Are different.
以上の構造 1 8〜構造 26における金属又は金属酸化物薄膜をブ ラ ックマ ト リ ックスとする。  The metal or metal oxide thin film in the above structures 18 to 26 is used as a black matrix.
以上の構造において、 絶縁性基板の少なく とも表示部全面又は表 示画素部を含む連続するパターンに対応する部分に積層して形成し た透明導電性薄膜上の表示部に対応する部分を除いた部分に光硬化 性レジス トの硬化物又は保護膜を積層して形成することができる。  In the above structure, at least the portion corresponding to the display portion on the transparent conductive thin film formed by laminating at least the entire display portion of the insulating substrate or the portion corresponding to the continuous pattern including the display pixel portion was removed. It can be formed by laminating a cured product of a photocurable resist or a protective film on the portion.
この構造では、 透明導電性薄膜を絶縁性基板の全面上に積層すれ ば良く、 マスキング等の操作が不要になる。 さらに、 色素パターン 形成時に、 表示部全面又は表示画素部を含む連続するパターンに対 応する部分に積層した透明導電性薄膜の部分のみの色素層の製膜及 びエッチングとなるため、 工程の効率が向上する。  In this structure, the transparent conductive thin film may be laminated on the entire surface of the insulating substrate, and an operation such as masking is not required. Furthermore, when the dye pattern is formed, the dye layer is formed and etched only on the transparent conductive thin film portion laminated on the entire display portion or the portion corresponding to the continuous pattern including the display pixel portion, so that the process efficiency is improved. Is improved.
構造 2 7のカラーフィ ルタは、 絶縁性基板、 透明導電性薄膜、 保 護膜、 ミセル電解法製膜 R, G, B, B L色素層、 透明光硬化性レ ジス ト硬化物、 保護膜、 及び、 液晶駆動用透明導電性薄膜を順に積 層している。  The structure 27 color filter is composed of an insulating substrate, a transparent conductive thin film, a protective film, a micelle electrolytic R, G, B, and BL dye layer, a transparent photo-curable resist cured product, a protective film, and a A transparent conductive thin film for driving a liquid crystal is sequentially laminated.
構造 2 8のカラーフィ ルタは、 絶縁性基板、 透明導電性薄膜、 保 護膜、 ミセル電解法製膜 R, G, B色素層、 透明光硬化性レジス ト 硬化物、 B L色素含有光硬化性レジス ト硬化物、 及び液晶駆動用透 明導電性薄膜を順に積層している。  The structure 28 color filter is composed of an insulating substrate, a transparent conductive thin film, a protective film, a film formed by micellar electrolysis R, G, and B dye layers, a transparent photocurable resist cured product, and a BL dye-containing photocurable resist. A cured product and a transparent conductive thin film for driving a liquid crystal are sequentially laminated.
構造 2 9のカラーフィ ルタは、 第 7図 (a ) の平面図、 第 7図 ( b ) の N— N線断面に示すように、 絶縁性基板 1 4 1、 金属又は金 属酸化物薄膜 1 4 2 a, 1 4 2 b, 1 42 c , 1 4 2 d、 透明導電 性薄膜 1 43、 保護膜 1 44 a, 1 44 b、 ミセル電解法製膜 R, G, B色素層 1 45 a , 1 45 b, 1 45 c、 透明光硬化性レジス ト硬化物 1 4 6 a, 1 6 b , 1 4 6 c、 及び、 液晶駆動用透明導 電性薄膜 1 4 7を順に積層して表示部 1 4 8を形成している。 一方. ミ セル電解法のみならず分散法、 印刷法、 染色法等によって赤、 青. 緑三原色の色素バターンを形成したカラーフィ ルタにおいて、 導電 性薄膜上であれば、 ミ セル電解法によって製膜した黒色色素層をブ ラ ックマ ト リ ックスと して用いることが出来る。 As shown in the plan view of FIG. 7 (a) and the cross section taken along the line NN of FIG. 7 (b), the color filter of the structure 29 has an insulating substrate 141, a metal or metal oxide thin film 1 42 a, 142 b, 142 c, 142 d, transparent conductive thin film 144, protective film 144 a, 144 b, micelle electrolytic film R, G, B dye layer 1 45 a, 1 45 b, 1 45 c, transparent light-curing resist The display section 148 is formed by sequentially laminating a cured product 146a, 146b, 146c and a transparent conductive thin film 147 for driving a liquid crystal. On the other hand, red and blue color filters formed by the dispersion method, printing method, dyeing method, etc. as well as the micellar electrolysis method. If the color filter is formed on the conductive thin film, the film is formed by the micelle electrolysis method. The black dye layer thus obtained can be used as a black matrix.
例えば、 R, G, B三原色で色素パターンを分散法で形成した場 合に次の構造 3 0を挙げることが出来る。  For example, when a dye pattern is formed by a dispersion method in three primary colors of R, G, and B, the following structure 30 can be given.
構造 3 0のカラーフィ ルタは、 第 8図 (a ) の平面図、 第 8図 ( b ) の 0— 0線断面に示すように、 絶縁性基板 1 5 1、 透明導電性 薄膜 1 5 2、 R, G, B色素含有光硬化性レジス ト硬化物 1 5 3 a, 1 5 3 b , 1 5 3 c, ミセル電解法製膜 B L色素層 1 54 a, 1 5 4 b, 1 54 c , 1 5 4 d、 保護膜 1 5 7、 及び、 液晶駆動用透明 導電性薄膜 1 5 8とを順に積層して表示部 1 5 9を形成している。  As shown in the plan view of FIG. 8 (a) and the cross section taken along the line 0-0 of FIG. 8 (b), the color filter having the structure 30 has an insulating substrate 151, a transparent conductive thin film 152, Photocurable resist cured product containing R, G, B dyes 15 3 a, 15 3 b, 15 3 c, Micelle electrolytic process BL dye layer 154 a, 154 b, 154 c, 1 The display section 159 is formed by sequentially laminating 54 d, a protective film 157, and a transparent conductive thin film 158 for driving a liquid crystal.
また、 ブラックマ ト リ ッ クスと して、 黒色色素を含有する光硬化 性レジス トの硬化物、 又は金属もしくは金属酸化物薄膜、 及び、 導 電性薄膜上にミ セル電解法によって製膜した色素層 (黒色色素でな く ても良い) を重ね合せることによって、 ブラックマ ト リ ックスの ビンホールを低減し、 金属又は金属酸化物の反射を防止することが 可能である。 例えば、 R, G, B三原色で色素パターンを分散法で 形成した場合において、 次の構造 3 1を挙げることが出来る。  In addition, as a black matrix, a cured product of a photocurable resist containing a black dye, a metal or metal oxide thin film, and a dye formed by micellar electrolysis on a conductive thin film. By superimposing layers (not necessarily black dye), it is possible to reduce the binholes of the black matrix and prevent the reflection of metal or metal oxide. For example, when a dye pattern is formed by the dispersion method in three primary colors of R, G, and B, the following structure 31 can be given.
構造 3 1のカラーフィ ルタは、 第 9図 (a ) の平面図、 第 9図 ( b ) の第 9図 ( a) 中における P— P線断面に示すように、 絶縁性 基板 1 6 1、 金属又は金属酸化物薄膜 1 62 a, 1 6 2 b , 1 6 2 c, 1 6 2 d、 透明導電性薄膜 1 6 3、 R, G, B色素含有光硬化 性レジス ト硬化物 1 6 3 a, 16 3 b, 1 6 3 c、 ミセル電解法製 膜 B L (金属又は金属酸化物薄膜 1 62 a〜 l 62 d上部に形成す る) 色素層 1 6 4 a, 1 64 b, 1 64 c, 1 64 d、 保護膜 1 6 5、 及び、 液晶駆動用透明導電性薄膜 1 66を順に積層して表示部 1 6 7を形成している。 As shown in the plan view of FIG. 9 (a) and the cross section taken along the line P--P in FIG. 9 (a) of FIG. 9 (b), the color filter of the structure 31 has an insulating substrate 161, Metal or metal oxide thin film 162a, 162b, 162c, 162d, transparent conductive thin film 163, photocurable resist cured material containing R, G, B dye 163 a, 163b, 163c, film formed by micellar electrolysis method BL (formed on metal or metal oxide thin film 162a to l62d) Dye layer 164a, 164b, 164c , 1 64 d, protective film 1 65, and transparent conductive thin film 1 66 for driving liquid crystal 1 6 7 are formed.
構造 3 2のカラ一フィ ルタは、 第 3 7図 ( a ) の平面図、 第 3 7 図 (b) の第 3 7図 ( a) 中における T— T線断面に示すように、 絶縁性基板 1 7 1、 金属又は金属酸化物薄膜 1 7 2 a, 1 7 2 b , As shown in the plan view of Fig. 37 (a) and the cross section taken along line TT in Fig. 37 (a) of Fig. 37 (b), the color filter of structure 32 has an insulating property. Substrate 171, metal or metal oxide thin film 172a, 172b,
1 7 2 c , 1 7 2 d、 絶縁膜 1 19、 製膜及び液晶駆動兼用透明電 極 1 73 a, 1 7 3 b , 1 7 3 c、 ミセル電解法製膜 R, G, B色 素層 1 7 4 a, 1 74 b, 1 74 c、 透明光硬化性レジス ト 1 7 5 a , 1 7 5 b, 1 75 c、 及び、 保護膜 1 7 6を順に積層して表示 部 1 77を形成している。 172c, 172d, insulating film 119, transparent electrode for film formation and liquid crystal drive 173a, 173b, 173c, micelle electrolytic film R, G, B color layers 174a, 174b, 174c, transparent photocurable resist 175a, 175b, 175c, and protective film 176 Has formed.
構造 3 3のカラーフィ ルタは、 第 38図 ( a) の平面図、 第 3 8 図 (b) の第 3 8図 ( a) 中における U— U線断面に示すように、 絶縁性基板 1 8 1、 製膜及び液晶駆動兼用透明電極 1 8 2、 ミセル 電解法製膜 R, G, B色素層 1 8 3 a,. 1 8 3 b, 1 8 3 c、 透明 光硬化性レジス ト 1 8 4 a, 1 84 b, 1 84 cを順に積層して、 かつブラ ックマ ト リ ックス 1 85を形成し表示部を形成している。  As shown in the plan view of FIG. 38 (a) and the cross section taken along the line U—U in FIG. 38 (a) of FIG. 1, Transparent electrode for film formation and liquid crystal drive 18 2, Micellar electrolytic film formation R, G, B dye layers 18 3a, 18 3b, 18 3c, transparent photo-curable resist 18 4 a, 184b, and 184c are sequentially laminated, and a black matrix 185 is formed to form a display unit.
構造 3 4のカラーフィ ルタは、 第 44図 ( a) の平面図、 第 44 図 (b) の第 44図 ( a) 中における V— V線断面に示すように、 絶縁性基板 1 9 1、 製膜及び液晶駆動兼用透明電極 1 9 2、 ミセル 電解法製膜 R, G, B色素層 1 93 a, 1 9 3 b, 1 9 3 c、 透明 光硬化性レジス ト 1 9 4 a, 1 94 b, 1 9 4 cを順に積層して、 かつブラ ックマ ト リ ックス 1 95を形成し表示部を形成している。 次に、 以上説明した本発明のカラーフィルタ、 例えば構造 4〜構 造 34の使用材料、 使用方法及び本発明のカラーフィ ルタの製造方 法について説明する。 As shown in the plan view of FIG. 44 (a) and the cross section taken along the line V--V in FIG. 44 (a) of FIG. 44 (b), the color filter of the structure 34 has an insulating substrate 191, Transparent electrode 192 for film formation and liquid crystal drive, R, G, B dye layers 193a, 193b, 193c, transparent photocurable resist 194a, 194c b, 194c are sequentially laminated, and a black matrix 195 is formed to form a display section. Next, materials used for the color filters of the present invention described above, for example, Structures 4 to 34, methods of use thereof, and methods of manufacturing the color filters of the present invention will be described.
#  #
ガラス板 (低膨張ガラス、 無アルカ リ ガラス (コーニング社製 7 05 9、 H OYA製 NA 45) 等、 石英ガラス板、 ソーダ一ライム ガラス) 、 マイクロレンズ付き前記ガラス板、 又はブラスチック板 (ボリエチレンテレフタレー トなど) を用いる。 この場合、 ガラス 板が好適であり、 好ま しく は研磨品であるが、 無研磨でも良い。 诱明導雷件 腊 Glass plate (low expansion glass, alkali-free glass (Corning's 705 9; HOYA NA 45), etc., quartz glass plate, soda-lime glass), glass plate with microlenses, or plastic plate (poly Use ethylene terephthalate). In this case, glass Plates are preferred and are preferably polished, but may be non-polished.诱 Mine lightning 件
ミ セル化剤のフ二口セン誘導体の酸化電位より貴な金属又は導電 体であればよい。 例えばイ ンジウムとスズの混合酸化物 ( I T 0) 二酸化スズ、 透明導電性ポリマー等を用いる。 ただし可視光の透過 率 9 5 %以上 (薄膜のみ) 、 膜厚 1 000〜 200 0 Aでシー ト抵 抗 500 以下とするのが好ま しい。  Any metal or conductor that is nobler than the oxidation potential of the two-mouthedene derivative of the micellizing agent may be used. For example, a mixed oxide of indium and tin (IT0) tin dioxide, a transparent conductive polymer, or the like is used. However, it is preferable that the visible light transmittance is 95% or more (thin film only), the film thickness is 1,000 to 2,000 A, and the sheet resistance is 500 or less.
この透明導 ¾性薄膜はスパッタ法、 蒸着法、 CV D法、 コーティ ング法、 バイオゾル法等で形成する。  This transparent conductive thin film is formed by a sputtering method, an evaporation method, a CVD method, a coating method, a biosol method, or the like.
ミセル電解法で黒色色素の製膜によるブラ ックマ ト リ ックスを形 成する場合、 ブラックマ ト リ ツクスを形成する場所に導電性薄膜が 形成されていれば良い。  In the case of forming a black matrix by forming a black dye film by the micelle electrolysis method, it is sufficient that a conductive thin film is formed at a place where the black matrix is formed.
導雷件蒗腾 - ミセル化剤のフエ口セン誘導体の酸化電位より貴な金属又は導電 体であれば良い。 たとえば白金、 金、 I Τ Ο、 二酸化スズ、 導電性 ポリマー等を用いることができる。 Lightning lightning 蒗 腾-Any metal or conductor that is nobler than the oxidation potential of the humic acid derivative of the micellizing agent is acceptable. For example, platinum, gold, silver oxide, tin dioxide, a conductive polymer, or the like can be used.
以上の透明導電性薄膜又は導電性薄膜は、 絶縁性基板全面又はマ スキングの手法およびフオ ト リ ソグラフィ一法で少なく と も表示部 全面又は表示画素部を含む連続するパターンに対応する部分に形成 する。  The above transparent conductive thin film or conductive thin film is formed on the entire surface of the insulating substrate or on at least the entire display portion or a portion corresponding to a continuous pattern including the display pixel portion by a masking method and a photolithography method. I do.
ブラ ッ クマ ト リ ッ クス Black matrix
①金属または金属酸化物薄膜  ① Metal or metal oxide thin film
金属または金属酸化物としては、 例えばクロム ( C r ) 、 ニッケ ノレ (N i ) 、 チタン (T i ) 、 銅 (C u) 等又はその酸化物を用い ることができる。 又は、 金属及び金属酸化物の混合物でも良い。 光 学濃度 3. 0以上 (膜厚 1 000〜 3000 A) とするこ とが好ま しい。  As the metal or metal oxide, for example, chromium (Cr), nickel (Ni), titanium (Ti), copper (Cu), or the like or an oxide thereof can be used. Alternatively, a mixture of a metal and a metal oxide may be used. It is preferable that the optical density be 3.0 or more (film thickness: 1,000 to 3000 A).
この場合、 スパッタ リ ング法、 蒸着法、 C V D法等によつて絶縁 性基板全面又はマスキングの手法によって少なく と も表示部全面又 は表示画素部を含む連続するパター ンに対応する部分に製膜後、 フ オ ト リ ソグラフィ 一法でパターニングを行う。 すなわち、 レジス ト 塗布、 露光 (ブラックマ ト リ ツクス形成用マスク使用) 、 現像、 ポ ス トべーク、 金属又は金属酸化物薄膜のエッチング、 レジス ト剥離In this case, the entire insulating substrate is formed by sputtering, vapor deposition, CVD, or the like, or at least the entire display is formed by masking. After forming a film on a portion corresponding to a continuous pattern including a display pixel portion, patterning is performed by a photolithography method. In other words, resist coating, exposure (using a black matrix forming mask), development, post baking, metal or metal oxide thin film etching, resist stripping
(除去) を順に行なってパターンを形成する。 (Removal) in order to form a pattern.
②黒色色素含有光硬化性レジス ト硬化物 (2) Photocurable resist cured product containing black pigment
( A ) 黒色色素としては、 カーボンブラック、 チタンブラック、 ァニリ ンブラック, ベリ レンブラック中の単品もしく は少なく と も 二種以上を混合した顔料もしくは染料、 又はそれらの混合物を使用 することができる。  (A) As the black pigment, carbon black, titanium black, aniline black, berylen black, a pigment or a dye in which at least two or more kinds are mixed, or a mixture thereof can be used. .
( B ) 黒色、 赤色、 青色、 緑色、 紫色、 シァニン、 マゼンタ有機 顔料 (主に後述のミセル電解法製膜色素層に用いる顔料又は染料を 使用する) 中の、 少なく とも二種以上を混合した擬似黒色化顔料又 は染料混合物を使用することもできる。  (B) Black, red, blue, green, purple, cyanine, and magenta organic pigments (mainly pigments or dyes used in the film pigment layer for micellar electrolytic method described below) are used in which at least two or more kinds are mixed. Blackening pigments or dye mixtures can also be used.
また、 この (A ) 及び (B ) それぞれの単品又は混合物 (特開平 4 - 1 3 1 0 6号公報、 特開平 4一 1 9 0 3 6 2号公報) を用いる こ と もできる。  Alternatively, each of the above (A) and (B) may be used alone or as a mixture (Japanese Patent Application Laid-Open Nos. 4-131106 and 4-190362).
光硬化性レジス トと しては、 たとえばアク リル、 メ タク リル酸誘 導体と、 その共重合体 (バイ ンダー) の混合物を用いるこ とができ このアク リル、 メ タク リル酸誘導体としては、 エポキシ基、 シロ キサン基、 ポリイ ミ ド前駆体を導入したものを好適に用いることが できる。  As the photocurable resist, for example, a mixture of an acrylic or methacrylic acid derivative and a copolymer (binder) thereof can be used. As the acrylic or methacrylic acid derivative, Those into which an epoxy group, a siloxane group or a polyimide precursor is introduced can be suitably used.
光開始剤としては、 ト リアジン系、 ァセ トフヱノ ン系、 ベンジィ ン系、 ベンゾフエノ ン系、 チォキサンソン系等を好適に用いるこ と ができる。  As the photoinitiator, a triazine type, an acetophenone type, a benzine type, a benzophenone type, a thioxanthone type or the like can be suitably used.
分散剤と しては、 非イオン性、 イオン性界面活性剤、 有機顔料誘 導体、 ポリエステル系の単品又は二種以上の混合物を用いることが できる。 溶剤と しては、 シク 口へキサノ ン等のケ ト ン類、 セロソルブァセ テ一ト等のエステル類の単品又は二種以上の混合物を用いるこ とが できる。 As the dispersant, a nonionic or ionic surfactant, an organic pigment derivative, or a polyester-based material or a mixture of two or more thereof can be used. As the solvent, a single substance or a mixture of two or more of ketones such as hexahexanone and esters such as cellosolve acetate can be used.
これらを混合、 分散、 濾過してレジス トを調整する。  Mix, disperse and filter these to adjust the registry.
なお、 レジス トを塗布した後の酸素遮断膜 (ポリ ビニルアルコ一 ル) は、 レジス トの感度を高めるため積層塗布することが好ま しい 力 、 本発明においては必ずしもその必要はない。 以下露光 (ブラ ッ クマ ト リ ックス形成用マスク使用) し、 現像して熱処理 (ポス トべ ーク) してブラ ックマ ト リ ツ クスを形成するのが一般的である。  The oxygen barrier film (polyvinyl alcohol) after the application of the resist is preferably applied in a laminated manner in order to enhance the sensitivity of the resist, and is not necessarily required in the present invention. In general, exposure is performed (using a mask for forming a black matrix), followed by development and heat treatment (postbaking) to form a black matrix.
また、 基板の裏面から露光する (バック露光) によって、 ブラ ッ クマ ト リ ックス形成用マスクを使用する必要がない場合もある。 例 えば、 R, G, B色素層 (色素パターン) がすでに形成されている 場合には、 R, G, B色素層をブラ ックマ ト リ ックス形成用のマス ク とすることが出来る。  In some cases, it is not necessary to use a black matrix forming mask due to exposure from the back side of the substrate (back exposure). For example, when the R, G, B dye layer (dye pattern) has already been formed, the R, G, B dye layer can be used as a mask for forming a black matrix.
なお、 光学濃度は、 2. 0以上 (膜厚 1. 0 m) とするのが好 ま しい。 具体的な商品名と しては、 CK一 2 000 (富士ハン トェ レク トロニクステクノ ロジ一社製) 、 V— 2 5 9ブラ ック (新日鐵 社製) 等を挙げることができる。  The optical density is preferably set to 2.0 or more (film thickness: 1.0 m). Specific product names include CK-2000 (manufactured by Fuji Handeltronics Technology), V-259 Black (manufactured by Nippon Steel), and the like.
③ミセル電解法製膜黒色色素層 ③ Black dye layer made by micellar electrolytic method
( A) 黒色色素 (B L) と して、 カーボンブラック、 チタンブラ ッ ク、 ァニリ ンブラック、 ベリ レンブラック、 コバルトや鉄などの 金属又は金属酸化物中の単品もしく は二種以上を混合した顔料も し く は染料、 又はそれらの混合物を使用することができる。  (A) As a black pigment (BL), carbon black, titanium black, aniline black, berylen black, a metal such as cobalt or iron, or a pigment obtained by mixing two or more metals or metal oxides Alternatively, a dye or a mixture thereof can be used.
(B) 黒色、 赤色、 青色、 緑色、 紫色、 シァニン、 マゼンタ有機 顔料 (主に後述のミセル電解法製膜色素層に用いられる顔料又は染 料を使用して良い) 中の少なく とも二種以上を混合した擬似黒色化 顔料又は染料混合物を使用することもできる。  (B) Black, red, blue, green, purple, cyanine, magenta organic pigments (mainly pigments or dyes used in the film dye layer for micellar electrolytic method described below may be used). Mixed pseudo-blackening pigments or dye mixtures can also be used.
また、 この (A) 及び (B) それぞれの単品又は混合物を用いる こ ともできる。 以上の色素を ミ セル電解法で製膜する。 Further, each of the above (A) and (B) may be used alone or as a mixture. The above dyes are formed into a film by micellar electrolysis.
こ こでは、 光学濃度は 3. 0以上 (膜厚 1. 0 m) とするのが 好ま しい。  Here, the optical density is preferably set to 3.0 or more (film thickness: 1.0 m).
ミ セル雷解法  Micellar lightning solution
①赤色 (R) 色素層  ① Red (R) dye layer
ペリ レン系顔料、 レーキ顔料、 ァゾ系顔料、 キナク リ ドン系顔料- アン トラキノ ン系顔料、 アン トラセン系顔料、 ジス · ァゾ系顔料、 イ ソイ ン ドリ ン系顔料、 イソイン ドリノ ン系顔料等の単品又は少な く とも二種類以上の混合物を用いることができる。  Perylene pigments, lake pigments, azo pigments, quinacridone pigments-anthraquinone pigments, anthracene pigments, disazo pigments, isoindolin pigments, isoindolinone pigments And the like, or a mixture of at least two or more.
②緑色 (G) 色素層  ②Green (G) dye layer
ハロゲン多置換フタ口シァニン系顔料、 ハロゲン多置換銅フタ口 シァニン系顔料、 ト リ フユニルメ タ ン系塩基性染料、 ジス · ァゾ系 顔料、 イ ソイ ン ドリ ン系顔料、 イソイン ドリ ノ ン系顔料等の単品又 は少なく とも二種類以上の混合物を用いることができる。  Halogen poly-substituted cyanine pigments, Halogen poly-substituted copper lid cyanine-based pigments, triunilmethane-based basic dyes, disazo pigments, isoindolin pigments, isoindolinone pigments Or a mixture of at least two or more of these.
③青色 (B) 色素層  ③ Blue (B) dye layer
銅フタロシアニン系顔料、 フタロシアニン系顔料、 インダンス口 ン系顔料、 イン ドフヱノール系顔料、 シァニン系顔料、 ジォキサジ ン系顔料等の単品又は少なく とも二種類以上の混合物を用いること ができる。  A copper phthalocyanine pigment, a phthalocyanine pigment, an indone pigment, an indanol pigment, a cyanine pigment, a dioxazine pigment or the like can be used alone or as a mixture of at least two or more.
以上をミセル電解法で製膜する。 それぞれの色素層の膜厚と透過 率は、 Rが膜厚 0. 5〜: 1. 5 m (透過率 60 %以上 Z 6 1 0 η m) 、 Gを膜厚 0. 5〜1. (透過率 60 %以上ノ 545 n m) とし、 また Bを膜厚 0. 2〜: 1. 5 m (透過率 60 %以上 The above is formed by a micellar electrolysis method. The thickness and transmittance of each dye layer are as follows: R is 0.5 to 1.5 m (transmittance of 60% or more Z610nm), and G is 0.5 to 1. Transmittance should be 60% or more, 545 nm), and B should be 0.2 to: 1.5 m (transmittance should be 60% or more)
4 6 0 n m) とするのが好ま しい。 460 nm) is preferable.
ミセル雷解法の条件  Conditions for micellar lightning solution
疎水化処理をした色素 (顔料又は染料) を、 フユ口セン誘導体か らなる界面活性剤 (ミセル化剤) を用い、 水性媒体中に分散させて、 ミセル分散液を調製する。 この際、 用いる水性媒体と しては、 水、 水とアルコールとの混合液、 水とアセトンとの混合液など種々の媒 体を挙げることが出来る。 The pigment (dye or pigment) that has been subjected to the hydrophobic treatment is dispersed in an aqueous medium using a surfactant (micelleizing agent) composed of a fluorene derivative to prepare a micelle dispersion. In this case, the aqueous medium to be used includes various media such as water, a mixed solution of water and alcohol, and a mixed solution of water and acetone. I can raise my body.
例えば、 次に示すフュロセン誘導体界面活性剤を挙げることがで きる。 For example, the following furocene derivative surfactants can be mentioned.
セル化剤: フヱロセン誘導体界面活性剤 エーテル型 (FPEG) : Cellulant: Prorocene derivative surfactant Ether type (FPEG):
Figure imgf000026_0001
Figure imgf000026_0001
エステル型 (FE ST) Ester type (FE ST)
Figure imgf000026_0002
Figure imgf000026_0002
アンモニゥム型 (FTMA) Ammonium type (FTMA)
Br- Br-
(CHsWN+Cu
Figure imgf000026_0003
なお、 フヱロセン誘導体と しては、 このほか国際公開 W 0 8 9ノ 0 1 9 3号明細書、 特開平 1 一 4 5 3 7 0号公報、 特開平 1一 2 2 6 8 9 4号公報、 特開平 2— 8 3 3 8 7号公報、 特開平 2— 2 5 0 8 9 2号公報などに記載された方法によって製造されるものを使用 することが出来る。
(CHsWN + Cu
Figure imgf000026_0003
In addition, the urocene derivative is described in International Publication W089 / 0193, Japanese Patent Application Laid-Open No. Hei 1-445370, Japanese Patent Application Laid-Open No. Hei 1-268964. And those manufactured by the methods described in JP-A-2-83387, JP-A-2-250892, and the like can be used.
なお、 界面活性剤 (ミ セル化剤) と してフユ口セン誘導体を一種 類用いても良く 、 又は、 二種類以上を組合せても良い。 あるいは、 フエロセン誘導体と他の界面活性剤とを組合せても良い。  As the surfactant (micelleizing agent), one kind of fluorene derivative may be used, or two or more kinds may be used in combination. Alternatively, the ferrocene derivative may be combined with another surfactant.
他の界面活性剤としては、 例えばポリオキシエチレンアルキルェ 一テル、 ポリオキシエチレン脂肪酸エステル、 ポリオキシエチレン アルキルフエニルエーテル、 ポリオキシエチレンポ リオキシブ口 ビ レンアルキルエーテル等の非ィォン性界面活性剤と、 アルキル硫酸 塩、 ポリオキシエチレンアルキルエーテル硫酸塩、 塩化アルキル ト リ メ チルアンモニゥム、 脂肪酸ジェチルア ミ ノエチルア ミ ド等の力 チオン性及びァニオン性界面活性剤を挙げるこ とができる。  Other surfactants include, for example, nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene fatty acid ester, polyoxyethylene alkyl phenyl ether, and polyoxyethylene polyoxybutene vinyl alkyl ether. And ionic and anionic surfactants such as alkyl sulfates, polyoxyethylene alkyl ether sulfates, alkyl trimethylammonium chloride, and fatty acid getylaminoethylamide.
ミ セル分散液の調製  Preparation of micelle dispersion
水性媒体中にフニ口セン誘導体、 所望に応じて用いられる他の界 面活性剤及び所望の色素 (顔料) を入れて、 メ カニカルホモジナイ ザ一、 超音波ホモジナイザー、 ボールミ ル、 サン ド ミ ル、 スターラ 一などで十分に撹拌する。  A funicone derivative, other surfactants used as required, and a desired pigment (pigment) are placed in an aqueous medium, and a mechanical homogenizer, an ultrasonic homogenizer, a ball mill, a sand mill are prepared. And stir well.
なお、 超音波を用いる場合には 5時間 リ ッ トル以下と し遠心分 離を用いる場合には 4 G以下とすることが好ま しい。  When ultrasonic waves are used, it is preferable that the volume be 5 hours or less, and when centrifugation is used, the volume is 4 G or less.
この操作で顔料は界面活性剤の作用で、 水媒体中に均一に分散又 は ミセル化して、 分散液又は ミセル溶液となる。 この際の ミセル化 剤の濃度については、 特に制限はないが、 通常は、 フヱロセン誘導 体及び他の界面活性剤の合計濃度が臨界ミセル濃度以上、 好ま しく は 0 . 1 ミ ルモル Zリ ッ トル〜 1モル/リ ッ トルの範囲で選択する c By this operation, the pigment is uniformly dispersed or formed into micelles in the aqueous medium by the action of the surfactant, and becomes a dispersion or a micelle solution. The concentration of the micellizing agent at this time is not particularly limited, but usually, the total concentration of the fluorene derivative and other surfactants is equal to or higher than the critical micelle concentration, preferably 0.1 miM Z liter. Select within the range of ~ 1 mol / liter c
—方、 顔料又は染料濃度は通常 1〜5 0 0グラムノリ ッ トルの範 囲で選択する。 また、 水性媒体の電気伝導度を調節するために、 支持塩 (支持電 解質) を必要に応じて加えることが出来る。 この支持塩の添加量は、 分散している顔料の析出を妨げない範囲であれば良く 、 通常は 0 . 0 5〜 1 0モルノリ ッ トルの範囲で選択する。 On the other hand, the concentration of the pigment or dye is usually selected within a range of 1 to 500 gm. In addition, a supporting salt (supporting electrolyte) can be added as needed to adjust the electric conductivity of the aqueous medium. The amount of the supporting salt to be added may be within a range that does not hinder the precipitation of the dispersed pigment, and is usually selected in the range of 0.05 to 10 mol / liter.
この支持塩を加えずに電解を行うことも出来る。 この場合、 支持 塩を含まない純度の高い薄膜 (色素層) を得ることができる。 また、 支持塩を用いる場合、 その支持塩の種類は、 ミセルの形成や電極へ の顔料の析出を妨げることなく、 水性媒体の電気伝導度を調節でき るものであれば特に制限はない。  Electrolysis can also be performed without adding this supporting salt. In this case, a highly pure thin film (dye layer) containing no supporting salt can be obtained. When a supporting salt is used, the type of the supporting salt is not particularly limited as long as the electric conductivity of the aqueous medium can be adjusted without hindering formation of micelles and precipitation of the pigment on the electrode.
具体的には、 一般に広く支持塩と して用いられている硫酸塩 (リ チウム、 カ リ ウム、 ナ ト リ ウム、 ノレビジゥム、 アルミニウムなどの 塩) 、 酢酸塩 (リ チウム、 カ リ ウム、 ナ ト リ ウム、 ノレビジゥ厶、 ベ リ リ ウム、 マグネシウム、 カルシウム、 ス ト ロンチウム、 ノ リ ウム、 アルミニウムなどの塩) 、 さ らに、 アンモニゥム塩などが好適であ り、 例えば、 L i B r , K C 1 , L i 2 S 0 4, ( N H ) B F 4など を挙げることが出来る。 Specifically, sulfates (salts such as lithium, potassium, sodium, norebidium, and aluminum) and acetates (lithium, potassium, and natrium) which are generally widely used as supporting salts are generally used. Salts such as tritium, norredium, beryllium, magnesium, calcium, strontium, norium, and aluminum), and ammonium salts are suitable. For example, LiBr, KC 1, L i 2 S 0 4, and the like (NH) BF 4.
さらに 0 . 5 // m以下のフィルターでろ過することが好ましい。 このようにして、 赤色色素 (顔料又は染料) 、 緑色色素 (顔料又 は染料) 、 青色色素 (顔料又は染料) 及び黒色色素 (顔料又は染料) のそれぞれを分散した 4種の ミセル分散液を調製する。  Further, it is preferable to filter with a filter of 0.5 // m or less. In this way, four types of micelle dispersions in which a red pigment (pigment or dye), a green pigment (pigment or dye), a blue pigment (pigment or dye), and a black pigment (pigment or dye) are dispersed are prepared. I do.
なお、 混合顔料のミ セル分散液は、 水性媒体中に混合すべき顔料 又は塗料をミセル化剤とともに一度加え、 分散させて調製しても良 く 、 または水性媒体中に混合すべき単一顔料をミセル化剤とともに 加え、 分散させて得られたそれぞれのミセル分散液を混合させて調 製しても良い。  The micellar dispersion of the mixed pigment may be prepared by adding and dispersing the pigment or paint to be mixed in the aqueous medium once with the micelle agent, or may be prepared by dispersing a single pigment to be mixed in the aqueous medium. May be added together with the micellizing agent, and the respective micellar dispersions obtained by dispersion may be mixed and prepared.
ミ セル雷解法製膣 Micellar lightning vagina
次に、 ミセル分散液のいずれか一つに、 透明導電性薄膜が少なく と も表示部全面又は表示画素部を含む連続するパターンに対応する 部分に形成された絶縁性基板を挿入し、 これを通電してミセル電解 を行い、 この基板の透明導電性薄膜上に所望の薄膜 (色素層) を形 成する。 Next, an insulating substrate formed on at least the entire surface of the display portion or a portion corresponding to a continuous pattern including the display pixel portion is inserted into one of the micelle dispersions, and Energize and conduct micellar electrolysis Is performed to form a desired thin film (dye layer) on the transparent conductive thin film of the substrate.
電解条件は、 各種状況に応じて適宜選択すれば良いが、 通常液温 は 0〜9 0 °C、 好ま しく は 2 0〜 7 0 °Cの範囲で選択する。 電圧は 0 . 0 3〜; I . 5 V、 好ま しくは 0 . 1〜0 . 9 Vの範囲で選択す る。 また、 電流密度は通常 1 0 m A Z c m 2以下であり、 好ま しく は 5 0〜 3 0 0 A Z c m 2の範囲で選択する。 The electrolysis conditions may be appropriately selected according to various situations, but usually the solution temperature is selected within the range of 0 to 90 ° C, preferably 20 to 70 ° C. The voltage is selected from the range of 0.3 to 0.5 V, preferably 0.1 to 0.9 V. Also, the current density is usually 1 0 m AZ cm 2 or less, preferable properly is selected in the range of 5 0~ 3 0 0 AZ cm 2 .
この電解処理を行うと、 ミ セル電解法の原理に従つた反応が進行 する。 これをフヱロセン誘導体の F eイオンの挙動に着目すると陽 極ではフエ口センの F e 2 +が F e 3+となって、 ミセルが崩壊し、 顔 料又は染料粒子が陽極 (透明導電性薄膜) 上に析出する。 一方、 陰 極では陽極で酸化された F e 3+が F e 2+に還元されて元の ミセルに 戻るので、 繰り返し同じ溶液で製膜操作を行うことが出来る。 When this electrolytic treatment is performed, a reaction according to the principle of micellar electrolysis proceeds. This Focusing on the behavior of F e ion Fuwerosen derivative in the positive electrode is in Hue spout F e 2 + are the F e 3+, micelles collapse, Pigment or dye particles are anode (transparent conductive thin film ) Deposits on top. On the other hand, in the cathode, the Fe 3+ oxidized at the anode is reduced to Fe 2+ and returns to the original micelle, so that the film forming operation can be repeatedly performed with the same solution.
次に、 ミセル電解処理で形成された薄膜 (色素層) は、 通常、 純 水などで洗浄した後、 室温での風乾を行っても良いし、 必要に応じ て 2 2 0てまでの温度範囲で加熱処理を行っても良い。  Next, the thin film (dye layer) formed by micellar electrolytic treatment may be usually washed with pure water or the like, and then air-dried at room temperature or, if necessary, in a temperature range up to 220 ° C. May be used for heat treatment.
透明光硬化件レジス ト硬化物 Transparent light curing resist cured product
アク リル、 メ タク リル酸誘導体とその共重合体 (バイ ンダー) の 混合物を用いることができる。 このアク リル、 メタク リル酸誘導体 にエポキシ基、 シロキサン基、 ポリイ ミ ド前駆体を導入したものを 好適に用いることができる。  A mixture of an acrylic or methacrylic acid derivative and a copolymer (binder) thereof can be used. A derivative obtained by introducing an epoxy group, a siloxane group, or a polyimide precursor into this acrylic or methacrylic acid derivative can be suitably used.
光開始剤と しては、 ト リアジン系、 ァセ トフエノ ン系、 ベンジィ ン系、 ベンゾフエノ ン系、 チォキサンソン系等を使用することがで きる。  As the photoinitiator, a triazine type, an acetophenone type, a benzine type, a benzophenone type, a thioxanthone type or the like can be used.
溶剤と しては、 シクロへキサノ ン等のケ ト ン類、 セルソルブァセ テー ト等のエステル類の単品又は二種以上の混合物を使用するこ と ができる。  As the solvent, a ketone such as cyclohexanone or an ester such as cellosolve acetate or a mixture of two or more thereof can be used.
以上を混合、 濾過してレジス トを調製し、 このレジス トをミセル 電解製膜色素層上にロールコーター又はスビンコ一ターで少なく と も表示部全面に積層塗布する。 次に、 所望の色素層に相当するカラ —フィ ルタのマスクパターンを通じて光重合及び光架橋 (露光) 後. 例えば未露光部をェツチングを行った後に熱処理によつて完全に硬 ィ匕させる。 The above is mixed and filtered to prepare a resist, and the resist is at least put on the micelle electrolytic film-forming dye layer using a roll coater or a sub coater. Is also applied over the entire display section. Next, after photopolymerization and photocrosslinking (exposure) through a color filter mask pattern corresponding to the desired dye layer. For example, after unetched portions are etched, they are completely cured by heat treatment.
さ らに、 光硬化型レジス ト (好ま しく は透明な紫外線硬化型レジ ス ト) を塗布する方法として、 従来のロールコー ト又はスビンコ一 トに変えて、 ミセル電解法または電着法により透明光硬化性レジス トを塗布することにより、 製膜後の基板の乾燥工程を省略できるば かりでなく、 異物の混入を防ぐことが可能となる。  In addition, as a method of applying a light-curable resist (preferably a transparent ultraviolet-curable resist), a transparent light is applied by a micellar electrolysis method or an electrodeposition method instead of a conventional roll coat or svin coat. By applying the curable resist, not only the drying step of the substrate after the film formation can be omitted, but also it becomes possible to prevent foreign substances from being mixed.
これらのレジス 卜の、 具体的な商品名として C T (富士ハン ト社 製) 、 V 2 5 9 P A (新日鐵社製) 、 J N P C 0 6 , J N P C 0 9 , J N P C 1 6 ( J S R社製) 、 C F G R (東京応化社製) 、 フ ォ ト ニース U R 3 1 0 0 (東レ社製) 等を挙げることができる。  Specific names of these registry are CT (Fuji Hunt), V259PA (Nippon Steel), JNPC06, JNPC09, JNPC16 (JSR). , CFGR (manufactured by Tokyo Ohkasha), Photo Nice UR310 (manufactured by Toray Industries, Inc.) and the like.
透明光硬化性レジス ト硬化物の膜厚と透過率は、 膜厚 0. 1〜4. 0 μ τη^ 透過率 9 0 %以上 4 6 0 n mとすることが好ま しい。  The film thickness and transmittance of the transparent photocurable resist cured product are preferably from 0.1 to 4.0 μτη ^, transmittance of 90% or more and 460 nm.
膜厚については、 各色素層の膜厚に応じてレジス ト粘度及びスビ ンコ一 卜の回転数等で、 又は、 ミセル電解法又は電着法では製膜電 位, 製膜時間等によってコン トロール可能であり、 各色素層の膜厚 段差を最小限にして、 平坦化できる。  The film thickness is controlled according to the resist viscosity and the number of rotations of the sine coat according to the film thickness of each dye layer, or by the film forming potential and the film forming time in the micelle electrolytic method or the electrodeposition method. It is possible and it is possible to minimize the step of the thickness of each dye layer and to make it flat.
保護膜 Protective film
保護膜と しては、 透明光硬化性レジス ト硬化物及び透明熱硬化性 樹脂硬化物を挙げることができる。  Examples of the protective film include a cured transparent light-curable resist and a cured transparent thermosetting resin.
①透明光硬化性レジス ト硬化物 (前述の材料と同様のものを用いる こ とができる)  (1) Transparent light-curable resist cured product (the same materials as those described above can be used)
ミセル電解法で製膜した色素層上又は透明な光硬化性レジス トの 硬化物上 (ブラ ックマ ト リ ツクス上も含む) に、 透明光硬化性レジ ス トをロールコーター又はスビンコ一ターで少なく とも表示部全面 にわたつて積層塗布し、 熱処理することによって完全に硬化させる。  Reduce the amount of transparent photocurable resist on the dye layer formed by micellar electrolysis or on the cured product of transparent photocurable resist (including on black matrix) using a roll coater or a spin coater. Both layers are applied over the entire display area, and are completely cured by heat treatment.
また、 カラーフィルタの三原色 R, G , Bの色素パターン及びブ ラ ックマ ト リ ツ クスの存在する領域、 すなわち、 表示部のみを保護 膜用マスクを通じて露光し、 未露光部 (表示部外) をエッチングし て、 表示部に残ったレジス トを熱処理によって完全に硬化させる。 In addition, the dye patterns of the three primary colors R, G, Only the area where the matrix is present, that is, the display area is exposed through a mask for protective film, the unexposed area (outside the display area) is etched, and the resist remaining on the display area is completely treated by heat treatment. Let it cure.
なお、 表示部外にミ セル電解法製膜色素層が存在する場合には、 レジス トのエッチングと同時又はレジス 卜の熱硬化後に色素層をェ ッチングして保護膜を形成することもできる。  When a dye layer made of micelle electrolytic method exists outside the display section, the protective layer can be formed by etching the dye layer at the same time as the resist is etched or after the resist is thermally cured.
また、 少なく とも表示部全面又は表示画素部を含む連続するバタ 一ンに対応する部分に形成された透明導電性薄膜上に、 ミ セル電解 法で第一色目の色素層を製膜する以前又は、 三原色及び黒色の色素 パターンを形成する途中において、 レジス トをロールコーター又は スビンコ一ターで積層塗布し、 表示部外のみをマスクを通じて露光 かつ未露光部 (表示部) をエッチングして、 表示部外に残ったレジ ス トを熱処理によって完全に硬化させ、 表示部外に保護膜を積層し てもよい。  At least before the first color dye layer is formed by the micelle electrolysis method on the transparent conductive thin film formed at least on the entire display portion or on a portion corresponding to a continuous pattern including the display pixel portion. In the process of forming the three primary colors and the black pigment pattern, the resist is laminated and applied with a roll coater or a sbin coater, and only the outside of the display is exposed through a mask and the unexposed part (display) is etched to form a display. The resist remaining outside may be completely cured by heat treatment, and a protective film may be laminated outside the display portion.
②透明熱硬化性樹脂硬化物  ② Transparent thermosetting resin cured product
アク リル、 メ タク リル酸誘導体とその共重合体 (バイ ンダ一) の 混合物を用いることができる。 また、 このアク リル、 メ タク リル酸 誘導体にエポキシ基、 シロキサン基、 ポリイ ミ ド前駆体を導入した ものを好適に用いることができる。  A mixture of an acrylic or methacrylic acid derivative and a copolymer thereof (a binder) can be used. Further, those obtained by introducing an epoxy group, a siloxane group, or a polyimide precursor into this acrylic or methacrylic acid derivative can be suitably used.
開始剤と しては、 ト リアジン系、 ァセ トフヱノ ン系、 ベンジイ ン 系、 ベンゾフエノ ン系、 チォキサンソン系等を使用するこ とができ る 0  As the initiator, a triazine type, an acetophenone type, a benzine type, a benzophenone type, a thioxanthone type, or the like can be used.
溶剤と しては、 シクロへキサノ ン等のケ ト ン類及びセロソルプア セテー ト等のエステル類の単品又は二種以上の混合物を使用するこ とができる。 これらを混合、 濾過かつ塗布後に熱処理で完全に硬化 させる。  As the solvent, a single product of a ketone such as cyclohexanone and an ester such as cellosolp acetate or a mixture of two or more thereof can be used. After mixing, filtering and applying, they are completely cured by heat treatment.
この際、 塗布は、 ロールコーター又はスビンコ一ターで少なく と も表示部全面に行うが、 オフセッ ト印刷機によって、 表示部、 表示 部外に選択的に印刷して、 保護膜を形成することも出来る。 具体的な商品名と しては、 ォブトマー S S— 7 2 6 5, J H R - 8 4 84、 J S S— 8 1 9、 J S S 7 1 5 ( J S R社製) 、 0 S - 8 08 (長瀬産業社製) 、 L C 2 00 1 (三洋化成社製) 等を挙 げることができる。 At this time, the coating is performed on at least the entire display unit using a roll coater or a sub coater, but it is also possible to selectively print the display unit and the outside of the display unit with an offset printing machine to form a protective film. I can do it. Specific product names are Obtomer SS-7265, JHR-8484, JSS-8119, JSS715 (manufactured by JSR), 0S-808 (manufactured by Nagase & Co., Ltd.) ), LC2001 (manufactured by Sanyo Chemical Industries, Ltd.) and the like.
保護膜の膜厚と透過率は、 膜厚 0. 5〜4. 0 m、 透過率 9 0 %以上/ ^ 460 n mとするのが好ま しい。  The thickness and transmittance of the protective film are preferably 0.5 to 4.0 m and the transmittance is 90% or more / ^ 460 nm.
膜厚については、 各色素層の膜厚に応じて保護膜剤の粘度及びス ビンコ一 卜の回転数等でコン トロール可能である.  The film thickness can be controlled by the viscosity of the protective film agent and the number of rotations of the spin coat according to the film thickness of each dye layer.
液晶駆動用透明導電件薄膜 Transparent conductive thin film for driving LCD
上記透明導電性薄膜と同様の材料及び形成方法を用いることがで きる。  A material and a formation method similar to those of the transparent conductive thin film can be used.
発明のカラーフィ ルタの製造方法  Method for producing color filter of the invention
ここで、 ミセル電解法で製膜した色素層に透明光硬化性レジス ト を積層して、 色素パターンとブラックマ トリ ックスを形成する一般 的な製造方法を第 1 0図 ( 3 ) 〜 ( £ ) 、 1 1 ( 3 ) 〜 ( ( を参 照して説明する。  Here, a general manufacturing method of forming a dye pattern and a black matrix by laminating a transparent photocurable resist on a dye layer formed by micellar electrolysis is shown in Figs. 10 (3) to (£). , 11 (3) to ((
絶縁性基板 1 9 0上の少なく とも表示部全面又は表示画素部を含 む連続するパターンに対応する部分に透明導電性薄膜 1 9 1を形成 した基板を作製する (第 1 0図 (a) , (b ) ) 。 この基板上に、 色素 (R , G, B, B L) から選択した一つの色素 1 92をミセル 電解法で製膜する (第 1 0図 ( c ) ) 。 乾燥し、 室温〜 2 20てで ベーク後、 高圧水洗浄、 紫外線洗浄などの洗浄処理をする。 次に、 透明光硬化性レジス ト 1 9 3をスビンコ一ター又はロールコーター で塗布して熱処理 (室温〜 1 50 (:、 5分〜 2時間プリべーク) し た後、 選択した色素層に応じたマスクパターン 1 9 4を用いて露光 する (第 1 0図 (d) , (e ) ) 。 この場合、 コンタク ト方式、 ブ 口キシミ ティ 一方式、 ステツパー方式、 ブロジヱク ショ ン方式のい ずれを用いても良い。 露光エネルギーは、 例えば、 紫外線の i線 ( 3 6 5 n m) では 1 0〜: L 200m J Zc m2とすることが好ま し い。 A substrate having a transparent conductive thin film 191 formed on at least the entire surface of the insulating substrate 190 or a portion corresponding to a continuous pattern including the display pixel portion is manufactured (FIG. 10 (a)). , (b)). On this substrate, one dye 192 selected from dyes (R, G, B, BL) is formed into a film by micellar electrolysis (FIG. 10 (c)). After drying and baking at room temperature to 220 ° C, perform cleaning treatment such as high pressure water cleaning and UV cleaning. Next, the transparent photocurable resist 1993 is applied with a sub coater or a roll coater and heat-treated (room temperature to 150 (: pre-baked for 5 minutes to 2 hours). (FIG. 10 (d), (e)) using a mask pattern 1994. In this case, the contact method, the aperture limit, the one-way method, the stepper method, and the brochure method are used. Exposure energy is preferably, for example, 10 to: L 200 mJZc m2 for ultraviolet i-ray (365 nm). No.
次に、 未露光部の透明光硬化性レジス トと色素層のエツチングを 仃ぅ。  Next, the etching of the transparent photocurable resist and the dye layer in the unexposed areas was performed.
このエッチングの方法は、 以下の①ドライエッチング、 ②ゥエツ ト エッチング、 ③剝離材によるエッチング、 ④電解エッチングがある,This etching method includes the following (1) dry etching, (2) jet etching, (3) etching with release material, and (4) electrolytic etching.
①ドライエッチングとして、 U V オゾンアツシング、 プラズマ エッチング、 スバッタエッチング、 イオンビームエツチングがある ,①Dry etching includes UV ozone ashes, plasma etching, sbutter etching, and ion beam etching.
②ゥエツ トエッチングと して、 各種レジス ト専用の現像液、 ァル 力 リ性現像液 (無機系として炭酸アルカ リ塩、 水酸化アル力 リ系が あり、 有機系と して、 テトラメチルアンモニゥムハイ ド口キシ ド ((2) As for the etch etching, a developing solution dedicated to various resists, a developing solution of alkali type (alkali carbonate salt and an alkali hydroxide type as inorganic type, and tetramethyl ammonium salt as an organic type). Demide mouth oxide (
T M A H ) 等の第四級アミ ン水溶液がある) 、 有機溶剤 (メタノー ル、 エタノール、 アセ トンなど) 等の静的または動的接触によるェ ッチング方法がある。 Etching method by static or dynamic contact with quaternary amine aqueous solution such as TMAH) or organic solvent (methanol, ethanol, acetone, etc.).
③剝離材によるエツチングとして、 溶剤可溶性ポリマーの積層塗 布剝離, 粘着フィ ルムの貼り付け剥離がある。  (3) Etching with a release material includes lamination of a solvent-soluble polymer, release, and sticking of an adhesive film.
④電解エッチングと して、 界面活性材 (非イオン性など) 含有水 溶液、 上記ゥエツ トエッチング用の現像液又は有機溶剤中に支持塩 を添加して電位を印加する。  (4) As electrolytic etching, a supporting salt is added to a water solution containing a surfactant (eg, non-ionic), or (2) a developer for organic etching or an organic solvent to apply a potential.
なお、 未露光部のレジス トを溶解して除く ことができても、 色素 層の剥離が不十分な場合には、 完全に色素層を除く ために、 上記の ①ドライエッチング、 ②ゥエツ トエッチング、 ③剝離材によるエツ チング、 ④電解エッチングを、 ざらに透明光硬化性レジス 卜の露光 部の熱硬化前後の少なく とも一方で行う。 なお、 別々の方法を併用 しても良い。  Even if the unexposed resist can be removed by dissolving, if the dye layer is not sufficiently peeled, the above-mentioned (1) dry etching and (2) jet etching are used to completely remove the dye layer. (3) Etching with release material, and (4) electrolytic etching are performed at least on one side before and after thermal curing of the exposed part of the transparent photocurable resist. Note that different methods may be used in combination.
ミセル電解法で製膜した色素層は、 バインダーと してのレジス ト 及びポリマーを含有していない色素 (顔料) のみの薄膜であり、 こ れらのエッチングによって、 容易に溶解、 剥離するため、 透明導電 性薄膜が変色、 絶縁化、 侵食等のダメージを受けない温和な条件で 行うことが出来る。 例えば、 以下のよう に、 ゥエツ トエッチングと ドライエッチング を併用したエツチング条件で行う こ とができる。 The dye layer formed by micellar electrolysis is a thin film of only a resist as a binder and a dye (pigment) containing no polymer, and is easily dissolved and peeled by these etchings. It can be performed under mild conditions in which the transparent conductive thin film is not damaged such as discoloration, insulation, and erosion. For example, as described below, the etching can be performed under the etching conditions in which the wet etching and the dry etching are used in combination.
室温から 70。Cの現像液 (有機アル力 リ水系 ; テ トラメ チルア ン モニゥムハイ ド口キシ ド (TMAH) 2. 3 8 %水溶液、 無機アル カ リ水系 ; 炭酸ナ ト リ ウム及び炭酸力リ ゥム水溶液等を用い、 水素 イオン濃度 P H 8〜 1 4とする) に、 レジス トを塗布露光した基板 を浸漬して現像の後に水洗 (高圧純水スプレー、 超音波、 ブラシス クラブ、 界面活性剤洗浄等) リ ンスして、 未露光部のレジス ト及び 色素層を溶解又は除去する。  Room temperature to 70. C developer (organic alkaline water; Tetramethylammonium hydroxide mouth oxide (TMAH) 2.38% aqueous solution, inorganic alkaline water: sodium carbonate and carbonated aqueous solution Use a hydrogen ion concentration of PH 8 to 14), immerse the substrate on which the resist has been applied and exposed, rinse with water after development (high-pressure pure water spray, ultrasonic wave, brush scrub, detergent cleaning, etc.) Rinse Then, the resist and the dye layer in the unexposed area are dissolved or removed.
次に、 露光部のレジス トを熱硬化 (1 50°C〜3 5 0 °C) させる c 露光部の透明光硬化性レジス ト及び色素層のバターンの解像度をよ り良好に形成する場合、 は、 UVZオゾンアツ シング装置で未露光 部のレジス ト及び色素層をオゾン分解して除去することが好ま しい c この場合、 UVランブは水銀ランプ、 主に 1 85 n mと 2 54 n m の輝線を有するものが好ま しい。 基板温度は、 室温〜 25 0°C、 ォ ゾン濃度 : 1 0 p p m以上、 時間 : 30秒〜 3時間とすることが好 ま しい。 Next, the resist in the exposed area is heat-cured (150 ° C to 350 ° C) .c If the resolution of the pattern of the transparent light-curable resist and the dye layer in the exposed area is to be better formed, is, UVZ Ozon'atsu the registry and the dye layer of the unexposed portion in single device correct preferred to remove by ozonolysis c in this case, UV dancing has a bright line of a mercury lamp, mainly 1 85 nm and 2 54 nm Things are preferred. The substrate temperature is preferably room temperature to 250 ° C., ozone concentration: 10 ppm or more, and time: 30 seconds to 3 hours.
このようにして、 三原色のうち一つの色素バターン 1 9 2, 1 9 3の形成を終了する (第 1 0図 ( f ) ) 。 次に、 残りの二つの色素 についても同様の工程を繰り返す。 (第 1 1図 (a ) , ( b) ) 。  In this way, the formation of one of the three primary colors, dye patterns 192 and 193, is completed (FIG. 10 (f)). Next, the same process is repeated for the remaining two dyes. (Fig. 11 (a), (b)).
次に、 B L色素の色素パターンと してブラックマ ト リ ッ クス 1 9 5を形成する (第 1 1図 ( c ) ) 。 このようにしてカラーフィ ルタ を完成させる。  Next, a black matrix 195 is formed as a dye pattern of the BL dye (FIG. 11 (c)). Thus, a color filter is completed.
さらに、 保護膜及び液晶駆動用透明導電性薄膜を三原色の色素パ ターン及びブラ ックマ ト リ ックス上に積層しても良い。  Further, a protective film and a transparent conductive thin film for driving a liquid crystal may be laminated on a dye pattern of three primary colors and a black matrix.
また、 絶縁性基板上に、 ブラックマ ト リ ツクスの形状にバター二 ングした金属又は金属酸化物薄膜の少なく とも表示部全面又は表示 画素部を含む連続するパターンに対応する部分に透明導電性薄膜を 形成し、 透明導電性薄膜上に、 上記同様にして、 赤、 青、 緑の三原 色の色素パターンを形成し、 カラーフィ ルタを完成させる。 In addition, on the insulating substrate, a transparent conductive thin film is formed on at least the entire display portion or a portion corresponding to a continuous pattern including the display pixel portion of a metal or metal oxide thin film buttered in a black matrix shape. Then, on the transparent conductive thin film, red, blue and green Mihara A color dye pattern is formed to complete the color filter.
さ らに、 絶縁性基板上の少なく と も表示部全面又は表示画素部を 含む連続するパターンに対応する部分に透明導電性薄膜が形成され た基板上に、 同様にして三原色の色素バタ一ンを分離して配置する 前、 中間又は後に、 三原色の色素パターンの間の位置に、 黒色色素 を含有するレジス トをフォ ト リ ソグラフィ 一法によってブラックマ ト リ ックスの形状でパターニングして、 カラーフィ ルタを完成させ さらに、 保護膜及び液晶駆動用透明導電性薄膜を三原色の色素パ ターン及びブラ ックマ ト リ ツクス上に積層しても良い。  Further, on a substrate on which a transparent conductive thin film is formed on at least the entire display portion or a portion corresponding to a continuous pattern including a display pixel portion on an insulating substrate, the three primary color dye patterns are similarly formed. Before, in the middle, or after separating, the resist containing the black dye is patterned in a black matrix shape by a photolithography method at a position between the three primary color dye patterns to form a color filter. In addition, the protective film and the transparent conductive thin film for driving the liquid crystal may be laminated on the three primary color dye patterns and the black matrix.
また、 その少なく と も表示部全面又は表示画素部を含む連続する パターンに対応する部分に形成された導電性薄膜上の表示部に対応 する部分を除いた部分に、 保護膜を積層した絶縁性基板を用いて、 先に説明した方法でカラーフィルタを製造することができる。  In addition, at least a portion of the conductive thin film formed on a portion corresponding to a continuous pattern including the display portion or a continuous pattern including the display pixel portion except for a portion corresponding to the display portion has an insulating film laminated thereon. Using the substrate, a color filter can be manufactured by the method described above.
一方、 ミセル電解法で製膜した赤、 青、 緑三原色の三原色の色素 パターンを形成する (この場合、 ミセル電解法で製膜した三原色全 ての色素層上に透明な光硬化性レジス トを積層する) 本発明の方法、 分散法、 印刷法、 染色法等において三原色の色素パターンを導電性 薄膜上に形成する、 または、 三原色の色素パターンの間にフォ ト リ ソグラフィ 一法でパターニングした導電性薄膜を形成する方法のい ずれの場合であっても、 三原色の色素バターンの間に導電性薄膜が 存在した場合、 この導電性薄膜上に ミセル電解法で黒色色素を製膜 すれば、 ブラッ クマ ト リ ックスを形成することが出来る。  On the other hand, a dye pattern of three primary colors of red, blue and green formed by the micellar electrolysis method is formed (in this case, a transparent photo-curable resist is formed on all the dye layers of the three primary colors formed by the micelle electrolysis method). Laminating) Three primary color dye patterns are formed on a conductive thin film by the method of the present invention, the dispersion method, the printing method, the dyeing method, or the like, or the conductive pattern is formed between the three primary color dye patterns by photolithography. Regardless of the method of forming the conductive thin film, if a conductive thin film exists between the three primary color dye patterns, a black dye can be formed on this conductive thin film by micellar electrolysis. Can form bear matrix.
ところで、 ミセル電解法製膜用透明電極を先端部のみをショー ト させたス トライブのパターンにパターニングし、 ミ セル電解法によ る色素層の製膜、 透明光硬化性レジス 卜の塗布、 色素層のバター二 ング (エッチング) を行った後、 M I M基板などを用いて液晶パネ ルを組み、 製膜に用いた電極を利用して液晶を駆動させることがで さる。 また、 全面に形成された透明電極を用い、 ミセル電解法による色 素層の製膜、 透明光硬化性レジス トの塗布、 色素層のパターニング (エッチング) を行った後、 色素層の上の光硬化型樹脂をマスク と して、 エッチング液に基板ごと浸漬して、 全面に形成された透明電 極をパターニング (エッチング) してカラ一フィルタ基板を製造し. 同様に M I M基板などを用いて液晶バネルを組み、 製膜に用いて電 極 (パターニングされている) を利用して液晶を駆動させることが できる。 By the way, a transparent electrode for film formation by micellar electrolysis is patterned into a stripe pattern in which only the tip is shorted, and a dye layer is formed by micellar electrolysis, a transparent photocurable resist is applied, and a dye layer is formed. After buttering (etching), a liquid crystal panel is assembled using a MIM substrate or the like, and the liquid crystal can be driven using the electrodes used for film formation. In addition, using a transparent electrode formed on the entire surface, forming a pigment layer by micellar electrolysis, applying a transparent photocurable resist, and patterning (etching) the pigment layer, the light on the pigment layer Using the curable resin as a mask, the entire substrate is immersed in an etching solution, and the transparent electrode formed on the entire surface is patterned (etched) to produce a color filter substrate. Similarly, a liquid crystal using a MIM substrate etc. A liquid crystal can be driven by using electrodes (patterned) by using a panel and using it for film formation.
以上説明したように、 本発明のカラーフィ ルタ及びその製造方法 では、 当該カラーフィ ルタを用いた、 たとえばカラー液晶ディ スブ レイでの表示画像を高精細化できるとともに、 画質が向上し、 かつ、 生産効率 (歩留り) が向上するという効果を有する。  As described above, in the color filter and the method of manufacturing the same according to the present invention, a display image using a color filter, for example, on a color liquid crystal display can be made high definition, image quality can be improved, and production efficiency can be improved. (Yield) is improved.
以下、 この効果を詳細に説明する。  Hereinafter, this effect will be described in detail.
先ず、 透明導電性薄膜を微細加工でトライアングル又はダイァゴ ーナルのような複雑なパターン化を行う必要がなく 、 従来問題であ つたショー ト、 断線による歩留の低下を避けることが出来る。  First, it is not necessary to form a complicated pattern such as a triangle or a diagonal by performing fine processing on the transparent conductive thin film, and it is possible to avoid a reduction in yield due to a short circuit or disconnection, which has been a problem in the past.
また、 カラーフィ ルタの色素層 (色素パターン) において、 ダイ ァゴーナル、 トライァングルパターンが容易に適用できるようにな 0  In addition, diagonal and triangular patterns can be easily applied to the dye layer (dye pattern) of the color filter.
さらに、 色素層の一色について透明導電性薄膜の微細バターンを 連続して接続する必要がなく なり、 先の電圧降下によるカラーフィ ルタの色斑を低減することができる。  Further, it is not necessary to continuously connect the fine patterns of the transparent conductive thin film for one color of the dye layer, and it is possible to reduce the color unevenness of the color filter due to the previous voltage drop.
また、 カラーフィ ルタの色素パタ一ンを透明光硬化性レジス トを 用いて形成するため、 分散法力ラーフィ ルタのような色素 (顔料又 は染料) 含有光硬化性レジス トの色素の光吸収によるレジス トの露 光感度及び解像度の低下がなくなり、 さらに、 高精細なカラー液晶 ディ スブレイが作製できる。  In addition, since the dye pattern of the color filter is formed using a transparent light-curable resist, the light absorption of the dye of a light-curable resist containing a dye (pigment or dye), such as a dispersion-type labyrinth filter, is used. The exposure sensitivity and resolution of the liquid crystal are not reduced, and a high-definition color liquid crystal display can be manufactured.
また、 色素層上に積層した透明光硬化性レジス 卜及び保護膜の膜 厚をコン ト ロールすることによって、 各色素 (パターン) 間の膜厚 段差を少なくすることができる。 すなわち、 カラーフィ ルタを平坦 化できるため、 積層された液晶駆動用透明導電性薄膜にクラック、 断線を低減することが出来る。 加えて、 液晶セルのギャ ップのばら つきが少なく なり表示むらを低減し、 カラーフィルタのコ ン トラス トを向上させることができる。 Also, by controlling the film thickness of the transparent photocurable resist and the protective film laminated on the dye layer, the film thickness between each dye (pattern) can be controlled. Steps can be reduced. That is, since the color filter can be flattened, cracks and disconnections in the laminated transparent conductive thin film for driving a liquid crystal can be reduced. In addition, variations in the gap of the liquid crystal cell are reduced, thereby reducing display unevenness and improving the contrast of the color filter.
また、 三原色から選択する一つの色素層を透明導電性薄膜上全面 に製膜して色素層が平坦に製膜されるため、 同一色素パターン内の 段差が低減し、 透過する光の散乱を低減し、 カラーフィ ルタのコ ン トラス トを向上させることができる。  In addition, since one dye layer selected from the three primary colors is formed on the entire surface of the transparent conductive thin film and the dye layer is formed flat, the steps in the same dye pattern are reduced, and the scattering of transmitted light is reduced. In addition, the contrast of the color filter can be improved.
さらに、 ミセル電解法力ラーフィ ルタでは色素の顔料又は染料を 選択することができるため、 高耐熱性、 高耐光性の長所を生かすこ とが出来る。  Furthermore, since the pigment or dye of the pigment can be selected in the micelle electrolytic filter, the advantages of high heat resistance and high light resistance can be utilized.
また、 この構造によれば、 電極取出層の形成を行う必要がなく 、 カラーフィ ルタ製造工程を簡略化することができる。  Further, according to this structure, it is not necessary to form an electrode extraction layer, and the color filter manufacturing process can be simplified.
次に、 ブラックマ ト リ ックスに関して以下の効果がある。  Secondly, there are the following effects on the black matrix.
導電性薄膜上に、 本発明の方法だけではなく、 分散法、 印刷法、 染色法等を用いて、 赤、 青、 緑三原色を形成したカラーフィ ルタに おいては、 ミセル電解法で導電性薄膜上に黒色色素を製膜して、 ブ ラ ックマ ト リ ックスを形成することが可能であり、 温和な条件、 例 えば、 水系、 1 0 0て以下、 常圧で形成することができる。  In a color filter in which red, blue and green primary colors are formed not only by the method of the present invention but also by a dispersion method, a printing method, a dyeing method, etc. on the conductive thin film, the conductive thin film is formed by a micelle electrolytic method. It is possible to form a black matrix by forming a black pigment on the film, and it can be formed under mild conditions, for example, aqueous system, 100 or less at normal pressure.
また、 ミセル電解法による色素層は、 色素 (顔料又は染料) のみ を積層した構成であるため、 分散法の黒色色素を含有するレジス ト の硬化物では達成が不可能であった遮光度、 例えば、 光学濃度 3 . 0以上を達成することができる。  In addition, since the dye layer formed by the micellar electrolysis method has a configuration in which only a dye (pigment or dye) is laminated, the degree of light shielding that cannot be achieved with a cured product of a resist containing a black dye obtained by a dispersion method, for example, The optical density of 3.0 or more can be achieved.
さらに、 ミセル電解法による製膜条件をコ ン トロールすることに よって、 三原色 (R, G, B ) の色素パターン間のギャ ップを埋め ることが出来、 カラーフィルタの平坦化が向上し、 かつ、 バックラ ィ 卜からの斜め光による白色光の漏れ光を阻止できるため、 視認性 を向上させることができる。 また、 金属薄膜 (金属クロム) の場合のような、 反射光での視認 性の低下を来すことがない。 さらに、 透明な光硬化性レジス ト硬化 物の積層 (パターニング) と黒色色素のエッチングを行う ことが出 来るため、 高精細なブラックマ ト リ ツクスを形成することができる, さらに、 ブラ ックマ ト リ ックスと しての金属薄膜及び黒色色素を 含有するレジス ト硬化物と、 ミセル電解法で製膜した色素層とを重 ね合せることができるため、 ブラックマ ト リ ックスの反射光の防止 と ビンホールを埋めることもできる。 Further, by controlling the film formation conditions by the micelle electrolysis method, the gap between the three primary color (R, G, B) dye patterns can be filled, and the flatness of the color filter can be improved. Further, since the leakage of white light due to oblique light from the backlight can be prevented, the visibility can be improved. Also, there is no decrease in visibility with reflected light as in the case of a metal thin film (metal chrome). In addition, since it is possible to laminate (pattern) a transparent photocurable resist cured product and etch a black pigment, it is possible to form a high-definition black matrix. In addition, a black matrix The resist cured product containing a metal thin film and a black dye can be superimposed on the dye layer formed by micellar electrolysis to prevent the reflected light of the black matrix and fill the binhole You can also.
また、 透明導電性薄膜として、 予め、 ス トライブ状など簡単な形 状にパターニングしたものを用いて、 全ての電極を導通させて、 全 面に形成した透明導電性薄膜を用いた時と同じ要領で色素層 (色素 パターン) を形成することにより、 又は色素パターンを形成後に、 色素パターンをマスクとし、 色素バタ"ンの形成していない領域の 透明導電性薄膜をエッチングすることにより、 この色素層 (色素パ ターン) の下地の透明導電性薄膜を M I M駆動のパネルや単純マ ト リ ックス ( S T N , T N ) 駆動のバネルの液晶駆動用電極としても 応用することができる。  In addition, the same procedure as when a transparent conductive thin film formed on the entire surface is used by using a transparent conductive thin film that has been patterned in a simple shape such as a stripe shape in advance and conducting all the electrodes. The dye layer is formed by forming a dye layer (dye pattern) with or after forming the dye pattern, using the dye pattern as a mask and etching the transparent conductive thin film in a region where the dye pattern is not formed. The transparent conductive thin film underlying the (dye pattern) can also be applied as a liquid crystal drive electrode for a panel driven by a MIM or a panel driven by a simple matrix (STN, TN).
また、 光硬化性レジス トを積層、 塗布する前に、 ミセル電解法で 製膜した色素層を U V洗浄することにより、 色素中に存在する油脂 などの異物を分解し、 光硬化性レジス 卜のぬれをよく し、 塗りムラ、 ビンホールなどを少く して最終的な、 カラーフィ ルタの製造の歩留 りを、 一層向上することができる。 図面の簡単な説明  Before laminating and applying the photocurable resist, the dye layer formed by the micellar electrolysis method is subjected to UV washing to decompose foreign substances such as oils and fats present in the dye, thereby forming the photocurable resist. By improving wettability and reducing uneven coating and binholes, the final yield of color filter production can be further improved. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明のカラー液晶ディスプレイ用カラーフィルタに 係る構造 4を模式的に示す平面及び断面図であり、  FIG. 1 is a plan view and a sectional view schematically showing a structure 4 according to a color filter for a color liquid crystal display of the present invention,
第 2図は、 本発明における構造 6を模式的に示す平面及び断面図 であり、  FIG. 2 is a plan view and a sectional view schematically showing a structure 6 in the present invention,
第 3図は、 本発明における構造 9を模式的に示す平面及び断面図 であり、 FIG. 3 is a plan view and a sectional view schematically showing a structure 9 according to the present invention. And
第 4図は、 本発明における構造 1 3を模式的に示す平面及び断面 図であり、  FIG. 4 is a plan view and a sectional view schematically showing the structure 13 according to the present invention,
第 5図は、 本発明における構造 2 1を模式的に示す平面及び断面 図であり、  FIG. 5 is a plan view and a sectional view schematically showing a structure 21 according to the present invention,
第 6図は、 本発明における構造 2 4を模式的に示す平面及び断面 図であり、  FIG. 6 is a plan view and a sectional view schematically showing a structure 24 according to the present invention,
第 7図は、 本発明における構造 2 9を模式的に示す平面及び断面 図であり、  FIG. 7 is a plan view and a sectional view schematically showing a structure 29 according to the present invention,
第 8図は、 本発明の構造 3 0における分散法力ラーフィ ルタと ミ セル電解法ブラ ックマ ト リ ツクスを模式的に示す平面及び断面図で あり、  FIG. 8 is a plan view and a cross-sectional view schematically showing a dispersion force filter and a micelle electrolytic black matrix in structure 30 of the present invention.
第 9図は、 本発明の構造 3 1における分散法力ラーフィ ルタと ミ セル電解法ブラ ックマ ト リ ツクスを模式的に示す平面及び断面図で あ。 り、  FIG. 9 is a plan view and a cross-sectional view schematically showing a dispersion method force filter and a micelle electrolytic black matrix in Structure 31 of the present invention. And
第 1 0図は、 本発明のカラー液晶ディ スプレイ用カラーフィ ルタ に係る製造工程を示す断面図であり、  FIG. 10 is a cross-sectional view showing a manufacturing process of the color filter for a color liquid crystal display of the present invention,
第 1 1図は、 第 1 0図に続く製造工程を示す断面図であり、 第 1 2図は、 透明導電性薄膜形成用マスクを示す模式図であり、 第 1 3図は、 実施例の説明に供され、 G色素パターン形成用マス クを示す模式図であり、  FIG. 11 is a cross-sectional view showing a manufacturing process subsequent to FIG. 10, FIG. 12 is a schematic view showing a mask for forming a transparent conductive thin film, and FIG. FIG. 3 is a schematic diagram showing a mask for forming a G dye pattern for explanation.
第 1 4図は、 実施例の説明に供され、 B色素パターン形成用マス クを示す模式図であり、  FIG. 14 is a schematic diagram showing a mask for forming a B dye pattern, which is provided for explanation of the embodiment,
第 1 5図は、 実施例の説明に供され、 R色素パターン形成用マス クを示す模式図であり、  FIG. 15 is a schematic diagram showing a mask for forming an R dye pattern, which is provided for explanation of an example,
第 1 6図は、 実施例の説明に供され、 ス トライブ及びダイァゴー ナルのブラックマ ト リ ツクス形成用マスクを示す模式図であり、 第 1 7図は、 実施例の説明に供され、 ダイァゴーナルの R色素パ ターン形成用マスクを示す模式図であり、 第 1 8図は、 実施例の説明に供され、 ダイァゴーナルの G色素パ ターン形成用マスクを示す模式図であり、 FIG. 16 is a schematic view showing a mask for forming stripes and diagonal black matrix for use in the description of the embodiment. FIG. 17 is a schematic view showing a diagonal black mask for use in the description of the embodiment. FIG. 2 is a schematic view showing a mask for forming an R dye pattern, FIG. 18 is a schematic diagram showing a mask for forming a diagonal G dye pattern, which is used for describing the embodiment.
第 1 9図は、 実施例の説明に供され、 ダイァゴーナルの B色素パ 夕一ン形成用マスクを示す模式図であり、  FIG. 19 is a schematic diagram showing a mask for forming a diagonal B dye pattern for use in explaining the embodiment,
第 2 0図は、 実施例又は比較例の説明に供され、 トライアングル の B色素パターン形成用マスクを示す模式図であり、  FIG. 20 is a schematic diagram showing a mask for forming a B dye pattern of a triangle, which is used for describing an example or a comparative example,
第 2 1図は、 実施例又は比較例の説明に供され、 トライアングル の G色素パターン形成用マスクを示す模式図であり、  FIG. 21 is a schematic diagram showing a mask for forming a G dye pattern of a triangle, which is used for describing an example or a comparative example,
第 2 2図は、 実施例又は比較例の説明に供され、 トライアングル の R色素パターン形成用マスクを示す模式図であり、  FIG. 22 is a schematic view showing a mask for forming an R dye pattern of a triangle, which is used for describing an example or a comparative example,
第 2 3図は、 実施例又は比較例の説明に供され、 ス トライブ及び ダイァゴーナルの金属又は金属酸化物薄膜のブラックマ ト リ ッ クス 形成用マスクを示す模式図であり、  FIG. 23 is a schematic view showing a mask for forming a black matrix of a striped or diagonal metal or metal oxide thin film, which is provided for explanation of an example or a comparative example,
第 2 4図は、 実施例又は比較例の説明に供され、 トライアングル の金属又は金属酸化物薄膜のブラックマ ト リ ツクス形成用マスクを 示す模式図であり、  FIG. 24 is a schematic diagram showing a mask for forming a black matrix of a triangular metal or metal oxide thin film, which is used for explaining the example or the comparative example,
第 2 5図は、 比較例の説明に供され、 ス トライブの透明導電性薄 膜 ( I T 0 ) バターニング用マスクを示す模式図であり、  FIG. 25 is a schematic view showing a stripe transparent conductive thin film (IT0) buttering mask, which is provided for explanation of a comparative example.
第 2 6図は、 比較例の説明に供され、 ブラ ックマ ト リ ックス及び 電極取り出し形成用マスクを示す模式図であり、  FIG. 26 is a schematic diagram showing a black matrix and a mask for forming an electrode take-out, which is provided for explanation of a comparative example,
第 2 7図は、 比較例の説明に供され、 色素層製造時に銀ベース ト による R , G , B ごとの接続状態を示す模式図であり、  FIG. 27 is a schematic diagram illustrating a connection state of each of R, G, and B using a silver base at the time of producing a dye layer,
第 2 8図は、 比較例の説明に供され、 ダイァゴーナルの I T 0パ ターニング用マスクを示す模式図であり、  FIG. 28 is a schematic view showing a diagonal I T0 patterning mask, which is used for explaining a comparative example.
第 2 9図は、 比較例の説明に供され、 ダイァゴーナルの電極取り 出し部分のマスクを示す模式図であり、  FIG. 29 is a schematic view showing a mask of a diagonal electrode take-out portion, which is provided for explanation of a comparative example,
第 3 0図は、 比較例の説明に供され、 色素層製造における R, G , Bごとの接続状態を示す模式図であり、  FIG. 30 is a schematic diagram showing a connection state for each of R, G, and B in the production of the dye layer, which is provided for describing a comparative example.
第 3 1図は、 本発明のカラー液晶ディ スプレイ用カラーフィ ルタ における表面段差を説明するための図であり、 FIG. 31 shows a color filter for a color liquid crystal display of the present invention. It is a diagram for explaining the surface step in the,
第 3 2図は、 従来例の説明における一般的なカラー液晶ディ スプ レイの構成を示す断面図であり、  FIG. 32 is a cross-sectional view showing the configuration of a general color liquid crystal display in the description of the conventional example.
第 3 3図は、 従来のカラー液晶ディ スプレイ用カラーフィ ルタに 係る構造 1を模式的に示す平面及び断面図であり、  FIG. 33 is a plan view and a sectional view schematically showing a structure 1 according to a conventional color filter for a color liquid crystal display,
第 3 4図は、 従来のカラー液晶ディスプレイ用カラーフィルタに 係る構造 2を模式的に示す平面及び断面図であり、  FIG. 34 is a plan view and a sectional view schematically showing a structure 2 according to a conventional color filter for a color liquid crystal display,
第 3 5図は、 従来の力ラー液晶ディスブレイ用カラーフィルタに 係る構造 3を模式的に示す平面及び断面図であり、  FIG. 35 is a plan view and a sectional view schematically showing a structure 3 according to a conventional color filter for a liquid crystal display.
第 3 6図は、 従来の分散法に係るカラー液晶ディ スプレイ用カラ ーフィ ルタの構成を示す平面及び断面図であり、  FIG. 36 is a plan view and a sectional view showing the structure of a color filter for a color liquid crystal display according to a conventional dispersion method.
第 3 7図は、 本発明における構造 3 2を模式的に示す平面図及び 断面図であり、  FIG. 37 is a plan view and a cross-sectional view schematically showing a structure 32 according to the present invention.
第 3 8図は、 本発明における構造 3 3を模式的に示す平面図及び 断面図であり、  FIG. 38 is a plan view and a cross-sectional view schematically showing a structure 33 according to the present invention.
第 3 9図は、 実施例の説明に供され、 R色素パターン形成用マス クを示す模式図であり、  FIG. 39 is a schematic diagram showing a mask for forming an R dye pattern, which is provided for explanation of an example,
第 4 0図は、 実施例の説明に供され、 G色素パターン形成用マス クを示す模式図であり、  FIG. 40 is a schematic diagram showing a mask for forming a G dye pattern, which is provided for explanation of an embodiment,
第 4 1図は、 実施例の説明に供され、 B色素パターン形成用マス クを示す模式図であり、  FIG. 41 is a schematic diagram showing a mask for forming a B dye pattern, which is provided for explanation of an embodiment,
第 4 2図は、 実施例の説明に供され、 ス トライブ透明導電性薄膜 ( I T O ) パターニング用マスクを示す模式図であり、  FIG. 42 is a schematic view showing a mask for stripe transparent conductive thin film (ITO) patterning, which is provided for explanation of the embodiment,
第 4 3図は、 実施例の説明に供され、 ブラ ックマ ト リ ッ クス形成 用マスクを示す模式図であり、  FIG. 43 is a schematic diagram showing a mask for forming a black matrix, which is used for describing the embodiment,
第 4 4図は、 本発明における構造 3 4を模式的に示す平面図及び 断面図である。 発明を実施するための最良の形態 以下、 本発明を実施例によってさ らに具体的に説明するが、 本発 明はこれに限定されるものではない。 FIG. 44 is a plan view and a sectional view schematically showing a structure 34 in the present invention. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited thereto.
[製造例 1 ]  [Production Example 1]
诱明瀵雷件蒗 Bi製膛某板の作製 诱 明 瀵 雷 蒗 蒗 Bi 膛 Creating a board
第 1 2図は透明導電性薄膜製膜基板の作製状態を示す平面図であ る 0  FIG. 12 is a plan view showing the state of production of a transparent conductive thin film-formed substrate.
この例は、 鏡面研磨した 3 00 mm角の白板ガラス基板 (コ一二 ング社製、 705 9 ) 上に、 スバッタリ ング装置 (アルバック社製 : S D P— 55 0 VT) を用いて、 I T 0薄膜を約 1 30 0 Aで表 示部 20 1の全面と電極取り出し端子部 20 2 a, 2 02 bと接続 するデザイ ンのメ タルマスクを通じて、 白板ガラス基板上にマスキ ング蒸着を行った。 この場合、 基板温度を 2 5 0て、 I T O膜の表 面抵抗を 20 ΩΖΟに調整した。  In this example, an IT0 thin film is formed on a mirror-polished 300 mm square white glass substrate (7059, manufactured by Coatings Co., Ltd.) using a sputtering device (SDP-550 VT, manufactured by ULVAC, Inc.). At about 1300 A, masking deposition was performed on a white glass substrate through a design metal mask connected to the entire surface of the display section 201 and the electrode extraction terminal sections 202 a and 202 b. In this case, the substrate temperature was adjusted to 250, and the surface resistance of the ITO film was adjusted to 20 ΩΖΟ.
ミセル分散液の調  Preparation of micellar dispersion
純水 1 リ ッ トル中において、 顔料としてジアン トラキノニルレツ ド (チバガイギ一社製) を用い、 顔料濃度 1 1. 3 1 リ ッ トル、 フユロセン誘導体ミセル化剤として F P E G ( 1 1—フヱロセニル ゥ ンデシルポリオキシエチレンエーテル) を用いて、 2. 75 ミ リ モル リ ッ トル、 支持塩として臭化リチウムを用いて 0. 1モル リ ッ トルの濃度で混合し、 また、 顔料としてジスァゾイェロー (大 日本ィ ンキ化学工業製) を用いた。 そして、 顔料濃度 1 2. 45 g リ ッ トル、 F P E Gを 2. 00 ミ リモル//リ ッ トル、 臭化リチウ ムを 0. 1モル Zリ ッ トルの濃度で混合し、 それぞれの混合液を超 音波ホモジナイザーで 30分間分散させた後、 重量比 9 : 1の割合 でそれぞれの顔料の分散液を混合し、 さらに、 この混合液を超音波 ホモジナイザーで 30分間分散させ、 Rの混合ミセル分散液を調製 した。  In one liter of pure water, dianthraquinonyl red (manufactured by Ciba Geigy) was used as a pigment, and the pigment concentration was 11.3 liter. Oxyethylene ether), and mixed at a concentration of 2.75 milliliters with lithium bromide as the supporting salt at a concentration of 0.1 molar, and as a pigment, disazoyellose (Dainippon Ink). Chemical Industry) was used. Then, the pigment concentration was mixed at a concentration of 12.45 g liter, FPEG at a concentration of 2.00 mmol / liter, and lithium bromide at a concentration of 0.1 mol Z liter. After dispersing with an ultrasonic homogenizer for 30 minutes, the respective pigment dispersions are mixed at a weight ratio of 9: 1, and the mixture is further dispersed with an ultrasonic homogenizer for 30 minutes to obtain a mixed micelle dispersion of R. Was prepared.
また、 純水 1 リ ッ トル中において、 顔料と してハロゲン化銅フタ ロ シア二 'ン (B A S F社製) を用い、 顔料濃度 1 4. 85 リ ツ トル、 F P E Gを用いて、 3. 0 0 ミ リモル Zリ ッ トル、 支持塩と して臭化リ チウムを用いて 0. 1モル/リ ッ トルの濃度で混合した , また、 顔料としてジスァゾイエロ一 (大日本ィ ンキ化学工業社製) を用い、 顔料濃度 1 2. 4 5 gZリ ッ トル、 F P E Gを 2. 0 0 ミ リモル/リ ッ.トル、 臭化リチウムを 0. 1モル Zリ ッ トルの濃度で 混合した。 そして、 それぞれの混合液を超音波ホモジナイザーで 3 0分間分散させた後、 重量比 6 : 4の割合でそれぞれの顔料の分散 液を混合し、 さ らに、 この混合液を超音波ホモジナイザーで 3 0分 間分散させ、 Gの混合ミセル分散液を調製した。 In one liter of pure water, copper halide phthalocyanine (manufactured by BASF) was used as a pigment, and the pigment concentration was 14.85 liters. Toluene and FPEG were mixed at a concentration of 3.0 millimoles Z liter and lithium bromide as a supporting salt at a concentration of 0.1 mol / litre. (Manufactured by Dainippon Ink and Chemicals, Inc.) and a pigment concentration of 12.45 gZ liter, FPEG of 2.0 millimol / liter, and lithium bromide of 0.1 mol Z liter. Mix at torr concentration. After dispersing each mixture for 30 minutes with an ultrasonic homogenizer, the respective pigment dispersions are mixed at a weight ratio of 6: 4, and the mixture is further mixed with an ultrasonic homogenizer. The mixture was dispersed for 0 minutes to prepare a mixed micelle dispersion of G.
さらに、 純水 1 リ ツ トル中において、 顔料と して銅フタロシア二 ン ( B A S F社製) を用い、 顔料濃度 6. 9 0 gノリ ッ トル、 F P E Gを用いて、 1. 2 5 ミ リモル/リ ッ トルの濃度と、 支持塩と し て臭化リチウムを用い、 0. 1モル リ ッ トルの濃度で混合した。 また、 顔料としてジォキサジンバイオレツ ト (三陽色素社製) を用 い、 顔料濃度 4. 8 8 g リ ッ トル、 F P E Gを 3. 0 0 ミ リモル /、) ッ トル、 臭化リチウムを 0. 1モル Zリ ッ トルの濃度で混合し た。 そして、 それぞれの混合液を超音波ホモジナイザーで 3 0分間 分散させた後に、 重量比 7 : 3の割合でそれぞれの顔料の分散液を 混合し、 さらに、 この混合液を超音波ホモジナイザーで 3 0分間分 散させ、 Bの混合ミセル分散液を調製した。  Further, in 1 liter of pure water, copper phthalocyanine (manufactured by BASF) was used as a pigment, and a pigment concentration of 6.90 g / liter. Lithium bromide was used as the supporting salt, and the mixture was mixed at a concentration of 0.1 mol liter. In addition, dioxazine biorett (manufactured by Sanyo Dyestuffs Co., Ltd.) was used as the pigment, and the pigment concentration was 4.88 g liter, FPEG was 3.0 millimol / liter, and lithium bromide. Was mixed at a concentration of 0.1 molar Z liter. Then, after dispersing each mixture for 30 minutes with an ultrasonic homogenizer, the respective pigment dispersions are mixed at a weight ratio of 7: 3, and the mixture is further dispersed for 30 minutes with an ultrasonic homogenizer. The mixture was dispersed to prepare a mixed micelle dispersion of B.
また、 純水 1 リ ツ トル中において、 顔料と してカーボンブラック In one liter of pure water, carbon black was used as a pigment.
(三菱化成工業社製) を用い、 顔料濃度 6. 8 8 gノリ ッ トル、 F P E Gを用いて、 2. 5 0 ミ リモル リ ッ トル、 支持塩と して臭化 リチウムを用いて 0. 1モル リ ツ トルの濃度で混合し、 超音波ホ モジナイザーで 3 0分間分散させて B Lのミ セル分散液を調製した c (Manufactured by Mitsubishi Kasei Kogyo Co., Ltd.) with a pigment concentration of 6.88 g and a FPEG, 2.50 milliliters, and with lithium bromide as the supporting salt, 0.1. mol were mixed at a concentration of Li Tsu torr, was prepared micelle dispersion of BL was dispersed for 30 minutes by an ultrasonic ho homogenizer c
[実施例 1 ] [Example 1]
先の製造例 1で作製した基板を、 製造例 1で調製した Gのミセル 分散液に挿入し、 透明導電性薄膜の電極端子部とポテンシヨスタ ツ トの陽極を接続した。 この接続後に 0. 4 V, 1 8分間の定電位電 解を行った。 さ らに、 透明導電 膜上に Gの色素層 (薄膜) を形 成し、 純水で洗浄した後にエアブローで水を切り、 5 0°Cオーブン で乾燥した。 The substrate prepared in Production Example 1 was inserted into the micelle dispersion of G prepared in Production Example 1, and the electrode terminal of the transparent conductive thin film was connected to the anode of the potentiostat. After this connection, a constant potential of 0.4 V for 18 minutes Solved. In addition, a G dye layer (thin film) was formed on the transparent conductive film, washed with pure water, drained off with an air blow, and dried in a 50 ° C oven.
次に、 透明光硬化性レジス ト (V— 259 P A : 新日鉄化学社製) を色素層の上に 1 300 r p mでスピンコー ト し、 8 0°Cのホッ ト ブレー トで 5分ブリベーク した。 G色素バターン用のマスク (ス ト ライブ用 : (第 1 3図) を通じて、 プロキシ ミ ティ 一方式の露光機 (プロキシミティ ーギャップ 60 m) で 3 00m J Zc m2で i 線露光後、 室温の有機アルカ リ系水溶液の現像液 (0. 1 4%TM A H水溶液 : 富士ハン トエレク トロニクステクノロジ社製、 F H D 一 5希釈品) で 1分間浸潰して現像した。  Next, a transparent photocurable resist (V-259PA: manufactured by Nippon Steel Chemical Co., Ltd.) was spin-coated at 1300 rpm on the dye layer, and baked at 80 ° C hot plate for 5 minutes. Through a mask for G dye pattern (for stripes: (Fig. 13)), use a one-way exposure machine (proximity gap 60 m) to expose 300 m J Zcm2 to i-line, then organic at room temperature. It was immersed in an alkaline aqueous solution developer (0.14% TM AH aqueous solution: FHD-15, manufactured by Fuji Hunt Electronics Technologies) for 1 minute to develop.
さらに、 純水でブラシスクラブ洗浄し、 その結果、 露光部の G色 素と透明光硬化性レジス トは残り、 それ以外の未露光部の G色素と 透明光硬化性レジス トとがエッチングで除去された。  Furthermore, brush scrub cleaning with pure water is performed.As a result, the G pigment and the transparent photocurable resist in the exposed area remain, and the G pigment and the transparent photocurable resist in the other unexposed areas are removed by etching. Was done.
さらに、 20 0。Cのオーブンで 6 0分間熱処理 (ポス トべーク) して G色素パターンを形成した。  In addition, 200. Heat treatment (postbaking) was performed for 60 minutes in the oven of C to form a G dye pattern.
次に、 G色素パターンの形成された基板を、 製造例 1で調製した Bのミセル分散液に挿入し、 透明導電性薄膜の電極端子部とポテン シヨスタ ツ トの陽極を接続した。 接続後に 0. 7 V, 1 0分間の定 電位電解を行った。 この後、 透明導電性薄膜上に Bの色素層 (薄膜) を形成し、 純水で洗浄した後、 エアブローで水を切り、 5 CTCォー ブンで乾燥した。  Next, the substrate on which the G dye pattern was formed was inserted into the micelle dispersion of B prepared in Production Example 1, and the electrode terminal of the transparent conductive thin film was connected to the anode of the potentiostat. After connection, constant potential electrolysis was performed at 0.7 V for 10 minutes. Then, a dye layer (thin film) of B was formed on the transparent conductive thin film, washed with pure water, drained with an air blow, and dried with a 5 CTC oven.
次に、 透明光硬化性レジス ト (V— 259 P A : 新日鉄化学社製) を G色素バターンと B色素層の上に l O O O r pmでスピンコー ト し、 80。Cのホッ トプレー トで 5分ブリベーク した。 B色素バター ン用のマスク (ス トライブ用 : (第 14図) を通じて、 プロキシ ミ ティ ー方式の露光機 (プロキシミティ ーギャ ップ 6 0 m) で 3 0 0 m J / c m2 で i線露光後、 室温の有機アル力リ系水溶液の現像 液 (0. 1 4%TMAH水溶液 : 富士ハン トェレク トロニクステク ノ ロジ一社製、 F H D— 5希釈品) で 1分間浸漬して現像した。 こ の後、 純水でブラシスクラブ洗浄すると、 露光部の B色素と透明光 硬化性レジス 卜が残り、 それ以外の未露光部の B色素と透明光硬化 性レジス トは、 エツチングで除去された。 さ らに、 2 0 0。Cのォ一 ブンで 6 0分間熱処理 (ポス トべーク) して Gと B色素パターンを 形成した。 Next, a transparent photocurable resist (V-259PA: Nippon Steel Chemical Co., Ltd.) was spin-coated on the G-dye pattern and B-dye layer with l OOO rpm, and 80. We baked for 5 minutes with C's hot plate. I-line exposure at 300 mJ / cm2 with a proximity-type exposure machine (proximity gap 60 m) through a mask for B dye pattern (for stripes: (Fig. 14)) After that, a developer of an organic solvent-based aqueous solution at room temperature (0.14% TMAH aqueous solution: Fuji Hunterectronics Tech.) It was immersed for 1 minute in NORDIG Co., Ltd., FHD-5 diluted product) and developed. Thereafter, when brush scrubbing was performed with pure water, the B dye and the transparent light-curable resist in the exposed area remained, and the B dye and the transparent light-curable resist in the other unexposed areas were removed by etching. . In addition, 200. Heat treatment (postbaking) was performed for 60 minutes in a C oven to form G and B dye patterns.
さらに、 Gと B色素パターンの形成された基板を、 製造例 1で調 製した尺のミセル分散液に挿入し、 透明導電性薄膜の電極端子部と ポテンシヨスタ ツ トの陽極を接続して、 0. 8 V, 1 5分間の定電 位電解を行った。 さらに、 透明導電性薄膜上に Rの色素層 (薄膜) を形成し、 純水で洗浄した後にエアブローで水を切り、 5 0 eCォー ブンで乾燥した。 Further, the substrate on which the G and B dye patterns were formed was inserted into the micelle dispersion of the length prepared in Production Example 1, and the electrode terminal portion of the transparent conductive thin film was connected to the anode of the potentiostat. . 8 V, 15 minutes of constant potential electrolysis was performed. Further, the dye layers of R (the thin film) is formed on the transparent conductive thin film, drained by air blow After washing with pure water and dried 5 0 e C O over oven.
次に、 透明光硬化性レジス ト (V— 2 5 9 P A : 新日鉄化学社製) を G, B色素パターンと R色素曆上に 1 5 0 0 r p mでスビンコ一 ト し、 8 0 °Cのホッ トブレー トで 5分間熱処理 (プリべーク) した。  Next, a transparent photocurable resist (V-259 PA: manufactured by Nippon Steel Chemical Co., Ltd.) was spin-coated on the G and B dye patterns and the R dye at 150 rpm, and the temperature was adjusted to 80 ° C. Heat treatment (pre-bake) for 5 minutes using a hot plate.
R色素パターン用のマスク (ス トライブ用 : (第 1 5図) を通じ て、 プロキシミ ティー方式の露光機 (プロキシミティ ーギャップ 6 0 μ τη) で 3 0 0 m J Z c m2で i 線露光後、 室温の有機アル力 リ 系水溶液の現像液 (0. 1 4 %T M A H水溶液 : 富士ハン 卜エレク トロニクステクノ ロジ一社製、 F H D— 5希釈品) で 1分間浸潰し て現像した。 さ らに、 純水でブラシスクラブ洗浄した。 この結果、 露光部の R色素と透明光硬化性レジス トは残り、 それ以外の未露光 部の R色素と透明光硬化性レジス トをエッチングで除去した。 さ ら に、 2 0 0 °Cのオーブンで 6 0分間熱処理 (ポス トべーク) して G, B , Rの色素パターンを形成した。  Through a mask for R dye pattern (for stripes: (Fig. 15)), i-line exposure at 300 mJZ cm2 with a proximity type exposure machine (proximity gap 60 μτη), then room temperature It was immersed for 1 minute in a developing solution of an organic solvent-based aqueous solution (0.14% TMAH aqueous solution: FHD-5 diluted product of Fuji Hunt Electronics Technologies, Inc.) and developed. As a result, the exposed portion of the R dye and the transparent photocurable resist remained, and the remaining unexposed portion of the R dye and the transparent photocurable resist were removed by etching. The substrate was heat-treated (postbaked) in an oven at 200 ° C for 60 minutes to form G, B, and R dye patterns.
さらに、 G, B , Rの色素パターンの形成された基板を、 製造例 1で調製した B Lのミセル分散液に挿入し、 透明導電性薄膜の電極 端子部とポテンシヨスタツ トの陽極を接続して、 0. 7 V , 1 5分 間の定電位電解を行って、 透明導電性薄膜上に B Lの色素層 (薄膜) を形成し、 純水で洗浄した後にエアブローで水を切り、 5 0 °Cォー ブンで乾燥した。 Furthermore, the substrate on which the dye patterns of G, B, and R were formed was inserted into the micelle dispersion of BL prepared in Production Example 1, and the electrode terminal of the transparent conductive thin film was connected to the anode of the potentiostat. 0.7 V, 15 minutes constant potential electrolysis, BL dye layer on transparent conductive thin film (thin film) After washing with pure water, the water was removed by air blow and dried at 50 ° C even.
次に、 透明光硬化性レジス ト (V— 259 P A : 新日鉄化学社製) を G, B, R色素パターンと B L色素層上に 1 50 0 r p mでスビ ンコー ト し、 8 0°Cのホッ トプレー トで 5分間熱処理 (ブリベーク) した。 B L色素パターン用のマスク (ス トライブ用、 ブラ ックマ ト リ ックス形成用マスク : 第 1 6図) を通じて、 プロキシミ ティ ー方 式の露光機 (プロキシ ミティ ーギャ ップ 60 m) で 30 0m J Z c m2で i線露光後、 室温の有機アル力 リ系水溶液の現像液 (0.Next, a transparent photocurable resist (V-259PA: Nippon Steel Chemical Co., Ltd.) was spin-coated at 1500 rpm on the G, B, and R dye patterns and the BL dye layer, and heated at 80 ° C. The plate was heat-treated (brybake) for 5 minutes. Through a mask for BL dye pattern (stripe, black matrix forming mask: Fig. 16), 300m JZ cm 2 with a proximity type exposure machine (proximity gap 60m) After exposure with i-ray at room temperature, a developing solution of an organic aqueous solution at room temperature (0.
1 4 %TM AH水溶液 : 富士ハン トエレク ト ロニクステク ノ ロ ジー 社製、 F HD— 5希釈品) で 1分間浸漬して現像し、 さらに、 純水 でブラシスクラブ洗浄した。 14% TM AH aqueous solution: immersed in Fuji Hunt Electronics Technology, FHD-5 diluted product) for 1 minute to develop, and then brush scrubbed with pure water.
この結果、 露光部の B L色素と透明光硬化性レジス 卜が残り、 そ れ以外の未露光部の透明光硬化性レジス トを、 エツチングで除去し た。 さらに、 2 00。Cのオーブンで 60分間熱処理 (ボス トベーク) して G, B, R, B L色素パターンを形成した。  As a result, the BL dye and the transparent light-curable resist in the exposed area remained, and the other transparent light-curable resist in the unexposed area was removed by etching. In addition, 200. Heat treatment (boss bake) in a C oven for 60 minutes to form G, B, R, and BL dye patterns.
最後に、 スパッ タ リ ング装置 (アルバック社製 : S D P— 5 5 0 V T) を用いて、 I T O薄膜を約 1 200Aで保護膜上にスパッ 夕 リ ングして液晶駆動用の透明導電性薄膜を形成した。 この場合、 基 板温度を 2 00 、 I T 0膜の表面抵抗を 2 0 に調整した。  Finally, the ITO thin film is sputtered on the protective film at about 1200 A using a sputtering device (Surveyed by ULVAC: SDP-550VT) to form a transparent conductive thin film for driving the liquid crystal. Formed. In this case, the substrate temperature was adjusted to 200, and the surface resistance of the ITO film was adjusted to 20.
このようにして、 第 2図に示す構造 6に係るカラーフィ ルタを製 造した。  In this way, a color filter according to Structure 6 shown in FIG. 2 was manufactured.
[実施例 2]  [Example 2]
製造例 1で作製した基板を、 製造例 1で調製した Rのミセル分散 液に挿入し、 透明導電性薄膜の電極端子部とポテンシヨスタツ トの 陽極を接続して、 0. 8 V, 1 5分間の定電位電解を行った。 これ によって、 透明導電性薄膜上に R色素層 (薄膜) を形成し、 純水で 洗浄した後にエアブローで水を切り、 50eCオーブンで乾燥した。 The substrate prepared in Production Example 1 was inserted into the micelle dispersion of R prepared in Production Example 1, and the electrode terminal of the transparent conductive thin film was connected to the anode of the potentiostat, and 0.8 V, 15 minutes Was performed. As a result, an R dye layer (thin film) was formed on the transparent conductive thin film, washed with pure water, drained with an air blow, and dried in a 50 eC oven.
次に、 透明光硬化性レジス ト (C T :富士ハン トエレク トニクス テク ノ ロ ジ一社製) を R色素層の上に 1 00 0 r p mでス ビンコ一 卜 し、 1 00 °Cのオーブンで 30分—間熱処理 (プリ べ一ク) した。 R色素バターン用のマスク (ダイァゴーナル用 : 第 1 7図) を通じ て、 プロキシミ ティ ー方式の露光機 (プロキシミティ 一ギャ ップ 6 0 / m) で A O m J Z c mSで i線露光後、 室温の無機アル力 リ系 水溶液の現像液 (0. 1 N炭酸ナ ト リ ウム水溶液 : 富士ハン トエレ ク トロニクステクノロジ一社製、 C D希釈品) で 1分間浸潰して現 像し、 さ らに、 純水シャワーで洗浄した。 この結果、 露光部の R色 素と透明光硬化性レジス トが残り、 それ以外の未露光部の透明光硬 化性レジス トをエッチングで除去した。 Next, a transparent light-curable resist (CT: Fuji Hunt Electronics) (Technology Co., Ltd.) was spin-coated on the R dye layer at 100 rpm and heat-treated (pre-baked) in a 100 ° C. oven for 30 minutes. Through a mask for R dye pattern (for diagonal: Fig. 17), i-line exposure with AO m JZ cmS using a proximity type exposure machine (proximity gap 60 / m), then room temperature The image was immersed for 1 minute in a developer of an inorganic alkaline aqueous solution (0.1 N sodium carbonate aqueous solution: manufactured by Fuji Hunt Electronics Technology Co., Ltd., diluted with CD). It was washed with a pure water shower. As a result, the R colorants and the transparent light-curable resist in the exposed area remained, and the other transparent light-curable resist in the unexposed area was removed by etching.
続いて、 20 0。Cのオーブンで 6 0分間熱処理 (ポス トべ一ク) した。 さ らに、 この基板を UV/オゾンアッ シャー装置 (東芝ライ テック社製) に通して 1 85 nmおよび 25 4 nmの輝線を発生す る低圧または高圧水銀ランブ下、 基板温度 1 00て、 オゾン濃度 1 0000 p pmの条件で 5分間処理し、 未露光部の R色素層をォゾ ン分解かつエツチングして R色素バターンを形成した。  Then, 200. Heat-treated (postbaked) in a C oven for 60 minutes. In addition, this substrate is passed through a UV / ozone asher system (manufactured by Toshiba Lighting & Technology Corp.), under a low- or high-pressure mercury lamp generating 185 nm and 254 nm emission lines, at a substrate temperature of 100, and an ozone concentration. The mixture was treated at 10,000 rpm for 5 minutes, and the unexposed R dye layer was decomposed and etched to form an R dye pattern.
次に、 R色素パター ンの形成された基板を、 製造例 1で調製した Gのミセル分散液に挿入し、 透明導電性薄膜の電極端子部とポテン シヨスタ ツ トの陽極を接続して、 0. 4 V, 1 8分間の定電位電解 を行い、 透明導電性薄膜上に Gの色素層 (薄膜) を形成し、 純水で 洗浄した後にエアブローで水を切り、 50eCオーブンで乾燥した。 Next, the substrate on which the R dye pattern was formed was inserted into the micelle dispersion of G prepared in Production Example 1, and the electrode terminal portion of the transparent conductive thin film and the anode of the potentiostat were connected. Performed constant potential electrolysis at 4 V for 18 minutes to form a G dye layer (thin film) on the transparent conductive thin film, washed with pure water, drained with an air blow, and dried in a 50 eC oven .
次に、 透明光硬化性レジス ト (C T : 富士ハン トエレク トロニク ステクノ ロジ一社製) を R色素パターンと G色素層の上に 800 r p mでスピンコー ト し、 1 00。Cのオーブンで 30分熱処理 (ブリ ベーク) した。 G色素パターン用のマスク (ダイァゴーナル用 : 第 1 8図) を通じて、 プロキシミティ 一方式の露光機 (プロキシミ テ ィ ーギャ ップ 6 0 m) で 40m J Zc m2で i線露光後、 室温の 無機アルカ リ系水溶液の現像液 (0. 1 N炭酸ナ ト リ ゥム水溶液 : 富士ハン トエレク トロニクステクノ ロジ一社製、 C D希釈品) で 1 分間浸漬して現像した。 この後、 純水シャ ワーで洗浄し、 露光部のNext, a transparent photocurable resist (CT: manufactured by Fuji Hunt Electronics Technology) was spin-coated at 800 rpm on the R dye pattern and the G dye layer, and then 100. Heat-treated (brybake) in oven C for 30 minutes. Through a mask for the G dye pattern (for diagonal: Fig. 18), use a one-way exposure machine (proximity gap 60 m) to expose 40m J Zcm2 to i-line, and then use a room temperature inorganic alcohol. 1 solution with a 0.1% aqueous solution of sodium carbonate (manufactured by Fuji Hunt Electronics Technologies, Inc., diluted with CD) It was immersed for minutes and developed. After this, it is washed with pure water shower,
G色素と透明光硬化性レジス 卜が残り、 それ以外の未露光部の透明 光硬化性レジス トを、 エッチングで除去し、 さ らに、 20 0 °Cのォ 一ブンで 6 0分間熱処理 (ポス トべーク) した。 The G dye and the transparent photo-curable resist remain, and the remaining unexposed portions of the transparent photo-curable resist are removed by etching, and further heat-treated at 200 ° C for 60 minutes ( Post bake).
さ らに、 この基板を UVZオゾンアッ シャー装置 (東芝ライテツ ク社製) に通し 254 n mの輝線を発生する低圧水銀ランブ下、 基 板温度 1 00 (:、 オゾン濃度 1 0000 p p mの条件で 3分間処理 し、 未露光部の G色素層をオゾン分解でエッチングして R, G色素 パターンを形成した。 さらに、 Rと G色素パターンの形成された基 板を、 製造例 1で調製した Bのミセル分散液に挿入し、 透明導電性 薄膜の電極端子部とポテンシヨスタ ツ トの陽極を接続した。 この後- 0. 7 V, 1 0分間の定電位電解を行い、 透明導電性薄膜上に Bの 色素層 (薄膜) を形成し、 純水で洗浄した後にエアブローによって 水を切り、 50eCオーブンで乾燥した。 In addition, this substrate is passed through a UVZ ozone asher apparatus (manufactured by Toshiba Lighting & Technology Corporation) under a low-pressure mercury lamp generating a 254 nm emission line, at a substrate temperature of 100 (:, ozone concentration of 10,000 ppm, for 3 minutes). After the treatment, the unexposed portion of the G dye layer was etched by ozonolysis to form R and G dye patterns, and the substrate on which the R and G dye patterns were formed was mixed with the micelle of B prepared in Production Example 1. The electrode was inserted into the dispersion and the electrode terminal of the transparent conductive thin film was connected to the anode of the potentiostat.After this, constant potential electrolysis was performed at -0.7 V for 10 minutes, and B was placed on the transparent conductive thin film. A dye layer (thin film) was formed, washed with pure water, drained by air blow, and dried in a 50 eC oven.
次に、 透明光硬化性レジス ト (C T :富士ハン トエレク トロニク ステクノ ロジ一社製) を R, G色素パターンと B色素層の上に 7 0 0 r pmでスビンコ一ト し、 1 00。Cのオーブンで 3 0分間熱処理 (ブリベーク) した。 B色素パターン用のマスク (ダイァゴーナル 用 : 第 1 9図) を通じて、 プロキシ ミティ一方式の露光機 (プロキ シ ミ ティ ーギャ ップ 6 0 m) で 40m JZ c m2で i線露光後、 室温の無機アル力 リ系水溶液の現像液 (0. 1 N炭酸ナト リウム水 溶液 : 富士ハン トエレク トロニクステクノロジ一社製、 C D) で 1 分間浸漬して現像し、 この後、 純水シャ ワーで洗浄した。  Next, a transparent photo-curable resist (CT: manufactured by Fuji Hunt Electronics Technology) was applied to the R and G dye patterns and the B dye layer at 700 rpm to obtain a value of 100. Heat-treated (brybake) for 30 minutes in a C oven. Through a mask for D dye pattern (for diagonal: Fig. 19), 40m JZ cm2 is exposed to i-line with a proximity type exposure machine (Proximity gap 60m), then room temperature inorganic It was immersed in a developer (0.1 N sodium carbonate solution: Fuji Hunt Electronics Technology, Inc., CD) for 1 minute to develop, and then washed with pure water shower.
この後、 露光部の B色素と透明光硬化性レジス トが残り、 それ以 外の未露光部の透明光硬化性レジス トをエッチングで除去し、 さ ら に、 200 eCのオーブンで 6 0分間熱処理 (ポス トべーク) した。 この後、 この基板を U VZオゾンアッシャー装置 (東芝ライテック 社製) に通して 254 nmの輝線を発生する低圧水銀ランプ下、 基 板温度 1 00°C、 オゾン濃度 1 0000 p p mの条件で 1分間処理 し、 未露光部の B色素層をオゾン分解、 かつ、 エッチングして R, G, B色素パターンを形成した。 Thereafter, the remainder B dye and the transparent photocurable registry of the exposure unit, it transparent photocurable registry of other than unexposed portion is removed by etching, in the et, 200 e oven 6 0 C Heat treatment (postbaking) for minutes. Thereafter, the substrate is passed through a UVZ ozone asher device (manufactured by Toshiba Lighting & Technology Corporation) for 1 minute under a low-pressure mercury lamp generating a 254 nm emission line at a substrate temperature of 100 ° C and an ozone concentration of 10,000 ppm. processing Then, the unexposed B dye layer was decomposed with ozone and etched to form R, G, and B dye patterns.
さらに、 R, G, Bの色素パター ンの形成された基板を、 製造例 1で調製した B Lのミセル分散液に挿入し、 透明導電性薄膜の電極 端子部とポテンシヨスタツ 卜の陽極を接続して、 0. 7 V, 1 5分 間の定電位電解を行い、 透明導電性薄膜上に B Lの色素層 (薄膜) を形成し、 純水で洗浄した後にエアブローで水を切り、 5 0てォー ブンで乾燥して、 R, G, Bの色素パターンと B L (ブラ ックマ ト リ ックス) 色素層を形成した。  Further, the substrate on which the R, G, and B dye patterns were formed was inserted into the BL micelle dispersion prepared in Production Example 1, and the electrode terminal of the transparent conductive thin film was connected to the anode of the potentiostat. , 0.7 V, 15 minutes of constant potential electrolysis to form a BL dye layer (thin film) on the transparent conductive thin film, wash with pure water, drain off the water with air blow, After drying in an oven, the R, G, B dye pattern and the BL (black matrix) dye layer were formed.
次に、 この基板上に保護膜剤と して透明な熱硬化性樹脂 (ォブト マー S S 7 26 5 : 日本合成ゴム社製) を 8 00 r p mでスビンコ 一 卜 し、 2 20。Cのオーブンで 6 0分間熱処理 (ポス トべーク) し て熱硬化させた。  Next, a transparent thermosetting resin (Obtomer SS7265: manufactured by Nippon Synthetic Rubber Co., Ltd.) was applied as a protective film agent on the substrate at 800 rpm to obtain a resin. It was heat-treated (post-baked) in a C oven for 60 minutes and heat-cured.
最後に、 スパッタリ ング装置 (アルバック社製 : S D P— 55 0 V T) を用いて、 I T O薄膜を約 1 200 で保護膜上にスパッ 夕 リ ングして液晶駆動用の透明導電性薄膜を形成した。 このとき、 基 板温度を 200 、 I T O膜の表面抵抗を 2 0 ΩΖΟに調整した。  Finally, using a sputtering device (manufactured by ULVAC, SDP—550 V T), the ITO thin film was sputtered on the protective film at about 1,200 to form a transparent conductive thin film for driving a liquid crystal. At this time, the substrate temperature was adjusted to 200, and the surface resistance of the ITO film was adjusted to 20 ΩΖΟ.
以上のようにして、 第 3図に示す構造 9に係るカラーフィ ルタを 製造した。  As described above, the color filter according to the structure 9 shown in FIG. 3 was manufactured.
[実施例 3]  [Example 3]
製造例 1で作製した基板を、 製造例 1で調製した Βのミ セル分散 液に挿入し、 透明導電性薄膜の電極端子部とポテンシヨスタツ トの 陽極を接続して、 0. 7 V, 1 0分間の定電位電解を行った。 透明 導電性薄膜上に Βの色素層 (薄膜) を形成し、 純水で洗浄した後に エアブローによって水を切り、 50 °Cオーブンで乾燥した。 次に、 透明光硬化性レジス ト ( J N P C 06 : 日本合成ゴム社製) を B色 素層上に 1 50 0 r p mでスピンコー ト し、 8 0。Cのホッ トブレー トで 5分間熱処理 (プリべーク) した。  The substrate prepared in Production Example 1 was inserted into the micellar dispersion of 製造 prepared in Production Example 1, and the electrode terminal of the transparent conductive thin film was connected to the anode of the potentiostat, and 0.7 V, 10 For a minute. A 色素 dye layer (thin film) was formed on the transparent conductive thin film, washed with pure water, drained by air blow, and dried in a 50 ° C oven. Next, a transparent photocurable resist (JNPC06: manufactured by Nippon Synthetic Rubber Co., Ltd.) was spin-coated at 150 rpm on the B color element layer, and the resulting mixture was dried at 80 rpm. Heat treatment (pre-bake) was performed for 5 minutes using a hot plate of C.
この後、 B色素パターン用のマスク ( トライアングル用 : 第 2 0 図) を通じて、 ミ ラ一プロジヱク シヨ ン方式の露光機で 3 O O m J c m2で i線露光後、 室温の有機アルカ リ系水溶液の現像液 (2. 3 8 %T M A H水溶液 : 富士ハン トエレク ト ロニクステク ノ ロ ジー 社製、 F H D— 5 ) で 2分間スピン現像、 純水でブラシスクラブ洗 浄し、 露光部の B色素と透明光硬化性レジス トが残り、 それ以外の 未露光部の B色素と透明光硬化性レジス トをエッチングで除去した。 After this, a mask for B dye pattern (for triangle: 20th Through Figure), after i-line exposure with 3 OO m J cm 2 in Mi La one Purojiweku to emission schemes exposure machine, the developing solution of an organic alkali-based aqueous solution at room temperature (2. 3 8% TMAH solution: Fuji Han Toereku DOO Spin-developed with RHDIX Technology, FHD-5) for 2 minutes, brush-scrub-washed with pure water, B-dye in exposed area and transparent light-curable resist remain, and B-dye in other unexposed areas And the transparent photocurable resist were removed by etching.
さらに、 200。Cのオーブンで 6 0分間熱処理 (ポス トべーク) し、 B色素パターンを形成した。  In addition, 200. Heat treatment (postbaking) was performed in the oven of C for 60 minutes to form a B dye pattern.
次に、 B色素パターンの形成された基板を、 製造例 1で調製した Gのミセル分散液に挿入し、 透明導電性薄膜の電極端子部とポテン シヨスタ ツ 卜の陽極を接続して、 0. 4 V, 1 8分間の定電位電解 を行った。 この後、 透明導電性薄膜上に Gの色素層 (薄膜) を形成 し、 純水で洗浄した後にエアブローで水を切り、 5 0°Cオーブンで 乾燥した。  Next, the substrate on which the B dye pattern was formed was inserted into the micelle dispersion of G prepared in Production Example 1, and the electrode terminals of the transparent conductive thin film and the anode of the potentiostat were connected. Electrostatic potential electrolysis was performed at 4 V for 18 minutes. Thereafter, a G dye layer (thin film) was formed on the transparent conductive thin film, washed with pure water, then drained with an air blow, and dried in a 50 ° C oven.
次に、 透明光硬化性レジス ト ( J NP C 06 : 日本合成ゴム社製) を B色素パターンと G色素層の上に 2000 r pmでスピンコー ト し、 80 °Cのホッ トプレー トで 5分間熱処理 (プリべーク) した。  Next, a transparent photocurable resist (JNPC06: manufactured by Nippon Synthetic Rubber Co., Ltd.) is spin-coated at 2000 rpm on the B dye pattern and the G dye layer, and heated at 80 ° C for 5 minutes at a hot plate. Heat treated (pre-baked).
G色素パターン用のマスク (トライアングル用 : 第 2 1図) を通 じて、 ミ ラーブロジヱクショ ン方式露光機で 300m J // c m2で i線露光後、 室温の有機アル力リ系水溶液の現像液 (2. 3 8 %T M A Η水溶液 : 富士ハン トエレク トロニクステクノ ロジ一社製、 F H D - 5 ) で 2分間スピン現像し、 純水でブラシスクラブ洗浄した。 この結果、 露光部の G色素と透明光硬化性レジス トが残り、 それ以 外の未露光部の G色素層と透明光硬化性レジス トとを、 エッチング で除去し、 さらに、 2 00。Cのオーブンで 6 0分間熱処理 (ポス ト ベーク) して G, Bの色素パターンを形成した。 G dye pattern of the mask (for Triangle: second 1 view) the Through, 300 meters J // after i-line exposure in cm 2, organoaluminum force Li-based aqueous solution at room temperature with myristoyl Raab Logistics We click sucrose emission type exposure machine The solution was spin-developed with a developer (2.38% TMA aqueous solution: FHD-5, manufactured by Fuji Hunt Electronics Technologies, Inc.) for 2 minutes, and brush-scrubbed with pure water. As a result, the G dye and the transparent light-curable resist in the exposed part remain, and the G dye layer and the transparent light-curable resist in the other unexposed part are removed by etching. Heat treatment (post bake) for 60 minutes in a C oven was performed to form G and B dye patterns.
さらに、 Gと B色素パターンの形成された基板を、 製造例 1で調 製した Rのミセル分散液に挿入し、 透明導電性薄膜の電極端子部と ポテンシヨスタ ツ トの陽極を接続して、 0. 8 V, 1 5分間の定電 位電解を行った。 さらに、 透明導電性薄膜上に Rの色素層 (薄膜) を形成し、 純水で洗浄した後にエアブローで水を切り、 5 0°Cォー ブンで乾燥した。 Further, the substrate on which the G and B dye patterns were formed was inserted into the micelle dispersion of R prepared in Production Example 1, and the electrode terminal portion of the transparent conductive thin film was connected to the anode of the potentiostat to obtain 0 8 V, 15 minutes constant power Electrolysis was performed. Furthermore, an R dye layer (thin film) was formed on the transparent conductive thin film, washed with pure water, drained with an air blow, and dried at 50 ° C.
次に、 透明光硬化性レジス ト ( J N P C 0 6 : 日本合成ゴム社製) を B , G色素パターンと R色素層の上に 30 00 r p mでスピンコ ー ト し、 8 0。Cのホッ トブレー 卜で 5分間熱処理 (プリべーク) し た。 R色素パターン用のマスク (トライアングル用 : 第 2 2図) を 通じて、 ミ ラーブロジェクショ ン方式の露光機で 3 00m J Z c m 2で i線露光後、 室温の有機アル力リ系水溶液の現像液 (2. 3 8 % T M A H水溶液 : 富士ハン トエレク トロニクステクノ ロジ一社製、 F H D— 5 ) で 2分間スビン現像し、 純水でブラシスクラブ洗浄し た。 この結果、 露光部の R色素と透明光硬化性レジス トが残り、 そ れ以外の未露光部の R色素層と透明光硬化性レジス トとが、 エッチ ングで除去され、 さらに、 2 00 °Cのオーブンで 6 0分間熱処理 ( ポス トべーク) して、 R, G, B色素パターンを形成した。 Next, a transparent photo-curable resist (JNPC 06: manufactured by Nippon Synthetic Rubber Co., Ltd.) was spin-coated at 300 rpm on the B and G dye patterns and the R dye layer, and the resulting mixture was dried at 80 rpm. Heat treatment (pre-bake) was performed for 5 minutes with a C hot plate. (For Triangle: second FIG. 2) mask for R dye pattern through, after i-ray exposure at 3 00m JZ cm 2 in the exposure machine Mi Raab Roger click cane down method, development of an organic Al force Li-based aqueous solution at room temperature The solution was spun developed with a liquid (2.38% TMAH aqueous solution: FHD-5, manufactured by Fuji Hunt Electronics Technologies, Inc.) for 2 minutes, and brush scrubbed with pure water. As a result, the R dye in the exposed area and the transparent light-curable resist remain, and the other unexposed area of the R dye layer and the transparent light-curable resist are removed by etching, and the 200 ° C. After heat treatment (postbaking) in a C oven for 60 minutes, R, G, and B dye patterns were formed.
次に、 この基板上に黒色色素 (カーボンブラック) 含有光硬化性 レジス ト (CK一 20 00 : 富士ハン トエレク トロニクステクノ ロ ジ一社製) を 5 00 r pmでスピンコー トし、 85。Cのホッ トブレ ー トで 5分間熱処理 (プリべーク) した。  Next, a black pigment (carbon black) -containing photocurable resist (CK1200: manufactured by Fuji Hunt Electronics Technologies, Inc.) was spin-coated on the substrate at 500 rpm, and 85. The sample was heat-treated (pre-baked) for 5 minutes using a C hotplate.
次に、 基板のガラス面から ミラーブロジヱク ショ ン方式の露光機 で表示部のみを露光できるマスクを通じて、 3 O O m J Z cm2で i線露光後、 室温の無機アル力リ系水溶液の現像液 (0. 1 N炭酸 ナ ト リウム水溶液 : 富士ハン トエレグトロ二クステクノ ロジ一社製、 C D希釈品) で 2分間スピン現像し、 純水でブラシスクラブ洗浄し た。 さらに、 2 20。Cのオーブンで 60分間熱処理 (ボス トベーク) し、 R, G, B色素の間に黒色色素含有レジス ト硬化物が埋め込ん で、 ブラ ックマ ト リ ックスを形成した。 Next, the substrate surface was exposed to i-line at 3 OO m JZ cm 2 through a mask that can expose only the display unit using a mirror projection type exposure machine using a mirror projection type exposure machine. 1N sodium carbonate aqueous solution: spin-developed with Fuji Hunt Electronics Technology, Inc., CD diluted product) for 2 minutes, and brush scrubbed with pure water. In addition, 2 20. Heat treatment (boss bake) was performed for 60 minutes in the oven of C, and the black dye-containing resist cured product was embedded between the R, G, and B dyes to form a black matrix.
最後に、 スバッタリ ング装置 (アルバック社製 : S D P— 5 5 0 V T) を用いて I TO薄膜を約 1 2 00 ^で保護膜上にスバッ夕 リ ングして液晶駆動用の透明導電性薄膜を形成した。 このとき、 基板 温度を 2 00 、 I T O膜の表面抵抗を 20 Ωノロに調整した。 Finally, the ITO thin film is sputtered on the protective film at about 1200 ^ using a sputtering device (manufactured by ULVAC, Inc .: SDP-550VT). To form a transparent conductive thin film for driving a liquid crystal. At this time, the substrate temperature was adjusted to 200 and the surface resistance of the ITO film was adjusted to 20 Ω.
以上のようにして、 第 4図に示す構造 1 3に係るカラーフィ ルタ を製造した。  As described above, the color filter according to the structure 13 shown in FIG. 4 was manufactured.
[製造例 2]  [Production Example 2]
^mm (ブラ ッ クマ ト リ クス) 付さ诱明 雷件 瞻製膣某板の作 製  ^ mm (black matrix) attached
研磨した 300 mm角の白板ガラス基板 (NA 45 : ホヤ (H O Y A) 社製) 上に、 スバッタ リ ング装置 (アルバック社製 : S D P - 5 50 V T) を用いて、 C r薄膜を約 1 2 00 Aで蒸着した。 こ のとき、 基板温度を 2 50eCに調整した。 次に、 蒸着した C r薄膜 上に、 紫外線可溶化のポジ型レジス ト (H P R 204 : 富士ハン ト エレク ト ロニクステクノ ロジ一社製) をロールコーターで 1. 5 m膜厚でコー ト し、 1 10 °Cのオーブンで 3 0分間熱処理 (プリべ ーク) し、 ブラ ックマ トリ ックス形成用のマスク (第 23図) を通 じて、 コンタク ト露光機で 6 0 m J c m2で i線露光した。 On a polished 300 mm square white glass substrate (NA 45: manufactured by HOYA), a Cr thin film was applied to a thickness of about 1200 by using a sputtering device (manufactured by ULVAC: SDP-550 VT). A deposited. At this time, the substrate temperature was adjusted to 250 eC. Next, a UV-solubilized positive resist (HPR 204: manufactured by Fuji Hunt Electronix Technology Co., Ltd.) was coated on the evaporated Cr thin film to a thickness of 1.5 m using a roll coater. 1 10 ° oven at for 30 minutes heat treatment C was (pre-baking), through its mask (Figure 23) for bra Kkuma bird box formation, i in contactor preparative exposure machine with 6 0 m J cm 2 Line exposure.
次に、 室温の有機アル力リ系水溶液の現像液 (2. 38 %TM A H水溶液 : 富士ハン トエレク トロニクステクノ ロジ一社製、 F H D 一 5 ) で 2分間スピン現像して、 純水シャワー洗浄し、 さ らに、 1 3 0。Cのオーブンで 6 0分間熱処理 (ポス トべーク) して、 レジス トバターンを形成した。  Next, spin-develop with a developer of an organic alkaline aqueous solution at room temperature (2.38% TM AH aqueous solution: FHD-15, manufactured by Fuji Hunt Electronics Technologies, Inc.) for 2 minutes, and wash with pure water shower. , And 130. Heat treatment (post bake) was performed in a C oven for 60 minutes to form a resist pattern.
次に、 硝酸第二セリ ウムアンモニゥム 1 6 5 gと過塩素酸 4 2 m 1 と純水で 1 リ ッ トルの濃度の C rエッチヤ ン トを調製し、 レジス トパターンを形成した基板を室温で 2分間浸潰して、 純水シャヮ一 で洗浄した。 この後、 レジス トバターンのない部分の C r薄膜をェ ツチングし、 さ らに、 有機アル力 リ系水溶液のレジス ト剝離材 (N - 3 03 :長瀬産業社製) に室温で、 5分間浸漬、 純水シャつ一で 洗浄して、 金属薄膜 (C r ) のブラ ックマ ト リ ックスを形成した。  Next, a 1-liter concentration of a Cr etchant was prepared with 165 g of ceric ammonium nitrate, 42 ml of perchloric acid and pure water, and the substrate on which the resist pattern was formed was allowed to stand at room temperature. It was immersed for 2 minutes and washed with pure water. Then, the Cr thin film in the area without the resist pattern is etched, and further immersed in a resist release material (N-303: manufactured by Nagase & Co., Ltd.) of an organic alkaline aqueous solution at room temperature for 5 minutes. Then, the substrate was washed with pure water one by one to form a black matrix of a metal thin film (Cr).
次に、 スパッ タ リ ング装置 (アルバック社製 : S D P— 550 V T) を用いて、 Ι Τ 0薄膜を約 1 3 0 0 Aで表示部全面と電極取り 出し端子部をつないだデザィ ン (第 1 2図) のメ タルマスクを通じ て、 基板上にマスキング蒸着を行った。 このとき、 基板温度を 2 5 0 °C、 I T 0膜の表面抵抗を 20 ΩΖΙΙ]に調整した。 Next, a sputtering device (made by ULVAC: SDP—550 V) Using T), masking deposition is performed on the substrate through a metal mask of a design (Fig. 12) that connects the entire display area to the electrode extraction terminal at about 1300 A using a Ι Τ 0 thin film. went. At this time, the substrate temperature was adjusted to 250 ° C., and the surface resistance of the IT0 film was adjusted to 20 ΩΖΙΙ].
[実施例 4]  [Example 4]
製造例 2で作製した基板と製造例 1で調製したミ セル分散液を用 いて、 実施例 2と同様に R, G, Β色素パターンを形成した。 次に この基板上に保護膜剤として透明な熱硬化性樹脂 (L C 2 00 1 : 三洋化成工業社製) を 700 r p mでスピンコー ト し、 2 20 の オーブンで 60分間熱処理 (ポス トべーク) して、 熱硬化させた。  Using the substrate prepared in Production Example 2 and the micelle dispersion prepared in Production Example 1, R, G, and Β dye patterns were formed in the same manner as in Example 2. Next, a transparent thermosetting resin (LC2001: manufactured by Sanyo Kasei Kogyo Co., Ltd.) is spin-coated on this substrate at 700 rpm as a protective film agent, and heat-treated in a 220 oven for 60 minutes (postbaking). ) And heat cured.
最後に、 スパッタリ ング装置 (アルバック社製 : S D P— 5 5 0 V T) を用いて、 I T O薄膜を約 1 200 Aで保護膜上にスパッ タ リ ングして液晶駆動用の透明導電性薄膜を形成した。 このとき、 基 板温度を 200 ° (:、 I T0膜の表面抵抗を 2 0 Ω/Ε]に調整した。  Finally, using a sputtering device (manufactured by ULVAC, Inc .: SDP-550VT), the ITO thin film is sputtered on the protective film at about 1200 A to form a transparent conductive thin film for driving liquid crystals. did. At this time, the substrate temperature was adjusted to 200 ° (the surface resistance of the ITO film was set to 20 Ω / Ε).
以上のようにして、 第 5図に示す構造 2 1に係るカラーフィ ルタ を製造した。  As described above, the color filter according to the structure 21 shown in FIG. 5 was manufactured.
[実施例 5]  [Example 5]
製造例 2で作製したブラッ クマ ト リ ックス (C r薄膜) 付きのガ ラス基板上に、 スパッタリ ング装置 (ァルバック社製 : S D P— 5 5 0 V T ) を用いて、 I T O薄膜を約 1 3 0 0 Aでメ タルマスクを 用いずに全面に蒸着を行い、 I T 0膜の表面抵抗を 20 に調 整した。 この基板上に、 製造例 1で調製したミセル分散液を用いて, 実施例 2と同様に R, G色素パターンと光硬化性レジス トの硬化物 がまだ積層されていない Bの色素層を形成した。  Using a sputtering device (manufactured by ULVAC, Inc .: SDP-550 VT), an ITO thin film was formed on a glass substrate with a black matrix (Cr thin film) prepared in Production Example 2 for about 130 μm. At 0 A, evaporation was performed on the entire surface without using a metal mask, and the surface resistance of the IT0 film was adjusted to 20. Using the micelle dispersion prepared in Production Example 1, an R, G dye pattern and a B dye layer on which the cured product of the photocurable resist has not yet been laminated are formed on this substrate in the same manner as in Example 2. did.
次に、 この基板上に保護膜剤と して透明な光硬化性レジス ト (V 一 2 59 P A : 新日鐵化学製) を 7 00 r p mでスピンコー ト し、 8 0°Cのオーブンで 3 0分間熱処理 (プリべーク) して、 表示部の みを露光できるマスクを通じ、 プロキシミティ ー露光機 (プロキシ ミ ティ ーギャ ップ 500 m) で 3 00m J Z c m2 で i線露光し た。 Next, a transparent photocurable resist (V-259PA: manufactured by Nippon Steel Chemical Co., Ltd.) was spin-coated at 700 rpm on this substrate as a protective film agent, and the substrate was heated in an oven at 80 ° C for 3 minutes. Heat-treated (pre-bake) for 0 minutes, and exposed to i-line with a proximity exposure machine (proximity gap 500 m) at 300 mJZ cm2 through a mask that can expose only the display unit. Was.
さ らに、 室温の有機アル力 リ系水溶液の現像液 ( 0. 1 4 % T M A H水溶液 : 富士ハン トエレク トロニクステク ノ ロ ジ一社製、 F H D— 5希釈品) で 5分間スピン現像し、 この後、 純水ブラ シスク ラ ブで洗浄して、 露光されていない表示部外の光硬化性レジス トと B 色素層をェツチングした。 次に、 2 20 °Cのオーブンで 6 0分間熱 処理を行い熱硬化させ、 表示部に保護膜を形成した。  In addition, spin development was performed for 5 minutes with a developing solution of an organic solvent-based aqueous solution at room temperature (0.14% TMAH aqueous solution: FHD-5 dilution product, manufactured by Fuji Hunt Electronics Technologies, Inc.). Thereafter, the substrate was washed with a pure water brush rub, and the photo-curable resist and the B dye layer outside the display area which were not exposed were etched. Next, a heat treatment was performed in an oven at 220 ° C. for 60 minutes, followed by heat curing to form a protective film on the display unit.
最後に、 スパッタリ ング装置 (アルバック社製 : S D P— 5 5 0 V T) を用いて、 I T O薄膜を約 1 20 O Aで保護膜上にスパッ 夕 リ ングして液晶駆動用の透明導電性薄膜を形成した。 このとき、 基 板温度を 200 °C, I T O膜の表面抵抗を 2 Ο ΩΖΟに調整した。  Finally, using a sputtering device (manufactured by ULVAC, Inc .: SDP-550VT), the ITO thin film is sputtered on the protective film at about 120 OA to form a transparent conductive thin film for driving liquid crystals. did. At this time, the substrate temperature was adjusted to 200 ° C, and the surface resistance of the ITO film was adjusted to 2Ω.
以上のようにして、 第 6図に示す構造 24に係るカラーフィ ルタ を製造した。  As described above, the color filter according to the structure 24 shown in FIG. 6 was manufactured.
[実施例 6]  [Example 6]
製造例 2で作製した金属薄膜 (C r) のブラックマ ト リ ックスを 積層した基板に対して、 スバッタリ ング装置 (ァルバック社製 : S D P - 5 50 V T) を用いて I T 0薄膜を約 1 30 0 Aでメタルマ スクを用いずに全面に蒸着を行った。  The substrate with the black matrix of the metal thin film (Cr) prepared in Production Example 2 was laminated with an IT0 thin film for about 130,000 using a sputtering device (manufactured by ULVAC, Inc .: SDP-550 VT). A vapor deposition was performed on the entire surface without using a metal mask.
この I T 0膜の表面抵抗を 20 Ω に調整した基板上に、 透明 光硬化性レジス ト (V— 25 9 PA :新日鐵化学社製) を 1 5 00 r p mでスピンコー ト し、 8 0°Cオーブンで熱処理 (ブリベーク) して、 表示部外 (ポテンシヨスタツ 卜との接続部は除く) を露光で きるマスクを通じて、 プロキシミティ一露光機 (プロキシ ミティ ー ギャ ップ 60 m) で 300 m J Z cm2で i線露光した。  A transparent photocurable resist (V-259 PA: manufactured by Nippon Steel Chemical Co., Ltd.) was spin-coated at 1500 rpm on a substrate with the surface resistance of this IT0 film adjusted to 20 Ω, and the temperature was adjusted to 80 °. Heat-treated (bake bake) in a C oven and passed through a mask that can expose the outside of the display (excluding the connection with the potentiostat) to 300 mJZ cm2 using a proximity exposure machine (proximity gap 60 m). Was exposed to i-rays.
次に、 室温の無機アル力 リ系水溶液の現像液 (0. 1 N炭酸ナ ト リ ゥム水溶液 : 富士ハン トエレク トロニクステクノ ロジ一社製、 C D希釈品) で 2分間ス ピン現像し、 純水シャ ワーで洗浄して、 2 0 0 のオーブンで 60分間熱処理を行い、 表示部外に保護膜を形成 した。 この基板を用いて、 実施例 1と同様に G, B, Rの色素パター ン を形成し、 次に、 この基板上に保護膜剤と して透明な熱硬化性樹脂 ( L C 2 00 1 : 三洋化成工業社製) を 70 0 r p mでス ビンコ一 卜 し、 2 2 0。Cのオーブンで 60分間熱処理 (ポス トべーク) して 熱硬化させた。 Next, spin-develop for 2 minutes with a developing solution of an inorganic alkaline aqueous solution at room temperature (a 0.1 N sodium carbonate aqueous solution: manufactured by Fuji Hunt Electronics Technologies, Inc., diluted with CD). After washing with a water shower, a heat treatment was performed for 60 minutes in a 200 ° C. oven to form a protective film outside the display section. Using this substrate, G, B, and R dye patterns were formed in the same manner as in Example 1. Next, a transparent thermosetting resin (LC2001: (Sanyo Kasei Kogyo Co., Ltd.) at 700 rpm. Heat treatment (postbaking) was performed in a C oven for 60 minutes to cure by heat.
最後にスバッ タ リ ング装置 (アルバック社製 : S D P— 55 0 V T) を用いて、 I T 0薄膜を約 1 2 00 Aで保護膜上にスパッタ リ ングして液晶駆動用の透明導電性薄膜を形成した。 このとき、 基板 温度を 2 00°C、 I T 0膜の表面抵抗を 20 ΩΖΟに調整した。  Finally, using a sputtering device (ULVAC: SDP-5500VT), the IT0 thin film is sputtered on the protective film at about 1200 A to form a transparent conductive thin film for driving liquid crystal. Formed. At this time, the substrate temperature was adjusted to 200 ° C., and the surface resistance of the ITO film was adjusted to 20 ΩΖΟ.
以上のようにして、 第 7図に示す構造 29に係るカラーフィ ルタ を製造した。  As described above, the color filter according to the structure 29 shown in FIG. 7 was manufactured.
[実施例 7 ]  [Example 7]
製造例 1で作製した基板上に、 R色素含有光硬化性レジス ト (C R— 2000 : 富士ハン トエレク ト ロニクステクノ ロジ一社製) を 5 00 p r mでスピンコー ト し、 8 5。Cのホ ッ トブレー トで 5分間 熱処理 (プリべーク) し、 R色素パターン形成用マスク ( トライァ ングル用 : 第 2 2図) を通じて、 プロキシミ ティ一露光機 (プロキ シ ミ ティ ーギャ ップ 6 0 zm) で l S Om J Z cn^で i線露光し o  An R dye-containing photocurable resist (CR-2000: manufactured by Fuji Hunt Electronics Technologies, Ltd.) was spin-coated on the substrate prepared in Production Example 1 at 500 rpm, and 85. Heat treatment (pre-bake) for 5 minutes with a C hot plate, and through a mask for R dye pattern formation (for triangles: Fig. 22), a proximity exposure machine (Proximity gap 6) 0 zm) and l S Om JZ cn ^ for i-line exposure o
次に、 室温の無機アル力リ系水溶液の現像液 (0. 1 N炭酸ナ ト リ ゥム水溶液 : 富士ハン トエレク ト ロニクステクノ ロジ一社製、 C D希釈品) で 2分間スビン現像し、 純水シャヮ一で洗浄して、 2 2 0°Cのオーブンで 60分間熱処理を行い、 R色素パターンを形成し た。  Next, spin-develop for 2 minutes with a developing solution of an inorganic alkaline aqueous solution at room temperature (0.1 N sodium carbonate aqueous solution: manufactured by Fuji Hunt Electronics Technologies, Inc., CD dilution), and then purify pure water. After washing with a water bath, heat treatment was performed in an oven at 220 ° C. for 60 minutes to form an R dye pattern.
以下、 同様に、 B色素含有光硬化性レジス ト (C B— 2 000 : 富士ハン トエレク トロニクステクノ ロジ一社製) 及び G色素含有光 硬化性レジス ト (C B— 2000 : 富士ハン トエレク トロ二クステ クノ ロジ一社製) を用いて、 それぞれ B色素パターン形成用マスク ( トライアングル用 : 第 20図) G色素パターン形成用マスク ( ト ライアングル用 : 第 2 1図) を通じて露光、 現像、 2 2 0 °Cの熱処 理を繰り返して、 R, B, Gの 色素パター ンをこの順で形成した, 次に、 この基板を B L ミセル分散液に挿入し、 透明導電性薄膜の 電極端子部とポテンシヨスタ ツ トの陽極を接続して、 0. 7 V, 1 5分間の定電位電解を行い、 透明導電性薄膜上に B Lの色素層 (薄 膜) を形成し、 純水で洗浄した後にエアブローで水を切り、 5 0 C オーブンで乾燥して、 R, G, Bの色素パターンの間に B L色素層 を形成した。 Hereinafter, similarly, a photo-curable resist containing a B dye (CB-2000: manufactured by Fuji Hunt Electronics Co., Ltd.) and a photo-curable resist containing a G dye (CB-2000: FUJI HAND ELECTRONIC TECHNOLOGY CO., LTD.) Using a mask for forming a B dye pattern (for triangles: Fig. 20) Ryangle: Fig. 21) Through exposure, development, and heat treatment at 220 ° C were repeated to form R, B, and G dye patterns in this order. Insert into the micellar dispersion, connect the electrode terminal of the transparent conductive thin film to the anode of the potentiostat, conduct 0.7 V, 15 minutes of constant potential electrolysis, and apply the BL dye on the transparent conductive thin film. A layer (thin film) was formed, washed with pure water, drained off with an air blower, and dried in a 50 C oven to form a BL dye layer between the R, G, and B dye patterns.
次に、 この基板上に保護膜剤と して透明な熱硬化性樹脂 (ォブ ト マー S S 7 26 5 : 日本合成ゴム社製) を 8 00 r p mでスピンコ ー ト し、 2 20。Cのオーブンで 6 0分間熱処理 (ポス トべーク) し て熱硬化させた。 最後に、 スバッ タ リ ング 装置 (アルバック社製 : S D P— 5 50 VT) を用いて、 I T O薄 膜を約 1 200 Aで保護膜上にスパッタ リ ングし、 液晶駆動用の透 明導電性薄膜を形成した。 このとき、 基板温度を 2 00 、 I T O 膜の表面抵抗を 20 ΩΖΕ]に調整した。  Next, a transparent thermosetting resin (Obtomer SS7265: manufactured by Nippon Synthetic Rubber Co., Ltd.) was spin-coated on this substrate at 800 rpm as a protective film agent, and 220. It was heat-treated (post-baked) in a C oven for 60 minutes and heat-cured. Finally, the ITO thin film is sputtered on the protective film at about 1200 A using a sputtering device (manufactured by ULVAC: SDP-550 VT), and the transparent conductive thin film for driving the liquid crystal is used. Was formed. At this time, the substrate temperature was adjusted to 200, and the surface resistance of the ITO film was adjusted to 20 ΩΖΕ].
以上のようにして、 ミセル電解法によつて製造したブラ ックマ ト リ ックスを有する第 8図に示す構造 30に係るカラーフィ ルタを完 成させた。  As described above, the color filter having the black matrix manufactured by the micellar electrolysis method and having the structure 30 shown in FIG. 8 was completed.
[実施例 8]  [Example 8]
この例は製造例 2で、 C r薄膜のブラックマ ト リ ックスを トライ アングル用ブラ ックマ トリ ックス形成用マスク (第 24図) を用い て形成する以外は同一の工程で作製した基板を用いた。 さ らに、 実 施例 7と同様にして色素を含有する光硬化性レジス トを用い、 R, G, Bの色素パターンと ミセル電解法で製膜した B Lの色素層を形 成した。  In this example, a substrate manufactured in the same process as in Production Example 2 except that a black matrix of a Cr thin film was formed using a mask for forming a black matrix for a triangle (FIG. 24) was used. Further, in the same manner as in Example 7, a dye-containing photocurable resist was used to form R, G, and B dye patterns and a BL dye layer formed by micellar electrolysis.
次に、 この基板上に保護膜剤と して透明な熱硬化性樹脂 (J S S - 7 1 5 : 日本合成ゴム社製) を 9 00 r p mでスピンコー ト し、 2 20。Cのオーブンで 60分間熱処理 (ボス トベーク) して熱硬化 させた。 Next, a transparent thermosetting resin (JSS-715: manufactured by Nippon Synthetic Rubber Co., Ltd.) was spin-coated at 900 rpm on this substrate as a protective film agent, and 220. Heat treatment (boss bake) in a C oven for 60 minutes and heat cure I let it.
最後に、 スパッ タ リ ング装置 (アルバック社製 : S D P— 5 5 0 V T) を用いて、 I T O薄膜を約 1 200 ^で保護膜上にスパッ 夕 リ ングして液晶駆動用の透明導電性薄膜を形成した。 このとき、 基 板温度を 200eCに設定し、 かつ、 I T O膜の表面抵抗を 20 Ω/ □に調整した。 Finally, using a sputtering device (manufactured by ULVAC, Inc .: SDP-550VT), the ITO thin film is sputtered on the protective film at about 1,200 ^ to form a transparent conductive thin film for driving liquid crystals. Was formed. At this time, the substrate temperature was set to 200 eC , and the surface resistance of the ITO film was adjusted to 20 Ω / □.
以上のようにして、 ミセル電解法によつて製造したブラ ックマ ト リ ックスを有する第 9図に示す構造 3 1に係るカラーフィ ルタを製 造した。  As described above, a color filter having the black matrix manufactured by the micellar electrolysis method and having the structure 31 shown in FIG. 9 was manufactured.
[実施例 9 ]  [Example 9]
製造例 2において鏡面研摩した 3 00mm角の白板ガラス基板 ( コ一二ング社 7 059 ) 上 C rのブラックマ ト リ ッ クスをパター二 ングした後に、 絶縁膜として S i 02 を 1 8 00 スパッ 夕 し、 そ の後、 I T 0を蒸着により基板全面に製膜した。 この基板に紫外線 可溶化型のポジレジス ト剤 F H 2 1 30 (富士ハン トエレク トロニ クステクノ ロジ一社製) を 1 , 000 r p mの回転速度でスビンコ ー ト した。 スピンコー ト後、 50。Cで 1 5分間プリべークを行った c その後、 この基板を露光機にセッ ト した。 マスクは、 縱ス トライブ の先端部をショー ト したパターン (第 42図) とした。 After putter-learning the Burakkuma Application Benefits Tsu box of white sheet glass substrate (co twelve Ngusha 7 059) on C r of 3 300 mm angle mirror polished in Production Example 2, S i 0 2 1 8 00 as an insulating film After sputtering, IT0 was formed on the entire surface of the substrate by vapor deposition. A UV-solubilizing positive resist agent FH2130 (manufactured by Fuji Hunt Electronics Technology Co., Ltd.) was spin coated on this substrate at a rotation speed of 1,000 rpm. 50 after spin coating. C then subjected to pre-baking for 15 minutes in C, and was set to the substrate in the exposure apparatus. The mask was a pattern in which the tip of a vertical stripe was shorted (Fig. 42).
プロキシミティ ギャ ップ 70 mをとり、 I S O m J Z c mS で i線露光した後、 2. 38 %TMAH現像液にて 3 0秒現像した。 現像後、 純水にてリ ンスした。 レジス トを 1 30。Cでポス トべーク した後、 エツチャ ン トとして 1 M F e C 13 · 6 N H C 1 · 0. I N H N Os 0. I N C e (N 03 ) 4 の水溶液を準備し、 前 記基板の I TOをエッチングした。 エッチングの終点は電気抵抗に より測定した。 前記エッチングには約 20分の時間を必要と した。 エツチング後、 純水でリ ンス し、 レジス トを剝離液 N— 3 03 (長 瀬産業) にて剝離した。 こう して I TOパターニングガラス基板を 得た。 このようにス トライブバタ一ンをすべてショー ト したバタ一 ンの電極を用い実施例 2と同様の方法で R, G, Bの色素パターン の形成を行い、 さ らに保護膜を形成一した (先に形成したパターニン グ透明電極を用いて、 液晶駆動を行う方式を取るため、 実施例 2の ように液晶駆動用の I T 0のさらなる積層は不要) 。 最後に、 透明 電極のショー ト部分をカツ ト して各電極を独立させ、 第 3 7図に示 す構造 3 2に係るカラーフィ ルタを製造した。 After taking a proximity gap of 70 m and performing i-line exposure with ISO m JZ cmS, the film was developed with a 2.38% TMAH developer for 30 seconds. After development, it was rinsed with pure water. 1 30 for the register. After post-baking with C, prepare an aqueous solution of 1 MF e C 13.6 NHC 1 .0. INHN Os 0. INC e (N 0 3 ) 4 as an etchant, Was etched. The end point of the etching was measured by electric resistance. The etching required about 20 minutes. After the etching, the substrate was rinsed with pure water, and the resist was separated with separation liquid N-303 (Nagase Sangyo). Thus, an ITO patterned glass substrate was obtained. In this way, all the stripe butters are short-cut. The R, G, and B dye patterns were formed in the same manner as in Example 2 using the patterned electrodes, and a protective film was formed (the liquid crystal drive was performed using the previously formed transparent electrode). Therefore, it is not necessary to further laminate the IT0 for driving the liquid crystal as in the second embodiment). Finally, the color filter according to the structure 32 shown in FIG. 37 was manufactured by cutting the short portion of the transparent electrode to make each electrode independent.
[実施例 1 0]  [Example 10]
鏡面研磨した 300 mm角の白板ガラス基板 (コ一二ング社 7 0 5 9) 上に、 I T O 1 300 Aを蒸着により基板全面に製膜した。 この基板に紫外線可溶化型のポジレジス ト剤 F H 2 1 30 (富士ハ ン トエレク トロニクステクノ ロジ一社製) を 1, O O O r pmの回 転速度でスピンコー ト した。 スピンコー ト後、 80。Cで 1 5分間ブ リベークを行った。 その後、 この基板を露光機にセッ ト した。 マス クは、 縦ス トライブの先端部をショー ト したパターン (第 42図) と した。  A 300 mm square white plate glass substrate (Corning Co., Ltd., 7059) was used to deposit ITO 1300 A over the entire surface of the substrate by vapor deposition. The substrate was spin-coated with a UV-solubilizing positive resist agent FH2130 (manufactured by Fuji Hunt Electronics Technologies) at a rotation speed of 1, O O r pm. 80 after spin coating. A bake was performed for 15 minutes at C. After that, this substrate was set in the exposure machine. The mask was a pattern in which the tip of a vertical stripe was shorted (Fig. 42).
プロキシミティギャ ップ をとり、 1 20 m J Z c m2 で i線露光した後、 2. 3 8 %TM A H現像液にて現像した。 現像後、 純水にてリ ンスした。 レジス トを 1 30。Cでポス トべーク した後、 エツチャ ン トと して 1 M F e C 13 · 6 N H C 1 · 0. I N HN Os 0. I N C e (N 03 ) 4 の水溶液を準備し、 前記基板 の I T 0をエッチングした。 エツチングの終点は電気抵抗により測 定した。 前記エッチングには約 20分の時間を必要と した。 エッチ ング後、 純水でリ ンスし、 レジス トを剝離液 N— 3 0 3 (長瀬産業) にて剥離した。 こう して I T 0パターニングガラス基板を得た。 The proximity gap was removed, exposed to i-ray at 120 mJZ cm2, and developed with a 2.38% TMAH developer. After development, it was rinsed with pure water. 1 30 for the register. After post-baking with C, an aqueous solution of 1 MF e C 13.6 NHC 1 .0. IN HN Os 0. INC e (N 0 3 ) 4 was prepared as an etchant. IT 0 was etched. The end point of the etching was measured by electric resistance. The etching required about 20 minutes. After the etching, the substrate was rinsed with pure water, and the resist was peeled off with N-303 (Nase Corporation). Thus, an IT0 patterned glass substrate was obtained.
次にブラックマ ト リ ックス形成レジス ト剤 (黒色色素含有レジス ト) と して富士ハン トエレク トロニクステク ノ ロジ一社のカラーモ ザイク C Kに同 C R、 C G、 C Bをそれぞれ、 3 : 1 : 1 : 1重量 部混合したものを用いた。 先ほど作製した I T 0パターニングガラ ス基板を 1 0 r p mで回転させ、 この上にこのレジス ト剤 30 c c を滴下した。 次に、 ス ピンコー トの回転数を 5 0 0 r p mにし、 基 板上に均一に製膜した。 この基板を _8 0てで 1 5分間プリべ一ク し た。 そして、 露光機で位置合わせしながら、 ブラッ クマ ト リ ッ クス のデザイ ン第 4 3図 : ( 9 0 x 3 1 0 /z m幅程度の画素) のマスク を用いて露光した。 Next, as a black matrix forming resist (a black pigment-containing resist), the color CR, CG, and CB were added to Fuji Hunt Electronics Technologies, Inc.'s Color Mosaic CK in a 3: 1: 1: 1 ratio, respectively. A mixture of parts by weight was used. The IT0 patterning glass substrate prepared earlier was rotated at 10 rpm, and 30 cc of this resist agent was placed on top of this. Was added dropwise. Next, the rotation speed of the spin coat was set to 500 rpm, and a uniform film was formed on the substrate. This substrate was pre-baked at 880 for 15 minutes. Then, while aligning with an exposure machine, exposure was performed using a mask of the design of the black matrix shown in FIG. 43: (pixels having a width of about 90 x 310 / zm).
プロキシ ミティ ギヤ ッブ 7 O /z mをとり、 1 00 m J Z c m2で i 線露光した後、 富士ハン ト C D (現像液) を純水 4倍希釈し、 3 0秒現像した。 さ らに、 純水にてリ ンスし、 2 0 0 °C 1 0 0分間 ポス トべーク した。  After taking the proximity gear at 7 O / zm and exposing it to i-line at 100 mJZcm2, Fuji Hunt CD (developer) was diluted 4 times with pure water and developed for 30 seconds. Further, the substrate was rinsed with pure water and postbaked at 200 ° C. for 100 minutes.
パターニングされた電極はすべてショー ト したようなパターンに なっているこの基板を用い、 実施例 3 と同様の方法で B, G, Rの 色素パターンでの形成を行った (先に形成したパターニング透明電 極を用いて、 液晶駆動を行う方式を取るため、 液晶駆動用の I T 0 のさらなる積層は不要) 。 最終的に、 透明電極のショー ト部分を力 ッ ト して各電極を独立させ、 第 3 8図に示す構造 3 3のカラーフィ ルタを製造した。  Using this substrate in which all of the patterned electrodes are in a short-patterned pattern, the B, G, and R dye patterns were formed in the same manner as in Example 3 (the previously formed patterned transparent layer). (Because the system uses the electrodes to drive the liquid crystal, it is not necessary to further stack IT0 for driving the liquid crystal.) Finally, the short portions of the transparent electrodes were pressed to make each electrode independent, and a color filter having a structure 33 shown in FIG. 38 was manufactured.
[実施例 1 1 ]  [Example 11]
鏡面研摩した 3 O O mm角の白板ガラス基板 (コーニング社 7 0 5 9 ) 上に、 I T Oを 1 3 0 O A蒸着により基板全面に製膜した。 この基板に紫外線可溶化型のポジレジス ト剤 H P R 2 0 4 (富士ハ ン トエレク トロニクステクノ ロジ一社製) を 1 , 0 0 0 r p mの回 転速度でスビンコー ト した。 スピンコー ト後、 8 0。Cで 1 5分間プ リベークを行った。 その後、 この基板を露光機にセッ ト した。 マス クは、 縦ス トライブの先端部をショー ト したパターン (第 4 2図) と した。  ITO was deposited on the entire surface of a mirror-polished 3 O O mm square white glass substrate (Corning Co., Ltd., 7059) by evaporation of 130 O A. A UV-solubilizing positive resist agent HPR204 (manufactured by Fuji Hand Electronics Technologies) was spin-coated on this substrate at a rotation speed of 1,000 rpm. 80 after spin coating. Prebaking was performed for 15 minutes at C. After that, this substrate was set in the exposure machine. The mask was a pattern in which the tip of a vertical stripe was shorted (Fig. 42).
プロキシミティ ギャ ップ 7 0〃 mをとり、 1 00 m J Z c m2で i 線露光した後、 現像液 2. 3 8 % TM A Hにて現像した。 現像後、 純水にてリ ンスした。 レジス トを 1 3 0 °Cでポス トべーク した後、 エツチャ ン トと して 1 M F e C 1 3 · 6 N H C 1 · 0. I N H N Os 0. I N C e (N O3 ) 4 の水溶液を準備し、 前記基板 の I T 0をエッチングした。 エツチングの終点は電気抵抗により測 定した。 前記エッチングには約 2 0分の時間を必要と した。 エッチ ング後、 純水でリ ンス し、 レジス トを剝離液 N— 3 0 3 (長瀬産業) にて剝離した。 こう して I T 0バターニングガラス基板を得た。 A proximity gap of 70 μm was taken, exposed to i-rays at 100 mJZ cm2, and then developed with 2.38% TM AH in developer. After development, it was rinsed with pure water. After post-baking the resist at 130 ° C, 1 MF e C 13 · 6 NHC 1 · 0.IN as an etch An aqueous solution of HN Os 0. INC e (N O3) 4 was prepared, and IT 0 of the substrate was etched. The end point of the etching was measured by electric resistance. The etching required about 20 minutes. After the etching, the substrate was rinsed with pure water, and the resist was separated with separation liquid N-303 (Nagase Sangyo). Thus, an IT0 buttering glass substrate was obtained.
ノ ターニングされた電極はすべてショー ト したようなパターンに なっているこの基板を用い、 実施例 3と同様の方法で B, G, Rの 色素パターンの形成を行った。  Using this substrate in which all of the notched electrodes have a short-patterned pattern, the B, G, and R dye patterns were formed in the same manner as in Example 3.
次にブラックマ ト リ ックス形成レジス ト剤 (黒色色素含有レジス ト) として富士ハン トエレク トロニクステクノ ロジ一社のカラーモ ザイク C Kに同 C R、 C G、 C Bをそれぞれ、 3 : 1 : 1 : 1重量 部混合したものを用いた。 先に作製した I T 0バタ一ニングガラス 基板を 1 0 r p mで回転させ、 この上にこのレジス ト剤を 30 c c 滴下した。 次に、 スビンコ一トの回転数を 5 O O r pmにし、 基板 上に均一に製膜した。 この基板を 8 0°Cで 1 5分間プリべーク した。 そして、 露光機で位置合わせしながら、 表示部だけを露光できるマ スクを用いて基板のガラス面から i線露光した。  Next, as a black matrix forming resist (a black pigment-containing resist), the CR, CG, and CB were mixed in a ratio of 3: 1: 1: 1 parts by weight to the color mosquito CK of Fuji Hunt Electronics Technologies, Ltd. What was done was used. The previously prepared IT0 buttering glass substrate was rotated at 10 rpm, and 30 cc of the resist agent was dropped thereon. Next, the rotation speed of the sub-coat was set to 5 O rpm, and a uniform film was formed on the substrate. This substrate was pre-baked at 80 ° C for 15 minutes. Then, while aligning with the exposure machine, i-line exposure was performed from the glass surface of the substrate using a mask capable of exposing only the display portion.
プロキシ ミティ ギャ ップ をとり、 1 00 m J Z c m2で i線露光した後、 富士ハン ト CD (現像液) を純水 4倍希釈し、 3 0秒現像した。 さらに、 純水にてリ ンスし、 200 (:、 1 00分間 ポス トべーク し B, R, G色素パターンの間の位置にブラ ックマ ト リ ックスを形成した。 最終的に透明電極のショー ト部分をカツ ト し て各電極を独立させた。 こ こで形成したパターニング透明電極を用 いて液晶駆動を行う方式を取るため、 液晶駆動用 I T 0のさらなる 積層は不要である。 このようにして第 3 8図に示す構造 3 3のカラ ーフィルタを製造した。  After taking the proximity gap and performing i-line exposure at 100 mJZ cm2, Fuji Hunt CD (developer) was diluted 4 times with pure water and developed for 30 seconds. Further, the substrate was rinsed with pure water, and post-baked for 200 minutes (:, 100 minutes) to form black matrix at positions between the B, R, and G dye patterns. Each electrode is made independent by cutting the short part.Since a liquid crystal drive is performed using the patterned transparent electrode formed here, further lamination of the liquid crystal drive IT0 is unnecessary. Thus, a color filter having a structure 33 shown in FIG. 38 was manufactured.
[実施例 1 2]  [Example 12]
実施例 1で透明光硬化性レジス トをスビンコ一ターで塗布する代 わりに、 この l gを F P E G : 2mM, L i B r : 0. 1 M溶液 1 0 0 c cに添加し、 超音波照射により分散し、 ェマルジョ ンを形成 した後、 ミセル電解法で製膜した色素層の形成された基板をこの溶 液に挿入し、 0. 5 V、 3 0分間電解して透明光硬化性レジス トを 積層した他は、 実施例 1 と同様に行った。 Instead of applying the transparent photocurable resist with a Sincoater in Example 1, this lg was converted to FPEG: 2 mM, LiBr: 0.1 M solution 1 After addition, the emulsion was dispersed by ultrasonic irradiation to form an emulsion, and a substrate having a dye layer formed by micellar electrolysis was inserted into the solution, and 0.5 V, 30 V The procedure was performed in the same manner as in Example 1 except that the transparent photocurable resist was laminated by electrolysis for one minute.
[実施例 1 3]  [Example 13]
実施例 1で透明光硬化性レジス トを透明光硬化性電着ポ リマー ( 特開平 4 - 1 04 1 0 2 ) に代え、 スビンコ一ターで塗布する代わ りに、 この 1 0 %透明光硬化性電着ポリマー電解液にミセル電解法 で製膜した色素層の形成された基板をこの溶液に挿入し、 1 00 V, 1分間電解して透明光硬化性電着ポ リマーを積層した他は、 実施例 1 と同様に行った。  In Example 1, the transparent light-curable resist was replaced with a transparent light-curable electrodeposited polymer (Japanese Patent Laid-Open No. 4-104102). A substrate having a dye layer formed by micellar electrolysis was inserted into a neutral electrodeposited polymer electrolyte solution, and the solution was electrolyzed at 100 V for 1 minute to laminate a transparent photocurable electrodeposition polymer. The operation was performed in the same manner as in Example 1.
[実施例 1 4]  [Example 14]
実施例 3において、 RG Bの色素パターン形成に用いたマスクを 第 3 9, 40, 4 1図のように同一色の色素パターンをつないだ形 状のデザィ ンのマスクに代えたこと以外は同様に R G Bの色素バタ 一ンを形成した。  Example 3 is the same as Example 3, except that the mask used for forming the RGB dye pattern was replaced with a design mask in which dye patterns of the same color were connected as shown in FIGS. The RGB dye pattern was formed on the surface.
次いで、 エツチャン トとして 1 M F e C 13 · 6 N H C 1 · 0. I N H N Os 0. I N C e (N Os ) の水溶液を準備し、 前記基板の色素パターンの積層されてない部分の I T Oをエツチン グした。 エッチングの終点は電気抵抗により測定した。 前記エッチ ングには約 20分の時間を必要と した。 エッチング後、 純水でリ ン スした。 こう して I T 0パターニングした。 さらに、 ドライバ一接 続用の I T 0部分の色素とレジス トを除去し、 I T Oを露出させた c 次にブラックマ ト リ ツクス形成レジス ト剤 (黒色色素含有レジス ト) として富士ハン トエレク トロニクステクノ ロジ一社のカラーモ ザイク C Kに同 C R、 C G、 C Bをそれぞれ、 3 : 1 : 1 : 1重量 部混合したものを用いた。 先に作製した I T 0パターニングガラス 基板を 1 0 r p mで回転させ、 この上にこのレジス ト剤を 30 c c 噴霧した。 次に、 スピンコー トの回転数を 5 0 O r p mにし、 基板 上に均一に製膜した。 この基板を 8 0 °Cで 1 5分間プリべ一ク した, そ して、 露光機で位置合わせしながら、 ブラ ックマ ト リ ッ クスのデ ザイ ン、 第 43図のマスクを用いて露光した。 Next, an aqueous solution of 1 MF eC 13.6 NHC 1 .0.INHN Os 0.INCe (N Os) was prepared as an etchant, and the ITO of the non-laminated portion of the dye pattern on the substrate was etched. . The end point of the etching was measured by electric resistance. The etching required about 20 minutes. After etching, it was rinsed with pure water. Thus, IT 0 patterning was performed. Further, to remove the dye and registry of IT 0 portion of driver-connection for, c to expose the ITO then Burakkuma Application Benefits try form registry agent (black pigment-containing registry) as Fuji Han Toereku Toro Nix Technology Logistics A mixture of 3: 1: 1: 1 parts by weight of the same CR, CG, and CB with one company's color mosaic CK was used. The previously prepared IT0 patterned glass substrate was rotated at 10 rpm, and 30 cc of the resist was sprayed thereon. Next, the rotation speed of the spin coat was set to 50 O rpm, A uniform film was formed on the top. This substrate was pre-baked at 80 ° C for 15 minutes, and exposed using a black matrix design and a mask shown in Fig. 43 while aligning with an exposure machine. .
プロキシ ミティ ギヤ ッブ 7 Ο μπιをとり、 1 00 m J c m2で i線露光した後、 富士ハン ト C D (現像液) を純水 4倍希釈し、 3 0秒現像した。 さらに、 純水にてリ ンスし、 200 、 1 00分間 ポス トべーク し B, R , Gの色素パターンの間にブラックマ ト リ ツ クスを形成し第 44図に示す構造 34のカラ一フィ ルタを製造した, こ こで形成したバターニング透明電極を用いて液晶駆動を行う方式 を取るため、 液晶駆動用 I T Oのさ らなる積層は不要である。  After taking a proximity gear of 7 μμπι and performing i-line exposure at 100 mJ cm2, Fuji Hunt CD (developer) was diluted 4 times with pure water and developed for 30 seconds. Rinse with pure water and postbake for 200, 100 minutes to form black matrix between the B, R, and G dye patterns. Since the liquid crystal is driven by using the buttered transparent electrode formed here, the filter is manufactured, so that further lamination of ITO for driving the liquid crystal is unnecessary.
[実施例 1 5]  [Example 15]
実施例 1において、 ミセル電解法で R G B各色を製膜するごとに 顔料表面の異物を分解するために U V洗浄した他は実施例 1と同様 に行った。  Example 1 was repeated in the same manner as in Example 1 except that each time R, G, and B colors were formed into a film by the micelle electrolysis method, UV cleaning was performed to decompose foreign substances on the pigment surface.
[比較例 1 ]  [Comparative Example 1]
I て 0 腊バターニング (ft表層形成 ffl雷称形成)  I 0 0 腊 patterning (ft surface formation ffl lightning name formation)
I T O膜として 20 Ω/ □の面抵抗を持つ I T 0製膜ガラス基板 I T 0 film-formed glass substrate with a sheet resistance of 20 Ω / □ as an I T O film
(青板ガラス、 研磨、 シリ力ディ ッブ品 : ジォマティ ック社製) に 紫外線可溶化型のポジレジス ト (F H 203 0M : 富士ハン トエレ ク トロニクステクノロジ一社製) を 1, 000 r p mでスビンコ一 ト した。 このスピンコー ト後、 80。Cで 1 5分間熱処理 (プリべ一 ク) を行った。 その後、 この基板を露光機にセッ ト した。 マスクは、 ス トライブの I T Oバターニング用 (第 25図) を用いた。 プロキ シ ミ ティ ギャ ップ 70 mをとり、 8 011 11 > (; 1112で 1線露光し た後、 2 5 の無機アル力 リ系の現像液 (L S I現像液 : 富士ハン トエレク トロニクステクノロジ一社製) にて現像した。 この現像後、 純水にてリ ンスした後に 1 8 0°Cで熱処理 (ポス トべーク) した。 (Blue glass, polished, slicing dip product: manufactured by Geomatic Co., Ltd.) and a UV-solubilized positive resist (FH 2030M: manufactured by Fuji Hunt Electronics Technology Co., Ltd.) at 1,000 rpm. I did it. 80 after this spin coating. Heat treatment (prebaking) was performed for 15 minutes at C. After that, this substrate was set in the exposure machine. The mask used was a stripe ITO patterning (Fig. 25). After taking a proxy gap of 70 m and subjecting it to single-line exposure at 8 011 1 1 > (; 1112, 25 inorganic developer (LSI developer: Fuji Hunt Electronics Technology Co., Ltd.) After this development, the substrate was rinsed with pure water and then heat-treated (postbaked) at 180 ° C.
次に、 エツチャ ン ト と して、 1 M F e C 13 · 6 N H C 1 · 0. I N ΗΝ 03 · 0. 1 N Ce ( Ν 03) 4の水溶液を準備し、 基板の I T 0をエッチングした。 エツチングの終点は電気抵抗によ つて測定した。 エッチングには約 1 0分の時間を必要と した。 エツ チング後、 純水でリ ンスし、 レジス トを剝離剤 (Ν— 3 0 3 : 長瀬 産業社製) にて剥離した。 このようにして I Τ 0バタ一ニングガラ ス基板を得た。 Next, as an etchant, an aqueous solution of 1 MF eC 13.6 NHC 1 .0.IN ΗΝ 0 3 .0.1 N Ce (Ν0 3 ) 4 was prepared. The substrate IT0 was etched. The end point of the etching was measured by electric resistance. The etching required about 10 minutes. After the etching, the substrate was rinsed with pure water, and the resist was peeled off with a release agent (Ν—303: manufactured by Nagase & Co., Ltd.). In this way, an IΤ0 buttering glass substrate was obtained.
ブラックマ ト リ ツクス作製工程 Black matrix production process
ブラッ クマ ト リ ックス形成レジス ト (黒色色素含有レジス ト) と して富士ハン トエレク トロニクステクノ ロジ一社製の力ラーモザィ ク C Kに同 C R, C G, C Bをそれぞれ、 3 : 1 : 1 : 1重量部混 合したものを用いた。  As a black matrix forming resist (register containing black pigment), the same CR, CG, and CB are added to Fuji Hunt Electronics Technological Co., Ltd.'s Rikmo Razaik CK in a ratio of 3: 1: 1: 1: 1, respectively. A partially mixed product was used.
先で作製した I T 0バターニングガラス基板上にスビンコ一ター によって 5 0 0 r p mで先のレジス トを塗布し、 8 0。Cオーブンで 1 5分間熱処理 (プリべーク) した。 次に、 酸素遮断膜のポリ ビニ ルアルコール ( P V A ) 水溶液 (C P : 富士ハン トエレク トロニク ステクノ ロジ一社製) をレジス トと同様にして塗布した。 そして、 ァライメ ン ト機能のある露光機で位置合わせ機で位置合わせしなが ら、 ブラ ックマ ト リ ツ クス及び電極取り出し形成用デザィ ンのマス ク (第 2 6図) を用いて 8 0 z mのプロキシ ミ ティ露光 ( i線) し た後、 無機アル力 リ現像液 ( 0. 1 N炭酸ナ ト リゥム水溶液 : 富士 ハン トエレク トロニクステクノロジ一社製、 C D希釈品) で現像し た。 さらに、 純水でリ ンスし、 2 2 0 °Cのオーブンで熱処理 (ボス トベーク) した。 このようにして第 2 6図中の電極取り出し層 2 3 0、 表示部 2 3 1、 ブラックマ ト リ ックス 2 3 2を形成した。  The above resist was applied at 500 rpm on a previously prepared IT0 buttering glass substrate by a spin coater, and the resulting resist was applied at 80 rpm. Heat treated (prebaked) for 15 minutes in a C oven. Next, an aqueous solution of polyvinyl alcohol (PVA) for an oxygen barrier film (CP: manufactured by Fuji Hunt Electronics Technology) was applied in the same manner as the resist. Then, while aligning with an aligner using an aligner that has an alignment function, the black matrix and the mask for forming the electrode take-out (Fig. 26) are used to achieve 80 zm. After performing a proximity exposure (i-line), the film was developed with an inorganic alkaline developer (0.1 N sodium carbonate aqueous solution: Fuji Hunt Electronics Technology Co., Ltd., dilute CD). Furthermore, it was rinsed with pure water, and heat-treated (boss bake) in an oven at 220 ° C. In this way, the electrode take-out layer 230, the display portion 231 and the black matrix 232 in FIG. 26 were formed.
ft¾« 诰て ft¾ «诰 te
銀べ一ス ト 2 3 4 a , 2 3 4 b , 2 3 4 cのようにで各色ごとに 導通を取ったブラックマ ト リ ックス付き I T Oパターニング基板 ( 第 2 7図) を製造例 1で説明した Rのミセル溶液に挿入し、 ス トラ イブの R列に通導した銀ペース トとポテンシヨスタ ツ トの陽極を接 続した。 0. 8 V, 1 5分間の定電位電解を行い、 R色素の薄膜を 得た。 その後、 純水で洗浄後、 オーブンにてプレベーク ( 1 0 0 °CThe ITO patterning substrate with black matrix (Fig. 27), which has conduction for each color, such as silver bases 234a, 234b and 234c, is described in Manufacturing Example 1. The silver paste was inserted into the micelle solution of R, and the anode of the potentiostat was connected to the silver paste led to the R row of the drive. Perform constant potential electrolysis at 0.8 V for 15 minutes to remove the R dye thin film. Obtained. Then, after washing with pure water, pre-bake in an oven (100 ° C
X 1 5分間) した。 次に、 この基板を Gのミ セル溶液挿入し、 上記 と同様に 0. 4 V 1 8分間の定電位電解を行い、 カラーフィルタ RX 15 minutes). Next, this substrate was inserted into the micelle solution of G, and a constant potential electrolysis of 0.4 V for 18 minutes was performed in the same manner as described above to obtain a color filter R.
Gの薄膜を得た。 製膜後、 Rの製膜と同じ条件で後処理を行った。 最後に、 :;の基板を Bの ミ セル溶液挿入し、 同様に 0. 7 V, 1A thin film of G was obtained. After film formation, post-treatment was performed under the same conditions as for the film formation of R. Finally, insert the substrate of:; into the micelle solution of B, and then use 0.7 V, 1
0分間の定電位電解を行い、 カラーフィ ルタ R, G, Bの薄膜を得 た。 製膜後、 Rの製膜と同じ条件で後処理を行った。 このようにし て第 26図中の電極取り出し層 2 3 0、 表示部 23 1、 ブラックマ ト リ ックス 23 2とと もに、 第 2 7図に示す I T 0パターン 2 3 3 a , 23 3 b, 2 33 c上に、 R, G, Bカラーフィ ルタ色素層を 得た。 Electrostatic potential electrolysis was performed for 0 minutes, and thin films of color filters R, G, and B were obtained. After film formation, post-treatment was performed under the same conditions as for the film formation of R. In this way, together with the electrode take-out layer 230, the display unit 231, and the black matrix 232 in FIG. 26, the IT0 patterns 23 3a, 233b, An R, G, B color filter dye layer was obtained on 233c.
保譁腊の形成 The formation of cloying
R G B色素層形成基板に保護膜と して 0 S— 80 8 (長瀬産業社 製) を 8 00 r pmでスピンコー ト し、 その後、 2 40°Cで 1時間 熱処理 (ベ一ク) して硬化させた。  Spin-coat 0S-808 (manufactured by Nagase & Co., Ltd.) as a protective film on the RGB dye layer forming substrate at 800 rpm, then heat-treat (bak) at 240 ° C for 1 hour to cure. I let it.
このようにして保護膜を形成した。  Thus, a protective film was formed.
某板力ッ ト及び面取り Certain plank cut and chamfer
保護膜を積層した基板を第 33図に示すように上側一転鎖線で土 0. 3 mm以下の精度でスクライバーでカッ ト し、 切断面を面取り 機で面取り研磨した。 As shown in Fig. 33, the substrate on which the protective film was laminated was cut with a scriber with an accuracy of 0.3 mm or less on the upper chain line, and the cut surface was chamfered and polished with a chamfering machine.
,m m ι τ o腊の形成  , m m ι τ o 腊
最後に、 スパッタリ ング装置 (アルバック社製: S D P— 5 5 0 V T) を用い、 I T0薄膜を約 1 2 00 Aで保護膜上にスパッタ リ ングして液晶駆動用の透明導電性薄膜を形成した。 このとき、 基板 温度を 2 00 、 I T 0膜の表面抵抗を 20 に調整した。 こ のようにして、 従前の第 3 3図をもって説明した構造 1に対応する カラーフィ ルタを完成させた。  Finally, the ITO thin film is sputtered on the protective film at about 1200 A using a sputtering device (ULDP: SDP-550VT) to form a transparent conductive thin film for driving liquid crystal. did. At this time, the substrate temperature was adjusted to 200, and the surface resistance of the ITO film was adjusted to 20. Thus, a color filter corresponding to the structure 1 described with reference to FIG. 33 is completed.
[比較例 2]  [Comparative Example 2]
ブラックマ ト リ ツクス形成 無アルカ リ ガラス基板 (N A 45 : ホヤ (H OY A) 社製) に、 C r薄膜を約 1 3 00 Aでスパッ夕 した (アルバッ ク社製 : S D P - 5 50 V T) 。 この上に紫外線可溶化型のポジ型レジス ト剤 (H P R 20 4 : 富士ハン トエレク トロニクステクノロジ一社製) を 1 0 00 r p mでスピンコー ト した。 Black matrix formation A Cr thin film was sputtered on an alkali-free glass substrate (NA 45: manufactured by HOYA) at approximately 1,300 A (Alvac: SDP-550 VT). On top of this, a UV-soluble solubilizing positive resist (HPR204: manufactured by Fuji Hunt Electronics Technology Co., Ltd.) was spin-coated at 100 rpm.
次に、 1 00 °Cで 5分間ホッ トプレー トでプリべークを行った。 その後、 この基板を露光機にセッ ト し、 ブラ ックマ ト リ ッ クスバタ ーンのマスク (第 23図) を通じてプロキシ ミティ ーギャ ップ 6 0 m取って 80 m J Z c m2で i線露光し、 無機アル力 リ水溶液の 現像液 ( 2. 3 8 %TMAH水溶液富士ハン トエレク トロ二クステ クノ ロジ一社製、 F H D— 5 ) に浸潰して現像した。  Next, prebaking was performed at 100 ° C for 5 minutes with a hot plate. After that, the substrate was set in an exposure machine, and a proximity gap of 60 m was taken through a black matrix pattern mask (Fig. 23), and i-line exposure was performed at 80 mJZ cm2. It was immersed in a developer of an aqueous alkaline solution (2.38% TMAH aqueous solution, Fuji HD Electronics Technology, FHD-5) and developed.
次に、 純水でシャワーリ ンスした後、 1 5 0 °Cで熱処理 (ポス ト ベーク) した。 次にエツチャ ン トと して室温の硝酸セリウムアンモ ニゥム 1 65 gと過塩素酸 4 2m 1 と純水 1 リ ッ トルの濃度を有す る混合水溶液で C rを 3分間浸漬エッチングした。 このエッチング 後、 純水でリ ンスし、 有機アル力 リ水溶液の剥離剤 (N— 3 03 : 長瀬産業社製) でレジス トを剥離した。 そして、 純水で十分に洗浄 し、 ブラ ックマ ト リ ックスを得た。  Next, after shower rinsing with pure water, heat treatment (post bake) was performed at 150 ° C. Next, Cr was immersed and etched in a mixed aqueous solution having a concentration of 165 g of cerium ammonium nitrate, 42 ml of perchloric acid and 1 liter of pure water at room temperature as an etchant. After this etching, the resist was rinsed with pure water, and the resist was stripped with a stripper (N-303: manufactured by Nagase & Co., Ltd.) of an organic alkaline aqueous solution. Then, it was sufficiently washed with pure water to obtain a black matrix.
絶縁) I T 0 膣バターン形成 層形成用雷掭形 5¾) Insulation) I T 0 Vaginal pattern formation Layer formation lightning type 5¾)
次に、 このブラ ックマ ト リ ツクス上に絶縁膜としてシリカ分散液 (O C D TY P E - 7 ; 東京応化社製) を 1, 000 r p mでスビ ンコー ト し、 2 50°Cで 60分間べーク した後、 さ らに、 アルバッ ク社製の S D P— 55 0 VTに基板をセッ ト し、 基板の上から I T 0を約 1 3 00 でスパッタ した。 このときワークを 20 0。Cと し て I T 0の表面抵抗を 20 Ω に調整した。  Next, a silica dispersion (OCD TYPE-7; manufactured by Tokyo Ohka Co., Ltd.) was applied as a dielectric film on this black matrix by spin coating at 1,000 rpm and baked at 250 ° C for 60 minutes. After that, the substrate was set on SDP-550 VT manufactured by ULVAC, Inc., and IT0 was sputtered at about 1300 from above the substrate. At this time, the work is 200. As C, the surface resistance of I T0 was adjusted to 20 Ω.
次に、 この基板に紫外線可溶化型のポジレジス ト (F H 20 3 0 M : 富士ハン トエレク トロニクステクノ ロジ一社製) を 1, 0 0 0 r p mでスピンコー ト し、 8 0。Cオーブンで 1 5分間熱処理 (ブリ ベーク) を行った。 次に、 コ ンタ ク ト露光機にてダイァゴ一ナルパター ンのマスク ( 第 2 8図) を通じて、 ァライメ ン ト露光 ( i線の露光エネルギー 6Next, a UV-solubilized positive resist (FH203M: manufactured by Fuji Hunt Electronics Technology) was spin-coated on the substrate at 1,000 rpm, and the substrate was subjected to spin coating. Heat treatment (brive bake) was performed in a C oven for 15 minutes. Next, through a diagonal pattern mask (Fig. 28) using a contact exposure machine, the alignment exposure (i-line exposure energy 6
0 m J / c m2) した後、 無機アル力 リ水溶液の現像液 ( L S I現 像液 : 富士ハン トエレク ト ロニクステクノ ロ ジ一社製) にてス ピン 現像した。 Then, spin development was carried out with a developer of an aqueous inorganic alkaline solution (LSI developing solution: manufactured by Fuji Hunt Electronics Technology Co., Ltd.).
この現像後、 純水シャ ワーにてリ ンス し、 さ らに、 1 5 0°Cで熱 処理 (ポス トべーク) した。 次に、 エツチャ ン トと して 3 7ての第 二塩化鉄水溶液 (ボウメ 4 2 ) と塩酸の等量混合液で基板の I T 0 を 3分間エツチングした。 エツチングの終点は電気抵抗によつて測 疋した o  After this development, the substrate was rinsed with a pure water shower, and further subjected to a heat treatment (post bake) at 150 ° C. Next, the substrate was subjected to etching for 3 minutes by using a mixture of an equal amount of an aqueous ferric chloride solution (Boume 42) and hydrochloric acid as an etchant for 3 minutes. The end point of the etching was measured by electrical resistance.o
エツチング後、 純水でリ ンスし、 レジス トを有機ァル力 リ水溶液 の剝離剤 (N— 303 : 長瀬産業社製) で剥離した。 さらに、 純水 で洗浄して I T 0電極の隣接間の電気的リ一クがないことを確認し、 After the etching, the substrate was rinsed with pure water, and the resist was peeled off with a release agent (N-303: manufactured by Nagase & Co., Ltd.) of an organic alkaline aqueous solution. Furthermore, it washes with pure water to confirm that there was no electrical leakage between adjacent I T0 electrodes.
1 T 0パターニングブラックマト リ ックス付き基板を完成させた。 雷攞取出の形^ A substrate with 1T0 patterning black matrix was completed. Thunder 攞 form of extraction ^
ァク リル酸系レジス ト (C T :富士ハン トエレク トロニクステク ノ ロジ一社製) を電極取り出し層形成用として用い、 基板上に 8 5 O r pmでスピンコー ト し、 1 00。Cオーブンで 4 5分間熱処理 ( ブリベーク) した。 次に、 プロキシミティ一露光機 (プロキシミ テ ィ ーギャ ップ 6 0 m) で位置合わせしながら、 ダイァゴ一ナル用 の電極取出帯の部分のみのマスク (第 29図) を通じて、 露光した ( i線の露光エネルギー 40 m J / c m2) 。 その後、 無機アル力 リ水溶液 (0. 1 N炭酸ナ ト リ ゥム水溶液 : 富士ハン トエレク ト ロ ニクステクノロジ一社製、 C D希釈品) の現像液で 1分間浸潰し て現像した。 さ らに、 純水でリ ンスし、 200。Cオーブンで、 6 0 分間熱処理 (ポス トべーク) して、 カラーフィ ルタ作製用基板を完 成させた。 この工程は、 第 30図に示すように基板に R, G, Bごとに銀べ 一ス ト 2 5 1 a , 25 1 b , 25 1 cを形成し、 導通をとつた以外 は比較例 1 と同一の工程で行った。 Acrylic acid-based resist (CT: manufactured by Fuji Hunt Electronics Technologies) was used to form an electrode take-out layer, and was spin-coated on the substrate at 85 Orm. It was heat-treated (brive bake) in a C oven for 45 minutes. Next, while aligning with a proximity exposure machine (proximity gap 60 m), the exposure (i-line) was performed through a mask (Fig. 29) of only the electrode extraction zone for the diagonal. Exposure energy of 40 mJ / cm2). Then, the film was immersed in a developer of an inorganic alkaline aqueous solution (0.1 N sodium carbonate aqueous solution: a CD-diluted product manufactured by Fuji Hunt Electronics Technologies, Inc.) for 1 minute and developed. Rinse with pure water and 200. Heat treatment (post bake) was performed in a C oven for 60 minutes to complete the substrate for color filter production. In this step, as shown in Fig. 30, the substrate is made of silver for each of R, G, and B. The same steps as in Comparative Example 1 were performed except that the first 25 1 a, 25 1 b, and 25 1 c were formed and conduction was established.
保護膜の形成 Formation of protective film
次に、 上記の色素層の製膜された基板上に保護膜剤と して熱硬化 性樹脂 (ォブトマー S S 72 65 : 日本合成ゴム社製) を 900 r p mでスピンコー ト し、 さらに、 2 20。Cオーブンで、 6 0分間熱 処理 (ボス トベーク) した。  Next, a thermosetting resin (Obtomer SS7265: manufactured by Nippon Synthetic Rubber Co., Ltd.) was spin-coated at 900 rpm as a protective film agent on the substrate on which the dye layer was formed. It was heat-treated (boss bake) in a C oven for 60 minutes.
某板力ッ ト及び面取り Certain plank cut and chamfer
従前で説明した第 3 4図に示す一点鎖線で力ッ ト した以外は比較 例 1 と同一の工程で行った。  The same process as in Comparative Example 1 was performed except that the force was applied by the dashed line shown in FIG. 34 described previously.
液晶! ^動 ffl I T 0瞻の形成 LCD! ^ Fl fT I T 0
最後に、 スパッタリ ング装置 (アルバック社製 : S D P— 5 5 0 V T) を用いて、 I T O薄膜を約 1 200 保護膜上にスパッタ リ ングして液晶駆動用の透明導電性薄膜を形成した。 このとき、 基板 温度を 2 00て、 I T 0膜の表面抵抗を 20 ΩΖΕΙに調整した。 こ のようにして、 従前の第 34図をもって説明した構造 2に対応する カラーフィ ルタを完成させた。  Finally, using a sputtering apparatus (manufactured by ULVAC, Inc .: SDP—550 V T), the ITO thin film was sputtered on the protective film of about 1,200 to form a transparent conductive thin film for driving a liquid crystal. At this time, the substrate temperature was set to 200, and the surface resistance of the I T0 film was adjusted to 20 ΩΖΕΙ. Thus, a color filter corresponding to the structure 2 described with reference to FIG. 34 was completed.
[比較例 3]  [Comparative Example 3]
I Τ 0薄膣パターニング (ft表層形成用雷欏形成)  IΤ0 thin vagina patterning (formation of lightning for forming ft surface layer)
I TO膜ノガラス基板 (無アルカ リガラス ; I T 0膜 2 0 Ω/ □) に紫外線可溶化型のポジレジス ト (H P R 204 : 富士ハン トエレ ク トロニクステクノロジ一社製) を 1, 000 r p mでスビンコ一 ト した。 このスピンコー ト後、 80。Cオーブンで 1 5分間熱処理 ( プリべーク) を行った。 その後、 この基板コンタク ト露光機にてダ ィァゴーナルパターンのマスク (第 28図) を通じて 80 m J Z c m2で i線露光した後、 有機アル力リ水溶液の現像液 ( 2. 3 8% T M A H水溶液 : 富士ハン トエレク トロニクステクノ ロジ一社製) にて浸漬して現像した。 この現像後に純水にてリ ンスして 1 5 0 °C でポス トべーク した。 次に、 エツチャ ン トと して 3 7 °Cの第二塩化 鉄水溶液 (ボウメ 4 2 ) と塩酸の等量混合物にて基板の I T 0を 3 分間エツチングした。 このエツチングの終点は電気抵抗によつて測 定した。 次に、 純水でリ ンスし、 レジス 卜を有機アル力 リ水溶液の 剝離剤 (N— 3 0 3 : 長瀬産業社製) にて剥離した。 さらに、 純水 で洗浄して I T 0電極の隣接同志の電気的リークがないこ とを確認 して、 カラーフィ ルタ作製用基板を完成させた。 A UV-solubilized positive resist (HPR 204: manufactured by Fuji Hunt Electronics Technology Co., Ltd.) was applied to the ITO film glass substrate (alkali-free glass; IT 0 film 20 Ω / □) at 1,000 rpm. did. 80 after this spin coating. Heat treatment (prebake) was performed in a C oven for 15 minutes. Then, the substrate was exposed to i-line at 80 mJZ cm 2 through a diagonal pattern mask (Fig. 28) using this substrate contact exposure machine, and then a developing solution (2.38% TMAH aqueous solution: developed by immersion in Fuji Hunt Electronics Technologies. After this development, the substrate was rinsed with pure water and postbaked at 150 ° C. Next, the second chloride at 37 ° C was used as an etchant. The IT0 of the substrate was etched for 3 minutes with an equal amount mixture of an aqueous iron solution (Boume 42) and hydrochloric acid. The end point of this etching was measured by electrical resistance. Next, the substrate was rinsed with pure water, and the resist was peeled off with a separating agent (N-303: manufactured by Nagase & Co., Ltd.) of an organic solvent aqueous solution. Further, the substrate was washed with pure water, and it was confirmed that there was no electric leak between adjacent IT0 electrodes. Thus, a substrate for forming a color filter was completed.
雷称取出形成 Thunder name extraction formation
この形成は、 比較例 2 と同一の工程で行った。  This formation was performed in the same process as in Comparative Example 2.
ft素層形成 ft element layer formation
この形成は、 比較例 2と同一の工程で行った。  This formation was performed in the same process as in Comparative Example 2.
保護膜形成 Protective film formation
この形成は、 比較例 2と同一の工程で行った。  This formation was performed in the same process as in Comparative Example 2.
基板力ッ ト及び面取り Board force and chamfer
この基板カツ ト及び面取りは、 従前で説明した第 3 5図に示す一 点鎖線で力ッ ト した以外は比較例 1 と同一の工程で行った。 This substrate cutting and chamfering were performed in the same steps as in Comparative Example 1 except that the cutting was performed by the dashed line shown in FIG. 35 described above.
^ m ι τ ο膣の形成  ^ m ι τ ο Vaginal formation
最後に、 スバッタリ ング装置 (アルバック社製 : S D Ρ— 5 5 0 V Τ) を用いて、 I Τ 0薄膜を約 1 2 0 0 Αで保護膜上にスバッタ リ ングして液晶駆動用の透明導電性薄膜を形成した。 このとき、 基 板温度を 2 0 0 、 I T O膜の表面抵抗を 2 0 ΩΖΕ1に調整した。 ブラックマ ト リ ッ クス形成  Finally, using a sputtering device (manufactured by ULVAC, Inc .: SDΡ550 VΤ), the IΤ0 thin film is sputtered on the protective film with a thickness of about 1200 0, and the liquid crystal is driven to be transparent. A conductive thin film was formed. At this time, the substrate temperature was adjusted to 200, and the surface resistance of the ITO film was adjusted to 20 ΩΖΕ1. Black matrix formation
こ こでは、 基板に C r薄膜を約 1 5 0 0 Aでスバックした (アル バック社製 : S D P— 5 5 0 V T型) 。 次に、 紫外線可溶化型のポ ジレジス ト剤 ( F H 2 1 3 0 : 富士ハン トエレク ト ロニクステク ノ ロ ジ一社製) を 1 , 5 00 r p mでスピンコー ト した。 ス ビンコ一 ト後、 9 0 °Cオーブンで 1 5分間熱処理 (プリべーク) を行った。 その後、 この基板をプロキシミティー方式の露光機 (プロキシ ミ テーギャ ップ 8 0 // m ) にセッ ト し、 ブラックマ ト リ ックスパター ンのマスク (第 2 3図) を通じて、 下地の I T Oパターンと位置合 わせをして S O m J Z c m2 で i線露光した。 次に、 無機アルカ リ 水溶液 (L S I現像液 : 富士ハン 卜エレク トロニクステク ノ ロジー 社製) の現像液で浸漬し、 純水にてリ ンスした後、 1 50 Cでボス トベーク した。 In this case, a Cr thin film was spun on the substrate at about 150 A (manufactured by ULVAC, Inc .: SDP-550VT type). Next, an ultraviolet solubilizing type resist agent (FH2130: manufactured by Fuji Hunt Electronics Technology Co., Ltd.) was spin-coated at 1,500 rpm. After the spin coating, a heat treatment (prebake) was performed in a 90 ° C oven for 15 minutes. The substrate is then set in a proximity-type exposure machine (proximity gap 80 // m) and aligned with the underlying ITO pattern through a black matrix pattern mask (Figure 23). Then, i-line exposure was performed using SO m JZ cm 2 . Next, it was immersed in a developing solution of an inorganic alkaline aqueous solution (LSI developer: manufactured by Fuji Hunt Electronics Technologies), rinsed with pure water, and baked at 150C.
さらに、 エッチヤ ン トと して硝酸セリ ウムアンモニゥム 1 6 5 g と過塩素酸 42 m 1 と純水 1 リ ッ トルの濃度の等量混合水溶液にて C rを 3分間エッチングした。 エッチングの終点は電気抵抗によつ て測定した。 次に、 純水でリ ンスし、 レジス トを有機アルカ リ水溶 液の剥離剤 (N— 30 3 : 長瀬産業社製) にて剥離した。 さらに、 純水で十分に洗浄し、 ブラ ッ クマ ト リ ックスを形成した。 このよう にして、 従前の第 35図をもって説明した構造 3に対応する力ラ一 フィ ルタを完成させた。  Further, as an etchant, Cr was etched for 3 minutes using an aqueous solution mixture of cerium ammonium nitrate (165 g), perchloric acid (42 ml) and 1 liter of pure water in the same amount. The end point of the etching was measured by electric resistance. Next, it was rinsed with pure water, and the resist was peeled off with a stripping agent (N-303: Nagase & Co., Ltd.) of an aqueous solution of organic alkali. Furthermore, it was thoroughly washed with pure water to form a black matrix. Thus, a force filter corresponding to the structure 3 described with reference to FIG. 35 is completed.
[比較例 4] (分散法力ラーフィ ルタ) ·  [Comparative Example 4] (Dispersion method power filter) ·
ブラックマ ト リ ツクス形成 Black matrix formation
この形成は、 クロム薄膜の代わりに酸化クロム薄膜とすることで トライアングル用ブラ ックマ ト リ ックス形成用マスク (第 24図) を用いたブラックマ ト リ ツクスの形成以外は比較例 2と同一の工程 で行った。  This formation is performed in the same process as in Comparative Example 2 except that a black matrix is formed using a black matrix for a triangle (FIG. 24) using a chromium oxide thin film instead of the chromium thin film. went.
ft素バターン形成 ft element pattern formation
ブラックマ ト リ ツクスを形成した基板上に、 赤色 (R) 色素含有 レジス ト C R— 2000 (富士ハン トエレク トロニクステクノ ロジ 一社製) を 500 r p mでスピンコー ト し、 85 °Cオーブンで 1 5 分間熱処理 (プリべーク) した。 次に、 酸素遮断膜 (C P : 富士ハ ン トエレク トロニクステクノ ロジ一社製) をレジス トと同様に積層 コー ト した。 この基板を、 コ ンタク ト露光機にセッ 卜 し、 ブラ ッ ク マ ト リ ッ クスと位置合わせ (ァライメ ン ト) して R色素パターンの マスク ( トライアングル用 : 第 2 2図) を通じて 3 0m J Z c m2 で i線露光し、 無機アル力 リ水溶液の現像液で (0. 1 N炭酸ナ ト リ ゥム水溶液 : C D : 富士ハン トエレク トロニクステクノ ロジ一社 製) でスブレイ一現像した。 さ らに、 純水シャ ワーでリ ンス し、 次 に、 20 0。Cオーブンで 6 0分間熱処理 (ポス トべーク) して、 R 色素バターンを形成した。 A red (R) dye-containing resist CR-2000 (manufactured by Fuji Hunt Electronics Technology) is spin-coated at 500 rpm on a substrate on which black matrix is formed, and heat-treated in an 85 ° C oven for 15 minutes. (Pre-bake) Next, an oxygen barrier film (CP: manufactured by Fuji Hunt Electronics Technology Co., Ltd.) was coated in the same manner as the resist. This substrate is set in a contact exposure machine, aligned with the black matrix, and aligned (aligned) with an R dye pattern mask (for triangles: Fig. 22). Exposure to i-rays with cm2, using a developing solution of an inorganic alkaline aqueous solution (0.1 N sodium carbonate aqueous solution: CD: Fuji Hunt Electronics Technology Co., Ltd.) ). In addition, rinse with pure water shower and then 200. Heat treatment (postbaking) in a C oven for 60 minutes formed an R dye pattern.
以下、 同様にして青色 (B) 色素含有レジス ト (C B— 20 0 0 : 富士ハン トエレク ト ロニクステク ノ ロジ一社製) 、 緑色 ( G ) 色 素含有レジス ト (C G— 20 00 : 富士ハン トエレク トロニクステ クノ ロジ一社製) をコー ト し、 それぞれの色素パターンのマスク ( トライアングル用 : 第 20, 21図) でァライメ ン ト露光、 現像、 リ ンス、 熱処理 (ポス トべーク) を繰り返して R, G, Bの色素パ ターンを形成した。  Hereinafter, similarly, a blue (B) pigment-containing resist (CB-200: manufactured by Fuji Hunt Electronics Technologies) and a green (G) pigment-containing resist (CG-200000: Fuji Hunt Electric) Co., Ltd.) and repeated exposure, development, rinsing, and heat treatment (post bake) with each dye pattern mask (for triangles: Fig. 20, 21). R, G, and B dye patterns were formed.
保護膣形成 · ^ m ι τ o 膣形成 Protective vaginal formation · ^ m ι τ o Vaginal formation
この形成は、 比較例 2と同一の工程を行い、 従前の第 3 6図をも つて説明した構造に対応するカラーフィ ルタを完成させた。  In this formation, the same steps as in Comparative Example 2 were performed, and a color filter corresponding to the structure described with reference to FIG. 36 was completed.
次に、 評価結果について説明する。  Next, the evaluation results will be described.
カラーフィルタの構造における生産歩留り、 色むら、 画素間段差、 精細度、 コン トラス ト、 耐熱性、 耐光性の評価結果と、 ブラックマ ト リ クスの組成、 遮光性、 ビンホール率、 膜面反射率の評価結果と を一覧にして (表 1及び表 2) に示す。 この (表 1及び表 2) 中の カラーフィ ルタ評価とブラックマ ト リ ツクス評価の各項目について 説明する。  Evaluation of the production yield, color unevenness, step between pixels, definition, contrast, heat resistance, and light resistance of the color filter structure, and the composition of the black matrix, light blocking properties, binhole ratio, and film surface reflectance The evaluation results and are listed (Tables 1 and 2). The items of color filter evaluation and black matrix evaluation in (Tables 1 and 2) are explained.
先ず、 カラーフィ ルタ評価項目を説明する。  First, the color filter evaluation items will be described.
生産歩留りは、 絶縁性基板 (ガラス基板) を 20枚投入した場合 のカラーフィルタの良品数の割合 (%) とする。 この良品の条件と して、 白欠陥及び黒欠陥の大きさが 30 //m径以上のものが存在し ないこととする。  The production yield is defined as the ratio (%) of the number of non-defective color filters when 20 insulating substrates (glass substrates) are loaded. As a condition of this non-defective product, it is assumed that there is no white defect or black defect having a size of 30 // m diameter or more.
色むらの基準と しては、 Δ Ε 1 0以下とする。 この場合、 ミセル 電解法によるカラーフィルタでは、 I T Oバターンの断線による色 素層の欠陥は白欠陥、 I T Oパターンのリークによる色素層の重複 は黒欠陥に相当する。 色むらは、 基板上 9点の画素の色度を R, G , B別に測定し、 そ の色差の最も大きいものを Δ Εと して評価する。 The standard of color unevenness is ΔΕ10 or less. In this case, in the color filter formed by the micellar electrolysis method, a defect in the color element layer due to the disconnection of the ITO pattern corresponds to a white defect, and a duplication of the dye layer due to a leak in the ITO pattern corresponds to a black defect. For color unevenness, the chromaticity of nine pixels on the substrate is measured separately for R, G, and B, and the one with the largest color difference is evaluated as ΔΕ.
表面段差は、 表面粗さ計によって、 R, G , B色素パターン及び ブラ ックマ ト リ ツクスの段差の最大値 (画素間) と、 R, G, B色 素パター ン各々の中央部と端部の段差の最大値 (画素内) の平均を β mで示す。  The surface step is measured by a surface roughness meter using the maximum value of the steps of the R, G, and B dye patterns and the black matrix (between pixels), and the center and edge of each of the R, G, and B color pattern. The average of the maximum value (in pixels) of the step is denoted by βm.
精細度は、 設計パターンに対する寸法精度 ( " in ) とする。  The definition is the dimensional accuracy ("in") for the design pattern.
コン トラス トは、 2枚の並行する偏光板の間に力ラーフィルタの 小片を挾み、 偏光板を 9 0度回転させ、 そのときの輝度の変化 (コ ン トラス ト) 割合を測定する。 分母に 9 0度回転させた値をとりそ のときの分子に回転させないものの値をとる。 カラーフィ ルタの小 片を挟まない場合は 2 0 0 0である。  In contrast, a small piece of a power filter is sandwiched between two parallel polarizers, the polarizers are rotated 90 degrees, and the change in brightness (contrast) at that time is measured. Take the value rotated by 90 degrees in the denominator, and take the value without rotation in the numerator at that time. When no small piece of color filter is inserted, the value is 20000.
耐熱性は、 2 6 0 C X 1時間 (空気雰囲気) の熱処理による色純 度 (G色素パターンについて) の変化率% (熱処理前の色純度と熱 処理後の色純度の差の割合) とする。 耐光性は、 1 0 0万ルクスの メ タルハラィ ドランブの 1 0 0 0時間照射による色純度 ( G色素パ ターンについて) の変化率% (照射前の色純度と照射後の色純度の 差の割合) とする。  Heat resistance is defined as the percentage change in color purity (for the G dye pattern) by heat treatment at 260 CX for 1 hour (air atmosphere) (the ratio of the difference between the color purity before heat treatment and the color purity after heat treatment). . Lightfastness is the percentage change in color purity (for the G dye pattern) of a 100,000 lux metalhalide drambe irradiated for 100 hours (the difference between the color purity before irradiation and the color purity after irradiation). ).
なお、 色純度は、 各色ごとに色度座標を取り、 C光源とその色度 座標を直線で結び、 外挿された直線と外周部の交点を色純度 1 0 0 %と した場合に、 その色度座標の C光源からの距離の割合である。 次に、 ブラッ クマ ト リ ックス評価項目を説明する。  The color purity is calculated by taking the chromaticity coordinates for each color, connecting the C light source and the chromaticity coordinates with a straight line, and setting the intersection of the extrapolated line and the outer periphery to 100% color purity. The ratio of the distance of the chromaticity coordinates from the C light source. Next, the black matrix evaluation items are explained.
遮光性は、 ブラ ックマ ト リ ックスの膜厚 1 . 0 mに換算した波 長 4 6 0 n mにおける吸光度とする。  The light-shielding property is defined as an absorbance at a wavelength of 460 nm, which is converted to a black matrix film thickness of 1.0 m.
ビンホール数は、 投入基板 2 0枚中において、 存在する 3 0 / m 以上のビンホールの数の一枚あたりの平均とする。  The number of binholes shall be the average of the number of binholes of 30 / m or more in 20 input substrates.
膜面反射率は、 膜面に入射した可視光 (4 6 0 n m ) 強度に対す る反射光強度の割合 (%) とする。 [表 1 ] The film surface reflectance is the ratio (%) of the reflected light intensity to the visible light (460 nm) intensity incident on the film surface. [table 1 ]
Figure imgf000072_0001
Figure imgf000072_0001
i 上 s s 下段 : s¾内平均 s差  i Upper s s Lower: s¾ mean s difference
£·) 上 S : R. G. B S/i 下 : BL色 ¾S (ブラ クマ卜り ΐ'クス)  £ ·) Top S: R. G. B S / i Bottom: BL color ¾S (black ΐ 'box)
3 ) ΐΚΒ L: ミ tル 法 SS =色色 B Lレジス卜 : 黑色色素含有レジス卜硬化 1* M¾KB: ミでル 麻¾»^¾色色^ S 力 ラ - フ ィ ル タ ^ 価 プラックマ 卜 リ 、ソクス^価 色^ 生 ¾ 色むら ^細度 トぅスト 性 光性 遮光 «3) t':'本- Ir 效 腠面 /!" 歩留り ,') 反射率 比 較 例 1 ストライフ 60 < S 0. ?5 ι2 0 6?0 0 0 BLレ スト n < 5 , 3) ΐΚΒ L: Middle method SS = Color BL register: 色素 Color dye-containing resist cured 1 * M¾KB: Mide ル »^ ¾ Color ^ S Force filter ^ value plaque matrix, sox ^ value color ^ production color unevenness ^ fineness toughness light opacity «3) t ':' book- Ir effect surface /!"') Reflectance comparison example 1 Strife 60 <S 0.?5 ι2 0 6? 0 0 0 BL rest n <5,
(ffigl) 0.15 i 3.0 1.0 比 較 例 2 イア]' -ナ H 25 < 5 0.45 ± 2.0 630 0 0 3  (ffigl) 0.15 i 3.0 1.0 Comparative Example 2 Ear] '-na H 25 <5 0.45 ± 2.0 630 0 0 3
(樣造 2) 0.15 ± 2.0 比 較 例 3 ii-n 20 < 5 0.wS I « 40 ί 2 0 590 0 0 m 2 45  (Form 2) 0.15 ± 2.0 Comparative Example 3 ii-n 20 <50.wS I «40 ί 20 590 0 0 m 2 45
(桷造 3) 0.15 ± 3 0 >3.5 比 較 例 4 トライアンう 85 < 5 0. i 3.0 870 0 75 酸化ゥ DA 3 10  0.15 ± 3 0> 3.5 Comparative Example 4 Trian 85 <50.i 3.0 870 0 75 Oxidation DA 3 10
0.05 ± 2.0 >3.5  0.05 ± 2.0> 3.5
1) 上 : 素間段差 下段: δ素內平 HIS差  1) Top: step between elements Bottom: delta element HIS difference
2) 上段: R. G. B色素層 下 S: B L色素屠 (ブラ、 yクマトリ、ソクス)  2) Upper row: R.G.B pigment layer Lower S: B L pigment layer (bra, y kumatori, socks)
30 M電解 ΒΙ_ ··ミセル電 «ま製腠黒色色素^ Βしレ ス卜.: 黒色色^含有レジスト《$化物 30 M electrolysis ΒΙ_ ··· Micellar electrode «Ma-made 腠 black dye ^ レ Resist .: Black ^ -containing resist << $ compound
t«B: ミヤル¾解法 S睽 色色  t «B: Miya¾ solution S 睽 color
〕 ^2 この (表 1及び表 2 ) 中の カラーフィ ルタ評価項目における表 面段差の結果を実施例 2を例にして説明する。 ] ^ 2 The results of the surface step in the color filter evaluation items in Tables 1 and 2 will be described using Example 2 as an example.
第 3 1図 ( a ) は実施例 2にあって、 表面粗さ計で計測した R , G, B色素パターン及びブラ ックマ ト リ ツクスの段差の最大値であ る画素間段差 (m a x — m i n ) を示し、 その値は (表 1及び表 2 ) 中から 0. 1 0 mである。 また、 第 3 1図 ( b ) は、 R, G , B 色素パターン各々の中央部と端部の段差の最大値である画素内 (平 均) 段差 (m a X— m i n ) を示し、 その値は (表 1及び表 2 ) 中 カヽら 0. 0 2 / mである。  FIG. 31 (a) shows Example 2, in which the step between pixels (max — min), which is the maximum value of the steps of the R, G, B dye patterns and black matrix measured by a surface roughness meter, is shown. ), And its value is 0.10 m from (Table 1 and Table 2). Fig. 31 (b) shows the (average) step (maX-min) in the pixel, which is the maximum value of the step between the center and the end of each of the R, G, and B dye patterns. In Tables 1 and 2 is 0.02 / m.
第 3 1図 ( c ) は比較例 2、 すなわち、 従前の説明の構造 2での 表面粗さ計で計測した R, G, B色素パターン及びブラッ クマ ト リ ッ クスの段差の最大値である画素間段差 (m a x— m i n ) を示し、 その値は (表 1及び表 2 ) 中から 0. 4 5 mである。 また、 第 3 1図 ( d ) は、 R, G , B色素パターン各々の中央部と端部の段差 の最大値である画素内 (平均) 段差 (m a x — m i n ) を示し、 そ の値は (表 1及び表 2 ) 中から 0. 1 5 mである。  Fig. 31 (c) shows the maximum value of the step of the R, G, B dye pattern and the black matrix measured by the surface roughness meter in Comparative Example 2, that is, the structure 2 described above. Indicates the step between pixels (max-min), and the value is 0.45 m from Tables 1 and 2. Fig. 31 (d) shows the (average) step (max-min) in the pixel, which is the maximum value of the step between the center and the end of each of the R, G, and B dye patterns. (Table 1 and Table 2) It is 0.15 m.
このように実施例 2では画素間段差、 画素内 (平均) 段差ともに 小さい。 すなわち、 色素層が平坦に製膜されるため、 同一色素バタ 一ン内の段差が低減し、 透過する光の散乱を低減し、 コン トラス ト も良好である。  Thus, in the second embodiment, both the step between pixels and the step within the pixel (average) are small. That is, since the dye layer is formed flat, the steps in the same dye pattern are reduced, the scattering of transmitted light is reduced, and the contrast is good.
さらに、 (表 1及び表 2 ) に示すように、 この実施例のカラーフ ィ ルタでは、 種々の色素パターン配置に対しても、 歩留り良く生産 でき、 色むらが低減し、 平坦性を向上する。 したがって、 画質が向 上 (コン トラス ト向上) し、 今後の高精細化に十分対応できるこ と が確認できた。  Further, as shown in (Table 1 and Table 2), the color filter of this embodiment can be produced with a high yield even with various dye pattern arrangements, reduces color unevenness, and improves flatness. Therefore, it was confirmed that the image quality was improved (contrast was improved) and that it was possible to sufficiently cope with future high definition.
さらに、 耐熱性、 耐光性という ミセル電解法によるカラ一フィ ル 夕の長所を損なわないという ことも確認した。  In addition, it was confirmed that the advantages of heat and light resistance of the color filter by the micellar electrolysis method were not impaired.
一方、 ブラッ クマ ト リ ックスに関しても、 ミセル電解法による黒 色色素を製膜するような温和な製造条件において、 遮光性では金属 (ク ロム) 又は金属酸化物 (酸 ί匕 7^ロム) と略同等であることを確 . ? o On the other hand, for black matrix, under mild manufacturing conditions such as formation of a black pigment by micellar electrolysis, light shielding metal (Chrom) or metal oxide (oxidation 7 ^ rom).
また、 金属及び金属酸化物薄膜、 黒色色素含有レジス ト硬化物に 比較して、 ブラ ックマ ト リ ックスと しての精細度が良好であるこ と が判明した。  It was also found that the fineness as a black matrix was better than that of a metal and metal oxide thin film and a black dye-containing resist cured product.
さ らに、 ミセル電解法で製膜された色素層と金属薄膜 (クロム) を併用することによって、 ビンホールの発生と金属薄膜の反射を低 減できた。 産業上の利用可能性  In addition, the combined use of a dye layer formed by micellar electrolysis and a metal thin film (chromium) reduced the occurrence of binholes and the reflection of the metal thin film. Industrial applicability
以上説明したように、 本発明の力ラーフィ ルタ及びその製造方法 は、 カラ一液晶デイスブレイ、 オーロラ ビジョ ン等の屋内外大画面 画像情報表示装置、 固体撮像素子 ( C C D ) 等を用いる各種電気機 器産業、 情報機器産業等において好適に使用するこ とができる。  As described above, the power filter and the method of manufacturing the same according to the present invention can be applied to various kinds of electric devices using a large-screen indoor / outdoor image information display device such as a color liquid crystal display, an aurora vision, etc. It can be suitably used in industry, information equipment industry, and the like.

Claims

請求 の 範囲 The scope of the claims
1 . 絶縁性基板上に、 複数色の色素層を分離して配置し、 所定 の色素パタ一ンを形成したカラーフ ィ ルタにおいて、 絶縁性基板上 の少なく とも表示部全面又は表示画素部を含む連続するパターンに 対応する部分に積層して形成した透明導電性薄膜、 この透明導電性 薄膜の全面又は一部上にミセル電解法による製膜によって分離して 配置した複数色の色素層、 及び、 この色素層の上に積層して形成し た透明な光硬化性レジス トの硬化物をこの順で有することを特徴と するカラーフィ ノレ夕。 1. In a color filter in which a plurality of color dye layers are separately arranged on an insulating substrate and a predetermined dye pattern is formed, at least the entire display portion or the display pixel portion on the insulating substrate is included in the color filter. A transparent conductive thin film laminated and formed on a portion corresponding to a continuous pattern, a plurality of color dye layers separated and arranged on the entire or a part of the transparent conductive thin film by film formation by a micellar electrolytic method, and A color finish comprising a transparent photocurable resist cured product formed in this order, laminated on the dye layer.
2 . 前記複数色の色素層が、 三原色に対応するものである請求 項 1記載のカラーフィ ルタ。  2. The color filter according to claim 1, wherein the plurality of color dye layers correspond to three primary colors.
3 . 前記複数色の色素層が、 三原色及び黒色の四色に対応する ものである請求項 1記載のカラーフィルタ。  3. The color filter according to claim 1, wherein the plurality of color dye layers correspond to three primary colors and four black colors.
4 . 前記透明な光硬化性レジス トの硬化物の上に積層して形成 した保護膜をさらに有することを特徴とする請求項 1〜 3のいずれ か 1項記載の力ラーフィルタ。  4. The power filter according to any one of claims 1 to 3, further comprising a protective film formed by being laminated on the cured product of the transparent photocurable resist.
5 . 絶縁性基板上に複数色の色素層を分離して配置し、 所定の 色素パターンを形成する力ラーフィ ルタの製造方法において、 a ) 絶縁性基板上の少なく とも表示部全面又は表示画素部を含む連 続するパターンに対応する部分に、 透明導電性薄膜を積層して形成 する工程、  5. A method for manufacturing a power filter that separates and arranges a plurality of color dye layers on an insulating substrate to form a predetermined dye pattern, comprising: a) at least the entire display portion or the display pixel portion on the insulating substrate; A step of laminating and forming a transparent conductive thin film on a portion corresponding to a continuous pattern including
b ) 透明導電性薄膜の全面又は一部に、 ミセル電解法による製膜に よって、 複数色から選択した一つの色の色素層を形成する工程、 c ) 一つの色の色素層の上に透明な光硬化性レジス 卜を積層し、 前 記複数色から選択した一つの色の色素層に対応したマスクを用いて 露光し、 かつ露光部の熱処理の前及び 又は後に、 未露光部分の光 硬化性レジス ト及び色素層を除去して、 一つの色の色素層を配置す る工程、 d ) 前記工程 b ) 及び c ) と同様の工程をさ らに一回以上繰り返し て、 複数色の残りの色の色素層を、 透明導電性薄膜の全面又は一部 に、 それぞれ分離して配置し、 複数色の色素パターンを形成するェ 程、 b) a step of forming a dye layer of one color selected from a plurality of colors on the entire surface or a part of the transparent conductive thin film by film formation by micellar electrolysis, c) transparent on the dye layer of one color And then exposing using a mask corresponding to the dye layer of one color selected from the above-mentioned multiple colors, and before and / or after heat treatment of the exposed part, photo-curing of the unexposed part Removing the resist and the dye layer to arrange a dye layer of one color, d) The same steps as steps b) and c) are repeated one or more times, and the dye layers of the remaining colors of the plurality of colors are separately arranged on the entire surface or a part of the transparent conductive thin film. To form a multi-color dye pattern,
を含むこ とを特徴とするカラーフィ ルタの製造方法。 A method for producing a color filter, comprising:
6 . 前記複数色の色素層が、 三原色に対応するものである請求 項 5記載のカラーフィ ルタの製造方法。  6. The method for producing a color filter according to claim 5, wherein the dye layers of the plurality of colors correspond to three primary colors.
7 . 前記複数色の色素層が、 三原色及び黒色の四色に対応する ものである請求項 5記載のカラーフィルタの製造方法。  7. The method for producing a color filter according to claim 5, wherein the dye layers of the plurality of colors correspond to three primary colors and four black colors.
8 . 前記工程 d ) のあとに、 複数色の色素パターンをマスク と して色素バターンの存在していない部分の透明導電性薄膜をエツチ ングすることによって、 透明導電性薄膜のパターンを形成するこ と を特徴とする請求項 5〜 7のいずれか 1項記載の力ラーフィ ルタの 製造方法。  8. After the step d), the pattern of the transparent conductive thin film is formed by etching the portion of the transparent conductive thin film where there is no dye pattern using the dye pattern of a plurality of colors as a mask. The method for producing a force filter according to any one of claims 5 to 7, characterized in that:
9 . 絶縁性基板上に、 三原色の色素層を分離して配置し、 所定 の色素パタ一ンを形成するとともに、 ブラックマ ト リ ックスを形成 するカラーフィ ルタの製造方法において、  9. In a method of manufacturing a color filter for forming a predetermined dye pattern by separately arranging three primary color dye layers on an insulating substrate, and forming a black matrix,
a ) 絶縁基板上に、 ブラックマ トツ リ ックスと して、 所定の形状に 金属または金属酸化膜薄膜を積層して形成する工程、 a) a process of laminating a metal or metal oxide thin film in a predetermined shape on an insulating substrate as a black matrix,
b ) 金属または金属酸化膜薄膜の少なく とも表示部全面又は表示画 素部を含む連続するパターンに対応する部分に、 透明導電性薄膜を 積層して形成する工程、 b) a step of laminating a transparent conductive thin film on at least the entire display portion or a portion corresponding to a continuous pattern including the display pixel portion of the metal or metal oxide thin film,
c ) 透明導電性薄膜の全面又は一部に、 ミセル電解法による製膜に よって、 三原色から選択した一つの色の色素層を形成する工程、 d ) 色素層の上に透明な光硬化性レジス トを積層し、 前記三原色か ら選択した一つの色の色素層に対応したマスクを用いて露光し、 か つ露光部の熱処理の前及び 又は後に、 未露光部分のレジス ト及び 色素層を除去して一色目の色素層を配置する工程、 c) a step of forming a dye layer of one of the three primary colors on the entire surface or a part of the transparent conductive thin film by film formation by micellar electrolysis, d) a transparent photocurable resist on the dye layer. Are exposed using a mask corresponding to a dye layer of one of the three primary colors, and before and / or after the heat treatment of the exposed portion, the resist and the dye layer of the unexposed portion are removed. And disposing the first color dye layer,
e ) 前記工程 c ) 及び d ) と同様の工程をさ らに一回以上繰り返し て、 三原色の残りの色の色素層を、 透明導電性薄膜の全面又は一部 に、 それぞれ分離して配置し、 三原色の色素パター ンを形成するェ 程、 e) Repeat the above steps c) and d) one or more times The dye layers of the remaining three primary colors are separately arranged on the entire surface or a part of the transparent conductive thin film to form the three primary color dye patterns,
を含むこ とを特徴とするカラーフィ ル夕の製造方法。 A method for producing a color filter, comprising:
1 0 . 絶縁性基板上に、 三原色の色素層を分離して配置し、 所 定の色素バターンを形成するとともに、 ブラ ックマ ト リ ツクスを形 成するカラーフィ ルタの製造方法において、  10. In a method of manufacturing a color filter for forming a black matrix while forming a predetermined dye pattern by separately arranging three primary color dye layers on an insulating substrate,
a ) 絶縁性基板上の少なく とも表示部全面又は表示画素部を含む連 続するパターンに対応する部分に、 透明導電性薄膜を積層して形成 する工程、  a) a step of laminating a transparent conductive thin film on at least the entire display portion or a portion corresponding to a continuous pattern including the display pixel portion on the insulating substrate;
b ) 透明導電性薄膜の全面又は一部に、 ミセル電解法による製膜に よって、 三原色から選択した一つの色の色素層を形成する工程、 c ) 色素層の上に透明な光硬化性レジス トを積層し、 前記三原色か ら選択した一つの色の色素層に対応したマスクを用いて露光し、 か つ露光部の熱処理の前及びノ又は後に、 未露光部分のレジス ト及び 色素層を除去して、 一色目の色素層を配置する工程、  b) a step of forming a dye layer of one of the three primary colors on the entire surface or a part of the transparent conductive thin film by film formation by micellar electrolysis, c) a transparent photocurable resist on the dye layer. Are exposed using a mask corresponding to the dye layer of one of the three primary colors, and before and / or after the heat treatment of the exposed part, the unexposed resist and the dye layer are removed. Removing and placing the first color dye layer,
d ) 前記工程 b ) 及び c ) と同様の工程をさ らに一回以上繰り返し て、 三原色の残りの色の色素層を、 透明導電性薄膜の全面又は一部 に、 それぞれ分離して配置し、 三原色の色素パターンを形成するェ 程、 d) The same steps as steps b) and c) are repeated one or more times, and the dye layers of the remaining three primary colors are separately arranged on the entire surface or a part of the transparent conductive thin film. Forming the three primary color dye patterns,
e ) 前記三原色の色素層をそれぞれ分離して配置する前, 中間, 又 は後に、 配置される予定の、 又は配置された三原色の色素層の間の 位置に、 黒色色素を含有する光硬化性レジス トをフ ォ ト リ ソクラフ ィ 一法によって、 ブラ ックマ ト リ ックスとして所定の形状で形成し、 ブラックマ ト リ ッ クスを形成する工程、 e) a photocurable material containing a black pigment before, during, or after each of the three primary color layers is separately disposed, at a position between the three primary color layers to be disposed, or between the disposed three primary color layers; Forming a resist in a predetermined shape as a black matrix by a photolithography method, and forming a black matrix;
を含むこ とを特徴とするカラーフィ ルタの製造方法。 A method for producing a color filter, comprising:
1 1 . 絶縁性基板上に、 三原色の色素層を分離して配置し、 所 定の色素パターンを形成するとともに、 ブラ ックマ ト リ ッ クスを形 成するカラーフィ ルタの製造方法において、 a ) 絶縁性基板上の少なく と も表示部全面又は表示画素部を含む連 続するパターンに対応する部分に、 透明導電性薄膜を積層して形成 する工程、 11 1. In a method for manufacturing a color filter for forming a black matrix while forming a predetermined dye pattern by separately disposing three primary color dye layers on an insulating substrate, a) a step of laminating a transparent conductive thin film on at least the entire display portion or a portion corresponding to a continuous pattern including the display pixel portion on the insulating substrate;
b ) 透明導電性薄膜の全面又は一部に、 三原色から選択した一つの 色の色素を含有する光硬化性レジス トを積層し、 前記三原色から選 択した一つの色の色素層に対応したマスクを用いて露光、 現像し、 未露光部分のレジス トを除去して、 一色目の色素層を配置する工程, c ) 前記 I ¾ b ) と同様の工程をさ らに一回以上繰り返して、 三原 色の残りの色の色素層を、 透明導電性薄膜の全面又は一部に、 それぞれ分離して配置し、 三原色の色素パターンを形成する工程、 d ) 前記三原色の色素層をそれぞれ分離して配置した後に、 配置さ れた三原色の色素層の間の位置に、 黒色の色素層をミセル電解法に よる製膜によつて所定の形状で形成し、 ブラ ックマ ト リ ックスを形 成する工程、  b) A photo-curable resist containing a dye of one color selected from the three primary colors is laminated on the entire surface or a part of the transparent conductive thin film, and a mask corresponding to the dye layer of one color selected from the three primary colors is used. Exposure and development using, removing the resist of the unexposed portion, and arranging the dye layer of the first color, c) repeating the same process as the above I ¾ b) one or more times, The dye layers of the remaining three primary colors are separately arranged on the entire surface or a part of the transparent conductive thin film to form a three primary color dye pattern, d) separating the three primary color dye layers, respectively. After disposing, a black dye layer is formed in a predetermined shape by a film formation by micellar electrolysis at a position between the arranged three primary color dye layers, thereby forming a black matrix. ,
を含むこ とを特徵とするカラーフィ ルタの製造方法。 A method for producing a color filter, characterized by including:
1 2 . 前記工程 a ) の前に、 前記絶縁性基板上の前記工程 d ) で形成される黒色の色素層に対応する位置に、 黒色色素を含有する 光硬化性レジス トの硬化物、 又は金属もしく は金属酸化物薄膜を形 成することを特徴とする請求項 1 1記載のカラーフィ ルタの製造方 法 0  12. Before the step a), at a position corresponding to the black dye layer formed in the step d) on the insulating substrate, a cured product of a photocurable resist containing a black dye, or The method for producing a color filter according to claim 11, wherein a metal or a metal oxide thin film is formed.
1 3 . 前記透明な光硬化性レジス トを積層する方法が、 ミセル 電解法、 又は、 電着法による製膜方法であることを特徴とする請求 項 5〜 1 2のいずれか 1項記載のカラーフィ ルタの製造方法。  13. The method according to any one of claims 5 to 12, wherein the method of laminating the transparent photocurable resist is a film formation method by a micelle electrolysis method or an electrodeposition method. Manufacturing method for color filters.
1 4 . 前記透明な光硬化性レジス トを積層する前に、 前記色素 層を紫外線洗浄するこ とを特徴とする請求項 5〜 1 2のいずれか 1 項記載のカラーフィルタの製造方法。  14. The method for producing a color filter according to any one of claims 5 to 12, wherein the dye layer is washed with ultraviolet light before laminating the transparent photocurable resist.
1 5 . 前記絶縁性基板、 又は金属もしく は金属酸化物薄膜の少 なく とも表示部全面又は表示画素部を含む連続するバターンに対応 する部分に積層して形成した透明導電性薄膜上の表示部に対応する 部分を除いた部分に、 保護膜を積層して形成したこ とを特徴とする 請求項 5〜 1 4のいずれか 1項記載の力ラ一フィ ルタの製造方法。 15. Display on the insulating substrate or on the transparent conductive thin film formed by laminating on at least the entire display portion or a portion corresponding to a continuous pattern including the display pixel portion on the metal or metal oxide thin film Corresponding to the department The method for producing a filter according to any one of claims 5 to 14, wherein a protective film is formed by laminating a portion excluding the portion.
1 6 . 前記複数色の色素パターン、 または三原色の色素パター ン及びブラ ックマ ト リ ツクスを形成した後に、 さらに保護膜を積層 形成することを特徴とする請求項 5〜 1 5記載の力ラーフィ ルタの 製造方法。  16. The force filter according to any one of claims 5 to 15, wherein a protective film is further formed after the formation of the plurality of color patterns or the three primary color patterns and the black matrix. Manufacturing method.
1 7 . カラーフィ ルタの三原色の色素パタ一ンの間の導電性薄 膜上にミ セル電解法で黒色色素を製膜して形成することを特徴とす るブラ ッ クマ ト リ ツクスの製造方法。  17 7. A black matrix manufacturing method characterized in that a black dye is formed on a conductive thin film between the three primary color dye patterns of a color filter by micellar electrolysis. .
PCT/JP1993/001269 1992-09-08 1993-09-07 Color filter and production method therefor WO1994006037A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP26542292 1992-09-08
JP4/265422 1992-09-08
JP9199793 1993-03-26
JP5/91997 1993-03-26

Publications (1)

Publication Number Publication Date
WO1994006037A1 true WO1994006037A1 (en) 1994-03-17

Family

ID=26433428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/001269 WO1994006037A1 (en) 1992-09-08 1993-09-07 Color filter and production method therefor

Country Status (1)

Country Link
WO (1) WO1994006037A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150086519A (en) * 2012-11-21 2015-07-28 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Optical diffusing films and methods of making same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52146120A (en) * 1976-05-31 1977-12-05 Hitachi Ltd Manufacture for stripe filters
JPS6211824A (en) * 1985-06-28 1987-01-20 Stanley Electric Co Ltd Manufacture of color liquid crystal display element
JPS6450023A (en) * 1987-08-21 1989-02-27 Matsushita Electric Ind Co Ltd Production of color filter
JPH02294602A (en) * 1989-05-10 1990-12-05 Seiko Epson Corp Production of color filter
JPH03282502A (en) * 1990-03-30 1991-12-12 Hoya Corp Color filter
JPH04172303A (en) * 1990-11-05 1992-06-19 Seiko Instr Inc Manufacture of multicolor type surface colored body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52146120A (en) * 1976-05-31 1977-12-05 Hitachi Ltd Manufacture for stripe filters
JPS6211824A (en) * 1985-06-28 1987-01-20 Stanley Electric Co Ltd Manufacture of color liquid crystal display element
JPS6450023A (en) * 1987-08-21 1989-02-27 Matsushita Electric Ind Co Ltd Production of color filter
JPH02294602A (en) * 1989-05-10 1990-12-05 Seiko Epson Corp Production of color filter
JPH03282502A (en) * 1990-03-30 1991-12-12 Hoya Corp Color filter
JPH04172303A (en) * 1990-11-05 1992-06-19 Seiko Instr Inc Manufacture of multicolor type surface colored body

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
POLYMER SOCIETY-EDIT., "Microworking and Resist", 15 November 1987, KYORITSU SHUPPAN, p. 3-5. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150086519A (en) * 2012-11-21 2015-07-28 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Optical diffusing films and methods of making same
KR102109473B1 (en) 2012-11-21 2020-05-12 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Optical diffusing films and methods of making same

Similar Documents

Publication Publication Date Title
JP3073769B2 (en) Color filter, method of manufacturing the same, and liquid crystal projector using the color filter
TW484022B (en) Color filter and the manufacturing method thereof
EP0572672A1 (en) Process for manufacturing multicolor display
US5561011A (en) Method for manufacturing a substrate having window-shaped coating films and frame-shaped coating film on the surface thereof
JP2001281441A (en) Method for manufacturing color filter for reflection type liquid crystal display
JP3367081B2 (en) Manufacturing method of color filter
JP3405570B2 (en) Manufacturing method of color filter
WO1994006037A1 (en) Color filter and production method therefor
EP0636932A1 (en) Method for manufacturing a substrate having window-shaped and frame-shaped coating films on the surface thereof
JP3336674B2 (en) Method of reproducing color filter substrate and method of manufacturing color filter using the same
US5578403A (en) Method for manufacture of a substrate having window-shaped and frame-shaped coating films on the surface thereof
JP2002365420A (en) Color filter and liquid crystal display device
US6110625A (en) Methods for manufacturing color filters
JP3207616B2 (en) Black matrix and method for producing the same
JPH09166707A (en) Production of color filter substrate
JP3086361B2 (en) Manufacturing method of thin film and color filter
JPH075319A (en) Production of color filter and black matrix
JP3258128B2 (en) Liquid crystal display panel manufacturing method
JPH0749416A (en) Manufacture of color filter
JP3523371B2 (en) Color filter substrate and color liquid crystal display
JP3147979B2 (en) Method for producing thin film and method for producing color filter using the method
JPH0413106A (en) Resist for light shielding film, production of light shielding film using this resist for light shielding film and production of color filter using resist for light shielding film
JP2659638B2 (en) Method for producing micelle dispersion or micelle solubilizing solution, thin film and color filter
JP2634977B2 (en) Method for producing thin film and color filter
JPH02239204A (en) Color filter and production thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase