WO1994002578A1 - Dye transfer inhibiting compositions comprising polymeric dispersing agents - Google Patents

Dye transfer inhibiting compositions comprising polymeric dispersing agents Download PDF

Info

Publication number
WO1994002578A1
WO1994002578A1 PCT/US1993/006221 US9306221W WO9402578A1 WO 1994002578 A1 WO1994002578 A1 WO 1994002578A1 US 9306221 W US9306221 W US 9306221W WO 9402578 A1 WO9402578 A1 WO 9402578A1
Authority
WO
WIPO (PCT)
Prior art keywords
dye transfer
group
composition according
transfer inhibiting
inhibiting composition
Prior art date
Application number
PCT/US1993/006221
Other languages
French (fr)
Inventor
Abdennaceur Fredj
James Pyott Johnston
Christiaan Arthur J. K. Thoen
Original Assignee
The Procter & Gamble Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP19920870181 external-priority patent/EP0596184B1/en
Priority claimed from EP93870109A external-priority patent/EP0581753B1/en
Application filed by The Procter & Gamble Company filed Critical The Procter & Gamble Company
Priority to AU46581/93A priority Critical patent/AU4658193A/en
Priority to JP6504482A priority patent/JPH08511811A/en
Publication of WO1994002578A1 publication Critical patent/WO1994002578A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3792Amine oxide containing polymers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0021Dye-stain or dye-transfer inhibiting compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3723Polyamines or polyalkyleneimines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3757(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3769(Co)polymerised monomers containing nitrogen, e.g. carbonamides, nitriles or amines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3769(Co)polymerised monomers containing nitrogen, e.g. carbonamides, nitriles or amines
    • C11D3/3773(Co)polymerised monomers containing nitrogen, e.g. carbonamides, nitriles or amines in liquid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • C11D3/38645Preparations containing enzymes, e.g. protease or amylase containing cellulase

Definitions

  • the present invention relates to a composition and a process for inhibiting dye transfer between fabrics during washing. More in particular, this invention relates to dye transfer inhibiting compositions comprising polyamine N-oxide containing polymers and polymeric dispersing agents.
  • Polymeric dispersing agents have been commonly used in detergent compositions to assist in removal of particulate soil from fabrics, textiles.
  • each polymeric dispersing agent to meet various performance criteria is among others depending on the presence of adjunct detergent ingredients .
  • the detergent formulator is faced with a difficult task of providing detergent compositions which have an excellent overall performance.
  • One of the types of adjunct detergent ingredients that is added to detergent compositions are dye transfer inhibiting polymers. Said polymers are added to detergent compositions in order to inhibit the transfer from dyes of colored fabrics onto other fabrics washed therewith. These polymers have the ability to complex or adsorb the fugitive dyes washed out of dyed fabrics before the dyes have the opportunity to become attached to other articles in the wash.
  • polyamine N-oxide containing polymers are very compatible with polymeric dispersing agents.
  • the overall detergent performance has been increased in the presence of certain polymeric dispersing agents.
  • a process is also provided for laundering operations involving colored fabrics.
  • the present invention relates to inhibiting dye transfer compositions comprising
  • u A is NC, CO, C, -0-, -S-, -N- ; x is 0 or 1;
  • R are aliphatic, ethoxylated aliphatics, aromatic, heterocyclic or alicyclic groups or any combination thereof whereto the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-O group form part of these groups.
  • compositions of the present invention comprise as an essential element a polyamine N-oxide containing polymer which contain units having the following structure formula (I) :
  • P is a polymerisable unit, whereto the R-N-0 group can be attached to or wherein the R-N-0 group forms part of the polymerisable unit or a combination of both.
  • A is NC, CO, C, -0-,-S-, -N- ; x is 0 or 1;
  • R are aliphatic, ethoxylated aliphatics, aromatic, heterocyclic or alicyclic groups or any combination thereof whereto the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-O group is part of these groups.
  • the N-O group can be represented by the following general structures :
  • Rl, R2, and R3 are aliphatic groups, aromatic, heterocyclic or alicyclic groups or combinations thereof, x or/and y or/and z is 0 or 1 and wherein the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-O group forms part of these groups.
  • the N-O group can be part of the polymerisable unit (P) or can be attached to the polymeric backbone or a combination of both.
  • Suitable polyamine N-oxides wherein the N-O group forms part of the polymerisable unit comprise polyamine N-oxides wherein R is selected from aliphatic, aromatic, alicyclic or heterocyclic groups.
  • polyamine N-oxides comprises the group of polyamine N-oxides wherein the nitrogen of the N-O group forms part of the R-group.
  • Preferred polyamine N-oxides are those wherein R is a heterocyclic group such as pyrridine, pyrrole, imidazole, pyrrolidine, piperidine, quinoline, acridine and derivatives thereof.
  • Another class of said polyamine N-oxides comprises the group of polyamine N-oxides wherein the nitrogen of the N-O group is attached to the R-group.
  • polyamine N-oxides are the polyamine oxides whereto the N-O group is attached to the polymerisable unit.
  • Preferred class of these polyamine N-oxides are the polyamine N-oxides having the general formula (I) wherein R is an aromatic, heterocyclic or alicyclic groups wherein the nitrogen of the N-O functional group is part of said R group.
  • polyamine N-oxides are the polyamine oxides having the general formula (I) wherein R are aromatic, heterocyclic or alicyclic groups wherein the nitrogen of the N-
  • polyamine oxides wherein R groups can be aromatic such as phenyl.
  • Any polymer backbone can be used as long as the amine oxide polymer formed is water-soluble and has dye transfer inhibiting properties.
  • suitable polymeric backbones are polyvinyls, polyalkylenes, polyesters, polyethers, polyamide, polyimides, polyacrylates and mixtures thereof.
  • the amine N-oxide polymers of the present invention typically have a ratio of amine to the amine N-oxide of 10:1 to 1:1000000.
  • the amount of amine oxide groups present in the polyamine N-oxide containing polymer can be varied by appropriate copolymerization or by appropriate degree of N- oxidation.
  • the ratio of amine to amine N-oxide is from 2:3 to 1:1000000. More preferably from 1:4 to 1:1000000, most preferably from 1:7 to 1:1000000.
  • the polymers of the present invention actually encompass random or block copolymers where one monomer type is an amine N-oxide and the other monomer type is either an amine N-oxide or not.
  • the amine oxide unit of the polyamine N-oxides has a PKa ⁇ 10, preferably PKa ⁇ 7, more preferred PKa ⁇ 6.
  • the polyamine N-oxide containing polymer can be obtained in almost any degree of polymerisation.
  • the degree of polymerisation is not critical provided the material has the desired water-solubility and dye-suspending power.
  • the average molecular weight of the polyamine N- oxide containing polymer is within the range of 500 to 1000 , 000 ; pre f erably from 1,000 to 50,000, more preferably from
  • the polyamine N-oxide containing polymers of the present invention are typically present from 0.001 to 10%, more preferably from 0.01 to 2%, most preferred from 0.05 to 1% by weight of the dye transfer inhibiting composition.
  • the present compositions are conveniently used as additives to conventional detergent compositions for use in laundry operations.
  • the present invention also encompasses dye transfer inhibiting compositions which will contain detergent ingredients and thus serve as detergent compositions.
  • the production of the polyamine-N-oxide containing polymer may be accomplished by polymerizing the amine monomer and oxidizing the resultant polymer with a suitable oxidizing agent, or the amine oxide monomer may itself be polymerized to obtain the polyamine N-oxide.
  • polyamine N-oxide containing polymer can be exemplified by the synthesis of polyvinyl-pyridine N-oxide.
  • Poly-4-vinylpyridine ex Polysciences (mw. 50 000, 5.0 g. , 0 .0475 mole) was predisolved in 50 ml acetic acid and treated with a peracetic acid solution (25 g of glacial acetic acid, 6.4 g of a 30% vol. solution of H 2 0 2 , and a few drops of H 2 S0 4 give 0.0523 mols of peracetic acid) via a pipette. The mixture was stirred over 30 minutes at ambient temperature (32 C) .
  • the mixture was then heated to 80-85 C using an oil bath for 3 hours before allowing to stand overnight.
  • the polymer solution then obtained is mixed with 11 of acetone under agitation.
  • the resulting yellow brown viscous syrup formed on the bottom is washed again with 11 of aceton to yield a pale crystalline solid.
  • the amine : amine N-oxide ratio of this polymer is 1:4 (determined by NMR) .
  • compositions according to the present invention comprise in addition to the polyamine-N-oxide containing polymers a polymeric dispersing agent.
  • Suitable polymeric dispersing agents include polymeric polycarboxylates, polyethylene glycols and alkoxylated polyamines, although others known in the art can also be used. Said polymeric dispersing agents have found to be especially suitable for improving clay and particulate stain removal in detergent compositions formulated with high levels of polyamine N-oxide containing polymers and/or detergent compositions formulated with polyamine N-oxide containing polymers with a high average molecular weight range.
  • compositions hereof will contain at least about 0.5%, preferably from about 1% to about 10%, more preferably from about 2% to about 5%, of the polymeric dispersing agent.
  • Polycarboxylate materials which can be employed as the polymeric dispersing agent component herein are these polymers or copolymers which contain at least about 60% by weight of monomer units with the general formula
  • X, Y and Z are each selected from the group consisting of hydrogen, methyl, carboxy, carboxymethyl, hydroxy and hydroxymethyl; M a salt-forming cation and n is from about 30 to about 400.
  • X is hydrogen or hydroxy
  • Y is hydrogen or carboxy
  • Z is hydrogen
  • M is hydrogen, alkali metal, ammonia or substituted ammonium.
  • Polymeric polycarboxylate materials of this type can be prepared by polymerizing or copolymerizing suitable unsaturated carboxylate monomers, preferably in their acid form.
  • suitable monomer starting materials include acrylates, maleates, fumarates, itaconates, aconitates, mesaconates, citraconates, and methylenemalonates.
  • Corresponding unsaturated monomeric acids that can be polymerized to form suitable polymeric polycarboxylates include acrylic acid, maleic acid (or maleic anhydride) , fumaric acid, itaconic acid, aconitic acid, mesaconic acid, citraconic acid and methylenemalonic acid.
  • polymeric polycarboxylates herein of monomeric segments, containing non-carboxylate radicals such as vinylmethyl ether, styrene, ethylene, etc. is suitable provided that such segments do not constitute more than about 40% by weight.
  • Particularly suitable polymeric polycarboxylates are the polymeric poly-acrylates which, preferably, are derived from acrylic acid.
  • acrylic acid-based polymers which are useful herein include the water-soluble salts of polymerized acrylic acid.
  • the average molecular weight of such polyacrylate polymers will preferably be at least about 1,000 and will preferably range from about 2,000 to 10,000, more preferably from about 4,000 to 7,000, and most preferably from about 4,000 to 5,000, said molecular weights being based upon the acid form.
  • Water-soluble salts of such acrylic acid polymers can include, for example, the alkali metal, ammonium and substituted ammonium salts. Soluble polymers of this type are known materials. Use of polyacrylates of this type in detergent compositions has been disclosed in U.S. Patent No. 3,308,067.
  • Acrylic/maleic-based copolymers may also be used as a preferred component of the polymeric dispersing agent.
  • Such materials include the water-soluble salts of copolymers of acrylic acid and maleic acid.
  • the average molecular weight of such copolymers in the acid form ranges from about 2,000 to 100,000, more preferably from about 5,000 to about 75,000, most preferably from about 7,000 to 65,000.
  • the ratio of acrylate to maleate segments in such copolymers will generally range from about 30:1 to about 1:1, more preferably from about 10:1 to 2:1.
  • Water-soluble salts of such acrylic acid/maleic acid copolymers can include, for example, the alkali metal, ammonium and substituted ammonium ssaallttss,. Soluble acrylate/maleate copolymers of this type are known materials which are described in European Patent Application No. 66915.
  • PEG polyethylene glycol
  • PEG can exhibit dispersing agent performance as well as act as a clay soil removal/anti- redeposition agent.
  • Typical molecular weight ranges for these purposes range from about 500 to about 100,000, preferably from about 1,000 to about 50,000, more preferably from about 1,500 to about 10,000 , most preferably from 1,500 to 4,000.
  • Suitable dispersing agents are polymers of glutamic acid such as disclosed in European Patent Application No. 9120653.2 and polyaminoacids such as disclosed in Copending British Patent Application GB No. 9226942.2
  • polymers suitable for the present invention having polyalkoxymoiety are alkoxylated polyamines. Such materials can conveniently be represented as molecules of the empirical structures with repeating units :
  • R is a hydrocarbyl group, usually of 2-6 carbon atoms;
  • R 1 may be a C ⁇ C o hydrocarbon;
  • the alkoxy groups are ethoxy, propoxy, and the like, and y is 2-30, most preferably from 10-20;
  • n is an integer of at least 2, preferably from 2- 20, most preferably 3-5;
  • X" is an anion such as halide or methylsulfate, resulting from the quaternization reaction.
  • the most highly preferred polyamines for use herein are the so-called ethoxylated polyethylene imines, i.e., the polymerized reaction product of ethylene oxide with ethylene- imine, having the general formula :
  • a wide range of surfactants can be used in the detergent compositions.
  • anionic surfactants are particularly suitable herein, especially mixtures of sulphonate and sulphate surfactants in a weight ratio of from 5:1 to 1:2, preferably from 3:1 to 2:3, more preferably from 3:1 to 1:1.
  • Preferred sulphonates include alkyl benzene sulphonates having from 9 to
  • Ci6 ⁇ Ci8 fatty source In each instance the cation is an alkali metal, preferably sodium.
  • Preferred sulphate surfactants are alkyl sulphates having from 12 to 18 carbon atoms in the alkyl radical, optionally in admixture with ethoxy sulphates having from 10 to 20, preferably 10 to 16 carbon atoms in the alkyl radical and an average degree of ethoxylation of 1 to 6.
  • alkyl sulphates examples include tallow alkyl sulphate, coconut alkyl sulphate, and C ⁇ -is alkyl sulphates.
  • the cation in each instance is again an alkali metal cation, preferably sodium.
  • One class of nonionic surfactants useful in the present invention are condensates of ethylene oxide with a hydrophobic moiety to provide a surfactant having an average hydrophilic- lipophilic balance (HLB) in the range from 8 to 17, preferably from 9.5 to 13.5, more preferably from 10 to 12.5.
  • HLB hydrophilic- lipophilic balance
  • the hydrophobic (lipophilic) moiety may be aliphatic or aromatic in nature and the length of the polyoxyethylene group which is condensed with any particular hydrophobic group can be readily adjusted to yield a water-soluble compound having the desired degree of balance between hydrophilic and hydrophobic elements.
  • Especially preferred nonionic surfactants of this type are the C 9 -C 15 primary alcohol ethoxylates containing 3-8 moles of ethylene oxide per mole of alcohol, particularly the Ci4-C 15 primary alcohols containing 6-8 moles of ethylene oxide per mole of alcohol and the C ⁇ -C 1 4 primary alcohols containing 3-5 moles of ethylene oxide per mole of alcohol.
  • Another class of nonionic surfactants comprises alkyl polyglucoside compounds of general formula
  • Z is a moiety derived from glucose; R is a saturated hydrophobic alkyl group that contains from 12 to 18 carbon atoms; t is from 0 to 10 and n is 2 or 3; x is from 1.3 to 4, the compounds including less than 10% unreacted fatty alcohol and less than 50% short chain alkyl polyglucosides.
  • Compounds of this type and their use in detergent are disclosed in EP-B 0 070 077, 0 075 996 and 0 094 118.
  • nonionic surfactants are poly hydroxy fatty acid amide surfactants of the formula
  • R 1 is methyl
  • R 2 is a straight alkyl or alkenyl chain such as coconut alkyl or mixtures thereof
  • Z is derived from a reducing sugar such as glucose, fructose, maltose, lactose, in a reductive amination reaction.
  • compositions according to the present invention may further comprise a builder system.
  • a builder system Any conventional builder system is suitable for use herein including aluminosilicate materials, silicates, polycarboxylates and fatty acids, materials such as ethylenediamine tetraacetate, metal ion sequestrants such as a inopolyphosphonates, particularly ethylenediamine tetramethylene phosphonic acid and diethylene triamine pentamethylenephosphonic acid.
  • phosphate builders can also be used herein.
  • Suitable builders can be an inorganic ion exchange material, commonly an inorganic hydrated aluminosilicate material, more particularly a hydrated synthetic zeolite such as hydrated zeolite A, X, B or HS.
  • SKS-6 is a crystalline layered silicate consisting of sodium silicate (Na 2 Si 2 0 5 ) .
  • Suitable polycarboxylates containing one carboxy group include lactic acid, glycolic acid and ether derivatives thereof as disclosed in Belgian Patent Nos. 831,368, 821,369 and 821,370.
  • Polycarboxylates containing two carboxy groups include the water-soluble salts of succinic acid, malonic acid, (ethylenedioxy) diacetic acid, maleic acid, diglycollic acid, tartaric acid, tartronic acid and fumaric acid, as well as the ether carboxylates described in German Offenlegenschrift 2,446,686, and 2,446,687 and U.S. Patent No. 3,935,257 and the sulfinyl carboxylates described in Belgian Patent No. 840,623.
  • Polycarboxylates containing three carboxy groups include, in particular, water-soluble citrates, aconitrates and citraconates as well as succinate derivatives such as the carboxymethyloxysuccinates described in British Patent No. 1,379,241, lactoxysuccinates described in Netherlands Application 7205873, and the oxypolycarboxylate materials such as 2-oxa-l,l,3-propane tricarboxylates described in British Patent No. 1,387,447.
  • Polycarboxylates containing four carboxy groups include oxydisuccinates disclosed in British Patent No. 1,261,829, 1,1,2,2-ethane tetracarboxylates, 1,1,3,3-propane tetracarboxylates and 1,1,2,3-propane tetracarboxylates.
  • Polycarboxylates containing sulfo substituents include the sulfosuccinate derivatives disclosed in British Patent Nos. 1,398,421 and 1,398,422 and in U.S. Patent No. 3,936,448, and the sulfonated pyrolysed citrates described in British Patent No. 1,082,179, while polycarboxylates containing phosphone substituents are disclosed in British Patent No. 1,439,000.
  • Alicyclic and heterocyclic polycarboxylates include cyclopentane-cis,cis,cis-tetracarboxylates, cyclopentadienide pentacarboxylates, 2,3,4,5-tetrahydrofuran - cis, cis, cis- tetracarboxylates, 2,5-tetrahydrofuran -cis - dicarboxylates, 2,2,5,5-tetrahydrofuran - tetracarboxylates, 1,2,3,4,5,6-hexane -hexacarboxylates and and carboxymethyl derivatives of polyhydric alcohols such as sorbitol, annitol and xylitol.
  • Aromatic polycarboxylates include mellitic acid, pyromellitic acid and the phtalic acid derivatives disclosed in British Patent No. 1,425,343.
  • the preferred polycarboxylates are hydroxycarboxylates containing up to three carboxy groups per molecule, more particularly citrates.
  • Preferred builder systems for use in the present compositions include a mixture of a water-insoluble aluminosilicate builder such as zeolite A or of a layered silicate (sks/6) , and a water-soluble carboxylate chelating agent such as citric acid.
  • a suitable chelant for inclusion in the detergent compositions in accordance with the invention is ethylenediamine-N,N'-disuccinic acid (EDDS) or the alkali metal, alkaline earth metal, ammonium, or substituted ammonium salts thereof, or mixtures thereof.
  • Preferred EDDS compounds are the free acid form and the sodium or magnesium salt thereof. Examples of such preferred sodium salts of EDDS include Na 2 EDDS and Na EDDS. Examples of such preferred magnesium salts of EDDS include MgEDDS and Mg 2 EDDS. The magnesium salts are the most preferred for inclusion in compositions in accordance with the invention.
  • suitable fatty acid builders for use herein are saturated or unsaturated C10-18 fatty acids, as well as well as the corresponding soaps.
  • Preferred saturated species have from 12 to 16 carbon atoms in the alkyl chain.
  • the preferred unsaturated fatty acid is oleic acid.
  • Preferred builder systems for use in granular compositions include a mixture of a water-insoluble aluminosilicate builder such as zeolite A, and a watersoluble carboxylate chelating agent such as citric acid.
  • builder materials that can form part of the builder system for use in granular compositions the purposes of the invention include inorganic materials such as alkali metal carbonates, bicarbonates, silicates, and organic materials such as the organic phosphonates, amiono polyalkylene phosphonates and amino polycarboxylates.
  • Suitable water-soluble organic salts are the homo- or co- polymeric acids or their salts, in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms.
  • Polymers of this type are disclosed in GB-A-1,596,756.
  • Examples of such salts are polyacrylates of MW 2000-5000 and their copolymers with maleic anhydride, such copolymers having a molecular weight of from 20,000 to 70,000, especially about 40,000.
  • Detergency builder salts are normally included in amounts of from 10% to 80% by weight of the composition preferably from
  • Detergent ingredients that can be included in the detergent compositions of the present invention include bleaching agents. These bleaching agent components can include one or more oxygen bleaching agents and, depending upon the bleaching agent chosen, one or more bleach activators. When present bleaching compounds will typically be present at levels of from about 1% to about 10%, of the detergent composition. In general, bleaching compounds are optional components in non-liquid formulations, e.g. granular detergents. If present, the amount of bleach activators will typically be from about 0.1% to about 60%, more typically from about 0.5% to about 40% of the bleaching composition.
  • the bleaching agent component for use herein can be any of the bleaching agents useful for detergent compositions including oxygen bleaches as well as others known in the art.
  • this invention further provides a method for cleaning fabrics, fibers, textiles, at temperatures below about 50*C, especially below about 40*C, with a detergent composition containing polyamine N-oxide containing polymers, optional auxiliary detersive surfactants, optional detersive adjunct ingredients, and a bleaching agent.
  • the bleaching agent suitable for the present invention can be an activated or non-activated bleaching agent.
  • oxygen bleaching agent that can be used encompasses percarboxylic acid bleaching agents and salts thereof. Suitable examples of this class of agents include magnesium monoperoxyphthalate hexahydrate, the magnesium salt of meta-chloro perbenzoic acid, 4-nonylamino-4-oxoperoxybutyric acid and diperoxydodecanedioic acid.
  • Such bleaching agents are disclosed in U.S. Patent 4,483,781, U.S. Patent Application 740,446, European Patent Application 0,133,354 and U.S. Patent 4,412,934.
  • Highly preferred bleaching agents also include 6- nonylamino-6-oxoperoxycaproic acid as described in U.S. Patent 4,634,551.
  • bleaching agents that can be used encompasses the halogen bleaching agents.
  • hypohalite bleaching agents include trichloro isocyanuric acid and the sodium and potassium dichloroisocyanurates and N-chloro and N-bromo alkane sulphonamides. Such materials are normally added at 0.5-10% by weight of the finished product, preferably 1-5% by weight.
  • the bleaches suitable for the present invention include peroxygen bleaches.
  • suitable water-soluble solid peroxygen bleaches include hydrogen peroxide releasing agents such as hydrogen peroxide, perborates, e.g. perborate monohydrate, perborate tetrahydrate, persulfates, percarbonates, peroxydisulfates, perphosphates and peroxyhydrates.
  • Preferred bleaches are percarbonates and perborates.
  • the hydrogen peroxide releasing agents can be used in combination with bleach activators such as tetraacetylethylenedia ine (TAED) , nonanoyloxybenzenesulfonate (NOBS, described in US 4,412,934), 3,5,- trimethylhexanoloxybenzenesulfonate (ISONOBS, described in EP 120,591) or pentaacetylglucose (PAG), which are perhydrolyzed to form a peracid as the active bleaching species, leading to improved bleaching effect.
  • bleach activators such as tetraacetylethylenedia ine (TAED) , nonanoyloxybenzenesulfonate (NOBS, described in US 4,412,934), 3,5,- trimethylhexanoloxybenzenesulfonate (ISONOBS, described in EP 120,591) or pentaacetylglucose (PAG), which are perhydrolyzed to
  • the hydrogen peroxide may also be present by adding an enzymatic system (i.e. an enzyme and a substrate therefore) which is capable of generating hydrogen peroxide at the beginning or during the washing and/or rinsing process.
  • an enzymatic system i.e. an enzyme and a substrate therefore
  • Such enzymatic systems are disclosed in EP Patent Application 91202655.6 filed October 9, 1991.
  • peroxygen bleaches suitable for the present invention include organic peroxyacids such as percarboxylic acids.
  • Bleaching agents other than oxygen bleaching agents are also known in the art and can be utilized herein.
  • One type of non-oxygen bleaching agent of particular interest includes photoactivated bleaching agents such as the sulfonated zinc and/or aluminum phthalocyanines. These materials can be deposited upon the substrate during the washing process. Upon irradiation with light, in the presence of oxygen, such as by hanging clothes out to dry in the daylight, the sulfonated zinc phthalocyanine is activated and, consequently, the substrate is bleached.
  • Preferred zinc phthalocyanine and a photoactivated bleaching process are described in U.S. Patent 4,033,718.
  • detergent compositions will contain about 0.025% to about 1.25%, by weight, of sulfonated zinc phthalocyanine.
  • detergent ingredients that can be included are detersive enzymes which can be included in the detergent formulations for a wide variety of purposes including removal of protein-based, carbohydrate-based, or triglyceride-based stains, for example, and prevention of refugee dye transfer.
  • the enzymes to be incorporated include proteases, amylases, Upases, cellulases, and peroxidases, as well as mixtures thereof.
  • Other types of enzymes may also be included. They may be of any suitable origin, such as vegetable, animal, bacterial, fungal and yeast origin.
  • Enzymes are normally incorporated at levels sufficient to provide up to about 5 mg by weight, more typically about 0.05 mg to about 3 mg, of active enzyme per gram of the composition.
  • proteases are the subtilisins which are obtained from particular strains of B.subtilis and B.licheniforms.
  • proteases suitable for removing protein-based stains that are commercially available include those sold under the tradenames Alcalase , Savinase and Esperase by Novo Industries A/S (Denmark) and Maxatase by International Bio-Synthetics, Inc. (The Netherlands) and FN- base by Genencor, Optimase and opticlean by MKC.
  • Protease A is described in European Patent Application 130,756.
  • Protease B is described in European Patent Application Serial No. 87303761.8.
  • Amylases include, for example, -a ylases obtained from a special strain of B.licheniforms, described in more detail in British Patent Specification No. 1,296,839 (Novo).
  • Amylolytic proteins include, for example, Rapidase, Maxamyl (International Bio-Synthetics, Inc.) and Termamyl, (Novo Industries).
  • the cellulases usable in the present invention include both bacterial or fungal cellulase. Preferably, they will have a pH optimum of between 5 and 9.5. Suitable cellulases are disclosed in U.S. Patent 4,435,307, Barbesgoard et al, which discloses fungal cellulase produced from Humicola insolens. Suitable cellulases are also disclosed in GB-A-2.075.028 ; GB-A- 2.095.275 and DE-OS-2.247.832.
  • cellulases examples include cellulases produced by a strain of Humicola insolens (Humicola grisea var. thermoidea) , particularly the Humicola strain DSM 1800, and cellulases produced by a fungus of Bacillus N or a cellulase 212-producing fungus belonging to the genus Aeromonas, and cellulase extracted from the hepatopancreas of a marine mollusc (Dolabella Auricula Solander) .
  • Suitable cellulases are cellulases originated from Humicola Insulens having a molecular weight of about 50KDa, an isoelectric point of 5.5 and containing 415 amino acids. Such cellulase are described in Copending European patent application No. 93200811.3, filed March 19, 1993. Especially suitable cellulase are the cellulase having color care benefits. Examples of such cellulases are cellulase described in European patent application No. 91202879.2, filed November 6, 1991 Carezyme (Novo) .
  • Suitable lipase enzymes for detergent usage include those produced by microorganisms of the Pseudomonas group, such as Pseudomonas stutzeri ATCC 19.154, as disclosed in British Patent 1,372,034.
  • Suitable lipases include those which show a positive immunoligical cross-reaction with the antibody of the lipase, produced by the microorganism Pseudomonas fluorescent IAM 1057. This lipase is available from Amano Pharmaceutical
  • Mano-P Lipase P
  • Lipase such as Ml Lipase (Ibis) and Lipolase (Novo) .
  • Peroxidase enzymes are used in combination with oxygen sources, e.g. percarbonate, perborate, persulfate, hydrogen peroxide, etc. They are used for "solution bleaching", i.e. to prevent transfer of dyes of pigments removed from substrates during wash operations to other substrates in the wash solution.
  • Peroxidase enzymes are known in the art, and include, for example, horseradish peroxidase, ligninase, and haloperoxidase such as chloro- and bromo-peroxidase.
  • Peroxidase-containing detergent compositions are disclosed, for example, in PCT Internation Application WO 89/099813 and in
  • an enzyme stabilization system is preferably utilized.
  • Enzyme stabilization techniques for aqueous detergent compositions are well known in the art.
  • one technique for enzyme stabilization in aqueous solutions involves the use of free calcium ions from sources such as calcium acetate, calcium formate and calcium propionate.
  • Calcium ions can be used in combination with short chain carboxylic acid salts, preferably formates. See, for example, U.S. patent 4,318,818. It has also been proposed to use polyols like glycerol and sorbitol.
  • Alkoxy-alcohols dialkylglycoethers, mixtures of polyvalent alcohols with polyfunctional aliphatic amines (e.g., such as diethanolamine, triethanolamine, di-isopropanolamime, etc.), and boric acid or alkali metal borate.
  • Enzyme stabilization techniques are additionally disclosed and exemplified in U.S. patent
  • Non-boric acid and borate stabilizers are preferred.
  • Enzyme stabilization systems are also described, for example, in U.S. Patents 4,261,868, 3,600,319 and 3,519,570.
  • Other suitable detergent ingredients that can be added are enzyme oxidation scavengers which are described in Copending
  • enzyme oxidation scavengers are ethoxylated tetraethylene polyamines.
  • Especially preferred detergent ingredients are combinations with technologies which also provide a type of color care benefit.
  • technologies which also provide a type of color care benefit.
  • these technologies are cellulase and/or peroxidases and/or metallo catalysts for color maintance rejuvenation.
  • Such metallo catalysts are described in copending
  • polyamine-N-oxide containing polymers eliminate or reduce the deposition of the metallo-catalyst onto the fabrics resulting in improved whiteness benefit.
  • a suds suppressor exemplified by silicones, and silica-silicone mixtures.
  • Silicones can be generally represented by alkylated polysiloxane materials while silica is normally used in finely divided forms exemplified by silica aerogels and xerogels and hydrophobic silicas of various types. These materials can be incorporated as particulates in which the suds suppressor is advantageously releasably incorporated in a water-soluble or water-dispersible, substantially non-surface-active detergent impermeable carrier.
  • the suds suppressor can be dissolved or dispersed in a liquid carrier and applied by spraying on to one or more of the other components.
  • a preferred silicone suds controlling agent is disclosed in Bartollota et al. U.S. Patent 3 933 672.
  • Other particularly useful suds suppressors are the self-emulsifying silicone suds suppressors, described in German Patent Application DTOS 2 646 126 published April 28, 1977.
  • An example of such a compound is DC-544, commercially available from Dow Corning, which is a siloxane-glycol copolymer.
  • Especially preferred suds controlling agent are the suds suppressor system comprising a mixture of silicone oils and 2-alkyl-alcanols.
  • Suitable 2- alkyl-alcanols are 2-butyl-octanol which are commercially available under the trade name Isofol 12 R.
  • Patent application N 92870174.7 filed 10 November, 1992.
  • compositions can comprise a silicone/silica mixture in combination with fumed nonporous silica such as Aerosil R .
  • the suds suppressors described above are normally employed at levels of from 0.001% to 2% by weight of the composition, preferably from 0.01% to 1% by weight.
  • detergent compositions may be employed, such as soil-suspending agents, soil-release agents, optical brighteners, abrasives, bactericides, tarnish inhibitors, coloring agents, and encapsulated and/or non- encapsulated perfumes.
  • Antiredeposition and soil suspension agents suitable herein include cellulose derivatives such as methylcellulose, carboxymethylcellulose and hydroxyethylcellulose, and homo- or co-polymeric polycarboxylic acids or their salts.
  • Polymers of this type include the polyacrylates and maleic anhydride- acrylic acid copolymers previously mentioned as builders, as well as copolymers of maleic anhydride with ethylene, methylvinyl ether or methacrylic acid, the maleic anhydride constituting at least 20 mole percent of the copolymer. These materials are normally used at levels of from 0.5% to 10% by weight, more preferably from 0.75% to 8%, most preferably from 1% to 6% by weight of the composition.
  • Preferred optical brighteners are anionic in character, examples of which are disodium 4,4 1 -bis-(2-diethanolamino-4- anilino -s- triazin-6-ylamino)stilbene-2:2 1 disulphonate, disodium 4, - 4 1 -bis-(2-morpholino-4-anilino-s-triazin-6- ylaminostilbene-2:2 1 - disulphonate, disodium 4,4 1 - bis-(2,4- dianilino-s-triazin-6-ylamino)stilbene-2:2 1 - disulphonate, monosodium 4 1 ,4 11 -bis-(2,4-dianilino-s-triazin-6 ylamino)stilbene-2-sulphonate, disodium 4,4 1 -bis-(2-anilino-4-
  • Soil release agents useful in compositions of the present invention are conventionally copolymers or terpolymers of terephthalic acid with ethylene glycol and/or propylene glycol units in various arrangements. Examples of such polymers are disclosed in the commonly assigned US Patent Nos. 4116885 and
  • PEG is -(OC 2 H 4 )0-
  • PO is (OC 3 H 6 0)
  • T is (pcOC 6 H CO) .
  • modified polyesters as random copolymers of dimethyl terephtalate, dimethyl sulfoisophtalate, ethylene glycol and 1-2 propane diol, the end groups consisting primarily of sulphobenzoate and secondarily of mono esters of ethylene glycol and/or propane-diol.
  • the target is to obtain a polymer capped at both end by sulphobenzoate groups, "primarily", in the present context most of said copolymers herein will be end-capped by sulphobenzoate groups.
  • some copolymers will be less than fully capped, and therefore their end groups may consist of monoester of ethylene glycol and/or propane 1-2 diol, thereof consist “secondarily” of such species.
  • the selected polyesters herein contain about 46% by weight of dimethyl terephtalic acid, about 16% by weight of propane -1.2 diol, about 10% by weight ethylene glycol about 13% by weight of dimethyl sulfobenzoid acid and about 15% by weight of sulfoisophtalic acid, and have a molecular weight of about 3.000.
  • the polyesters and their method of preparation are described in detail in EPA 311 342.
  • the detergent compositions according to the invention can be in liquid, paste, gels or granular forms.
  • Granular compositions according to the present invention can also be in "compact form", i.e. they may have a relatively higher density than conventional granular detergents, i.e. from 550 to 950 g/1; in such case, the granular detergent compositions according to the present invention will contain a lower amount of "inorganic filler salt", compared to conventional granular detergents; typical filler salts are alkaline earth metal salts of sulphates and chlorides, typically sodium sulphate; "compact" detergents typically comprise not more than 10% filler salt.
  • liquid compositions according to the present invention can also be in "concentrated form", in such case, the liquid detergent compositions according to the present invention will contain a lower amount of water,compared to conventional liquid detergents.
  • the water content of the concentrated liquid detergent is less than 30%, more preferably less than 20%, most preferably less than 10% by weight of the detergent compositions.
  • Other examples of liquid compositions are anhydrous compositions containing substantially no water. Both aqueous and non-aqueous liquid compositions can be structured or non-structured.
  • the present invention also relates to a process for inhibiting dye transfer from one fabric to another of solubilized and suspended dyes encountered during fabric laundering operations involving colored fabrics.
  • the process comprises contacting fabrics with a laundering solution as hereinbefore described.
  • the process of the invention is conveniently carried out in the course of the washing process.
  • the washing process is preferably carried out at 5 °C to 75 "C, especially 20 to 60, but the polymers are effective at up to 95 °C.
  • the pH of the treatment solution is preferably from 7 to 11, especially from 7.5 to 10.5.
  • the process and compositions of the invention can also be used as detergent additive products.
  • the detergent compositions according to the present invention include compositions which are to be used for cleaning substrates, such as fabrics, fibers, hard surfaces, skin etc., for example hard surface cleaning compositions (with or without abrasives), laundry detergent compositions, automatic and non automatic dishwashing compositions.
  • compositions of the present invention are meant to exemplify compositions of the present invention , but are not necessarily meant to limit or otherwise define the scope of the invention, said scope being determined according to claims which follow.
  • a liquid detergent composition according to the present invention is prepared, having the following compositions :
  • a compact granular detergent composition according to the present invention is prepared, having the following formulation:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

The present invention relates to dye transfer inhibiting compositions comprising: a) a polymer selected from polyamine N-oxide containing polymers which contain units having structure formula (I), wherein P is a polymerisable unit, whereto the N-O group can be attached to or wherein the N-O group forms part of the polymerisable unit or a combination of both; A is (a), (b), (c), -O-, -S-, (d); x is 0 or 1; R are aliphatic, ethoxylated aliphatic, aromatic, heterocyclic or alicyclic groups or any combination thereof whereto the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-O group forms part of these groups; b) a polymeric dispersing agent.

Description

DYE TRANSFER INHIBITING COMPOSITIONS
COMPRISING
POLYMERIC DISPERSING AGENTS
Field of the Invention
The present invention relates to a composition and a process for inhibiting dye transfer between fabrics during washing. More in particular, this invention relates to dye transfer inhibiting compositions comprising polyamine N-oxide containing polymers and polymeric dispersing agents.
Background of the Invention
Polymeric dispersing agents have been commonly used in detergent compositions to assist in removal of particulate soil from fabrics, textiles.
The ability of these polymeric dispersing agents to remove a large variety of soils and stains from other fabrics present in the typical load of laundry is of high importance in the evaluation of detergency performance.
The relative ability of each polymeric dispersing agent to meet various performance criteria is among others depending on the presence of adjunct detergent ingredients .
As a consequence, the detergent formulator is faced with a difficult task of providing detergent compositions which have an excellent overall performance. One of the types of adjunct detergent ingredients that is added to detergent compositions are dye transfer inhibiting polymers. Said polymers are added to detergent compositions in order to inhibit the transfer from dyes of colored fabrics onto other fabrics washed therewith. These polymers have the ability to complex or adsorb the fugitive dyes washed out of dyed fabrics before the dyes have the opportunity to become attached to other articles in the wash.
Polymers have been used within detergent compositions to inhibit dye transfer. Copending European Patent Application N° 92202168.8 describes polyamine N-oxide containing polymers which are very efficient in eliminating transfer of solubilized or suspended dyes.
It has now been found that polyamine N-oxide containing polymers are very compatible with polymeric dispersing agents. In addition, it has been found that the overall detergent performance has been increased in the presence of certain polymeric dispersing agents.
This finding allows us to formulate detergent compositions which have both excellent dye transfer inhibiting properties and overall detergency performance.
According to another embodiment of this invention a process is also provided for laundering operations involving colored fabrics.
Summary of the Invention
The present invention relates to inhibiting dye transfer compositions comprising
a) a polymer selected from polyamine N-oxide containing polymers which contain units having the following structure formula :
P
I wherein P is a polymerisable unit, whereto the N-O group can be attached to or wherein the N-O group forms part of the polymerisable unit or a combination of both.
0 0 0 . u ι» u A is NC, CO, C, -0-, -S-, -N- ; x is 0 or 1;
R are aliphatic, ethoxylated aliphatics, aromatic, heterocyclic or alicyclic groups or any combination thereof whereto the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-O group form part of these groups.
b) a polymeric dispersing agent.
Detailed description of the invention
The compositions of the present invention comprise as an essential element a polyamine N-oxide containing polymer which contain units having the following structure formula (I) :
(I) Ax
wherein P is a polymerisable unit, whereto the R-N-0 group can be attached to or wherein the R-N-0 group forms part of the polymerisable unit or a combination of both.
0 0 0
»> n \. •
A is NC, CO, C, -0-,-S-, -N- ; x is 0 or 1;
R are aliphatic, ethoxylated aliphatics, aromatic, heterocyclic or alicyclic groups or any combination thereof whereto the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-O group is part of these groups. A
The N-O group can be represented by the following general structures :
(R1)X -N- (R2)y =N- (R1)X
I
(R3)z
wherein Rl, R2, and R3 are aliphatic groups, aromatic, heterocyclic or alicyclic groups or combinations thereof, x or/and y or/and z is 0 or 1 and wherein the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-O group forms part of these groups.
The N-O group can be part of the polymerisable unit (P) or can be attached to the polymeric backbone or a combination of both.
Suitable polyamine N-oxides wherein the N-O group forms part of the polymerisable unit comprise polyamine N-oxides wherein R is selected from aliphatic, aromatic, alicyclic or heterocyclic groups.
One class of said polyamine N-oxides comprises the group of polyamine N-oxides wherein the nitrogen of the N-O group forms part of the R-group. Preferred polyamine N-oxides are those wherein R is a heterocyclic group such as pyrridine, pyrrole, imidazole, pyrrolidine, piperidine, quinoline, acridine and derivatives thereof.
Another class of said polyamine N-oxides comprises the group of polyamine N-oxides wherein the nitrogen of the N-O group is attached to the R-group.
Other suitable polyamine N-oxides are the polyamine oxides whereto the N-O group is attached to the polymerisable unit. Preferred class of these polyamine N-oxides are the polyamine N-oxides having the general formula (I) wherein R is an aromatic, heterocyclic or alicyclic groups wherein the nitrogen of the N-O functional group is part of said R group.
Examples of these classes are polyamine oxides wherein R is a heterocyclic compound such as pyrridine, pyrrole, imidazole and derivatives thereof.
Another preferred class of polyamine N-oxides are the polyamine oxides having the general formula (I) wherein R are aromatic, heterocyclic or alicyclic groups wherein the nitrogen of the N-
0 functional group is attached to said R groups.
Examples of these classes are polyamine oxides wherein R groups can be aromatic such as phenyl.
Any polymer backbone can be used as long as the amine oxide polymer formed is water-soluble and has dye transfer inhibiting properties. Examples of suitable polymeric backbones are polyvinyls, polyalkylenes, polyesters, polyethers, polyamide, polyimides, polyacrylates and mixtures thereof.
The amine N-oxide polymers of the present invention typically have a ratio of amine to the amine N-oxide of 10:1 to 1:1000000. However the amount of amine oxide groups present in the polyamine N-oxide containing polymer can be varied by appropriate copolymerization or by appropriate degree of N- oxidation. Preferably, the ratio of amine to amine N-oxide is from 2:3 to 1:1000000. More preferably from 1:4 to 1:1000000, most preferably from 1:7 to 1:1000000. The polymers of the present invention actually encompass random or block copolymers where one monomer type is an amine N-oxide and the other monomer type is either an amine N-oxide or not. The amine oxide unit of the polyamine N-oxides has a PKa < 10, preferably PKa < 7, more preferred PKa < 6.
The polyamine N-oxide containing polymer can be obtained in almost any degree of polymerisation. The degree of polymerisation is not critical provided the material has the desired water-solubility and dye-suspending power. Typically, the average molecular weight of the polyamine N- oxide containing polymer is within the range of 500 to 1000,000; preferably from 1,000 to 50,000, more preferably from
2,000 to 30,000, most preferably from 3,000 to 20,000.
The polyamine N-oxide containing polymers of the present invention are typically present from 0.001 to 10%, more preferably from 0.01 to 2%, most preferred from 0.05 to 1% by weight of the dye transfer inhibiting composition.
The present compositions are conveniently used as additives to conventional detergent compositions for use in laundry operations. The present invention also encompasses dye transfer inhibiting compositions which will contain detergent ingredients and thus serve as detergent compositions.
Methods for making polvamine N-oxides :
The production of the polyamine-N-oxide containing polymer may be accomplished by polymerizing the amine monomer and oxidizing the resultant polymer with a suitable oxidizing agent, or the amine oxide monomer may itself be polymerized to obtain the polyamine N-oxide.
The synthesis of polyamine N-oxide containing polymer can be exemplified by the synthesis of polyvinyl-pyridine N-oxide. Poly-4-vinylpyridine ex Polysciences (mw. 50 000, 5.0 g. , 0.0475 mole) was predisolved in 50 ml acetic acid and treated with a peracetic acid solution (25 g of glacial acetic acid, 6.4 g of a 30% vol. solution of H202, and a few drops of H2S04 give 0.0523 mols of peracetic acid) via a pipette. The mixture was stirred over 30 minutes at ambient temperature (32 C) . The mixture was then heated to 80-85 C using an oil bath for 3 hours before allowing to stand overnight. The polymer solution then obtained is mixed with 11 of acetone under agitation. The resulting yellow brown viscous syrup formed on the bottom is washed again with 11 of aceton to yield a pale crystalline solid.
The solid was filtered off by gravity, washed with acetone and then dried over P2°5*
The amine : amine N-oxide ratio of this polymer is 1:4 (determined by NMR) . POLYMERIC DISPERSING AGENTS
The compositions according to the present invention comprise in addition to the polyamine-N-oxide containing polymers a polymeric dispersing agent.
Suitable polymeric dispersing agents include polymeric polycarboxylates, polyethylene glycols and alkoxylated polyamines, although others known in the art can also be used. Said polymeric dispersing agents have found to be especially suitable for improving clay and particulate stain removal in detergent compositions formulated with high levels of polyamine N-oxide containing polymers and/or detergent compositions formulated with polyamine N-oxide containing polymers with a high average molecular weight range.
The compositions hereof will contain at least about 0.5%, preferably from about 1% to about 10%, more preferably from about 2% to about 5%, of the polymeric dispersing agent.
Polycarboxylate materials which can be employed as the polymeric dispersing agent component herein are these polymers or copolymers which contain at least about 60% by weight of monomer units with the general formula
(C - O-HΓ-
COOM
wherein X, Y and Z are each selected from the group consisting of hydrogen, methyl, carboxy, carboxymethyl, hydroxy and hydroxymethyl; M a salt-forming cation and n is from about 30 to about 400. Preferably, X is hydrogen or hydroxy, Y is hydrogen or carboxy, Z is hydrogen and M is hydrogen, alkali metal, ammonia or substituted ammonium.
Polymeric polycarboxylate materials of this type can be prepared by polymerizing or copolymerizing suitable unsaturated carboxylate monomers, preferably in their acid form. Suitable monomer starting materials include acrylates, maleates, fumarates, itaconates, aconitates, mesaconates, citraconates, and methylenemalonates. Corresponding unsaturated monomeric acids that can be polymerized to form suitable polymeric polycarboxylates include acrylic acid, maleic acid (or maleic anhydride) , fumaric acid, itaconic acid, aconitic acid, mesaconic acid, citraconic acid and methylenemalonic acid. The presence in the polymeric polycarboxylates herein of monomeric segments, containing non-carboxylate radicals such as vinylmethyl ether, styrene, ethylene, etc. is suitable provided that such segments do not constitute more than about 40% by weight.
Particularly suitable polymeric polycarboxylates are the polymeric poly-acrylates which, preferably, are derived from acrylic acid. Such acrylic acid-based polymers which are useful herein include the water-soluble salts of polymerized acrylic acid. The average molecular weight of such polyacrylate polymers will preferably be at least about 1,000 and will preferably range from about 2,000 to 10,000, more preferably from about 4,000 to 7,000, and most preferably from about 4,000 to 5,000, said molecular weights being based upon the acid form. Water-soluble salts of such acrylic acid polymers can include, for example, the alkali metal, ammonium and substituted ammonium salts. Soluble polymers of this type are known materials. Use of polyacrylates of this type in detergent compositions has been disclosed in U.S. Patent No. 3,308,067.
Acrylic/maleic-based copolymers may also be used as a preferred component of the polymeric dispersing agent. Such materials include the water-soluble salts of copolymers of acrylic acid and maleic acid. The average molecular weight of such copolymers in the acid form ranges from about 2,000 to 100,000, more preferably from about 5,000 to about 75,000, most preferably from about 7,000 to 65,000. The ratio of acrylate to maleate segments in such copolymers will generally range from about 30:1 to about 1:1, more preferably from about 10:1 to 2:1. Water-soluble salts of such acrylic acid/maleic acid copolymers can include, for example, the alkali metal, ammonium and substituted ammonium ssaallttss,. Soluble acrylate/maleate copolymers of this type are known materials which are described in European Patent Application No. 66915.
Another polymeric material which can be included is polyethylene glycol (PEG) . PEG can exhibit dispersing agent performance as well as act as a clay soil removal/anti- redeposition agent. Typical molecular weight ranges for these purposes range from about 500 to about 100,000, preferably from about 1,000 to about 50,000, more preferably from about 1,500 to about 10,000 , most preferably from 1,500 to 4,000.
Other suitable dispersing agents are polymers of glutamic acid such as disclosed in European Patent Application No. 9120653.2 and polyaminoacids such as disclosed in Copending British Patent Application GB No. 9226942.2
Other polymers suitable for the present invention having polyalkoxymoiety are alkoxylated polyamines. Such materials can conveniently be represented as molecules of the empirical structures with repeating units :
.[N R]. n Amine form
(alkoxy)y and
.[N+ R]. n nX~ Quaternized form
(alkoxy)y
Wherein R is a hydrocarbyl group, usually of 2-6 carbon atoms; R1 may be a Cι~C o hydrocarbon; the alkoxy groups are ethoxy, propoxy, and the like, and y is 2-30, most preferably from 10-20; n is an integer of at least 2, preferably from 2- 20, most preferably 3-5; and X" is an anion such as halide or methylsulfate, resulting from the quaternization reaction. The most highly preferred polyamines for use herein are the so-called ethoxylated polyethylene imines, i.e., the polymerized reaction product of ethylene oxide with ethylene- imine, having the general formula :
(EtO) [N—CH2 CH2—] n N (EtO)y
I I
(EtO)y (EtO)y
with y = 2-30
DETERGENT ADJUNCTS
A wide range of surfactants can be used in the detergent compositions. A typical listing of anionic, nonionic, ampholytic and zwitterionic classes, and species of these surfactants, is given in US Patent 3,664,961 issued to Norris on May 23, 1972.
Mixtures of anionic surfactants are particularly suitable herein, especially mixtures of sulphonate and sulphate surfactants in a weight ratio of from 5:1 to 1:2, preferably from 3:1 to 2:3, more preferably from 3:1 to 1:1. Preferred sulphonates include alkyl benzene sulphonates having from 9 to
15, especially 11 to 13 carbon atoms in the alkyl radical, and alpha-sulphonated methyl fatty acid esters in which the fatty acid is derived from a Cι2-C18 fatty source preferably from a
Ci6~Ci8 fatty source. In each instance the cation is an alkali metal, preferably sodium. Preferred sulphate surfactants are alkyl sulphates having from 12 to 18 carbon atoms in the alkyl radical, optionally in admixture with ethoxy sulphates having from 10 to 20, preferably 10 to 16 carbon atoms in the alkyl radical and an average degree of ethoxylation of 1 to 6.
Examples of preferred alkyl sulphates herein are tallow alkyl sulphate, coconut alkyl sulphate, and C^-is alkyl sulphates.
The cation in each instance is again an alkali metal cation, preferably sodium. One class of nonionic surfactants useful in the present invention are condensates of ethylene oxide with a hydrophobic moiety to provide a surfactant having an average hydrophilic- lipophilic balance (HLB) in the range from 8 to 17, preferably from 9.5 to 13.5, more preferably from 10 to 12.5. The hydrophobic (lipophilic) moiety may be aliphatic or aromatic in nature and the length of the polyoxyethylene group which is condensed with any particular hydrophobic group can be readily adjusted to yield a water-soluble compound having the desired degree of balance between hydrophilic and hydrophobic elements.
Especially preferred nonionic surfactants of this type are the C9-C15 primary alcohol ethoxylates containing 3-8 moles of ethylene oxide per mole of alcohol, particularly the Ci4-C15 primary alcohols containing 6-8 moles of ethylene oxide per mole of alcohol and the Cι -C14 primary alcohols containing 3-5 moles of ethylene oxide per mole of alcohol.
Another class of nonionic surfactants comprises alkyl polyglucoside compounds of general formula
RO (C nH2n O)tZχ
wherein Z is a moiety derived from glucose; R is a saturated hydrophobic alkyl group that contains from 12 to 18 carbon atoms; t is from 0 to 10 and n is 2 or 3; x is from 1.3 to 4, the compounds including less than 10% unreacted fatty alcohol and less than 50% short chain alkyl polyglucosides. Compounds of this type and their use in detergent are disclosed in EP-B 0 070 077, 0 075 996 and 0 094 118.
Also suitable as nonionic surfactants are poly hydroxy fatty acid amide surfactants of the formula
R2 - C - N - z, II I O R1 wherein R1 is H, or R1 is C -4 hydrocarbyl, 2-hydroxy ethyl, 2- hydroxy propyl or a mixture thereof, R2 is C5_31 hydrocarbyl, and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative thereof. Preferably, R1 is methyl, R2 is a straight
Figure imgf000014_0001
alkyl or alkenyl chain such as coconut alkyl or mixtures thereof, and Z is derived from a reducing sugar such as glucose, fructose, maltose, lactose, in a reductive amination reaction.
The compositions according to the present invention may further comprise a builder system. Any conventional builder system is suitable for use herein including aluminosilicate materials, silicates, polycarboxylates and fatty acids, materials such as ethylenediamine tetraacetate, metal ion sequestrants such as a inopolyphosphonates, particularly ethylenediamine tetramethylene phosphonic acid and diethylene triamine pentamethylenephosphonic acid. Though less preferred for obvious environmental reasons, phosphate builders can also be used herein.
Suitable builders can be an inorganic ion exchange material, commonly an inorganic hydrated aluminosilicate material, more particularly a hydrated synthetic zeolite such as hydrated zeolite A, X, B or HS.
Another suitable inorganic builder material is layered silicate, e.g. SKS-6 (Hoechst) . SKS-6 is a crystalline layered silicate consisting of sodium silicate (Na2Si205) .
Suitable polycarboxylates containing one carboxy group include lactic acid, glycolic acid and ether derivatives thereof as disclosed in Belgian Patent Nos. 831,368, 821,369 and 821,370. Polycarboxylates containing two carboxy groups include the water-soluble salts of succinic acid, malonic acid, (ethylenedioxy) diacetic acid, maleic acid, diglycollic acid, tartaric acid, tartronic acid and fumaric acid, as well as the ether carboxylates described in German Offenlegenschrift 2,446,686, and 2,446,687 and U.S. Patent No. 3,935,257 and the sulfinyl carboxylates described in Belgian Patent No. 840,623. Polycarboxylates containing three carboxy groups include, in particular, water-soluble citrates, aconitrates and citraconates as well as succinate derivatives such as the carboxymethyloxysuccinates described in British Patent No. 1,379,241, lactoxysuccinates described in Netherlands Application 7205873, and the oxypolycarboxylate materials such as 2-oxa-l,l,3-propane tricarboxylates described in British Patent No. 1,387,447.
Polycarboxylates containing four carboxy groups include oxydisuccinates disclosed in British Patent No. 1,261,829, 1,1,2,2-ethane tetracarboxylates, 1,1,3,3-propane tetracarboxylates and 1,1,2,3-propane tetracarboxylates. Polycarboxylates containing sulfo substituents include the sulfosuccinate derivatives disclosed in British Patent Nos. 1,398,421 and 1,398,422 and in U.S. Patent No. 3,936,448, and the sulfonated pyrolysed citrates described in British Patent No. 1,082,179, while polycarboxylates containing phosphone substituents are disclosed in British Patent No. 1,439,000.
Alicyclic and heterocyclic polycarboxylates include cyclopentane-cis,cis,cis-tetracarboxylates, cyclopentadienide pentacarboxylates, 2,3,4,5-tetrahydrofuran - cis, cis, cis- tetracarboxylates, 2,5-tetrahydrofuran -cis - dicarboxylates, 2,2,5,5-tetrahydrofuran - tetracarboxylates, 1,2,3,4,5,6-hexane -hexacarboxylates and and carboxymethyl derivatives of polyhydric alcohols such as sorbitol, annitol and xylitol. Aromatic polycarboxylates include mellitic acid, pyromellitic acid and the phtalic acid derivatives disclosed in British Patent No. 1,425,343.
Of the above, the preferred polycarboxylates are hydroxycarboxylates containing up to three carboxy groups per molecule, more particularly citrates.
Preferred builder systems for use in the present compositions include a mixture of a water-insoluble aluminosilicate builder such as zeolite A or of a layered silicate (sks/6) , and a water-soluble carboxylate chelating agent such as citric acid. A suitable chelant for inclusion in the detergent compositions in accordance with the invention is ethylenediamine-N,N'-disuccinic acid (EDDS) or the alkali metal, alkaline earth metal, ammonium, or substituted ammonium salts thereof, or mixtures thereof. Preferred EDDS compounds are the free acid form and the sodium or magnesium salt thereof. Examples of such preferred sodium salts of EDDS include Na2EDDS and Na EDDS. Examples of such preferred magnesium salts of EDDS include MgEDDS and Mg2EDDS. The magnesium salts are the most preferred for inclusion in compositions in accordance with the invention.
Especially for the liquid execution herein, suitable fatty acid builders for use herein are saturated or unsaturated C10-18 fatty acids, as well as well as the corresponding soaps. Preferred saturated species have from 12 to 16 carbon atoms in the alkyl chain. The preferred unsaturated fatty acid is oleic acid.
Preferred builder systems for use in granular compositions include a mixture of a water-insoluble aluminosilicate builder such as zeolite A, and a watersoluble carboxylate chelating agent such as citric acid.
Other builder materials that can form part of the builder system for use in granular compositions the purposes of the invention include inorganic materials such as alkali metal carbonates, bicarbonates, silicates, and organic materials such as the organic phosphonates, amiono polyalkylene phosphonates and amino polycarboxylates.
Other suitable water-soluble organic salts are the homo- or co- polymeric acids or their salts, in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms.
Polymers of this type are disclosed in GB-A-1,596,756. Examples of such salts are polyacrylates of MW 2000-5000 and their copolymers with maleic anhydride, such copolymers having a molecular weight of from 20,000 to 70,000, especially about 40,000. Detergency builder salts are normally included in amounts of from 10% to 80% by weight of the composition preferably from
20% to 70% and most usually from 30% to 60% by weight.
Detergent ingredients that can be included in the detergent compositions of the present invention include bleaching agents. These bleaching agent components can include one or more oxygen bleaching agents and, depending upon the bleaching agent chosen, one or more bleach activators. When present bleaching compounds will typically be present at levels of from about 1% to about 10%, of the detergent composition. In general, bleaching compounds are optional components in non-liquid formulations, e.g. granular detergents. If present, the amount of bleach activators will typically be from about 0.1% to about 60%, more typically from about 0.5% to about 40% of the bleaching composition.
The bleaching agent component for use herein can be any of the bleaching agents useful for detergent compositions including oxygen bleaches as well as others known in the art.
In a method aspect, this invention further provides a method for cleaning fabrics, fibers, textiles, at temperatures below about 50*C, especially below about 40*C, with a detergent composition containing polyamine N-oxide containing polymers, optional auxiliary detersive surfactants, optional detersive adjunct ingredients, and a bleaching agent.
The bleaching agent suitable for the present invention can be an activated or non-activated bleaching agent.
One category of oxygen bleaching agent that can be used encompasses percarboxylic acid bleaching agents and salts thereof. Suitable examples of this class of agents include magnesium monoperoxyphthalate hexahydrate, the magnesium salt of meta-chloro perbenzoic acid, 4-nonylamino-4-oxoperoxybutyric acid and diperoxydodecanedioic acid. Such bleaching agents are disclosed in U.S. Patent 4,483,781, U.S. Patent Application 740,446, European Patent Application 0,133,354 and U.S. Patent 4,412,934. Highly preferred bleaching agents also include 6- nonylamino-6-oxoperoxycaproic acid as described in U.S. Patent 4,634,551. Another category of bleaching agents that can be used encompasses the halogen bleaching agents. Examples of hypohalite bleaching agents, for example, include trichloro isocyanuric acid and the sodium and potassium dichloroisocyanurates and N-chloro and N-bromo alkane sulphonamides. Such materials are normally added at 0.5-10% by weight of the finished product, preferably 1-5% by weight.
Preferably, the bleaches suitable for the present invention include peroxygen bleaches. Examples of suitable water-soluble solid peroxygen bleaches include hydrogen peroxide releasing agents such as hydrogen peroxide, perborates, e.g. perborate monohydrate, perborate tetrahydrate, persulfates, percarbonates, peroxydisulfates, perphosphates and peroxyhydrates. Preferred bleaches are percarbonates and perborates.
The hydrogen peroxide releasing agents can be used in combination with bleach activators such as tetraacetylethylenedia ine (TAED) , nonanoyloxybenzenesulfonate (NOBS, described in US 4,412,934), 3,5,- trimethylhexanoloxybenzenesulfonate (ISONOBS, described in EP 120,591) or pentaacetylglucose (PAG), which are perhydrolyzed to form a peracid as the active bleaching species, leading to improved bleaching effect. Also suitable activators are acylated citrate esters such as disclosed in Copending European Patent Application No. 91870207.7.
The hydrogen peroxide may also be present by adding an enzymatic system (i.e. an enzyme and a substrate therefore) which is capable of generating hydrogen peroxide at the beginning or during the washing and/or rinsing process. Such enzymatic systems are disclosed in EP Patent Application 91202655.6 filed October 9, 1991.
Other peroxygen bleaches suitable for the present invention include organic peroxyacids such as percarboxylic acids. Bleaching agents other than oxygen bleaching agents are also known in the art and can be utilized herein. One type of non-oxygen bleaching agent of particular interest includes photoactivated bleaching agents such as the sulfonated zinc and/or aluminum phthalocyanines. These materials can be deposited upon the substrate during the washing process. Upon irradiation with light, in the presence of oxygen, such as by hanging clothes out to dry in the daylight, the sulfonated zinc phthalocyanine is activated and, consequently, the substrate is bleached. Preferred zinc phthalocyanine and a photoactivated bleaching process are described in U.S. Patent 4,033,718. Typically, detergent compositions will contain about 0.025% to about 1.25%, by weight, of sulfonated zinc phthalocyanine.
Other detergent ingredients that can be included are detersive enzymes which can be included in the detergent formulations for a wide variety of purposes including removal of protein-based, carbohydrate-based, or triglyceride-based stains, for example, and prevention of refugee dye transfer. The enzymes to be incorporated include proteases, amylases, Upases, cellulases, and peroxidases, as well as mixtures thereof. Other types of enzymes may also be included. They may be of any suitable origin, such as vegetable, animal, bacterial, fungal and yeast origin.
Enzymes are normally incorporated at levels sufficient to provide up to about 5 mg by weight, more typically about 0.05 mg to about 3 mg, of active enzyme per gram of the composition.
Suitable examples of proteases are the subtilisins which are obtained from particular strains of B.subtilis and B.licheniforms. Proteolytic enzymes suitable for removing protein-based stains that are commercially available include those sold under the tradenames Alcalase , Savinase and Esperase by Novo Industries A/S (Denmark) and Maxatase by International Bio-Synthetics, Inc. (The Netherlands) and FN- base by Genencor, Optimase and opticlean by MKC.
Of interest in the category of proteolytic enzymes, especially for liquid detergent compositions, are enzymes referred to herein as Protease A and Protease B. Protease A is described in European Patent Application 130,756. Protease B is described in European Patent Application Serial No. 87303761.8.
Amylases include, for example, -a ylases obtained from a special strain of B.licheniforms, described in more detail in British Patent Specification No. 1,296,839 (Novo). Amylolytic proteins include, for example, Rapidase, Maxamyl (International Bio-Synthetics, Inc.) and Termamyl, (Novo Industries).
The cellulases usable in the present invention include both bacterial or fungal cellulase. Preferably, they will have a pH optimum of between 5 and 9.5. Suitable cellulases are disclosed in U.S. Patent 4,435,307, Barbesgoard et al, which discloses fungal cellulase produced from Humicola insolens. Suitable cellulases are also disclosed in GB-A-2.075.028 ; GB-A- 2.095.275 and DE-OS-2.247.832.
Examples of such cellulases are cellulases produced by a strain of Humicola insolens (Humicola grisea var. thermoidea) , particularly the Humicola strain DSM 1800, and cellulases produced by a fungus of Bacillus N or a cellulase 212-producing fungus belonging to the genus Aeromonas, and cellulase extracted from the hepatopancreas of a marine mollusc (Dolabella Auricula Solander) .
Other suitable cellulases are cellulases originated from Humicola Insulens having a molecular weight of about 50KDa, an isoelectric point of 5.5 and containing 415 amino acids. Such cellulase are described in Copending European patent application No. 93200811.3, filed March 19, 1993. Especially suitable cellulase are the cellulase having color care benefits. Examples of such cellulases are cellulase described in European patent application No. 91202879.2, filed November 6, 1991 Carezyme (Novo) .
Suitable lipase enzymes for detergent usage include those produced by microorganisms of the Pseudomonas group, such as Pseudomonas stutzeri ATCC 19.154, as disclosed in British Patent 1,372,034. Suitable lipases include those which show a positive immunoligical cross-reaction with the antibody of the lipase, produced by the microorganism Pseudomonas fluorescent IAM 1057. This lipase is available from Amano Pharmaceutical
Co. Ltd., Nagoya, Japan, under the trade name Lipase P "Amano," hereinafter referred to as "Amano-P".
Especially suitable Lipase are lipase such as Ml Lipase (Ibis) and Lipolase (Novo) .
Peroxidase enzymes are used in combination with oxygen sources, e.g. percarbonate, perborate, persulfate, hydrogen peroxide, etc. They are used for "solution bleaching", i.e. to prevent transfer of dyes of pigments removed from substrates during wash operations to other substrates in the wash solution. Peroxidase enzymes are known in the art, and include, for example, horseradish peroxidase, ligninase, and haloperoxidase such as chloro- and bromo-peroxidase.
Peroxidase-containing detergent compositions are disclosed, for example, in PCT Internation Application WO 89/099813 and in
European Patent application EP No. 91202882.6, filed on
November 6, 1991.
In liquid formulations, an enzyme stabilization system is preferably utilized. Enzyme stabilization techniques for aqueous detergent compositions are well known in the art. For example, one technique for enzyme stabilization in aqueous solutions involves the use of free calcium ions from sources such as calcium acetate, calcium formate and calcium propionate. Calcium ions can be used in combination with short chain carboxylic acid salts, preferably formates. See, for example, U.S. patent 4,318,818. It has also been proposed to use polyols like glycerol and sorbitol. Alkoxy-alcohols, dialkylglycoethers, mixtures of polyvalent alcohols with polyfunctional aliphatic amines (e.g., such as diethanolamine, triethanolamine, di-isopropanolamime, etc.), and boric acid or alkali metal borate. Enzyme stabilization techniques are additionally disclosed and exemplified in U.S. patent
4,261,868, U.S. Patent 3,600,319, and European Patent
Application Publication No. 0 199 405, Application No.
86200586.5. Non-boric acid and borate stabilizers are preferred. Enzyme stabilization systems are also described, for example, in U.S. Patents 4,261,868, 3,600,319 and 3,519,570. Other suitable detergent ingredients that can be added are enzyme oxidation scavengers which are described in Copending
European Patent aplication N 92870018.6 filed on January 31,
1992. Examples of such enzyme oxidation scavengers are ethoxylated tetraethylene polyamines.
Especially preferred detergent ingredients are combinations with technologies which also provide a type of color care benefit. Examples of these technologies are cellulase and/or peroxidases and/or metallo catalysts for color maintance rejuvenation. Such metallo catalysts are described in copending
European Patent Application No. 92870181.2.
In addition, it has been found that the polyamine-N-oxide containing polymers eliminate or reduce the deposition of the metallo-catalyst onto the fabrics resulting in improved whiteness benefit.
Another optional ingredient is a suds suppressor, exemplified by silicones, and silica-silicone mixtures. Silicones can be generally represented by alkylated polysiloxane materials while silica is normally used in finely divided forms exemplified by silica aerogels and xerogels and hydrophobic silicas of various types. These materials can be incorporated as particulates in which the suds suppressor is advantageously releasably incorporated in a water-soluble or water-dispersible, substantially non-surface-active detergent impermeable carrier. Alternatively the suds suppressor can be dissolved or dispersed in a liquid carrier and applied by spraying on to one or more of the other components.
A preferred silicone suds controlling agent is disclosed in Bartollota et al. U.S. Patent 3 933 672. Other particularly useful suds suppressors are the self-emulsifying silicone suds suppressors, described in German Patent Application DTOS 2 646 126 published April 28, 1977. An example of such a compound is DC-544, commercially available from Dow Corning, which is a siloxane-glycol copolymer. Especially preferred suds controlling agent are the suds suppressor system comprising a mixture of silicone oils and 2-alkyl-alcanols. Suitable 2- alkyl-alcanols are 2-butyl-octanol which are commercially available under the trade name Isofol 12 R.
Such suds suppressor system are described in Copending European
Patent application N 92870174.7 filed 10 November, 1992.
Especially preferred silicone suds controlling agents are described in Copending European Patent application Nβ92201649.8 Said compositions can comprise a silicone/silica mixture in combination with fumed nonporous silica such as AerosilR.
The suds suppressors described above are normally employed at levels of from 0.001% to 2% by weight of the composition, preferably from 0.01% to 1% by weight.
Other components used in detergent compositions may be employed, such as soil-suspending agents, soil-release agents, optical brighteners, abrasives, bactericides, tarnish inhibitors, coloring agents, and encapsulated and/or non- encapsulated perfumes.
Antiredeposition and soil suspension agents suitable herein include cellulose derivatives such as methylcellulose, carboxymethylcellulose and hydroxyethylcellulose, and homo- or co-polymeric polycarboxylic acids or their salts. Polymers of this type include the polyacrylates and maleic anhydride- acrylic acid copolymers previously mentioned as builders, as well as copolymers of maleic anhydride with ethylene, methylvinyl ether or methacrylic acid, the maleic anhydride constituting at least 20 mole percent of the copolymer. These materials are normally used at levels of from 0.5% to 10% by weight, more preferably from 0.75% to 8%, most preferably from 1% to 6% by weight of the composition.
Preferred optical brighteners are anionic in character, examples of which are disodium 4,41-bis-(2-diethanolamino-4- anilino -s- triazin-6-ylamino)stilbene-2:21 disulphonate, disodium 4, - 41-bis-(2-morpholino-4-anilino-s-triazin-6- ylaminostilbene-2:21 - disulphonate, disodium 4,41 - bis-(2,4- dianilino-s-triazin-6-ylamino)stilbene-2:21 - disulphonate, monosodium 41,411 -bis-(2,4-dianilino-s-triazin-6 ylamino)stilbene-2-sulphonate, disodium 4,41 -bis-(2-anilino-4-
(N-methyl-N-2-hydroxyethylamino)-s-triazin-6-ylamino)stilbene- 2,2! - disulphonate, disodium ,4! -bis-(4-phenyl-2,1,3- triazol-2-yl)-stilbene-2,21 disulphonate, disodium 4,41bis(2- anilino-4-(l-methyl-2-hydroxyethylamino)-s-triazin-6- ylamino)stilbene-2,21disulphonate and sodium 2(stilbyl-411- (naphtho-l1^1^^)-1,2,3 - triazole-213—sulphonate.
Soil release agents useful in compositions of the present invention are conventionally copolymers or terpolymers of terephthalic acid with ethylene glycol and/or propylene glycol units in various arrangements. Examples of such polymers are disclosed in the commonly assigned US Patent Nos. 4116885 and
4711730 and European Published Patent Application No. 0 272
033. A particular preferred polymer in accordance with EP-A-0
272 033 has the formula
(CH3(PEG)43)o.75(POH)o.25[T-PO)2.8(T-PEG)o.4]T(PO-
H)θ.25((PEG) 43CH3)o.75
where PEG is -(OC2H4)0-,PO is (OC3H60) and T is (pcOC6H CO) .
Also very useful are modified polyesters as random copolymers of dimethyl terephtalate, dimethyl sulfoisophtalate, ethylene glycol and 1-2 propane diol, the end groups consisting primarily of sulphobenzoate and secondarily of mono esters of ethylene glycol and/or propane-diol. The target is to obtain a polymer capped at both end by sulphobenzoate groups, "primarily", in the present context most of said copolymers herein will be end-capped by sulphobenzoate groups. However, some copolymers will be less than fully capped, and therefore their end groups may consist of monoester of ethylene glycol and/or propane 1-2 diol, thereof consist "secondarily" of such species.
The selected polyesters herein contain about 46% by weight of dimethyl terephtalic acid, about 16% by weight of propane -1.2 diol, about 10% by weight ethylene glycol about 13% by weight of dimethyl sulfobenzoid acid and about 15% by weight of sulfoisophtalic acid, and have a molecular weight of about 3.000. The polyesters and their method of preparation are described in detail in EPA 311 342.
The detergent compositions according to the invention can be in liquid, paste, gels or granular forms. Granular compositions according to the present invention can also be in "compact form", i.e. they may have a relatively higher density than conventional granular detergents, i.e. from 550 to 950 g/1; in such case, the granular detergent compositions according to the present invention will contain a lower amount of "inorganic filler salt", compared to conventional granular detergents; typical filler salts are alkaline earth metal salts of sulphates and chlorides, typically sodium sulphate; "compact" detergents typically comprise not more than 10% filler salt. The liquid compositions according to the present invention can also be in "concentrated form", in such case, the liquid detergent compositions according to the present invention will contain a lower amount of water,compared to conventional liquid detergents. Typically, the water content of the concentrated liquid detergent is less than 30%, more preferably less than 20%, most preferably less than 10% by weight of the detergent compositions. Other examples of liquid compositions are anhydrous compositions containing substantially no water. Both aqueous and non-aqueous liquid compositions can be structured or non-structured.
The present invention also relates to a process for inhibiting dye transfer from one fabric to another of solubilized and suspended dyes encountered during fabric laundering operations involving colored fabrics.
The process comprises contacting fabrics with a laundering solution as hereinbefore described.
The process of the invention is conveniently carried out in the course of the washing process. The washing process is preferably carried out at 5 °C to 75 "C, especially 20 to 60, but the polymers are effective at up to 95 °C. The pH of the treatment solution is preferably from 7 to 11, especially from 7.5 to 10.5. The process and compositions of the invention can also be used as detergent additive products.
Such additive products are intended to supplement or boost the performance of conventional detergent compositions. The detergent compositions according to the present invention include compositions which are to be used for cleaning substrates, such as fabrics, fibers, hard surfaces, skin etc., for example hard surface cleaning compositions (with or without abrasives), laundry detergent compositions, automatic and non automatic dishwashing compositions.
The following examples are meant to exemplify compositions of the present invention , but are not necessarily meant to limit or otherwise define the scope of the invention, said scope being determined according to claims which follow.
EXAMPLE I
A liquid detergent composition according to the present invention is prepared, having the following compositions :
% by weight of the total detergent composition
A B C
Linear alkylbenzene sulfonate
Alkyl sulphate
Fatty alcohol (C12-C15) ethoxylate
Fatty acid
Oleic acid
Citric acid
Diethylenetriaminepentamethylene
Phosphonic acid
NaOH
Propanediol
Ethanol
Ethoxylated tetraethylene penta ine
Polyethylene glycol
Maleic acid acrylic acid copolymer
Poly(4-vinylpyridine)-N-oxide
Thermamyl
Figure imgf000026_0001
Carezyme
FN-Base
Lipolase
Endoglucanase A
Suds supressor (ISOFOLr)
Minors
Figure imgf000027_0001
EXAMPLE II
A compact granular detergent composition according to the present invention is prepared, having the following formulation:
% by weight of the total detergent composition
A B C
Linear alkyl benzene sulphonate
Tallow alkyl sulphate C45 alkyl sulphate
C45 alcohol 7 times ethoxylated
Tallow alcohol 11 times ethoxylated
Dispersant
Silicone fluid
Trisodium citrate
Citric acid
Zeolite
Maleic acid acrylic acid copolymer
Cellulase (active protein)
Alkalase/BAN
Lipase
Sodium silicate
Sodium sulphate
Ethoxylated tetraethylene pentamine
Polyethylene glycol
Maleic acid acrylic acid copolymer
Poly(4-vinylpyridine)-N-oxide
Minors
Figure imgf000027_0002
The above compositions (Example I and II) were very good at displaying excellent cleaning and detergency performance with outstanding color-care performance on colored fabrics and mixed loads of colored and white fabrics.

Claims

1. A dye transfer inhibiting composition comprising a) a polymer selected from polyamine N-oxide containing polymers which contain units having the following structure formula :
*x
wherein P is a polymerisable unit, whereto the N-O group can be attached to or wherein the N-O group forms part of the polymerisable unit.
O O O
II 11 »
A is NC, CO, C, -0-,-S-,-N- ; x is or O or 1;
R are aliphatic, ethoxylated aliphatic, aromatic, heterocyclic or alicyclic groups whereto the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-O group is part of these groups.
b) a polymeric dispersing agent
2. A dye transfer inhibiting composition according to claim 1 wherein P is a polymerisable unit wherein the N-O group is attached to and wherein R is selected from an aromatic or heterocyclic group.
3. A dye transfer inhibiting composition according to claim 2 wherein the nitrogen of the N-O group forms part of the R- group.
4. A dye transfer inhibiting composition according to claim 3 wherein the R-group is selected from pyridine, pyrrole, imidazole and derivatives thereof.
5. A dye transfer inhibiting composition according to claim 1,2 wherein the nitrogen of the N-O group is attached to the R- group.
6. A dye transfer inhibiting composition according to claim 5 wherein R is a phenyl group.
7. A dye transfer composition according to claim 1 wherein P is a polymerisable unit, whereto the N-O group forms part of the polymerisable unit and wherein R is selected from an aromatic or heterocyclic group.
8. A dye transfer inhibiting composition according to claim 7 wherein the nitrogen of the N-O group forms part of the R- group.
9. A dye transfer inhibiting composition according to claim 8 wherein the R-group is selected from pyridine, pyrrole, imidazole and derivatives thereof.
10. A dye transfer inhibiting composition according to claim 1- 9 wherein the polymeric backbone is derived from the group of the polyvinyl polymers.
11. A dye transfer inhibiting composition according to claims 1-10 wherein the ratio of amine to amine N-oxide is from 2:3 to 1:1000000, preferably from 1:4 to 1:1000000, most preferably from 1:7 to 1:1000000.
12. A dye transfer inhibiting composition according to claims 1-11 wherein the polyamine N-oxide containing polymer has an average molecular weight within the range of 500 to 1000,000; preferably from 1,000 to 50,000, more preferably from 2,000 to 30,000, most preferably from 3,000 to 20,000.
13. A dye transfer inhibiting composition according to claims
1-12 wherein said polyamine N-oxide containing polymer is poly(4-vinylpyridine-N-oxide) .
14. A dye transfer inhibiting composition according to claims 1-13 wherein the polyamine N-oxide is present at levels from 0.001 to 10 % by weight of the composition.
15. A dye transfer inhibiting composition according to claims 1-14 wherein said polymeric dispersing agent is a polymeric polycarboxylate.
16. A dye transfer inhibiting composition according to claim 15 wherein said polymeric dispersing agent is selected from polymeric polyacrylates, acrylic acid/maleic copolymers or mixtures thereof.
17. A dye transfer inhibiting composition according to claim 1- 16 wherein said polymeric dispersing agent is selected from a polyethylene glycol and/or an alkoxylated polyamine.
18. A dye transfer inhibiting composition according to claims 1-17 which is a detergent additive, in the form of a non- dusting granule or a liquid.
19. A detergent composition which comprises a dye transfer inhibiting composition according to claims 1-18 further comprising surfactants, builders, and other conventional detergent ingredients.
PCT/US1993/006221 1992-07-15 1993-06-30 Dye transfer inhibiting compositions comprising polymeric dispersing agents WO1994002578A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU46581/93A AU4658193A (en) 1992-07-15 1993-06-30 Dye transfer inhibiting compositions comprising polymeric dispersing agents
JP6504482A JPH08511811A (en) 1992-07-15 1993-06-30 Dye transfer inhibiting composition comprising a polymeric dispersion aid

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
EP92202168 1992-07-15
EP92202168.8 1992-07-15
EP92870181.2 1992-11-06
EP19920870181 EP0596184B1 (en) 1992-11-06 1992-11-06 Detergent compositions inhibiting dye transfer
EP93870109A EP0581753B1 (en) 1992-07-15 1993-06-09 Dye transfer inhibiting compositions comprising polymeric dispersing agents
EP93870109.1 1993-06-09

Publications (1)

Publication Number Publication Date
WO1994002578A1 true WO1994002578A1 (en) 1994-02-03

Family

ID=27234620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1993/006221 WO1994002578A1 (en) 1992-07-15 1993-06-30 Dye transfer inhibiting compositions comprising polymeric dispersing agents

Country Status (3)

Country Link
JP (1) JPH08511811A (en)
AU (1) AU4658193A (en)
WO (1) WO1994002578A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0753041A4 (en) * 1994-04-22 1996-11-20 Procter & Gamble Amylase-containing granular detergent compositions
WO2008077952A1 (en) * 2006-12-22 2008-07-03 Basf Se Hydrophobically modified polyalkylenimines for use as dye transfer inhibitors

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6967939B2 (en) * 2017-10-31 2021-11-17 ライオン株式会社 Liquid cleaner

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0135217A1 (en) * 1983-07-22 1985-03-27 THE PROCTER &amp; GAMBLE COMPANY Ethoxylated amine oxides having clay soil removal/anti-redeposition properties useful in detergent compositions
EP0233010A2 (en) * 1986-01-30 1987-08-19 The Procter & Gamble Company Detergency builder system
EP0265257A2 (en) * 1986-10-24 1988-04-27 Unilever Plc Detergent composition
EP0508034A1 (en) * 1991-04-12 1992-10-14 The Procter & Gamble Company Compact detergent composition containing polyvinylpyrrolidone
EP0523950A1 (en) * 1991-07-19 1993-01-20 Rohm And Haas Company Use of acrylic acid/ethyl acrylate copolymers for enhanced clay soil removal in liquid laundry detergents

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0135217A1 (en) * 1983-07-22 1985-03-27 THE PROCTER &amp; GAMBLE COMPANY Ethoxylated amine oxides having clay soil removal/anti-redeposition properties useful in detergent compositions
EP0233010A2 (en) * 1986-01-30 1987-08-19 The Procter & Gamble Company Detergency builder system
EP0265257A2 (en) * 1986-10-24 1988-04-27 Unilever Plc Detergent composition
EP0508034A1 (en) * 1991-04-12 1992-10-14 The Procter & Gamble Company Compact detergent composition containing polyvinylpyrrolidone
EP0523950A1 (en) * 1991-07-19 1993-01-20 Rohm And Haas Company Use of acrylic acid/ethyl acrylate copolymers for enhanced clay soil removal in liquid laundry detergents

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0753041A4 (en) * 1994-04-22 1996-11-20 Procter & Gamble Amylase-containing granular detergent compositions
EP0753041A1 (en) * 1994-04-22 1997-01-15 The Procter & Gamble Company Amylase-containing granular detergent compositions
WO2008077952A1 (en) * 2006-12-22 2008-07-03 Basf Se Hydrophobically modified polyalkylenimines for use as dye transfer inhibitors

Also Published As

Publication number Publication date
AU4658193A (en) 1994-02-14
JPH08511811A (en) 1996-12-10

Similar Documents

Publication Publication Date Title
US5470507A (en) Dye transfer inhibiting compositions comprising polymeric dispersing agents
US5458809A (en) Surfactant-containing dye transfer inhibiting compositions
US5460752A (en) Built dye transfer inhibiting compositions
US5478489A (en) Dye transfer inhibiting compositions comprising bleaching agents and a polyamine N-oxide polymer
US5912221A (en) Laundry detergent composition comprising substantially water-insoluble polymeric dye transfer inhibiting agent
EP0635565B1 (en) Detergent compositions inhibiting dye transfer
US5710119A (en) Detergent compositions inhibiting dye transfer comprising copolymers of N-vinylimidazole and N-vinylpyrrolidone
EP0635566B1 (en) Detergent compositions inhibiting dye transfer
EP0587550B1 (en) Surfactant containing dye transfer inhibiting compositions
US5710118A (en) Detergent compostions inhibiting dye transfer comprising copolymers of n-vinylimidazole and n-vinylpyrrolidone
EP0628624A1 (en) Protease containing dye transfer inhibiting compositions
US5604197A (en) Softening through the wash compositions
CA2140287C (en) Dye transfer inhibiting compositions comprising bleaching agents
WO1995019419A1 (en) Use of polymers in liquid detergent compositions containing brighteners for preventing fabric spotting
US5883064A (en) Protease containing dye transfer inhibiting composition
EP0800570B1 (en) Laundry detergent composition comprising substantially water-insoluble polymeric dye transfer inhibiting agent
WO1994002580A1 (en) Surfactant-containing dye transfer inhibiting compositions
CA2179266C (en) Detergent compositions containing polyamine n-oxide polymers
EP0664332B1 (en) Detergent compositions inhibiting dye transfer
WO1994002578A1 (en) Dye transfer inhibiting compositions comprising polymeric dispersing agents
US5939513A (en) Methods of removing pigment stain using detergent compositions containing polyamine N-oxide polymers
WO1994002576A1 (en) Built dye transfer inhibiting compositions
WO1995020032A9 (en) Detergent compositions inhibiting dye transfer
EP0587549B1 (en) Dye transfer inhibiting compositions comprising bleaching agents
EP0635563A1 (en) Dye-transfer-inhibiting compositions containing fabric-softening agent

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BB BG BR BY CA CZ FI HU JP KP KR KZ LK MG MN MW NO NZ PL RO RU SD SK UA US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2140282

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 08373257

Country of ref document: US

122 Ep: pct application non-entry in european phase