WO1994001454A1 - Procedimiento de fabricacion de soportes solidos inertes activados con grupos amino - Google Patents

Procedimiento de fabricacion de soportes solidos inertes activados con grupos amino Download PDF

Info

Publication number
WO1994001454A1
WO1994001454A1 PCT/ES1993/000057 ES9300057W WO9401454A1 WO 1994001454 A1 WO1994001454 A1 WO 1994001454A1 ES 9300057 W ES9300057 W ES 9300057W WO 9401454 A1 WO9401454 A1 WO 9401454A1
Authority
WO
WIPO (PCT)
Prior art keywords
supports
groups
support
activated
reaction
Prior art date
Application number
PCT/ES1993/000057
Other languages
English (en)
French (fr)
Inventor
José M. GUISAN
Cristina Molina-Rosell
Roberto Fernandez-Lafuente
Mª del Carmen CEINOS
Original Assignee
Consejo Superior Investigaciones Científicas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior Investigaciones Científicas filed Critical Consejo Superior Investigaciones Científicas
Publication of WO1994001454A1 publication Critical patent/WO1994001454A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28047Gels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3206Organic carriers, supports or substrates
    • B01J20/3208Polymeric carriers, supports or substrates
    • B01J20/321Polymeric carriers, supports or substrates consisting of a polymer obtained by reactions involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3206Organic carriers, supports or substrates
    • B01J20/3208Polymeric carriers, supports or substrates
    • B01J20/3212Polymeric carriers, supports or substrates consisting of a polymer obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3214Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating
    • B01J20/3217Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond
    • B01J20/3219Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond involving a particular spacer or linking group, e.g. for attaching an active group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3248Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3248Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such
    • B01J20/3255Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such comprising a cyclic structure containing at least one of the heteroatoms nitrogen, oxygen or sulfur, e.g. heterocyclic or heteroaromatic structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3257Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one of the heteroatoms nitrogen, oxygen or sulfur together with at least one silicon atom, these atoms not being part of the carrier as such
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3257Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one of the heteroatoms nitrogen, oxygen or sulfur together with at least one silicon atom, these atoms not being part of the carrier as such
    • B01J20/3263Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one of the heteroatoms nitrogen, oxygen or sulfur together with at least one silicon atom, these atoms not being part of the carrier as such comprising a cyclic structure containing at least one of the heteroatoms nitrogen, oxygen or sulfur, e.g. an heterocyclic or heteroaromatic structure

Definitions

  • inert solid supports The activation of inert solid supports is of great interest in different areas of BIOTECHNOLOGY especially for the purification of proteins of interest and for the preparation of derivatives of immobilized proteins of industrial interest.
  • functional groups e.g. ionic groups, hydrophobic groups, ...) into inert solids makes them ionic, hydrophobic, moderately specific adsorbents for protein purification.
  • immobilized proteins within this last group of immobilized proteins we can distinguish two groups of singular interest: i.- derivatives of immobilized enzymes for use as industrial catalysts, ii.- preparation of highly specific protein-solid adsorbents for the purification of proteins of industrial interest (eg immobilized antibodies, immobilized protein A, immobilized G protein, immobilized lectins ..).
  • i.- derivatives of immobilized enzymes for use as industrial catalysts ii.- preparation of highly specific protein-solid adsorbents for the purification of proteins of industrial interest (eg immobilized antibodies, immobilized protein A, immobilized G protein, immobilized lectins ..).
  • the activation of inert solids to introduce primary amino groups to its surface presents in principle important perspectives of practical use.
  • the amino groups are inonized (eg at pH values lower than the pK of the amino groups) the activated supports can be used as adsorbents for anion exchange.
  • the amino groups are unionized (pH values greater than pk of the amino groups) the activated supports can be used for immobilization by covalent binding of proteins and other ligands containing carboxyl groups (via activation with carbodiimide), aldehyde groups (eg glycoproteins oxidized with periodate) ....
  • the manufacturing process of primary amino-supports that we claim has a number of important advantages over the other methods of preparing amino-supports.
  • the main advantages are the following: a.- All stages can be carried out in a quantitative way. That is, we can transform more than 99% of the activatable groups that contain a support (hydroxyl groups, silanol, glycol, epoxide ..) into primary amino groups so we can achieve supports with very high primary amino coatings (the highest possible).
  • b.- All stages are easily controllable. Therefore, if we wish we can control the coating of amino groups in a very exact way and at different levels.
  • the level at which we carry out the control could vary the final characteristics of the activated solid, depending on whether the monoaminoethyl-N-amino ethyl groups formed are surrounded by inert arms (containing hydroxyl groups) at a different distance from the support.
  • Al.- Etherification with glycidol The reaction is carried out in strongly alkaline medium to increase the reactivity of the support hydroxyls (conversion into alkoxide ions) but using high concentrations of sodium borohydride (around 1-10 mg / ml) to avoid nonspecific oxidation of the supports in these drastic experimental conditions.
  • the degree of etherification of the supports is controlled using different concentrations of glycidol (2,3 epoxypropanol) or different reaction times or different temperatures.
  • A2. Oxidation with periodate. It is performed under very mild conditions to avoid nonspecific oxidation of the supports (eg periodate concentrations of the order of 1-10 mM and gel volume / suspension volume ratios of the order of 0.05). Since this reaction is quantitative, we can control the degree of oxidation of glyceryl groups in the support by adding the exact amount of periodate taking into account that each mole of added periodate generates the appearance of an equivalent of aldehyde groups in the gel.
  • A3. Reaction with ethylenediamine. It is carried out in alkaline media and with very high concentrations of diamine (of the order of 0.5 - 2 M). We can control the degree of reaction of aldehyde groups with diamine using different pHs, different temperatures or different reaction times.
  • B.- Activation of supports containing glycol groups e.g. cellulose gels, chemically cross-linked dextran gels ..).
  • Bl.- Oxidation of gels with periodate Since these inert supports already contain glycol groups in their structure they can be transformed into aldehyde supports by direct oxidation and controlled by periodate. The reaction is carried out under conditions similar to those described in section A, controlling the aldehyde groups formed in the gel by adding the exact amounts of periodate. The maximum number of aldehydes formed is limited by the textural properties of the support since we will have to limit our to relatively mild oxidations so as not to damage their structure.
  • Cll.-Direct reaction with diamines The epoxide resins are reacted with ethylenediamine at moderately alkaline pH (e.g. 8.0 - 9.0).
  • the reaction control can be done by controlling pH, reaction temperature, ethylenediamine concentration, reaction time ...
  • C22.- Activation of glyceryl resins It was carried out in accordance with points 2,3 and 4 described in section A.
  • D.- Activation of supports containing silane groups eg porous glass, silica, ceramic materials, sepiolites, zeolites .
  • DI.- Silanization of the supports with ⁇ -glycidoxypropyl-triethoxysilane The reaction is carried out in organic solvents (e.g. benzene, toluene ..) to avoid multilayer formation and thus simplify and control activation.
  • organic solvents e.g. benzene, toluene ..
  • the control of this activation is carried out by varying the concentration of silane added to the reaction medium.
  • E2.- Colorimetric evaluation To 2 ml of aqueous solution at different pHs (using 0.1 M of acetate or phosphate depending on the chosen pH) 0.2 ml of 5% picril sulfonic acid solution is added. The absorbance increase at 420 nm of this target due to spontaneous hydrolysis of picril sulfonic acid is measured in a SHIMADZU spectrophotometer. Subsequently, 0.5 ml of a 1: 5 (v / v) amino gel suspension is added and the color increase produced by reacting the primary amino groups of the gels with the picrylsulfonic acid is recorded.
  • the suspension is gently stirred for 2 hours at room temperature and washed with distilled water.
  • the gel-aldehyde is suspended in 600 ml of 2 M ethylenediamine pH 10.0 and gently stirred at room temperature. After 2 hours, 2 grams of sodium borohydride are added and the gel is reduced under gentle stirring for another two hours at room temperature. Finally, the amino gel is washed with 500 ml of 0.1 M phosphate, 500 ml. of distilled water, 500 mi. of acetate 0.1 M pH 4.0, 500 ml of water, 500 ml of borate 0.1 M pH 9.5 and 2 liters of distilled water.
  • the concentration of primary aminos in the gels is expressed after the global activation process. It is expressed in ⁇ amino equivalents per ml of activated support. Dens. Surface The surface density of amino groups in activated gels is expressed. It is expressed in N ⁇ of amino residues per 1000 A 2 of the gel surface. This parameter gives us a very correct idea of the possibilities of these activated gels to multi-interact with proteins.

Abstract

El procedimiento está basado fundamentalmente en la reacción de etilendiamina con soportes inertes, conteniendo una monocapa controlada de grupos aldehido idénticos y moderadamente separados de la superficie del soporte y la posterior reducción con borohidruro de los soportes activados para eliminar los grupos reactivos adicionales que podrían provocar interacciones secundarias no deseadas. Aplicaciones en biotecnología, especialmente para la purificación de proteínas y para la preparación de derivados de proteínas inmovilizados.

Description

MEMORIA DESCRIPTIVA PROCEDIMIENTO DE FABRICACIÓN DE SOPORTES SOLIDOS INERTES ACTIVADOS CON GRUPOS AMINO
La activación de soportes solidos inertes tiene enorme interés en diferentes áreas de la BIOTECNOLOGÍA especialmente para la purificación de proteínas de interés y para la preparación de derivados de proteínas inmovilizados de interés industrial. La introducción de determinados grupos funcionales (p.e. grupos iónicos, grupos hidrofóbicos, ...) en sólidos inertes los convierte en adsorbentes iónicos, hidrofóbicos, moderadamente específicos para la purificación de proteínas. Por otro lado, si estos grupos funcionales introducidos en los solidos inertes son capaces de reaccionar covalentemente con grupos funcionales de los residuos aminoácidos de proteínas (p.e. grupos amino de residuos usina, grupos carboxilos de los ácidos aspártico o glutamico, grupos fenolicos de tirosinas, grupos imidazol de histidinas.. ) los sólidos activados tienen enorme utilidad como soportes para inmovilización de proteínas. Dentro de este ultimo grupo de proteínas inmovilizadas podemos distinguir dos grupos de singular interés : i.- derivados de enzimas inmovilizados para su uso como catalizadores industriales, ii.- preparación de adsorbentes proteína-solido altamente específicos para la purificación de proteínas de interés industrial (p.e. anticuerpos inmovilizados, proteína A inmovilizada, proteína G inmovilizada, lectinas inmovilizadas..).
Desde este punto de vista, la activación de solidos inertes para introducir en su superficie grupos amino primario presenta en principio importantes perspectivas de utilización practica. Cuando los grupos amino están inonizados (p.e a valores de pH inferiores al pK de los grupos amino) los soportes activados se pueden utilizar como adsorbentes para intercambió aniónico. Cuando los grupos amino están sin ionizar (valores de pH superiores al pk de los grupos amino) los soportes activados se pueden utilizar para inmovilización por unión covalente de proteínas y otros ligandos conteniendo grupos carboxilo (vía activación con carbodiimida), grupos aldehido (p.e. glicoproteínas oxidadas con peryodato) ... .
HOJA SUSTITUIDA A partir de estos comentarios resulta evidente que el pK de los grupos amino primarios introducidos en el soporte juega un papel fundamental para definir las posibilidades de aplicación práctica de los soportes así activados. Por ejemplo, los grupos amino de muy bajo pK presentan excelentes perspectivas para ser utilizados para la unión covalente de proteínas y otros ligandos vía activación de grupos carboxilo con carbodiimida ya que esta reacción debe realizarse a pHs relativamente bajos (p.e. 5-6) con objeto de que la carbodiimida sea un buen agente activante de carboxilos.
Por otro lado, desde un punto de vista mas general resulta evidente que este proceso de activación de solidos inertes debe ser muy fácilmente controlable y reproducible, con objeto de poder controlar y reproducir los subsiguientes empleos de los mismos. Así, en muchos casos la obtención de soportes conteniendo una concentración muy elevada de grupos amino puede ser fundamental para determinadas aplicaciones de los mismos (p.e. intercambio iónico mas intenso, inmovilización de proteínas por unión covalente multipuntual..). Por el contrario, en otros caso puede tener enorme interés utilizar soportes con menores concentraciones de grupos amino (intercambio iónico más selectivo, inmovilización de proteínas por unión covalente unipuntual.. ). También es importante que el soporte no posea otros grupos reactivos con objeto de eliminar interacciones inespecíficas proteína soporte...
Existen en la actualidad diferentes métodos de preparación de soportes amino y diferentes tipos de soportes amino comerciales. Sin embargo, debido a que estos métodos de preparación no están muy optimizados, los soportes-amino resultantes presentan unas posibilidades de uso muy reducidas. En general, los soporte-amino primario comerciales suelen presentar un recubrimiento en amino relativamente bajo y unos grupos amino con pK muy elevado (en el rango 9.0 - 10.0) por lo que son muy poco útiles de acuerdo con las consideraciones expuestas anteriormente. Así considerados como soportes para intercambio iónico no poseen mucha utilidad (provocan interacciones débiles y poco intensas) y por ello son generalmente sustituidos para este uso por soportes conteniendo sales de amonio ternarias o cuaternarias que provocan interacciones proteína-soporte mucho mas fuertes. Tampoco presentan buenas perspectivas de uso industrial como soportes para inmovilización de proteínas, vía carbodiimida, debido a sus elevados pK, unidos igualmente a su bajo recubrimiento. De hecho, estas malas propiedades de los soportes-amino primario comerciales hacen que el método de inmovilización de proteínas vía activación con carbodiimida sea muy poco utilizado, tanto en la literatura científica, como para la preparación de derivados de proteínas inmovilizados de uso industrial, a pesar de que en principio podría ser un método extraordinariamente útil de inmovilización. En general las proteínas presentan una elevada densidad superficial de grupos carboxilo (quizás los mas numerosos estadísticamente) que podrían ser utilizados de un modo adecuado para su inmovilización.
OBJETIVO PRINCIPAL DE ESTA PATENTE. En esta Patente reivindicamos un procedimiento para la obtención de soportes-amino primario basados fundamentalmente en la reacción de etilendiamina con soportes conteniendo una monocapa controlada de grupos aldehido idénticos y moderadamente separados de la superficie del soporte. Como punto final de este proceso reivindicamos la reducción con borohidruro de los soportes activados.
Esquemáticamente, este proceso consta de 4/5 etapas fundamentales.
1.- formación de soportes conteniendo grupos glicol. Este proceso se puede desarrollar en una sola etapa o en dos pasos, a.- cuando utilizamos soportes que contienen hidroxilos alcohólicos estos se pueden eterificar directamente con glicidol (2,3 epoxipropanol) para introducir grupos glicoles. b.- cuando utilizamos soportes inorgánicos conteniendo grupos silanoles (p.e. sílice, vidrio poroso, sepiolitas..) estos se activan por silanización con glicidoxipropiltrimetoxisilano con formación de grupos epóxido y estos grupos epóxido se hidrolizan por hidrólisis acida para producir glicoles. c- cuando utilizamos polímeros sintéticos conteniendo grupos epóxido (p.e. resinas epoxi-acrílicas) estos grupos epóxido se hidrolizarían como en el caso anterior para producir grupos glicol. 2.- oxidación de los grupos glicol con peryodato para dar lugar a grupos aldehido sencillos y moderadamente separados de la superficie de los soportes. Este mismo proceso de preparación de grupos aldehido sencillos se puede aplicar directamente a solidos que ya contienen en su estructura grupos glicol (p.e. celulosa, dextranos entrecruzados químicamente.. ).
3.- reacción de grupos aldehido con etlilendiamina o reacción de grupos epóxido con etilendiamina. 4.- reducción con borohidruro.
VENTAJAS DEL PROCEDIMIENTO REIVINDICADO.
El proceso de fabricación de soportes-amino primario que reivindicamos presenta una serie de importantes ventajas con respecto a los otros métodos de preparación de soportes - amino. Las ventajas principales son las siguientes: a.- Todas las etapas pueden realizarse de un modo cuantitativo. Es decir, podemos transformar mas del 99 % de los grupos activables que contiene un soporte (grupos hidroxilo, silanol, glicol, epóxido..) en grupos amino primario por lo que podremos lograr soportes con recubrimientos en amino primario muy altos (lo mas alto posibles). b.- Todas las etapas son fácilmente controlables. Por ello, si lo deseamos podemos controlar el recubrimiento de grupos amino de un modo muy exacto y a diferentes niveles.
En algunos casos, el nivel en el que realicemos el control, podría variar las características finales del solido activado, dependiendo que los grupos monoaminoetil-N-amino etil formados estén rodeados por brazos inertes (conteniendo grupos hidroxilo) a diferente distancia del soporte. En principio nosotros proponemos el control de la activación al primer nivel o segundo niveles, con objeto de reducir el lo posible todo tipo de interacciones secundarias. Sin embargo también reivindicamos el control del proceso al tercer nivel (reacción de soportes aldehido con etilendiamina) pues en algunos casos estas interacciones secundarias o los impedimentos estéricos provocados por la presencia de brazos espaciadores complementarios podrían tener interés aplicado, c- La reducción final de los soportes con borohidruro elimina todo tipo de grupos reactivos adicionales que podrían ser responsables de interacciones secundarias covalentes entre el soporte y la proteína las cuales son en principio indeseables totalmente. Esta reducción también podría servir en algunos casos para regenerar algún pequeño porcentaje de grupos amino que se podrían haber oxidado durante la etapa de reacción. d.- los grupos amino primarios formados sobre la superficie del soporte tienen unas propiedades especiales (un pK extraordinariamente bajo, alrededor de 4.5 - 5.0) debido a la presencia de una amina secundaria a una distancia muy pequeña (de grupos metilen). Estas propiedades de los grupos amino primarios los hacen especialmente útiles para la unión de proteínas vía activación con carbodiimida a pH ácido. e.- la formación de una doble capa de grupos ionizables unos grupos amino primario externos con pk alrededor de 5.0 y unos grupos amino secundario mas internos con pk alrededor de nueve hace que los soportes así preparados pueden tener unas excelentes y nuevas propiedades como soportes de intercambio iónico de muy alta especificidad. Esta especificidad se verá aumentado por el hecho de poder utilizar soportes con diferente grado de recubrimiento en dicha monocapa (control del proceso de preparación) y por el uso de soportes con diferentes propiedades morfológicas y texturales (p.e. geles de agarosa entre el 1 y el 16 %). En este caso podríamos combinar en un solo paso procesos de intercambio iónico altamente específicos con procesos de purificación por exclusión molecular. f. a pH ácido podríamos combinar una primera adsorción iónica de las proteínas sobre el soporte con una segunda reacción covalente de inmovilización vía carbodiimida de la proteína previamente absorbida sobre el soporte. De este modo podríamos eliminar los posibles efectos negativos que la activación con carbodiimida puede producir sobre algunas proteínas por interacción intermolecular y/o a pH elevado.
ORIGINALIDAD DEL PROCESO REIVINDICADO
Aunque las reacciones desarrolladas durante este proceso de fabricación son todas bien conocidas (eterificación de hidroxilos con epoxidos, oxidación de glicoles con peryodato, reacción de aminas con aldehido, silanización, reacción de epoxidos con aminas...) la originalidad del proceso global de fabricación que se reivindica se basa en los puntos siguientes que diferencian claramente este proceso reivindicado de otros procesos similares descritos en la literatura científica:
1.- Preservación de la estructura de los solidos utilizados, p.e. utilizando condiciones reductoras drásticas para impedir oxidaciones inespecíficas de los soportes durante los diferentes tratamientos y utilizando un estricto control de rangos de pH. Este punto es realmente clave para la posterior utilización de los soportes activados en reactores (tipo columna, tipo tanque agitado..)
2.- Estricto control de reacciones secundarias que podrían dar lugar a la formación de grupos funcionales responsables de interacciones inespecíficas con proteínas (p.e oxidación de los grupos amino primario en condiciones no controladas de pH o temperatura..).
3.- Establecimiento de las condiciones necesarias para lograr una conversión cuantitativa (mas del 99%) de todos los grupos activables de un soporte (hidroxilos alcohólicos, silanoles, glicoles..) en grupos amino primarios con pK extremadamente bajo.
4.- Establecimiento de las condiciones necesarias para el estricto control del grado de reacción en las diferentes etapas del proceso. Esto nos permite diseñar soportes con contenido muy controlado en grupos amino primario, sin ningún resto de otros posibles grupos reactivos remanentes y rodeados de diferentes sustituyentes inertes de distinta naturaleza y tamaño. 5.- La utilización exclusiva de etilendiamina como diamina en el proceso final de preparación de los solidos activados. La reacción de etilendiamina con epoxidos o aldehidos da lugar a la formación de grupos monoaminoetil-N- alquilo en los que el grupo amino primario tiene un pk excepcionalmente bajo que los hace muy útiles para la aplicación industrial de los soportes así preparados.
6.- La reducción final de los solidos con borohidruro elimina todo tipo de residuos reactivos en el soporte y además sirve para regenerar grupos amino que se hubieran podido oxidar durante el proceso de preparación de estos solidos activados. METODOLOGÍA EXPERIMENTAL.
A.- Activación de soportes conteniendo grupos hidroxilo alcohólicos (p.e. gales de agarosa.... ) .
Al.- Eterificación con glicidol. La reacción se realiza en medio fuertemente alcalinos para aumentar la reactividad de los hidroxilos de soporte (conversión en iones alcoxido) pero utilizando elevadas concentraciones de borohidruro sódico (alrededor de 1-10 mg/ml) para evitar la oxidación inespecífica de los soportes en estas condiciones experimentales drásticas. El grado de eterificación de los soportes se controla utilizando diferentes concentraciones de glicidol (2,3 epoxipropanol) o diferentes tiempos de reacción o diferentes temperaturas.
De este modo obtenemos soportes que conservan su textura
Y morfología perfectamente intactas y que contienen en diferentes concentraciones y por tanto diferentes densidades superficiales de grupos gliceril. A2.- Oxidación con peryodato. Se realiza en condiciones muy suaves para evitar oxidaciones inespecíficas de los soportes (p.e. concentraciones de peryodato del orden de 1-10 mM y relaciones volumen de gel/volumen de suspensión del orden de 0.05). Dado que esta reacción es cuantitativa, podemos controlar el grado de oxidación de grupos gliceril en el soporte mediante la adición de la cantidad exacta de peryodato teniendo en cuenta que cada mol de peryodato añadido genera la aparición de un equivalente de grupos aldehido en el gel. A3.- Reacción con etilendiamina. Se realiza en medios alcalinos y con concentraciones muy elevadas de diamina (del orden de 0.5 - 2 M). Podemos controlar el grado de reacción de grupos aldehido con diamina utilizando diferentes pHs, diferentes temperaturas o diferentes tiempos de reacción.
También podemos utilizar diferentes mezclas etilendiamina-etanolamina con objeto de tener un recubrimiento total en grupos amino secundario y únicamente un recubrimiento parcial y controlado de grupos amino primario. A4.- Reducción con borohidruro. Se realiza también a pHs alcalinao (9-11) y utilizando elevadas concentraciones de borohidruro (1-10 mg/ml). Este tratamiento asegura la formación de enlaces amino secundario entre la diamina y el soporte aldehido y asegura también la reducción de grupos aldehido que no han reaccionado a grupos hidroxilo inertes así como la regeneración de grupos amino oxidados a grupos nitro.
Mediante estas cuatro etapas podemos preparar geles agarosa conteniendo grupos amino primario de muy bajo pK y controlando exactamente la densidad superficial de grupos amino primarios así como la densidad superficial de las posibles cadenas adyacentes inertes.
B.- Activación de soportes conteniendo grupos glicoles (p.e. geles de celulosa, geles de dextrano entrecruzados químicamente.. ) . Bl.- Oxidación de los geles con peryodato. Dado que estos soportes inertes ya contienen grupos glicoles en su estructura se pueden transformar en soportes aldehido por oxidación directa y controlada con peryodato. La reacción se realiza en condiciones similares a las descritas en el apartado A, controlando los grupos aldehido formados en el gel mediante la adición de las cantidades exactas de peryodato. El numero máximo de aldehidos formados esta limitado por las propiedades texturales del soporte ya que tendremos que limitarnos a oxidaciones relativamente suaves para no dañar la estructura de los mismos.
B2.- Activación de los soportes-aldehido. Se realiza por reacción con etilendiamina y posterior reducción con borohidruro tal como hemos comentado en los apartados A3 y A4.
C- Activación de soportes conteniendo grupos epoxido (p.e. resinas epoxiacrilicas) . Estrategia 1.
Cll.-Reacción directa con diaminas. Se hacen reaccionar las resinas epoxido con etilendiamina a pH moderadamente alcalino (p.e. 8.0 - 9.0). El control de la reacción se puede hacer mediante el control de pH, temperatura de reacción, concentración de etilendiamina, tiempo de reacción...
Finalmente se hace un bloqueo cuantitativo de grupos epoxido por reacción con etanolamina 1 M a pH 10.0 durante 24 horas a temperatura ambiente. De este modo podremos obtener unas resinas con un grado de activación muy controlado en grupos amino primario, sin tener ningún grupo epoxido residual pero conteniendo una concentración muy elevada de grupos amino secundarios cargados positivamente. Finalmente los derivados se reducen con borohidruro para regenerar grupos amino que se hubieran podido oxidar durante las reacciones de activación Estrategia 2.- Aunque es ligeramente mas compleja que la estrategia 1 presenta algunas ventajas importantes desde un punto de vista practico. Se eliminan inicialmente todos los grupos epoxi con lo cual el manejo de estos soportes es mas sencillo. Al final de la activación, los grupos activos remanentes (grupos aldehido) se pueden eliminar totalmente por reducción con borohidruro sin necesidad de bloquear con otras aminas. La transformación final de grupos epoxido en grupos amino es mas elevada ya que en la estrategia 1 la presencia de estos grupos epoxido provoca hidrólisis inespecíficas de los mismos en competencia con los procesos de reacción con grupos amino.
C21.- Hidrólisis acida de los soportes epoxi. Se realiza utilizando sulfúrico moderadamente concentrado (p.e. 0.1 - 1 %) y con ello logramos transformar todos los grupos epoxido inestables en grupos glicol muy estables y fácilmente activables.
C22.- Activación de las resinas-gliceril. Se realizó de acuerdo con los puntos 2,3 y 4 descritos en el apartado A. D.- Activación de soportes conteniendo grupos silano (p.e. vidrio poroso, sílice, materiales cerámicos, sepiolitas, zeolitas...) .
DI.- Silanización de los soportes con μ-glicidoxipropil-trietoxisilano. La reacción se realiza en disolventes orgánicos (p.e. benceno, tolueno..) para evitar formación de multicapas y de este modo simplificar y controlar la activación. El control de esta activación se realiza variando la concentración de silano añadida al medio de reacción.
D2.- Activación de los soportes epoxi. Se realizó de acuerdo con las dos estrategias apuntadas en el apartado anterior. E.- Valoración de grupos amino en los geles activados. El.- Valoración ácido-base. 10 mi de gel se suspendían en 40 mi de agua destilada y el pH de la suspensión se ajustaba a 3.0 utilizando C1H concentrado. La suspensión se valoraba automáticamente con un valorador Mettler 21 y utilizando una disolución de NaOH 0.2 como solución valoradora. Estos estudios nos permitieron detectar dos grupos amino en los soportes con pKs de 5.5 y 8.5 muy similares para todos los diferentes soportes utilizados.
E2.- Valoración colorimétrica. A 2 mi de disolución acuosa a diferentes pHs (utilizando 0.1 M de acetato o fosfato dependiendo del pH elegido) se le añaden 0.2 mi de disolución de ácido picril sulfónico al 5%. El aumento de absorbancia a 420 nm de este blanco debido a la hidrólisis espontanea del ácido picril sulfónico se mide en un espectrofotómetro SHIMADZU. Posteriormente se le añaden 0.5 mi de una suspensión 1:5 (v/v) de gel amino y se registra el aumento de color producido por reacción de los grupos amino primario de los geles con el ácido picrilsulfónico. Corrigiendo los valores de aumento de absorbancia con el tiempo por los diferentes coeficientes de extinción de los complejos amino- picrilsulfónico a diferentes pHs podemos estudiar la variación de esta velocidad de reacción amino primario - picrilsulfónico con el pH. La forma de estas curvas nos confirma que efectivamente el pK de los grupos amino primarios (pH en el que la velocidad de reacciones la mitad de la velocidad máxima) es de 5.5, el valor mas bajo obtenido en la valoración ácido - base.
EJEMPLOS.
1.- Se suspenden 150 mi de gel de agarosa (desde 1% al 16 %) en un volumen total de 300 mi de suspensión acuosa conteniendo NaOH 0.32 N y borohidruro sódico 5.4 mg/ml. A la suspensión se le añaden diferentes cantidades de glicidol (2,3 epoxipropanol) (desde 1 a 36 mi) y se agita suavemente durante 18 horas a 25 °C. Después de esta reacción el gel-gliceril (conteniendo grupos glicoles) se lava con fosfato 0.1 M pH 7.0 y con abundante agua destilada. El gel-gliceril se suspende en 1.2 litros de agua destilada y a esta suspensión se le añaden diferentes volúmenes (entre 10 y 300 mi) de disolución 0.1 M de peryodato sódico. La suspensión se agita suavemente durante 2 horas a temperatura ambiente y se lava con agua destilada. El gel-aldehido se suspende en 600 mi de etlilendiamina 2 M pH 10.0 y se agita suavemente a temperatura ambiente. Al cabo de 2 horas se añaden 2 gramos de borohidruro sódico y el gel se reduce bajo agitación suave durante otras dos horas a temperatura ambiente. Finalmente el gel amino se lava con 500 mi de fosfato 0.1 M, 500 mi. de agua destilada, 500 mi. de acetato 0.1 M pH 4.0, 500 mi de agua, 500 mi de borato 0.1 M pH 9.5 y 2 litros de agua destilada.
Mediante este procedimiento pudimos obtener geles monoaminoetil-N- aminoetil agarosa (MANAE-agarosa) conteniendo diferentes concentraciones y por tanto diferentes densidades superficiales de grupos amino primario de muy bajo pK. Estos geles no contenían ninguna cadena lateral de grupos inertes. Las concentraciones finales de grupos amino se controlaban en la primera etapa del proceso de fabricación, controlando la eterificación de los geles de agarosa por adición de diferentes cantidades de glicidol a la mezcla de reacción. En la Tabla 1 se recoge un resumen de los resultados obtenidos.
2.- 150 mi de celulosa microgranular se suspenden en 1 litro de agua destilada y se le añaden 75 mi de disolución 0.1 M de peryodato sódico. La suspensión se agita suavemente a temperatura ambiente. Al cabo de 4 horas la celulosa-aldehido se lava con abundante agua destilada y se continua activando en las mismas condiciones descritas en el Ejemplo 1 (reacción con etilendiamina y Reducción con Borohidruro) . Mediante este procedimiento hemos podido obtener derivados de celulosa conteniendo 0.1 mmoles de grupos amino primario (monoaminoetil-N- aminometil celulosa) por mi de derivado (MANAM-celulosa). 3.- 150 mi de vidrio poroso se suspenden en 500 mi de tolueno y se le añaden 65 mi de glicidoxipropil-trietoxi silano. La suspensión se agita suavemente durante 5 horas a temperatura ambiente y finalmente se lava con tolueno y acetona. El vidrio epoxi se seca en la estufa a 70 °C durante dos horas y se hidroliza suspendiéndolo en 500 mi de ácido sulfúrico 0.01 N y sometiéndolo a agitación suave durante 24 horas a 40 °C. El vidrio-gliceril se lava nuevamente con agua destilada y acetona y se seca en la estufa tal como hemos descrito anteriormente. La activación del vidrio-gliceril (oxidación con peryodato, reacción con etilendiamina y reducción con borohidruro) se realiza tal como se ha descrito en el apartado 1 para los geles de agarosa. Mediante este procedimiento hemos podido obtener vidrio activado conteniendo 0.05 mEquivalentes de grupos amino primario (Monoaminoetil-N- aminoetil) por cada 1000 Á2 de superficie del vidrio poroso (MANAE - vidrio).
4.- 150 mi de resina epoxi-acrílica se suspenden en 500 mi de disolución 0.025 N de ácido sulfúrico y se agitan suavemente durante 24 horas a temperatura ambiente. La resina resultante (resina gliceril-acrílica) se lava con abundante agua destilada y se continua activando tal como hemos descrito en el ejemplo 1 para los geles gliceril-agarosa. Mediante este procedimiento hemos sido capaces de obtener resinas-amino (MANAM-acrílicas) conteniendo 0.9 mequivalentes de grupos amino primarios (grupos monoaminoetil-N- aminoetil) por mi de resina. TABLA 1. PREPARACIÓN DE GELES MONOAMINOETIL-N-AMINOETIL AGAROSA (MANAE-Agarosa) .
Figure imgf000015_0001
Gel. Se indica la concentración de agarosa en los geles en % Glicidol. Se expresan los mi. de glicidol (2,3 epoxipropanol) añadidos a la mezcla de reacción de eterificación. Peryodato. Se expresan los mi. de disolución 0.1 M de peryodato sódico añadidos a la suspensión de geles-gliceril para su oxidación.
Amino. Se expresa la concentración de aminos primarios en los geles después del proceso global de activación. Se expresa en ^Equivalentes de amino por mi de soporte activado. Dens. Superf. Se expresa la densidad superficial de grupos amino en los geles activados. Se expresa en Nδ de residuos amino por 1000 Á2 de superficie del gel. Este parámetro nos da una idea muy correcta de las posibilidades de estos geles activados para multiinteraccionar con proteínas.

Claims

REIVINDICACIONES
1) PROCEDIMIENTO DE FABRICACIÓN DE SOPORTES SOLIDOS INERTES ACTIVADOS CON GRUPOS AMINO caracterizado por que las etapas finales de su proceso de fabricación consisten en dos reacciones químicas consecutivas: i.- la reacción de soporte- aldehido (conteniendo monocapas de grupos aldehido sencillos situados todos ellos a idéntica distancia de la superficie del soporte rígido) con etilendiamina en concentraciones comprendidas entre 0.01 y 2 M, a pH comprendidos entre 7 y 11, y temperaturas comprendidas entre 0 y 40 °C y con tiempos de reacción que oscilan entre 10 minutos y 5 días y ii.- la reducción de los derivados con borohidruro sódico a pHs comprendidos entre 7 y 11, temperatura entre 4 y 35 °C, tiempos de reducción entre 10 min y 3 horas y concentraciones de agente reductor comprendidas entre 0.1 y 20 mg/ml para unas relaciones reductor/soporte activado comprendidas entre 1 y 200 mg/ml soporte.
2) Un procedimiento de fabricación de soportes activados según reivindicación 1 caracterizado porque los soportes utilizados son geles de agarosa u otros solidos inertes conteniendo hidroxilos alcohólicos en su superficie.
3) Un procedimiento de fabricación de soportes activados según reivindicación 2 caracterizado porque la preparación previa de soportes aldehido se realiza en dos etapas : i.- eterificación de los soportes con glicidol 2,3 epoxipropanol en medios básicos en presencias de altas concentraciones de borohidruro sódico (entre 0.1 y 260 mg/ml) como agente antioxidante para evitar oxidaciones inespecíficas de los soportes y ii.- oxidación con peryodato de los soportes- gliceril obtenidos en la etapa anterior en condiciones muy suaves (concentraciones de peryodato comprendidas entre 0.001 y 0.1 M y relaciones peryodato/soporte comprendidas entre 1 y 200 μmoles/ml de soporte). 4) Un procedimiento de fabricación soportes activados según reivindicación 1 caracterizado porque los soportes utilizados son partículas de celulosa u otros solidos inertes conteniendo en su superficie grupos glicoles. Estos solidos
HOJA SUSTITUIDA inertes se transforman en solidos-aldehido por oxidación controlada con peryodato sódico siguiendo el procedimiento descrito en reivindicación 3.
5) Un procedimiento de fabricación de soportes activados según reivindicación 1 caracterizados porque los soportes utilizados son resinas epoxi-acrílicas u otro tipo de resinas epoxido.
6) un procedimiento de fabricación de soportes activados según reivindicación 5 en el que los soportes epoxido se transforman en solidos aldehido en un proceso de dos etapas: i.- hidrólisis del soporte epoxido por incubación en una disolución de ácido sulfúrico (concentración comprendida entre 0.001 y 0.5 M), a temperatura comprendida entre 0 y 60 °C durante tiempos de hidrólisis comprendidos entre 1 y 100 horas y utilizando unas relaciones volumen de soporte / volumen de suspensión comprendidas entre 0.01 y 0.5 y ii.- oxidación con peryodato de los sólidos-gliceril producidos en la etapa anterior según el método descrito en reivindicación 3.
6) Un procedimiento de fabricación de soportes activados según reivindicación 1 caracterizado porque los soportes utilizados son solidos inorgánicos conteniendo grupos silanol superficiales (vidrio poroso, sílice, sílice alumina, sepiolitas, zeolitas y similares).
7 ) Un procedimiento de fabricación de soportes activados según reivindicación 7 en el que los solidos inertes se transforman en solidos aldehido en un proceso de tres etapas: i.- silanización de los sólidos inertes por reacción con una disolución de gliceroxipropil-trimetoxisilano en tolueno u otros solventes orgánicos en las siguientes condiciones experimentales: concentración de silano comprendida entre 1 y 50 % v/v, temperatura entre 0 y 100 °C, tiempo de reacción entre 3 minutos y 3 días y relación volumen de soporte/volumen de suspensión comprendida entre 0.01 y 0.5, ii.- hidrólisis de los soporte-epoxido resultantes con ácido sulfúrico de acuerdo con el procedimiento descrito en reivindicación 6, y iii.- oxidación con peryodato de los soportes-gliceril resultantes de acuerdo con el procedimiento descrito en reivindicación 3. 8) PROCEDIMIENTO DE FABRICACIÓN DE SOPORTES SOLIDOS INERTES ACTIVADOS CON GRUPOS AMINO caracterizado porque las etapas finales de su proceso de fabricación consisten en tres procesos químicos consecutivos: i.- reacción de soporte epoxido con altas concentraciones de etilendiamina (0.1 - 5 M) en condiciones experimentales muy suaves para prevenir hidrólisis inespecíficas de los grupos epoxido (pH comprendido entre 6 y 8), temperatura comprendida entre 0 y 25 °C, tiempos de reacción comprendidos entre 1 y 24 horas, ii.- reacción de los soportes activados con monoetanolamina para bloquear los grupos epoxido remanentes también en presencia de altas concentraciones de amina (p.e. 5 - 20 %) y condiciones experimentales muy suaves (p.e. las descritas para la etapa i), iii.- reducción de los derivados con borohidruro (tal como se describe en reivindicación 1) con objeto de regenerar grupos amino primarios de la etilendiamina que pudieran haberse oxidado antes o durante en proceso de activación de los derivados.
HOJA SUSTITUIDA
PCT/ES1993/000057 1992-07-03 1993-07-02 Procedimiento de fabricacion de soportes solidos inertes activados con grupos amino WO1994001454A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP9201379 1992-07-03
ES9201379A ES2058020B1 (es) 1992-07-03 1992-07-03 Procedimiento de fabricacion de soportes solidos inertes activados con grupos amino.

Publications (1)

Publication Number Publication Date
WO1994001454A1 true WO1994001454A1 (es) 1994-01-20

Family

ID=8277529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES1993/000057 WO1994001454A1 (es) 1992-07-03 1993-07-02 Procedimiento de fabricacion de soportes solidos inertes activados con grupos amino

Country Status (2)

Country Link
ES (1) ES2058020B1 (es)
WO (1) WO1994001454A1 (es)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3947352A (en) * 1974-05-31 1976-03-30 Pedro Cuatrecasas Polysaccharide matrices for use as adsorbents in affinity chromatography techniques
FR2455061A3 (fr) * 1979-04-28 1980-11-21 Prirodovedecka Fakulta Univers Polymeres contenant des sorbants des saccharides, des glycoproteines et des saccharides, et procede pour leur preparation
EP0226344A2 (en) * 1985-11-21 1987-06-24 DeVoe-Holbein International N.V. Insoluble composition for removing silver from a liquid medium
EP0264984A1 (en) * 1986-09-23 1988-04-27 Akzo N.V. Carrier material for use in chromatography or carrying out enzymatic reactions
EP0295808A2 (en) * 1987-06-17 1988-12-21 Dow Corning Corporation Liquid chromatography packing materials and method for making and using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3947352A (en) * 1974-05-31 1976-03-30 Pedro Cuatrecasas Polysaccharide matrices for use as adsorbents in affinity chromatography techniques
FR2455061A3 (fr) * 1979-04-28 1980-11-21 Prirodovedecka Fakulta Univers Polymeres contenant des sorbants des saccharides, des glycoproteines et des saccharides, et procede pour leur preparation
EP0226344A2 (en) * 1985-11-21 1987-06-24 DeVoe-Holbein International N.V. Insoluble composition for removing silver from a liquid medium
EP0264984A1 (en) * 1986-09-23 1988-04-27 Akzo N.V. Carrier material for use in chromatography or carrying out enzymatic reactions
EP0295808A2 (en) * 1987-06-17 1988-12-21 Dow Corning Corporation Liquid chromatography packing materials and method for making and using same

Also Published As

Publication number Publication date
ES2058020B1 (es) 1995-10-01
ES2058020A1 (es) 1994-10-16

Similar Documents

Publication Publication Date Title
ES2579756T3 (es) Medio cromatográfico con pH estable que utiliza plantilla multicapa orgánica / inorgánica injertada
US5092992A (en) Polyethyleneimine matrixes for affinity chromatography
Gascón et al. In situ and post‐synthesis immobilization of enzymes on nanocrystalline MOF platforms to yield active biocatalysts
Larsson et al. Affinity precipitation of enzymes
US3917527A (en) Hydrophobic chromatography
US4048416A (en) Thiopolymers, their derivatives and methods for their preparation and use
US5035803A (en) High yield water-soluble polymer silica separation resins
JPS6259124B2 (es)
US5085779A (en) Polyethyleneimine matrixes for affinity chromatography
JPS6261600B2 (es)
US4286964A (en) Polyfunctional epoxides and halohydrins used as bridging groups to bind aromatic amine group-containing alcohols and thiols to hydroxyl bearing substrates
US4582875A (en) Method of activating hydroxyl groups of a polymeric carrier using 2-fluoro-1-methylpyridinium toluene-4-sulfonate
JPS615099A (ja) 蛋白質等の分離用チオエ−テル吸着剤およびその製造方法
CN107475239B (zh) 一种辣根过氧化物酶的固定化方法及其应用
CN113952942B (zh) 改性功能化硅胶材料及其制备方法和应用
Zhao et al. Immobilization of Papain on the Mesoporous Molecular Sieve MCM‐48
JP2000139459A (ja) 超安定化酵素
Zhang et al. Fabrication of hollow mesoporous silica-based nanoreactors for enzyme immobilization: high loading capacity, effective protection, and recyclability
WO1994001454A1 (es) Procedimiento de fabricacion de soportes solidos inertes activados con grupos amino
CN1332718C (zh) 硅胶载体蛋白a免疫吸附材料及其制备方法和应用
Zhao et al. Sorption of unconjugated bilirubin by means of novel immobilized β-cyclodextrin polymers
Guire [21] Photochemical immobilization of enzymes and other biochemicals
EP0055235B1 (en) Gel product for separation
Amud et al. Methods and supports for immobilization and stabilization of cyclomaltodextrin glucanotransferase from Thermoanaerobacter
JPH0797108B2 (ja) アフィニティークロマトグラフィー用のポリエチレンイミンマトリックス

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA