WO1994000605A1 - Metal band cooling apparatus and cooling method therefor - Google Patents

Metal band cooling apparatus and cooling method therefor Download PDF

Info

Publication number
WO1994000605A1
WO1994000605A1 PCT/JP1993/000843 JP9300843W WO9400605A1 WO 1994000605 A1 WO1994000605 A1 WO 1994000605A1 JP 9300843 W JP9300843 W JP 9300843W WO 9400605 A1 WO9400605 A1 WO 9400605A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
nozzle
metal strip
cooling device
roll
Prior art date
Application number
PCT/JP1993/000843
Other languages
French (fr)
Japanese (ja)
Inventor
Naoto Kitagawa
Sugao Omori
Takaya Seike
Koji Ohmori
Masayuki Yamazaki
Hiroaki Sato
Hitoshi Oishi
Masafumi Suzuki
Osamu Yoshioka
Yasuhiro Araki
Hiroshi Sawada
Kazunori Hashimoto
Hideo Kobayashi
Shuzo Uchino
Hideki Sato
Original Assignee
Nkk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP5112488A external-priority patent/JPH06306485A/en
Priority claimed from JP15263593A external-priority patent/JP3191495B2/en
Priority claimed from JP5152636A external-priority patent/JPH06340928A/en
Priority claimed from JP5152634A external-priority patent/JPH06340913A/en
Priority claimed from JP5156362A external-priority patent/JP2979903B2/en
Priority claimed from JP5156361A external-priority patent/JP2979902B2/en
Priority to DE69324566T priority Critical patent/DE69324566T2/en
Priority to KR1019940700085A priority patent/KR0159121B1/en
Priority to EP93913561A priority patent/EP0614992B1/en
Application filed by Nkk Corporation filed Critical Nkk Corporation
Priority claimed from JP5173684A external-priority patent/JPH0711346A/en
Priority claimed from JP5173682A external-priority patent/JP2979908B2/en
Priority claimed from JP5173683A external-priority patent/JP2906927B2/en
Publication of WO1994000605A1 publication Critical patent/WO1994000605A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/613Gases; Liquefied or solidified normally gaseous material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • C21D9/5735Details
    • C21D9/5737Rolls; Drums; Roll arrangements

Definitions

  • the present invention relates to a metal strip cooling device and a cooling method for a heat treatment line. Background technology
  • Japanese Patent Application Laid-Open No. 60-169694 describes a device that cools the metal strip X on the contact surface while rotating around a plurality of cooling rolls # 1 to # 4.
  • the gas jet devices 1 to ⁇ 4 arranged opposite to the cooling rolls # 1 to # 4 are divided into multiple pieces in the width direction of the metal strip X as shown in Fig. 41.
  • thermometers 90a to 90d for detecting the temperature distribution in the sheet width direction of the metal strip X shown in the preceding figure are used.
  • the temperature difference at each point in the plate width direction with respect to the average temperature is calculated, and when this temperature difference exceeds the allowable limit, the position in the plate width direction is detected, and the gas flow regulating valve 84a to 84d corresponding to this position is detected.
  • a metal strip cooling device including a sheet temperature control device 87a to 87d for adjusting 84e.
  • the non-contact length L of the metal band at both ends of the metal roll and the cooling roll at the both ends by the above-described winding of the cooling roll, and the lifting amount Z at both ends are expressed by the following equations (11) and (12).
  • the present invention has been made in order to solve the above problems, and has a metal strip cooling apparatus and a metal strip cooling apparatus which can rapidly cool a wide range of sizes while making the sheet temperature in the sheet width direction uniform at a low operating cost and at a low operating cost. It does not propose a cooling method. Disclosure of the invention
  • the metal band cooling device of the present invention is a roll cooling device that adjusts the contact length between the metal band and each cooling roll by winding the metal band around one or more cooling rolls.
  • the configuration is basically characterized by having a pressure regulating valve and a gas supply blower, which will be described later, and a valve opening degree adjustment thereof, which is equivalent to a configuration of a plate temperature control arithmetic unit that performs blower rotation speed control).
  • the w-shaped non-uniform temperature distribution hot point described above is narrow in width, and if a plurality of nozzles are provided in the metal band width direction as in the conventional configuration, it may be located at a location corresponding to the partition wall. If there is such a hot point, it is difficult to cool that part. If you try to cool it forcibly, the part around the hot point will be supercooled. In this configuration, the narrow nozzle header of the gas cooling device is moved just above the hot point, By blowing the cooling gas whose pressure or flow rate has been adjusted by the adjusting device toward the hot point, intensive cooling of that part is performed, and the uneven temperature distribution is not eliminated efficiently. .
  • the nozzle header is movable in the direction of movement of the cooling roll because the cooling roll can move in the direction perpendicular to the metal band pass line to change the contact length. It is necessary to always keep the nozzle header at a suitable distance (in this case, move in the same direction as the cooling roll moves), and make sure that the header does not contact the metal strip. Therefore, immediately before the cooling roll moves away from the metal band pass line, the nozzle header moves in the opposite direction to the retract position. When the cooling roller starts to contact the metal band pass line, the nozzle position moves. The nozzle header moves in the opposite direction so as to approach the cooling roll.
  • the nozzle openings of the nozzle header have a slit shape formed in a direction substantially perpendicular to the pass line of the metal band, and are formed in the direction of the pass line. It is good to use what was perforated in one line.
  • the cross-sectional shape of the nozzle port 11 is such that the inner edge of the nozzle port 11 has a cross section R in order to improve the heat transfer coefficient and reduce the pressure loss.
  • the nozzle hole 11 may be formed in a shape such as a shape or a taper, or as shown in (c) and (d) of FIG.
  • nozzle headers When two nozzle headers are provided in the roll body length direction, they are arranged at the ends of the metal band in the width direction, respectively, and when three nozzle headers are provided, one of the nozzle headers is located near the center of the metal band width direction.
  • the nozzle header located on the center side may be fixed to the center without moving in the roll body length direction), and the other two may be arranged at the ends in the width direction of the metal strip.
  • it is effective to eliminate the non-uniform temperature distribution of the w-shaped plate. (The non-uniform temperature distribution is generally higher at both ends than at the center, so the nozzle header moves to both ends.) Priority).
  • the present invention can be applied not only to a configuration having one cooling roll but also to a configuration having two or more cooling rolls.
  • a configuration having a plurality of cooling rolls at least three nozzle headers are provided for at least the first cooling roll.
  • these cooling rolls are divided into two parts, a front part and a rear part, and three nozzle headers are provided for the cooling part in the front part, and the above header arrangement is adopted, and the following part is arranged.
  • the cooling roll it is advisable to use two nozzle headers and to arrange the headers in the same case.
  • nozzle headers are required for the first cooling roll or the preceding cooling roll because the center of the metal band bulges at the start of the cooling roll contact as shown in Fig. 45 (a).
  • the body of Roll # 1 where the plate X is not in contact due to the defective plate shape, is cooled by the refrigerant inside the cooling roll from the contacting portion, and even if the plate shape becomes better,
  • the central part of the sheet X is not cooled, and the central part of the sheet is stretched more than the both end parts due to the sheet temperature difference in the width direction, as shown in FIG. This is called medium bulge.
  • the non-uniform temperature distribution increases thereafter.
  • at least the first cooling roll or the preceding cooling roll is provided with a nozzle header also at the center, and intensive cooling of that part and from the back This is because the swelling problem can be solved by spraying the gas (the thick roll is especially effective with the first roll).
  • a nozzle header is provided for both ends of the metal band in the cooling roll that follows. It will be enough.
  • the movement of the preceding nozzle in the roll movement direction and the movement of the subsequent nozzle header are set to be different. You can also. That is, in order to eliminate the non-uniform temperature distribution in the plate width direction caused by the saddle type deformation or the like, it is necessary to take as much cooling amount as possible on the upstream side where the deformation is generated. Aim to quickly eliminate plate shape defects near the start of contact with the cooling rolls (otherwise, the heat load is extremely low, and even the cooling rolls in the preceding stage may be cooled without reaching the maximum pushing amount. Therefore, it is necessary to increase the cooling amount of the back roll of the preceding stage as much as possible, and the distance between the cooling roll and the roll is constant.
  • the configuration is such that the nozzle header in the preceding stage can follow the movement so that the cooling effect in the preceding stage is high. More specifically, with the start of contact between the metal strip and the cooling roll in the pass line, the nozzle header is moved in a direction approaching the metal strip from the retracted retracted position, and further from this contact. When the amount of pushing of the cooling roll is large, move the cooling roll so that the separation distance from the metal strip can be kept constant. Further, when the metal strip and the cooling roll come out of contact, the nozzle header is moved to the retract position. On the other hand, the latter nozzle header does not necessarily have such a requirement, and it may be fixed.However, when the cooling roll reaches the maximum pushing amount, the length of the opposing nozzle header is maximized.
  • the nozzle header in the subsequent stage is set to move to the predetermined position during normal cooling, and to be retracted to the retract position only in an emergency or when cooling is not performed, so as not to simply follow the movement of the cooling roll. You can also keep.
  • the nozzle header is moved from the retracted retract position to the direction approaching the metal strip, and thereafter, the pushing amount of the cooling roll increases. Also, the nozzle header is evacuated again to the retraction position immediately before the metal strip and the cooling roll are out of contact with each other.
  • the cooling roll since the cooling roll is pushed in in order to increase the winding length sequentially from the first cooling roll, when the required cooling rate is low, or When the cooling amount is low [ie, the heat load (t / h) is low] due to the thickness of the sheet, etc., the cooling roll on the downstream side has a large distance between the nozzle header for backside cooling and the metal strip (when the cooling roll is not Even if it comes into contact, the backside cooling by the nozzle header can be performed). In order to reduce the energy loss at this time, when the distance between the nozzle header and the cooling roll is longer than a certain distance, the shutoff valve of the gas supply path installed in each nozzle header is closed.
  • the amount of movement of the soda in the cooling roll moving direction is made different to these nozzles, and the distance between the die and the cooling hole is made to each nozzle.
  • the difference can be made in the roll body length direction.
  • Such a configuration can be used for such a habit removal when there is a difference in cooling capacity in the roll body length direction. Also, when there is enough cooling capacity, the use of equipment such as gas blowers can be reduced, which is also effective in saving power.
  • the line width is changed in the case of a line having a large plate width change.
  • the movement of the nozzle headers at both ends of the metal band in the roll body length direction cannot keep up, and as a result, a new problem arises in that it becomes impossible to cool the back surface of the appropriate hot point. Therefore, in this configuration, at least the nozzle headers located on both ends of the metal band are composed of multiple header bodies connected in the roll body length direction to cool the header body near the plate edge when the plate width changes. Increasing the gas pressure or gas flow can also cover delays in nozzle header movement (low response).
  • the configuration of the nozzle header 1 includes a plurality of connected header bodies 10 in the metal strip running direction and a plurality of nozzle openings of the header body 10.
  • the 11th haze can be provided so as to be shifted in the roll body length direction between the upstream and downstream stages, whereby the position of the partition wall in one stage is the nozzle port in the upper or lower stage.
  • each header body The nozzle openings in each header body are provided at appropriate intervals, so there is no problem when ejecting gas.However, in this configuration where a plurality of these header bodies are connected in the roll body length direction, however, if the nozzle ports are located at the same position between both sides (the same position in the direction of the barrel length), turbulence is likely to be generated by the cooling gas ejected from them, and effective cooling cannot be performed.
  • the nozzle header T0 configuration is, as shown in FIG. 4B, a metal band between the adjacent header bodies 10 by connecting the positions of the nozzle ports 11 provided in each of the connected header bodies 10 to each other.
  • the tension of the metal band is preferably changed to be higher so that the shape of the metal band at the time of the contact is stabilized.
  • FIGS. 48 and 49 another configuration for reducing the delay in the movement of the nozzle header includes, as shown in FIGS. 48 and 49, a gas cooling device for cooling the back surface of the cooling roll and / or a cooling roll outlet side described later.
  • Nozzle headers aa, hi (!, / 9a, / 5c) located at least on both ends of the metal band provided in the auxiliary gas cooling device, and the header body is separated into two or more in the running direction of the metal band. , Ac2, 5al, 3a2, / 5cl,? C2) and move them independently in the roll body length direction (or metal band width direction).
  • the upstream end nozzles (aal, cK? al, yff cl) is moved to both ends of the metal band after the change, and the downstream end nozzle headers (a a2, a c2, a2,? c 2) are also set immediately before the sheet width change part enters there.
  • Fig. 50 shows the movement of the end nozzle header when the width is changed from wide to narrow
  • Fig. 51 shows the change in the opposite width).
  • the above configuration may be installed not only as the configuration of the gas cooling device and the auxiliary gas cooling device but also as an auxiliary cooling configuration provided on the inlet side of the roll cooling device.
  • the width change connection information device (the connection order by welding etc. is tracked from the line entry side based on the loading order and width of the metal band, and the measured metal band length, and is sent to the cooling roll.
  • metal band end position detectors photoelectric tube and receiver, laser and receiver, metal band Detector using a metal strip width direction sheet thermometer (profile thermometer) that can be distinguished from the difference in temperature between the high temperature part of the part and the low temperature part around the metal strip or a combination of these detectors]
  • At least one of the directional plate thermometers is arranged on the inlet side of the cooling port, and information on the width change portion and the width change amount is obtained based on this information, so that the nozzle header for the width direction end is made of metal.
  • It can be set at the end in the band width direction. That is, when a singular point of a connecting portion having a different board width enters, the singular point, information is tracked from the line entry side, and when the material changes from narrow material to wide material, immediately before entering the special point, Movement of the nozzle header to the specified position (the nozzle header moves in the direction away from it) has been completed, and conversely, if the material changes from a wide material to a narrow material, wait until the singular point passes the exit side. Then, the nozzle header is started to move toward a predetermined position (the nozzle headers move in directions approaching each other).
  • the nozzle header be moved to a predetermined location in advance, and that the metal strip and the cooling roll be brought into good contact by cooling the rear surface at the time of changing to a wide material. good.
  • the metal strip has meandering, these nozzle headers will move together in the meandering direction.
  • the nozzle header is composed of multiple header bodies connected in the roll body length direction (the metal band width direction), or when the nozzle body of the nozzle header located at both ends is two or more in the metal band running direction
  • the abnormal cooling portion of the plate width changing portion can be further reduced, and the nozzle width can also be narrowed, so that overcooling of the peripheral portion can be reduced.
  • the gas cooling apparatus arranged opposite to the cooling roll under the condition that the sheet thickness, the speed or the sheet temperature drop amount in the cooling device is large.
  • two or more nozzle headers for spraying gas in the width direction of the metal band are disposed on the exit side of the cooling rolls or the group of cooling rolls so as to face the metal band.
  • an auxiliary gas cooling device having at least one (more preferably two, especially one at each end) of these nozzle headers, which is movable in the metal band width direction.
  • the problem can be solved by further using a gas adjusting device for adjusting the cooling gas pressure or the gas flow rate inside the nozzle header.
  • the nozzle header located on the side of the head is composed of a plurality of header bodies connected in the metal band width direction, and at least one of these nozzle headers is movable in the metal band width direction.
  • FIG. 49 at least the nozzle headers located at both ends of the metal strip are separated into two or more in the running direction of the metal strip, and these are independently separated in the width direction of the metal strip. It is also possible to adopt a movable configuration.
  • one or more of the width change connection information device, the metal band end position detector, and the metal band width direction thermometer as described above should be provided on the inlet side of the cooling roll to obtain this information.
  • the information on the width change part and the width change amount is obtained based on the above, and the nozzle header for the width direction end of the gas cooling device and the two nozzle headers at both ends in the metal band width direction of the auxiliary gas cooling device are connected to the metal band width. If they are set at the end portions in the direction, it is possible to move each nozzle header to a predetermined location in advance or after entering, at the point of entry of a special point of a connection portion having a different plate width. become.
  • a metal strip width thermometer is arranged on the outlet side of the cooling roll or the outlet side of the auxiliary gas cooling device, and based on the information, each nozzle header and nozzle or auxiliary of the gas cooling device is used. Feedback control for setting each nozzle header of the gas cooling device at the end in the metal band width direction can also be performed.
  • each nozzle header of the gas cooling device and / or It can be performed by adjusting the cooling gas pressure or gas flow rate of each nozzle of each nozzle of the auxiliary gas cooling device.
  • the setting of the two nozzle headers at the ends in the metal band width direction and the adjustment of the cooling gas pressure or the gas flow rate of these nozzle headers can be performed together.
  • the specific configuration of the gas cooling device is as follows: two or more nozzle headers, which are provided with nozzles for ejecting gas to the metal strip, are narrower than the width of the metal strip, and the nozzle headers are perpendicular to the metal strip surface. And / or a moving table that moves in the width direction of the metal band.
  • the nozzle is moved to the area where the metal strip temperature distribution is not uniform by the moving table, and the cooling gas is blown at an appropriate distance (if two pieces are not enough, the metal strip width direction
  • the temperature distribution in the metal band width direction can be controlled.
  • the temperature distribution in the width direction of the metal band can be made uniform, and furthermore, the uniformity of the temperature distribution in the width direction can be achieved, so that the cooling rate can be made uniform, and the plate can be made uniform in the width direction. Since the temperature can be brought close to the target temperature, problems such as defective materials and shapes can be solved.
  • the above configuration consists of cooling the back of a roll cooling device that cools the metal band by wrapping a metal band around one or more rolls whose interior has been cooled (in this case, the nozzle header is curved according to the curvature of the hole.
  • the saddle type deformation of the metal band is a cause of insufficient cooling at the end of the metal band in the roll cooling device.
  • the nozzle header is flat) or an auxiliary gas cooling device installed on the outlet side. It can also be used as an arrangement configuration (in this case, a flat nozzle header is mainly used).
  • the metal strip pass line in these facilities is horizontal or vertical.
  • this configuration is used as the auxiliary cooling configuration on the inlet side of the roll cooling device or the configuration of the auxiliary gas cooling device on the output side, in addition to the case where the nozzle header and the moving table are provided only on one side of the metal strip, These can be provided on both front and back sides. If these are provided on both the front and back sides of the metal strip, the hot point (including the portion that should become the hot point) can be cooled from both sides, increasing cooling efficiency and suppressing metal strip flapping. it can.
  • nozzle headers in the metal strip width direction move the headers on both ends in the metal strip width direction where the temperature increases, and if there are three nozzle headers near the center of the next hottest metal strip.
  • the remaining nozzles may be moved, and in some cases, these may be moved to an appropriate position in a direction orthogonal to the surface of the metal strip to cool the hot point by the nozzle header. If there are three nozzle headers in the metal band width direction, fix the middle header at the center and do not move it in the metal band width direction (it may be possible to move it in the orthogonal direction). It is also possible.
  • the cooling roll of the roll cooling device When the cooling roll of the roll cooling device is movable in a direction orthogonal to the metal strip pass line for adjusting the cooling amount, a range where the cooling roll does not come into contact with the metal strip on the pass line.
  • the (curved) size of the subsequent nozzle header is determined according to the maximum pushing amount, it is necessary to reduce the cooling load or evacuate the cooling roll in an emergency. Depending on the position of the cooling roll, contact may occur if the nozzle header is left at the maximum push of the cooling roll.] Then, move the nozzle header with the moving base to match the movement of the cooling roll.
  • the headers move together at any time, there is a problem other than when the roll is retracted, that is, when the roll is retracted from the pass line when starting up the line, the end of the header is in contact. Therefore, according to the movement of the roll, If it moves independently, it will be in the range where it does not come into contact with the metal strip at any time.) Or move independently of this movement. Fine adjustments can be made so as to maintain a high appropriate separation distance and achieve high-efficiency cooling with a minimum amount of gas.)
  • this configuration when this configuration is applied as a configuration of the auxiliary cooling installed on the inlet side of the roll cooling device, the temperature distribution in the width direction of the metal strip is eliminated before the roll is cooled, or the roll is cooled. It is better to cool the hot spot area by cooling so that the temperature distribution is close to the uniform temperature distribution that occurs when the roll is cooled. Because of this, non-uniform temperature distribution is likely to occur and is promoted.) Also, when this configuration is provided as a configuration of the auxiliary gas cooling device on the roll cooling device outlet side, the non-uniform temperature distribution generated and promoted by the roll cooling and the non-uniform temperature distribution that could not be eliminated by the cooling of the back of the roll is also considered. It is also effective to eliminate this rejection device.
  • the nozzle headers 1 are not arranged in a line in the metal band width direction, but the flow of the metal band X is performed.
  • the position of It is also possible to cool the entire non-uniform part by ejecting water.
  • the configuration of the auxiliary gas cooling device is such that a moving device that can move in a direction parallel to the surface of the metal band and perpendicular to the flow of the pass line is installed on the pass line of the metal band.
  • a configuration in which a flexible portion or an expansion joint portion is provided in a part of the gas supply path may be used.
  • the nozzle header is moved to the area where the metal strip temperature distribution is not uniform by the moving device and the cooling gas is blown (if one is not enough, two, three, etc. It is also possible to eliminate the non-uniform temperature distribution in the metal band width direction, thereby making the temperature distribution in the metal band width direction uniform. Cooling from achieving uniform temperature distribution in the width direction Since the speed can be made uniform and the sheet temperature made uniform in the width direction can be brought close to the target temperature, problems such as defective materials and shapes can be solved.
  • At least a moving device, a nozzle header attached to the moving device, and a gas supply passage having a flexible portion or an expansion joint provided in the nozzle header are provided on both front and back surfaces of the metal strip. It is also possible to adopt a configuration in which gas cooling can be performed from both sides.
  • the above configuration also has an auxiliary cooling configuration of the roll cooling at the inlet side of the roll cooling device (the saddle type is formed by previously cooling the metal band edge by such gas cooling before the roll cooling device). Deformation can be reduced, and plate temperature unevenness in the roll cooling device can be improved.)
  • the gas jet cooling structure provided before and after the roll cooling device in the cooling process from recrystallization temperature to overaging treatment Can also be used.
  • a roll cooling device for winding a metal band around one or more cooling rolls and individually adjusting a contact length between the metal band and each cooling roll, wherein the roll cooling device is arranged so as to face the cooling roll, It has three or more nozzle headers in the roll body length direction, and these nozzle headers are configured to be movable in the moving direction of the cooling roll, and at least one of these nozzle headers is moved in the roll body length direction.
  • a movement adjustment device for adjusting the movement in the direction, a nozzle header position control calculation device for controlling the movement adjustment device based on a detection signal of the metal band end position detector, and a cooling row.
  • a forward / backward adjusting device that adjusts the position of the nozzle header in the direction of movement of the cooling roll based on the position signal of the metal strip;
  • a plate temperature control that calculates the temperature deviation from the target plate temperature distribution based on the plate thermometer and the temperature signal from this plate thermometer, and adjusts the cooling gas pressure or gas flow inside each nozzle header according to this temperature deviation.
  • a metal strip cooling device with an arithmetic unit is also proposed.
  • the nozzle header is moved in the roll body length direction by the nozzle position control arithmetic unit based on detection data detected by the metal band end position detectors. This is because the position where the plate temperature distribution of the belt is high is substantially determined in the width direction.
  • a position where the sheet temperature distribution is particularly high should be set as the movement position of the nozzle header as the plate end of the metal band. Can also.
  • the non-uniformity is obtained by the feedback control by the sheet temperature control arithmetic unit which receives the detection data of the metal band width direction sheet thermometer arranged on the outlet side of the cooling port or the outlet side of the auxiliary gas cooling device described later.
  • the plate temperature distribution is eliminated, and the non-uniformity is eliminated by adjusting the cooling gas pressure or gas flow inside each nozzle header according to the temperature deviation from the target plate temperature distribution.
  • the preset target plate temperature distribution may be a preset one.
  • the average plate temperature of the two quarters in the width direction of the metal strip (in some cases, there is a plus wire) is the center of the plate width.
  • a target temperature of also be due to a sheet temperature of the actually measured middle portion (in some cases also be 0 e C ⁇ 2 O e C lower than the temperature of its) and the target temperature of the plate width end portions Unishi good.
  • the auxiliary gas cooling device as described above including a configuration in which at least two nozzle headers among these nozzle headers, in particular, one nozzle header at each end portion is movable in the metal band width direction
  • a configuration using a metal strip width direction thermometer arranged on the outlet side of the auxiliary gas cooling device may be used.
  • the length of the sheet temperature deviation portion with respect to the average sheet temperature in the sheet width direction generated at both ends of the metal strip is relatively narrow as obtained by the equation (11).
  • the average sheet temperature deviation ⁇ at the end of the metal band defined by the following equation (13) is determined by the cooling width and the sheet thickness as shown in Fig. 54. It changes greatly. Therefore, both end portions of the metal band are detected by the metal band both end position detectors, and based on the position signals, the nozzle headers at both ends are appropriately adjusted in the roll body length direction (or the metal band plate width direction) using a movement adjusting device. By adjusting the cooling width to a suitable value, the sheet temperature deviation can be minimized.
  • t Sheet thickness (mm)
  • the length of unsteady cooling in the metal strip longitudinal direction at the end of the sheet is made as short as possible.
  • the length of the unsteady portion is experimentally set to within 0.9Lo of the path length Lo between the rolls of the heat treatment furnace. Must be I found it necessary.
  • the relationship with the nozzle width of the nozzle header at the plate edge at this time is expressed by the following equation (16).
  • V Moving speed of nozzle header at both ends (practice / min)
  • the nozzle width Be of the nozzle header at both ends can be minimized by selecting the dimension of the following formula 1 or 2 to minimize the sheet temperature deviation occurring at both ends of the metal strip. (If the thickness of the metal strip is not constant and has a certain range such as 1 ⁇ Omn! To 2.Omm, the nozzle width Be is determined based on the maximum thickness.)
  • V Nozzle in chill roll body length direction (or metal band width direction)
  • FIG. 7 shows the sheet temperature distribution in the vicinity of the end of the metal strip, and it can be seen that the present invention achieves a uniform sheet temperature distribution with less supercooled areas than the conventional technique.
  • Table 1 The experimental conditions at this time are shown in Table 1 below.
  • Threading 248 ° C / min metal strip tension 3.l kgf / mm 2 Average cooling plate inlet side plate temperature 600 ° C
  • Cooling roll diameter 1800 Mars Cooling roll average winding angle 1 12 °
  • the nozzle width B e of each central nozzle header of the gas cooling device facing the cooling roll and the auxiliary gas cooling device installed on the cooling roll cluster side is obtained by the following formula (3).
  • W Width of metal band (mm)
  • the area where the sheet temperature deviation occurs is symmetrical with respect to the center line in the metal band width direction, so that the center of the metal band width direction and the center of the center nozzle coincide.
  • the movement can be adjusted by using the movement adjusting device in the mouth body length direction (or the metal band width direction).
  • Figure 58 shows a comparison of the equipment cost / operating cost between the conventional technology and the present invention. By reducing the amount of cooling gas and the number of valves, etc., it is possible to reduce equipment costs and operating costs as shown in the figure.
  • the nozzle headers at both ends of the metal band are formed of a plurality of header bodies connected in the roll body length direction, and these are formed by the roll body. What is made movable in the longitudinal direction may be provided as a configuration of the gas cooling device.
  • the nozzle position control arithmetic unit detects the position detected by the metal band end position detector. Based on the data, the nozzle header is moved in the roll body length direction.
  • the cooling gas pressure of the header main body near the plate both ends is required for the nozzle header having the connected configuration.
  • the sheet temperature control that inputs the detection data of the metal band width direction sheet thermometer placed on the exit side of the cooling roll
  • the non-uniform plate temperature distribution is eliminated by the feed pack control by the arithmetic unit.
  • the method of eliminating the non-uniformity is to adjust the cooling gas pressure or gas flow inside each nozzle header according to the temperature deviation from the target plate temperature distribution. Is carried out.
  • the metal strip has three or more gas blowing nozzle headers in the width direction of the metal strip, and at least the nozzle headers on both ends of the metal strip are connected in the width direction of the metal strip.
  • the problem is caused by the combined use of an auxiliary gas cooling device that is formed of multiple header bodies and is movable in the metal band width direction, and a gas adjustment device that adjusts the cooling gas pressure or gas flow inside each nozzle header. Is resolved.
  • At least one of the nozzle headers on both ends of the metal band is formed of a plurality of header bodies connected in the metal band width direction, and is movable in the metal band width direction. This is for the same reason that a similar configuration is provided for the configuration of the nozzle header in the gas cooling device.
  • the area of the sheet temperature deviation with respect to the average sheet temperature in the sheet width direction generated in the center portion of the metal strip is within the range shown in FIG. 57, and the gas cooling device installed opposite to the cooling roll and the cooling roll exit
  • the width Be of the header main body of each nozzle header at the center of the auxiliary gas cooling device installed on the side is determined by the above formula, so that the cooling gas pressure inside each nozzle header or If the gas flow rate is adjusted according to the plate temperature deviation, the plate temperature deviation occurring at the center in the plate width direction as described above can be minimized.
  • the width Be of the header body is a total of the dimensions shown in the following formula 17
  • the width of the outer header body Beo is the dimension of the following equation (4)
  • the width of the header body located at the center of the header is Bee the dimension of the following equation (5) and (6).
  • the thickness of the metal strip is not constant and has a certain range, such as 1. Omn! To 2. Omm, determine the nozzle width Bee based on the case of the maximum thickness.
  • the sheet temperature deviation occurring at both ends of the metal strip can be minimized.
  • Wd Change in the width of the metal band when connecting from a wide to a narrow metal band connection (mm)
  • the cooling roll used for the roll quench of the continuous annealing furnace is cooling roll # 1 having the structure shown in Fig. 59.
  • the cooling roll # 1 is provided with a spiral refrigerant passage a inside the roll near the surface thereof, and cools the roll surface by flowing a coolant such as cooling water from one end of the medium passage a. After removing heat from the metal strip in contact therewith, the refrigerant is discharged from the other end. Therefore, a very high heat exchange rate can be obtained depending on the setting of the flow rate of the refrigerant, and the cooling amount can be easily adjusted by changing the contact length with the metal strip. It has excellent advantages.
  • a roll cooling device generally uses a plurality of the above cooling rolls to # 7 and alternately contacts the front and back surfaces of the metal strip X to perform rapid cooling. have.
  • the supply of the refrigerant to the cooling rolls # 7 is performed by flowing the refrigerant from one side of the equipment to the medium passageway of each roll, and the high-temperature refrigerant is collected on the other side and sent to the refrigerant heat exchanger. Where it is cooled and reused.
  • Such a metal band X cooled by the cooling rolls # 1 to # 7 usually has a non-uniform w-type temperature distribution shown in FIG. 43 described above in the width direction. This is a phenomenon that occurs when the cooling roll is pushed into the metal strip X to which tension is applied in the pass line direction as described above, and both ends of the metal strip X are turned up to cause the saddle type deformation.
  • the solution to eliminate that phenomenon has been described above. Certainly, these configurations promoted the elimination of the above-mentioned non-uniform temperature distribution, but did not completely eliminate them. Rather, as shown in FIG.
  • the temperature deviation at both ends t 1 the temperature deviation at both ends t 1
  • the temperature deviation ⁇ 2 between the two portions of the quorum increases, and the state of non-uniform temperature distribution further disappears in the metal band X width direction.
  • the supercooling caused by the tension causes unevenness of the elongated shape of the metal strip X, which causes the meandering of the metal strip X in the subsequent processing furnace or the unevenness of the material of the metal strip X. You will be rolling.
  • a plurality of cooling rolls are provided in the direction of the metal pass line, and a configuration of a roll cooling device that cools the metal by bringing a metal into contact with the surface of the roll is provided. It is configured to supply the refrigerant by inverting it one by one.
  • the ordinary cooling roll has a single-passage medium passage provided inside the roll peripheral surface, so that a sufficiently low-temperature refrigerant can freely move inside the passage during the movement.
  • heat exchange with the metal zone continues, and the heat exchange at the outlet is almost saturated, and if it is water, it has reached the state just before boiling.
  • the refrigerant passages are provided in multiple rows on the same plane, each length of the refrigerant passages with respect to the required cooling amount can be shortened, and the exchange heat amount of each refrigerant flowing through the refrigerant passages is reduced. It can be reduced.
  • the cooling of the metal is sufficiently effective even on the end roll surface near the outlet of each refrigerant passage, and after cooling, the metal has a symmetrical temperature distribution in the width direction.
  • the cooling device of the conventional configuration in which the coolant is supplied to all the cooling ports from the same side and discharged from the other side.
  • a temperature gradient between the end roll surface near the entrance and the end roll surface near the exit will occur in the same direction on each chill roll.
  • the second configuration described above since the direction of the flow of the refrigerant in the refrigerant passage of each cooling roll is reversed and supplied one by one, the above-mentioned temperature gradient is reversed for each roll. And the temperature gradient itself disappears in the subsequent cooling rolls.
  • the present invention also proposes a cooling method that can rapidly cool the metal strip width direction sheet temperature distribution close to the target sheet temperature distribution with a low operating cost for a wider range of sizes. That is, the cooling method proposed here is a metal band cooling method in which a metal band is wound around one or more cooling rolls to adjust the contact length between the metal band and each cooling roll.
  • the moving direction of the cooling roll and Using a gas cooling device provided with a nozzle header narrower than the width of the metal band movable in the roll body length direction cooling gas is blown from the nozzle header to cool the rear surface of the metal band, and in cooling the metal band,
  • the center plate temperature is adjusted based on the deviation of the metal strip from the target plate temperature
  • the metal belt and the nozzle are determined based on the position of the cooling roll and the position of the nozzle header.
  • at least one of the inlet and outlet sides of the cooling roll is constantly monitored for the temperature distribution in the metal band width direction to eliminate the temperature deviation from the target sheet temperature distribution.
  • the plate temperature distribution control based on the deviation from the target plate temperature distribution is performed.
  • the width of the hot points formed at the center and both ends is narrow, and it is difficult to effectively cool this portion with the conventional configuration disclosed in Japanese Patent Application Laid-Open No. 60-169524.
  • the heater is moved to a narrow nozzle of the gas cooling device just above the hot point, and the cooling gas is blown out toward the hot point, thereby concentrating the portion. Cooling can be performed efficiently, and uneven temperature distribution can be efficiently eliminated.
  • the sheet temperature deviation is obtained. The temperature of the central part is adjusted based on the above.
  • the distance between the metal strip and the nozzle header is adjusted from the position of the cooling roll and the position of the nozzle header.
  • the temperature distribution in the metal band width direction is always monitored on at least one of the inlet side and the outlet side of the cooling roll, and the target sheet temperature distribution (this target sheet temperature distribution may be preset.
  • the plate temperature distribution is controlled (that is, the plate temperature distribution is made uniform) by moving the nozzle header to a position that eliminates the temperature deviation from the plate temperature distribution.
  • the cooling gas pressure or gas flow rate inside the nozzle header is adjusted based on the temperature deviation.
  • a configuration in which cooling gas is blown to the metal strip You may.
  • the premise that the nozzle header was movable in the direction of movement of the cooling roll was based on the premise that the cooling roll could be moved in a direction perpendicular to the metal band pass line in order to change the contact length. This is because it is necessary that the nozzle header always keeps a distance suitable for cooling the back surface of the roll, and that the header does not contact the metal strip.
  • the movement of these nozzle headers which is performed for sheet temperature distribution control based on the deviation from the target sheet temperature distribution, is performed at both ends of the metal strip.
  • the nozzle header is moved to a position where the temperature deviation from the temperature distribution is eliminated.
  • the non-uniformity of the w-shaped sheet temperature distribution is generally higher at both ends than at the center, as described above, and therefore, we decided to give priority to moving the nozzle header to both ends. It is.
  • a nozzle header may be separately provided at the center in the plate width direction to eliminate non-uniform temperature distribution. In that case, a structure that moves only in the direction of movement of the cooling roll but does not move in the roll body length direction is provided.
  • the plate temperature distribution control based on the deviation from the target plate temperature distribution, Only the cooling gas pressure or gas flow inside the header 'based on the temperature deviation is adjusted, and the cooling gas is blown to the metal strip.
  • the present invention can be applied not only to a configuration having one cooling roll but also to a configuration having two or more cooling rolls.
  • a configuration having a plurality of cooling rolls as described above, at least a nozzle is provided for at least the first cooling roll.
  • these cooling rolls are divided into two parts of the front part and the rear part, and three nozzle headers are provided for the cooling part of the front part.
  • the cooling roll at the subsequent stage should have two nozzle headers, and the header arrangement should be the same.
  • At least three nozzle headers are provided for the first cooling roll or the preceding cooling roll, for the same reason as described above.
  • a non-uniform temperature distribution occurs, and once the non-uniform temperature distribution occurs due to the characteristics of the cooling roll, the non-uniform temperature distribution increases thereafter.
  • a nozzle header is also provided in the center, and intensive cooling of that part and gas blowing from the back do not solve the problem of bulging in the middle. This is because Conversely, if at least the first cooling roll or the preceding cooling roll has a three-nozzle header configuration including the central nozzle header, the subsequent cooling rolls will have nozzle headers at both ends of the metal strip. It will be enough.
  • the nozzle head in the first stage can be configured to follow the movement of the cooling roll so that the separation distance from the roll becomes constant with the movement of the cooling roll. It may be set so that it is moved and evacuated to the retract position only in an emergency or when cooling is not performed, so that it does not follow the movement of the cooling roll.
  • cooling may be performed by maximizing the gas ejection capacity in order from the nozzle header on the upstream side, and the shortage may be compensated for on the downstream side, as described above.
  • average sheet temperature control is performed for the above three hot points. It is also possible. In this case, the control is performed by adjusting the contact length between the metal strip and the cooling roll, but the nozzle header of the gas cooling device installed opposite to each cooling roll is tracked by the metal strip wound around the cooling roll. It is effective for heat transfer to adjust the position while maintaining an appropriate separation distance in accordance with the above. If the distance between the nozzle header and the metal strip is 5 to 50mm, the cooling roll and nozzle This is effective in terms of the accuracy of each head movement adjustment and the prevention of contact between the metal strip with the defective shape (eg, edge wave) and the nozzle header.
  • the defective shape eg, edge wave
  • the sheet temperature distribution control based on the deviation from the target sheet temperature distribution is implemented.
  • the average sheet temperature deviation generated at the end of the steel band defined by the above equation (13) was calculated as shown in Fig. 54.
  • the thickness greatly changed depending on the sheet thickness. Therefore, while adjusting the distance between the metal band and the nozzle header from the position of the cooling roll and the position of the nozzle header, at least one end of the metal band is constantly monitored at least on the inlet side and the outlet side of the cooling roll.
  • the sheet temperature distribution in the metal band width direction is constantly monitored on the cooling roll exit side, and the deviation from the target sheet temperature distribution is calculated.
  • the cooling gas pressure or the gas flow rate inside these nozzle headers based on this and spraying the cooling gas on the metal strip, the unevenness of the sheet temperature distribution is eliminated.
  • the above configuration includes an auxiliary gas cooling device (a metal band width direction) that is provided auxiliary to the cooling roll exit side when unevenness of the plate temperature distribution is not solved by the configuration of the gas cooling device that performs cooling on the rear surface of the roll.
  • 3 or more nozzle headers, each of which is movable on the front and back sides of the metal band, are also applicable.
  • the temperature distribution is constantly monitored, and the center of gravity of the plate temperature deviation in the region where the temperature deviation occurs at the end and the center with respect to the target plate temperature is obtained, respectively, and the gas cooling device or the gas cooling device is used.
  • nozzle header at the end of the auxiliary gas cooling device For the nozzle header at the end of the auxiliary gas cooling device, move it so that the cooling width at the end is twice as long as the distance from the end of the metal strip at the center of gravity, and the nozzle at the center The header is moved so that the center of the header coincides with the center of gravity at the center of the metal band, and cooling gas is blown from each of these nozzle headers to the metal band.
  • FIG. 1 is a schematic diagram showing a continuous annealing furnace line configuration of a metal strip X having a roll cooling device provided with an embodiment of a metal strip cooling device of the present invention.
  • FIG. 2 is an explanatory view of a metal strip cooling device according to an embodiment of the present invention.
  • FIG. 3 is a perspective view of a gas cooling device arranged to face a cooling roll.
  • Fig. 4 is a perspective view of the auxiliary gas cooling device installed on the outlet side of the cooling roll group.
  • FIG. 5 is a perspective view of the gas cooling device according to claim 51 disposed opposite to the cooling roll.
  • FIG. 6 is a perspective view of the auxiliary gas cooling device of the embodiment installed on the outlet side of the cooling roll group.
  • FIG. 7 is a schematic diagram showing the configuration of a third embodiment in which the gas cooling device according to claim 32 of the present application is used for a roll back cooling configuration provided in a roll cooling device of a continuous annealing furnace for a metal strip. is there.
  • FIG. 8 is a partially enlarged view of the roll back cooling configuration of the present embodiment.
  • FIG. 9 is an explanatory diagram showing the configuration of the moving table of the present embodiment.
  • FIG. 10 is a plan view showing another embodiment configuration in which the gas cooling device according to claim 33 is used in a roll back cooling configuration in which the nozzle header at the center does not move in the left-right direction.
  • FIG. 11 is a cross-sectional view showing the cooling structure at the back of the mouth at the edge of the metal band.
  • FIG. 12 is a cross-sectional view showing the roll back cooling configuration at the center of the metal band.
  • FIG. 13 is a schematic diagram showing an example of the configuration of an embodiment in which the gas cooling device described in claim 34 is used as a roll rear cooling configuration for a roll cooling device for a horizontal metal band pass line.
  • FIG. 14 is a cross-sectional view of the portion of the cooling roll # 1 in the preceding figure.
  • FIG. 15 is a partially enlarged view showing a left-right movement configuration of the movable base in the present embodiment.
  • FIG. 16 is a cross-sectional view showing the moving configuration of the moving table in the left-right direction in the present embodiment.
  • FIG. 17 is a front view of a fourth embodiment of the auxiliary gas cooling device described in claim 41.
  • FIG. 18 is a side view of the auxiliary gas cooling device of the present embodiment.
  • FIG. 19 is an explanatory diagram showing an engagement state between the traveling carriage to which the nozzle header is attached and the guide rail.
  • FIG. 20 is an enlarged view showing the engagement state between the wheels of the upper traveling trolley and the guide rails.
  • FIG. 21 is an enlarged view showing the engagement state between the wheels of the lower traveling vehicle and the guide rails.
  • FIG. 22 is an explanatory diagram showing a drive synchronization configuration of the traveling mechanism.
  • FIG. 23 is an explanatory view showing a drive synchronization configuration of the upper traveling vehicle and the lower traveling vehicle.
  • FIG. 24 is an explanatory diagram showing the configuration of a pipe that follows the movement of the nozzle header in the present embodiment.
  • FIG. 25 is a cross-sectional view showing the configuration of a telescopic expansion joint.
  • Figure 26 is a metal strip
  • FIG. 4 is a plan view showing a cross section of this configuration applied to the roll cooling device when the pass line is horizontal.
  • FIG. 27 is a side view of the configuration of the embodiment.
  • FIG. 28 is an explanatory diagram showing the engagement state between the wheels of the traveling trolley on the entry side and the guide rails in the embodiment.
  • FIG. 29 is an explanatory view showing the engaged state of the wheels of the traveling trolley above the exit side and the guide rails in the embodiment.
  • FIG. 30 is an explanatory diagram showing the engagement state of the guide rails and the wheels of the traveling trolley below the entry side in the embodiment.
  • FIG. 31 is an explanatory diagram showing the engagement state between the wheels of the traveling truck on the exit side and the guide rails in the embodiment.
  • FIG. 32 is a sectional view showing a sectional structure of a cooling roll used in the roll cooling device.
  • Figure 33 is a development view showing the roll deployment state.
  • FIG. 34 is an explanatory diagram showing a cooling water flow system to the cooling rolls in the roll cooling device.
  • Fig. 35 is a graph showing the correlation between the heat transfer coefficient between the metal strip and the roll surface and the flow rate of the cooling water.
  • Figure 36 is a graph showing the correlation between the flow rate of the cooling water and the pressure loss of the pump.
  • FIG. 37 shows the heat transfer calculation for each roll, followed by the cooling rate CR (J), average cooling rate ACR, and average overall heat absorption rate AU of each roll.
  • FIG. 6 is a flowchart showing a procedure of the calculation.
  • FIG. 38 is an explanatory diagram showing a positional relationship between a metal band wound around two cooling rolls and a nozzle header of a gas cooling device.
  • Fig. 39 is a graph showing the sheet temperature distribution on the outlet side of the gas cooling device.
  • FIG. 40 is a side view of a cooling device for a metal strip showing one embodiment of the prior art.
  • FIG. 41 is a perspective view showing a configuration of a gas jet nozzle header used in the same configuration.
  • FIG. 42 is a graph showing the sheet temperature distribution in the sheet width direction when the sheet was cooled only by the cooling roll.
  • FIG. 43 is a perspective view showing a deformed state of the metal band when the metal band is wound around the cooling roll.
  • FIG. 44 is a cross-sectional view showing an example of the shape of the nozzle port provided in the nozzle header.
  • FIG. 45 is an explanatory diagram showing the state of the occurrence of the middle bulge at the center of the metal band.
  • FIG. 46 is an explanatory view showing the arrangement of the end nozzle headers in the vicinity of the connection portions of the metal strips having different plate widths.
  • FIG. 47 is an explanatory diagram showing the configuration of the nozzle header located at the end of the metal band.
  • FIG. 48 is a perspective view showing a state in which the nozzle headers at both ends of the gas cooling device for cooling the rear surface of the roll are separated in the running direction of the metal band.
  • FIG. 49 is a perspective view showing a state in which the nozzle headers at both ends of the auxiliary gas cooling device provided on the roll cooling device outlet side are separated in the metal band running direction.
  • FIG. 50 is an explanatory diagram showing a state of moving the separation nozzle header when there is a change in the plate width from a narrow material to a wide material.
  • Fig. 5 1 shows the sheet width from wide to narrow
  • FIG. 9 is an explanatory diagram showing a moving state of a separation nozzle header when there is a change.
  • FIG. 52 is a graph showing the heat cycle of continuous annealing of soft sheets.
  • Fig. 53 is an explanatory diagram showing an example in which the nozzle headers are slightly shifted in the flow direction of the metal strip when this configuration is used as the auxiliary cooling configuration on the inlet side or the outlet side of the roll cooling device. It is.
  • FIG. 54 is a graph showing the relationship between the cooling width of the plate edge and the sheet temperature deviation near the plate edge.
  • FIG. 55 is a schematic diagram showing the relationship between the nozzle position of the nozzle header of the gas cooling device and the cooling width at the plate edge when metal bands having different plate widths are connected.
  • Fig. 56 is a graph showing the sheet temperature distribution in the case where the sheet end of the metal strip is cooled by the gas cooling device arranged facing the cooling roll.
  • FIG. 57 is a graph showing the sheet temperature deviation at the center of the sheet and its range.
  • FIG. 58 is a graph showing a relative comparison between operating costs and equipment costs of the present invention and the conventional technology.
  • FIG. 59 is an explanatory view showing a conventional configuration of a cooling roll used for a roll quench of a continuous annealing furnace.
  • FIG. 60 is a schematic diagram showing the configuration of a roll cooling device that uses a total of seven cooling rolls and alternately contacts the front and back surfaces of the metal strip to rapidly cool the metal strip.
  • FIG. 61 is a graph showing a state in which the state of non-uniform temperature distribution is no longer symmetric in the metal band width direction.
  • FIG. 1 is a schematic view showing a configuration of a continuous annealing furnace line configuration of a metal strip X having a roll cooling device provided with an embodiment configuration of a metal strip cooling apparatus.
  • the metal strip X is unwound by the pay-off reel 2000, sheared by the entry shearing machine 2001, and then connected to the preceding coil and the following coil by the welding machine 2002.
  • the entrance looper 2005 through the tension leveler 2004 as a plate shape straightening machine.
  • Further heated to the preheating furnace is supplied to the 2006 and direct-fired type reducing furnace 2007 6 0 0 e C ⁇ 7 5 O e C, La di ant tube type heating furnace 2008 and radiant tube type soaking furnace predetermined 2009 After being heated to the temperature, it is soaked as it is, cooled to, for example, 600 ° C.
  • the roll cooling device 1000 After passing through the overage treatment zone 201 1 and the quenching furnace 2012 provided as an adjustment cooling facility with a cooling function, it was water-cooled and dried in the water cooling facility 2013 and the drying facility 2014. The surface of the plate is tempered, inspected by the surface defect meter 2017 and the oiling machine 2018, oiled, cut to a predetermined length by the outgoing shearing machine 2019, and wound up by the tension reel 2020 .
  • the configuration of the tension repeller 2004 is installed before the direct-fired reduction heating furnace 2007.
  • the reasons for the installation are described below.
  • the range of the burner flame formed in the direct-fired reduction heating furnace 2007 is limited to a range suitable for the reduction heating of the metal band X. Done.
  • the interval between the upper and lower rolls provided in the furnace must be at least 2 Om or more.
  • the metal strip X passing therethrough will be backed up between the rolls.
  • the shape of the metal band X may have irregularities or middle elongation at the center thereof, and a shape defect such as an ear wave at the end thereof.
  • the steepness a / w which is indicated by the ratio of the metal band width w to a
  • the shape defect becomes remarkable.
  • the distance between the upper and lower rolls provided in the furnace is at least 20 m or more, the metal band X will undulate due to the pressurizing pressure on the park as described above. Such undulation of the metal strip X causes the metal strip X to be out of contact with the perforated flame within the above-mentioned appropriate range of the perna flame, thereby causing a local oxidation problem.
  • the width of the metal band X The elongation that occurs at a predetermined location in the direction is not easily corrected, and when the sheet is passed through the gas jet cooling zone 2010 as it is, a narrowing occurs there. Insufficient contact or no contact, making it difficult to equalize the temperature distribution in the width direction of the sheet after final cooling. It is presumed.
  • a tension leveler 2004 for correcting the shape of the metal strip X is provided immediately before these heat treatment facilities, and thereby the shape correction is performed.
  • the present inventors have considered that these problems can be solved by heat-treating each of the metal strips X.
  • the shape correction of the metal strip X was performed with reference to this fact. It became clear that once the shape of the metal strip X was corrected just before the direct-fired reduction heating furnace 2007, the subsequent facilities would not have the problems described above. The above is the reason why the tension leveler 2004 is provided before the direct-fired reduction heating furnace 2007 in the present embodiment.
  • FIG. 2 is an explanatory view of a metal band cooling device according to an embodiment of the present invention as viewed from the side.
  • the metal strip X which was gradually cooled after heating and soaking, was given tension to the metal strip X in this cooling unit by bridging rolls £ 1 to £ 3 and £ 4 to £ 6 installed before and after the metal strip cooling device. Granted.
  • a gas cooling device having a set of three nozzle headers ⁇ 1 to ⁇ 4, a metal band end position detector 89 installed near the metal band cooling device entrance, and A movement adjustment device 82a to 82d for moving and adjusting these nozzle headers in the roll body length direction, and a nozzle header for controlling the movement adjustment devices 82a to 82d based on the detection signals of the metal band both end position detector 89.
  • the nozzle header groups a1 to 4 are adjusted in the cooling roll moving direction.
  • thermometer 90a placed on the outlet side of the cooling port group to detect the temperature distribution in the metal band width direction, and a temperature signal from the sheet thermometer 90a
  • the nozzle head position control arithmetic unit 88 calculates the roll body length of each nozzle of the nozzle header group ⁇ 1 to 4 based on the signal from the metal band both end position detector 89.
  • Direction position control commands are sent to the movement adjustment devices 82a to 82d. Therefore, the nozzle headers at both ends are moved and adjusted to the position corresponding to the end of the metal band, and the nozzle header at the center is moved and adjusted to the position corresponding to the center of the metal band.
  • the temperature signal from the sheet thermometer 90a installed on the exit side of the roll cooling device and capable of detecting the temperature distribution in the sheet width direction was used.
  • the sheet temperature at the center in the sheet width direction is obtained by the sheet temperature control arithmetic unit 87 based on the target sheet temperature set for performing a predetermined heat treatment on the metal strip X, and the sheet temperature at the center is obtained.
  • the temperature is compared by the control arithmetic unit 87, and the sheet temperature control arithmetic unit 87 A signal is sent to the adjusting roll contact length adjusting devices 80a to 80d to be adjusted.
  • the average temperature in the sheet width direction is obtained by the sheet temperature control arithmetic unit 87 based on the temperature signal from the sheet thermometer 90a.
  • the target temperature set for performing the predetermined heat treatment on the band X and the average temperature are compared by the sheet temperature control arithmetic unit 87, and in accordance with the deviation, the cooling temperature is calculated from the sheet temperature control arithmetic unit 87.
  • the signal may be sent to the contact length adjusting devices 80a to 80d).
  • the target temperature at the center in the sheet width direction and the measured sheet temperature at the center are calculated by the sheet temperature control arithmetic unit 87 to which the temperature signal from the sheet thermometer 90a is input, based on the average sheet temperature of both quarters. Then, the target temperatures at both ends of the plate are obtained, and the measured temperatures at both ends of the plate and the center of the plate are obtained, and these are compared with the target temperatures in the plate width direction.
  • the plate temperature control calculation device 87 uses at least one of the rotation speed control of the gas supply blower 85a and the opening adjustment of the pressure control valves 84a to 84d to control the cooling gas pressure inside each nozzle header (pressure). Adjustment is omitted). By the above adjustment, both ends of the metal band X and the central part of the metal band X are cooled by the gas ejected from the nozzle header groups ⁇ 1 to ⁇ 4 installed facing the cooling roll.
  • These nozzle header groups ⁇ 1 to ⁇ 4 are cooled by the advance / retreat adjusting devices 81a to 81d according to the positions of the cooling rolls # 1 to # 4 and the signals from the cooling port contact length adjusting devices 80a to 80d. The position is adjusted in the roll movement direction.
  • the nozzle headers 3 and 4 above are set at positions where the distance between the metal strip and the nozzle header group can be properly secured when the cooling rolls # 1 to # 4 are at the position where the maximum contact length can be obtained with the metal strip. And may be fixed.
  • the configuration of the auxiliary gas cooling device is provided on the outlet side of the cooling roll group, and even with the above cooling device configuration, it is difficult to completely overcome the metal strip X plate.
  • the temperature deviation in the width direction is eliminated. That is, according to the temperature signal from the sheet thermometer 90b or the sheet thermometer 90a installed near the outlet of the auxiliary gas cooling device and capable of detecting the temperature distribution in the sheet width direction, the sheet temperature control calculation device 87 The temperature and the temperature at the center of the plate are obtained and compared with the target temperature in the plate width direction, and at least one of the rotation speed control of the gas supply blower 85b and the opening degree adjustment of the pressure control valve 84e is adjusted in accordance with the deviation.
  • Each of the nozzle headers of the nozzle header groups 1 and / or 2 is provided with a position control command by the nozzle header position control arithmetic unit 88 which has received a signal from the metal band end position detector 89, and the movement adjusting devices 83a and 83b.
  • the nozzle headers at both ends are moved to the positions corresponding to the ends of the metal strip and the nozzles at the center are moved to the positions corresponding to the center of the metal strip by the movement adjusting devices 83a and 83b. The movement is adjusted.
  • FIG. 3 is a perspective view of the nozzle groups 1 to 4 arranged opposite to the cooling roll (in this drawing, the configuration of the advance / retreat adjusting device is omitted).
  • the nozzle headers a a and a c at both ends are used for cooling the plate edge
  • the center nozzle header a b is used for cooling the plate center.
  • These nozzle headers aa to ac are respectively controlled by the movement adjusting devices 820 to 822 according to the roll body length direction control command from the nozzle header position control arithmetic device 88, and the metal strip ends and the central portion are controlled. Moved and adjusted to the position.
  • the cooling gas pressure inside each of the nozzle headers a to c c is adjusted by a pressure from a plate temperature control arithmetic unit 87, which is installed in the middle of the piping leading to the nozzle headers aa to c.
  • the opening degree of the valves 840a to 840c is adjusted and implemented.
  • FIG. 4 is a perspective view of one side of a nozzle header group of the auxiliary gas cooling device disposed on the outlet side of the roll cooling device and opposed to the metal band.
  • the nozzle headers? A and /? C at both ends are used for cooling the plate edge, and the nozzle header /? B at the center is used for cooling the plate center.
  • These nozzle headers /? A ⁇ ? c is controlled by the movement adjustment devices 830 to 832 in accordance with the roll cylinder length direction control command from the nozzle head position control arithmetic unit 88, and moves to the position corresponding to the plate edge and center of the metal strip. It will be adjusted.
  • FIG. 5 is a perspective view showing the configuration of the nozzle header groups al and ⁇ 2 related to the gas cooling device of the metal strip cooling device described in claim 51 disposed opposite to the cooling roll.
  • the advance / retreat adjusting device is omitted in this drawing.
  • the central nozzle header ad (header body) shown in Figs. (A) and (b) is used to cool the center of the metal band, and both ends shown in Figs. (A) and (c).
  • the heads aa to c and ⁇ e to ag are used to cool the metal band edge.
  • aa and ag are the header body 10 located on the outside
  • ab and ⁇ f are the header body 10 located at the center
  • c3 ⁇ 4c and ae are the header body 10 located on the inside. is there.
  • the nozzle headers aa to ac and ae to ag at both ends of the metal strip are moved by the movement adjusting devices 820 and 822 in accordance with the position control command in the nozzle barrel length direction from the nozzle header position control arithmetic unit 88.
  • the nozzle header is positioned at the center, and is set at a position where an appropriate cooling width is ensured by the nozzle headers.
  • the cooling gas pressure inside each of the header bodies ab and af located at the center part of the nozzle header ad at the center part and the nozzle headers at both end parts C)
  • the cooling gas pressure inside each of the header bodies In the case of transition to a wider width, adjustment of the cooling gas pressure inside each of the header bodies aa and ag located on the outer side of the nozzle header on the end side, and conversely, the plate width shifts from wide to narrow
  • adjustment of the cooling gas pressure inside each of the header bodies ac and ae located inside is controlled by the sheet temperature control arithmetic unit 87b based on the signal from the computer C that has the metal band information of the next size. According to the order Will be.
  • FIG. 6 is a view showing a nozzle header group? 1, provided on an auxiliary gas cooling device in a metal band cooling device according to claim 52, which is provided on the outlet side of the cooling roll group and is arranged to face the metal band.
  • 3 is a perspective view of ff 2.
  • the header body ⁇ a ⁇ of the nozzle headers at both ends shown in Figs. c and /? e ⁇ ? g is used for cooling the end of the metal band.
  • a and> ff g are the header body located outside,?
  • B and 5 f are the header body located in the center, and 3 e and /? E are inside.
  • Header body /? A ⁇ ⁇ c and 5 e ⁇ ? g is moved toward both ends of the metal band by using the movement adjusting devices 830 and 832 in accordance with the position control command in the metal band width direction from the nozzle head position control arithmetic unit 88, and at that time, it is located at the center. Is set at a position where an appropriate cooling width is obtained by the header body /? B and /?
  • the inside of the header body at the center / 9 d and the inside of the header body at the center of the nozzle header at the end / b and 3 f The cooling gas pressure is adjusted in accordance with a control command from the sheet temperature control arithmetic unit 87a.
  • FIGS. 7 to 9 show an embodiment in which the gas cooling device is used for the back cooling structure of the nozzle provided in the roll cooling device of the continuous annealing furnace for metal strip X.
  • each nozzle header 1 is as shown in FIGS. 8 and 9.
  • the c the nozzle header 1 in the width direction hereinafter the horizontal direction hereinafter
  • straight direction orthogonal to the metal strip surface of the metal strip X mobile base 3 to move hereinafter referred to as longitudinal direction
  • the cooling rolls at the center and right and left are provided in the width direction of each cooling roll, and the curved size of the cooling roll on the rear side is determined according to the maximum pushing amount.
  • the gas outlet side surface is provided with a plurality of horizontally elongated slit-shaped nozzle openings. Behind it, a header supporting portion 100 for supplying a cooling gas from outside to the judder 1 and supporting the header 1 is provided. Since the header support portion 100 protrudes outside the furnace shell, a heat-resistant non-metallic jaw 101 is used between the periphery thereof and the penetrating portion of the furnace shell. Is ensured.
  • the moving table 3 includes guide rails 31 a and 31 b erected in the front-rear direction on the fixed table 30, a base 32 movable along the guide rails 31 a and 31 b, and a driving device for moving the base 32 in the front-rear direction.
  • 33 guide rails 34a to 34c independently erected in the left and right directions for the center and left and right on the base 32, and the horizontal movable bases 35a to 35c movable along the guide rails 34a to 34c.
  • Drive units 36a to 36c for independently moving the moving tables 35a to 35c in the left-right direction.
  • the header supporting units 100 are fixedly supported on the horizontal moving tables 35a to 35c.
  • the three nozzle headers 1 are simultaneously moved in the front-rear direction by the same amount by the driving device 33, but the nozzle headers 1 at the center left and right are independently moved left and right by the driving devices 36a to 36c.
  • the drive devices 33 and 36a to 36c are used for linear operation such as a hydraulic cylinder, an electric cylinder, a combination of a pole screw and an electric motor, and are used as guide rails 31a, 31b, 34a to 34c. If a linear bearing is used, the movement will be performed with high accuracy. It is desirable that the moving speed of the horizontal movement is determined by the following equation (18), and the moving speed of the front-rear movement is determined by the following equation (19). [Equation 18]
  • VN1 header moving speed (mm / niin)
  • VR Roll moving speed (mm / min)
  • the tension of the metal band X is changed to the roll use tension (3 kgf / mm 2 or more) by the bridle rolls £ 1 to £ 2.
  • each cooling roll # 1 to # 7 is moved in the horizontal direction, brought into contact with the metal strip X, and the cooling amount is adjusted while adjusting the pushing amount (contact length).
  • Non-uniform temperature distribution is likely to occur in the width direction of the metal band, and if such a non-uniform temperature distribution occurs in the preceding gas jet zone (not shown), it should be promoted by this roll cooling device. Therefore, the back surface of the roll is cooled by the gas cooling device. In the cooling of the back surface of the roll, there are adjustment of the movement of the nozzle header 1 in the front-rear direction and adjustment of the movement in the left-right direction, which will be described separately below.
  • the adjustment of the movement in the front-rear direction is as follows: the nozzle headers ⁇ 1 and ⁇ 2 that face the front cooling rolls # 1 and # 2, and the nozzle header ⁇ 3 that faces the rear cooling rolls # 3 to # 7.
  • the way of movement is different from ⁇ 7 group. That is, the headers ⁇ 1 and 2 move forward from the retracted retracted position, with the metal strip X in the pass line and the cooling roll and # 2 starting contacting with the maximum pushing amount, and Cooling rolls # 1 and # 2 When the push-in amount of the cooling rolls # 1 and # 2 decreases, the movement of the cooling rolls # 1 and # 2 decreases. Become) .
  • the headers 3 to ⁇ 7 are moved to the retracted retract position (the nozzle length at the maximum pushing amount of the nozzle). Is designed so that it can be removed as much as possible, so that when a certain roll becomes unusable due to a failure or the like, it moves once from the evacuation position (determined from the viewpoint of contact prevention), and then cools rolls # 3 to # 7 It does not move even if the pushing amount is large.
  • This difference in movement is due to the non-uniform temperature distribution in the width direction of the metal strip X caused by the saddle-shaped deformation of the metal strip X caused by the indentation of the cooling roll and the generation of a heat crown in the cooling roll. If not resolved early, the uneven temperature distribution will be further promoted (otherwise at very low heat loads, and even with # 2 cooling rolls, the maximum indentation cannot be reached. Cooling is also possible).
  • the temperature distribution in the metal strip X width direction is measured by the profile thermometer 91 on the exit side of the gas jet, and if the temperature distribution is non-uniform. Based on the measured data and the plate edge detection data from the profile thermometers 91 and 92, determine the cooling positions of the three nozzle headers 1 at the center and left and right for cooling the back of the roll, and determine the center in the width direction of the metal strip X and the left and right plate edges. Move these nozzle headers 1 individually to the hot point positions. The setting of the cooling position of the nozzle header 1 is also performed based on the measurement result of the sheet temperature distribution by the profile thermometer 92 on the roll cooling device outlet side.
  • the control of the cooling efficiency by blowing gas to each header is performed by controlling the amount of blowing gas or the gas pressure based on the measured value of the outlet profile thermometer 92.
  • Adjustment of the left and right movement of the nozzle header 1 is also necessary when connecting parts (singular points) with different plate widths enter.
  • this singular point information is tracked from the line entry side and changes from narrow material to wide material, before the singular point passes through the entry-side profile thermometer 91, the singular point is moved to a predetermined position on the left and right nozzle headers.
  • the singular point passes through the outlet-side profile thermometer 92, and then the left and right nozzle headers are directed to predetermined positions. And start moving.
  • each nozzle header is moved left and right in the rear, and cooling gas is ejected toward the hot point.
  • the sheet temperature distribution was non-uniform as shown in FIG. 42 in the X-width direction of the metal band, but by using the configuration of the present embodiment described above. Such unevenness in sheet temperature distribution was eliminated.
  • the sheet temperature deviation with respect to the average sheet temperature in the sheet width direction in the case of using the configuration of the present embodiment is smaller than that in the case of using the above-described conventional configuration. To a lesser degree, the plate temperature distribution was made uniform.
  • FIGS. 10 to 12 show an embodiment of the configuration according to claim 33, wherein the central nozzle header 1 does not move in the left-right direction, as described above. That is, the header support portion 100 of the central nozzle 1 is directly fixed on the base 32 of the moving base 3 of the embodiment (there is no guide rail 34b, lateral moving device 35b, driving device 36b, etc.). As shown in FIG. 11, the nozzle headers 1 at the left and right ends have a configuration capable of moving in the left and right direction, as in the above-described embodiment. In addition, in the state where the temperature distribution in the metal band X width direction is non-uniform, the temperature at the center of the plate is lower than that at the end of the plate. Therefore, in this embodiment, as shown in FIGS.
  • header 1 is smaller than that of left and right nozzle headers 1.
  • the above configuration is also applied when the pass line is horizontal.
  • FIGS. 13 to 16 show the configuration of claim 3.4 applied to the roll cooling device when the pass line of the metal band X is horizontal.
  • reference numerals # 1 to # 3 denote cooling rolls, and a curved nozzle header 1 is provided on the back surface thereof.
  • These header supports 100 are furnace shells , And protrudes to the outside, and a bellows 101 is attached to the penetrating portion.
  • FIG. 14 shows a cross section of the portion of the # 1 cooling roll in the preceding figure.
  • three nozzle headers 1 are provided in line with the width direction just above the metal strip X, and their header supporting portions 100 penetrate outside the furnace shell via bellows 101.
  • These header support portions 100 are supported by the movable base 3 so as to be movable in the front-rear direction and the left-right direction outside. That is, as shown in FIG. 15 and FIG. 16, the header support portions 100 penetrating the lift table 37 of the movable table 3 are provided with guide rails 34a to 34c installed on the lift table 37 in the left-right direction.
  • the header supporting portion 100 is connected to a rod of a driving device 36a to 36c, and is suspended from a horizontal moving table 35a to 35c that can move along the driving device 36a. To 36c, the three nozzle headers 1 can move left and right, respectively.
  • the elevating table 37 is connected to a rod of an elevating device 38a to 38b installed on a fixed portion of the furnace shell, and can be moved in the front-rear direction by driving the elevating devices 38a to 38b. .
  • FIGS. 17 to 18 show an embodiment configuration in which this configuration is used for the configuration of the auxiliary gas cooling device provided on the roll cooling device outlet side of the continuous annealing furnace for the metal strip X.
  • the cooling rolls # 1 to # 7 that are in contact with the metal strip X are continuously provided in the vertical direction, and further, the outlet side thereof
  • the configuration of the auxiliary gas cooling device of this configuration is provided in the same manner as in the third embodiment.
  • a guide rail 4 is laid horizontally parallel to the pass line of the metal strip X, and a traveling carriage 5 is provided along the guide rail 4 so as to be able to travel. It is established by the traveling carriage 5 has nozzles, which are narrower than the width of the metal strip provided with the gas ejection nozzles, and are parallel to the nozzle in the direction of the pass line, two on one side and four on the front and back. 1 to /? 4) Installed.
  • the traveling carriage 5 travels along the guide rail 4 by the traveling mechanism 6, thereby The header can be moved in the metal band X width direction.
  • each nozzle header is provided with a pipe 7 serving as a gas supply path, and this pipe 7 is branched into two at the center and connected above and below each nozzle header.
  • headers 5 and / or 6 (opposite side) are fixed to the central nozzle along the pass line substantially at the center of the metal strip X in the width direction.
  • the hot spot generated at the center of the metal strip in the X width direction can be cooled.
  • the hot point of this part is almost the same position even if the metal band X width changes, and since the normal temperature is lower than that at both ends in the metal band width direction, the header position does not change and its length is It is shorter than other nozzle headers.
  • the wheels 40 and 41 have a wedge-shaped cross section so that play does not occur when the wheels 500 having conical grooves of the upper traveling carts 50 to 53, which will be described later, are mounted.
  • the distance between the nozzle header and the metal strip X can be accurately determined.
  • the lower guide rails 42 and 43 take the shape of the spinning wheels of the lower carriages 54 to 57 in consideration of the effects of nozzle head thermal expansion and rail warpage.
  • both the upper and lower guide rails 4 are provided with shielding plates 502 on the side facing the metal band X so that they are not locally bent by the heat radiation from the metal band X. I have.
  • the traveling carriage 5 includes upper traveling carriages 50 to 53 in which the wheels 500 are mounted on the upper guide rails 40 and 41, and lower traveling carriages 54 to 53 in which the wheels 501 are loosely fitted in the lower guide rails 42 and 43.
  • 57 of which the upper carriages 50 to 53 are in a state where the nozzle heads are substantially suspended, and the lower carriages 54 to 57 have long nozzle headers parallel to the metal band X. So that it plays a role.
  • the nozzle header is long in the direction of the pass line.
  • a plurality of nozzles that are long in the width direction of the metal band X are provided on the surface in the longitudinal direction, and the nozzle width is determined in advance by the temperature distribution. Further, between the nozzle and the metal band X The gap must be such that the required heat transfer coefficient is obtained and contact with the metal strip X is avoided.
  • the nozzle headers are substantially suspended from the upper traveling vehicles 50 to 53, and are supported by the lower traveling vehicles 54 to 57 in an auxiliary manner.
  • the traveling mechanism 6 has a metal strip X provided on the outside of the furnace shell along the 4 directions of the guide rails.
  • a drive shaft 602 connected peripherally with an expansion 601 is provided, and one is provided on each side of the metal band X in the width direction to apply a driving force to each of the screw jacks 600.
  • the roller chain 606 is turned. That is, as shown in FIGS.
  • the driving motor 603a or 603b is provided on each side of the furnace shell, and the rotating shaft thereof is connected to the gear box 604 and branched into two shafts.
  • the shafts are respectively connected to the input shafts of screw jacks 600 installed on the lower side, and drive shafts 602 connected to each screw jack 600 are moved forward and backward. Since the respective drive shafts 602 are connected to the lower traveling vehicles 54 and 56 or 55 and 57, the lower traveling vehicles travel along the lower guide rails 42 and 43 as the drive shaft 602 advances and retreats. .
  • the synchronous rotating gear 605 for transmitting driving force which is attached to the shaft of both screw jacks 600, transmits its rotational driving force to the synchronous rotating gear 605 on the upper screw jack 600 by the roller chain 606, Move the drive shaft 602 connected to the screwdriver 600 in the same way. Therefore, with the rotation of one driving mode 603a or 603b, the four vertical traveling carriages 5 on both sides in the X direction of the metal strip can travel along the upper and lower guide rails 40 to 43 in synchronization with each other. become. Since this vertical carriage moves in the same direction by the same amount on both sides of the metal belt X, the nozzle heads ⁇ ⁇ ,?
  • Reference numeral 607 in FIG. 22 is a sensor for detecting the position of the header.
  • the sensor 607 reads the number of rotations of the screw wrench 600 and transmits it to the motor control device 608. Control the rotation of b It will be. At this time, the moving amount of the traveling vehicle is determined in consideration of the width of the metal strip X to be inserted.
  • the pipe 7 penetrates from the outside of the furnace shell to the inside, branches up and down there, and communicates with the upper and lower parts of one nozzle header. Cooling gas is supplied to the nozzle from the outside to the nozzle.
  • the pipe 7 since the nozzle headers /? 1 to /? 4 move in the metal band X width direction by traveling of the traveling carriages 50 to 57, the pipe 7 also expands halfway at the place where it is branched up and down. As shown in FIG. 24, the nozzle 70 can follow the movement of the nozzle yffl to /? 4 with the John 70 interposed.
  • the cooling amount adjustment by 1 to 34 is performed by adjusting the gas pressure or the gas flow rate of the cooling gas supplied by the pipe 7.
  • a telescopic 71 as shown in FIG. 25 may be interposed in the middle of the expansion joint, or a deformable flexible structure that can be used in an airtight state may be used. .
  • the operation state of the auxiliary gas cooling device of this configuration in the above roll cooling device will be described below. As described above, when the tension of the metal strip X is changed to the roll use tension (3 kgf / mm 2 or more) by the bridle rolls £ 1 to £ 2, the cooling rolls # 1 to # 7 are horizontally moved. To adjust the amount of cooling while adjusting the amount of contact (contact length) with the metal strip X.
  • the roll cooling device also cools the back of the roll with the above gas cooling device.
  • this roll back cooling the adjustment of the movement in the direction perpendicular to the surface of the metal band X of the above-mentioned cooling holes 1 to ⁇ 7 of the roll rear cooling header and the adjustment of the movement in the width direction thereof make these hot points.
  • the headers ⁇ 1 to ⁇ 7 are respectively moved, and the back surface of the portion is cooled while maintaining an appropriate separation distance.
  • the auxiliary gas cooling device of the present embodiment which is provided at the subsequent stage as an auxiliary cooling configuration of the roll cooling device, is intended to eliminate the nonuniform temperature distribution in the metal belt X width direction which cannot be removed by the above-described roll back cooling configuration.
  • the respective nozzle headers 51 to /? 4 are moved left and right in the rear, and the cooling gas is jetted from both sides of the metal strip X toward the hot point.
  • the temperature distribution in the metal strip X width direction was measured by the profile thermometer 92 on the exit side of the roll cooling device, and the temperature distribution was uneven. If so, the cooling positions of the four nozzle headers 1 to /? 4 are determined based on the measurement data and the plate edge detection data obtained by the profile thermometers 91 and 92. 603b to drive the traveling carriages 50, 52, 54, 56 and the traveling carriages 51, 53, 55, 57 separately, and move them to the hot strips at the left and right plate edges in the metal strip X width direction. Move the nozzle headers /? 1 and / 53, and? 2 and /? 4, which move together on both sides of the metal strip X, to the position.
  • the position of the hot point in the center does not usually change even when the plate width changes, and the temperature is lower than the end of the plate.
  • the nozzle headers 5 to 6 are fixed at the center and do not move, and the cooling capacity of the headers is also smaller than the left and right nozzle headers 51 to 4.
  • Adjustment of the movement of nozzle headers 1 to 4 in the metal band X width direction is also required when connecting portions (singular points) having different plate widths enter.
  • this singular point information is tracked from the line entrance side and changes from narrow material to wide material, before the singular point passes through the entrance-side profile thermometer 91, the nozzles are fed to these nozzles 1 to /? 4 has been moved to a predetermined position, and if the material changes from a wide material to a narrow material, the singular point passes through the outlet profile thermometer 92 and then goes to these nozzles. , Start to move soda 1 to / 5 4 toward a predetermined position.
  • FIGS. 26 to 31 show the structure of claim 41 applied to the roll cooling device when the pass line of the metal strip X is horizontal.
  • Fig. 26 is a plan view of one side of the horizontal pass line of the metal strip X.
  • a guide rail 4 is suspended in parallel with the pass line of the metal strip X, and a traveling carriage 5 is provided along the guide rail 4 so as to be able to travel.
  • the traveling carriage 5 has a nozzle header ⁇ which is narrower than the width of the metal strip provided with the gas ejection nozzles, and is installed in the pass line direction parallel thereto. Have been.
  • the traveling cart 5 is Line mechanism 6 (a total of eight screw guides 600 provided outside the furnace shell along the guide rails 4 direction, a drive shaft 602 connected around these by expansion 601, and these screws
  • Driving motors 603a and 603b for applying a driving force to the input shaft of the jackjack 600, respectively, a synchronous rotating gear 605 for driving force transmission provided on each rotating shaft of the screwjacket 600, and their synchronous rotation.
  • a roller chain 606 wound around the gear 605) and travels along the guide rail 4, so that the nozzle header can move in the metal band X width direction.
  • Fig. 28 shows the engagement state between the wheel 503 of the traveling carriage 51 above the entrance side and the guide rail 40 in the preceding figure
  • Fig. 29 shows the engagement state between the wheel 504 of the traveling carriage 55 above the exit side and the guide rail 42
  • Fig. 30 shows the engagement state between the wheel 503 of the traveling carriage 53 below the entry side and the guide rail 41
  • Fig. 31 shows the engagement state between the wheel 504 of the traveling carriage 57 below the exit side and the guide rail 43. Is shown.
  • the guide rails 40 and 41 on the upper and lower entrance sides prevent play when the wheels 503 having the conical grooves of the traveling carriages 51 and 53 are mounted.
  • the guide rails 42 and 43 on the upper and lower sides of the upper and lower sides of the upper and lower sides of the disk-shaped normal wheel 504 take into account the thermal expansion amount ⁇ 1 of the nozzle header. It has a planar configuration having a width of at least ⁇ 1 so that it can be slid.
  • a roll main body is composed of an inner cylinder 1001 having a water passage a as a refrigerant passage and an outer cylinder 1002 fixed therearound by shrink fitting.
  • the water passage a formed on the inner cylinder 1001 side has six lines a1 to a6 which are spirally arranged in parallel on the same plane, and spirally in the roll axis direction. ing.
  • the cooling water supply system for cooling rolls # 1 to # 7 has two cooling water supply pipes 1010 and two cooling water drain pipes 1011.
  • one water supply pipe 1010a and one drainage pipe 1011b are piped every other pipe, and on the other side, the corresponding drainage pipe 101la and water supply pipe 1010b are piped.
  • the water supply and drainage pipes are connected by the front and rear cooling rolls so that they are opposite each other. Therefore, the flow direction of the cooling water in the water passages of the cooling rolls # 1 to # 7 can be reversed and supplied one by one.
  • the number of the water passages is six (a1 to a6).
  • the general method of determining the number of waterways is shown below.
  • the flow velocity of the cooling water flowing into the water channel must be set to 1.3 to 4. Om / sec at the wall near the outlet side of the water channel where the temperature becomes high. This is because (1) it is necessary to prevent the cooling water from boiling in the water passage at the cooling hole of the roll cooling device with high heat load (large winding angle), and the flow velocity in that case is 1.3 m / (2)
  • the required amount of exchange heat is determined for each roll cooling device.However, the flow rate of cooling water in the water passage that can obtain the required amount of exchange heat or more is determined from Fig. 35 etc.
  • condition (1) is rate-limiting.
  • the flow velocity exceeds 4. Om / sec, as shown in Figure 36, the pressure loss of the pump that sends the cooling water will decrease by 4%. . 4 kg / cm 2 or more to reach, so that the power loss and scale adhesion during pressure drop increase is significant, the upper limit of the flow rate determined This is because to be.
  • the number of water passages satisfying these is selected from the above cooling water flow rate, roll outlet water temperature, cooling rate CR (J) of each roll, average cooling rate ACR, and average overall heat absorption rate AUo.
  • the calculation shown in the flowchart of FIG. 37 is as follows. First, the roll position [X (I), Y (I)] at the time of the maximum winding of the metal strip X is read, and that position is set as the initial value. And the roll length LS (I) of the metal band X and the winding angle AR
  • the roll exit plate temperature TSD Assuming the roll exit sheet temperature TSD, the cooling heat quantity Qs of the metal strip X is obtained from the following equation (20). (2) Using the cooling heat Qs as the heat Qw to carry away the cooling water, calculate the shell inner surface temperature TRS I from the following equation (21).
  • the outlet plate temperature TSD of the cooling roll is set as the inlet plate temperature TSI of the next cooling roll, and the other TWD and U are set.
  • the tension leveler 2004 is disposed in the upstream of the direct-fired reduction heating furnace 2007, so that the inside of the heating furnace 2007 can be obtained.
  • the plateability of the metal strip X is improved, and the reduction heating characteristics in the direct-fired reduction heating furnace 2007 can be stably obtained.
  • the tension leveler 2004 makes it possible to correct the shape of the portion where the metal strip X elongates.
  • the drawing and non-uniform cooling in the roll cooling device 1000 are reduced. It was greatly improved, and as a result, the meandering of the metal strip X in the line was eliminated, and the quality of the obtained product was improved.
  • the problem of contact with ⁇ 7 and the contact with the gas jet nozzle in the rapid heating furnace 2012 has also been eliminated.
  • the cooling water is supplied to the water supply system shown in FIG. 34, and the direction of the flow of the cooling water in all the six water passages a1 to a6 of each cooling roll. Is supplied in reverse for each roll.
  • a bridle roll of £ 1 After changing the tension of the metal strip X to the working tension of the roll (S kgfZmm 2 or more) with the pressure roll and £ 2, move each cooling roll # 1 to # 7 in the horizontal direction, contact the metal strip X, and further press the amount Adjust the cooling amount while adjusting (contact length).
  • each length of the water passages a1 to a6 can be shortened as a whole.
  • the amount of exchange heat of each cooling water flowing through the water channel can be reduced.
  • the cooling of the metal strip X is sufficiently effective even at the end roll surface near the outlet side of each water passage, and after cooling, the metal strip X has a substantially symmetrical temperature distribution in the width direction.
  • the direction of the flow of cooling water in each of the cooling rollers # 7 to # 7 is reversed and supplied one by one, it is close to the roll surface on the end side near the inlet side of the water channel and near the outlet side.
  • the temperature gradient between the end roll surface and each roll is reversed for each roll, and finally the temperature gradient itself disappears in the subsequent cooling roll.
  • the back surface of the roll is cooled by the metal band cooling configuration described below.
  • the sheet temperature distribution in the width direction of the metal strip X is detected by the sheet thermometer 90a installed on the outlet side of the cooling roll group to # 4, and based on the temperature signal, the sheet temperature control arithmetic unit 87 causes the sheet temperature in the center of the metal strip to be measured. And the target sheet temperature, and for the average sheet temperature control based on the sheet temperature deviation, the contact length adjusting device 80 adjusts the contact length between each roll of the cooling roll groups # 1 to # 4 and the metal strip X. Do.
  • the sheet temperature distribution control based on the target sheet temperature distribution first, make sure that the metal strip X does not come into contact with the nozzle headers 1 to 4 of the gas cooling device installed facing the cooling rolls # 1 to # 4.
  • the trajectory of the metal band X wound around these cooling rolls is obtained from the position of each roll of the cooling roll groups # 1 to # 4, and the gas cooling is performed using the advance / retreat adjusting device 81 so that the proper separation distance is obtained.
  • the gas cooling device and the cooling roll group # The position control arithmetic unit 88 estimates both ends and the center in the width direction of the metal strip X at the respective positions of the auxiliary gas cooling devices installed on the outlet side of Nos. 1 to # 4, and the above gas cooling device and auxiliary gas cooling device Using the movement adjusting devices 82 and 83 connected to the respective nozzle headers, the nozzle headers at both ends and the central portion are moved in the metal band width direction.
  • the cooling width (the cooling width of the overlapping part of the nozzle header and the metal band) shown in the formula (9) is used, and the center of the nozzle header at the center is in the width direction of the metal band and the center of the nozzle header.
  • the heads aa and ac of the nozzles at both ends of each gas cooling device installed opposite to the cooling roll are The position is adjusted by using the movement adjusting devices 820 and 822 connected to the nozzle headers at both ends, and the center nozzle header ab of the movement adjusting device 82 is connected to the movement adjusting device 821 connected to the center nozzle header. The position is adjusted using.
  • the nozzle headers a and /? C at both ends of the auxiliary gas cooling device installed on the outlet side of the cooling roll groups # 1 to # 4 are connected to the nozzle headers at both ends of the movement adjusting device 83.
  • the position is adjusted using the adjusted movement adjusting devices 830 and 832, and the central nozzle header / 5b is adjusted using the adjusted movement device 831 connected to the central nozzle header of the adjusted movement devices 83. The position is adjusted.
  • Cooling gas pressure pressure gauge is omitted
  • Adjustment is performed using at least one of the rotation speed of the cooling gas supply blowers 85a and 85b or the opening of the pressure control valves 84a to 84e, and the adjusted cooling gas is discharged. Spray on metal strip X.
  • the cooling gas is supplied from the inside of the furnace (omitted in FIG. 2) to each gas cooling device and the auxiliary gas cooling device through the heat exchange device 86 and the cooling gas supply blower 85.
  • the sheet thermometer is connected to the outlets of cooling rolls # 1 to # 4 and the outlet of the auxiliary gas cooling device. Although they are installed on each side, they may be installed only on the outlet side of the auxiliary gas cooling device.
  • the roll radius is F1 and F2
  • the distance between the roll centers is L0
  • the roll is from the reference line when the roll and metal strip X are not in contact.
  • the lengths protruding to the side are L1 and L2, the winding angle ⁇ between the roll and the metal band X, and the angles 7-1 and 772 of the nozzle headers ⁇ 1, ⁇ 2.
  • Equation 26 the coordinates of point ⁇ , which is the point of contact between metal strip X and lower cooling roll # 2, are expressed by Equation 26 below.
  • the first is the quantification of sheet temperature distribution. That is, the sheet temperature distribution in the metal band width direction can be expressed by a fourth power series represented by the following equation (35).
  • ⁇ (X) a 1 X + a 2 X 3 + a a X 2 + a i X + a 5
  • Equation 35 is obtained using the least squares method from the measurement results of the plate thermometer (90 in FIG. 2).
  • the position of the nozzle header in the metal band width direction is calculated. If the sheet temperature distribution in the sheet width direction on the side where the chill rolls come out obtained by the above quantification is as shown in Fig. 39, the temperature defect area on the higher temperature side than the target sheet temperature distribution T '(X) Is
  • XI, X2, X3, X4 High temperature side sheet temperature defective area boundary (Refer to the shaded area in Fig. 39).
  • the center of gravity Xe Xe 2 of the region where the plate temperature deviation occurs at the end and the center of gravity Xc of the region where the plate temperature deviation occurs at the center are calculated by the center of gravity calculation of the following equations (36), (37) and (38). Desired.
  • Equation 38 Accordingly, the end nozzle headers 1 and 2 are adjusted so that the end cooling widths le and le 2 are given by the following equations (39) and (40), and the center of the nozzle header ⁇ 2 at the center is positioned at the position of Xc. Adjust the cooling gas pressure inside the gutter to each nozzle according to the plate temperature deviation in each area, and spray the adjusted cooling gas to the metal strip X. Accordingly, it is possible to cope with a change in the sheet temperature distribution shape.
  • the nozzle head is moved to the area where the metal strip temperature distribution is not uniform by the moving table or the moving device.
  • the temperature distribution in the metal band width direction can be uniformly controlled by moving the die and blowing the cooling gas with an appropriate separation distance.
  • each length of the refrigerant passage can be shortened as a whole, and each of the refrigerant passages flowing through the refrigerant passage can be shortened.
  • the amount of exchange heat of the medium can be reduced.
  • the present invention can be applied to a roll backside cooling configuration of a roll cooling device in a heat treatment line for a metal strip.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

A metal band cooling apparatus in a roll cooling machine on a heat treatment line, and a cooling method therefor. The basic characteristics of this invention reside in a roll cooling apparatus for regulating the contact length of a metal band with not less than one cooling roll by winding the metal band around the cooling rolls, the apparatus having a gas cooling unit disposed in an opposed state with respect to the cooling rolls via the metal band, and provided with not less than two nozzle headers extending in the lengthwise direction of the rolls, having a width smaller than that of the metal band and formed so that these nozzle headers can be moved in the moving direction of the cooling rolls and so that at least one of the nozzle headers can be moved in the lengthwise direction of the cooling rolls; and a gas regulating unit for regulating the pressure or flow rate of a cooling gas in the nozzle headers. By utilizing this structure, the narrow nozzle headers of the gas cooling unit is moved to a position just above a hot point of a narrow W-type ununiform temperature distribution, and a cooling gas the pressure or flow rate of which has been regulated by the gas regulating unit is blown out toward the hot point, whereby the mentioned part is cooled in a concentrated manner to efficiently eliminate ununiform temperature distribution.

Description

明 細 書 金属帯冷却装置及びその冷却方法 技 術 分 野  Description Metal band cooling device and its cooling method
この発明は熱処理ラインにおける金属帯冷却装置及びその冷却方法に関する。 背 景 技 術  The present invention relates to a metal strip cooling device and a cooling method for a heat treatment line. Background technology
連続焼鈍炉におけるガスジェッ ト冷却及びロール冷却装置では、 しばしば金属 帯幅方向で温度分布の不均一な部分が発生し、 材質不均一、 座屈 ·形状不良等の 品質或いは通板性において問題を生じている。 そのため特開昭 6 0— 1 6 9 5 2 4号では、 図 4 0に示される様に複数の冷却ロール # 1〜# 4にかけ回しつつその接 触面で金属帯 Xの冷却を行う装置に、 冷却ロール # 1〜#4と対向して配置されたガ スジエツ ト装置ひ 1〜α 4を図 4 1に示される様に金属帯 Xの全板幅方向に複数個 に分割 1 0a〜10 eし、 且つその分割区分毎にガス流調弁 84 a〜84eを備え、 前図に示 す金属帯 Xの板幅方向の温度分布を検知する板温計 90 a〜90dから板幅方向の平均 温度に対する板幅方向の個々の点における温度差を演算し、 この温度差が許容限 度を超えたとき、 その板幅方向の位置を検出し、 この位置に対応するガス流調弁 84a〜84 eを調整する板温制御装置 87 a〜87dとで構成された金属帯の冷却装置が開 示されている。  In the gas jet cooling and roll cooling devices in continuous annealing furnaces, there are often portions where the temperature distribution is uneven in the metal band width direction, which causes problems in the quality or threading properties such as uneven material, buckling and poor shape. ing. Therefore, as shown in Fig. 40, Japanese Patent Application Laid-Open No. 60-169694 describes a device that cools the metal strip X on the contact surface while rotating around a plurality of cooling rolls # 1 to # 4. As shown in Fig. 41, the gas jet devices 1 to α4 arranged opposite to the cooling rolls # 1 to # 4 are divided into multiple pieces in the width direction of the metal strip X as shown in Fig. 41. e, and gas flow regulating valves 84a to 84e are provided for each of the divided sections, and the sheet thermometers 90a to 90d for detecting the temperature distribution in the sheet width direction of the metal strip X shown in the preceding figure are used. The temperature difference at each point in the plate width direction with respect to the average temperature is calculated, and when this temperature difference exceeds the allowable limit, the position in the plate width direction is detected, and the gas flow regulating valve 84a to 84d corresponding to this position is detected. There is disclosed a metal strip cooling device including a sheet temperature control device 87a to 87d for adjusting 84e.
以上の構成を実機設備に適用して板厚 0. 5〜2. 3mm、 板幅 850〜1 575随、 冷却装 置入口板温 550〜680° (:、 冷却装置出口板温 35 (!〜 480eCの条件で冷却ロールのみに よる金属帯の冷却実験を行なった結果、 全ての場合において、 図 4 2に示される 様に板両端部ならびに板中央部が板幅方向平均板温に対し、 高くなる w型の板温 プロフィルになることが判明した。 Applying the above configuration to actual equipment, plate thickness 0.5 to 2.3 mm, plate width 850 to 1575, cooling unit inlet plate temperature 550 to 680 ° (:, cooling unit outlet plate temperature 35 (! To As a result of conducting a cooling test of the metal strip using only the cooling rolls under the condition of 480 eC , in all cases, as shown in Fig. It becomes clear that the w-shaped sheet temperature profile becomes higher.
即ち、 板中央部においては、 金属帯サイズお ctび冷却条件にかかわらず、 ほぼ 板幅のある範囲内で板幅方向平均板温に対し正の板温偏差が生ずる。 又、 板両端 部においては、 板厚、 速度或いは冷却装置での板温降下量が大きくなる程、 板幅 方向平均板温に対する板温偏差が大きくなる。 この発生原因について実験ならびに解析を行なった結果以下のことが分かった。 冷却ロール # 1に金属帯 Xを卷付けると板厚方向に引張/圧縮の応力分布を生ずる が、 この応力によるポアソン比変形によってそれと直角方向すなわち板幅方向に 逆に圧縮/引張応力分布が誘起され、 図 4 3に示される様に主曲げと直角方向に 逆の曲げ変形 (以降鞍型変形と呼ぶ) が起こる。 That is, at the center of the sheet, a positive sheet temperature deviation occurs with respect to the average sheet temperature in the sheet width direction within a certain range of the sheet width regardless of the metal strip size and the cooling conditions. At both ends of the sheet, the sheet thickness deviation from the average sheet temperature in the sheet width direction increases as the sheet thickness, the speed, or the sheet temperature drop amount in the cooling device increases. As a result of experiments and analysis on the cause of this occurrence, the following was found. When metal band X is wound around chill roll # 1, tensile / compressive stress distribution is generated in the thickness direction, but the Poisson's ratio deformation caused by this stress induces compression / tensile stress distribution in the direction perpendicular to the direction, that is, in the width direction. As shown in Fig. 43, reverse bending deformation occurs in the direction perpendicular to the main bending (hereinafter referred to as saddle type deformation).
この鞍型変形が一旦発生すると、 金属帯の両端部付近において接触不良を起こ し、 冷却不足状態となり、 板幅方向平均板温に対し正の板温偏差を生ずる。 冷却 ロールのみの冷却においては、 次の冷却ロールに金属帯が進行すると、 正の板温 偏差に起因した金属帯長手方向の伸び差による接触不良に更に上記鞍型変形によ る接触不良が付加され、 大きな正の板温偏差に発展していく。  Once this saddle-shaped deformation occurs, poor contact occurs near both ends of the metal strip, resulting in insufficient cooling, and a positive sheet temperature deviation from the average sheet temperature in the sheet width direction. In cooling with only the cooling roll, if the metal strip advances to the next cooling roll, the poor contact due to the saddle-shaped deformation will be added to the poor contact due to the difference in elongation in the longitudinal direction of the metal strip caused by the positive sheet temperature deviation. And develop into a large positive sheet temperature deviation.
以上の冷却ロール卷付けによる金属帯両端部での金属帯と冷却ロールの非接触 長さ Lならびに両端部での浮き上がり量 Zは、 次式数 1 1及び数 1 2で表わされ、 例えば板厚 1. Omm、 冷却ロール半径 800mm、 板温 600eCの条件の場合、 非接触長さ L は約 15mm、 浮き上がり量 Zは約 0. l mmとなる。 The non-contact length L of the metal band at both ends of the metal roll and the cooling roll at the both ends by the above-described winding of the cooling roll, and the lifting amount Z at both ends are expressed by the following equations (11) and (12). the thickness 1. Omm, cooling roll radius 800 mm, under the condition of sheet temperature 600 e C, non-contact length L is about 15 mm, floating amount Z is about 0. l mm.
【数 【number
T b ( R · t ) 2 T b · R2 V T b (Rt) 2 T bR 2 V
E E · レ  E E · レ
【数 1 2】
Figure imgf000004_0001
[Equation 1 2]
Figure imgf000004_0001
L 金属帯と冷却ロールの非接触長さ  L Non-contact length between metal strip and cooling roll
Z 金属帯両端部での浮き上がり量(mm)  Z Lifting amount at both ends of metal band (mm)
E 金属帯のヤング率(kgf/mni2) E Young's modulus of metal strip (kgf / mni 2 )
t 金属帯の板厚(mm)  t Metal strip thickness (mm)
v 金属帯のポアソン比  v Poisson's ratio of metal strip
T b ライン張力 (kgf /mi2) T b line tension (kgf / mi 2 )
R 冷却ロール半径 (mm) しかしながら、 特開昭 6 0— 1 6 9 5 2 4号の金属帯の冷却装置では、 広範囲 な金属帯の板幅の冷却に対応するためにはガスジェツ ト装置の板幅方向の分割数 を大幅に増す必要があり、 ガス流量調節弁ならびにガス配管も大幅に数量増をま ねき設備費が増大する欠点がある。 R Cooling roll radius (mm) However, in the metal band cooling device disclosed in Japanese Patent Application Laid-Open No. 60-1696254, the number of divisions of the gas jet device in the plate width direction is greatly increased in order to cope with a wide range of metal plate width cooling. The gas flow control valve and gas piping also have a drawback in that the number of gas pipes will increase significantly and equipment costs will increase.
また図 4 1に示される同号の実施例にあるような板幅方向の分割数が 5区分程 度であれば、 分割されたノズル幅が大きくなりガス流量が増加して運転費が増大 するばかりでなく、 金属帯両端部付近の位置において過冷却を起こし、 後述する 実験結果を示す図 5 6からも明らかな様に、 板幅方向板温の充分な均一化が図れ ない等の問題点がある。  Also, if the number of divisions in the plate width direction is about 5 as in the embodiment of the same issue shown in FIG. 41, the divided nozzle width becomes large, the gas flow rate increases, and the operating cost increases. In addition to this, supercooling occurs at positions near both ends of the metal band, and as shown in Fig. 56 showing the experimental results described later, it is not possible to achieve sufficient uniformity of the sheet temperature in the sheet width direction. There is.
本発明は上記のような問題点を解決するためになされたもので、 広範囲なサイ ズに対し、 安価な運転費で板幅方向板温を均一化しつつ、 急速冷却できる金属帯 冷却装置及びその冷却方法を提案せんとするものである。 発 明 の 開 示  The present invention has been made in order to solve the above problems, and has a metal strip cooling apparatus and a metal strip cooling apparatus which can rapidly cool a wide range of sizes while making the sheet temperature in the sheet width direction uniform at a low operating cost and at a low operating cost. It does not propose a cooling method. Disclosure of the invention
そのため本発明の金属帯冷却装置は、 1以上の冷却ロールに金属帯を巻き付け て上記金属帯と各冷却ロールの接触長さを調整するロール冷却装置であって、 上 記冷却ロールに金属帯を介して対向して配置し、 ロール胴長方向に 2つ以上の金 属帯の幅よりも狭いノズルヘッダを有すると共に、 これらのノズルヘッダを冷却 ロールの移動方向に移動自在な構成とし、 且つこれらのノズルヘッダのうち少な くとも 1つのノズルヘッダをロール胴長方向に移動自在な構成としたガス冷却装 '置と、 各ノズルヘッダ内部の冷却ガス圧力又はガス流量を調整するガス調整装置 (この構成は後述する圧力調整弁やガス供給ブロワとその弁開度調整ゃブロワ回 転数制御を行う板温制御演算装置等の構成に相当する) とを有することを基本的 特徴としている。  Therefore, the metal band cooling device of the present invention is a roll cooling device that adjusts the contact length between the metal band and each cooling roll by winding the metal band around one or more cooling rolls. A nozzle header narrower than the width of two or more metal bands in the roll body length direction, and these nozzle headers are configured to be movable in the moving direction of the cooling roll; and A gas cooling device in which at least one of the nozzle headers is movable in the roll body length direction, and a gas adjusting device that adjusts the cooling gas pressure or gas flow inside each nozzle header (this The configuration is basically characterized by having a pressure regulating valve and a gas supply blower, which will be described later, and a valve opening degree adjustment thereof, which is equivalent to a configuration of a plate temperature control arithmetic unit that performs blower rotation speed control). .
上述のような w型の不均一温度分布のホッ トポィントは幅が狭く、 従来構成の ように、 金属帯幅方向にノズルが複数設けられていると、 その仕切壁の部分に相 当する箇所に該ホッ トポイントがある場合、 その部分の冷却がしにく く、 無理に 冷却しょうとすると、 該ホッ トポイント周りの部分が過冷却となる。 本構成では、 ホ トポイントの直上にガス冷却装置の幅狭のノズルヘッダを移動させて、 ガス 調整装置により圧力又は流量の調整された冷却ガスを該ホッ トポィントに向けて 吹き出させることにより、 その部分の集中的な冷却を行わせ、 温度分布不均一を 効率的に解消せんとするものである。 The w-shaped non-uniform temperature distribution hot point described above is narrow in width, and if a plurality of nozzles are provided in the metal band width direction as in the conventional configuration, it may be located at a location corresponding to the partition wall. If there is such a hot point, it is difficult to cool that part. If you try to cool it forcibly, the part around the hot point will be supercooled. In this configuration, the narrow nozzle header of the gas cooling device is moved just above the hot point, By blowing the cooling gas whose pressure or flow rate has been adjusted by the adjusting device toward the hot point, intensive cooling of that part is performed, and the uneven temperature distribution is not eliminated efficiently. .
上記ノズルヘッダを冷却ロールの移動方向に移動自在な構成としたのは、 冷却 ロールがその接触長を変えるために金属帯パスラインに直交する方向に移動でき るようになっており、 ロール背面冷却に適した距離を前記ノズルヘッダが常に取 れるようにすることが必要なこと (この場合冷却ロールの移動に合わせて同じ方 向へ移動する) と、 該ヘッダが金属帯に接触しないようにするため (冷却ロール が金属帯パスラインから離れる場合その直前にノズルヘッダは前記リ トラク ト位 置方向へ逆向きに移動する。 尚冷却ロールが金属帯パスラインに接触し始める時 はそのリ トラクト位置から該冷却ロールに接近するようにノズルヘッダが逆方向 に移動する) である。  The nozzle header is movable in the direction of movement of the cooling roll because the cooling roll can move in the direction perpendicular to the metal band pass line to change the contact length. It is necessary to always keep the nozzle header at a suitable distance (in this case, move in the same direction as the cooling roll moves), and make sure that the header does not contact the metal strip. Therefore, immediately before the cooling roll moves away from the metal band pass line, the nozzle header moves in the opposite direction to the retract position. When the cooling roller starts to contact the metal band pass line, the nozzle position moves. The nozzle header moves in the opposite direction so as to approach the cooling roll.
また幅の狭いホッ トポイントの集中的な冷却に適するため、 上記ノズルヘッダ のノズル口は、 金属帯のパスラインに略直交する方向に形成されるスリッ ト形状 をなし、 且つパスライン方向にこれらを 1列に穿設したものを用いると良い。 該ノズル口 1 1の断面形状は、 熱伝達率の向上及び圧力損失の低減を図るため、 図 4 4 ( a ) 〜 (d ) に示されるように、 ノズル口 1 1の内側縁が断面 R状又はテ ーパ状に穿設したり、 同図 (c ) ( d ) のように、 ノズル口 1 1が外部に突出する 形状に穿設されていても良い。  In addition, in order to be suitable for intensive cooling of narrow hot points, the nozzle openings of the nozzle header have a slit shape formed in a direction substantially perpendicular to the pass line of the metal band, and are formed in the direction of the pass line. It is good to use what was perforated in one line. As shown in FIGS. 44 (a) to (d), the cross-sectional shape of the nozzle port 11 is such that the inner edge of the nozzle port 11 has a cross section R in order to improve the heat transfer coefficient and reduce the pressure loss. The nozzle hole 11 may be formed in a shape such as a shape or a taper, or as shown in (c) and (d) of FIG.
またそのノズルヘッダは、 ロール胴長方向に 2つ設けた場合は、 各々金属帯の 幅方向端部に配置し、 また 3つ設けた場合は、 その 1つを金属帯幅方向略中央部 側に配置する (この中央部側に配置されたノズルヘッダはロール胴長方向には移 動せず該中央部に固定する構成としても良い) と共に、 残りの 2つを金属帯の幅 方向端部側に配置すると、 前記 w型の板温不均一分布の解消に有効である (上記 温度分布不均一は中央部より両端部の方が一般的に高く、 それ故両端部へのノズ ルヘッダの移動を優先させる) 。  When two nozzle headers are provided in the roll body length direction, they are arranged at the ends of the metal band in the width direction, respectively, and when three nozzle headers are provided, one of the nozzle headers is located near the center of the metal band width direction. (The nozzle header located on the center side may be fixed to the center without moving in the roll body length direction), and the other two may be arranged at the ends in the width direction of the metal strip. When placed on the side, it is effective to eliminate the non-uniform temperature distribution of the w-shaped plate. (The non-uniform temperature distribution is generally higher at both ends than at the center, so the nozzle header moves to both ends.) Priority).
もちろん本発明は、 冷却ロールが 1つの構成だけではなく、 2以上有する構成 にも適用でき、 複数の冷却ロールを有する構成の場合は、 そのうち少なくとも最 初の冷却ロールに対してノズルヘッダを 3つ設けて上記のヘッダ配置構成とすれ ば良いし、 更にこれらの冷却ロールを前段部と後段部の 2つの区分けを設けて、 前段部の冷却ロールについてはノズルヘッダを 3つ設けて上記のヘッダ配置とす ると共に、 その後段部の冷却ロールについてはノズルへヅダを 2つとして同 2つ の場合のヘッダ配置とすると良い。 以上のように少なくとも最初の冷却ロール或 いは前段の冷却ロールに対するノズルヘッダ構成を 3つにするのは、 冷却ロール 接触開始時に金属帯中央部が中膨らみ [図 4 5 ( a ) に示されるように、 板形状 不良により板 Xが接触していないロール #1の胴部分は接触している部分より冷却 ロール内部の冷媒によって冷やされ、 たとえ板形状が良くなつても同図 (b ) の ように板 X中央部は冷やされず、 幅方向板温差により板中央部は板両端部に比べ 伸びを生じて、 同図 (c ) のようになる。 これを中膨らみという。 特に剛性の低 い薄物の場合ひどい物では絞りが発生する] になると不均一温度分布を生じ、 冷 却ロールの特性上一旦不均一温度分布が発生するとその後不均一温度分布が増長 するので、 ロール接触開始初期における該板形状不良をなくすことを目的に、 少 なくとも最初の冷却ロール或いは前段の冷却ロールに対しては中央部にもノズル ヘッダを設け、 その部分の集中的な冷却及び背面からのガス吹き付けを行うこと によって、 その中膨らみの問題が解決されるからである (厚物であっても特に最 初のロールで有効である) 。 逆に少なく とも最初の冷却ロール或いは前段の冷却 ロールに対し中央ノズルヘッダを含む 3つのノズルへヅダ構成としておけば、 そ のあとに続く冷却ロールでは金属帯両端部に対して夫々ノズルヘッダを設ければ 足りることになる。 Of course, the present invention can be applied not only to a configuration having one cooling roll but also to a configuration having two or more cooling rolls. In a configuration having a plurality of cooling rolls, at least three nozzle headers are provided for at least the first cooling roll. With the above header arrangement In addition, these cooling rolls are divided into two parts, a front part and a rear part, and three nozzle headers are provided for the cooling part in the front part, and the above header arrangement is adopted, and the following part is arranged. As for the cooling roll, it is advisable to use two nozzle headers and to arrange the headers in the same case. As described above, at least three nozzle headers are required for the first cooling roll or the preceding cooling roll because the center of the metal band bulges at the start of the cooling roll contact as shown in Fig. 45 (a). Thus, the body of Roll # 1, where the plate X is not in contact due to the defective plate shape, is cooled by the refrigerant inside the cooling roll from the contacting portion, and even if the plate shape becomes better, Thus, the central part of the sheet X is not cooled, and the central part of the sheet is stretched more than the both end parts due to the sheet temperature difference in the width direction, as shown in FIG. This is called medium bulge. In particular, in the case of a thin object having low rigidity, a severe object causes drawing to occur.] In the case of a non-uniform temperature distribution, once the non-uniform temperature distribution occurs due to the characteristics of the cooling roll, the non-uniform temperature distribution increases thereafter. For the purpose of eliminating the plate shape defect at the beginning of contact, at least the first cooling roll or the preceding cooling roll is provided with a nozzle header also at the center, and intensive cooling of that part and from the back This is because the swelling problem can be solved by spraying the gas (the thick roll is especially effective with the first roll). Conversely, if at least three nozzles including a central nozzle header are provided for the first cooling roll or the preceding cooling roll, a nozzle header is provided for both ends of the metal band in the cooling roll that follows. It will be enough.
—方上記のように複数の冷却ロールが設置されている場合、 前段のノズルへッ ダのロール移動方向への移動と後段のノズルヘッダの移動とでは、 その移動の態 様を異なるように設定することもできる。 即ち上記鞍型変形等を発生原因とする 板幅方向の不均一温度分布を解消するには、 該変形の発生元となる上流側ででき るだけ冷却量を大きく取る必要があり、 金属帯と冷却ロールとの接触開始付近に おける板形状不良を早期に解消する目的 (その他非常に熱負荷が低く、 前段の冷 却ロールだけでさえ、 これらが最大押し込み量にならない状態で冷却することも あること) から、 前段のロール背面冷却についてもできるだけその冷却量を大き く しておく必要があり、 冷却ロールの移動に伴って該ロールとの離間距離が一定 になるように前段におけるノズルヘッダがその移動に追従できる構成とし、 前段 における冷却効果を高いものとなるようにする。 より具体的には、 パスラインに おける金属帯と該冷却ロールの接触開始と共に、 待避してあったリ トラク ト位置 から金属帯と接近する方向にそのノズルヘッダを移動させ、 更にこの接触時より 冷却ロールの押し込み量が大きい時には、 金属帯との離間距離を一定に保てるよ うに移動させる。 また金属帯と該冷却ロールが非接触となった時には、 前記リ ト ラクト位置までそのノズルヘッダを移動させることになる。 一方後段のノズルへ ッダにはこのような要請が必ずしもなく、 固定しておいても良いのであるが、 他 方冷却ロールが最大押し込み量になった時に対向するノズルヘッダの長さが最大 になるように該ヘッダが設計されている場合、 ある冷却ロールが使用できなくな つてその直前或いは直後にある冷却ロールの押し込み量が浅くなると、 押し込み 量の浅くなつた冷却ロールに追従して動くノズルヘッダ又は該冷却ロールの背面 に固定されているノズルヘッダは金属帯と接触してしまうことになるため、 待避 できるようにしておく必要がある。 従って後段のノズルヘッダについては通常冷 却時に所定箇所に移動させ、 非常時或いは冷却を行わない時のみ前記リ トラク ト 位置に待避させるように設定し、 冷却ロールの移動に単純に追従させないように しておくこともできる。 即ちパスラインにおける金属帯と該冷却ロールの接触開 始と共に、 待避してあったリ トラク ト位置から金属帯と接近する方向に該ノズル ヘッダを移動させ、 その後冷却ロールの押し込み量が大きくなっても移動させず、 また金属帯と該冷却ロールが非接触となる直前に再び前記リ トラク ト位置にノズ ルヘッダを待避させるようにする。 -When multiple cooling rolls are installed as described above, the movement of the preceding nozzle in the roll movement direction and the movement of the subsequent nozzle header are set to be different. You can also. That is, in order to eliminate the non-uniform temperature distribution in the plate width direction caused by the saddle type deformation or the like, it is necessary to take as much cooling amount as possible on the upstream side where the deformation is generated. Aim to quickly eliminate plate shape defects near the start of contact with the cooling rolls (otherwise, the heat load is extremely low, and even the cooling rolls in the preceding stage may be cooled without reaching the maximum pushing amount. Therefore, it is necessary to increase the cooling amount of the back roll of the preceding stage as much as possible, and the distance between the cooling roll and the roll is constant. The configuration is such that the nozzle header in the preceding stage can follow the movement so that the cooling effect in the preceding stage is high. More specifically, with the start of contact between the metal strip and the cooling roll in the pass line, the nozzle header is moved in a direction approaching the metal strip from the retracted retracted position, and further from this contact. When the amount of pushing of the cooling roll is large, move the cooling roll so that the separation distance from the metal strip can be kept constant. Further, when the metal strip and the cooling roll come out of contact, the nozzle header is moved to the retract position. On the other hand, the latter nozzle header does not necessarily have such a requirement, and it may be fixed.However, when the cooling roll reaches the maximum pushing amount, the length of the opposing nozzle header is maximized. When the header is designed so that the cooling roll becomes unusable and the pushing amount of the cooling roll immediately before or immediately after it becomes shallow, the nozzle that moves following the cooling roll with the smaller pushing amount Since the header or the nozzle header fixed to the back of the cooling roll comes into contact with the metal band, it is necessary to be able to evacuate. Therefore, the nozzle header in the subsequent stage is set to move to the predetermined position during normal cooling, and to be retracted to the retract position only in an emergency or when cooling is not performed, so as not to simply follow the movement of the cooling roll. You can also keep. That is, with the start of the contact between the metal strip and the cooling roll in the pass line, the nozzle header is moved from the retracted retract position to the direction approaching the metal strip, and thereafter, the pushing amount of the cooling roll increases. Also, the nozzle header is evacuated again to the retraction position immediately before the metal strip and the cooling roll are out of contact with each other.
上述のように上記鞍型変形等を発生原因とする板幅方向の不均一温度分布を解 消するには、 該変形の発生元となる上流側でできるだけ冷却量を大きく取り、 且 つ板幅方向に均一冷却の行える背面冷却を該上流側で重点的に行うべきである。 従って前段側の特に第 1冷却ロールを中心に上流側の冷却ロールから順次押し込 んで冷却長を大きく取る (ロール押し込み量を多く とる) だけでなく、 上流側の ノズルヘッダから順にそのガス噴出能力を m a xにして冷却し、 不足分を下流側 の方で補うようにすると良い。 また第 1冷却ロールより順に卷付長を大きく取る 冷却ロールの押し込み方法を用いるため、 求められる冷却速度の低い時、 或いは 薄板厚等のために冷却量が低い [即ち熱負荷 (t / h ) が低い] 時、 下流側の冷 却ロールは背面冷却用のノズルヘッダと金属帯の距離が大きくなる (冷却ロール が非接触となっても該ノズルヘッダによる背面冷却を行うこともできる) 。 この 時のエネルギーロスを少なくするため、 ノズルヘッダと冷却ロール間の距離があ る距離以上離れると、 各ノズルヘッダに設置したガス供給路の遮断弁を閉止して いる。 As described above, in order to eliminate the non-uniform temperature distribution in the sheet width direction caused by the saddle type deformation or the like, as much cooling as possible is required on the upstream side where the deformation occurs, and Backside cooling that can provide uniform cooling in the direction should be mainly performed on the upstream side. Therefore, not only the cooling roll on the upstream side, especially the first cooling roll, is pushed in from the upstream cooling roll to increase the cooling length (increase the roll pushing amount), but also the gas ejection capability in order from the upstream nozzle header. It is advisable to cool to max and make up for the shortage on the downstream side. In addition, since the cooling roll is pushed in in order to increase the winding length sequentially from the first cooling roll, when the required cooling rate is low, or When the cooling amount is low [ie, the heat load (t / h) is low] due to the thickness of the sheet, etc., the cooling roll on the downstream side has a large distance between the nozzle header for backside cooling and the metal strip (when the cooling roll is not Even if it comes into contact, the backside cooling by the nozzle header can be performed). In order to reduce the energy loss at this time, when the distance between the nozzle header and the cooling roll is longer than a certain distance, the shutoff valve of the gas supply path installed in each nozzle header is closed.
他方ロール胴長方向に複数のノズルヘッダを有する場合に、 これらのノズルへ 、ソダの冷却ロール移動方向での移動量を各異ならしめ、 各ノズルへ、 ダと冷却口 ールとの間隔をロール胴長方向で相違させるようにすることもできる。 このよう な構成はロール胴長方向で冷却能力に差がある場合、 そのようなクセ取りに使用 することができる。 また冷却能力に余力がある時にガスブロワ等の設備使用を減 らすことができ、 省電力上も有効である。  On the other hand, when a plurality of nozzle headers are provided in the roll body length direction, the amount of movement of the soda in the cooling roll moving direction is made different to these nozzles, and the distance between the die and the cooling hole is made to each nozzle. The difference can be made in the roll body length direction. Such a configuration can be used for such a habit removal when there is a difference in cooling capacity in the roll body length direction. Also, when there is enough cooling capacity, the use of equipment such as gas blowers can be reduced, which is also effective in saving power.
またホッ トポイントの直上にガス冷却装置の幅狭のノズルヘッダを移動させて、 冷却ガスを該ホッ トポィントに向けて噴出させる上記構成では、 大きな板幅変更 の多いラインの場合、 該板幅変更時に金属帯両端部側のノズルヘッダのロール胴 長方向への移動が追いつかず、 結果的に適切なホッ トポィント部分の背面冷却が 不可能になるという新たな問題も生じることになる。 そこで本構成では、 少なく とも金属帯両端部側に位置するノズルヘッダはヘッダ本体をロール胴長方向に複 数連結した構成とし、 板幅変更があった時に板端部側に近いヘッダ本体の冷却ガ ス圧力又はガス流量を高めることで、 ノズルヘッダ移動の遅れ (レスポンスの低 さ) をカバーさせることもできる。  Further, in the above-described configuration in which the narrow nozzle header of the gas cooling device is moved just above the hot point and the cooling gas is jetted toward the hot point, the line width is changed in the case of a line having a large plate width change. At times, the movement of the nozzle headers at both ends of the metal band in the roll body length direction cannot keep up, and as a result, a new problem arises in that it becomes impossible to cool the back surface of the appropriate hot point. Therefore, in this configuration, at least the nozzle headers located on both ends of the metal band are composed of multiple header bodies connected in the roll body length direction to cool the header body near the plate edge when the plate width changes. Increasing the gas pressure or gas flow can also cover delays in nozzle header movement (low response).
より具体的には、 板幅の異なる金属帯の接続点近傍において板幅が幅広から幅 狭へ移行する場合、 例えば図 4 6 ( a ) に示す様に、 両端部ノズルヘッダの内側 ヘッダ本体 a c、 a eや ? c、 ? eと中央ヘッダ本体 a b、 a fゃ b、 5 fを使用し、 板幅が幅狭から幅広へ移行する場合は、 同図 (b ) に示す様に、 両端部ノズルへ ヅダの外側ヘッダ本体 a a、 や/? a、 gと中央ヘッダ本体 a b、 《fや/ ? b、 β ί を使用することによって、 金属帯長手方向の板温外れの長さを最小化でき、 且つ それにより当該冷却装置以降の熱処理炉での金属帯の蛇行等の防止を図ることが 出来る。 また上記のようにヘッダ本体がロール胴長方向に複数連結されている構成では、 連結部分の仕切壁の部分に相当する箇所に前記ホッ トポィントがある場合、 その 部分の冷却がしにく くなる。 本構成では、 ノズルへヅダ 1の構成を、 図 47 (a) に示されるように、 連結されたヘッダ本体 10を金属帯走行方向に更に複数段有す ると共に、 ヘッダ本体 10の各ノズル口 11位霞を上流側と下流側の段でロール胴長 方向にずらして設ける構成とすることができ、 それによつて 1つの段で仕切壁と なる位置がその上又は下の段ではノズル口 11の設置位置となるため、 上記の問題 は解決されることになる。 More specifically, when the plate width shifts from wide to narrow near the connection point of the metal strips having different plate widths, for example, as shown in FIG. , Ae,? C,? E and the center header body ab, af ゃ b, 5f. When the board width shifts from narrow to wide, as shown in Fig. By using the outer header body aa, or /? A, g of the header and the central header body ab, << f, /? B, β で き, it is possible to minimize the length of the strip in the longitudinal direction of the metal strip. Thus, meandering of the metal band in the heat treatment furnace after the cooling device can be prevented. In the configuration in which a plurality of header bodies are connected in the roll body length direction as described above, when the hot point is located at a portion corresponding to the partition wall portion of the connection portion, it is difficult to cool that portion. . In this configuration, as shown in FIG. 47 (a), the configuration of the nozzle header 1 includes a plurality of connected header bodies 10 in the metal strip running direction and a plurality of nozzle openings of the header body 10. The 11th haze can be provided so as to be shifted in the roll body length direction between the upstream and downstream stages, whereby the position of the partition wall in one stage is the nozzle port in the upper or lower stage. The above-mentioned problem will be solved.
—方各ヘッダ本体におけるノズル口位置は適正な間隔を開けて設けられている ので、 ガス噴出に際し問題となることはないが、 これらのヘッダ本体がロール胴 長方向で複数連結される本構成では、 両隣間でそのノズル口位置が同じ位置 (口 ール胴長方向で同じ位置) にあると、 それらから噴出された冷却ガスによって乱 流が発生し易く、 効果的な冷却ができなくなる。 本構成では、 ノズルヘッダ T0構 成を、 同図 (b) に示されるように、 連結されたヘッダ本体 10の各々に設けられ たノズル口 11位置を隣合うヘ^ダ本体 10間で金属帯走行方向にずらして設ける構 成とすることができ、 それによつて両隣間のノズル口 11位置が異なることになり、 上記の問題は解決されることになる (この他、 1のノズルへヅダ内でロール胴長 方向にノズル口を複数有し、 且つ隣合うノズル口が金属帯走行方向にずらして設 けられる構成等も同様な効果がある) 。  The nozzle openings in each header body are provided at appropriate intervals, so there is no problem when ejecting gas.However, in this configuration where a plurality of these header bodies are connected in the roll body length direction, However, if the nozzle ports are located at the same position between both sides (the same position in the direction of the barrel length), turbulence is likely to be generated by the cooling gas ejected from them, and effective cooling cannot be performed. In the present configuration, the nozzle header T0 configuration is, as shown in FIG. 4B, a metal band between the adjacent header bodies 10 by connecting the positions of the nozzle ports 11 provided in each of the connected header bodies 10 to each other. It is possible to adopt a configuration that is shifted in the traveling direction, so that the positions of the nozzle ports 11 between the two adjacent nozzles are different, and the above-mentioned problem is solved. The same effect can be obtained by a configuration in which a plurality of nozzle openings are provided in the roll body length direction, and adjacent nozzle openings are staggered in the running direction of the metal band.
尚上記冷却ロールが金属帯に接触する前に該金属帯の張力を高めに変更して接 触時点での金属帯の形状が安定するようにすると良い。  Before the cooling roll comes into contact with the metal band, the tension of the metal band is preferably changed to be higher so that the shape of the metal band at the time of the contact is stabilized.
上述のノズルヘッダの移動の遅れを力パーする他の構成としては、 図 48及び 図 49に示されるように、 冷却ロールの背面冷却を行うガス冷却装置及び/又は 後述する該冷却ロール出側の補助ガス冷却装置に備えられた少なくとも金属帯両 端部側に位置するノズルヘッダ aa、 ひ (!、 /9a、 /5cにっき、 ヘッダ本体を金属帯 走行方向で 2以上に分離 (aal、 aa2 ctcl、 ac2、 5al、 3a2、 /5cl、 ?c2) し、 且つこれらを独立してロール胴長方向 (又は金属帯幅方向) に各移動可能な 構成とする。 図 50 (a) (b) (c) 及び図 51 (a) (b) (c) に示され るように、 板幅変更がある直前に上流側の端部ノズルへヅダ (aal、 cK ?al、 yff c l ) を変更後の金属帯両端部側に移動させておき、 下流側の端部ノズルヘッダ ( a a2、 a c2、 a2、 ? c 2) も板幅変更部がそこに進入する直前に変更後の金属 帯両端部側に移動させる (図 5 0は幅広材から幅狭材に板幅変更がある場合の端 部ノズルヘッダの動きを、 また図 5 1はその反対の板幅変更がある場合のノズル ヘッダの動きを各示している) 。 以上の構成は、 上記ガス冷却装置や補助ガス冷 却装置の構成だけでなく、 ロール冷却装置の入側に設けられる補助冷却構成とし て設置しても良い。 As shown in FIGS. 48 and 49, another configuration for reducing the delay in the movement of the nozzle header includes, as shown in FIGS. 48 and 49, a gas cooling device for cooling the back surface of the cooling roll and / or a cooling roll outlet side described later. Nozzle headers aa, hi (!, / 9a, / 5c) located at least on both ends of the metal band provided in the auxiliary gas cooling device, and the header body is separated into two or more in the running direction of the metal band. , Ac2, 5al, 3a2, / 5cl,? C2) and move them independently in the roll body length direction (or metal band width direction). c) and as shown in Figs. 51 (a), (b) and (c), immediately before there is a change in the plate width, the upstream end nozzles (aal, cK? al, yff cl) is moved to both ends of the metal band after the change, and the downstream end nozzle headers (a a2, a c2, a2,? c 2) are also set immediately before the sheet width change part enters there. Move to the both ends of the metal band after the change (Fig. 50 shows the movement of the end nozzle header when the width is changed from wide to narrow, and Fig. 51 shows the change in the opposite width). Each shows the movement of the nozzle header in some cases). The above configuration may be installed not only as the configuration of the gas cooling device and the auxiliary gas cooling device but also as an auxiliary cooling configuration provided on the inlet side of the roll cooling device.
また上記構成を備える場合に、 幅変更接続情報器 (金属帯の装入順序、 幅、 測 定された金属帯長さから溶接等による接続情報をライン入側からトラッキングし て冷却ロール部への到達を測定し、 その幅変更量に合わせてノズルヘッダの口一 ル胴長方向への移動情報を流す機器) 、 金属帯両端部位置検出器 [光電管と受光 器、 レーザーと受光器、 金属帯部分の高温部と金属帯以外の周りの低温部との温 度の違いから判別可能な後述の金属帯幅方向板温計 (プロフィル温度計) による 検出器或いはこれらの併用構成] 、 金属帯幅方向板温計の内の 1以上を冷却口一 ルの入側に配し、 これらの情報に基づき幅変更部乃至幅変更量の情報を得ること で、 幅方向端部用のノズルヘッダを金属帯幅方向端部にセッ 卜するようにするこ ともできる。 即ち板幅が異なる接続部の特異点が進入してくる時に、 この特異点 , 情報をライン入側からトラッキングし、 幅狭材から幅広材に変わる場合は、 該特 異点の進入直前に、 ノズルヘッダの所定位置への移動 (ノズルヘッダは離れる方 向に移動する) を完了させておき、 逆に幅広材から幅狭材に変わる場合には、 該 特異点が出側を通過してから、 前記ノズルヘッダを所定の位置へ向けて移動させ 始める (ノズルヘッダは互いに近づく方向に移動する) 。 これは幅狭材の時に該 金属帯と接触しておらずそのためヒートクラウン発生のほとんどないロール部分 では次の幅広材が来ても接触不良となり易く、 且つ幅広材に変わった時に金属帯 の張力が相対的に低下してより接触不良が増大することになる。 従ってそのよう な場合は予めノズルヘッダを所定の箇所に移動させておいて、 幅広材に変わった 時点で既に背面冷却によって金属帯と冷却ロールとの接触を良好な状態になって おくようにすると良い。 但し金属帯に蛇行等が生じている場合、 これらのノズル ヘッダは蛇行方向に一緒に動くことになる。 上述したように両端部側に位置する ノズルヘッダがロール胴長方向 (金属帯幅方向) に複数連結されたヘッダ本体で 構成される場合や、 両端部側に位置するノズルへッダのへッダ本体が金属帯走行 方向に 2以上に分離し且つ各独立して移動できる構成の場合は、 板幅変更部の冷 却異常部を更に少なくできると共に、 ノズル幅も狭くできるため、 周辺部の過冷 却も低減できるようになる。 In addition, when the above configuration is provided, the width change connection information device (the connection order by welding etc. is tracked from the line entry side based on the loading order and width of the metal band, and the measured metal band length, and is sent to the cooling roll. A device that measures arrival and sends information on the movement of the nozzle header in the direction of the barrel length according to the width change), metal band end position detectors [photoelectric tube and receiver, laser and receiver, metal band Detector using a metal strip width direction sheet thermometer (profile thermometer) that can be distinguished from the difference in temperature between the high temperature part of the part and the low temperature part around the metal strip or a combination of these detectors] At least one of the directional plate thermometers is arranged on the inlet side of the cooling port, and information on the width change portion and the width change amount is obtained based on this information, so that the nozzle header for the width direction end is made of metal. It can be set at the end in the band width direction. That. That is, when a singular point of a connecting portion having a different board width enters, the singular point, information is tracked from the line entry side, and when the material changes from narrow material to wide material, immediately before entering the special point, Movement of the nozzle header to the specified position (the nozzle header moves in the direction away from it) has been completed, and conversely, if the material changes from a wide material to a narrow material, wait until the singular point passes the exit side. Then, the nozzle header is started to move toward a predetermined position (the nozzle headers move in directions approaching each other). This is because when the material is narrow, it is not in contact with the metal band, so the roll part where heat crown hardly occurs is likely to have poor contact even if the next wide material comes in. Is relatively reduced, and the contact failure increases. Therefore, in such a case, it is recommended that the nozzle header be moved to a predetermined location in advance, and that the metal strip and the cooling roll be brought into good contact by cooling the rear surface at the time of changing to a wide material. good. However, if the metal strip has meandering, these nozzle headers will move together in the meandering direction. Located on both ends as described above When the nozzle header is composed of multiple header bodies connected in the roll body length direction (the metal band width direction), or when the nozzle body of the nozzle header located at both ends is two or more in the metal band running direction In the case of a structure that can be separated and moved independently of each other, the abnormal cooling portion of the plate width changing portion can be further reduced, and the nozzle width can also be narrowed, so that overcooling of the peripheral portion can be reduced.
また板厚、 速度或いは冷却装置での板温降下量等が大きな条件下で、 前記冷却 ロールに対向して配置した上記ガス冷却装置にて板幅方向板温偏差の解消が困難 な場合には、 該ガス冷却装置等の構成の他に、 前記冷却ロール乃至冷却ロール群 の出側に金属帯に対向して配置し、 該金属帯の板幅方向に 2つ以上のガス吹付用 のノズルヘッダを有し、 且つこれらのノズルへヅダのうち少なくとも 1つ (更に 好ましくは 2つ、 特に端部の各 1つ) のノズルヘッダを金属帯幅方向に移動自在 な構成とした補助ガス冷却装置と、 これらのノズルヘッダ内部の冷却ガス圧力又 はガス流量を調整するガス調整装置とを更に併用することによってその問題は解 決される。  Further, when it is difficult to eliminate the sheet temperature deviation in the sheet width direction with the gas cooling apparatus arranged opposite to the cooling roll under the condition that the sheet thickness, the speed or the sheet temperature drop amount in the cooling device is large. In addition to the configuration of the gas cooling device and the like, two or more nozzle headers for spraying gas in the width direction of the metal band are disposed on the exit side of the cooling rolls or the group of cooling rolls so as to face the metal band. And an auxiliary gas cooling device having at least one (more preferably two, especially one at each end) of these nozzle headers, which is movable in the metal band width direction. The problem can be solved by further using a gas adjusting device for adjusting the cooling gas pressure or the gas flow rate inside the nozzle header.
またこの補助ガス冷却装置の構成が備えられる場合に、 前述した板幅変更時の ノズルヘッダの移動遅れを力パーする構成として、 補助ガス冷却装置のノズルへ ッダのうち、 少なく とも金属帯両端部側に位置するノズルヘッダは金属帯幅方向 に連結された複数のヘッダ本体で構成されると共に、 且つこれらのノズルへヅダ のうち少なくとも 1つのノズルヘッダを金属帯幅方向に移動自在な構成としたり、 或いは前述した図 4 9に示すように、 少なくとも金属帯両端部側に位置するノズ ルヘッダは金属帯走行方向で 2以上に分離した構成とし、 且つこれらを独立して 金属帯幅方向に各移動可能な構成とすることもできる。  In addition, when the configuration of the auxiliary gas cooling device is provided, at least both ends of the metal band of the nozzle header of the auxiliary gas cooling device are configured to reduce the movement delay of the nozzle header when the plate width is changed as described above. The nozzle header located on the side of the head is composed of a plurality of header bodies connected in the metal band width direction, and at least one of these nozzle headers is movable in the metal band width direction. As shown in FIG. 49, at least the nozzle headers located at both ends of the metal strip are separated into two or more in the running direction of the metal strip, and these are independently separated in the width direction of the metal strip. It is also possible to adopt a movable configuration.
その場合でも、 前述のような幅変更接続情報器、 金属帯両端部位置検出器、 金 属帯幅方向板温計の内 1以上を冷却ロールの入側に設けておくことで、 これらの 情報に基づき幅変更部乃至幅変更量の情報を得て、 ガス冷却装置の幅方向端部用 のノズルヘッダ及び補助ガス冷却装置の金属帯幅方向両端部の 2つのノズルへッ ダを金属帯幅方向端部に夫々セッ トするようにすれば、 板幅が異なる接続部の特 異点の進入に対し、 各ノズルヘッダを所定の箇所に予め或いは進入後に移動せし めておくことができるようになる。 以上のフィードフォヮ一ド制御の他、 金属帯幅方向板温計を冷却ロールの出側 或いは補助ガス冷却装置の出側に配し、 その情報に基づき、 ガス冷却装置の各ノ ズルヘッダ及びノ又は補助ガス冷却装置の各ノズルヘッダを金属帯幅方向端部に 夫々セットするフィードバック制御を行うこともできる。 Even in such a case, one or more of the width change connection information device, the metal band end position detector, and the metal band width direction thermometer as described above should be provided on the inlet side of the cooling roll to obtain this information. The information on the width change part and the width change amount is obtained based on the above, and the nozzle header for the width direction end of the gas cooling device and the two nozzle headers at both ends in the metal band width direction of the auxiliary gas cooling device are connected to the metal band width. If they are set at the end portions in the direction, it is possible to move each nozzle header to a predetermined location in advance or after entering, at the point of entry of a special point of a connection portion having a different plate width. become. In addition to the feedforward control described above, a metal strip width thermometer is arranged on the outlet side of the cooling roll or the outlet side of the auxiliary gas cooling device, and based on the information, each nozzle header and nozzle or auxiliary of the gas cooling device is used. Feedback control for setting each nozzle header of the gas cooling device at the end in the metal band width direction can also be performed.
更に以上のフィードパック制御については、 該ノズルへッダの移動制御と共に、 或いは該移動制御を伴わずに、 前記出側の板温情報に基づき、 ガス冷却装置の各 ノズルへッダ及び/又は補助ガス冷却装置の各ノズルへッダの夫々の冷却ガス圧 力又はガス流量調整により行うこともできる。 加えて 2つのノズルヘッダの金属 帯幅方向端部へのセッ トと、 これらのノズルヘッダの各冷却ガス圧力又はガス流 量調整を一緒に行うこともできる。  Further, with respect to the above feed pack control, with or without the movement control of the nozzle header, based on the sheet temperature information on the outlet side, each nozzle header of the gas cooling device and / or It can be performed by adjusting the cooling gas pressure or gas flow rate of each nozzle of each nozzle of the auxiliary gas cooling device. In addition, the setting of the two nozzle headers at the ends in the metal band width direction and the adjustment of the cooling gas pressure or the gas flow rate of these nozzle headers can be performed together.
—方ガス冷却装置の具体的構成としては、 金属帯にガスを噴出するノズルの備 えられた該金属帯の幅よりも狭い 2つ以上のノズルヘッダと、 該ノズルヘッダを 金属帯表面に直交する方向及び/又は該金属帯の幅方向に移動せしめる移動台と を有するものを用いることができる。  The specific configuration of the gas cooling device is as follows: two or more nozzle headers, which are provided with nozzles for ejecting gas to the metal strip, are narrower than the width of the metal strip, and the nozzle headers are perpendicular to the metal strip surface. And / or a moving table that moves in the width direction of the metal band.
上記構成により、 金属帯温度分布の不均一な領域に移動台によってノズルへッ ダを移動させ、 適当な離間距離を保って冷却ガスを吹き付ければ (2つで足らな ければ金属帯幅方向で 3つ、 4つ、 · ·というように増やしていけば良い) 、 該金 属帯幅方向の温度分布を制御することも可能である。 このことによって金属帯幅 方向の温 ¾分布を均一化することができ、 更にこの幅方向温度分布の均一化の達 成から、 冷却速度の均一化を図ったり、 幅方向で均一化された板温を目標温度に 近ずけることができるため、 材質 ·形状不良等の問題を解決できることになる。 以上の構成は、 内部を冷却した 1以上のロールに金属帯を巻き付けて該金属帯 を冷却するロール冷却装置のロール背面冷却 (この場合ノズルヘッダの形状は口 ールの曲率に応じて湾曲しているものが良い) に用いることができるのは当然で あるが、 該ロール冷却装置の入側 (ロール冷却装置における金属帯端部の冷却不 足の原因として金属帯の前記鞍型変形があるが、 ロール冷却装置の前にこのよう なガス冷却により予め金属帯端部を冷却しておくことによって鞍型変形を小さく することができ、 ロール冷却 ¾置での板温不均一を改善することができる。 尚こ の場合のノズルヘッダは平面状である).或いは出側に設置される補助ガス冷却装 置の構成 (この場合ノズルヘッダは平面状のものが主に用いられる) としても、 用いることができる。 例えば図 5 2に示す軟質用 (深絞り用) 等の薄板連続焼鈍 ヒートサイクルで、 再結晶温度〜過時効処理に到る冷却過程のロール冷却装置の 前後に設ける冷却構成 (図中 A、 Bに示すポイント) に上記構成を用いることが 可能である。 With the above configuration, the nozzle is moved to the area where the metal strip temperature distribution is not uniform by the moving table, and the cooling gas is blown at an appropriate distance (if two pieces are not enough, the metal strip width direction The temperature distribution in the metal band width direction can be controlled. As a result, the temperature distribution in the width direction of the metal band can be made uniform, and furthermore, the uniformity of the temperature distribution in the width direction can be achieved, so that the cooling rate can be made uniform, and the plate can be made uniform in the width direction. Since the temperature can be brought close to the target temperature, problems such as defective materials and shapes can be solved. The above configuration consists of cooling the back of a roll cooling device that cools the metal band by wrapping a metal band around one or more rolls whose interior has been cooled (in this case, the nozzle header is curved according to the curvature of the hole. Of course, the saddle type deformation of the metal band is a cause of insufficient cooling at the end of the metal band in the roll cooling device. However, by pre-cooling the metal band edge by such gas cooling before the roll cooling device, saddle-shaped deformation can be reduced, and the plate temperature unevenness in the roll cooling device can be improved. In this case, the nozzle header is flat) or an auxiliary gas cooling device installed on the outlet side. It can also be used as an arrangement configuration (in this case, a flat nozzle header is mainly used). For example, in the continuous thin-sheet annealing heat cycle for soft (for deep drawing) etc. shown in Fig. 52, the cooling configuration provided before and after the roll cooling device in the cooling process from recrystallization temperature to overaging treatment (A, B in the figure) It is possible to use the above configuration for (point shown in).
更にこれらの設備における金属帯パスラインが水平であるか垂直であるかを問 わず、 適用することが可能である。 またロール冷却装置の入側の補助冷却構成や その出側の前記補助ガス冷却装置の構成として本構成を用いる場合は、 金属帯片 面側だけにノズルヘッダと移動台を設ける場合の他、 その表裏両面側にこれらを 設けることもできる。 金属帯表裏両面側にこれらが設けられた場合、 ホッ トボイ ント (ホッ トポイントになるはずの部分を含む) を両面から冷却できるため、 冷 却効率が高まり、 また金属帯のバタヅキを抑えることができる。  In addition, it is applicable regardless of whether the metal strip pass line in these facilities is horizontal or vertical. When this configuration is used as the auxiliary cooling configuration on the inlet side of the roll cooling device or the configuration of the auxiliary gas cooling device on the output side, in addition to the case where the nozzle header and the moving table are provided only on one side of the metal strip, These can be provided on both front and back sides. If these are provided on both the front and back sides of the metal strip, the hot point (including the portion that should become the hot point) can be cooled from both sides, increasing cooling efficiency and suppressing metal strip flapping. it can.
前記ノズルヘッダが金属帯幅方向に 2つある場合は、 温度が高くなる金属帯幅 方向の両端側に移動台でヘッダを移動させ、 3つある場合は次に温度の高い金属 帯中央付近にも残りを移動させ、 更に場合によってこれらを金属帯表面に直交す る方向の適当な位置に移動させて、 該ノズルヘッダによるホッ トポイントの冷却 を行わせることもできる。 またノズルヘッダが金属帯幅方向に 3つある場合は、 真ん中のヘッダを中央で固定し、 金属帯幅方向に移動させない (直交方向には移 動できるようにさせておいても良い) 構成にすることも可能である。  If there are two nozzle headers in the metal strip width direction, move the headers on both ends in the metal strip width direction where the temperature increases, and if there are three nozzle headers near the center of the next hottest metal strip. The remaining nozzles may be moved, and in some cases, these may be moved to an appropriate position in a direction orthogonal to the surface of the metal strip to cool the hot point by the nozzle header. If there are three nozzle headers in the metal band width direction, fix the middle header at the center and do not move it in the metal band width direction (it may be possible to move it in the orthogonal direction). It is also possible.
前記ロール冷却装置の冷却ロールが冷却量調整のために金属帯パスラインに直 交する方向に移動可能である場合に、 そのパスライン上の該金属帯と接触しない 範囲 [特に後段の冷却ロールについてその押し込み量が最大の時に合わせて後段 のノズルヘッダの (湾曲) サイズを決めた場合に、 冷却負荷を下げたり緊急な時 に冷却ロールを待避させる必要がある。 冷却ロールの位置によっては、 ノズルへ ッダを冷却ロールの最大押し込み時のままにしておくと接触することがある] で、 そのノズルヘッダを移動台により冷却ロールの移動に合わせて (ロールとへヅダ が一体になって何時でも一緖に動く時は、 上述のロール待避時以外でも問題があ る。 即ちライン立ち上げ時にロールがパスラインから待避した場合逆にヘッダの 端部が接触する状態になることが多いからである。 従ってロールの移動に合わせ て移動するといつても金属帯と接触しない範囲でということになる) 或いはこの 移動と独立して移動せしめる (独立して動く場合は、 上記のような接触を避ける ための他、 冷却効率の最も高い適当な離隔距離を保ち、 最小のガス量で高効率の 冷却を行えるように細かな微調整が可能である) ことでも良い。 When the cooling roll of the roll cooling device is movable in a direction orthogonal to the metal strip pass line for adjusting the cooling amount, a range where the cooling roll does not come into contact with the metal strip on the pass line. When the (curved) size of the subsequent nozzle header is determined according to the maximum pushing amount, it is necessary to reduce the cooling load or evacuate the cooling roll in an emergency. Depending on the position of the cooling roll, contact may occur if the nozzle header is left at the maximum push of the cooling roll.] Then, move the nozzle header with the moving base to match the movement of the cooling roll. If the headers move together at any time, there is a problem other than when the roll is retracted, that is, when the roll is retracted from the pass line when starting up the line, the end of the header is in contact. Therefore, according to the movement of the roll, If it moves independently, it will be in the range where it does not come into contact with the metal strip at any time.) Or move independently of this movement. Fine adjustments can be made so as to maintain a high appropriate separation distance and achieve high-efficiency cooling with a minimum amount of gas.)
前述のように、 ロール冷却装置入側に設置された補助冷却の構成として本構成 を適用する場合は、 該ロール冷却前に金属帯の幅方向温度分布の不均一をなくす ようにして、 或いはロール冷却でホットポイントになる部分を冷却して、 ロール 冷却の際になるベく均一温度分布に近づけておくようにすると良い (ロール冷却 の際には金属帯の鞍型変形とロールのヒートクラウンの関係から、 不均一温度分 布が生じ易く、 また助長され易い) 。 またロール冷却装置出側の補助ガス冷却装 置の構成として本構成を設ける場合についても、 ロール冷却で生じ助長された不 均一温度分布やロール背面冷却で解消し得なかった不均一温度分布を、 この却装 置でなくすことにも有効である。 更にロール冷却装置の入側の補助冷却の構成や 前記補助ガス冷却装置の構成として上記構成を用いた場合、 ノズルヘッダ 1を金属 帯幅方向に 1列に並べるのではなく、 金属帯 Xの流れ方向に少しずつずらして並 ベることで、 図 5 3に示すように、 板温不均一の幅がノズルヘッダ 1の幅よりも広 い場合でも、 各ノズルヘッダ 1の位置をずらして並べてガスを噴出せしめることに より、 この不均一部分全部の冷却を行うことも可能である。  As described above, when this configuration is applied as a configuration of the auxiliary cooling installed on the inlet side of the roll cooling device, the temperature distribution in the width direction of the metal strip is eliminated before the roll is cooled, or the roll is cooled. It is better to cool the hot spot area by cooling so that the temperature distribution is close to the uniform temperature distribution that occurs when the roll is cooled. Because of this, non-uniform temperature distribution is likely to occur and is promoted.) Also, when this configuration is provided as a configuration of the auxiliary gas cooling device on the roll cooling device outlet side, the non-uniform temperature distribution generated and promoted by the roll cooling and the non-uniform temperature distribution that could not be eliminated by the cooling of the back of the roll is also considered. It is also effective to eliminate this rejection device. Further, when the above configuration is used as the configuration of the auxiliary cooling on the inlet side of the roll cooling device or the configuration of the auxiliary gas cooling device, the nozzle headers 1 are not arranged in a line in the metal band width direction, but the flow of the metal band X is performed. By shifting the nozzles slightly in the direction, even if the width of the non-uniform sheet temperature is wider than the width of the nozzle header 1 as shown in Fig. 53, the position of It is also possible to cool the entire non-uniform part by ejecting water.
上記の構成の他、 該補助ガス冷却装置の構成は、 金属帯のパスラインに、 該金 属帯表面に平行で且つそのパスラインの流れに直交する方向に移動できる移動装 置を設置し、 該移動装置に取り付けられ且つ金属帯にガスを噴出するノズルの備 えられた該金属帯の幅よりも狭いノズルヘッダをその.パスライン方向に配し、 前 記移動装置を動かす走行機構を有すると共に、 前記ガス供給路の一部に可堯部又 は伸縮継手部を設けた構成のものを用いることもできる。  In addition to the above configuration, the configuration of the auxiliary gas cooling device is such that a moving device that can move in a direction parallel to the surface of the metal band and perpendicular to the flow of the pass line is installed on the pass line of the metal band. A nozzle header attached to the moving device and provided with a nozzle for ejecting gas to the metal band, having a nozzle header narrower than the width of the metal band in the direction of the pass line, and having a traveling mechanism for moving the moving device; In addition, a configuration in which a flexible portion or an expansion joint portion is provided in a part of the gas supply path may be used.
以上の構成により、 金属帯温度分布の不均一な領域に移動装置によってノズル ヘッダを移動させ、 冷却ガスを吹き付ければ ( 1つで足らなければ金属帯幅方向 で 2つ、 3つ、 "というように増やしていけば良い) 、 該金属帯幅方向の温度分 布不均一を解消することも可能である。 このことによって金属帯幅方向の温度分 布を均一化することができ、 更にこの幅方向温度分布の均一化の達成から、 冷却 速度の均一化を図ったり、 幅方向で均一化された板温を目標温度に近ずけること ができるため、 材質 ·形状不良等の問題を解決できることになる。 With the above configuration, if the nozzle header is moved to the area where the metal strip temperature distribution is not uniform by the moving device and the cooling gas is blown (if one is not enough, two, three, etc. It is also possible to eliminate the non-uniform temperature distribution in the metal band width direction, thereby making the temperature distribution in the metal band width direction uniform. Cooling from achieving uniform temperature distribution in the width direction Since the speed can be made uniform and the sheet temperature made uniform in the width direction can be brought close to the target temperature, problems such as defective materials and shapes can be solved.
上記構成のうち少なくとも、 移動装置と、 該移動装置に取り付けられたノズル ヘッダと、 該ノズルヘッダに設けられた可堯部又は伸縮継手部を有するガス供給 路とを、 金属帯の表裏両面に夫々備えるようにし、 その両面からガス冷却を行え る構成としても良い。  Among the above configurations, at least a moving device, a nozzle header attached to the moving device, and a gas supply passage having a flexible portion or an expansion joint provided in the nozzle header are provided on both front and back surfaces of the metal strip. It is also possible to adopt a configuration in which gas cooling can be performed from both sides.
また以上の構成も、 ロール冷却装置の入側における該ロール冷却の補助冷却構 成として (ロール冷却装置の前にこのようなガス冷却により予め金属帯端部を冷 却しておくことによって鞍型変形を小さくすることができ、 ロール冷却装置での 板温不均一を改善することができる) 用いることもできる。 例えば前記図 5 2に 示す軟質用 (深絞り用) 等の薄板連続焼鈍ヒートサイクルでは、 再結晶温度〜過 時効処理に到る冷却過程のロール冷却装置の前後に設けるガスジエツ ト冷却構成 に上記構成を用いることも可能である。  The above configuration also has an auxiliary cooling configuration of the roll cooling at the inlet side of the roll cooling device (the saddle type is formed by previously cooling the metal band edge by such gas cooling before the roll cooling device). Deformation can be reduced, and plate temperature unevenness in the roll cooling device can be improved.) For example, in the continuous annealing heat cycle of a thin sheet for soft (for deep drawing) etc. shown in FIG. 52, the gas jet cooling structure provided before and after the roll cooling device in the cooling process from recrystallization temperature to overaging treatment Can also be used.
更にこれらの設備における金属帯パスラインが水平であるか垂直であるかを問 わず、 適用することが可能である。  In addition, it is applicable regardless of whether the metal strip pass line in these facilities is horizontal or vertical.
前記ノズルへ ダが金属帯幅方向に 2つある場合は、 _温度が高くなる金属帯幅 方向の両端側に移動装置でノズルヘッダを移動させ、 3つある場合は次に温度の 高い金属帯中央付近にも移動させて、 該ノズルヘッダによるホッ トポイントの冷 却を行わせることもできる。 また金属帯幅方向の略中央で、 移動可能な上記のノ ズルヘッダとは別に固定ノズルヘッダを設置することも可能である。  If there are two nozzles in the metal band width direction, move the nozzle header to both ends in the metal band width direction where the temperature rises.If there are three nozzle heads, move the nozzle header to the next highest temperature band. It can also be moved to the vicinity of the center to cool the hot point by the nozzle header. In addition, it is also possible to install a fixed nozzle header separately from the movable nozzle header at the substantially center in the metal band width direction.
本発明では、 更に 1以上の冷却ロールに金属帯を巻付け、 上記金属帯と各冷却 ロールの接触長さを個別に調整するロール冷却装置であって、 上記冷却ロールに 対向して配置し、 ロール胴長方向に 3つ以上のノズルヘッダを有すると共に、 こ れらのノズルヘッダを冷却ロールの移動方向で移動自在な構成とし、 且つこれら のうち少なくとも 1つのノズルヘッダをロール胴長方向に移動自在な構成とした ガス冷却装置と、 上記金属帯の板端部を検知する金属帯両端部位置検出器と、 上 記ノズルへグダのうちロール胴長方向に移動自在なノズルヘッダをロール胴長方 向に移動調整する移動調整装置と、 前記金属帯両端部位置検出器の検出信号に基 づぃてこの移動調整装置を制御するノズルヘッダ位置制御演算装置と、 冷却ロー ルの位置信号にて上記ノズルヘッダを冷却ロール移動方向で位置調整する進退調 整装置と、 冷却ロールの出側に配置し、 上記金属帯の板幅方向温度分布を検知す る金属帯幅方向板温計と、 この板温計からの温度信号にて目標板温分布に対する 温度偏差を演算し、 この温度偏差に応じて各ノズルヘッダ内部の冷却ガス圧力又 はガス流量を調整する板温制御演算装置とを有する金属帯冷却装置についても提 案する。 According to the present invention, there is further provided a roll cooling device for winding a metal band around one or more cooling rolls and individually adjusting a contact length between the metal band and each cooling roll, wherein the roll cooling device is arranged so as to face the cooling roll, It has three or more nozzle headers in the roll body length direction, and these nozzle headers are configured to be movable in the moving direction of the cooling roll, and at least one of these nozzle headers is moved in the roll body length direction. A gas cooling device with a flexible configuration, a metal band end position detector for detecting the end of the metal band, and a nozzle header that is movable in the roll body length direction of the waste to the nozzle. A movement adjustment device for adjusting the movement in the direction, a nozzle header position control calculation device for controlling the movement adjustment device based on a detection signal of the metal band end position detector, and a cooling row. A forward / backward adjusting device that adjusts the position of the nozzle header in the direction of movement of the cooling roll based on the position signal of the metal strip; A plate temperature control that calculates the temperature deviation from the target plate temperature distribution based on the plate thermometer and the temperature signal from this plate thermometer, and adjusts the cooling gas pressure or gas flow inside each nozzle header according to this temperature deviation. A metal strip cooling device with an arithmetic unit is also proposed.
上記構成では、 ノズルヘッダのロール胴長方向への移動については、 前記ノズ ル位置制御演算装置が金属帯両端部位置検出器によって検出された検出データに 基づいて行われているが、 これは金属帯の板温分布が高い位置がその幅方向で略 決まっているからである。 しかし上述のように、 該金属帯両端部位置検出器に板 温プロフィル温度計が使われていれば、 特に板温分布の高い所を金属帯の板端部 としてノズルヘッダの移動位置とすることもできる。 そして本構成では、 冷却口 一ルの出側或いは後述する補助ガス冷却装置の出側に配置された金属帯幅方向板 温計の検出データを入力した板温制御演算装置によるフィードバック制御により 不均一板温分布の解消が行われ、 その不均一解消方法としては、 目標板温分布に 対する温度偏差に応じた各ノズルヘッダ内部の冷却ガス圧力又はガス流量の調整 を行うことで実施される。  In the above configuration, the nozzle header is moved in the roll body length direction by the nozzle position control arithmetic unit based on detection data detected by the metal band end position detectors. This is because the position where the plate temperature distribution of the belt is high is substantially determined in the width direction. However, as described above, if a sheet temperature profile thermometer is used for the position detector at both ends of the metal band, a position where the sheet temperature distribution is particularly high should be set as the movement position of the nozzle header as the plate end of the metal band. Can also. In this configuration, the non-uniformity is obtained by the feedback control by the sheet temperature control arithmetic unit which receives the detection data of the metal band width direction sheet thermometer arranged on the outlet side of the cooling port or the outlet side of the auxiliary gas cooling device described later. The plate temperature distribution is eliminated, and the non-uniformity is eliminated by adjusting the cooling gas pressure or gas flow inside each nozzle header according to the temperature deviation from the target plate temperature distribution.
上記の目標板温分布はプリセッ トされたものを用いても良いが、 例えば金属帯 板幅方向の 2つのクォータ部の平均板温 (場合によってその温度より +ひがある ) を板幅中央部の目標温度とし、 また実測された中央部の板温 (場合によってそ の温度より 0 eC〜2 O eC低くすることもある) を板幅両端部の目標温度とするよ うにしても良い。 The preset target plate temperature distribution may be a preset one.For example, the average plate temperature of the two quarters in the width direction of the metal strip (in some cases, there is a plus wire) is the center of the plate width. a target temperature of, also be due to a sheet temperature of the actually measured middle portion (in some cases also be 0 e C~2 O e C lower than the temperature of its) and the target temperature of the plate width end portions Unishi good.
更に上記構成では、 上述したような補助ガス冷却装置 (これらのノズルヘッダ のうち少なくとも 2つのノズルヘッダ、 特に端部各 1つのノズルヘッダを金属帯 幅方向に移動自在とする構成を含む) と、 該補助ガス冷却装置の出側に配した金 属帯幅方向板温計を併用した構成を用いても良い。  Further, in the above configuration, the auxiliary gas cooling device as described above (including a configuration in which at least two nozzle headers among these nozzle headers, in particular, one nozzle header at each end portion is movable in the metal band width direction), A configuration using a metal strip width direction thermometer arranged on the outlet side of the auxiliary gas cooling device may be used.
一方金属帯の両端部に生ずる板幅方向平均板温に対する板温偏差部分の長さは、 前記数 1 1の式で得られるように比較的狭い。 また次式数 1 3で定義される金属 帯端部の平均板温偏差 Δ Τは、 図 5 4に示される様に冷却幅および板厚によって 大きく変化する。 そのため金属帯両端部位置検出器で金属帯の両端部を検知し、 その位置信号をもとに両端部ノズルヘッダをロール胴長方向 (あるいは金属帯板 幅方向) に移動調整装置を用いて適正な冷却幅に移動調整することによって、 板 温偏差を最小にする事が出来る。 On the other hand, the length of the sheet temperature deviation portion with respect to the average sheet temperature in the sheet width direction generated at both ends of the metal strip is relatively narrow as obtained by the equation (11). The average sheet temperature deviation ΔΤ at the end of the metal band defined by the following equation (13) is determined by the cooling width and the sheet thickness as shown in Fig. 54. It changes greatly. Therefore, both end portions of the metal band are detected by the metal band both end position detectors, and based on the position signals, the nozzle headers at both ends are appropriately adjusted in the roll body length direction (or the metal band plate width direction) using a movement adjusting device. By adjusting the cooling width to a suitable value, the sheet temperature deviation can be minimized.
【数 13】 [Equation 13]
1 f 1!  1 f 1!
ΔΤ=— I Τ (χ) -Τα dx 厶 Τ 金属帯端部 150Dimの平均板温偏差 C)  ΔΤ = — I Τ (χ) -Τα dx mm 平均 Average strip temperature deviation 150Dim at the end of metal strip C)
Τ (χ) 端部から xmm位置での板温 C)  Τ (χ) Sheet temperature at xmm position from the end C)
Τ a 金属帯幅方向平均板温 C)  Τ a Average sheet temperature in the metal band width direction C)
χ 金属帯端部からの距離 の適正冷却幅 Xeは図 54より次式数 14及び数 15のように表わされる, 【数 14】 ただし t< 1.3mm  適 正 The proper cooling width Xe at the distance from the edge of the metal band is expressed as shown in Fig. 54 by the following equations (14) and (15).
【数 15】 [Equation 15]
12i-9.6≤ e≤22i +16.4  12i-9.6≤ e≤22i +16.4
ただし t 1.3mm  Where t 1.3mm
Xe :適正冷却幅(mm)  Xe: Proper cooling width (mm)
t :板厚 (mm) ところが図 55に示される様に板幅の異なる金属帯 Xの接続点近傍において、 板端部での金属帯長手方向の非定常冷却となる長さを極力短かく し、 且つそれに よる当該冷却装置以後の熱処理炉での金属帯 Xの安定通板を図るためには、 実験 的に非定常部の長さが上記熱処理炉のロール間のパス長 Loの 0.9Lo以内にする必 要があることがわかった。 このときの板端部のノズルヘッダのノズル幅との関係 は次式数 1 6で表わされる。 t: Sheet thickness (mm) As shown in Fig. 55, near the connection point of metal strips X with different sheet widths, the length of unsteady cooling in the metal strip longitudinal direction at the end of the sheet is made as short as possible. In order to stably pass the metal strip X in the heat treatment furnace after the cooling device, the length of the unsteady portion is experimentally set to within 0.9Lo of the path length Lo between the rolls of the heat treatment furnace. Must be I found it necessary. The relationship with the nozzle width of the nozzle header at the plate edge at this time is expressed by the following equation (16).
【数 1 6】  [Equation 1 6]
Xe≤Be- (^--O.SLo— ) Xe≤Be- (^-O.SLo—)
B e : ノズルへ、3ダのノズル幅(mm) B e: To nozzle, nozzle width of 3 da (mm)
△ w :先行金属帯と後行金属帯の板幅差(mm)  Δw: Difference between the width of the preceding metal strip and the width of the subsequent metal strip (mm)
Lo : 当該冷却装置以降の熱処理炉のロール間パス長(m)  Lo: path length between rolls of the heat treatment furnace after the cooling device (m)
V :両端部ノズルヘッダの移動速度(践 /min)  V: Moving speed of nozzle header at both ends (practice / min)
S : ライン速度(mpm) 従って、 両端部のノズルヘッダのノズル幅 Beは、 下式数 1或いは数 2の寸法を 選定することによって金属帯両端部に生ずる板温偏差を最小限に収めることがで きる (尚金属帯の板厚が一定でなく、 1· Omn!〜 2. Ommのようにある範囲を持つ ている場合は最大板厚の場合を基にこのノズル幅 Beを決定する) 。  S: Line speed (mpm) Therefore, the nozzle width Be of the nozzle header at both ends can be minimized by selecting the dimension of the following formula 1 or 2 to minimize the sheet temperature deviation occurring at both ends of the metal strip. (If the thickness of the metal strip is not constant and has a certain range such as 1 · Omn! To 2.Omm, the nozzle width Be is determined based on the maximum thickness.)
【数 1】
Figure imgf000019_0001
[Equation 1]
Figure imgf000019_0001
但し t < 1.3mm  However, t <1.3mm
【数 2】 [Equation 2]
 Mm
12i-9.6≤Be- ( -0.9Lo )≤22 ί +16.4  12i-9.6≤Be- (-0.9Lo) ≤22 ί +16.4
2  Two
但し t≥ 1.3mm  However, t≥ 1.3mm
B e : ノズル幅(mm)  B e: Nozzle width (mm)
t :金属帯の板厚(mm)  t: Metal strip thickness (mm)
△ w:金属帯の幅変更量(mm)  Δw: Width change of metal band (mm)
Lo :冷却装置以降の熱処理炉におけるロール間パス長(m) V :冷却ロール胴長方向 (或いは金属帯幅方向) のノズル Lo: path length between rolls in the heat treatment furnace after the cooling device (m) V: Nozzle in chill roll body length direction (or metal band width direction)
ヘッダ移動速度(mm/mi n)  Header moving speed (mm / min)
S : ライン速度(mpm) また従来技術として示した冷却ロールに対向させ金属帯幅方向に複数個に分割 して設置されたガスジェッ ト装置の構成を用いて冷却した場合と本発明のそれと の比較を図 5 6に示す (本発明は N O . 1で示されている) 。 同図は金属帯端部 近傍の板温分布を描いたものであるが、 本発明は従来技術に比べ過冷却の領域も 少なく板温分布の均一化が図られていることがわかる。 尚、 この時の実験条件を 下記表 1に示す。  S: Line speed (mpm) Comparison between the case where cooling is performed using a gas jet device configuration that is divided into multiple pieces in the metal band width direction facing the cooling rolls shown as conventional technology and that of the present invention Is shown in FIG. 56 (the present invention is indicated by NO. 1). FIG. 7 shows the sheet temperature distribution in the vicinity of the end of the metal strip, and it can be seen that the present invention achieves a uniform sheet temperature distribution with less supercooled areas than the conventional technique. The experimental conditions at this time are shown in Table 1 below.
【表 1】 金属帯の板厚 1. 3關 [Table 1] Metal strip thickness 1.3
金属帯の板幅 1450mii  Metal strip width 1450mii
通板: ¾度 248i/ mi n 金属帯張力 3. l kg f /mm2 冷却装置入側平均板温 600°C Threading: 248 ° C / min metal strip tension 3.l kgf / mm 2 Average cooling plate inlet side plate temperature 600 ° C
// '出側平均板温 350。C  // 'Outside average plate temperature 350. C
冷却ロール使用本数 7  Number of cooling rolls used 7
冷却ロール直径 1800匪 冷却ロール平均卷付角 1 12 °  Cooling roll diameter 1800 Mars Cooling roll average winding angle 1 12 °
冷却ロール対向ガス冷却装置の平均熱伝達係数 390Kc al/m2 h°CAverage heat transfer coefficient of chill roll opposed gas cooling device 390Kc al / m 2 h ° C
// のノズルヘッダ平均角度 99 °// Nozzle header average angle of 99 °
// のノズルヘッダと金属帯 1 Omni (本発明) の重なった部分の冷却幅 250mm (従来技術) // Cooling width of the overlapping part of the nozzle header and metal band 1 Omni (invention) 250mm (conventional technology)
金属帯中央部に; Ϊずる板幅方向平均板温に対する板温偏差部分の長さは図 5 7 に示される範囲内にあり、 冷却ロールに対向したガス冷却装置および冷却ロール 群出側に設置した補助ガス冷却装置の各中央部ノズルヘッダのノズル幅 B eは、 下 式数 3の式で得られるものを選定することにより、 板幅方向中央部に生ずる板温 偏差を最小限に収めることができ、 板温分布の均一化が図られる。 At the center of the metal strip; The nozzle width B e of each central nozzle header of the gas cooling device facing the cooling roll and the auxiliary gas cooling device installed on the cooling roll cluster side is obtained by the following formula (3). By selecting one that can be used, the sheet temperature deviation occurring at the center in the sheet width direction can be minimized, and the sheet temperature distribution can be made uniform.
【数 3】 [Equation 3]
0.mW≤B c≤0.21W  0.mW≤B c≤0.21W
B c : ノズル幅(mm)  B c: Nozzle width (mm)
W :金属帯の幅(mm) また板温偏差を生じている領域はほとんどの場合、 金属帯幅方向中心線に対し 対称であるために、 金属帯幅方向中心と中心部ノズル中心が一致するように口一 ル胴長方向 (あるいは金属帯幅方向) に移動調整装置を使用して移動調整すれば 良い。  W: Width of metal band (mm) In most cases, the area where the sheet temperature deviation occurs is symmetrical with respect to the center line in the metal band width direction, so that the center of the metal band width direction and the center of the center nozzle coincide. As described above, the movement can be adjusted by using the movement adjusting device in the mouth body length direction (or the metal band width direction).
従来技術と本発明の設備費 /運転費の比較を図 5 8に示す。 冷却ガス風量の削 減および弁等の数量削減により、 同図に示される様に設備費/運転費の削減が可 能となる。  Figure 58 shows a comparison of the equipment cost / operating cost between the conventional technology and the present invention. By reducing the amount of cooling gas and the number of valves, etc., it is possible to reduce equipment costs and operating costs as shown in the figure.
更に上記構成で、 ロール胴長方向に 3つ以上有するノズルヘッダのうち少なく とも金属帯両端部側のノズルヘッダをロール胴長方向に連結した複数のヘッダ本 体で形成しつつ、 これらをロール胴長方向に移動自在にしたものを、 ガス冷却装 置の構成として有するものでも良い。  Further, in the above configuration, among the nozzle headers having three or more in the roll body length direction, at least the nozzle headers at both ends of the metal band are formed of a plurality of header bodies connected in the roll body length direction, and these are formed by the roll body. What is made movable in the longitudinal direction may be provided as a configuration of the gas cooling device.
上記構成では、 前述のように、 金属帯の板温分布が高い位置がその幅方向で略 決まっているため、 前記ノズル位置制御演算装置が金属帯両端部位置検出器によ つて検出された検出データに基づいて、 ノズルへッダのロール胴長方向への移動 が行われている。 しかし板幅が変わった時に両端部側のノズルヘッダの金属帯端 部側への移動が間に合わない場合、 連結された構成を有するノズルヘッダでは、 板両端部側に近いヘッダ本体の冷却ガス圧力又はガス流量を高めることで、 該ノ ズルヘッダ移動の遅れを力パーできるようになる。 そして本構成の場合も、 冷却 ロールの出側に配置された金属帯幅方向板温計の検出データを入力した板温制御 演算装置によるフィードパック制御により不均一板温分布の解消が行われ、 その 不均一解消方法としては、 目標板温分布に対する温度偏差に応じた各ノズルへッ ダ内部の冷却ガス圧力又はガス流量調整を行うことで実施される。 In the above configuration, as described above, since the position where the sheet temperature distribution of the metal band is high is substantially determined in the width direction, the nozzle position control arithmetic unit detects the position detected by the metal band end position detector. Based on the data, the nozzle header is moved in the roll body length direction. However, if the movement of the nozzle headers at both ends to the metal band end cannot be made in time when the plate width is changed, the cooling gas pressure of the header main body near the plate both ends is required for the nozzle header having the connected configuration. By increasing the gas flow rate, the delay of the nozzle header movement can be improved. In the case of this configuration as well, the sheet temperature control that inputs the detection data of the metal band width direction sheet thermometer placed on the exit side of the cooling roll The non-uniform plate temperature distribution is eliminated by the feed pack control by the arithmetic unit.The method of eliminating the non-uniformity is to adjust the cooling gas pressure or gas flow inside each nozzle header according to the temperature deviation from the target plate temperature distribution. Is carried out.
また板厚、 速度或いは冷却装置での板温降下量等が大きな条件下で、 前記冷却 ロールに対向して配置した上記ガス冷却装置にて板幅方向板温偏差の解消が困難 な場合には、 該金属帯の板幅方向に 3つ以上のガス吹付用のノズルへッダを有し、 且つこれらのノズルヘッダのうち少なくとも金属帯両端部側のノズルヘッダを金 属帯幅方向に連結した複数のヘッダ本体で形成しつつ金属帯幅方向に移動自在な 構成とした補助ガス冷却装置と、 各ノズルヘッダ内部の冷却ガス圧力又はガス流 量を調整するガス調整装置を併用することによってその問題は解決される。  Further, when it is difficult to eliminate the sheet temperature deviation in the sheet width direction with the gas cooling apparatus arranged opposite to the cooling roll under the condition that the sheet thickness, the speed or the sheet temperature drop amount in the cooling device is large. The metal strip has three or more gas blowing nozzle headers in the width direction of the metal strip, and at least the nozzle headers on both ends of the metal strip are connected in the width direction of the metal strip. The problem is caused by the combined use of an auxiliary gas cooling device that is formed of multiple header bodies and is movable in the metal band width direction, and a gas adjustment device that adjusts the cooling gas pressure or gas flow inside each nozzle header. Is resolved.
上記補助ガス冷却装置の構成について、 そのノズルヘッダのうち少なくとも金 属帯両端部側のノズルヘッダを金属帯幅方向に連結した複数のヘッダ本体で形成 しつつ金属帯幅方向に移動自在な構成としたのは、 ガス冷却装置におけるノズル ヘッダの構成に同様な構成を設けた理由と同じである。  Regarding the configuration of the above-mentioned auxiliary gas cooling device, at least one of the nozzle headers on both ends of the metal band is formed of a plurality of header bodies connected in the metal band width direction, and is movable in the metal band width direction. This is for the same reason that a similar configuration is provided for the configuration of the nozzle header in the gas cooling device.
次に金属帯中央部に生ずる板幅方向平均板温に対する板温偏差の領域は前記図 5 7に示される範囲内にあり、 冷却ロールに対向して設置されたガス冷却装置お よび冷却ロール出側に設置された補助ガス冷却装置の中央部にある各ノズルへッ ダのヘッダ本体の幅 B eは前記数 3の式で得られるものを選定することで、 各ノ ズルヘッダ内部冷却ガス圧力又はガス流量を板温偏差に応じて調整すれば、 前述 のように板幅方向中央部に生ずる板温偏差を最小限に収めることができる。  Next, the area of the sheet temperature deviation with respect to the average sheet temperature in the sheet width direction generated in the center portion of the metal strip is within the range shown in FIG. 57, and the gas cooling device installed opposite to the cooling roll and the cooling roll exit The width Be of the header main body of each nozzle header at the center of the auxiliary gas cooling device installed on the side is determined by the above formula, so that the cooling gas pressure inside each nozzle header or If the gas flow rate is adjusted according to the plate temperature deviation, the plate temperature deviation occurring at the center in the plate width direction as described above can be minimized.
又これらの装置の金属帯両端部側のノズルへツダが 3つ以上のへッダ本体で形 成される場合にそのヘッダ本体の幅 B eは、 合計で次式数 1 7に示される寸法をと り、 そのうちの外側に位置するヘッダ本体の幅 B eoが次式数 4の寸法を、 又その うちの中央部に位置するヘッダ本体の幅 B eeが次式数 5及び数 6の寸法 (尚金属 帯の板厚が一定でなく、 1. Omn!〜 2. Om mのようにある範囲を持っている場合は 最大板厚の場合を基にこのノズル幅 B eeを決定する) を、 更にそのうちの内側に 位置するヘッダ本体の幅 B e iが次式数 7の寸法を各選定することによって金属帯 両端部に生ずる板温偏差を最小限に収めることができる。 【数 4】 In addition, when the nozzles at both ends of the metal band of these devices are formed by three or more header bodies, the width Be of the header body is a total of the dimensions shown in the following formula 17 The width of the outer header body Beo is the dimension of the following equation (4), and the width of the header body located at the center of the header is Bee the dimension of the following equation (5) and (6). (If the thickness of the metal strip is not constant and has a certain range, such as 1. Omn! To 2. Omm, determine the nozzle width Bee based on the case of the maximum thickness.) Further, by selecting the dimensions of the following equation 7 for the width Bei of the header body located inside of each of them, the sheet temperature deviation occurring at both ends of the metal strip can be minimized. [Equation 4]
B e o≥AWuZ2  B e o≥AWuZ2
△ Wu :金属帯接続部の幅狭から幅広への接続時の板幅変化量(mm)  △ Wu: Change in plate width when connecting from narrow to wide metal band connection (mm)
【数 5】 [Equation 5]
6≤Be c≤45  6≤Be c≤45
ただし t< 1.3mm  However, t <1.3mm
【数 6】 [Equation 6]
12i-9.6≤Be c≤22i +16.4  12i-9.6≤Be c≤22i +16.4
ただし t≥1.3mni  Where t≥1.3mni
t :金属帯の板厚(mm}  t: thickness of metal strip (mm)
【数 7】 [Equation 7]
Be I≥AWd/2  Be I≥AWd / 2
厶 Wd :金属帯接続部の幅広から幅狭への接続時の板幅変化量(mm)  Wd: Change in the width of the metal band when connecting from a wide to a narrow metal band connection (mm)
【数 17】 [Equation 17]
B e=B e o+Be c+Be i 金属帯の両端部に生ずる板幅方向平均板温に対する板温偏差部分の領域は比較 的狭い。 また前記数 13で定義される金属帯端部の平均板温偏差 ΔΤは、 前記図 54に示される様に冷却幅および板厚によって大きく変化する。 そのため金属帯 両端部側のノズルヘッダにおける中央部のヘッダ本体では、 その適正冷却幅 Be cを図 54より上記数 5及び数 6のように設定するのが好ましいことになる。 また金属帯両端部側のノズルヘッダの外側に位置するヘッダ本体の幅 Beo及び 内側に位置するヘッダ本体の幅 Beiは、 前述のように、 金属帯板幅変更がある時 に金属帯両端部側のノズルへ.ッダの移動の遅延を力パーするために、 その冷却幅 も決めたものであり、 いずれもその板幅変化量の 1/2に設定している (両側に あるため当然半分となった) 。 B e = B e o + Be c + Be i The area of the sheet temperature deviation from the average sheet temperature in the sheet width direction generated at both ends of the metal strip is relatively narrow. Further, the average sheet temperature deviation ΔΤ at the end of the metal band defined by the above equation 13 greatly changes depending on the cooling width and the sheet thickness as shown in FIG. Therefore, in the header main body at the center of the nozzle headers at both ends of the metal band, it is preferable to set the appropriate cooling width Bec as shown in the above formulas 5 and 6 from FIG. Also, as described above, the width Beo of the header body located outside the nozzle headers at both ends of the metal band and the width Bei of the header body located inside the nozzle are determined by changing the width of the metal band plate, as described above. The cooling width is also determined in order to increase the delay of the movement of the nozzle to the nozzle of the nozzle. Of course, it was halved).
—方連続焼鈍炉のロールクェンチ用に用いられる冷却ロールには、 図 5 9に示 されるような構造の冷却ロール # 1が用いられている。 該冷却ロール # 1は、 その表 面近くのロール内部に冷媒通路ァをスパイラル状に 1条設け、 その泠媒通路ァの —端から中に冷却水等の冷媒を流してロール表面を冷却し、 そこに接触する金属 帯から熱を奪った後、 他端から該冷媒を排出する。 従ってこの冷媒の流速等の設 定如何によつては非常に高い熱交換率が得られ、 また金属帯との接触長を変える ことにより、 冷却量の調整が容易にできる等、 該冷却ロールは優れた利点を有し ている。  —The cooling roll used for the roll quench of the continuous annealing furnace is cooling roll # 1 having the structure shown in Fig. 59. The cooling roll # 1 is provided with a spiral refrigerant passage a inside the roll near the surface thereof, and cools the roll surface by flowing a coolant such as cooling water from one end of the medium passage a. After removing heat from the metal strip in contact therewith, the refrigerant is discharged from the other end. Therefore, a very high heat exchange rate can be obtained depending on the setting of the flow rate of the refrigerant, and the cooling amount can be easily adjusted by changing the contact length with the metal strip. It has excellent advantages.
更にロール冷却装置は、 一般に図 6 0に示されたように、 上記冷却ロールを複 数本 〜 #7使用し、 これらを金属帯 Xの表裏面に交互に接触させてその急冷を行 う構成を有している。 該冷却ロール 〜 #7への冷媒の供給は、 該設備の片側から 各ロールの泠媒通路ァに流すことで行われ、 高温となった冷媒は他側で回収され て冷媒熱交換器に送られ、 そこで冷却されて再利用される。  Further, as shown in Fig. 60, a roll cooling device generally uses a plurality of the above cooling rolls to # 7 and alternately contacts the front and back surfaces of the metal strip X to perform rapid cooling. have. The supply of the refrigerant to the cooling rolls # 7 is performed by flowing the refrigerant from one side of the equipment to the medium passageway of each roll, and the high-temperature refrigerant is collected on the other side and sent to the refrigerant heat exchanger. Where it is cooled and reused.
このような冷却ロール # 1〜#7に冷却された金属帯 Xには、 通常その幅方向に前 記図 4 3に示す w型の温度分布不均一を生じている。 これは、 前述のようにパス ライン方向に張力の付与された金属帯 Xに冷却ロールが押し込まれた時に該金属 帯 X両端部がめくれ上がって前記鞍型変形が生ずることで発生する現象であると 考えられ、 その現象を取り除くための解決方法についてはこれまで述べてきた。 確かにこれらの本構成によって上記温度分布不均一の解消が促進されることにな つたが、 完全に解消されたわけではなく、 むしろ図 6 1に示されるように、 両端 部の温度偏差厶 t 1及び両クオ一夕部の温度偏差 Δ ΐ 2が増大し、 温度分布不均一 の状態が更に金属帯 X幅方向でシンメ トリーでなくなってしまうため、 それが顕 著な場合、 ロール冷却装置内の張力で過冷却が金属帯 Xの伸び形状の不均一を生 じさせ、 それが後続の処理炉内で金属帯 Xの蛇行を起こしたり、 該金属帯 Xの材 質が不均一になってしまったりすることになる。  Such a metal band X cooled by the cooling rolls # 1 to # 7 usually has a non-uniform w-type temperature distribution shown in FIG. 43 described above in the width direction. This is a phenomenon that occurs when the cooling roll is pushed into the metal strip X to which tension is applied in the pass line direction as described above, and both ends of the metal strip X are turned up to cause the saddle type deformation. The solution to eliminate that phenomenon has been described above. Certainly, these configurations promoted the elimination of the above-mentioned non-uniform temperature distribution, but did not completely eliminate them. Rather, as shown in FIG. 61, the temperature deviation at both ends t 1 In addition, the temperature deviation Δΐ2 between the two portions of the quorum increases, and the state of non-uniform temperature distribution further disappears in the metal band X width direction. The supercooling caused by the tension causes unevenness of the elongated shape of the metal strip X, which causes the meandering of the metal strip X in the subsequent processing furnace or the unevenness of the material of the metal strip X. You will be rolling.
以上のような問題に鑑みて、 上記金属帯冷却装置により金属の冷却を行った時 に、 更に該金属の材質不均一が生じることのない冷却ロール及びそれを使用した ロール冷却装置の構成についても提案する。 即ち内部に冷媒通路を有し且つその表面に金属を接触させて該金属を冷却する 冷却ロールの構成として、 該冷却ロールの冷媒通路を同一平面上で多条設けたも のを用いると良い。 In view of the above-described problems, the configuration of a cooling roll and a roll cooling device using the same, which do not cause non-uniform material of the metal when the metal is cooled by the metal band cooling device, are also described. suggest. That is, as a configuration of a cooling roll that has a refrigerant passage therein and cools the metal by bringing the metal into contact with the surface thereof, it is preferable to use a cooling roll in which multiple refrigerant passages are provided on the same plane.
また冷却ロールを金属パスライン方向に複数本設置し、 且つこれらの表面に金 属を接触させて該金属を冷却するロール冷却装置の構成で、 各冷却ロールの冷媒 通路における冷媒の流れの方向を 1本毎に反転させて該冷媒を供給する構成とす る  In addition, a plurality of cooling rolls are provided in the direction of the metal pass line, and a configuration of a roll cooling device that cools the metal by bringing a metal into contact with the surface of the roll is provided. It is configured to supply the refrigerant by inverting it one by one.
上述のように、 通常の冷却ロールはロール周面内部に設けられた泠媒通路が 1 条式の構成であるので、 該通路入側では十分温度の低い冷媒も移動中に内部で自 由に流れてその間金属帯と熱交換し続け、 その出側では交換熱量も略飽和状態に なっており、 水であれば沸騰直前の状態に達している。 これに対し上記の構成で は、 冷媒通路を同一平面上で多条にして設けたため、 必要冷却量に対する冷媒通 路の各長さを短くでき、 該冷媒通路を流れる各々の冷媒の交換熱量を少なくする ことができる。 その結果各冷媒通路出側に近い端部側ロール表面でも金属の冷却 には十分効果があり、 冷却後該金属では温度分布が幅方向でシンメ トリーな状態 となる。  As described above, the ordinary cooling roll has a single-passage medium passage provided inside the roll peripheral surface, so that a sufficiently low-temperature refrigerant can freely move inside the passage during the movement. During the flow, heat exchange with the metal zone continues, and the heat exchange at the outlet is almost saturated, and if it is water, it has reached the state just before boiling. On the other hand, in the above configuration, since the refrigerant passages are provided in multiple rows on the same plane, each length of the refrigerant passages with respect to the required cooling amount can be shortened, and the exchange heat amount of each refrigerant flowing through the refrigerant passages is reduced. It can be reduced. As a result, the cooling of the metal is sufficiently effective even on the end roll surface near the outlet of each refrigerant passage, and after cooling, the metal has a symmetrical temperature distribution in the width direction.
また金属パスライン方向に冷却ロールが複数本並んでいる場合に、 どの冷却口 —ルにも冷媒が同一の側から供給されて他方の側から排出されるという従来構成 のロール 却装置では、 冷媒通路入側に近い端部側ロール表面と出側に近い端部 側ロール表面との間の温度勾配が各冷却ロールで同一方向に生じてしまう。 これ に対し 2つ目の上記構成では、 各冷却ロールの冷媒通路における冷媒の流れの方 向を 1本毎に反転させて供給しているため、 上記温度勾配がロール 1本毎に逆に なり且つ次第に小さくなって、 従って後段の冷却ロールではその温度勾配自身も なくなる。  In addition, when a plurality of cooling rolls are lined up in the direction of the metal pass line, the cooling device of the conventional configuration in which the coolant is supplied to all the cooling ports from the same side and discharged from the other side. A temperature gradient between the end roll surface near the entrance and the end roll surface near the exit will occur in the same direction on each chill roll. On the other hand, in the second configuration described above, since the direction of the flow of the refrigerant in the refrigerant passage of each cooling roll is reversed and supplied one by one, the above-mentioned temperature gradient is reversed for each roll. And the temperature gradient itself disappears in the subsequent cooling rolls.
—方本発明は、 更に広範囲なサイズに対し、 安価な運転費で金属帯巾方向板温 分布を目標板温分布に近づけつつ急速冷却できる冷却方法についても提案する。 即ちここで提案しょうとする冷却方法は、 1以上の冷却ロールに金属帯を巻き 付けて上記金属帯と各冷却ロールの接触長さを調整する金属帯冷却方法において、 上記冷却ロールに金属帯を介して対向して配置され、 冷却ロールの移動方向及び ロール胴長方向に移動可能な金属帯の幅よりも狭いノズルヘッダの設けられたガ ス冷却装置を用い、 該ノズルヘッダから冷却ガスを吹き付けて金属帯を背面冷却 すると共に、 その冷却に当たり、 金属帯と冷却ロールの接触長を調整することで、 金属帯の目標板温との偏差に基づく中央部板温の調整を行ない、 冷却ロールの位 置とノズルヘッダの位置とから金属帯と該ノズルヘッダの離間距離を調整させつ つ、 該冷却ロールの入側、 出側の少なく とも一方で金属帯幅方向の温度分布を常 時監視しておき、 上記目標板温分布との温度偏差をなくす位置に該ノズルヘッダ を移動することにより、 目標板温分布との偏差に基づく板温分布制御を行うとい う構成である。 -The present invention also proposes a cooling method that can rapidly cool the metal strip width direction sheet temperature distribution close to the target sheet temperature distribution with a low operating cost for a wider range of sizes. That is, the cooling method proposed here is a metal band cooling method in which a metal band is wound around one or more cooling rolls to adjust the contact length between the metal band and each cooling roll. And the moving direction of the cooling roll and Using a gas cooling device provided with a nozzle header narrower than the width of the metal band movable in the roll body length direction, cooling gas is blown from the nozzle header to cool the rear surface of the metal band, and in cooling the metal band, By adjusting the contact length between the belt and the cooling roll, the center plate temperature is adjusted based on the deviation of the metal strip from the target plate temperature, and the metal belt and the nozzle are determined based on the position of the cooling roll and the position of the nozzle header. While adjusting the separation distance of the header, at least one of the inlet and outlet sides of the cooling roll is constantly monitored for the temperature distribution in the metal band width direction to eliminate the temperature deviation from the target sheet temperature distribution. By moving the nozzle header to the position, the plate temperature distribution control based on the deviation from the target plate temperature distribution is performed.
上述の w型の不均一温度分布は、 中央及び両端部にできるホッ トポィントの幅 が狭く、 特開昭 6 0— 1 6 9 5 2 4号の従来構成ではこの部分の効果的な冷却が 困難であつたが、 上記構成では、 ホッ トポイントの直上にガス冷却装置の幅狭の ノズルへヅダを移動させて、 冷却ガスを該ホッ トポイントに向けて吹き出させる ことにより、 その部分の集中的な冷却を行わせ、 温度分布不均一を効率的に解消 することができる。 この時金属帯に対し所定の熱処理を実施するために設定され た目標板温と金属帯中央部板温とを比較し、 金属帯と冷却ロールの接触長を調整 することで、 該板温偏差に基づく中央部の板温調整を行なう。  In the non-uniform temperature distribution of the w-type described above, the width of the hot points formed at the center and both ends is narrow, and it is difficult to effectively cool this portion with the conventional configuration disclosed in Japanese Patent Application Laid-Open No. 60-169524. However, in the above configuration, the heater is moved to a narrow nozzle of the gas cooling device just above the hot point, and the cooling gas is blown out toward the hot point, thereby concentrating the portion. Cooling can be performed efficiently, and uneven temperature distribution can be efficiently eliminated. At this time, by comparing the target sheet temperature set for performing a predetermined heat treatment on the metal strip with the sheet temperature at the center of the metal strip, and adjusting the contact length between the metal strip and the cooling roll, the sheet temperature deviation is obtained. The temperature of the central part is adjusted based on the above.
また冷却ロールに接触する金属帯に対しノズルヘッダから冷却ガスを吹き付け てその背面冷却を実施するに当たり、 冷却ロールの位置とノズルヘッダの位置と から金属帯と該ノズルヘッダの離間距離を調整させつつ、 該冷却ロールの入側、 出側の少なくとも一方で金属帯幅方向の温度分布を常時監視しておき、 目標板温 分布 (この目標板温分布についてもプリセッ トされたものを用いても良いが、 例 えば板幅中央部の目標温度の他、 実測された中央部の板温、 或いはその温度より 0 eC〜2 O eC低い温度を板幅両端部の目標温度とし、 これらによって目標板温分 布を決定しても良い) との温度偏差をなくす位置に該ノズルヘッダを移動するこ とで、 板温分布制御 (即ち板温分布均一化) を ¾う。 In addition, when cooling gas is blown from the nozzle header to the metal strip in contact with the cooling roll to perform rear surface cooling, the distance between the metal strip and the nozzle header is adjusted from the position of the cooling roll and the position of the nozzle header. The temperature distribution in the metal band width direction is always monitored on at least one of the inlet side and the outlet side of the cooling roll, and the target sheet temperature distribution (this target sheet temperature distribution may be preset. but other target temperature of the plate width central portion Invite example embodiment, the plate temperature of the actually measured middle portion, or a 0 e C~2 O e C lower temperature than the temperature and the target temperature of the plate width end portions, targeted by these The plate temperature distribution is controlled (that is, the plate temperature distribution is made uniform) by moving the nozzle header to a position that eliminates the temperature deviation from the plate temperature distribution.
この板温分布制御に関し、 上述のようなロール胴長方向 (金属帯幅方向) への ノズルヘッダの移動の他、 その温度偏差に基づくノズルヘッダ内部の冷却ガス圧 力又はガス流量調整を行って、 金属帯に冷却ガスを吹き付ける構成を併せて実施 しても良い。 Regarding the sheet temperature distribution control, in addition to the movement of the nozzle header in the roll body length direction (the metal band width direction) as described above, the cooling gas pressure or gas flow rate inside the nozzle header is adjusted based on the temperature deviation. , In addition, a configuration in which cooling gas is blown to the metal strip You may.
他方上記ノズルヘッダが冷却ロールの移動方向に移動自在な構成であることを 前提としたのは、 冷却ロールがその接触長を変えるために金属帯パスラインに直 交する方向に移動できるようになつており、 ロール背面冷却に適した距離を前記 ノズルヘッダが常に取れるようにすることが必要なことと、 該ヘッダが金属帯に 接触しないようにするためである。  On the other hand, the premise that the nozzle header was movable in the direction of movement of the cooling roll was based on the premise that the cooling roll could be moved in a direction perpendicular to the metal band pass line in order to change the contact length. This is because it is necessary that the nozzle header always keeps a distance suitable for cooling the back surface of the roll, and that the header does not contact the metal strip.
またそのノズルヘッダの設置数がロール胴長方向に 2つある場合、 目標板温分 布との偏差に基づく板温分布制御に関して行われるこれらのノズルヘッダの移動 は、 金属帯両端部における目標板温分布との温度偏差を対象に、 これをなくす位 置に該ノズルヘッダの移動を行う。 上記の w型の板温分布の不均一は、 上述のよ うに中央部より両端部の方が一般的に高く、 それ故両端部へのノズルヘッダの移 動を優先させて行うことにしたものである。  If the number of nozzle headers is two in the roll body length direction, the movement of these nozzle headers, which is performed for sheet temperature distribution control based on the deviation from the target sheet temperature distribution, is performed at both ends of the metal strip. The nozzle header is moved to a position where the temperature deviation from the temperature distribution is eliminated. The non-uniformity of the w-shaped sheet temperature distribution is generally higher at both ends than at the center, as described above, and therefore, we decided to give priority to moving the nozzle header to both ends. It is.
これに対し中央部のホッ トポィントは両端部のそれより通常温度が低い他、 金 属帯の板幅変更があってもその位置を変えることはほとんどない。 それ故上述の ような両端部のノズルヘッダを設ける他、 不均一温度分布解消のために板幅方向 中央部にノズルヘッダを別に設けても良い。 その場合は、 冷却ロール移動方向で のみ動き、 ロール胴長方向には動かない構成のものを設け、 目標板温分布との偏 差に基づく板温分布制御に関しても、 該中央部ノズルヘッダでは、 温度偏差に基 づくへヅダ'内部の冷却ガス圧力又はガス流量調整のみを行って、 金属帯に対する 冷却ガスの吹き付けを行うものとする。  On the other hand, the hot point at the center has a lower temperature than that at both ends, and its position hardly changes even if the width of the metal band changes. Therefore, in addition to providing the nozzle headers at both ends as described above, a nozzle header may be separately provided at the center in the plate width direction to eliminate non-uniform temperature distribution. In that case, a structure that moves only in the direction of movement of the cooling roll but does not move in the roll body length direction is provided. Regarding the plate temperature distribution control based on the deviation from the target plate temperature distribution, Only the cooling gas pressure or gas flow inside the header 'based on the temperature deviation is adjusted, and the cooling gas is blown to the metal strip.
もちろん本発明は、 冷却ロールが 1つの構成だけではなく、 2以上有する構成 にも適用でき、 複数の冷却ロール 有する構成の場合は、 上述した如く、 そのう ち少なくとも最初の冷却ロールに対してノズルヘッダを 3つ設けて上記のヘッダ 配置構成とすれば良いし、 更にこれらの冷却ロールを前段部と後段部の 2つの区 分けを設けて、 前段部の冷却ロールについてはノズルヘッダを 3つ設けて上記の へヅダ配置とすると共に、 その後段部の冷却ロールについてはノズルヘッダを 2 つとして同 2つの場合のヘッダ配置とすると良い。 以上のように少なく とも最初 の冷却ロール或いは前段の冷却ロールに対するノズルヘッダ構成を 3つにするの は、 前述した理由と同じで、 冷却ロール接触閧始時に金属帯中央部が中膨らみに なると不均一温度分布が生じ、 冷却ロールの特性上一旦不均一温度分布が発生す ると、 その後不均一温度分布が増長するので、 ロール接触開始初期における該板 形状不良をなくすことを目的に、 少なく とも最初の冷却ロール或いは前段の冷却 ロールに対しては中央部にもノズルヘッダを設け、 その部分の集中的な冷却及び 背面からのガス吹き付けを行うことによって、 その中膨らみの問題を解決せんと するからである。 逆に少なくとも最初の冷却ロール或いは前段の冷却ロールに対 し中央ノズルヘッダを含む 3つのノズルヘッダ構成としておけば、 そのあとに続 く冷却ロールでは金属帯両端部に対して夫々ノズルヘッダを設ければ足りること になる。 Of course, the present invention can be applied not only to a configuration having one cooling roll but also to a configuration having two or more cooling rolls. In the case of a configuration having a plurality of cooling rolls, as described above, at least a nozzle is provided for at least the first cooling roll. It is sufficient to provide three headers and adopt the above-mentioned arrangement of the headers.Furthermore, these cooling rolls are divided into two parts of the front part and the rear part, and three nozzle headers are provided for the cooling part of the front part. In addition to the above-mentioned header arrangement, the cooling roll at the subsequent stage should have two nozzle headers, and the header arrangement should be the same. As described above, at least three nozzle headers are provided for the first cooling roll or the preceding cooling roll, for the same reason as described above. In this case, a non-uniform temperature distribution occurs, and once the non-uniform temperature distribution occurs due to the characteristics of the cooling roll, the non-uniform temperature distribution increases thereafter. At least for the first cooling roll or the preceding cooling roll, a nozzle header is also provided in the center, and intensive cooling of that part and gas blowing from the back do not solve the problem of bulging in the middle. This is because Conversely, if at least the first cooling roll or the preceding cooling roll has a three-nozzle header configuration including the central nozzle header, the subsequent cooling rolls will have nozzle headers at both ends of the metal strip. It will be enough.
—方上記のように複数の冷却ロールが設置されている場合、 上述したノズルへ ッダの移動態様と同様、 前段のノズルヘッダのロール移動方向への移動と後段の ノズルへヅダの移動とでは、 その移動の態様を異なるように設定することもでき る。 即ち前段のノズルヘッダについては、 冷却ロールの移動に伴って該ロールと の離間距離が一定になるようにその移動に追従できる構成とし、 後段のノズルへ ッダについては、 通常冷却時に所定箇所に移動させ、 非常時或いは冷却を行わな い時のみ前記リ トラク ト位置に待避させるように設定し、 冷却ロールの移動に追 従させないようにしておくこともできる。  In the case where a plurality of cooling rolls are installed as described above, in the same manner as the above-described nozzle head movement mode, the movement of the front-stage nozzle header in the roll movement direction and the movement of the head to the rear-stage nozzle are different. However, the mode of the movement can be set differently. That is, the nozzle head in the first stage can be configured to follow the movement of the cooling roll so that the separation distance from the roll becomes constant with the movement of the cooling roll. It may be set so that it is moved and evacuated to the retract position only in an emergency or when cooling is not performed, so that it does not follow the movement of the cooling roll.
上記鞍型変形等を発生原因とする板幅方向の不均一温度分布を解消するために、 前段側の特に第 1冷却ロールを中心に上流側の冷却ロールから順次押し込んで冷 却長を大きく取るだけでなく、 上流側のノズルヘッダから順にそのガス噴出能力 を m a xにして冷却し、 不足分を下流側の方で補うようにしても良いことは前述 と同じである。  In order to eliminate the uneven temperature distribution in the plate width direction due to the above-mentioned saddle type deformation, etc., in order to increase the cooling length by sequentially pushing in from the upstream cooling roll centering on the first cooling roll, especially the first cooling roll In addition to the above, cooling may be performed by maximizing the gas ejection capacity in order from the nozzle header on the upstream side, and the shortage may be compensated for on the downstream side, as described above.
更に前記冷却ロールの移動方向及びロール胴長方向に移動可能な 3つ以上のノ ズルヘッダを用いてロール背面冷却を行う場合には、 上記 3つのホッ トポイント を対象にした平均板温制御を行うことも可能である。 その場合金属帯と冷却ロー ルの接触長を調整することで該制御を実施するが、 各冷却ロールに対向して設置 されたガス冷却装置のノズルヘッダを冷却ロールに卷付いた金属帯の軌跡に対応 して適正な離間距離を保持しながら位置調整することが熱伝達上有効である。 尚 ノズルヘッダと金属帯との離間距離を 5〜50mmとすると、 冷却ロール及びノズルへ ッダの各移動調整の精度や、 形状不良 (例えばエッジウェイブ) の起きた金属帯 とノズルヘッダとの接触防止を図る点で有効である。 Further, in the case where roll back cooling is performed using three or more nozzle headers movable in the moving direction of the cooling roll and the roll body length direction, average sheet temperature control is performed for the above three hot points. It is also possible. In this case, the control is performed by adjusting the contact length between the metal strip and the cooling roll, but the nozzle header of the gas cooling device installed opposite to each cooling roll is tracked by the metal strip wound around the cooling roll. It is effective for heat transfer to adjust the position while maintaining an appropriate separation distance in accordance with the above. If the distance between the nozzle header and the metal strip is 5 to 50mm, the cooling roll and nozzle This is effective in terms of the accuracy of each head movement adjustment and the prevention of contact between the metal strip with the defective shape (eg, edge wave) and the nozzle header.
また上記の平均板温制御と共に、 目標板温分布との偏差に基づく板温分布制御 を実施する。 この場合、 ノズルヘッダの移動による冷却幅の調整が重要となる。 金属帯に鍋帯を用いて冷却ロールによる冷却実験および解析を行なった結果、 前 記数 1 3で定義される鋼帯端部に生ずる平均板温偏差は前記図 5 4に示すように 冷却巾及び板厚によって大きく変化することがわかったのは前述の通りである。 従って冷却ロールの位置とノズルヘッダの位置とから金属帯と該ノズルヘッダの 離間距離を調整させつつ、 該冷却ロール入側、 出側の少なく とも一方で金属帯両 端部位置を常時監視しておき、 金属帯両端部に対し各ガス冷却装置の両端部のノ ズルヘッダの位置を下式数 8及び数 9に示される冷却巾となるように移動調整す ることによって板温偏差を最小にすることが出来る。  In addition to the above average sheet temperature control, the sheet temperature distribution control based on the deviation from the target sheet temperature distribution is implemented. In this case, it is important to adjust the cooling width by moving the nozzle header. As a result of conducting a cooling experiment and analysis using a cooling roll using a pan band as the metal band, the average sheet temperature deviation generated at the end of the steel band defined by the above equation (13) was calculated as shown in Fig. 54. As described above, it was found that the thickness greatly changed depending on the sheet thickness. Therefore, while adjusting the distance between the metal band and the nozzle header from the position of the cooling roll and the position of the nozzle header, at least one end of the metal band is constantly monitored at least on the inlet side and the outlet side of the cooling roll. In order to minimize the plate temperature deviation, adjust the position of the nozzle headers at both ends of each gas cooling device with respect to both ends of the metal strip so that the cooling width is as shown in the following formulas 8 and 9. I can do it.
【数 8】 [Equation 8]
6≤W£≤45 6≤W £ ≤45
但し t < 1. 3mm  However, t <1.3 mm
【数 9】 [Equation 9]
12 i -9.6≤W£≤22 f +16.4 12 i -9.6≤W £ ≤22 f +16.4
但し t≥ 1. 3mm  However, t≥1.3mm
W E :両端部ノズルヘッダ冷却幅(mm)  W E: Nozzle header cooling width at both ends (mm)
t :金属帯の板厚(mm) 更に金属帯中央部の板温偏差を生じている領域はほとんどの場合、 金属帯巾方 向中心線に対し対称であるために、 金属帯巾方向中心と中央部のノズルヘッダの 中心が一致するように移動させればよい。 また、 板温偏差の領域は図 5 7に示さ れるように金属帯の巾に対して下式数 1 0に示す範囲であり、 その部分を冷却す ることが好適である。 【数 1 0】t: Thickness of the metal strip (mm) In addition, the area where the sheet temperature deviation occurs in the center of the metal strip is almost always symmetrical with respect to the center line in the width direction of the metal strip. The nozzle may be moved so that the center of the nozzle header at the center coincides. The area of the sheet temperature deviation is as shown in the following formula 10 with respect to the width of the metal strip as shown in FIG. 57, and it is preferable to cool that part. [Equation 1 0]
Figure imgf000030_0001
Figure imgf000030_0001
W c : 中央部ノズルヘッダの冷却幅(mm) Wc : Cooling width of center nozzle header (mm)
B :金属帯の幅(mm) 以上のノズルヘッダの移動による冷却幅の調整と共に、 冷却ロール出側で金属 帯巾方向の板温分布を常時監視しておき、 目標板温分布との偏差に基づいてこれ らのノズルヘッダ内部の冷却ガス圧力又はガス流量調整を行って、 金属帯に冷却 ガスを吹き付けることで、 板温分布不均一は解消される。 また以上の構成は、 口 ール背面冷却を行う前記ガス冷却装置の構成で板温分布不均一が解消されない場 合に冷却ロール出側に補助的に設けられる補助ガス冷却装置 (金属帯巾方向に移 動可能な 3つ以上のノズルヘッダを該金属帯表裏面に夫々有している) を設置し た場合にも適用できる。  B: In addition to adjusting the cooling width by moving the nozzle header over the width of the metal band (mm), the sheet temperature distribution in the metal band width direction is constantly monitored on the cooling roll exit side, and the deviation from the target sheet temperature distribution is calculated. By adjusting the cooling gas pressure or the gas flow rate inside these nozzle headers based on this and spraying the cooling gas on the metal strip, the unevenness of the sheet temperature distribution is eliminated. In addition, the above configuration includes an auxiliary gas cooling device (a metal band width direction) that is provided auxiliary to the cooling roll exit side when unevenness of the plate temperature distribution is not solved by the configuration of the gas cooling device that performs cooling on the rear surface of the roll. 3 or more nozzle headers, each of which is movable on the front and back sides of the metal band, are also applicable.
また、 金属帯の形状不良等を原因とする各冷却ロールとの接触不均一に伴う金 属帯巾方向の板温分布の変化に対応するために、 冷却ロール出側で金属帯巾方向 の板温分布を常時監視しておき、 目標板温に対し端部及び中央部において温度偏 差の生じている領域の板温偏差の重心位置を夫々求め、 ガス冷却装置、 又は該ガ ス冷却装置と補助ガス冷却装置の端部側のノズルヘッダにつき、 金属帯端部から 該重心位置 での距離の 2倍の長さが端部側における冷却巾となるようにこれを 移動させ、 中央部のノズルヘッダにつき、 その中心位置が金属帯中央部にある前 記重心位置と一致するようにこれを移動させて、 これらの各ノズルヘッダから金 属帯に対し冷却ガスの吹き付けを行うこととし、 それによつて上記課題の解決を 図るようにしても良い。  Also, in order to cope with the change in the sheet temperature distribution in the metal band width direction due to uneven contact with each cooling roll due to the defective shape of the metal band, etc. The temperature distribution is constantly monitored, and the center of gravity of the plate temperature deviation in the region where the temperature deviation occurs at the end and the center with respect to the target plate temperature is obtained, respectively, and the gas cooling device or the gas cooling device is used. For the nozzle header at the end of the auxiliary gas cooling device, move it so that the cooling width at the end is twice as long as the distance from the end of the metal strip at the center of gravity, and the nozzle at the center The header is moved so that the center of the header coincides with the center of gravity at the center of the metal band, and cooling gas is blown from each of these nozzle headers to the metal band. To solve the above problems You may.
このように目標板温に対し、 金属帯端部および中央部の板温偏差が生じている 領域の板温偏差の重心位置をそれぞれ求め、 ガス冷却装置や補助ガス冷却装置の 各ノズルヘッダの位置を移動調整する方法を実施した場合、 たとえば端部ノズル ヘッダを例にとって説明すると、 前記表 1の条件下では前記図 5 6中の N O . 2 のように板温分布の均一化が図られることとなった。 図 面 の 簡 単 な 説 明 In this way, the center of gravity of the sheet temperature deviation in the region where the sheet temperature deviation occurs at the end and the center of the metal strip with respect to the target sheet temperature is determined, and the position of each nozzle header of the gas cooling device and auxiliary gas cooling device is determined. When the method of moving and adjusting is adopted, for example, taking the end nozzle header as an example, under the conditions of Table 1 above, the plate temperature distribution is made uniform as shown in NO. 2 in FIG. 56. It became. Brief explanation of drawings
図 1は本願金属帯冷却装置の一実施例構成が備えられたロール冷却装置を有す る金属帯 Xの連続焼鈍炉ライン構成を示す概略図である。 図 2は請求の範囲第 4 8項記載の一実施例に係る金属帯冷却装置の説明図である。 図 3は冷却ロールに 対向して配置されたガス冷却装置の斜視図である。 図 4は冷却ロール群の出側に 設置された補助ガス冷却装置の斜視図である。 図 5は冷却ロールに対向して配置 された請求の範囲第 5 1項記載のガス冷却装置の斜視図である。 図 6は冷却ロー ル群の出側に設置された同実施例の補助ガス冷却装置の斜視図である。 図 7は本 願請求の範囲第 3 2項のガス冷却装置を金属帯の連続焼鈍炉のロール冷却装置に 設けられているロール背面冷却構成に用いた第 3実施例構成を示す設備概要図で ある。 図 8は本実施例のロール背面冷却構成の部分拡大図である。 図 9は本実施 例の移動台の構成を示す説明図である。 図 1 0は中央部のノズルヘッダが左右方 向には動かない請求の範囲第 3 3項記載のガス冷却装置をロール背面冷却構成に 用いた他の実施例構成を示す平面図である。 図 1 1は金属帯エッジにおける口一 ル背面冷却構成を示す断面図である。 図 1 2は金属帯中央部におけるロール背面 冷却構成を示す断面図である。 図 1 3は水平な金属帯パスラインのロール冷却装 置に請求の範囲第 3 4項記載のガス冷却装置をロール背面冷却構成として用いた 実施例構成を示す設備概要図である。 図 1 4は前図の冷却ロール #1の部分の横断 面図である。 図 1 5は本実施例における移動台の左右方向移動構成を示す部分拡 大図である。 図 1 6は同じく本実施例における移動台の左右方向移動構成を示す 断面図である。 図 1 7は請求の範囲第 4 1項記載の補助ガス冷却装置に係る実施 例 4の正面図である。 図 1 8は本実施例の補助ガス冷却装置の側面図である。 図 1 9はノズルヘッダが取り付けられた走行台車とガイ ドレールとの係合状態を示 す説明図である。 図 2 0は上走行台車の車輪とガイ ドレールとの係合状態を示す 拡大図である。 図 2 1は下走行台車の車輪とガイ ドレールとの係合状態を示す拡 大図である。 図 2 2は走行機構の駆動同期構成を—示す説明図である。 図 2 3は同 じく上走行台車と下走行台車の駆動同期構成を示す説明図である。 図 2 4は本実 施例においてノズルヘッダの移動に追随する配管の構成を示す説明図である。 図 2 5はテレスコピック状の伸縮継手の構成を示す断面図である。 図 2 6は金属帯 のパスラインが水平の場合のロール冷却装置に適用された本構成断面を示す平面 図である。 図 2 7は同実施例構成の側面図である。 図 2 8は同実施例の入側上方 の走行台車の車輪とガイドレールの係合状態を示す説明図である。 図 2 9は同実 施例の出側上方の走行台車の車輪とガイ ドレールの係合状態を示す説明図である。 図 3 0は同実施例の入側下方の走行台車の車輪とガイ ドレールの係合状態を示す 説明図である。 図 3 1は同実施例の出側下方の走行台車の車輪とガイドレールの 係合状態を示す説明図である。 図 3 2はロール冷却装置に用いられる冷却ロール の断面構造を示す断面図である。 図 3 3はそのロール展開状態を示す展開図であ る。 図 3 4はこのロール冷却装置における冷却ロールへの冷却水の通水系統を示 す説明図である。 図 3 5は金属帯一ロール表面間の熱伝達率と冷却水の流速との 相関関係を示すグラフである。 図 3 6は冷却水の流速とポンプの圧力損失との相 関関係を示すグラフである。 図 3 7は各ロールにおける伝熱計算、 それに続く各 ロールの冷却速度 C R ( J ) 、 平均冷却速度 A C R、 平均総括熱吸収率 A U。の計 算の手順を示すフローチャート図である。 図 3 8は 2個の冷却ロールに卷付けら れた金属帯とガス冷却装置のノズルヘッダとの位置関係を示す説明図である。 図 3 9はガス冷却装置出側の板温分布を示すグラフである。 図 4 0は従来技術の 1 実施例を示す金属帯の冷却装置側面図である。 図 4 1は同構成で用いられるガス ジェットノズルヘッダの構成を示す斜視図である。 図 4 2は冷却ロールのみで冷 却した場合の板幅方向の板温分布を示すグラフである。 図 4 3は冷却ロールに金 属帯が卷付いた時の金属帯の変形状態を示す斜視図である。 図 4 4はノズルへッ ダに設けられるノズル口の形状の一例を示す断面図である。 図 4 5は金属帯中央 部における中膨らみ発生状況を示す説明図である。 図 4 6は金属帯の板幅の異な る接続部近傍における端部ノズルヘッダの配置を示す説明図である。 図 4 7は金 属帯端部側に位置するノズルヘッダの構成を示す説明図である。 図 4 8はロール 背面冷却を行うガス冷却装置の両端部側のノズルヘッダが金属帯走行方向に分離 した状態のものを示す斜視図である。 図 4 9はロール冷却装置出側に備えられた 補助ガス冷却装置の両端部側のノズルヘッダが金属帯走行方向に分離した状態の ものを示す斜視図である。 図 5 0は幅狭材から幅広材に板幅変更がある時の分離 ノズルヘッダの移 »状態を示す説明図である。 図 5 1は幅広材から幅狭材に板幅 変更がある時の分離ノズルヘッダの移動状態を示す説明図である。 図 5 2は軟質 用の薄板連続焼鈍ヒートサイクルを示すグラフである。 図 5 3はロール冷却装置 の入側又はその出側の補助冷却の構成として本構成を用いた場合に、 ノズルへッ ダを金属帯の流れ方向に少しずつずらして並べた例を示す説明図である。 図 5 4 は板端部冷却幅と板端部近傍の板温偏差の閧係を示すグラフである。 図 5 5は板 幅の異なる金属帯と金属帯が接続された場合のガス冷却装置のノズルヘッダのノ ズル位置と板端部冷却幅との関係を示す模式図である。 図 5 6は冷却ロールに対 向して配置されたガス冷却装置により、 金属帯の板端部を冷却した場合の板温分 布を示すグラフである。 図 5 7は板中央部の板温偏差とその範囲を示すグラフで ある。 図 5 8は本発明と従来技術の運転費と設備費の相対比較を示すグラフであ る。 図 5 9は連続焼鈍炉のロールクウェンチ用に用いられる冷却ロールの従来構 成を示す説明図である。 図 6 0は上記冷却ロールを計 7本使用し、 これらを金属 帯の表裏面に交互に接触させてその急冷を行うロール冷却装置の構成を示す概略 図である。 図 6 1は温度分布不均一の状態が金属帯幅方向でシンメトリーでなく なった状態を示すグラフである。 発明を実施するための最良の形態 FIG. 1 is a schematic diagram showing a continuous annealing furnace line configuration of a metal strip X having a roll cooling device provided with an embodiment of a metal strip cooling device of the present invention. FIG. 2 is an explanatory view of a metal strip cooling device according to an embodiment of the present invention. FIG. 3 is a perspective view of a gas cooling device arranged to face a cooling roll. Fig. 4 is a perspective view of the auxiliary gas cooling device installed on the outlet side of the cooling roll group. FIG. 5 is a perspective view of the gas cooling device according to claim 51 disposed opposite to the cooling roll. FIG. 6 is a perspective view of the auxiliary gas cooling device of the embodiment installed on the outlet side of the cooling roll group. Fig. 7 is a schematic diagram showing the configuration of a third embodiment in which the gas cooling device according to claim 32 of the present application is used for a roll back cooling configuration provided in a roll cooling device of a continuous annealing furnace for a metal strip. is there. FIG. 8 is a partially enlarged view of the roll back cooling configuration of the present embodiment. FIG. 9 is an explanatory diagram showing the configuration of the moving table of the present embodiment. FIG. 10 is a plan view showing another embodiment configuration in which the gas cooling device according to claim 33 is used in a roll back cooling configuration in which the nozzle header at the center does not move in the left-right direction. FIG. 11 is a cross-sectional view showing the cooling structure at the back of the mouth at the edge of the metal band. FIG. 12 is a cross-sectional view showing the roll back cooling configuration at the center of the metal band. FIG. 13 is a schematic diagram showing an example of the configuration of an embodiment in which the gas cooling device described in claim 34 is used as a roll rear cooling configuration for a roll cooling device for a horizontal metal band pass line. FIG. 14 is a cross-sectional view of the portion of the cooling roll # 1 in the preceding figure. FIG. 15 is a partially enlarged view showing a left-right movement configuration of the movable base in the present embodiment. FIG. 16 is a cross-sectional view showing the moving configuration of the moving table in the left-right direction in the present embodiment. FIG. 17 is a front view of a fourth embodiment of the auxiliary gas cooling device described in claim 41. FIG. 18 is a side view of the auxiliary gas cooling device of the present embodiment. FIG. 19 is an explanatory diagram showing an engagement state between the traveling carriage to which the nozzle header is attached and the guide rail. FIG. 20 is an enlarged view showing the engagement state between the wheels of the upper traveling trolley and the guide rails. FIG. 21 is an enlarged view showing the engagement state between the wheels of the lower traveling vehicle and the guide rails. FIG. 22 is an explanatory diagram showing a drive synchronization configuration of the traveling mechanism. FIG. 23 is an explanatory view showing a drive synchronization configuration of the upper traveling vehicle and the lower traveling vehicle. FIG. 24 is an explanatory diagram showing the configuration of a pipe that follows the movement of the nozzle header in the present embodiment. FIG. 25 is a cross-sectional view showing the configuration of a telescopic expansion joint. Figure 26 is a metal strip FIG. 4 is a plan view showing a cross section of this configuration applied to the roll cooling device when the pass line is horizontal. FIG. 27 is a side view of the configuration of the embodiment. FIG. 28 is an explanatory diagram showing the engagement state between the wheels of the traveling trolley on the entry side and the guide rails in the embodiment. FIG. 29 is an explanatory view showing the engaged state of the wheels of the traveling trolley above the exit side and the guide rails in the embodiment. FIG. 30 is an explanatory diagram showing the engagement state of the guide rails and the wheels of the traveling trolley below the entry side in the embodiment. FIG. 31 is an explanatory diagram showing the engagement state between the wheels of the traveling truck on the exit side and the guide rails in the embodiment. FIG. 32 is a sectional view showing a sectional structure of a cooling roll used in the roll cooling device. Figure 33 is a development view showing the roll deployment state. FIG. 34 is an explanatory diagram showing a cooling water flow system to the cooling rolls in the roll cooling device. Fig. 35 is a graph showing the correlation between the heat transfer coefficient between the metal strip and the roll surface and the flow rate of the cooling water. Figure 36 is a graph showing the correlation between the flow rate of the cooling water and the pressure loss of the pump. Figure 37 shows the heat transfer calculation for each roll, followed by the cooling rate CR (J), average cooling rate ACR, and average overall heat absorption rate AU of each roll. FIG. 6 is a flowchart showing a procedure of the calculation. FIG. 38 is an explanatory diagram showing a positional relationship between a metal band wound around two cooling rolls and a nozzle header of a gas cooling device. Fig. 39 is a graph showing the sheet temperature distribution on the outlet side of the gas cooling device. FIG. 40 is a side view of a cooling device for a metal strip showing one embodiment of the prior art. FIG. 41 is a perspective view showing a configuration of a gas jet nozzle header used in the same configuration. Fig. 42 is a graph showing the sheet temperature distribution in the sheet width direction when the sheet was cooled only by the cooling roll. FIG. 43 is a perspective view showing a deformed state of the metal band when the metal band is wound around the cooling roll. FIG. 44 is a cross-sectional view showing an example of the shape of the nozzle port provided in the nozzle header. FIG. 45 is an explanatory diagram showing the state of the occurrence of the middle bulge at the center of the metal band. FIG. 46 is an explanatory view showing the arrangement of the end nozzle headers in the vicinity of the connection portions of the metal strips having different plate widths. FIG. 47 is an explanatory diagram showing the configuration of the nozzle header located at the end of the metal band. FIG. 48 is a perspective view showing a state in which the nozzle headers at both ends of the gas cooling device for cooling the rear surface of the roll are separated in the running direction of the metal band. FIG. 49 is a perspective view showing a state in which the nozzle headers at both ends of the auxiliary gas cooling device provided on the roll cooling device outlet side are separated in the metal band running direction. FIG. 50 is an explanatory diagram showing a state of moving the separation nozzle header when there is a change in the plate width from a narrow material to a wide material. Fig. 5 1 shows the sheet width from wide to narrow FIG. 9 is an explanatory diagram showing a moving state of a separation nozzle header when there is a change. Fig. 52 is a graph showing the heat cycle of continuous annealing of soft sheets. Fig. 53 is an explanatory diagram showing an example in which the nozzle headers are slightly shifted in the flow direction of the metal strip when this configuration is used as the auxiliary cooling configuration on the inlet side or the outlet side of the roll cooling device. It is. FIG. 54 is a graph showing the relationship between the cooling width of the plate edge and the sheet temperature deviation near the plate edge. FIG. 55 is a schematic diagram showing the relationship between the nozzle position of the nozzle header of the gas cooling device and the cooling width at the plate edge when metal bands having different plate widths are connected. Fig. 56 is a graph showing the sheet temperature distribution in the case where the sheet end of the metal strip is cooled by the gas cooling device arranged facing the cooling roll. Figure 57 is a graph showing the sheet temperature deviation at the center of the sheet and its range. FIG. 58 is a graph showing a relative comparison between operating costs and equipment costs of the present invention and the conventional technology. FIG. 59 is an explanatory view showing a conventional configuration of a cooling roll used for a roll quench of a continuous annealing furnace. FIG. 60 is a schematic diagram showing the configuration of a roll cooling device that uses a total of seven cooling rolls and alternately contacts the front and back surfaces of the metal strip to rapidly cool the metal strip. FIG. 61 is a graph showing a state in which the state of non-uniform temperature distribution is no longer symmetric in the metal band width direction. BEST MODE FOR CARRYING OUT THE INVENTION
(実施例 1 )  (Example 1)
本発明の金属帯冷却装置の一実施例構成を図 1乃至図 4により説明する。 図 1は、 金属帯冷却装置の一実施例構成を備えたロール冷却装置を有する金属 帯 Xの連続焼鈍炉ライン構成を示す概略図である。  One embodiment of the configuration of the metal strip cooling device of the present invention will be described with reference to FIGS. FIG. 1 is a schematic view showing a configuration of a continuous annealing furnace line configuration of a metal strip X having a roll cooling device provided with an embodiment configuration of a metal strip cooling apparatus.
本実施例構成では、 金属帯 Xはペイオフリール 2000によって卷戻され、 入側剪 断機 200 1によって剪断された後、 溶接機 2002によってその先行コイルと後行コィ ルとが接続される。 次に入側クリーニング設備 2003で電解脱脂された後、 板形状 矯正機たるテンションレベラ 2004を経て、 入側ルーパ 2005に達する。 更に予熱炉 2006及び直火式還元加熱炉 2007に供給されて 6 0 0 eC〜7 5 O eCに昇温され、 ラ ジアントチューブ式加熱炉 2008及びラジアントチューブ式均熱炉 2009で所定の温 度まで加熱後そのまま均熱され、 ガスジェット冷却帯 20 10で例えば 6 0 0 °Cまで 冷却されて、 更にロール冷却装置 1000で 3 5 CTCまで冷却される。 続いて加熱 · 冷却機能付き調整冷却設備として設けられた過時効処理帯 201 1及び急冷炉 2012を 経て、 水冷設備 2013及び乾燥設備 2014で水冷,乾燥され、 出側ルーパ 2015を経た 後、 調質圧延機 2016で板表面の調質処理がなされ、 表面欠陥計 2017及び塗油機 20 18で検査 ·塗油されて、 出側剪断機 2019で所定の長さに切断された後、 テンショ ンリール 2020によって巻取られる。 In this embodiment, the metal strip X is unwound by the pay-off reel 2000, sheared by the entry shearing machine 2001, and then connected to the preceding coil and the following coil by the welding machine 2002. Next, after being electrolytically degreased in the entrance cleaning facility 2003, it reaches the entrance looper 2005 through the tension leveler 2004 as a plate shape straightening machine. Further heated to the preheating furnace is supplied to the 2006 and direct-fired type reducing furnace 2007 6 0 0 e C~7 5 O e C, La di ant tube type heating furnace 2008 and radiant tube type soaking furnace predetermined 2009 After being heated to the temperature, it is soaked as it is, cooled to, for example, 600 ° C. in the gas jet cooling zone 2010, and further cooled to 35 CTC by the roll cooling device 1000. Followed by heating After passing through the overage treatment zone 201 1 and the quenching furnace 2012 provided as an adjustment cooling facility with a cooling function, it was water-cooled and dried in the water cooling facility 2013 and the drying facility 2014. The surface of the plate is tempered, inspected by the surface defect meter 2017 and the oiling machine 2018, oiled, cut to a predetermined length by the outgoing shearing machine 2019, and wound up by the tension reel 2020 .
以上の構成で、 テンションレペラ 2004の構成が直火式還元加熱炉 2007の前に設 けられているが、 その設置理由につき以下に説明する。 まず直火式還元加熱炉 20 07において金属帯 Xには酸化の問題が発生していたが、 その酸化のメカニズムに ついては未だ解明されておらず、 本発明者等は次のように考えている。 即ち直火 式還元加熱炉 2007において形成されるパーナ炎には金属帯 Xの還元加熱に適した 範囲の限定があり、 その特定範囲において金属帯 Xと接触しないと還元できるど ころか、 酸化が行われる。 一方、 直火式還元加熱炉 2007において直火還元を 1パ ス又は 2パスで達成するためには、 該炉内に備えられる上下ロールの間隔が少な くとも 2 O m以上必要であり、 このように炉長が長いとそこを通る金属帯 Xがそ のロール間でバ夕ヅクことになる。 また金属帯 Xの形状には、 その中央部に凹凸 や中伸び、 端部に耳波等の形状不良が発生することがあり、 金属帯 X断面中央部 浮上がりの程度を示す金属帯歪量 aに対する金属帯幅 wの比で示される急峻度 a /wが大きくなると、 この形状不良は著しくなる。 その場合、 炉内に備えられる 上下ロールの間隔が少なくとも 2 0 m以上あると上述のようにパ夕ヅク上に、 燃 焼時にパーナ圧力を受けて、 該金属帯 Xは大きくうねることになる。 このような 金属帯 Xのうねりがあると、 それによつてパーナ炎の前記適正範囲内で金属帯 X が該パーナ炎と接触しなくなり、 局所的な酸化の問題を発生するというものであ る。  With the above configuration, the configuration of the tension repeller 2004 is installed before the direct-fired reduction heating furnace 2007. The reasons for the installation are described below. First, in the direct-fired reduction heating furnace 20007, the problem of oxidation occurred in the metal strip X, but the mechanism of the oxidation has not been elucidated yet, and the present inventors consider as follows. . That is, the range of the burner flame formed in the direct-fired reduction heating furnace 2007 is limited to a range suitable for the reduction heating of the metal band X. Done. On the other hand, in order to achieve direct fire reduction in one pass or two passes in the direct-fired reduction heating furnace 2007, the interval between the upper and lower rolls provided in the furnace must be at least 2 Om or more. If the furnace length is long as described above, the metal strip X passing therethrough will be backed up between the rolls. In addition, the shape of the metal band X may have irregularities or middle elongation at the center thereof, and a shape defect such as an ear wave at the end thereof. When the steepness a / w, which is indicated by the ratio of the metal band width w to a, increases, the shape defect becomes remarkable. In this case, if the distance between the upper and lower rolls provided in the furnace is at least 20 m or more, the metal band X will undulate due to the pressurizing pressure on the park as described above. Such undulation of the metal strip X causes the metal strip X to be out of contact with the perforated flame within the above-mentioned appropriate range of the perna flame, thereby causing a local oxidation problem.
—方ガスジエツ ト冷却帯 2010では絞り発生が問題となっており、 またロール冷 却装置 1000では不均一冷却の問題も起きているが、 これらは同じく金属帯 Xの形 状不良に原因があると考えられる。 これに対し金属帯 Xの若干の形状不良に関し ては、 一定の張力が掛けられた状態で直火急速加熱炉でパ夕ツキもなく均一に加 熱されると、 その形状不良が修正され、 或いは不均一加熱による新たな形状不良 の発生をなくすことができるということが分かっている。 しかし金属帯 Xの幅方 向の所定箇所に発生する伸びに関してはなかなか直らず、 そのままガスジエツト 冷却帯 2010に通板されると、 そこで絞りを生じ、 またロール冷却装置 1000に運ば れた場合、 該伸びの部分がロール表面に十分接触しないか或いは非接触の状態と なり、 最終冷却後の板幅方向の温度分布を均一化することが困難になって、 板幅 方向の材質のバラヅキゃ絞り ·蛇行発生を生じているものと推測される。 -In the gas jet cooling zone 2010, there is a problem with the occurrence of squeezing, and in the roll cooling device 1000, there is also the problem of non-uniform cooling, but these are also caused by the poor shape of the metal band X. Conceivable. On the other hand, with regard to a slight shape defect of the metal strip X, if the metal strip X is uniformly heated in a direct-fired rapid heating furnace without a flash under constant tension, the shape defect is corrected, or It has been found that the occurrence of new shape defects due to uneven heating can be eliminated. But the width of the metal band X The elongation that occurs at a predetermined location in the direction is not easily corrected, and when the sheet is passed through the gas jet cooling zone 2010 as it is, a narrowing occurs there. Insufficient contact or no contact, making it difficult to equalize the temperature distribution in the width direction of the sheet after final cooling. It is presumed.
更にラジアントチューブ式加熱 ·均熱炉 2008及び 2009ではラジアントチューブ と金属帯 Xとが接触したり、 急冷炉 2012ではガスジヱットノズルと同じく金属帯 Xとが接触する等の問題が発生している。 これらの問題もやはり金属帯 Xの形状 不良が原因であり、 特に後者の問題は前記ガスジェット冷却帯 2010やロール冷却 装置 1000で発生した絞り等により助長された形状不良が引き金となったものと考 えられる。  Furthermore, in the radiant tube heating and soaking furnaces 2008 and 2009, the radiant tube and the metal strip X come into contact with each other, and in the quenching furnace 2012, the metal strip X comes in contact with the gas jet nozzle. ing. These problems are also caused by the defective shape of the metal band X, and the latter problem is particularly caused by the defective shape promoted by the drawing or the like generated in the gas jet cooling zone 2010 or the roll cooling device 1000. Conceivable.
以上の様なことが原因となって上記の問題が発生しているのならば、 これらの 熱処理設備の直前に該金属帯 Xの形状矯正を行うテンションレベラ 2004を設け、 それによつて形状矯正のなされた金属帯 Xを夫々熱処理することでこれらの問題 は解決されることになると、 本発明者等は考えた。 そこで直火急速加熱でパ夕ヅ キもなく均一加熱が実施されると形状不良改善に効果があるという上記事実に鑑 み、 これを参考として金属帯 Xの形状矯正を実施してみたところ、 直火式還元加 熱炉 2007の直前で一度金属帯 Xの形状矯正を行えば、 後続の設備では上述のよう な各問題の発生がなくなることが更に明かとなった。 以上が、 本実施例において テンションレベラ 2004が直火式還元加熱炉 2007の前に設けられている理由である。 但しロール冷却装置 1000ではこのような形状矯正を一度行っただけでは金属帯 X板幅方向の温度分布の均一化を達成することは困難であるので、 本実施例構成 では、 図 2に示すように、 冷却ロール # 1〜#4と接触している金属帯 Xの背面から 冷媒を吹き付けるノズルヘッダ α 1〜 4によるロール背面冷却と併せて実施する ことにした。 この図 2は請求の範囲第 4 8項の一実施例に係る金属帯冷却装置を 側面から見た説明図である。 加熱均熱後徐冷された金属帯 Xは、 金属帯冷却装置 の前後に設置したブライ ドルロール £ 1〜 £ 3と £ 4〜£ 6により、 この冷却装置部 分にある金属帯 Xに張力が付与される。  If the above problem is caused by the above, a tension leveler 2004 for correcting the shape of the metal strip X is provided immediately before these heat treatment facilities, and thereby the shape correction is performed. The present inventors have considered that these problems can be solved by heat-treating each of the metal strips X. In view of the above-mentioned fact that uniform heating without direct flashing with rapid heating was effective in improving shape defects, the shape correction of the metal strip X was performed with reference to this fact. It became clear that once the shape of the metal strip X was corrected just before the direct-fired reduction heating furnace 2007, the subsequent facilities would not have the problems described above. The above is the reason why the tension leveler 2004 is provided before the direct-fired reduction heating furnace 2007 in the present embodiment. However, in the roll cooling device 1000, it is difficult to achieve a uniform temperature distribution in the width direction of the metal strip X plate only by performing such shape correction once, so in the configuration of the present embodiment, as shown in FIG. In addition, cooling was performed together with the cooling of the roll back by nozzle headers α1 to α4, which sprays the coolant from the back of the metal strip X in contact with the cooling rolls # 1 to # 4. FIG. 2 is an explanatory view of a metal band cooling device according to an embodiment of the present invention as viewed from the side. The metal strip X, which was gradually cooled after heating and soaking, was given tension to the metal strip X in this cooling unit by bridging rolls £ 1 to £ 3 and £ 4 to £ 6 installed before and after the metal strip cooling device. Granted.
稼働の準備段階では、 冷却ロールに金属帯 Xが接触する前に、 接触時点での形 状が安定するように、 前記ブライ ドルロール £ 1〜£ 6によりロール使用張力 (3 kgf/nnn2以上) まで該金属帯 Xの張力を変更する。 次に各冷却ロール 〜 #4を水 平方向に動かし、 金属帯 Xに接触させ、 更にその押し込み量 (接触長) を調整し ながら、 冷却量を調整するのであるが、 本ロール冷却装置では金属帯幅方向に不 均一温度分布が生じ易く、 またその前段のガスジエツ ト冷却帯 2010でそのような 不均一温度分布が生じていた場合はこのロール冷却装置でそれが助長されること になるため、 本実施例では以下に示す金属帯冷却装置の構成でロール背面冷却を 行う。 In preparation for operation, before the metal strip X comes into contact with the cooling roll, The tension of the metal strip X is changed by the bridle rolls £ 1 to £ 6 to the roll use tension (3 kgf / nnn 2 or more) so that the shape is stabilized. Next, the cooling rolls # 4 are moved in the horizontal direction, brought into contact with the metal strip X, and the amount of cooling is adjusted while adjusting the amount of contact (contact length). A non-uniform temperature distribution is likely to occur in the band width direction, and if such a non-uniform temperature distribution occurs in the preceding gas jet cooling zone 2010, it will be promoted by this roll cooling device. In the present embodiment, roll back cooling is performed with the configuration of the metal band cooling device described below.
本実施例構成では、 3つ 1組となっているノズルへヅダ群 α 1〜な 4を有するガ ス冷却装置と、 金属帯冷却装置入口付近に設置された金属帯両端部位置検出器 89 と、 これらのノズルヘッダを夫々ロール胴長方向に移動調整する移動調整装置 82 a〜82dと、 金属帯両端部位置検出器 89の検出信号に基づいて該移動調整装置 82a〜 82dを制御するノズルヘッダ位置制御演算装置 88と、 各冷却ロール # 1〜#4の位置並 びに冷却ロール接触長調整装置 80a〜80dからの信号により、 上記ノズルヘッダ群 a 1〜ひ 4を冷却ロール移動方向で位置調整する進退調整装置 8 l a〜8 I dと、 冷却口 ール群の出側に配置し、 金属帯幅方向の温度分布を検出する板温計 90aと、 この板 温計 90aからの温度信号に基づいて上記ガス冷却装置の圧力調節弁 84a〜84dの開度 或いはガス供給ブロワ 85aの回転数のうち少なくともその一方の制御を行なう板温 制御演算装置 87とを有している。  In the configuration of the present embodiment, a gas cooling device having a set of three nozzle headers α 1 to α 4, a metal band end position detector 89 installed near the metal band cooling device entrance, and A movement adjustment device 82a to 82d for moving and adjusting these nozzle headers in the roll body length direction, and a nozzle header for controlling the movement adjustment devices 82a to 82d based on the detection signals of the metal band both end position detector 89. Based on the position control arithmetic unit 88, the position of each cooling roll # 1 to # 4, and the signals from the cooling roll contact length adjusting devices 80a to 80d, the nozzle header groups a1 to 4 are adjusted in the cooling roll moving direction. 8a to 8Id, a sheet thermometer 90a placed on the outlet side of the cooling port group to detect the temperature distribution in the metal band width direction, and a temperature signal from the sheet thermometer 90a The degree of opening of the pressure control valves 84a to 84d of the gas cooling device or the gas Of rotational speed of the feed blower 85a and a sheet temperature control arithmetic unit 87 for performing at least that one control.
以上の構成でノズルへッダ位置制御演算装置 88は、 前記金属帯両端部位置検出 器 89からの信号に基づいて上記ノズルヘッダ群 α 1〜な 4の各ノズルへッダのロー ル胴長方向の位置制御指令を移動調整装置 82a〜82dに送る。 そのためこれら両端 部のノズルヘッダは金属帯端部に相当する位置へ、 又中央のノズルヘッダは金属 帯中央部に相当する位置へ移動調整される。  With the above configuration, the nozzle head position control arithmetic unit 88 calculates the roll body length of each nozzle of the nozzle header group α1 to 4 based on the signal from the metal band both end position detector 89. Direction position control commands are sent to the movement adjustment devices 82a to 82d. Therefore, the nozzle headers at both ends are moved and adjusted to the position corresponding to the end of the metal band, and the nozzle header at the center is moved and adjusted to the position corresponding to the center of the metal band.
—方、 冷却ロール # 1〜#4の金属帯接触長の調整については、 ロール冷却装置の 出側に設置された板幅方向の温度分布の検知が可能な板温計 90aからの温度信号に 基づいて、 板幅方向中央部の板温を板温制御演算装置 87により求め、 金属帯 Xに 対し所定の熱処理を実施するために設定された目標板温とこの中央部板温とが板 温制御演算装置 87で比較され、 その偏差に対応して該板温制御演算装置 87から冷 却ロール接触長調整装置 80a〜80dに信号が送られ調整される (その他、 板温計 90 aからの温度信号に基づいて板幅方向の平均温度が板温制御演算装置 87により求め られ、 金属帯 Xに対し所定の熱処理を実施するために設定された目標温度とこの 平均温度とが板温制御演算装置 87で比較され、 その偏差に対応して該板温制御演 算装置 87から冷却ロール接触長調整装置 80a〜80dに信号が送られる構成とするこ ともできる) 。 For the adjustment of the metal strip contact length of cooling rolls # 1 to # 4, the temperature signal from the sheet thermometer 90a installed on the exit side of the roll cooling device and capable of detecting the temperature distribution in the sheet width direction was used. The sheet temperature at the center in the sheet width direction is obtained by the sheet temperature control arithmetic unit 87 based on the target sheet temperature set for performing a predetermined heat treatment on the metal strip X, and the sheet temperature at the center is obtained. The temperature is compared by the control arithmetic unit 87, and the sheet temperature control arithmetic unit 87 A signal is sent to the adjusting roll contact length adjusting devices 80a to 80d to be adjusted. (In addition, the average temperature in the sheet width direction is obtained by the sheet temperature control arithmetic unit 87 based on the temperature signal from the sheet thermometer 90a. The target temperature set for performing the predetermined heat treatment on the band X and the average temperature are compared by the sheet temperature control arithmetic unit 87, and in accordance with the deviation, the cooling temperature is calculated from the sheet temperature control arithmetic unit 87. The signal may be sent to the contact length adjusting devices 80a to 80d).
更に、 本実施例構成では板温計 90aからの温度信号を入力した板温制御演算装 置 87によって、 両クォータ部の平均板温より板幅方向中央部の目標温度を又中央 部測定板温より板両端部の目標温度を求め、 且つ板両端部および板中央部の実測 温度を求めて、 これらと前記板幅方向目標温度とが比較される。 そしてその偏差 に対応して板温制御演算装置 87はガス供給ブロワ 85aの回転数制御あるいは圧力調 節弁 84a〜84dの開度調整のうち少なくとも一方を用いて各ノズルヘッダ内部冷却 ガス圧力 (圧力計は省略) を調整する。 以上の調整により冷却ロールに対向して 設置されたノズルヘッダ群 α 1〜α 4から噴出されるガスにより金属帯 Xの板両端 部ならびに板中央部が冷却されることになる。  Further, in the configuration of the present embodiment, the target temperature at the center in the sheet width direction and the measured sheet temperature at the center are calculated by the sheet temperature control arithmetic unit 87 to which the temperature signal from the sheet thermometer 90a is input, based on the average sheet temperature of both quarters. Then, the target temperatures at both ends of the plate are obtained, and the measured temperatures at both ends of the plate and the center of the plate are obtained, and these are compared with the target temperatures in the plate width direction. In accordance with the deviation, the plate temperature control calculation device 87 uses at least one of the rotation speed control of the gas supply blower 85a and the opening adjustment of the pressure control valves 84a to 84d to control the cooling gas pressure inside each nozzle header (pressure). Adjustment is omitted). By the above adjustment, both ends of the metal band X and the central part of the metal band X are cooled by the gas ejected from the nozzle header groups α1 to α4 installed facing the cooling roll.
これらのノズルヘッダ群 α 1〜ひ 4は、 冷却ロール # 1〜#4の位置ならびに冷却口 ール接触長調整装置 80a〜80dからの信号により、 前記進退調整装置 81 a〜81dによ つて冷却ロール移動方向で位置調整される。 尚上記ノズルヘッダ群な 3及びひ 4は、 冷却ロール # 1〜#4が金属帯と最大接触長を取れる位置にある時、 金属帯とノズル ヘッダ群間の距離を適切に確保できる位置に設定し固定されていてもよい。  These nozzle header groups α1 to α4 are cooled by the advance / retreat adjusting devices 81a to 81d according to the positions of the cooling rolls # 1 to # 4 and the signals from the cooling port contact length adjusting devices 80a to 80d. The position is adjusted in the roll movement direction. The nozzle headers 3 and 4 above are set at positions where the distance between the metal strip and the nozzle header group can be properly secured when the cooling rolls # 1 to # 4 are at the position where the maximum contact length can be obtained with the metal strip. And may be fixed.
これらの構成の他、 本実施例では冷却ロール群の出側に補助ガス冷却装置の構 成を備え、 上記冷却装置構成であっても完全に克服することが困難であった金属 帯 Xの板幅方向温度偏差を解消するようにしている。 即ち、 該補助ガス冷却装置 出口付近に設置された板幅方向の温度分布の検知が可能な板温計 90b或いは前記板 温計 90aからの温度信号により、 板温制御演算装置 87は板両端部温度及び板中央の 温度を求めると共に、 板幅方向の前記目標温度と比較し、 その偏差に対応させて、 ガス供給ブロワ 85bの回転数制御あるいは圧力調節弁 84eの開度調整のうち少なく とも一方を用いて各ノズルヘッダ内部冷却ガス圧力の調整を行なう。 そして上記 金属帯 Xに対向して設置された補助ガス冷却装置のノズルヘッダ群5 1と/? 2から 冷却ガスが噴出され、 ロール冷却装置を通過する金属帯 Xはその板両端部並びに 板中央部が冷却される。 In addition to these configurations, in the present embodiment, the configuration of the auxiliary gas cooling device is provided on the outlet side of the cooling roll group, and even with the above cooling device configuration, it is difficult to completely overcome the metal strip X plate. The temperature deviation in the width direction is eliminated. That is, according to the temperature signal from the sheet thermometer 90b or the sheet thermometer 90a installed near the outlet of the auxiliary gas cooling device and capable of detecting the temperature distribution in the sheet width direction, the sheet temperature control calculation device 87 The temperature and the temperature at the center of the plate are obtained and compared with the target temperature in the plate width direction, and at least one of the rotation speed control of the gas supply blower 85b and the opening degree adjustment of the pressure control valve 84e is adjusted in accordance with the deviation. Is used to adjust the cooling gas pressure inside each nozzle header. Then, from the nozzle header group 51 and /? 2 of the auxiliary gas cooling device installed facing the metal band X Cooling gas is blown out, and the metal strip X passing through the roll cooling device is cooled at both ends and the center of the plate.
そして、 上記ノズルヘッダ群 1と/? 2の各ノズルヘッダは、 前記金属帯両端部 位置検出器 89からの信号を受けたノズルヘッダ位置制御演算装置 88によって位置 制御指令が移動調整装置 83aと 83bに送られた結果、 該移動調整装置 83aと 83bによ り両端部のノズルヘッダは金属帯板端部に相当する位置へ、 又中央のノズルへッ ダは金属帯中央部に相当する位置へ移動調整される。  Each of the nozzle headers of the nozzle header groups 1 and / or 2 is provided with a position control command by the nozzle header position control arithmetic unit 88 which has received a signal from the metal band end position detector 89, and the movement adjusting devices 83a and 83b. As a result, the nozzle headers at both ends are moved to the positions corresponding to the ends of the metal strip and the nozzles at the center are moved to the positions corresponding to the center of the metal strip by the movement adjusting devices 83a and 83b. The movement is adjusted.
図 3は冷却ロールに対向して配置されたノズルへヅダ群ひ 1〜ひ 4の斜視図であ る (尚この図面では前記進退調整装置の構成は省略) 。 このうち両端部にあるノ ズルヘッダ a aと a cは板端部の冷却に用いられ、 又中央のノズルヘッダ a bは板中 央部冷却に用いられるものである。 これらのノズルへヅダ a a〜a cは、 前記ノズ ルヘッダ位置制御演算装置 88からのロール胴長方向位置制御指令により、 移動調 整装置 820〜822の制御が夫々なされ、 金属帯板端部及び中央部位置へ移動調整さ れる。  FIG. 3 is a perspective view of the nozzle groups 1 to 4 arranged opposite to the cooling roll (in this drawing, the configuration of the advance / retreat adjusting device is omitted). Of these, the nozzle headers a a and a c at both ends are used for cooling the plate edge, and the center nozzle header a b is used for cooling the plate center. These nozzle headers aa to ac are respectively controlled by the movement adjusting devices 820 to 822 according to the roll body length direction control command from the nozzle header position control arithmetic device 88, and the metal strip ends and the central portion are controlled. Moved and adjusted to the position.
また上記ノズルヘッダな a〜cr cの夫々のヘッダ内部の冷却ガス圧力調整は、 板 温制御演算装置 87からの指令により、 上記ノズルヘッダ a a〜ひ cへ通じる配管途 中に設置された圧力調節弁 840a〜840cに対する開度調整がなされて実施されるこ とになる。  The cooling gas pressure inside each of the nozzle headers a to c c is adjusted by a pressure from a plate temperature control arithmetic unit 87, which is installed in the middle of the piping leading to the nozzle headers aa to c. The opening degree of the valves 840a to 840c is adjusted and implemented.
図 4はロール冷却装置出側に配置し、 且つ金属帯に対向して配置した補助ガス 冷却装置のノズルヘッダ群の片側部分の斜視図である。 両端部にあるノズルへッ ダ ? aと/? cは板端部冷却に用いられ、 中央部のノズルヘッダ/? bは板中央部冷却に 用いられるものである。 これらのノズルヘッダ/? a〜 ? cは、 ノズルへヅダ位置制 御演算装置 88からのロール胴長方向位置制御指令により、 移動調整装置 830〜832 の制御が夫々なされ、 金属帯の板端部及び中央部へ相当する位置へ移動調整され る。  FIG. 4 is a perspective view of one side of a nozzle header group of the auxiliary gas cooling device disposed on the outlet side of the roll cooling device and opposed to the metal band. The nozzle headers? A and /? C at both ends are used for cooling the plate edge, and the nozzle header /? B at the center is used for cooling the plate center. These nozzle headers /? A ~? c is controlled by the movement adjustment devices 830 to 832 in accordance with the roll cylinder length direction control command from the nozzle head position control arithmetic unit 88, and moves to the position corresponding to the plate edge and center of the metal strip. It will be adjusted.
また上記ノズルヘッダ/? a〜 /5 c夫々のヘッダ内部の冷却ガス圧力調整は、 板温 制御演算装置 87からの指令により、 上記ノズルヘッダ a〜 cへ通じる配管途中 に設置された圧力調節弁 843a〜843cに対する開度調整がなされて実施されること になる。 (実施例 2) The cooling gas pressure inside the header of each of the nozzle headers /? A to / 5c is controlled by a pressure from the plate temperature control arithmetic unit 87. The opening degree adjustment for 843a to 843c is performed. (Example 2)
図 5は冷却ロールに対向して配置された請求の範囲第 5 1項に記載された金属 帯冷却装置のうちのガス冷却装置に係るノズルヘッダ群 al、 α 2の構成を示す斜 視図である (尚この図面では前記進退調整装置は省略) 。 このうち、 同図 (a) (b) に示された中央部ノズルヘッダ ad (ヘッダ本体) は金属帯中央部の冷却に 用いられ、 又、 同図 (a) (c) に示された両端部ノズルへヅダ aa〜ひ c及び α e〜ag (ヘッダ本体) は金属帯端部の冷却に用いられるものである。 上記の端部 冷却用のノズルヘッダのうち、 aaと agは外側に位置するヘッダ本体 10、 abと α fは中央部に位置するヘッダ本体 10、 c¾cと aeは内側に位置するヘッダ本体 10であ る。 上記の両端部ノズルヘッダ aa〜ac及び ae〜agは、 ノズルヘッダ位置制御 演算装置 88からの口ール胴長方向における位置制御指令により移動調整装置 820及 び 822を用いて、 金属帯の両端部へ向けて移動せしめられ、 その時中央部に位置す る前記ノズルヘッダひ!)及び によって適正な冷却幅が確保される位置にセット される。  FIG. 5 is a perspective view showing the configuration of the nozzle header groups al and α2 related to the gas cooling device of the metal strip cooling device described in claim 51 disposed opposite to the cooling roll. (Note that the advance / retreat adjusting device is omitted in this drawing). Of these, the central nozzle header ad (header body) shown in Figs. (A) and (b) is used to cool the center of the metal band, and both ends shown in Figs. (A) and (c). The heads aa to c and α e to ag (header body) are used to cool the metal band edge. Of the above-mentioned end cooling nozzle headers, aa and ag are the header body 10 located on the outside, ab and αf are the header body 10 located at the center, and c¾c and ae are the header body 10 located on the inside. is there. The nozzle headers aa to ac and ae to ag at both ends of the metal strip are moved by the movement adjusting devices 820 and 822 in accordance with the position control command in the nozzle barrel length direction from the nozzle header position control arithmetic unit 88. The nozzle header is positioned at the center, and is set at a position where an appropriate cooling width is ensured by the nozzle headers.
金属帯の板幅の異なる接続部近傍を除いた領域では、—中央部側のノズルヘッダ ad及び両端部側のノズルヘッダのうち中央部に位置するヘッダ本体 abと afの各 内部の冷却ガス圧力の調整を板温制御演算装置 87aからの制御指令に従って行なう c 他方金属帯の板幅の異なる接続部近傍の領域では、 前述したヘッダ本体内部の圧 力調整を行ないながら、 板幅が幅狭から幅広へ移行する場合については、 端部側 のノズルヘッダのうち外側に位置するヘッダ本体 aa、 agの各内部の冷却ガス圧 力の調整が、 また反対に板幅が幅広から幅狭へ移行する場合については内側に位 置するヘッダ本体 ac、 aeの各内部の冷却ガス圧力の調整が、 次サイズの金属帯 情報を持つ計算機 Cからの信号を基にして板温制御演算装置 87bからの制御指令に 従って夫々なされることになる。  In the area excluding the vicinity of the connection part where the metal strips have different widths, the cooling gas pressure inside each of the header bodies ab and af located at the center part of the nozzle header ad at the center part and the nozzle headers at both end parts C) On the other hand, in the area near the connection part where the metal strips have different widths, while adjusting the pressure inside the header body as described above, In the case of transition to a wider width, adjustment of the cooling gas pressure inside each of the header bodies aa and ag located on the outer side of the nozzle header on the end side, and conversely, the plate width shifts from wide to narrow In the case, adjustment of the cooling gas pressure inside each of the header bodies ac and ae located inside is controlled by the sheet temperature control arithmetic unit 87b based on the signal from the computer C that has the metal band information of the next size. According to the order Will be.
図 6は冷却ロール群の出側に設置され、 且つ金属帯に対向して配置された請求 の範囲第 52項記載の金属帯冷却装置における補助ガス冷却装置に設けられたノ ズルヘッダ群 ?1、 ff 2の斜視図である。 このうち同図 (a) (b) に示された中 央部側のノズルヘッダ5d (ヘッダ本体) は金属帯中央部の冷却に用いられ、 又同 図 (a ) ( c ) に示された両端部側のノズルヘッダのヘッダ本体^ a〜 ? c及び/? e〜 ? gは金属帯端部の冷却に用いられるものである。 上記端部冷却用のノズルへ ッダのうち/? aと >ff gは外側に位置するヘッダ本体、 ? bと 5 fは中央部に位置する へヅダ本体、 3 eと/? eは内側に位置するヘッダ本体である。 上記ヘッダ本体/? a〜 β c及び5 e〜 ? gはノズルへッダ位置制御演算装置 88から金属帯幅方向の位置制御 指令により移動調整装置 830及び 832を用いて、 金属帯の両端部へ向けて移動せし められ、 その時中央部に位置する前記ヘッダ本体/? b及び/? ίによって適正な冷却 幅となる位置にセ トされる。 FIG. 6 is a view showing a nozzle header group? 1, provided on an auxiliary gas cooling device in a metal band cooling device according to claim 52, which is provided on the outlet side of the cooling roll group and is arranged to face the metal band. 3 is a perspective view of ff 2. FIG. Of these, the nozzle header 5d (header body) on the center side shown in Figs. The header body ^ a ~ of the nozzle headers at both ends shown in Figs. c and /? e ~? g is used for cooling the end of the metal band. A and> ff g are the header body located outside,? B and 5 f are the header body located in the center, and 3 e and /? E are inside. Is the header body located at. Header body /? A ~ β c and 5 e ~? g is moved toward both ends of the metal band by using the movement adjusting devices 830 and 832 in accordance with the position control command in the metal band width direction from the nozzle head position control arithmetic unit 88, and at that time, it is located at the center. Is set at a position where an appropriate cooling width is obtained by the header body /? B and /?
金属帯の板幅の異なる接続部近傍を除いた領域では、 中央部のヘッダ本体 /9 d及 び端部側のノズルヘッダのうち中央部に位置するヘッダ本体/? bと 3 fの各内部の 冷却ガス圧力の調整を板温制御演算装置 87aからの制御指令に従って行なう。 他方 金属帯の板幅の異なる接続部近傍の領域では、 前述したヘッダ本体内部の圧力調 整を行ないながら、 板幅が幅狭から幅広へ移行する場合については端部側のノズ ルヘッダのうち外側に位置するヘッダ本体^ a、 3 gの各内部の冷却ガス圧力の調 整が、 反対に板幅が幅広から幅狭へ移行する場合については内側に位置するへ、:/ ダ本体 y5 c、 ? eの各内部の冷却ガス圧力の調整が、 次サイズの金属帯情報をもつ 計算機 Cからの信号を基に板温制御演算装置 87bからの制御指令に従って夫々なさ れることになる。  In the area excluding the vicinity of the connection part where the metal strips have different widths, the inside of the header body at the center / 9 d and the inside of the header body at the center of the nozzle header at the end / b and 3 f The cooling gas pressure is adjusted in accordance with a control command from the sheet temperature control arithmetic unit 87a. On the other hand, in the area near the connection part where the metal strips have different plate widths, while the pressure inside the header body is adjusted as described above, when the plate width shifts from narrow to wide, the outer part of the nozzle header on the end side Adjustment of the cooling gas pressure inside each of the header body ^ a, 3g located on the other side, on the contrary, when the plate width shifts from wide to narrow, it is located on the inside,: / The adjustment of the cooling gas pressure inside each of e is performed according to the control command from the sheet temperature control arithmetic unit 87b based on the signal from the computer C having the metal band information of the next size.
(実施例 3 ) (Example 3)
次にこのような金属帯冷却装置のガス冷却装置の別の構成として用いられる請 求の範囲第 3 2項記載の一実施例につき説明する。  Next, a description will be given of an embodiment described in Item 32 of the range of request used as another configuration of the gas cooling device of such a metal strip cooling device.
図 7乃至図 9は金属帯 Xの連続焼鈍炉のロール冷却装置に設けられている口一 ル背面冷却構成に該ガス冷却装置を用いた実施例構成を示している。  FIGS. 7 to 9 show an embodiment in which the gas cooling device is used for the back cooling structure of the nozzle provided in the roll cooling device of the continuous annealing furnace for metal strip X.
本実施例における炉殻に包囲された竪型のロール冷却装置構成では、 金属帯 X に所定の張力を与える入側ブライ ドルロール £ 1と出側ブライ ドルロール £ 2との 間に # 1から #7の冷却ロールが連続して垂直方向に設けられており、 該冷却ロール の夫々の水平方向の移動で金属帯 Xとの接触長の調整が図られる構成となってい る。 尚図中 91は入側プロフィル温度計、 90はロール冷却装置出側板温計、 92は同 出側プロフィル温度計、 又/? 1及び >5 2は補助ガス冷却装置を各示している。 In the configuration of the vertical roll cooling device surrounded by the furnace shell in the present embodiment, between # 1 to # 7 between the entrance bridle roll £ 1 and the exit bridle roll £ 2 for applying a predetermined tension to the metal strip X. The cooling rolls are continuously provided in the vertical direction, and the contact length with the metal strip X is adjusted by moving the cooling rolls in the horizontal direction. In the figure, 91 is the inlet profile thermometer, 90 is the roll thermometer outlet sheet thermometer, and 92 is the same. The outlet profile thermometer and /? 1 and> 52 indicate auxiliary gas cooling devices, respectively.
各冷却ロールに接触する金属帯 Xの接触部背面には、 湾曲した α ΐからひ 7のノ ズルヘッダ 1が設けられており、 また各ノズルヘッダ 1には図 8及び図 9に示され るように、 これを金属帯 Xの幅方向 (以後左右方向という) 及び金属帯表面に直 交する方向 (以後前後方向という) に動かす移動台 3が炉殻外部に設置されている c 上記ノズルヘッダ 1は、 各冷却ロールの幅方向に中央左右の 3つずつ設けられ、 また後段側の冷却ロールはその押し込み量が最大の時に合わせてその湾曲サイズ が決められており、 更に各幅は金属帯 X幅よりはるかに狭く、 幅方向温度分布不 均一の生じる時のホヅトポイント幅に応じて設計されている。 そしてそのガス吹 き出し側表面には水平方向に長いスリット状のノズル口が複数段に直って設けら れている。 更にその後方にはへ、ジダ 1に外部からの冷却ガスを供給し、 且つ該へッ ダ 1を支持するヘッダ支持部 100が設けられている。 このヘッダ支持部 100は炉殻の 外部に突出しているため、 その周囲と炉殻の貫通部の間に耐熱性のある非金属ジ ャパラ 101が用いられ、 気密性を保ちつつ十分なノズル移動範囲を確保できるよう にしている。 At the back of the contact part of the metal strip X that comes into contact with each cooling roll, a nozzle header 1 with a curved αΐ to 7 is provided, and each nozzle header 1 is as shown in FIGS. 8 and 9. in which the c the nozzle header 1 in the width direction (hereinafter the horizontal direction hereinafter) and straight direction orthogonal to the metal strip surface of the metal strip X mobile base 3 to move (hereinafter referred to as longitudinal direction) is installed in the furnace shell externally The cooling rolls at the center and right and left are provided in the width direction of each cooling roll, and the curved size of the cooling roll on the rear side is determined according to the maximum pushing amount. It is much narrower than the width and is designed according to the hot point width when the temperature distribution in the width direction becomes uneven. The gas outlet side surface is provided with a plurality of horizontally elongated slit-shaped nozzle openings. Behind it, a header supporting portion 100 for supplying a cooling gas from outside to the judder 1 and supporting the header 1 is provided. Since the header support portion 100 protrudes outside the furnace shell, a heat-resistant non-metallic jaw 101 is used between the periphery thereof and the penetrating portion of the furnace shell. Is ensured.
一方上記移動台 3は、 固定台 30の上に前後方向に架設されたガイ ドレール 31 a、 31 bと、 それに沿って移動可能な基台 32と、 該基台 32を前後方向に動かす駆動装置 33と、 前記基台 32上に中央及び左右用に各独立して左右方向に架設されたガイ ド レール 34a乃至 34cと、 それに沿って移動可能な各横移動台 35a乃至 35cと、 各横移 動台 35a乃至 35cを独立して左右方向に動かす駆動装置 36a乃至 36cとから構成され、 この横移動台 35a乃至 35c上に夫々の前記ヘッダ支持部 100が固定支持されている。 従って駆動装置 33によって 3つのノズルヘッダ 1は前後方向に同時に同一量だけ移 動することになるが、 中央左右の各ノズルヘッダ 1は駆動装置 36a乃至 36cによって 独立して左右方向に動くことになる。 なお上記駆動装置 33及び 36a乃至 36cは、 例 えば油圧シリンダ、 電動シリンダ、 ポールねじと電動機の組み合わせ等の直線運 動に供するものを用い、 またガイ ドレール 31 a、 31 b、 34a乃至 34cとして、 直動軸 受けを用いれば、 移動が高精度に行われることになる。 左右方向移動の移動速度 は次式数 1 8で、 また前後方向移動の移動速度は次式数 1 9で決定されるのが望 ましい。 【数 18】 On the other hand, the moving table 3 includes guide rails 31 a and 31 b erected in the front-rear direction on the fixed table 30, a base 32 movable along the guide rails 31 a and 31 b, and a driving device for moving the base 32 in the front-rear direction. 33, guide rails 34a to 34c independently erected in the left and right directions for the center and left and right on the base 32, and the horizontal movable bases 35a to 35c movable along the guide rails 34a to 34c. Drive units 36a to 36c for independently moving the moving tables 35a to 35c in the left-right direction. The header supporting units 100 are fixedly supported on the horizontal moving tables 35a to 35c. Therefore, the three nozzle headers 1 are simultaneously moved in the front-rear direction by the same amount by the driving device 33, but the nozzle headers 1 at the center left and right are independently moved left and right by the driving devices 36a to 36c. . The drive devices 33 and 36a to 36c are used for linear operation such as a hydraulic cylinder, an electric cylinder, a combination of a pole screw and an electric motor, and are used as guide rails 31a, 31b, 34a to 34c. If a linear bearing is used, the movement will be performed with high accuracy. It is desirable that the moving speed of the horizontal movement is determined by the following equation (18), and the moving speed of the front-rear movement is determined by the following equation (19). [Equation 18]
(AW/2) /VNKL/VS  (AW / 2) / VNKL / VS
但し AW 金属帯の幅変更量の最大値(mm)  However, the maximum value of the width change of the AW metal strip (mm)
VN1 へッダの移動速度(mm/niin)  VN1 header moving speed (mm / niin)
L 温度分布制御不能長さの許容値  L Temperature distribution uncontrollable length tolerance
VS 金属帯搬送速度(m/min)  VS Metal strip transfer speed (m / min)
【数 19】 但し VN2 :ヘッダの移動速度(mm/min) [Equation 19] where VN2 is the moving speed of the header (mm / min)
VR : ロール移動速度(mm/min) 以上のロール冷却装置における冷却ロールの移動と本実施例構成のガス冷却装 置の作動状態を次に説明する。 まず本ロール冷却装置では、 前述したように前記 ブライ ドルロール £ 1乃至 £2によりロール使用張力 (3kgf/mm2以上) まで該金 属帯 Xの張力を変更する。 次に各冷却ロール #1乃至 #7を水平方向に動かし、 金属 帯 Xに接触させ、 更にその押し込み量 (接触長) を調整しながら、 冷却量を調整 するのであるが、 本ロール冷却装置では金属帯幅方向に不均一温度分布が生じ易 く、 またその前段のガスジェッ ト帯 (図示無し) でそのような不均一温度分布が 生じていた場合はこのロール冷却装置でそれが助長されることになるため、 上記 ガス冷却装置でロール背面冷却を行う。 このロール背面冷却に当たっては、 前記 ノズルヘッダ 1の前後方向の動きの調整と、 左右方向の動きの調整とがあり、 夫々 分けて以下に説明する。 VR: Roll moving speed (mm / min) The following describes the movement of the cooling roll in the roll cooling device at a speed higher than or equal to the operation speed of the gas cooling device of the present embodiment. First, in the present roll cooling device, as described above, the tension of the metal band X is changed to the roll use tension (3 kgf / mm 2 or more) by the bridle rolls £ 1 to £ 2. Next, each cooling roll # 1 to # 7 is moved in the horizontal direction, brought into contact with the metal strip X, and the cooling amount is adjusted while adjusting the pushing amount (contact length). Non-uniform temperature distribution is likely to occur in the width direction of the metal band, and if such a non-uniform temperature distribution occurs in the preceding gas jet zone (not shown), it should be promoted by this roll cooling device. Therefore, the back surface of the roll is cooled by the gas cooling device. In the cooling of the back surface of the roll, there are adjustment of the movement of the nozzle header 1 in the front-rear direction and adjustment of the movement in the left-right direction, which will be described separately below.
まず前後方向の動きの調整であるが、 #1と #2の前段冷却ロールに対向するノズ ルヘッダ α 1及びひ 2群と、 #3乃至 #7の後段冷却ロールに対向するノズルヘッダ α 3及び α7群とは、 その動き方が違う。 即ちヘッダ α 1及びひ 2群は、 待避してあつ たリ トラク ト位置からパスラインにおける金属帯 Xと冷却ロール 及び #2の接触 開始と共に、 押し込み量を最大に取って前方に移動し、 更に冷却ロール #1及び #2 の押し込み量が大きくなると、 今度は逆に後方に移動して金属帯 Xとの離間距離 を一定に保てるようにする (冷却ロール # 1及び #2の押し込み量が小さくなるとこ の動きが逆になる) 。 一方、 パスラインにおける金属帯 Xと冷却ロール #3乃至 #7 の接触開始と共に、 ヘッダひ3乃至 α 7群は、 待避してあったリ トラクト位置 (口 ール最大押し込み量でノズルへヅダ長さが最^に取れるように設計してあるため、 あるロールが故障等で使用できなくなった時に接触防止の観点より決定した待避 位置) から一度前方に移動し、 以後冷却ロール #3乃至 #7の押し込み量が大きくな つても動かない。 この動きの差は、 冷却ロール押し込みによる金属帯 Xの鞍型変 形の発生及び冷却ロールにおけるヒートクラウンの発生を原因とする金属帯 X幅 方向の不均一温度分布を、 冷却ロールとの接触の初期のうちに解消しないと、 そ の温度分布不均一が更に助長されるからである (他に非常に低熱負荷の場合、 及び #2の冷却ロールでさえ、 最大押し込み量に達し得ない状態で冷却することも 有り得るため) 。 一 次にノズルヘッダの左右方向の動きの調整であるが、 ガスジエツト帯出側にお いて金属帯 X幅方向の温度分布をプロフィル温度計 91で測定し、 その温度分布が 不均一であれば、 その測定データとプロフィル温度計 91及び 92による板端部検出 データを基にロール背面冷却を行う中央、 左右の 3つのノズルヘッダ 1の冷却位置 を決め、 金属帯 Xの幅方向中央及び左右板端部のホットポィント位置にこれらの ノズルヘッダ 1を個別に動かす。 またこのようなノズルヘッダ 1の冷却位置設定は、 ロール冷却装置出側におけるプロフィル温度計 92による板温分布の測定結果に基 づいても行われているが、 このフィードパック制御より前者の制御の方が通常優 先して行われている (前者のフィードフォヮ一ド制御だけを実施しても後者のフ イードバック制御だけを実施してももちろん良い) 。 但し金属帯 X幅方向の温度 分布不均一の状態は、 板幅が変わっても通常中央部のホットボイントの位置は変 わらず且つ板端部よりも温度が低いため、 後述する図 1 0乃至図 1 2のように、 中央部のノズルヘッダ 1は、 左右方向には動かず前後方向にのみ動き、 またヘッダ の容量も左右のノズルヘッダ 1より小さくしても良い。 尚本実施例の構成では、 各 ヘッダのガス吹き付けによる冷却効率の制御は、 出側プロフィル温度計 92の測定 値に基づく吹付ガス量又はガス圧の制御により行われる。 またノズルヘッダ 1の左右への動きの調整は、 板幅が異なる接続部 (特異点) が 進入してくる時も必要となる。 即ちこの特異点情報をライン入側からトラッキン グして幅狭材から幅広材に変わる場合は、 該特異点が入側プロフィル温度計 9 1を 通過する以前に、 左右のノズルヘッダの所定位置への移動を完了させておき、 逆 に幅広材から幅狭材に変わる場合には、 該特異点が出側プロフィル温度計 92を通 過してから、 これらの左右ノズルヘッダを所定の位置へ向けて移動させ始める。 尚、 前記補助ガス冷却装置/? 1及び/? 2は、 本実施例のロール背面冷却構成で取 りきれなかった金属帯 X幅方向の温度分布不均一を解消するための補助的な構成 であり、 その後方で夫々のノズルヘッダを左右に動かし、 ホッ トポイントに向け て冷却ガスを噴出する構成を有している。 First of all, the adjustment of the movement in the front-rear direction is as follows: the nozzle headers α1 and α2 that face the front cooling rolls # 1 and # 2, and the nozzle header α3 that faces the rear cooling rolls # 3 to # 7. The way of movement is different from α7 group. That is, the headers α 1 and 2 move forward from the retracted retracted position, with the metal strip X in the pass line and the cooling roll and # 2 starting contacting with the maximum pushing amount, and Cooling rolls # 1 and # 2 When the push-in amount of the cooling rolls # 1 and # 2 decreases, the movement of the cooling rolls # 1 and # 2 decreases. Become) . On the other hand, along with the start of contact between the metal strip X and the cooling rolls # 3 to # 7 in the pass line, the headers 3 to α7 are moved to the retracted retract position (the nozzle length at the maximum pushing amount of the nozzle). Is designed so that it can be removed as much as possible, so that when a certain roll becomes unusable due to a failure or the like, it moves once from the evacuation position (determined from the viewpoint of contact prevention), and then cools rolls # 3 to # 7 It does not move even if the pushing amount is large. This difference in movement is due to the non-uniform temperature distribution in the width direction of the metal strip X caused by the saddle-shaped deformation of the metal strip X caused by the indentation of the cooling roll and the generation of a heat crown in the cooling roll. If not resolved early, the uneven temperature distribution will be further promoted (otherwise at very low heat loads, and even with # 2 cooling rolls, the maximum indentation cannot be reached. Cooling is also possible). First, adjust the horizontal movement of the nozzle header.The temperature distribution in the metal strip X width direction is measured by the profile thermometer 91 on the exit side of the gas jet, and if the temperature distribution is non-uniform, Based on the measured data and the plate edge detection data from the profile thermometers 91 and 92, determine the cooling positions of the three nozzle headers 1 at the center and left and right for cooling the back of the roll, and determine the center in the width direction of the metal strip X and the left and right plate edges. Move these nozzle headers 1 individually to the hot point positions. The setting of the cooling position of the nozzle header 1 is also performed based on the measurement result of the sheet temperature distribution by the profile thermometer 92 on the roll cooling device outlet side. Is usually prioritized (it is of course also possible to implement only the former feed-forward control or the latter only the feedback control). However, in the state where the temperature distribution in the metal band X width direction is non-uniform, the position of the hot point in the center usually does not change and the temperature is lower than the end of the plate even if the plate width changes. As shown in FIG. 12, the nozzle header 1 in the center moves only in the front-rear direction without moving in the left-right direction, and the capacity of the header may be smaller than that of the left and right nozzle headers 1. In the configuration of the present embodiment, the control of the cooling efficiency by blowing gas to each header is performed by controlling the amount of blowing gas or the gas pressure based on the measured value of the outlet profile thermometer 92. Adjustment of the left and right movement of the nozzle header 1 is also necessary when connecting parts (singular points) with different plate widths enter. In other words, if this singular point information is tracked from the line entry side and changes from narrow material to wide material, before the singular point passes through the entry-side profile thermometer 91, the singular point is moved to a predetermined position on the left and right nozzle headers. When the movement of the left and right nozzle headers is completed, and when the material changes from a wide material to a narrow material, the singular point passes through the outlet-side profile thermometer 92, and then the left and right nozzle headers are directed to predetermined positions. And start moving. The auxiliary gas cooling devices /? 1 and /? 2 are auxiliary structures for eliminating the nonuniform temperature distribution in the width direction of the metal strip X which could not be removed by the roll back cooling structure of the present embodiment. There is a configuration in which each nozzle header is moved left and right in the rear, and cooling gas is ejected toward the hot point.
以上の本実施例の作用効果につき説明する。 ロール背面冷却を行っていなかつ た従来のロール冷却装置では、 金属帯 X幅方向で前記図 4 2に示すような板温分 布不均一を生じていたが、 上記本実施例構成を用いることでそのような板温分布 不均一が解消されることになつた。 本実施例構成を用いた場合の板幅方向平均板 温に対する板温偏差は、 上記従来構成を用いた場合より小さくなつており、 且つ 本実施例構成では従来構成に比べて過冷却の領域も少な _く、 板温分布の均一化が 図られることになつた。  The operation and effect of the above embodiment will be described. In the conventional roll cooling device that did not perform the back surface cooling of the roll, the sheet temperature distribution was non-uniform as shown in FIG. 42 in the X-width direction of the metal band, but by using the configuration of the present embodiment described above. Such unevenness in sheet temperature distribution was eliminated. The sheet temperature deviation with respect to the average sheet temperature in the sheet width direction in the case of using the configuration of the present embodiment is smaller than that in the case of using the above-described conventional configuration. To a lesser degree, the plate temperature distribution was made uniform.
図 1 0乃至図 1 2は、 前述のように、 中央のノズルヘッダ 1が左右方向には動か ない請求の範囲第 3 3項の構成の実施例を示している。 即ち前記実施例の移動台 3の基台 32上に中央ノズルへヅダ 1のヘッダ支持部 100が直接固定されており (ガイ ドレール 34b、 横移動装置 35b、 駆動装置 36b等が無い。 図 1 2参照) 、 左右両端の ノズルヘッダ 1は、 図 1 1に示すように、 前記実施例と同様、 左右方向に動くこと ができる構成を備えている。 また金属帯 X幅方向の温度分布不均一の状態は、 板 中央部の方が板端部よりも温度が低いため、 本実施例では図 1 1乃至図 1 2のよ うに、 中央部のノズルヘッダ 1の冷却能力は左右のノズルヘッダ 1より小さい。 上記構成は、 パスラインが水平の場合にも適用される。 図 1 3乃至図 1 6は金 属帯 Xのパスラインが水平の場合のロール冷却装置に適用された請求の範囲第 3 .4項の構成を示している。 図 1 3において # 1乃至 #3は冷却ロールであり、 その背 面に湾曲したノズルヘッダ 1が設けられている。 これらのヘッダ支持部 100は炉殻 を貫通して外部に突出し、 その貫通部にジャバラ 1 0 1が付設されている。 FIGS. 10 to 12 show an embodiment of the configuration according to claim 33, wherein the central nozzle header 1 does not move in the left-right direction, as described above. That is, the header support portion 100 of the central nozzle 1 is directly fixed on the base 32 of the moving base 3 of the embodiment (there is no guide rail 34b, lateral moving device 35b, driving device 36b, etc.). As shown in FIG. 11, the nozzle headers 1 at the left and right ends have a configuration capable of moving in the left and right direction, as in the above-described embodiment. In addition, in the state where the temperature distribution in the metal band X width direction is non-uniform, the temperature at the center of the plate is lower than that at the end of the plate. Therefore, in this embodiment, as shown in FIGS. The cooling capacity of header 1 is smaller than that of left and right nozzle headers 1. The above configuration is also applied when the pass line is horizontal. FIGS. 13 to 16 show the configuration of claim 3.4 applied to the roll cooling device when the pass line of the metal band X is horizontal. In FIG. 13, reference numerals # 1 to # 3 denote cooling rolls, and a curved nozzle header 1 is provided on the back surface thereof. These header supports 100 are furnace shells , And protrudes to the outside, and a bellows 101 is attached to the penetrating portion.
図 1 4は前図の # 1冷却ロールの部分の横断面を示している。 ここでは金属帯 X の直上に 3つのノズルへヅダ 1が幅方向に並んで設けられており、 それらのヘッダ 支持部 100がジャバラ 1 0 1を介して炉殻外部に貫通している。 これらのヘッダ支持 部 1 00は、 外部で移動台 3により前後方向及び左右方向に移動可能な状態で、 支持 されている。 即ち該移動台 3の昇降台 37に貫通した前記ヘッダ支持部 100は、 図 1 5及び図 1 6に示されるように、 左右方向に昇降台 37上に設置されたガイ ドレ一 ル 34a乃至 34cに沿って移動可能な横移動台 35 a乃至 35 cに吊下されており、 更にこ のヘッダ支持部 1 00は駆動装置 36 a乃至 36 cのロッドに連結されていて、 該駆動装置 36 a乃至 36 cにより左右方向に動かされるため、 3つのノズルヘッダ 1は夫々左右方 向に移動できる。 一方前記昇降台 37は、 炉殻の固定部に設置された昇降装置 38a乃 至 38bのロッドに連結されており、 該昇降装置 38 a乃至 38bの駆動により前後方向に 移動できるようになつている。  FIG. 14 shows a cross section of the portion of the # 1 cooling roll in the preceding figure. Here, three nozzle headers 1 are provided in line with the width direction just above the metal strip X, and their header supporting portions 100 penetrate outside the furnace shell via bellows 101. These header support portions 100 are supported by the movable base 3 so as to be movable in the front-rear direction and the left-right direction outside. That is, as shown in FIG. 15 and FIG. 16, the header support portions 100 penetrating the lift table 37 of the movable table 3 are provided with guide rails 34a to 34c installed on the lift table 37 in the left-right direction. The header supporting portion 100 is connected to a rod of a driving device 36a to 36c, and is suspended from a horizontal moving table 35a to 35c that can move along the driving device 36a. To 36c, the three nozzle headers 1 can move left and right, respectively. On the other hand, the elevating table 37 is connected to a rod of an elevating device 38a to 38b installed on a fixed portion of the furnace shell, and can be moved in the front-rear direction by driving the elevating devices 38a to 38b. .
(実施例 4 ) (Example 4)
次に金属帯冷却装置の補助ガス冷却装置の他の構成として用いられる請求の範 囲第 4 1項記載の一実施例につき説明する。  Next, an embodiment according to claim 41 which is used as another structure of the auxiliary gas cooling device of the metal strip cooling device will be described.
図 1 7乃至図 1 8は本構成を金属帯 Xの連続焼鈍炉のロール冷却装置出側に設 けられている補助ガス冷却装置構成に用いた実施例構成を示している。  FIGS. 17 to 18 show an embodiment configuration in which this configuration is used for the configuration of the auxiliary gas cooling device provided on the roll cooling device outlet side of the continuous annealing furnace for the metal strip X.
本実施例における炉殻に包囲された竪型のロール冷却装置構成では、 金属帯 X と接触する # 1から # 7の冷却ロールが連続して垂直方向に設けられており、 更にそ の出側に本構成の補助ガス冷却装置の構成が備えられているのは、 前述の実施例 3と同じである。  In the configuration of the vertical roll cooling device surrounded by the furnace shell in the present embodiment, the cooling rolls # 1 to # 7 that are in contact with the metal strip X are continuously provided in the vertical direction, and further, the outlet side thereof The configuration of the auxiliary gas cooling device of this configuration is provided in the same manner as in the third embodiment.
本実施例では金属帯 Xのパスラインに平行にガイ ドレール 4が横架され、 該ガイ ドレール 4に沿って走行台車 5が走行可能に設けられており、 上記移動装置の構成 はこの 2つの構成により成り立つている。 また該走行台車 5にはガス噴出用ノズル の備えられた該金属帯の幅よりも狭いノズルへヅダ ?が、 パスライン方向にこれ と平行に、 片面側 2本、 表裏で計 4本 ( ? 1乃至/? 4 ) 据え付けられている。 前記 走行台車 5は、 走行機構 6によりガイ ドレール 4に沿って走行し、 それによつてノズ ルヘッダ ?は金属帯 X幅方向で移動することができる。 また各ノズルヘッダ ?に は、 ガス供給路となる配管 7が設けられており、 この配管 7は中央で 2つに分岐さ れて各ノズルヘッダ の上下に連結されている。 尚本実施例では、 図 1 7に示さ れるように、 金属帯 Xの幅方向略中央部にパスラインに沿って中央ノズルへヅダ 5及び/? 6 (反対面側) が固定されており、 金属帯 X幅方向中央部に発生するホ ッ トポイントを冷却できるようになつている。 但しこの部分のホッ トポイントは 金属帯 X幅が変わっても略同じ位置にあり、 該金属帯幅方向両端部のそれより通 常温度が低いため、 そのヘッダ位置は変わらず、 その長さは他のノズルヘッダ/? 1乃至 4より短いものとなっている。 In the present embodiment, a guide rail 4 is laid horizontally parallel to the pass line of the metal strip X, and a traveling carriage 5 is provided along the guide rail 4 so as to be able to travel. It is established by In addition, the traveling carriage 5 has nozzles, which are narrower than the width of the metal strip provided with the gas ejection nozzles, and are parallel to the nozzle in the direction of the pass line, two on one side and four on the front and back. 1 to /? 4) Installed. The traveling carriage 5 travels along the guide rail 4 by the traveling mechanism 6, thereby The header can be moved in the metal band X width direction. Further, each nozzle header is provided with a pipe 7 serving as a gas supply path, and this pipe 7 is branched into two at the center and connected above and below each nozzle header. In this embodiment, as shown in FIG. 17, headers 5 and / or 6 (opposite side) are fixed to the central nozzle along the pass line substantially at the center of the metal strip X in the width direction. The hot spot generated at the center of the metal strip in the X width direction can be cooled. However, the hot point of this part is almost the same position even if the metal band X width changes, and since the normal temperature is lower than that at both ends in the metal band width direction, the header position does not change and its length is It is shorter than other nozzle headers.
上記構成でガイ ドレール 4は、 金属帯 X片面側の上下に 2本、 表裏で計 4本該金 属帯 X表面に平行で且つその幅方向に横架されており、 そのうち上方のガイ ドレ ール 40及び 41は、 図 1 9及び図 2 0に示すように、 後述の上走行台車 50乃至 53の 円錐溝を有する車輪 500が載った時に遊びが出ないように断面楔型の構造をしてお り、 このような構造を取ることにより、 ノズルヘッダ ?と金属帯 Xの間隔を正確 に出せるようにしている。 また下方のガイ ドレール 42及び 43は、 図 1 9及び図 2 1に示すように、 ノズルヘッダ ?の熱膨張とレールの反り等の影響を考慮して、 下走行台車 54乃至 57の糸車状の車輪 501との間に逆に上方及び左右に遊び Y 1及び Y 2が出る構造を有している (Y1はノズルヘッダ/?の据え付け精度と熱膨張を考慮し て決定し、 Y2はレールの据え付け精度を考慮して決定する) 。 尚、 図 1 9に示す ように、 上下のガイ ドレール 4共、 金属帯 Xからの熱放射で局部加熱されて曲がら ないように、 該金属帯 Xに面する側に遮蔽板 502が設けられている。  In the above configuration, there are two guide rails 4 above and below the metal band X on one side, and a total of four on the front and back sides, and are laid horizontally across the surface of the metal band X and in the width direction thereof. As shown in FIGS. 19 and 20, the wheels 40 and 41 have a wedge-shaped cross section so that play does not occur when the wheels 500 having conical grooves of the upper traveling carts 50 to 53, which will be described later, are mounted. By adopting such a structure, the distance between the nozzle header and the metal strip X can be accurately determined. Also, as shown in FIGS. 19 and 21, the lower guide rails 42 and 43 take the shape of the spinning wheels of the lower carriages 54 to 57 in consideration of the effects of nozzle head thermal expansion and rail warpage. There is a structure in which play Y1 and Y2 come out upward and to the left and right between the wheel 501 (Y1 is determined in consideration of the installation accuracy and thermal expansion of the nozzle header / ?, and Y2 is the rail Determined in consideration of installation accuracy). As shown in FIG. 19, both the upper and lower guide rails 4 are provided with shielding plates 502 on the side facing the metal band X so that they are not locally bent by the heat radiation from the metal band X. I have.
また走行台車 5には、 上ガイ ドレール 40及び 41にその車輪 500を載せた上走行台 車 50乃至 53と、 下ガイ ドレール 42及び 43にその車輪 501を遊嵌させた下走行台車 5 4乃至 57とがあり、 そのうち上走行台車 50乃至 53がノズルへ ダ ?を実質的に吊下 した状態となっていて、 下走行台車 54乃至 57は長尺のノズルヘッダ が金属帯 X と平行を保つようにする役割を果たしている。  In addition, the traveling carriage 5 includes upper traveling carriages 50 to 53 in which the wheels 500 are mounted on the upper guide rails 40 and 41, and lower traveling carriages 54 to 53 in which the wheels 501 are loosely fitted in the lower guide rails 42 and 43. 57, of which the upper carriages 50 to 53 are in a state where the nozzle heads are substantially suspended, and the lower carriages 54 to 57 have long nozzle headers parallel to the metal band X. So that it plays a role.
前記ノズルへヅダ は、 パスライン方向に長尺のものを用いている。 またその 表面には金属帯 Xの幅方向に長いノズルが長尺方向に複数段設けられており、 そ のノズル幅は温 ΐ分布により予め決定されている。 更に該ノズルと金属帯 Xの間 隔は所要の熱伝達率が得られ且つ金属帯 Xとの接触が避けられる間隔にしておく 必要がある。 そして上述のように該ノズルヘッダ/?は上走行台車 50乃至 53に実質 的に吊下された状態になっており、 下走行台車 54乃至 57には補助的に支持されて いる。 The nozzle header is long in the direction of the pass line. A plurality of nozzles that are long in the width direction of the metal band X are provided on the surface in the longitudinal direction, and the nozzle width is determined in advance by the temperature distribution. Further, between the nozzle and the metal band X The gap must be such that the required heat transfer coefficient is obtained and contact with the metal strip X is avoided. As described above, the nozzle headers are substantially suspended from the upper traveling vehicles 50 to 53, and are supported by the lower traveling vehicles 54 to 57 in an auxiliary manner.
走行機構 6は、 炉殻外部に前記ガイ ドレール 4方向に沿って設けられた金属帯 X 幅方向片側上下で 2本、 表裏で 4本のスクリュージャッキ 600を、 更に両側で計 8 本備えた構成を基本構成とし、 これらにエキスパンジョン 601を周設して連結され たドライブシャフト 602と、 これらのスクリュージャッキ 600に夫々駆動力を与え る前記金属帯 X幅方向片側に 1つずつ備えられた駆動モータ 603a及び 603bと、 そ の駆動力伝達用のギアポヅクス 604と、 該スクリユージャヅキ 600の入力軸に夫々 備えられた駆動力伝達用の同期回転ギア 605及び上下の同期回転ギア 605間に掛け 回されたローラチェーン 606とからなる。 即ち図 2 2及び図 2 3に示すように、 駆 動モー夕 603a又は 603bは炉殻片側に 1つずつあり、 その回転軸は前記ギアボック ス 604に連結されて 2軸に分岐され、 該 2軸は夫々下側に設置されたスクリュージ ャヅキ 600の入力軸に接続し、 各スクリュージャッキ 600に連結されたドライブシ ャフト 602を進退せしめる。 夫々のドライブシャフト 602は前記下走行台車 54と 56、 又は 55と 57に連結されているため、 該ドライブシャフト 602の進退によって該下走 行台車は前記下ガイ ドレール 42及び 43に沿って走行する。 一方両スクリュージャ ヅキ 600の乂カ軸に取り付けられた駆動力伝達用の同期回転ギア 605は、 ローラチ エーン 606によってその回転駆動力を上方のスクリユージャヅキ 600側の同期回転 ギア 605に伝え、 該スクリユージャヅキ 600に連結されたドライブシャフト 602を同 じく進退せしめる。 従って 1つの駆動モー夕 603a又は 603bの回転で、 金属帯 X幅 方向片側で上下両面計 4台の上下走行台車 5が同期して夫々上下ガイ ドレール 40乃 至 43に沿って走行することが可能になる。 この上下走行台車が金属帯 X両面側で 同量だけ同じ方向に移動するため、 該上下走行台車に取り付けられたノズルへッ タ β \、 ? 2又は /5 3、 /5 4は金属帯 X幅方向の所定の箇所に傾かずに垂直状態のま ま移動できることになる。 尚図 2 2の 607はヘッダ位置を検出するセンサであり、 そこでスクリユージャヅキ 600の回転数を読み取ってモータ制御装置 608に伝える ことで、 該モ一夕制御装置 608により前記駆動モータ 603a又は 6.03bの回転制御を行 うことになる。 この時の走行台車の移動量は挿入される金属帯 Xの幅を考慮して 決定される。 The traveling mechanism 6 has a metal strip X provided on the outside of the furnace shell along the 4 directions of the guide rails. A drive shaft 602 connected peripherally with an expansion 601 is provided, and one is provided on each side of the metal band X in the width direction to apply a driving force to each of the screw jacks 600. The drive motors 603a and 603b, the drive force transmission gearbox 604, and the drive force transmission synchronous rotation gear 605 and the upper and lower synchronous rotation gears 605 provided on the input shaft of the screw wrench 600, respectively. The roller chain 606 is turned. That is, as shown in FIGS. 22 and 23, the driving motor 603a or 603b is provided on each side of the furnace shell, and the rotating shaft thereof is connected to the gear box 604 and branched into two shafts. The shafts are respectively connected to the input shafts of screw jacks 600 installed on the lower side, and drive shafts 602 connected to each screw jack 600 are moved forward and backward. Since the respective drive shafts 602 are connected to the lower traveling vehicles 54 and 56 or 55 and 57, the lower traveling vehicles travel along the lower guide rails 42 and 43 as the drive shaft 602 advances and retreats. . On the other hand, the synchronous rotating gear 605 for transmitting driving force, which is attached to the shaft of both screw jacks 600, transmits its rotational driving force to the synchronous rotating gear 605 on the upper screw jack 600 by the roller chain 606, Move the drive shaft 602 connected to the screwdriver 600 in the same way. Therefore, with the rotation of one driving mode 603a or 603b, the four vertical traveling carriages 5 on both sides in the X direction of the metal strip can travel along the upper and lower guide rails 40 to 43 in synchronization with each other. become. Since this vertical carriage moves in the same direction by the same amount on both sides of the metal belt X, the nozzle heads β \,? 2 or / 5 3 and / 5 4 attached to the vertical carriage have metal belt X It is possible to move vertically without tilting to a predetermined position in the width direction. Reference numeral 607 in FIG. 22 is a sensor for detecting the position of the header. The sensor 607 reads the number of rotations of the screw wrench 600 and transmits it to the motor control device 608. Control the rotation of b It will be. At this time, the moving amount of the traveling vehicle is determined in consideration of the width of the metal strip X to be inserted.
上記配管 7は、 図 1 7及び図 1 8に示すように、 炉殻外部から内部に貫通し、 そ こで上下に分岐され、 1本のノズルヘッダ ?の上部及び下部で連通しており、 冷 却ガスを外部から該ノズルへヅダ^内部に供給する。 但し前述のように、 ノズル ヘッダ/? 1乃至/? 4は、 走行台車 50乃至 57の走行によって金属帯 X幅方向に移動す るため、 該配管 7も上下に分岐した所で途中にエキスパンジョン 70を介在させて、 図 2 4に示すように、 ノズルへヅダ yff l乃至/? 4の移動に追随できるようにしてい る。 尚前述のように、 各ノズルヘッダ/? 1乃至 3 4による冷却量調整は、 該配管 7に よって供給される冷却ガスのガス圧の調整又はガス流量の調整によって行う。 又 上記エキスパンジョン 70の代わりに、 図 2 5に示すようなテレスコピヅク 71を伸 縮継手部としてその途中に介在させたり、 その他気密な状態で使用でき変形自在 な可堯構成を用いても良い。 ― 以上のロール冷却装置における本構成の補助ガス冷却装置の作動状態を次に説 明する。 前述のように、 前記ブライ ドルロール £ 1乃至 £ 2によりロール使用張力 ( 3 kgf/mm2以上) まで該金属帯 Xの張力が変更された時点で、 各冷却ロール # 1 乃至 #7を水平方向に動かし、 金属帯 Xに接触させ、 更にその押し込み量 (接触長 ) を調整しながら、 冷却量を調整するのであるが、 本ロール冷却装置でも上記ガ ス冷却装置でロール背面冷却を行う。 このロール背面冷却に当たっては、 前記口 ール背面冷却ヘッダひ1乃至 α 7の金属帯 X表面に直交する方向の動きの調整と、 その幅方向への動きの調整とによりホッ トポイントにこれらのヘッダ α 1乃至 α 7 を夫々移動させ、 適当な離間距離を保ってその部分の背面冷却を行う。 As shown in Fig. 17 and Fig. 18, the pipe 7 penetrates from the outside of the furnace shell to the inside, branches up and down there, and communicates with the upper and lower parts of one nozzle header. Cooling gas is supplied to the nozzle from the outside to the nozzle. However, as described above, since the nozzle headers /? 1 to /? 4 move in the metal band X width direction by traveling of the traveling carriages 50 to 57, the pipe 7 also expands halfway at the place where it is branched up and down. As shown in FIG. 24, the nozzle 70 can follow the movement of the nozzle yffl to /? 4 with the John 70 interposed. As mentioned earlier, each nozzle header /? The cooling amount adjustment by 1 to 34 is performed by adjusting the gas pressure or the gas flow rate of the cooling gas supplied by the pipe 7. Instead of the expansion 70, a telescopic 71 as shown in FIG. 25 may be interposed in the middle of the expansion joint, or a deformable flexible structure that can be used in an airtight state may be used. . -The operation state of the auxiliary gas cooling device of this configuration in the above roll cooling device will be described below. As described above, when the tension of the metal strip X is changed to the roll use tension (3 kgf / mm 2 or more) by the bridle rolls £ 1 to £ 2, the cooling rolls # 1 to # 7 are horizontally moved. To adjust the amount of cooling while adjusting the amount of contact (contact length) with the metal strip X. The roll cooling device also cools the back of the roll with the above gas cooling device. In this roll back cooling, the adjustment of the movement in the direction perpendicular to the surface of the metal band X of the above-mentioned cooling holes 1 to α7 of the roll rear cooling header and the adjustment of the movement in the width direction thereof make these hot points. The headers α 1 to α 7 are respectively moved, and the back surface of the portion is cooled while maintaining an appropriate separation distance.
この時該ロール冷却装置の補助冷却構成としてその後段に設けられた本実施例 の補助ガス冷却装置は、 上記ロール背面冷却構成で取りきれなかった金属帯 X幅 方向の温度分布不均一を解消しょうとするものであり、 その後方で夫々のノズル へヅダ /5 1乃至/? 4を左右に動かし、 金属帯 X両面からホツ トポィントに向けて冷 却ガスを噴出する。  At this time, the auxiliary gas cooling device of the present embodiment, which is provided at the subsequent stage as an auxiliary cooling configuration of the roll cooling device, is intended to eliminate the nonuniform temperature distribution in the metal belt X width direction which cannot be removed by the above-described roll back cooling configuration. After that, the respective nozzle headers 51 to /? 4 are moved left and right in the rear, and the cooling gas is jetted from both sides of the metal strip X toward the hot point.
この時のノズルヘッダの動きの調整であるが、 本ロール冷却装置出側において 金属帯 X幅方向の温度分布をプロフィル温度計 92で測定し、 その温度分布が不均 —であれば、 その測定データとプロフィル温度計 9 1及び 92による板端部検出デ一 夕を基に 4本のノズルヘッダ 1乃至/? 4の冷却位置を決め、 各駆動モー夕 603 a乃 至 603 bを駆動させて走行台車 50、 52、 54、 56の組と走行台車 5 1、 53、 55、 57の組 を夫々別個に移動させ、 金属帯 X幅方向の左右板端部のホツトポィント位置に、 金属帯 X両面で一体的に移動するノズルヘッダ/? 1及び /5 3と、 ? 2及び/? 4の組を 夫々動かす。 但し金属帯 X幅方向の温度分布不均一の状態は、 板幅が変わっても 通常中央部のホットポィントの位置は変わらず且つ板端部よりも温度が低いため、 前述のように、 中央部のノズルヘッダ/? 5乃至/? 6は、 該中央部で固定され動かず、 またヘッダの冷却能力も左右のノズルヘッダ /5 1乃至/? 4より小さい。 To adjust the movement of the nozzle header at this time, the temperature distribution in the metal strip X width direction was measured by the profile thermometer 92 on the exit side of the roll cooling device, and the temperature distribution was uneven. If so, the cooling positions of the four nozzle headers 1 to /? 4 are determined based on the measurement data and the plate edge detection data obtained by the profile thermometers 91 and 92. 603b to drive the traveling carriages 50, 52, 54, 56 and the traveling carriages 51, 53, 55, 57 separately, and move them to the hot strips at the left and right plate edges in the metal strip X width direction. Move the nozzle headers /? 1 and / 53, and? 2 and /? 4, which move together on both sides of the metal strip X, to the position. However, when the temperature distribution in the metal band X width direction is non-uniform, the position of the hot point in the center does not usually change even when the plate width changes, and the temperature is lower than the end of the plate. The nozzle headers 5 to 6 are fixed at the center and do not move, and the cooling capacity of the headers is also smaller than the left and right nozzle headers 51 to 4.
またノズルヘッダ 1乃至/? 4の金属帯 X幅方向への動きの調整は、 板幅が異な る接続部 (特異点) が進入してくる時も必要となる。 即ちこの特異点情報をライ ン入側からトラッキングして幅狭材から幅広材に変わる場合は、 該特異点が入側 プロフィル温度計 9 1を通過する前に、 これらのノズルへヅダ ? 1乃至/? 4の所定位 置への移動を完了させておき、 逆に幅広材から幅狭材に変わる場合には、 該特異 点が出側プロフィル温度計 92を通過してから、 これらのノズルへ、ソダ 1乃至 /5 4 を所定の位置へ向けて移動させ始める。  Adjustment of the movement of nozzle headers 1 to 4 in the metal band X width direction is also required when connecting portions (singular points) having different plate widths enter. In other words, when this singular point information is tracked from the line entrance side and changes from narrow material to wide material, before the singular point passes through the entrance-side profile thermometer 91, the nozzles are fed to these nozzles 1 to /? 4 has been moved to a predetermined position, and if the material changes from a wide material to a narrow material, the singular point passes through the outlet profile thermometer 92 and then goes to these nozzles. , Start to move soda 1 to / 5 4 toward a predetermined position.
以上の本実施例の作用効果につき説明する。 ロール背面冷却を行っていなかつ た従来のロール冷却装置では、 金属帯 X幅方向で前記図 4 2に示すような板温分 布不均一を生じていたが、 ロール背面冷却構成を用いることでそのような板温分 布不均一が緩和されることになつた。 更に本実施例構成では、 その後段に上記の ような補助ガス冷却装置構成を用いたため、 該板温分布の不均一はそれによつて 完全に解消されることになつた (前記図 5 6に略近い結果を得ている) 。  The operation and effect of the above embodiment will be described. In the conventional roll cooling device that did not perform roll back cooling, the plate temperature distribution was non-uniform as shown in Fig. 42 in the metal band X width direction. Such uneven distribution of the sheet temperature was alleviated. Further, in the configuration of the present embodiment, since the above-described auxiliary gas cooling device configuration was used in the subsequent stage, the nonuniformity of the plate temperature distribution was completely eliminated thereby (as schematically shown in FIG. 56). With close results).
本構成は、 パスラインが水平の場合にも適用される。 図 2 6乃至図 3 1は金属 帯 Xのパスラインが水平の場合のロール冷却装置に適用された請求の範囲第 4 1 項の構成を示している。 図 2 6は金属帯 Xの水平パスライン片側平面図であり、 金属帯 Xのパスラインに平行にガイ ドレール 4が横架され、 該ガイ ドレール 4に沿 つて走行台車 5が走行可能に設けられており、 また図 2 7に示されるように、 該走 行台車 5にはガス噴出用ノズルの備えられた該金属帯の幅よりも狭いノズルヘッダ βせ、 パスライン方向にこれと平行に据え付けられている。 前記走行台車 5は、 走 行機構 6 (炉殻外部に前記ガイ ドレール 4方向に沿って設けられた計 8本のスクリ ユージャヅキ 600と、 これらにエキスパンジョン 601を周設して連結されたドライ ブシャフト 602と、 これらのスクリュージャヅキ 600の入力軸に夫々駆動力を与え る駆動モー夕 603a及び 603bと、 該スクリュージャヅキ 600の各回転軸に夫々備えら れた駆動力伝達用の同期回転ギア 605及びこれらの同期回転ギア 605間に掛け回さ れたローラチェーン 606とで構成されている) によりガイ ドレール 4に沿って走行 し、 それによつてノズルへヅダ ?は金属帯 X幅方向で移動することができる。 但 し本実施例では金属帯 Xに力テナリが生じることもあるので、 下面側ノズルへッ ダ >5 3と/? 4の走行台車を案内するガイ ドレール 41及び 43の支持部には油圧又は空 圧のシリンダ 44を備えており、 該ヘッダ 3 3及び/? 4の高さを調整できるようにな つている。 This configuration is applied even when the pass line is horizontal. FIGS. 26 to 31 show the structure of claim 41 applied to the roll cooling device when the pass line of the metal strip X is horizontal. Fig. 26 is a plan view of one side of the horizontal pass line of the metal strip X.A guide rail 4 is suspended in parallel with the pass line of the metal strip X, and a traveling carriage 5 is provided along the guide rail 4 so as to be able to travel. As shown in FIG. 27, the traveling carriage 5 has a nozzle header β which is narrower than the width of the metal strip provided with the gas ejection nozzles, and is installed in the pass line direction parallel thereto. Have been. The traveling cart 5 is Line mechanism 6 (a total of eight screw guides 600 provided outside the furnace shell along the guide rails 4 direction, a drive shaft 602 connected around these by expansion 601, and these screws Driving motors 603a and 603b for applying a driving force to the input shaft of the jackjack 600, respectively, a synchronous rotating gear 605 for driving force transmission provided on each rotating shaft of the screwjacket 600, and their synchronous rotation. And a roller chain 606 wound around the gear 605), and travels along the guide rail 4, so that the nozzle header can move in the metal band X width direction. However, in the present embodiment, since there is a case where force tension occurs in the metal band X, the support of the guide rails 41 and 43 for guiding the traveling carriage of the lower side nozzle header> 5 3 and /? A pneumatic cylinder 44 is provided so that the height of the headers 33 and / or 4 can be adjusted.
図 2 8は前図における入側上方の走行台車 51の車輪 503とガイ ドレール 40の係合 状態を、 図 2 9は出側上方の走行台車 55の車輪 504とガイ ドレール 42の係合状態を、 図 3 0は入側下方の走行台車 53の車輪 503とガイ ドレール 41の係合状態を、 更に図 3 1は出側下方の走行台車 57の車輪 504とガイ ドレール 43の係合状態を各示してい る。 これらの図において、 上下共入側のガイドレール 40及び 41は、 前実施例にお いて示されたと同様に、 走行台車 51及び 53の円錐溝を有する車輪 503が載った時に 遊びが出ないように断面楔型の構造をしており、 また上下共出側のガイ ドレール 42及び 43は、 ノズルヘッダの熱膨張量 Δ 1を考慮して円盤形の通常の車輪 504が載 つた時にその表面上で摺動できるように少なくとも Δ 1の幅を有する平面状の構 成になっている。  Fig. 28 shows the engagement state between the wheel 503 of the traveling carriage 51 above the entrance side and the guide rail 40 in the preceding figure, and Fig. 29 shows the engagement state between the wheel 504 of the traveling carriage 55 above the exit side and the guide rail 42. Fig. 30 shows the engagement state between the wheel 503 of the traveling carriage 53 below the entry side and the guide rail 41, and Fig. 31 shows the engagement state between the wheel 504 of the traveling carriage 57 below the exit side and the guide rail 43. Is shown. In these figures, the guide rails 40 and 41 on the upper and lower entrance sides, as shown in the previous embodiment, prevent play when the wheels 503 having the conical grooves of the traveling carriages 51 and 53 are mounted. The guide rails 42 and 43 on the upper and lower sides of the upper and lower sides of the upper and lower sides of the disk-shaped normal wheel 504 take into account the thermal expansion amount Δ1 of the nozzle header. It has a planar configuration having a width of at least Δ1 so that it can be slid.
(実施例 5 ) (Example 5)
更に金属帯冷却装置が設けられるロール冷却装置として適する請求の範囲第 5 4項記載の実施例につき説明する。  An embodiment according to claim 54, which is suitable as a roll cooling device provided with a metal strip cooling device, will be described.
本構成では、 該ロール冷却装置 1000に用いられる冷却ロール #1〜#7の構造を、 ロール断面構造を示す図 3 2及びそのロール展開状態を示す図 3 3に示されるよ うな構造にすると共に、 これらの冷却ロール 〜 #7への冷却水の通水系統を図 3 4に示すようなものとした。 まず各冷却ロール 〜 #7とも、 冷媒通路である通水路ァを形成した内筒 1001と 焼き嵌めによってその周りに固定された外筒 1002からロール本体が構成されてい る。 このうち内筒 1001側に形成された通水路ァは、 図 33に示されるように、 ァ 1〜ァ 6の 6条が同一平面上で各平行にしかもロール軸方向にスパイラル状に周設 されている。 In this configuration, the structure of the cooling rolls # 1 to # 7 used in the roll cooling device 1000 is changed to the structure shown in FIG. 32 showing the roll cross-sectional structure and FIG. 33 showing the roll deployed state. The cooling water flow system to these cooling rolls # 7 was as shown in Fig. 34. First, in each of the cooling rolls # 7, a roll main body is composed of an inner cylinder 1001 having a water passage a as a refrigerant passage and an outer cylinder 1002 fixed therearound by shrink fitting. As shown in Fig. 33, the water passage a formed on the inner cylinder 1001 side has six lines a1 to a6 which are spirally arranged in parallel on the same plane, and spirally in the roll axis direction. ing.
また以上の構造を有する冷却ロール #1〜#7への通水系統は、 図 34に示される ように、 冷却水給水管 1010と冷却水排水管 1011とを共に 2系統設け、 冷却ロール 〜 #7群の片側で一方の給水管 1010aと排水管 1011bとを 1本おきに配管し、 また もう一方の側にそれらに対応する排水管 101 laと給水管 1010bとが配管されていて、 これらの給水 ·排水の配管が前後の冷却ロールで夫々反対になるように連結され ている。 そのため各冷却ロール #1〜#7の通水路ァにおける冷却水の流れの方向を 1本毎に反転させて供給できることになる。  As shown in Fig. 34, the cooling water supply system for cooling rolls # 1 to # 7 has two cooling water supply pipes 1010 and two cooling water drain pipes 1011. On one side of the 7 group, one water supply pipe 1010a and one drainage pipe 1011b are piped every other pipe, and on the other side, the corresponding drainage pipe 101la and water supply pipe 1010b are piped. The water supply and drainage pipes are connected by the front and rear cooling rolls so that they are opposite each other. Therefore, the flow direction of the cooling water in the water passages of the cooling rolls # 1 to # 7 can be reversed and supplied one by one.
尚上記通水路は、 本実施例ではァ 1〜ァ 6の 6条であるが、 この条数の一般的な 決定の仕方を以下に示す。 まず通水路内に流す冷却水の流速は、 高温となる通水 路出側付近の壁部分で、 1. 3〜4. Om/s e cとなるように設定されなけれ ばならない。 これは(1)熱負荷の高い (卷付角の大きい) ロール冷却装置の冷却口 ールでは通水路内で冷却水を沸騰させないようにしなければならず、 その場合の 流速は 1. 3m/s e c以上となること、 (2)ロール冷却装置毎に必要とされる交 換熱量が決まっているが、 図 35等からその所要交換熱量以上が得られる通水路 内の冷却水の流速が決定されること (例えば 0. 6m/s e c以上) 、 (3)通水路 内でスケールを発生させない流速として最低でも 0. 6m/s e c以上が必要と なること等から、 (1)の条件が律速となって通水路内の流速の下限が決定されるか らであり、 他方(4)該流速が 4. Om/s e cを超えると、 図 36に示すように、 冷却水を送るポンプの圧力損失が 4. 4kg/cm2以上に達し、 動力損失及びス ケール付着時の圧損増大が著しいことから、 その流速の上限が決定されるためで ある。 In the present embodiment, the number of the water passages is six (a1 to a6). The general method of determining the number of waterways is shown below. First, the flow velocity of the cooling water flowing into the water channel must be set to 1.3 to 4. Om / sec at the wall near the outlet side of the water channel where the temperature becomes high. This is because (1) it is necessary to prevent the cooling water from boiling in the water passage at the cooling hole of the roll cooling device with high heat load (large winding angle), and the flow velocity in that case is 1.3 m / (2) The required amount of exchange heat is determined for each roll cooling device.However, the flow rate of cooling water in the water passage that can obtain the required amount of exchange heat or more is determined from Fig. 35 etc. (For example, 0.6 m / sec or more). (3) Since the minimum flow velocity that does not generate scale in the water channel is 0.6 m / sec or more, condition (1) is rate-limiting. (4) If the flow velocity exceeds 4. Om / sec, as shown in Figure 36, the pressure loss of the pump that sends the cooling water will decrease by 4%. . 4 kg / cm 2 or more to reach, so that the power loss and scale adhesion during pressure drop increase is significant, the upper limit of the flow rate determined This is because to be.
また上記流速の範囲で通水路内の水温が 7 OeCを超えると、 スケールが発生し 易くなるため、 各冷却ロールの出口水温は 7 OeC以下に設定しなければならない。 —方図 37のフローチャートに示す手順に従って、 金属帯と冷却水の交換熱量 QHと金属帯の冷却熱量 Q sとが等しくなるまで各ロールにおける伝熱計算を行い、 それから各ロールの冷却速度 CR (J) 、 平均冷却速度 ACR、 平均総括熱吸収 率 AU。を計算する。 Also the water temperature in the water passage in the range of the flow rate exceeds 7 O e C, since the scale is easily generated, the outlet temperature of the cooling roll must be set below 7 O e C. -Exchange heat of metal strip and cooling water according to the procedure shown in the flowchart of Figure 37. Q H and until the cooling heat Q s of the metal strip becomes equal to perform the heat transfer calculation of each roll, then the cooling rate CR of each roll (J), average cooling rate ACR, the average overall heat absorption rate AU. Is calculated.
そして以上の冷却水流速、 ロール出口水温、 各ロールの冷却速度 CR ( J) 、 平均冷却速度 A C R、 平均総括熱吸収率 AU oからこれらを満たす通水路の条数が 選定されることになる。  Then, the number of water passages satisfying these is selected from the above cooling water flow rate, roll outlet water temperature, cooling rate CR (J) of each roll, average cooling rate ACR, and average overall heat absorption rate AUo.
上記図 37のフローチャートに示す計算は以下のようになる。 まず金属帯 X最 大巻き付け時のロールポジション [X (I) 、 Y (I) ] の読み込みを行い、 そ の位置を初期値とする。 そして金属帯 Xのロール卷付長 LS (I) 、 卷付角 AR The calculation shown in the flowchart of FIG. 37 is as follows. First, the roll position [X (I), Y (I)] at the time of the maximum winding of the metal strip X is read, and that position is set as the initial value. And the roll length LS (I) of the metal band X and the winding angle AR
(1) 、 トータル卷付長 TLL、 トータルパス長 LOを計算する。 次に入口金属 帯温度 TSEを TS (I) 、 入口水温 TWEを TWE (I) 、 卷付長 LSを LS(1) Calculate the total winding length TLL and total path length LO. Next, the inlet metal zone temperature TSE is TS (I), the inlet water temperature TWE is TWE (I), and the winding length LS is LS.
(I) 、 卷付角 ARを AR (I) 、 ロールシェル厚さ RSTを RT (I) 、 ロー ル径 Dを D (I) として条件設定を行う。 これらを基に次のような手順に従い、 ロール出口板温 TSD、 ロール出口水温 TWD、 金属帯 Xと冷却水の交換熱量 Q H、 総括熱吸収率 Uoを求める。 即ち①ロール出口板温 TSDを仮定し、 下式数 2 0より金属帯 Xの冷却熱量 Qsを求める。 ②該冷却熱量 Qsを冷却水の持ち去る 熱 Qwとし、 シェル内面温度 TRS Iを下式数 21より求める。 ③この冷却熱量 Qsをロールシェルの熱伝導による熱量 QRとし、 シェル外面温度 TR SOを下式 数 22より求める。 ④この TRSOより低温側材料の熱伝導率 λι^を求め、 また金 属帯 X温度を TRSA= (TSE + TSD) Z2とし、 高温側材料の熱伝導率え Hを求める。 ⑤この TRSAよりビヅカース硬さ Hvを求め、 また口一ル径 D、 金 属帯厚さ ST、 ライン張力 LTENSより面圧 Pを求める。 ⑥これらの久ぃ え H、 P、 Hvより下式数 23に基づき接触熱コンダクタンス H cを求める。 ⑦この H cから下式数 24及び数 25を使って総括熱吸収率 Uo、 金属帯と水の交換熱量 QHを求める。 ⑧前記金属帯の冷却熱量 Qsが該金属帯と水の交換熱量 QHと等し くなるまで、 ロール出口板温 T SDを再設定し、 上記①〜⑦の手順を繰り返す。 以上の①〜⑧までの伝熱計算を 1つの冷却ロールについて終了したら、 その口一 ル出口板温 TSDを次の冷却ロールの入口板温 TS Iとし、 その他の TWD、 U 。、 QHの値は同値として記憶し、 各ロールの伝熱計算を繰り返す (1= 1〜口一 ル本数 NR) 。 最終冷却ロール出口板温 T S (NR+ 1) が目標板温 TSDAと 等しければ、 各ロールの冷却速度 CR (J) 、 平均冷却速度 ACR、 平均総括熱 吸収率 AU。を計算し、 その結果をァゥトプッ トする。 他方両値が等しくなければ、 移動制御が行われる冷却ロールの移動量 DYを計算し、 該ロール [CRT (I) = 1] のみロールポジションの再設定を行い、 再び戻って金属帯 Xのロール卷付 長 LS (I) 、 卷付角 AR (I) 、 トータル巻付長 TLL、 トータルパス長 LO の計算からやり直す。 (I), the winding angle AR is AR (I), the roll shell thickness RST is RT (I), and the roll diameter D is D (I). Based on these, the roll exit plate temperature TSD, the roll exit water temperature TWD, the heat exchange quantity Q H of the metal strip X and the cooling water, and the overall heat absorption rate Uo are determined according to the following procedures. That is, (1) Assuming the roll exit sheet temperature TSD, the cooling heat quantity Qs of the metal strip X is obtained from the following equation (20). (2) Using the cooling heat Qs as the heat Qw to carry away the cooling water, calculate the shell inner surface temperature TRS I from the following equation (21). ③ the amount of heat Q R The cooling heat Qs due to heat conduction of the roll shell is obtained by the following equation number 22 shell external surface temperature TR SO.求 め From this TRSO, calculate the thermal conductivity λι ^ of the low-temperature side material. Set the metal band X temperature to TRSA = (TSE + TSD) Z2, and calculate the thermal conductivity H of the high-temperature side material.求 め Calculate the Beakers hardness Hv from this TRSA, and obtain the surface pressure P from the mouth diameter D, metal band thickness ST, and line tension LTENS.接触 The contact thermal conductance Hc is calculated from these values H , P, and Hv based on the following equation (23).か ら From this H c, obtain the overall heat absorption rate Uo and the exchange heat Q H of the metal strip and water using the following formulas 24 and 25.ま で Reset the roll exit plate temperature T SD until the cooling heat quantity Qs of the metal strip becomes equal to the heat exchange quantity Q H of water between the metal strip and water, and repeat the above steps ① to ⑦. When the above heat transfer calculations from (1) to (4) are completed for one cooling roll, the outlet plate temperature TSD of the cooling roll is set as the inlet plate temperature TSI of the next cooling roll, and the other TWD and U are set. , The value of Q H is stored as equivalence, repeated heat transfer calculation of each roll (1 = 1 to port one Number NR). If the final cooling roll outlet sheet temperature TS (NR + 1) is equal to the target sheet temperature TSDA, the cooling rate CR (J), average cooling rate ACR, and average overall heat absorption rate AU of each roll. Is calculated and the result is output. On the other hand, if both values are not equal, the movement amount DY of the cooling roll for which movement control is performed is calculated, the roll position is reset only for the roll [CRT (I) = 1], and the roll returns to the roll of the metal band X. Start again by calculating the winding length LS (I), winding angle AR (I), total winding length TLL, and total path length LO.
【数 20】 [Equation 20]
0. s = (HSE-HSD) X ST XWXVX 60x7. 85 x 10  0.s = (HSE-HSD) X ST XWXVX 60x7.85 x 10
但し HSE ス トリ ヅプ入口含熱量(kcal/kg)  However, HSE strip inlet heat content (kcal / kg)
HSD ストリヅプ出口含熱量(kcal/kg)  HSD strip outlet heat content (kcal / kg)
ST ストリヅプ厚さ (mm)  ST Strip thickness (mm)
W ストリツブ幅(mm)  W Strip width (mm)
V ラインスビード (mpm)  V Lines Bead (mpm)
【数 21】 [Equation 21]
QW = ALPH I X AI X (TRS I - TWA)  QW = ALPH I X AI X (TRS I-TWA)
但し ALPH I :管内熱伝達率(kcal/m2heC) However, ALPH I: Heat transfer coefficient in pipe (kcal / m 2 h e C)
A I :通水路伝熱面積(m2) AI: Heat transfer area (m 2 )
【数 22】 [Equation 22]
QR = THCRSAxRSTx l O"3 AMx (TRSO-TRS I) 但し THCRSA: シェルの熱伝導率(kcal/mh。C) QR = THCRSAxRSTx l O " 3 AMx (TRSO-TRS I) THCRSA: Thermal conductivity of shell (kcal / mh.C)
AM : 平均伝熱面積(m2) AM: Average heat transfer area (m 2 )
【数 23】 [Equation 23]
P  P
Hc=3xl0 x ( ) +2X103 Hc = 3xl0 x () + 2X10 3
Ηυ λム +λ« 但し H c :接触熱コンダクタンス (kcal/m2h。C) 【数 24】 Λ λm + λ « Where H c: contact thermal conductance (kcal / m 2 h. C)
Uo= 20. 1 X H c 8x R S T 22x AR— 0.23 Uo = 20. 1 XH c 8 x RST 22 x AR- 0. 23
但し U。:総括熱吸収率(kcal/m2heC) But U. : Overall heat absorption rate (kcal / m 2 h e C)
【数 25】 [Equation 25]
QH=UoXWxLS l O-exTM Q H = UoXWxLS l O- e xTM
但し L S :卷付長(mm)  Where L S: winding length (mm)
TM:対数平均温度差 C) 以上の構成からなる本実施例の連続焼鈍ラインでは、 テンションレベラ 2004を 直火式還元加熱炉 2007の上流側に配置したことによって、 該加熱炉 2007内におけ る金属帯 Xの通板性が改善されると共に、 該直火式還元加熱炉 2007における還元 加熱特性も安定して得られることになる。  TM: Logarithmic average temperature difference C) In the continuous annealing line of the present embodiment having the above configuration, the tension leveler 2004 is disposed in the upstream of the direct-fired reduction heating furnace 2007, so that the inside of the heating furnace 2007 can be obtained. The plateability of the metal strip X is improved, and the reduction heating characteristics in the direct-fired reduction heating furnace 2007 can be stably obtained.
また該テンションレベラ 2004によって金属帯 Xの伸びの発生する部分の形状矯 正が可能となり、 前記ガスジェツ ト冷却帯 2010における絞り発生がなくなると共 に、 ロール冷却装置 1000における絞り発生及び不均一冷却が大幅に改善され、 そ の結果該ラインにおける金属帯 Xの蛇行の発生がなくなり、 且つ得られた製品の 品質が向上することになつた。 更にラジアントチューブ式加熱炉 2008同均熱炉 20 09におけるチューブとの接触、 前記ガスジェヅ ト冷却帯 2010におけるガスジェヅ トノズルとの接触、 ロール冷却装置 1000におけるロール背面冷却用ガス吹付けを 行うノズルへヅダ α1〜α7との接触や急熱炉 2012におけるガスジェヅ トノズルと の接触の問題もなくなった。  In addition, the tension leveler 2004 makes it possible to correct the shape of the portion where the metal strip X elongates. In addition to eliminating the drawing in the gas jet cooling zone 2010, the drawing and non-uniform cooling in the roll cooling device 1000 are reduced. It was greatly improved, and as a result, the meandering of the metal strip X in the line was eliminated, and the quality of the obtained product was improved. In addition, the radiant tube type heating furnace 2008, the contact with the tube in the equalizing furnace 2009, the contact with the gas jet nozzle in the gas jet cooling zone 2010, and the nozzle α1 for blowing the gas for cooling the back surface of the roll in the roll cooling device 1000. The problem of contact with α7 and the contact with the gas jet nozzle in the rapid heating furnace 2012 has also been eliminated.
本実施例のロール冷却装置 1000における冷却ロール #1〜#7の通水方法とその移 動、 及びそのロール背面冷却用のノズルヘッダ ΐ〜ひ 7の作動状態を次に説明す る。 まず本ロール冷却装置 1000の稼働の準備段階では、 前記図 34に示した通水 系統に冷却水を流し、 各冷却ロールの 6条全ての通水路ァ 1〜ァ 6における冷却水 の流れの方向をロール 1本毎に反転させて供給する。 またブライ ドルロール £ 1及 び £ 2によりロール使用張力 (S kgfZmm2以上) まで該金属帯 Xの張力を変更した 後、 各冷却ロール # 1乃至 #7を水平方向に動かし、 金属帯 Xに接触させ、 更にその 押し込み量 (接触長) を調整しながら、 冷却量を調整する。 The method of passing water through the cooling rolls # 1 to # 7 in the roll cooling apparatus 1000 of the present embodiment, the movement thereof, and the operating state of the nozzle headers 7 to 7 for cooling the back of the rolls will be described below. First, in the preparation stage of the operation of the roll cooling device 1000, the cooling water is supplied to the water supply system shown in FIG. 34, and the direction of the flow of the cooling water in all the six water passages a1 to a6 of each cooling roll. Is supplied in reverse for each roll. Also a bridle roll of £ 1 After changing the tension of the metal strip X to the working tension of the roll (S kgfZmm 2 or more) with the pressure roll and £ 2, move each cooling roll # 1 to # 7 in the horizontal direction, contact the metal strip X, and further press the amount Adjust the cooling amount while adjusting (contact length).
本実施例の冷却ロール 〜 #7では、 スパイラル状に付設される通水路ァ 1〜ァ 6 が 6条設けられたため、 全体的に通水路ァ 1〜ァ 6の各長さを短くでき、 該通水路 を流れる夫々の冷却水の交換熱量を少なくすることができる。 その結果各通水路 出側に近い端部側ロール表面でも金属帯 Xの冷却には十分効果があり、 冷却後該 金属帯 Xでは温度分布が幅方向で略シンメトリーな状態となる。 また各冷却ロー ル 〜 #7の通水路ァにおける冷却水の流れの方向を 1本毎に反転させて供給して いるため、 通水路ァ入側に近い端部側ロール表面と出側に近い端部側ロール表面 との間の温度勾配がロール 1本毎に逆になり、 最終的には後段の冷却ロールでは、 その温度勾配自身がなくなる。  In the cooling rolls # 7 of the present embodiment, since six water passages a1 to a6 provided in a spiral shape are provided, each length of the water passages a1 to a6 can be shortened as a whole. The amount of exchange heat of each cooling water flowing through the water channel can be reduced. As a result, the cooling of the metal strip X is sufficiently effective even at the end roll surface near the outlet side of each water passage, and after cooling, the metal strip X has a substantially symmetrical temperature distribution in the width direction. In addition, since the direction of the flow of cooling water in each of the cooling rollers # 7 to # 7 is reversed and supplied one by one, it is close to the roll surface on the end side near the inlet side of the water channel and near the outlet side. The temperature gradient between the end roll surface and each roll is reversed for each roll, and finally the temperature gradient itself disappears in the subsequent cooling roll.
(実施例 6 ) (Example 6)
最後に上記実施例 1の金属帯冷却装置構成を用いた請求の範囲第 6 4項の金属 帯冷却方法につき、 その一実施例を次に説明する。  Finally, one embodiment of the metal strip cooling method according to claim 64 using the configuration of the metal strip cooling apparatus of the first embodiment will be described below.
図 2に示されたロール冷却装置において、 本実施例では以下に示す金属帯冷却 構成でロール背面冷却を行う。  In the roll cooling device shown in FIG. 2, in the present embodiment, the back surface of the roll is cooled by the metal band cooling configuration described below.
即ち冷却ロール群 乃至 #4の出側に設置された板温計 90aで金属帯 Xの巾方向板 温分布を検出し、 その温度信号に基づき板温制御演算装置 87によって金属帯中央 部板温と目標板温とを比較し、 その板温偏差に基づく平均板温制御に関しては、 冷却ロール群 # 1乃至 #4の各ロールと金属帯 Xとの接触長の調整を接触長調整装置 80により行なう。  That is, the sheet temperature distribution in the width direction of the metal strip X is detected by the sheet thermometer 90a installed on the outlet side of the cooling roll group to # 4, and based on the temperature signal, the sheet temperature control arithmetic unit 87 causes the sheet temperature in the center of the metal strip to be measured. And the target sheet temperature, and for the average sheet temperature control based on the sheet temperature deviation, the contact length adjusting device 80 adjusts the contact length between each roll of the cooling roll groups # 1 to # 4 and the metal strip X. Do.
また目標板温分布に基づく板温分布制御に関しては、 まず冷却ロール # 1乃至 #4 に対向して設置されたガス冷却装置のノズルヘッダひ 1〜ひ 4と金属帯 Xとが接触 しないように、 冷却ロール群 # 1乃至 #4の各ロールの位置からこれらの冷却ロール に卷付いた金属帯 Xの軌跡を求め、 適正な離間距離となるように、 進退調整装置 81を用いて該ガス冷却装置の各ノズルヘッダを冷却ロール移動方向で動かし、 そ の位置を調整する。 次に該冷却ロール群 # 1乃至 #4の入側 · 出側に設置した金属帯両端部位置検出器 89で検出された金属帯両端部の位置信号から、 前記ガス冷却装置及び冷却ロール 群 # 1乃至 #4の出側に設置された補助ガス冷却装置の夫々の位置における金属帯 X の両端部及び巾方向中心について位置制御演算装置 88で推定し、 上記ガス冷却装 置及び補助ガス冷却装置の各ノズルヘッダに夫々連結された移動調整装置 82及び 83を用いて、 両端部側のノズルヘッダ及び中央部のノズルヘッダを金属帯巾方向 に動かし、 両端部側のノズルヘッダについては前記数 8或いは数 9の式に示され る冷却巾 (ノズルヘッダと金属帯の重なった部分の冷却幅) となるように、 又中 央部のノズルヘッダについては金属帯巾方向の中心とノズルヘッダの中心が一致 するように夫々位置調整を行なう。 図 3及び図 4を用いて具体的に説明すると、 冷却ロールに対向して設置された各ガス冷却装置のうちの両端部側のノズルへツ ダ a a及び a cは、 該移動調整装置 82のうち両端部ノズルヘッダに連結された移動 調整装置 820及び 822を用いて位置調整され、 又中央部のノズルヘッダ a bは、 該移 動調整装置 82のうち中央部ノズルヘッダに連結された移動調整装置 821を用いて位 置調整される。 同様に冷却ロール群 # 1乃至 #4の出側に設置された補助ガス冷却装 置のうち両端部側のノズルヘッダ a及び/? cは、 該移動調整装置 83のうち両端部 ノズルヘッダに連結された移動調整装置 830及び 832を用いて位置調整され、 又中 央部のノズルヘッダ /5 bは、 該移動調整装置 83のうち中央部ノズルヘッダに連結さ れた移動調整装置 831を用いて位置調整される。 Regarding the sheet temperature distribution control based on the target sheet temperature distribution, first, make sure that the metal strip X does not come into contact with the nozzle headers 1 to 4 of the gas cooling device installed facing the cooling rolls # 1 to # 4. The trajectory of the metal band X wound around these cooling rolls is obtained from the position of each roll of the cooling roll groups # 1 to # 4, and the gas cooling is performed using the advance / retreat adjusting device 81 so that the proper separation distance is obtained. Move each nozzle header of the device in the cooling roll movement direction and adjust its position. Next, from the position signals of both ends of the metal band detected by the metal band both end position detectors 89 installed on the entrance side and the exit side of the cooling roll groups # 1 to # 4, the gas cooling device and the cooling roll group # The position control arithmetic unit 88 estimates both ends and the center in the width direction of the metal strip X at the respective positions of the auxiliary gas cooling devices installed on the outlet side of Nos. 1 to # 4, and the above gas cooling device and auxiliary gas cooling device Using the movement adjusting devices 82 and 83 connected to the respective nozzle headers, the nozzle headers at both ends and the central portion are moved in the metal band width direction. Alternatively, the cooling width (the cooling width of the overlapping part of the nozzle header and the metal band) shown in the formula (9) is used, and the center of the nozzle header at the center is in the width direction of the metal band and the center of the nozzle header. So that Perform 's position adjustment. More specifically, referring to FIGS. 3 and 4, the heads aa and ac of the nozzles at both ends of each gas cooling device installed opposite to the cooling roll are The position is adjusted by using the movement adjusting devices 820 and 822 connected to the nozzle headers at both ends, and the center nozzle header ab of the movement adjusting device 82 is connected to the movement adjusting device 821 connected to the center nozzle header. The position is adjusted using. Similarly, the nozzle headers a and /? C at both ends of the auxiliary gas cooling device installed on the outlet side of the cooling roll groups # 1 to # 4 are connected to the nozzle headers at both ends of the movement adjusting device 83. The position is adjusted using the adjusted movement adjusting devices 830 and 832, and the central nozzle header / 5b is adjusted using the adjusted movement device 831 connected to the central nozzle header of the adjusted movement devices 83. The position is adjusted.
そして冷却ロール群 乃至 #4の出側に設置された板温計 90a及び補助ガス冷却装 置の出側に設置された板温計 90bで検出された金属帯 Xの巾方向温度信号を基に板 温制御演算装置 87によってその測定板温の温度分布と目標板温分布とを比較し、 その板温偏差に対応させて各ガス冷却装置及び補助ガス冷却装置のノズルヘッダ ひ、 /5内部の冷却ガス圧力 (圧力計は省略) にっき冷却ガス供給ブロワ 85a及び 8 5bの回転数或いは圧力調節弁 84a〜84eの開度のうち少なくとも一方を用いてその 調整を行ない、 その調整された冷却ガスを金属帯 Xに吹き付ける。 尚冷却ガスは 炉内 (図 2では省略) より熱交換装置 86、 冷却ガス供給ブロワ 85を通して各ガス 冷却装置及び補助ガス冷却装置へ供給される。  Then, based on the width direction temperature signals of the metal strip X detected by the sheet thermometer 90a installed on the outlet side of the cooling roll group to # 4 and the sheet thermometer 90b installed on the outlet side of the auxiliary gas cooling device. The temperature distribution of the measured plate temperature is compared with the target plate temperature distribution by the plate temperature control arithmetic unit 87, and the nozzle headers of each gas cooling device and the auxiliary gas cooling device, Cooling gas pressure (pressure gauge is omitted) Adjustment is performed using at least one of the rotation speed of the cooling gas supply blowers 85a and 85b or the opening of the pressure control valves 84a to 84e, and the adjusted cooling gas is discharged. Spray on metal strip X. The cooling gas is supplied from the inside of the furnace (omitted in FIG. 2) to each gas cooling device and the auxiliary gas cooling device through the heat exchange device 86 and the cooling gas supply blower 85.
また図 2では板温計を冷却ロール群 # 1乃至 #4の出側及び補助ガス冷却装置の出 側にそれぞれ設置しているが、 補助ガス冷却装置の出側のみに設置する構成であ つても良い。 In Fig. 2, the sheet thermometer is connected to the outlets of cooling rolls # 1 to # 4 and the outlet of the auxiliary gas cooling device. Although they are installed on each side, they may be installed only on the outlet side of the auxiliary gas cooling device.
次に上述した冷却ロールに対するガス冷却装置のノズルヘッダの最適位置 (即 ち、 最適離間距離) の演算方法について図 38を用いて説明する。  Next, the method of calculating the optimum position (that is, the optimum separation distance) of the nozzle header of the gas cooling device with respect to the cooling roll described above will be described with reference to FIG.
2個の冷却ロール #1、 #2において、 ロール半径を F 1及び F2、 ロールの中心間 の距離を L0、 ロールと金属帯 Xを接触させない場合の基準線からロールがノズル ヘッダひ 1、 α2側にはみ出ている長さを L 1及び L2、 ロールと金属帯 Xの巻付け 角度 θ、 ノズルヘッダ α1、 α2の角度 7? 1及び 772とする。 この様な状況での下側 のノズルへヅダ α 2について考える。  For the two cooling rolls # 1 and # 2, the roll radius is F1 and F2, the distance between the roll centers is L0, and the roll is from the reference line when the roll and metal strip X are not in contact. The lengths protruding to the side are L1 and L2, the winding angle θ between the roll and the metal band X, and the angles 7-1 and 772 of the nozzle headers α1, α2. Consider the header α 2 for the lower nozzle in such a situation.
まず金属帯 Xと下側冷却ロール #2との接点である Α点の座標は下式数 26で表 わされる。  First, the coordinates of point で, which is the point of contact between metal strip X and lower cooling roll # 2, are expressed by Equation 26 below.
【数 26】 [Equation 26]
{-L1+F2-F1 - c o se, F2 - s i ηθ) 又該金属帯 Xと上側冷却ロール #1との接点である Β点の座標は下式数 27で表 わされる。  (-L1 + F2-F1-cose, F2-si ηθ) The coordinates of point で, which is the contact point between the metal band X and the upper cooling roll # 1, is expressed by the following equation (27).
【数 27】 [Equation 27]
(L1-F1+F1 - c o sO, L0-F1■ s i ηθ) そして、 金属帯 Xの直線部分の傾きは下式数 28で表わされることになる。  (L1-F1 + F1−cosO, L0−F1 ■ siηθ) Then, the slope of the linear portion of the metal strip X is expressed by the following equation (28).
【数 28】 [Equation 28]
\/ t αηθ  \ / t αηθ
次に卷付け角度 0の値を求めると下式数 29に示される様になる, 【数 29】
Figure imgf000058_0001
この数 29の式より、 下式数 30となる。 【数 30】
Next, when the value of the winding angle 0 is obtained, it becomes as shown in the following equation (29). [Equation 29]
Figure imgf000058_0001
From the equation (29), the following equation (30) is obtained. [Equation 30]
Figure imgf000058_0002
Figure imgf000058_0002
但し Xl= (F1 + F2—L1— 2) LO  Where Xl = (F1 + F2—L1— 2) LO
X2= (F1+F2) ^02+ (F1+F2-L1-L2) 2 又、 金属帯 Xの直線部は次式数 3 1で求められる。 【数 3 1】 X2 = (F1 + F2) ^ 0 2 + (F1 + F2-L1-L2) 2 The linear portion of the metal strip X can be obtained by the following equation 31. [Equation 3 1]
y-Fl - s i ηθ= (X+L2-F2+F2 - c ο εθ) /\ α ηθ ノズルヘッダひ 2と金属帯 Xとの最小距離間隔を Gとすると、 該ノズルヘッダ α の最適位置は以下の様になる。 y-Fl-si ηθ = (X + L2-F2 + F2-cοεθ) / \ α ηθ If the minimum distance between the nozzle header 2 and the metal strip X is G, the optimal position of the nozzle header α is It looks like this:
) 卷付げ長がノズルヘッダ α 2より長い場合 ) When winding length is longer than nozzle header α 2
即ち、 ( 77 1 ) /2となる場合、 ノズルへヅダ cr2の中心の位置 Ε点と 金属帯 Xの距離が Gとなる様なノズルヘッダ α 2の位置が最適位置である。 That is, when (77 1) / 2, the position of the center of the nozzle header cr2, the position of the nozzle header α2 where the distance between the point Ε and the metal strip X is G, is the optimum position.
) 卷付け長がノズルヘッダ α2より短い場合 ) When winding length is shorter than nozzle header α2
即ち、 Θく ( 1 ) /2となる場合、 D点の座標、 C点の座標、 Ε点の座 標は次式数 32、 数 33及び数 34に示される様になる。  That is, if it is Θ (1) / 2, the coordinates of point D, the coordinates of point C, and the coordinates of point に な る are as shown in the following equations (32), (33) and (34).
【数 32】 [Equation 32]
(Χ3, Υ3) = [Χ3, (F2+G) s i η (τ?2/2) -C · s i ηθ  (Χ3, Υ3) = (Χ3, (F2 + G) s i η (τ? 2/2) -C
但し X3は前記数 29式に yを代入して得られる Xの値 【数 33】 Where X3 is the value of X obtained by substituting y into Equation 29 above [Equation 33]
(X4, Υ4) = (X3-C · c o εθ, Y3+C - s i n0) 【数 34】  (X4, Υ4) = (X3-Cc o εθ, Y3 + C-s i n0)
(X5, Y5) ={X4- (F2+G) [1-c ο s (??2/2) ] , Ο) 従ってノズルへヅダ α2の中心の位置 Ε点と金属帯 Xの距離が I Χ 5 | となる様 なノズルヘッダ α 2の位置が最適位置である。  (X5, Y5) = {X4- (F2 + G) [1-c ο s (?? 2/2)], Ο) Therefore, the position of the center of the nozzle header α2 The distance between the point 金属 and the metal band X is I The position of the nozzle header α2 that satisfies Χ5 | is the optimal position.
又目標板温分布に対する板温分布制御例として、 特に金属帯 X巾方向板温分布 形状の変化に対応するための各ガス冷却装置及び補助ガス冷却装置の金属帯巾方 向におけるノズルヘッダの最適位置の演算方法について図 39を用いて説明する。  In addition, as an example of sheet temperature distribution control for the target sheet temperature distribution, optimally use the nozzle header in the direction of the metal band width of each gas cooling device and auxiliary gas cooling device to cope with changes in the sheet temperature distribution in the metal band X width direction. The position calculation method will be described with reference to FIG.
1) 板温分布の定量化  1) Quantification of sheet temperature distribution
まず、 その 1つ目は板温分布の定量化である。 即ち、 金属帯巾方向の板温 分布は、 次式数 35で示す 4次のべき級数で表すことができる。  The first is the quantification of sheet temperature distribution. That is, the sheet temperature distribution in the metal band width direction can be expressed by a fourth power series represented by the following equation (35).
【数 35】 [Equation 35]
Τ (X) =a1X + a2X3+aaX2+aiX+a5 Τ (X) = a 1 X + a 2 X 3 + a a X 2 + a i X + a 5
但し X : 幅方向に正規化しており、 - 1≤X≤ 1である。 この数 35の関数は、 前記板温計 (図 2の 90) の測定結果より最小二乗法 を用いて求めている。  Where X is normalized in the width direction, and -1≤X≤1. The function of Equation 35 is obtained using the least squares method from the measurement results of the plate thermometer (90 in FIG. 2).
2) ノズルヘッダの金属帯巾方向における最適位置の算出  2) Calculation of the optimum position of the nozzle header in the metal band width direction
次に、 ノズルヘッダの金属帯巾方向位置の算出を行なう。 上記定量化によ つて求められた冷却ロール群出側の板巾方向の板温分布は図 39に示される 様になった場合、 目標板温分布 T' (X)より高温側の温度不良域は、 Next, the position of the nozzle header in the metal band width direction is calculated. If the sheet temperature distribution in the sheet width direction on the side where the chill rolls come out obtained by the above quantification is as shown in Fig. 39, the temperature defect area on the higher temperature side than the target sheet temperature distribution T '(X) Is
① 一 1≤X≤X 1 一 ① One 1≤X≤X 1 One
② X2≤X≤X3  ② X2≤X≤X3
③ X4≤X≤ 1  ③ X4≤X≤ 1
但し、 X I、 X2、 X3、 X4 :高温側板温不良領域境界 の領域に分割される (図 39斜線領域参照) 。 However, XI, X2, X3, X4: High temperature side sheet temperature defective area boundary (Refer to the shaded area in Fig. 39).
ここで端部の板温偏差が生じている領域の重心位置 Xe Xe2と中央部の板温 偏差が生じている領域の重心位置 Xcは次式数 36、 数 37及び数 38の重心演算 により求められる。 Here, the center of gravity Xe Xe 2 of the region where the plate temperature deviation occurs at the end and the center of gravity Xc of the region where the plate temperature deviation occurs at the center are calculated by the center of gravity calculation of the following equations (36), (37) and (38). Desired.
【数 36】
Figure imgf000060_0001
(Equation 36)
Figure imgf000060_0001
【数 37】 [Equation 37]
T (X) -T' (X) I - χ · dx  T (X) -T '(X) I-χdx
T (X)一 T' (X) I dx  T (X) one T '(X) I dx
【数 38】
Figure imgf000060_0002
従って端部冷却巾 l e,、 l e2を次式数 39及び数 40となるように、 端部ノズ ルヘッダな 1、 ひ 2を夫々調整し、 中央部のノズルヘッダ α2はその中心を Xcの位 置へ移動調整し、 それそれの領域での板温偏差に対応させて各ノズルへツダ内部 の冷却ガス圧力を調整し、 その圧力.調整のなされた冷却ガスを金属帯 Xに吹き付 けることによって板温分布形状の変化にも対応できる。
[Equation 38]
Figure imgf000060_0002
Accordingly, the end nozzle headers 1 and 2 are adjusted so that the end cooling widths le and le 2 are given by the following equations (39) and (40), and the center of the nozzle header α2 at the center is positioned at the position of Xc. Adjust the cooling gas pressure inside the gutter to each nozzle according to the plate temperature deviation in each area, and spray the adjusted cooling gas to the metal strip X. Accordingly, it is possible to cope with a change in the sheet temperature distribution shape.
【数 39】 [Equation 39]
/ , 1= (Χ,.+l) · B 【数 4 0】/, 1 = (Χ,. + L) B [Equation 4 0]
Figure imgf000061_0001
Figure imgf000061_0001
ここに B :金属帯の幅(mm)  Where B is the width of the metal strip (mm)
1 e l、 1 e 2:端部冷却幅(mm) 以上の様に本発明の構成によれば、 広範囲なサイズに対し、 金属帯巾方向板温 分布を目標板温分布に合わせつつ、 安価な運転費で急速冷却できるようになる。 また請求の範囲第 1 4項乃至第 1 7項、 第 2 9項乃至第 3 0項、 第 5 1項乃至 5 3項及び第 5 6項乃至第 5 7項記載の構成によれば、 特に金属帯板幅の大きな 変更を繰り返すラインで、 前記ノズルヘッダの移動遅れをカバ一しながら適正な 冷却を実施することができるようになり、 板幅方向に均一且つ急速な冷却が可能 となる。 1 el , 1 e 2 : edge cooling width (mm) As described above, according to the configuration of the present invention, inexpensive while adjusting the sheet temperature distribution in the metal strip width direction to the target sheet temperature distribution for a wide range of sizes. Rapid cooling at operating cost. According to the constitutions of claims 14 to 17, 29 to 30, 51 to 53 and 56 to 57, in particular, In a line in which the width of the metal strip is repeatedly changed, proper cooling can be performed while covering the movement delay of the nozzle header, and uniform and rapid cooling in the width direction of the strip becomes possible.
更に請求の範囲第 3 1項乃至第 4 1項及び第 5 8項乃至第 6 3項記載の構成 Ίこ よれば、 金属帯温度分布の不均一な領域に移動台乃至移動装置によってノズルへ ッダを移動させ、 適当な離間距離を保って冷却ガスを吹き付けることで、 該金属 帯幅方向の温度分布を均一に制御することができるようになる。  Further, according to the constitutions of claims 31 to 41 and 58 to 63, the nozzle head is moved to the area where the metal strip temperature distribution is not uniform by the moving table or the moving device. The temperature distribution in the metal band width direction can be uniformly controlled by moving the die and blowing the cooling gas with an appropriate separation distance.
また請求の範囲第 5 4項記載の冷却ロールによれば、 冷却ロールに多条の冷媒 通路が設けられたため、 全体的に冷媒通路の各長さを短くでき、 該冷媒通路を流 れる各々の^媒の交換熱量を少なくすることができる。 その結果各冷媒通路出側 に近い端部側ロール表面でも金属の冷却には十分効果があり、 冷却中の金属の幅 方向温度分布も均一化でき、 冷却後該金属では温度分布が幅方向で略シンメ トリ 一な状態となる。 また第 5 5項記載のロール冷却構成によれば、 各冷却ロールの 冷媒通路における冷媒の流れの方向をロール 1本毎に反転させて供給しているた め、 冷媒通路入側に近い端部側ロール表面と出側に近い端部側ロール表面との間 の温度勾配がロール 1本毎に逆になり、 金属の幅方向の冷却速度も平均化でき、 後段の冷却ロールになる程、 その温度勾配自身もなくなるようになる。 従って得 られる金属の材質がその幅方向で均一なものとなる。 産 業 上 の 利 用 可 能 性 According to the cooling roll of claim 54, since the cooling roll is provided with multiple refrigerant passages, each length of the refrigerant passage can be shortened as a whole, and each of the refrigerant passages flowing through the refrigerant passage can be shortened. ^ The amount of exchange heat of the medium can be reduced. As a result, there is a sufficient effect for cooling the metal even on the end roll surface close to the outlet side of each refrigerant passage, and the temperature distribution in the width direction of the metal during cooling can be made uniform. Approximately symmetrical. According to the roll cooling configuration described in Item 55, since the direction of flow of the refrigerant in the refrigerant passage of each cooling roll is reversed for each roll and supplied, the end near the refrigerant passage entrance side is provided. The temperature gradient between the side roll surface and the end side roll surface near the exit side is reversed for each roll, and the cooling rate in the metal width direction can be averaged. The temperature gradient itself disappears. Therefore, the material of the obtained metal is uniform in the width direction. Industrial availability
この発明は、 金属帯の熱処理ラインにおけるロール冷却装置のロール背面冷却 構成ゃ該ロール冷却装置の入側 ·出側の補助冷却構成に適用することができる。  INDUSTRIAL APPLICABILITY The present invention can be applied to a roll backside cooling configuration of a roll cooling device in a heat treatment line for a metal strip.

Claims

請 求 の 範 囲 The scope of the claims
( 1 ) 1以上の冷却ロールに金属帯を巻き付けて上記金属帯と各冷却ロールの 接触長さを調整するロール冷却装置であって、 上記冷却ロールに金属帯を介して 対向して配置し、 ロール胴長方向に 2つ以上の金属帯の幅よりも狭いノズルへッ ダを有すると共に、 これらのノズルヘッダを冷却ロールの移動方向に移動自在な 構成とし、 且つこれらのノズルへヅダのうち少なくとも 1つのノズルへヅダを口 ール胴長方向に移動自在な構成としたガス冷却装置と、 各ノズルヘッダ内部の冷 却ガス圧力又はガス流量を調整するガス調整装置とを有することを特徴とする金 属帯冷却装置。 (1) A roll cooling device that winds a metal band around one or more cooling rolls and adjusts a contact length between the metal band and each cooling roll, and is arranged to face the cooling roll via the metal band, It has nozzle headers narrower than the width of two or more metal strips in the roll body length direction, and these nozzle headers are configured to be movable in the moving direction of the cooling roll, and at least one of these nozzle headers It has a gas cooling device in which the header of one nozzle is movable in the direction of the barrel length, and a gas adjusting device for adjusting the cooling gas pressure or gas flow inside each nozzle header. Metal band cooling device.
( 2 ) 請求の範囲第 1項記載の金属帯冷却装置において、 前記ノズルヘッダの ノズル口として、 金属帯のパスラインに略直交する方向に形成されるスリヅト形 状をなし、 且つパスライン方向にこれらを 1列に穿設したものを用いることを特 徴とする請求の範囲第 1項記載の金属帯冷却装置。  (2) The metal strip cooling device according to claim 1, wherein the nozzle port of the nozzle header has a slit shape formed in a direction substantially perpendicular to a pass line of the metal strip, and in a pass line direction. 2. The metal strip cooling device according to claim 1, wherein the metal strip cooling device is used by piercing them in a single row.
( 3 ) 請求の範囲第 2項記載の金属帯冷却装置に置いて、 前記ノズル口の内側 縁が断面 R状又はテ一パ状に穿設されたことを特徴とする請求の範囲第 2項記載 の金属帯冷却装置。  (3) The metal strip cooling device according to claim 2, wherein an inner edge of the nozzle port is perforated in an R-shaped cross section or a tapered shape. A metal strip cooling device as described.
( 4 ) 請求の範囲第 2項乃至第 3項記載の金属帯冷却装置において、 そのノズ ル口が外部 (こ突出する形状に穿設されたことを特徴とする請求の範囲第 2項乃至 第 3項記載の金属帯冷却装置。  (4) The metal band cooling device according to claims 2 to 3, wherein the nozzle opening is formed outside (a projecting shape). 3. The metal strip cooling device according to item 3.
( 5 ) 請求の範囲第 1項乃至第 4項記載の金属帯冷却装置において、 ノズルへ ッダを 2つとして、 各々金属帯の幅方向端部側に配置することを特徴とする請求 の範囲第 1項乃至第 4項記載の金属帯冷却装置。  (5) The metal band cooling device according to any one of claims 1 to 4, wherein two nozzle headers are provided and each of the nozzle heads is disposed at a width direction end side of the metal band. 5. The metal strip cooling device according to any one of items 1 to 4.
( 6 ) 請求の範囲第 1項乃至第 4項記載の金属帯冷却装置において、 ノズルへ ッダを 3つとして、 その 1つを金属帯幅方向略中央部側に配置し、 残りの 2つを 金属帯の幅方向端部側に配置することを特徴とする請求の範囲第 1項乃至第 4項 記載の金属帯冷却装置。  (6) The metal strip cooling device according to claims 1 to 4, wherein three nozzle headers are provided, one of which is disposed substantially at the center in the metal strip width direction, and the other two are provided. The metal strip cooling device according to any one of claims 1 to 4, wherein the metal strip is disposed at an end of the metal strip in the width direction.
( 7 ) 請求の範囲第 1項乃至第 4項記載の金属帯冷却装置において、 複数の冷 却ロールを設置し、 そのうち少なくとも最初の冷却ロールに対してノズルヘッダ を 3つ設け、 その 1つを金属帯幅方向略中央部側に配置し、 残りの 2つを金属帯 の幅方向端部側に配置することを特徴とする請求の範囲第 1項乃至第 4項記載の 金属帯冷却装置。 (7) In the metal strip cooling device according to claims 1 to 4, a plurality of cooling rolls are installed, and a nozzle header is provided for at least the first one of the cooling rolls. Claims 1 to 3 characterized in that three are provided, one of which is arranged substantially at the center of the metal band in the width direction, and the other two are arranged at the ends of the metal band in the width direction. 4. The metal strip cooling device according to item 4.
( 8 ) 請求の範囲第 1項乃至第 4項記載の金属帯冷却装置において、 複数の冷 却ロールを設置し、 そのうち少なくとも前段部の冷却ロールについてノズルへッ ダを 3つ設け、 その 1つを金属帯幅方向略中央部側に配置し、 残りの 2つを金属 帯の幅方向端部側に配置すると共に、 その後段部の冷却ロールについてはノズル ヘッダを 2つとして各々金属帯の幅方向端部側に配置することを特徴とする請求 の範囲第 1項乃至第 4項記載の金属帯冷却装置。  (8) In the metal strip cooling device according to claims 1 to 4, a plurality of cooling rolls are installed, and at least three nozzle headers are provided for at least a preceding cooling roll, and one of them is provided. At the approximate center of the metal strip in the width direction, and the other two at the end of the metal strip in the width direction. The metal strip cooling device according to any one of claims 1 to 4, wherein the metal strip cooling device is disposed at an end in the direction.
( 9 ) 請求の範囲第 1項乃至第 8項記載の金属帯冷却装置において、 少なくと も最初の冷却ロールに対向するノズルヘッダは、 待避してあったリ トラク ト位置 からパスラインにおける金属帯と該冷却ロールの接触開始と共に、 金属帯と接近 する方向に移動し、 更にこの接触時より冷却ロールの押し込み量が大きい時には、 金属帯との離間距離を一定に保てるように移動すると共に、 金属帯と該冷却ロー ルが非接触となった時には、 前記リ トラクト位置までそのノズルヘッダを移動さ せることを特徴とする請求の範囲第 1項乃至第 8項記載の金属帯冷却装置。  (9) In the metal strip cooling device according to claims 1 to 8, at least the nozzle header facing the first cooling roll is provided with a metal strip in the pass line from the retracted retract position. With the start of the contact between the metal roll and the cooling roll, the metal roll moves in a direction approaching the metal band, and when the pressing amount of the cooling roll is larger than that at the time of the contact, the metal roll moves so as to keep the separation distance from the metal band constant, and 9. The metal strip cooling device according to claim 1, wherein the nozzle header is moved to the retract position when the strip and the cooling roll are out of contact with each other.
( 1 0 ) 請求の範囲第 1項乃至第 8項記載の金属帯冷却装置において、 複数の 冷却ロールが配されている場合に、 少なくとも最初の冷却ロールに対向するノズ ルヘッダを^いたその他のノズルヘッダは、 ロール最大押し込み量でノズルへヅ ダ長さが最大に取れるように設計されていて、 待避してあったリ トラク ト位置か らパスラインにおける金属帯と該冷却ロールの接触開始と共に、 金属帯と接近す る方向に移動し、 その後この冷却ロールの押し込み量が大きくなっても移動せず、 また金属帯と該冷却ロールが非接触となる直前に前記リ トラク ト位置にノズルへ ッダを待避させることを特徴とする請求の範囲第 1項乃至第 8項記載の金属帯冷 却装置。  (10) In the metal strip cooling device according to claims 1 to 8, when a plurality of cooling rolls are arranged, at least another nozzle having a nozzle header opposed to the first cooling roll. The header is designed so that the nozzle length can be maximized with the maximum roll push-in amount, and from the retracted retract position, the contact between the metal strip on the pass line and the cooling roll starts, It moves in the direction approaching the metal strip, and does not move even if the pushing amount of the cooling roll increases thereafter, and immediately before the metal strip and the cooling roll do not come into contact with each other, the nozzle plug is moved to the retract position. 9. The metal strip cooling device according to claim 1, wherein the metal strip is retracted.
( 1 1 ) 請求の範囲第 1項乃至第 1 0項記載 ©金属帯冷却装置において、 複数 の冷却ロールが配されている場合に、 前段側の冷却 Π3—ルほどそのロール押し込 み量を多く とることを特徴とする請求の範囲第 1項乃至第 1 0項記載の金属帯冷 却装置。 (11) Claims 1 to 10 © In the metal band cooling device, when a plurality of cooling rolls are arranged, the more the cooling roll on the front side, the more the roll is pushed in. The metal strip cooling device according to any one of claims 1 to 10, wherein the cooling device is used in a large number.
( 1 2 ) 請求の範囲第 1項乃至第 1 0項記載の金属帯冷却装置において、 複数 の冷却ロールが配されている場合に、 前段側の冷却ロールほどそのロール押し込 み量を多くとると共に、 これらの冷却ロールに対向するノズルヘッダにつき前段 側のノズルヘッダほどそのガス吹き付け冷却量を最大にとることを特徴とする請 求の範囲第 1項乃至第 1 0項記載の金属帯冷却装置。 (12) In the metal strip cooling device according to any one of claims 1 to 10, when a plurality of cooling rolls are arranged, the roll pressing amount of the preceding cooling roll is increased. 10. The metal strip cooling device according to claim 1, wherein the nozzle headers facing the cooling rolls have the maximum amount of gas spray cooling as the nozzle header at the front end side has a maximum amount of gas spray cooling. .
( 1 3 ) 請求の範囲第 1項乃至第 1 2項記載の金属帯冷却装置において、 口一 ル胴長方向に複数のノズルへッダを有する場合に、 これらのノズルへ、リダの冷却 ロール移動方向での移動量を各異ならしめ、 各ノズルヘッダと冷却ロールとの間 隔をロール胴長方向で相違させることを特徴とする請求の範囲第 1項乃至第 1 2 項記載の金属帯冷却装置。  (13) In the metal strip cooling device according to any one of claims 1 to 12, when a plurality of nozzle headers are provided in a nozzle body length direction, a cooling roll for the lid is applied to these nozzles. The metal strip according to any one of claims 1 to 12, wherein the amount of movement in the moving direction is different, and the distance between each nozzle header and the cooling roll is different in the roll body length direction. Cooling system.
( 1 4 ) 1以上の冷却ロールに金属帯を巻き付けて上記金属帯と各冷却ロール の接触長さを調整するロール冷却装置であって、 上記冷却ロールに金属帯を介し て対向して配置され、 且つロール胴長方向に 2つ以上設けられており、 少なくと も金属帯両端部側に位置するものはロール胴長方向に連結された複数のヘッダ本 体で構成されている金属帯の幅よりも狭いノズルヘッダを有すると共に、 これら のノズルへヅダを冷却ロールの移動方向に移動自在な構成とし、 且つこれらのノ ズルヘッダのうち少なくとも 1つのノズルヘッダをロール胴長方向に移動自在な 構成としたガス冷却装置と、 各ノズルヘッダ内部の冷却ガス圧力又はガス流量を 調整するガス調整装置とを有することを特徴とする金属帯冷却装置。  (14) A roll cooling device for winding a metal band around one or more cooling rolls to adjust a contact length between the metal band and each cooling roll, and is arranged to face the cooling roll via the metal band. , And two or more are provided in the roll body length direction, and at least those located at both ends of the metal band are the widths of the metal band composed of a plurality of header bodies connected in the roll body length direction. A nozzle header that is narrower than the above, and a configuration in which these nozzle headers are movable in the direction of movement of the cooling roll, and at least one of the nozzle headers is movable in the roll body length direction. A metal band cooling device, comprising: a gas cooling device configured as described above; and a gas adjusting device that adjusts a cooling gas pressure or a gas flow rate inside each nozzle header.
( 1 5 ) 請求の範囲第 1 4項に記載された金属帯冷却装置において、 金属帯両 端部側に位置し且つロール胴長方向に連結した複数のヘッダ本体で構成される前 記ノズルヘッダにつき、 上記連結されたものを金属帯走行方向に更に複数段有す ると共に、 ヘッダ本体の各ノズル口位置を上流と下流の段でロール胴長方向にず らして設けたことを特徴とする請求の範囲第 1 4項に記載された金属帯冷却装置。 (15) The metal strip cooling device according to claim 14, wherein the nozzle header comprises a plurality of header bodies located on both ends of the metal strip and connected in the roll body length direction. In this case, the above-mentioned connection is further provided in a plurality of stages in the traveling direction of the metal band, and the positions of the nozzle ports of the header body are shifted in the roll body length direction in the upstream and downstream stages. 15. The metal strip cooling device according to claim 14.
( 1 6 ) 請求の範囲第 1 4項に記載された金属帯冷却装置において、 金属帯両 端部側に位置し且つロール胴長方向に連結された複数のヘッダ本体で構成される 前記ノズルヘッダにつき、 上記連結されたヘッダ本体の各々に設けられたノズル 口位置を隣合う間で金属帯走行方向にずらして設けたことを特徴とする請求の範 囲第 1 4項に記載された金属帯冷却装置。 (16) The metal strip cooling device according to claim 14, wherein the nozzle header includes a plurality of header bodies located on both ends of the metal strip and connected in the roll body length direction. 15. The metal strip according to claim 14, wherein nozzle positions provided on each of the connected header bodies are shifted in the metal strip running direction between adjacent ones. Cooling system.
( 1 7 ) 1以上の冷却ロールに金属帯を巻き付けて上記金属帯と各冷却ロール の接触長さを調整するロール冷却装置であって、 上記冷却ロールに金属帯を介し て対向して配置され、 且つロール胴長方向に 2つ以上設けられており、 少なくと も金属帯両端部側に位置するものは金属帯走行方向で 2以上に分離した金属帯の 幅よりも狭いノズルヘッダで構成し、 且つこれらを独立してロール胴長方向に各 移動可能な構成としたガス冷却装置と、 各ノズルヘッダ内部の冷却ガス圧力又は ガス流量を調整するガス調整装置とを有することを特徴とする金属帯冷却装置。 (17) A roll cooling device for winding a metal band around one or more cooling rolls to adjust a contact length between the metal band and each cooling roll, and is arranged to face the cooling roll via the metal band. In addition, two or more nozzles are provided in the roll body length direction, and at least those located on both ends of the metal band are composed of nozzle headers narrower than the width of the metal band separated into two or more in the metal band running direction. A metal cooling device comprising: a gas cooling device configured to be independently movable in a roll body length direction; and a gas adjustment device configured to adjust a cooling gas pressure or a gas flow rate inside each nozzle header. Zone cooling device.
( 1 8 ) 請求の範囲第 1項乃至第 1 7項記載の金属帯冷却装置において、 冷却 ロールが金属帯に接触する前に該金属帯の張力を高めて接触時点での形状が安定 するようにしたことを特徴とする請求の範囲第 1項乃至第 1 7項記載の金属帯冷 却装置。  (18) In the metal strip cooling device according to any one of claims 1 to 17, the tension of the metal strip is increased before the cooling roll comes into contact with the metal strip so that the shape at the time of the contact is stabilized. The metal strip cooling device according to any one of claims 1 to 17, wherein the cooling device is a metal strip cooling device.
( 1 9 ) 請求の範囲第 5項乃至第 1 8項記載の金属帯冷却装置の構成を有する 場合に、 幅変更接続情報器、 金属帯両端部位置検出器、 金属帯幅方向板温計 O l 以上を冷却ロールの入側に配し、 これらの情報に基づき幅変更部乃至幅変更量の 情報を得ることで、 幅方向端部用のノズルヘッダを金属帯幅方向端部にセッ 卜す ることを特徴とする金属帯冷却装置。  (19) In the case of having the configuration of the metal band cooling device according to claims 5 to 18, a width change connection information device, a metal band both end position detector, and a metal band width direction sheet thermometer O l By arranging the above at the inlet side of the cooling roll and obtaining information on the width change portion and the width change amount based on this information, the nozzle header for the width direction end is set at the metal band width direction end. A metal strip cooling device, characterized in that:
( 2 0 ) 請求の範囲第 1 9項記載の金属帯冷却装置において、 板幅が異なる接 続部である特異点が進入してくる場合、 前期情報をライン入側からトラッキング して、 幅狭材から幅広材に変わる場合は、 該特異点が冷却ロール入側に進入する 前に、 幅方向端部用のノズルヘッダを幅広金属帯の幅方向端部にセッ トし、 他方 幅広材から幅狭材に変わる場合は、 この特異点が冷却ロール入側に進入してから、 幅方向端部用のノズルヘッダを幅狭金属帯の幅方向端部にセッ トすることを特徴 とする請求の範囲第 1 9項記載の金属帯冷却装置。  (20) In the metal strip cooling device according to claim 19, when a singular point, which is a connection portion having a different plate width, enters, the previous period information is tracked from the line entry side to narrow the width. If the material changes from a wide material to a wide material, set the nozzle header for the width direction end to the width direction end of the wide metal band before the singular point enters the cooling roll entry side, and set the other wide material to the width. In the case of changing to a narrow material, the singular point enters the cooling roll entry side, and then the nozzle header for the width direction end is set at the width direction end of the narrow metal band. Item 19. A metal strip cooling device according to item 19.
( 2 1 ) 請求の範囲第 5項乃至第 1 3項記載の金属帯冷却装置の構成を備える 場合に、 金属帯幅方向板温計を冷却ロールの出側に配し、 その情報に基づき、 ガ ス冷却装置の幅方向端部用のノズルヘッダを金属帯幅方向端部に夫々セッ トする ことを特徴とする金属帯冷却装置。  (21) In the case where the configuration of the metal strip cooling device described in claims 5 to 13 is provided, a metal strip width direction sheet thermometer is arranged on the exit side of the cooling roll, and based on the information, A metal strip cooling device, characterized in that a nozzle header for the width direction end of the gas cooling device is set at each of the metal strip width direction ends.
( 2 2 ) 請求の範囲第 5項乃至第 1 3項記載の金属帯冷却装置の構成を備える 場合に、 金属帯幅方向板温計を冷却ロールの出側に配し、 その情報に基づき、 ガ ス冷却装置の幅方向端部用のノズルヘッダの冷却ガス圧力又はガス流量を調整す ることを特徴とする金属帯冷却装置。 (22) In the case where the configuration of the metal band cooling device according to claims 5 to 13 is provided, a metal band width direction sheet thermometer is arranged on the exit side of the cooling roll, and based on the information, Moth A cooling gas pressure or a gas flow rate of a nozzle header for an end portion in a width direction of the cooling device.
( 2 3 ) 請求の範囲第 5項乃至第 1 3項記載の金属帯冷却装置の構成を備える 場合に、 金属帯幅方向板温計を冷却ロールの出側に配し、 その情報に基づき、 ガ ス冷却装置の幅方向端部用のノズルヘッダを金属帯幅方向端部にセッ トし、 且つ これらのノズルヘッダの冷却ガス圧力又はガス流量を調整することを特徴とする 金属帯冷却装置。  (23) In the case where the configuration of the metal strip cooling device described in claims 5 to 13 is provided, a metal strip width direction sheet thermometer is arranged on the exit side of the cooling roll, and based on the information, A metal strip cooling device comprising: setting a nozzle header for a width direction end of a gas cooling device at a metal band width direction end; and adjusting a cooling gas pressure or a gas flow rate of the nozzle header.
( 2 4 ) 1以上の冷却ロールに金属帯を巻き付けて上記金属帯と各冷却ロール の接触長さを調整するロール冷却装置であって、 上記冷却ロールに金属帯を介し て対向して配置し、 ロール胴長方向に 2つの金属帯の幅よりも狭いノズルヘッダ を夫々金属帯幅方向端部側に配置すると共に、 これらのノズルヘッダを冷却口一 ルの移動方向に移動自在な構成とし、 且つこれらのノズルヘッダのうち少なくと も 1つのノズルヘッダをロール胴長方向に移動自在な構成としたガス冷却装置と、 各ノズルヘッダ内部の冷却ガス圧力又はガス流量を調整するガス調整装置とを有 し、 更に前記冷却ロールの出側に金属帯に対向して配置し、 該金属帯の板幅方向 に 2つ以上のガス吹付用のノズルヘッダを有し、 且つこれらのノズルヘッダのう ち少なくとも両端部側のノズルヘッダを金属帯幅方向に移動自在な構成とした補 助ガス冷却装置と、 これらのノズルヘッダ内部の冷却ガス圧力又はガス流量を調 整するガス調整装置とを有することを特徴とする金属帯冷却装置。  (24) A roll cooling device for winding a metal band around one or more cooling rolls to adjust a contact length between the metal band and each cooling roll, and is disposed so as to face the cooling roll via a metal band. In addition, a nozzle header narrower than the width of the two metal strips in the roll body length direction is arranged at each end of the metal strip width direction, and these nozzle headers are configured to be movable in the moving direction of the cooling port. In addition, a gas cooling device in which at least one of these nozzle headers is movable in the roll body length direction, and a gas adjusting device that adjusts a cooling gas pressure or a gas flow rate inside each nozzle header. And a nozzle header for spraying two or more gases in the width direction of the metal strip, which is disposed on the outlet side of the cooling roll so as to face the metal strip, and of these nozzle headers. At least both It has an auxiliary gas cooling device in which the nozzle header on the end side is configured to be movable in the metal band width direction, and a gas adjusting device that adjusts the cooling gas pressure or gas flow inside these nozzle headers. Metal strip cooling device.
( 2 5 ) 1以上の冷却ロールに金属帯を巻き付けて上記金属帯と各冷却ロール の接触長さを調整するロール冷却装置であって、 上記冷却ロールに金属帯を介し て対向して配置し、 ロール胴長方向に 3つの金属帯の幅よりも狭いノズルヘッダ を夫々金属帯幅方向中央部側と端部側に配置すると共に、 これらのノズルヘッダ を冷却ロールの移動方向に移動自在な構成とし、 且つこれらのノズルヘッダのう ち少なくとも両端部側のノズルヘッダをロール胴長方向に移動自在な構成とした ガス冷却装置と、 各ノズルヘッダ内部の冷却ガス圧力又はガス流量を調整するガ ス調整装置とを有し、 更に前記冷却ロールの出側に金属帯に対向して配置し、 該 金属帯の板幅方向に 2つ以上のガス吹付用のノズルヘッダを有し、 且つこれらの ノズルヘッダのうち少なくとも両端部側のノズルヘッダを金属帯幅方向に移動自 在な構成とした補助ガス冷却装置と、 これらのノズルヘッダ内部の冷却ガス圧力 又はガス流量を調整するガス調整装置とを有することを特徴とする金属帯冷却装 置。 (25) A roll cooling device that winds a metal band around one or more cooling rolls to adjust the contact length between the metal band and each cooling roll, and is arranged to face the cooling rolls via the metal band. The nozzle headers, which are narrower than the width of the three metal strips in the roll body length direction, are arranged at the center and end sides in the metal strip width direction, respectively, and these nozzle headers can be moved in the direction of movement of the cooling roll. A gas cooling device in which at least both nozzle headers of these nozzle headers are movable in the roll body length direction, and a gas for adjusting the cooling gas pressure or gas flow inside each nozzle header. An adjusting device, further disposed on the exit side of the cooling roll so as to face the metal band, and having two or more nozzle headers for blowing gas in the width direction of the metal band, and these nozzles Header Moving the own nozzle header of Chi least both end portions in the metal strip width direction A metal strip cooling device comprising: an auxiliary gas cooling device having a conventional configuration; and a gas adjusting device for adjusting a cooling gas pressure or a gas flow rate inside the nozzle header.
( 2 6 ) 複数の冷却ロールに金属帯を巻き付けて上記金属帯と各冷却ロールの 接触長さを調整するロール冷却装置であって、 上記冷却ロールのうち少なくとも 最初の冷却ロールに対し金属帯を介して対向して配置し、 ロール胴長方向に 3つ の金属帯の幅よりも狭いノズルヘッダを夫々金属帯幅方向中央部側と端部側に配 置すると共に、 これらのノズルヘッダを冷却ロールの移動方向に移動自在な構成 とし、 且つこれらのノズルヘッダのうち少なくとも両端部側のノズルヘッダを口 ール胴長方向に移動自在な構成としたガス冷却装置と、 各ノズルヘッダ内部の冷 却ガス圧力又はガス流量を調整するガス調整装置とを有し、 更に前記冷却ロール 群の出側に金属帯に対向して配置し、 該金属帯の板幅方向に 2つ以上のガス吹付 用のノズルヘッダを有し、 且つこれらのノズルヘッダのうち少なくとも両端部側 のノズルヘッダを金属帯幅方向に移動自在な構成とした補助ガス冷却装置と、 こ れらのノズルヘッダ内部の冷却ガス圧力又はガス流量を調整するガス調整装置と を有することを特徴とする金属帯冷却装置。  (26) A roll cooling device for winding a metal band around a plurality of cooling rolls to adjust a contact length between the metal band and each cooling roll, wherein the metal band is wound on at least a first cooling roll among the cooling rolls. The nozzle headers, which are narrower than the three metal strips in the roll body length direction, are placed at the center and end sides in the metal strip width direction, respectively, and these nozzle headers are cooled. A gas cooling device that is configured to be movable in the roll moving direction, and that is configured such that at least the nozzle headers at both ends of the nozzle headers are movable in the direction of the barrel body; A gas adjusting device for adjusting the pressure or gas flow rate of the cooling gas, and further disposed on the outlet side of the cooling roll group so as to face the metal band, and spraying two or more gases in the width direction of the metal band. Nozzle head And an auxiliary gas cooling device in which at least the nozzle headers at both ends of these nozzle headers are movable in the width direction of the metal band; and a cooling gas pressure or gas inside these nozzle headers. And a gas adjusting device for adjusting a flow rate.
( 2 7 ) 複数の冷却ロールに金属帯を巻き付けて上記金属帯と各冷却ロールの 接触長さを調整するロール冷却装置であって、 上記冷却ロールのうち少なくとも 前段部の冷却ロールに対し金属帯を介して対向して配置し、 ロール胴長方向に 3 つの金属帯の幅よりも狭いノズルヘッダを夫々金属帯幅方向中央部側と端部側に 配置すると共に、 これらのノズルヘッダを冷却ロールの移動方向に移動自在な構 成とし、 且つこれらのノズルヘッダのうち少なくとも両端部側のノズルヘッダを ロール胴長方向に移動自在な構成としたガス冷却装置と、 各ノズルヘッダ内部の 冷却ガス圧力又はガス流量を調整するガス調整装置とを有し、 更に前記冷却口一 ル群の出側に金属帯に対向して配置し、 該金属帯の板幅方向に 2つ以上のガス吹 付用のノズルヘッダを有し、 且つこれらのノズルヘッダのうち少なくとも両端部 側のノズルヘッダを金属帯幅方向に移動自在な構成とした補助ガス冷却装置と、 これらのノズルヘッダ内部の冷却ガス圧力又はガス流量を調整するガス調整装置 とを有することを特徴とする金属帯冷却装置。 (27) A roll cooling device for wrapping a metal band around a plurality of cooling rolls to adjust a contact length between the metal band and each cooling roll, wherein the metal band is provided to at least a front-stage cooling roll of the cooling rolls. The nozzle headers, which are narrower than the width of the three metal bands in the roll body length direction, are arranged at the center and end sides in the metal band width direction, respectively. A gas cooling device that is configured to be movable in the moving direction of at least one of the nozzle headers and at least the nozzle headers at both ends of the nozzle headers are configured to be movable in the roll body length direction, and a cooling gas pressure inside each nozzle header. Or a gas adjusting device for adjusting the gas flow rate, and further disposed on the outlet side of the cooling port group so as to face the metal band, and for blowing two or more gases in the width direction of the metal band. To the nozzle An auxiliary gas cooling device having a nozzle header and having at least the nozzle headers at both ends of these nozzle headers movable in the metal band width direction; and a cooling gas pressure or gas flow rate inside these nozzle headers. And a gas adjusting device for adjusting the pressure.
( 2 8 ) 請求の範囲第 2 4項乃至第 2 7項記載の金属帯冷却装置において、 補 助ガス冷却装置のノズルヘッダのうち、 少なくとも金属帯幅方向端部用の 2つの ノズルヘッダを金属帯幅方向に移動自在としたことを特徴とする請求の範囲第 2 4項乃至第 2 7項記載の金属帯冷却装置。 (28) In the metal strip cooling device according to claims 24 to 27, among the nozzle headers of the auxiliary gas cooling device, at least two nozzle headers for the end portion in the metal strip width direction are made of metal. 28. The metal band cooling device according to claim 24, wherein the metal band cooling device is movable in a band width direction.
( 2 9 ) 請求の範囲第 2 4項記載の金属帯冷却装置において、 冷却ロールの出 側に配置された補助ガス冷却装置のノズルヘッダのうち、 少なくとも金属帯両端 部側に位置するノズルヘッダは金属帯幅方向に連結された複数のヘッダ本体で構 成されると共に、 且つこれらのノズルヘッダのうち少なくとも 1つのノズルへッ ダを金属帯幅方向に移動自在な構成としたことを特徴とする請求の範囲第 2 4項 記載の金属帯冷却装置。  (29) In the metal strip cooling device according to claim 24, among the nozzle headers of the auxiliary gas cooling device arranged on the outlet side of the cooling roll, at least the nozzle headers located on both ends of the metal strip are: It comprises a plurality of header bodies connected in the metal band width direction, and at least one of these nozzle headers is configured to be movable in the metal band width direction. The metal strip cooling device according to claim 24.
( 3 0 ) 請求の範囲第 2 4項記載の金属帯冷却装置において、 冷却ロールの出 側に配置 れた補助ガス冷却装置のノズルヘッダのうち、 少なくとも金属帯両端 部側に位置するノズルヘッダは金属帯走行方向で 2以上に分離した構成とし、 且 つこれらを独立して金属帯幅方向に各移動可能な構成としたことを特徴とする請 求の範囲第 2 4項記載の金属帯冷却装置。  (30) In the metal strip cooling device according to claim 24, at least one of the nozzle headers located on both ends of the metal strip among the nozzle headers of the auxiliary gas cooling device arranged on the outlet side of the cooling roll is provided. 24. The metal strip cooling according to claim 24, wherein the metal strip is separated into two or more in the running direction of the metal strip, and these are independently movable in the width direction of the metal strip. apparatus.
( 3 1 ) 請求の範囲第 1項乃至第 3 0項記載の金属帯冷却装置において、 その ガス冷却装置の構成として、 金属帯にガスを噴出するノズルの備えられた該金属 帯の幅よりも狭い 2つ以上のノズルヘッダと、 該ノズルヘッダを金属帯表面に直 交する方向 ¾び/又は該金属帯の幅方向に移動せしめる移動台とを有することを 特徴とする請求の範囲第 1項乃至第 3 0項記載の金属帯冷却装置。  (31) The metal band cooling device according to any one of claims 1 to 30, wherein the gas cooling device has a configuration in which a width of the metal band provided with a nozzle for ejecting a gas to the metal band is larger than a width of the metal band. 2. The method according to claim 1, comprising: two or more narrow nozzle headers; and a moving table for moving the nozzle headers in a direction orthogonal to the surface of the metal band and / or in a width direction of the metal band. 30. The metal strip cooling device according to any one of items 30 to 30.
( 3 2 ) 前記ノズルヘッダが金属帯幅方向に 2つ又は 3つある場合に、 その移 動台は金属帯表面に直交する方向及びその幅方向に移動可能なものであることを 特徴とする請求の範囲第 3 1項記載の金属帯冷却装置。  (32) When there are two or three nozzle headers in the metal band width direction, the moving table is movable in a direction perpendicular to the metal band surface and in the width direction. The metal strip cooling device according to claim 31.
( 3 3 ) 前記ノズルヘッダが金属帯幅方向に 3つある場合に、 中央のノズルへ ダを動かす移動台は金属帯表面に直交する方向にのみ移動可能であり、 左右の ノズルヘッダを動かす移動台は金属帯表面に直交する方向及びその幅方向に移動 可能なものであることを特徴とする請求の範囲第 3 1項記載の金属帯冷却装置。  (33) When there are three nozzle headers in the metal band width direction, the moving table that moves the nozzle to the center nozzle can move only in the direction perpendicular to the metal band surface, and moves the left and right nozzle headers. The metal strip cooling device according to claim 31, wherein the table is movable in a direction orthogonal to the surface of the metal strip and in a width direction thereof.
( 3 4 ) 前記ロール冷却装霄の金属帯パスラインが水平又は垂直であることを 特徴とする請求め範囲第 1項乃至第 3 3項記載の金属帯冷却装置。 (34) The metal strip cooling device according to any one of claims 1 to 33, wherein a metal strip pass line of the roll cooling device is horizontal or vertical.
( 3 5 ) 請求の範囲第 2 4項乃至第 3 0項記載の金属帯冷却装置において、 そ の補助ガス冷却装置の構成として、 金属帯にガスを噴出するノズルの備えられた 該金属帯の幅よりも狭い 2以上のノズルヘッダと、 該ノズルヘッダを金属帯表面 に直交する方向及び/又は該金属帯の幅方向に移動せしめる移動台とを有するこ とを特徴とする請求の範囲第 2 4項乃至第 3 0項記載の金属帯冷却装置。 (35) The metal strip cooling device according to any one of claims 24 to 30, wherein the auxiliary gas cooling device is provided with a nozzle for ejecting gas to the metal strip. Claim 2 characterized by having two or more nozzle headers having a width smaller than the width, and a moving table for moving the nozzle headers in a direction perpendicular to the surface of the metal band and / or in a width direction of the metal band. Item 30. The metal strip cooling device according to any one of Items 4 to 30.
( 3 6 ) 請求の範囲第 3 5項記載の金属帯冷却装置において、 その補助ガス冷 却装置の構成として、 前記ノズルヘッダと移動台を有する場合に、 これらのノズ ルヘッダと移動台を金属帯表裏両面側に設けたことを特徴とする請求の範囲第 3 5項記載の金属帯冷却装置。  (36) In the metal band cooling device according to claim 35, when the nozzle header and the moving table are provided as a configuration of the auxiliary gas cooling device, the nozzle header and the moving table are connected to the metal band cooling device. The metal strip cooling device according to claim 35, provided on both front and back sides.
( 3 7 ) 前記金属帯パスラインが水平又は垂直であることを特徴とする請求の 範囲第 3 5項乃至第 3 6項記載の金属帯冷却装置。  (37) The metal strip cooling apparatus according to any one of claims 35 to 36, wherein the metal strip pass line is horizontal or vertical.
( 3 8 ) 請求の範囲第 2 4項乃至第 3 0項記載の金属帯冷却装置において、 そ の補助ガス冷却装置の構成として、 金属帯パスラインの該金属帯表面に平行で且 つそのパスラインの流れに直交する方向に移動できる移動装置を設置し、 該移動 装置に取り付けられ且つ金属帯にガスを噴出するノズルの備えられた該金属帯の 幅よりも狭いノズルヘッダをそのパスライン方向に配し、 前記移動装置を動かす 走行機構を有すると共に、 前記ガス供給路の一部に可堯部又は伸縮継手部を設け たことを特徴とする請求の範囲第 2 4項乃至第 3 0項記載の金属帯冷却装置。  (38) The metal strip cooling device according to claims 24 to 30, wherein the auxiliary gas cooling device has a configuration in which a metal strip pass line is parallel to a surface of the metal strip and the path is parallel to the metal strip surface. A moving device capable of moving in a direction orthogonal to the flow of the line is installed, and a nozzle header attached to the moving device and provided with a nozzle for ejecting gas to the metal band is narrower than the width of the metal band in the pass line direction. 30. The apparatus according to claim 24, further comprising a traveling mechanism for moving the moving device, and a flexible portion or an expansion joint portion provided in a part of the gas supply passage. A metal strip cooling device as described.
( 3 9 ) '請求の範囲第 3 8項記載の金属帯冷却装置において、 上記構成のうち 少なくとも、 移動装置と、 該移動装置に取り付けられたノズルヘッダと、 該ノズ ルヘッダに設けられた可堯部又は伸縮継手部を有するガス供給路とを、 金属帯の 表裏両面に夫々備えたことを特徴とする請求の範囲第 3 8項記載の金属帯冷却装 置。  (39) 'The metal strip cooling device according to claim 38, wherein at least the moving device, the nozzle header attached to the moving device, and the flexible nozzle provided in the nozzle header are provided. 39. The metal strip cooling device according to claim 38, wherein a gas supply path having a section or an expansion joint section is provided on each of the front and back surfaces of the metal strip.
( 4 0 ) 請求の範囲第 3 8項乃至第 3 9項記載の構成を有すると共に、 金属帯 幅方向の略中央部で固定されるガス噴出用のノズルヘッダを有することを特徴と する金属帯冷却装置  (40) A metal band having the configuration according to claims 38 to 39 and having a gas jet nozzle header fixed at a substantially central portion in the width direction of the metal band. Cooling system
( 4 1 ) 金属帯パスラインが水平又は垂直であることを特徴とする請求の範囲 第 3 8項乃至第 4 0項記載の金属帯冷却装置。  (41) The metal strip cooling device according to any one of claims 38 to 40, wherein the metal strip pass line is horizontal or vertical.
( 4 2 ) 請求の範囲第 2 4項乃至第 3 0項記載の金属帯冷却装置の構成を備え る場合に、 幅変更接続情報器、 金属帯両端部位置検出器、 金属帯幅方向板温計の 1以上を冷却ロールの入側に配し、 これらの情報に基づき幅変更部乃至幅変更量 の情報を得ることで、 ガス冷却装置の幅方向端部用のノズルヘッダ及び補助ガス 冷却装置の金属帯幅方向端部用の 2つのノズルへ ダを金属帯幅方向端部に夫々 セッ トすることを特徴とする金属帯冷却装置 Λ(42) The structure of the metal strip cooling device according to claims 24 to 30 is provided. At least one of the width change connection information device, the metal band end position detector, and the metal band width direction sheet thermometer is arranged on the inlet side of the cooling roll, and based on these information, the width change part and the width change amount Information, the nozzle header for the width direction end of the gas cooling device and the two nozzles for the metal band width direction end of the auxiliary gas cooling device are set to the metal band width direction end respectively. the metal strip cooling apparatus lambda ", characterized in that
( 4 3 ) 請求の範囲第 4 2項記載の金属帯冷却装置において、 板幅が異なる接 続部である特異点が進入してくる場合、 前期情報をライン入側からトラッキング して、 幅狭材から幅広材に変わる場合は、 該特異点が冷却ロール入側に進入する 前に、 ガス冷却装置の幅方向端部用のノズルヘッダ及び補助ガス冷却装置の金属 帯幅方向端部用の 2つのノズルヘッダを幅広金属帯の幅方向端部にセッ トし、 他 方幅広材から幅狭材に変わる場合は、 この特異点が冷却ロール入側に進入してか ら、 前期ノズルヘッダを幅狭金属帯の幅方向端部にセッ トすることを特徴とする 請求の範囲第 4 2項記載の金属帯冷却装置。 —― (43) In the metal strip cooling device according to claim 42, when a singular point, which is a connection portion having a different plate width, enters, the information of the previous period is tracked from the line entry side to narrow the width. If the material changes from a wide material to a wide material, before the singularity enters the cooling roll entry side, the nozzle header for the width direction end of the gas cooling device and the metal header for the metal band width direction end of the auxiliary gas cooling device must If one nozzle header is set at the end of the wide metal strip in the width direction and the other side is changed from a wide material to a narrow material, the singular point enters the cooling roll entry side and The metal band cooling device according to claim 42, wherein the metal band cooling device is set at an end in the width direction of the narrow metal band. ——
( 4 4 ) 請求の範囲第 2 4項乃至第 3 0項記載の金属帯冷却装置の構成を備え る場合に、 金属帯幅方向板温計を補助ガス冷却装置の出側に配し、 その情報に基 づき、 ガス冷却装置の幅方向端部用のノズルヘッダ及び補助ガス冷却装置の金属 帯幅方向端部用の 2つのノズルヘッダを金属帯幅方向端部に夫々セッ トすること を特徴とする金属帯冷却装置。 (44) In the case where the configuration of the metal strip cooling device described in claims 24 to 30 is provided, a metal strip width direction thermometer is arranged on the outlet side of the auxiliary gas cooling device, and Based on the information, a nozzle header for the width direction end of the gas cooling device and two nozzle headers for the metal band width direction end of the auxiliary gas cooling device are set at the metal band width direction end, respectively. Metal strip cooling device.
( 4 5 ) 請求の範囲第 2 4項乃至第 3 0項記載の金属帯冷却装置の構成を備え る場合に、 金属帯幅方向板温計を補助ガス冷却装置の出側に配し、 その情報に基 づき、 ガス冷却装置の各ノズルヘッダ及び補助ガス冷却装置の各ノズルヘッダの 冷却ガス圧力又はガス流量を調整することを特徴とする金属帯冷却装置。  (45) In the case where the configuration of the metal strip cooling device described in claims 24 to 30 is provided, a metal strip width direction plate thermometer is arranged on the outlet side of the auxiliary gas cooling device, and A metal strip cooling device characterized by adjusting cooling gas pressure or gas flow rate of each nozzle header of a gas cooling device and each nozzle header of an auxiliary gas cooling device based on information.
( 4 6 ) 請求の範囲第 2 4項乃至第 3 0項記載の金属帯冷却装置の構成を備え る場合に、 金属帯幅方向板温計を補助ガス冷却装置の出側に配し、 その情報に基 づき、 ガス冷却装置の幅方向端部用のノズルヘッダ及び補助ガス冷却装置の金属 帯幅方向端部用の 2つのノズルヘッダを金属帯幅方向端部に夫々セッ トし、 且つ 各ノズルヘッダの冷却ガス圧力又はガス流量を調整することを特徴とする金属帯 冷却装置。  (46) In the case where the configuration of the metal strip cooling device described in claims 24 to 30 is provided, a metal strip width direction plate thermometer is arranged on the output side of the auxiliary gas cooling device, and Based on the information, a nozzle header for the width direction end of the gas cooling device and two nozzle headers for the metal band width direction end of the auxiliary gas cooling device are respectively set at the metal band width direction end, and A metal strip cooling device, wherein a cooling gas pressure or a gas flow rate of a nozzle header is adjusted.
( 4 7 ) 1以上の冷却ロールに金属帯を卷付け、 上記金属帯と各冷却ロールの 接触長さを個別に調整するロール冷却装置であって、 上記冷却ロールに対向して 配置し、 ロール胴長方向に 3つ以上のノズルへヅダを有すると共に、 これらのノ ズルヘッダを冷却ロールの移動方向で移動自在な構成とし、 且づこれらのうち少 なくとも 1つのノズルヘッダをロール胴長方向に移動自在な構成としたガス冷却 装置と、 上記金属帯の板端部を検知する金属帯両端部位置検出器と、 上記ノズル ヘッダのうちロール胴長方向に移動自在なノズルヘッダをロール胴長方向に移動 調整する移動調整装置と、 前記金属帯両端部位置検出器の検出信号に基づいてこ の移動調整装置を制御するノズルヘッダ位置制御演算装置と、 冷却ロールの位置 信号にて上記ノズルヘッダを冷却ロール移動方向で位置調整する進退調整装置と、 冷却ロールの出側に配置し、 上記金属帯の板幅方向温度分布を検知する金属帯幅 方向板温計と、 この板温計からの温度信号にて目標板温分布に対する温度偏差を 演算し、 この温度優差に応じて各ノズルヘッダ内部の冷却ガス圧力又はガス流量 を調整する板温制御演算装置とを有することを特徴とする金属帯冷却装置。 (4 7) Wrap a metal band around one or more cooling rolls. A roll cooling device for individually adjusting the contact length, which is arranged to face the cooling roll, has three or more nozzles in the roll body length direction, and moves these nozzle headers to the cooling roll. A gas cooling device that is configured to be movable in any direction, and at least one of these nozzle headers is configured to be movable in the roll body length direction; Part position detector, a movement adjustment device that moves and adjusts the nozzle header that is movable in the roll body length direction among the nozzle headers in the roll body length direction, and A nozzle header position control arithmetic unit for controlling the movement adjusting device; an advance / retreat adjusting device for adjusting the position of the nozzle header in the cooling roll moving direction by a cooling roll position signal; A metal strip width direction thermometer that detects the temperature distribution of the metal strip in the strip width direction, and calculates the temperature deviation from the target sheet temperature distribution based on the temperature signal from the sheet thermometer. A metal strip cooling device comprising: a plate temperature control arithmetic unit that adjusts a cooling gas pressure or a gas flow rate inside each nozzle header according to the temperature difference.
( 4 8 ) 請求の範囲第 4 7項記載の金属帯冷却装置の構成を有すると共に、 前 記冷却ロールの出側に金属帯に対向して配置し、 上記金属帯の板幅方向に 3っ以 上のノズルへ、 ダを有し、 且つこれらのノズルヘッダのうち少なくとも 1つのノ ズルヘッダを金属帯幅方向に移動自在な構成とした補助ガス冷却装置と、 該補助 ガス冷却装置の出側に配置した金属帯幅方向板温計とを有することを特徴とする 金属帯冷却装置。  (48) In addition to having the configuration of the metal band cooling device according to claim 47, the metal band cooling device is disposed so as to face the metal band on the exit side of the cooling roll, and is arranged in the width direction of the metal band. An auxiliary gas cooling device having a nozzle to the above nozzle, and at least one of the nozzle headers being movable in the width direction of the metal band; and an outlet side of the auxiliary gas cooling device. A metal strip cooling device comprising: a metal strip width direction sheet thermometer arranged.
( 4 9 ) 請求の範囲第 4 8項記載の金属帯冷却装置において、 前記補助ガス冷 却装置のノズルヘッダのうち、 少なくとも端部用の 2つのノズルヘッダを夫々金 属帯幅方向に移動自在な構成としたことを特徴とする請求の範囲第 4 8項記載の 金属帯冷却装置。  (49) The metal strip cooling device according to claim 48, wherein, of the nozzle headers of the auxiliary gas cooling device, at least two nozzle headers for the end portions are respectively movable in the metal strip width direction. 9. The metal strip cooling device according to claim 48, wherein the cooling device is configured as follows.
( 5 0 ) 請求の範囲第 4 7項乃至第 4 9項記載の金属帯冷却装置において、 そ のガス冷却装置及び/又は補助ガス冷却装置につき、 両端部ノズルヘッダのノズ ル幅 B eが次式数 1及び数 2の関係を、 また中央部ノズルヘッダのノズル幅 B eが 次式数 3の関係を夫々満足することを特徴とする請求の範囲第 4 7項乃至第 4 9 • 項記載の金属帯冷却装置。 【数 1】 (50) In the metal strip cooling device according to claims 47 to 49, the nozzle width Be of the nozzle header at both ends of the metal cooling device and / or the auxiliary gas cooling device is set as follows. Claims 47 to 49 •, wherein the relationship of Formulas 1 and 2 and the nozzle width Be of the central nozzle header satisfy the relationship of Formula 3 below. Metal strip cooling system. [Equation 1]
e≤Be - ( -0.9 )≤45 但し t < 1.3mm  e≤Be-(-0.9) ≤45 where t <1.3mm
【数 2】 [Equation 2]
Δ ID  Δ ID
12t-9.6≤Be- ( -0.9Loy )≤22ί +16.4  12t-9.6≤Be- (-0.9Loy) ≤22ί +16.4
1  1
但し t≥ 1.3mm  However, t≥ 1.3mm
B e : ノズル幅(mm)  B e: Nozzle width (mm)
t :金属帯の板厚(mm)  t: Metal strip thickness (mm)
△ w :金属帯の幅変更量(mm)  Δw: width change amount of metal band (mm)
Lo :冷却装置以降の熱処理炉におけるロール間パス長(m) V :冷却ロール胴長方向 (或いは金属帯幅方向) のノズル ヘッダ移動速度(mm/min)  Lo: path length between rolls in the heat treatment furnace after the cooling device (m) V: nozzle header moving speed (mm / min) in the length direction of the cooling roll body (or in the metal band width direction)
S : ライン速度(mpm)  S: Line speed (mpm)
【数 3】 [Equation 3]
Q.O3W≤Bc≤0.21W  Q.O3W≤Bc≤0.21W
B c : ノズル幅  B c: Nozzle width
W :金属帯の幅(mm)  W: width of metal band (mm)
(51) 1以上の冷却ロールに金属帯を卷付け、 上記金属帯と各冷却ロールの 接触長さを個別に調整するロール冷却装置であって、 上記冷却ロールに対向して 配置し、 ロール胴長方向に 3つ以上のノズルヘッダを有すると共に、 これらのノ ズルヘッダを冷却ロールの移動方向で移動自在な構成とし、 且つこれらのうち少 なくとも金属帯両端部側のノズルヘッダをロール胴長方向に連結した複数のへッ ダ本体で形成しつつロール胴長方向に移動自在な構成としたガス冷却装置と、 上 記金属帯の板端部を検知する金属帯両端部位置検出器と、 上記ノズルヘッダのう ち口ール胴長方向に移動自在なノズルへ ダをロール胴長方向に移動調整する移 動調整装置と、 前記金属帯両端部位置検出器の検出信号に基づいてこの移動調整 装置を制御するノズルヘッダ位置制御演算装置と、 冷却ロールの位置信号にて上 記ノズルヘッダを冷却ロール移動方向で位置調整する進退調整装置と、 冷却ロー ルの出側に配置し、 上記金属帯の板幅方向温度分布を検知する金属帯幅方向板温 計と、 この板温計からの温度信号にて目標板温分布に対する温度偏差を演算し、 この温度偏差に応じて各ノズルヘッダ内部の冷却ガス圧力又はガス流量を調整す る板温制御演算装置とを有することを特徴とする金属帯冷却装置。 (51) A roll cooling device for winding a metal band around one or more cooling rolls and individually adjusting a contact length between the metal band and each cooling roll, wherein the roll cooling device is arranged so as to face the cooling roll, and a roll drum is provided. In addition to having three or more nozzle headers in the longitudinal direction, these nozzle headers are configured to be movable in the direction of movement of the cooling roll, and at least the nozzle headers at both ends of the metal band are arranged in the roll body length direction. A gas cooling device formed of a plurality of header bodies connected to the main body and configured to be movable in the roll body length direction; Nozzle header A movement adjustment device for adjusting the movement of the nozzle in the roll body length direction to a nozzle movable in the direction of the body length of the roll, and controlling the movement adjustment device based on the detection signals of the metal band end position detectors. Nozzle header position control arithmetic unit, forward / backward adjustment device that adjusts the position of the nozzle header in the cooling roll moving direction based on the cooling roll position signal, and placed on the exit side of the cooling roll, in the metal width direction A metal band width direction plate thermometer for detecting a temperature distribution, and a temperature deviation from a target plate temperature distribution is calculated based on a temperature signal from the plate thermometer, and a cooling gas pressure or a cooling gas pressure inside each nozzle header is calculated in accordance with the temperature deviation. A metal strip cooling device, comprising: a plate temperature control arithmetic unit that adjusts a gas flow rate.
( 5 2 ) 請求の範囲第 5 1項記載の金属帯冷却装置の構成を有すると共に、 前 記冷却ロールの出側に金属帯に対向して配置し、 上記金属帯の板幅方向に 3っ以 上のノズルヘッダを有し、 且つこれらのノズルヘッダのうち少なく とも金属帯両 端部側のノズルヘッダを金属帯幅方向に連結した複数のヘッダ本体で形成しつつ 金属帯幅方向に移動自在な構成とした補助ガス冷却装置と、 各ノズルヘッダ内部 の冷却ガス圧力又はガス流量を調整するガス調整装置とを有することを特徴とす る金属帯冷却装置。  (52) In addition to having the configuration of the metal band cooling device as set forth in claim 51, the metal band cooling device is disposed on the outlet side of the cooling roll so as to face the metal band, and is arranged in the width direction of the metal band. It has the above-mentioned nozzle headers, and is movable in the metal band width direction while forming at least the nozzle headers at both ends of the metal band in the metal band width direction. A metal band cooling device, comprising: an auxiliary gas cooling device having a simple configuration; and a gas adjusting device for adjusting a cooling gas pressure or a gas flow rate inside each nozzle header.
( 5 3 ) 請求の範囲第 5 1項乃至第 5 2項記載の金属帯冷却装置において、 そ のガス冷却装置及び/又は補助ガス冷却装置につき、 金属帯両端部側に位置する ノズルヘッダが夫々 3つ以上のヘッダ本体で形成される場合にそのうちの最外側 のヘッダ本^幅 B eoが次式数 4の関係を、 又そのうちの中央のヘッダ本体幅 B ee が次式数 5及び数 6の関係を、 更にそのうちの内側のヘッダ本体幅 B e iが次式数 7の関係を、 一方金属帯略中央部側に位置するノズルヘッダのヘッダ本体幅 B eが 次式数 3の関係を夫々満足することを特徴とする請求の範囲第 5 1項乃至第 5 2 項記載の金属帯冷却装置。  (53) In the metal strip cooling device according to claims 51 or 52, the gas cooling device and / or the auxiliary gas cooling device each have a nozzle header located at both ends of the metal strip. When three or more header bodies are formed, the outermost header part ^ width Beo has the relationship of the following equation (4), and the center header body width Bee of the following equation (5) and the following equation (6). In addition, the inner header body width Bei indicates the relationship expressed by the following equation (7), while the header body width Be of the nozzle header positioned substantially at the center of the metal band indicates the relationship expressed by the following equation (3). The metal strip cooling device according to any one of claims 51 to 52, wherein the cooling device is satisfied.
【数 4】 [Equation 4]
B e o≥AW u /2  B e o≥AW u / 2
Δ W u :金属帯接続部の幅狭から幅広への接続時の板幅変化量(mm) 【数 5】 ΔW u: Change in plate width when connecting from narrow to wide metal band connection (mm) [Equation 5]
6≤B e c≤45  6≤B e c≤45
ただし t < 1.3mm  Where t <1.3mm
【数 6】 [Equation 6]
12i-9.6≤Be c≤22i +16.4  12i-9.6≤Be c≤22i +16.4
ただし t≥ 1.3mm  However, t≥ 1.3mm
t :金属帯の板厚(mm)  t: Metal strip thickness (mm)
【数 7】 [Equation 7]
Be ι≥AWdZ2  Be ι≥AWdZ2
厶 Wd :金属帯接続部の幅広から幅狭への接続時の板幅変化 i (mm)  Wd: Change in board width when connecting from wide to narrow metal band connection i (mm)
【数 3】 [Equation 3]
0.09W≤Bc≤0.27W  0.09W≤Bc≤0.27W
B c :ノズル幅(mm)  B c: Nozzle width (mm)
W :金属帯の板幅(mm)  W: Metal strip width (mm)
(54) 請求の範囲第 1項乃至第 53項記載の金属帯冷却装置において、 それ らに使用される冷却ロールの構成として、 その内部に形成される冷媒通路を同一 平面上で多条設けたことを特徴とする請求の範囲第 1項乃至第 53項記載の金属 帯冷却装置。 (54) In the metal strip cooling device according to claims 1 to 53, as a configuration of the cooling rolls used for them, a plurality of refrigerant passages formed inside thereof are provided on the same plane. The metal strip cooling device according to any one of claims 1 to 53, characterized in that:
(55) 請求の範囲第 1項乃至第 54項記載の金属帯冷却装置において、 それ らに使用される冷却ロールにつき、 該冷却ロールを金属帯パスライン方向に複数 本設置し、 且つこれらの表面に金属帯を接触させて該金属帯を冷却する場合に、 各冷却ロールの冷媒通路における冷媒の流れの方向を 1本毎に反転させて該冷媒 を供給することを特徴とする請求の範囲第 1項乃至第 54項記載の金属帯冷却装 置。  (55) In the metal strip cooling apparatus according to claims 1 to 54, a plurality of cooling rolls are installed in the direction of the metal strip pass line for each of the cooling rolls used for the cooling rolls, and the surface of these cooling rolls is provided. Wherein when the metal strip is cooled by contacting the metal strip with the metal strip, the direction of the flow of the refrigerant in the refrigerant passage of each cooling roll is reversed one by one to supply the refrigerant. 55. The metal strip cooling device according to any one of items 1 to 54.
(56) 内部を冷却した 1以上のロールに金属帯を巻き付けて該金属帯を冷却 するロール冷却装置の入側に、 金属帯に対向して配置され、 且つ金属帯幅方向に 2つ以上設けられており、 少なくとも金属帯両端部側に位置するものは金属帯幅 方向に連結された複数のヘッダ本体で構成されるノズルヘッダを有すると共に、 且つこれらのノズルヘッダのうち少なく とも 1つのノズルヘッダを金属帯幅方向 に移動自在な構成としたことを特徴とする金属.帯冷却装置。 (56) Wrap a metal band around one or more rolls that have cooled the inside to cool the metal band At the entry side of the roll cooling device, two or more metal bands are arranged in the width direction of the metal band, facing at least the metal band width direction. Metal cooling device having a nozzle header composed of a plurality of header bodies and at least one of the nozzle headers being movable in the metal band width direction. .
( 5 7 ) 内部を冷却した 1以上のロールに金属帯を巻き付けて該金属帯を冷却 するロール冷却装置の入側に、 金属帯に対向して配置され、 且つ金属帯幅方向に 2つ以上設けられており、 少なくとも金属帯両端部側に位置するものは金属帯走 行方向で 2以上に分離したヘッダ本体で構成されるノズルヘッダを有すると共に、 且つこれらを独立して金属帯幅方向に各移動可能な構成としたことを特徴とする 金属帯冷却装置。  (57) At the entry side of a roll cooling device that cools the metal band by winding the metal band around one or more rolls whose interior has been cooled, the metal band is arranged opposite to the metal band, and two or more are arranged in the metal band width direction. At least those located on both ends of the metal band have a nozzle header composed of a header body separated into two or more in the metal band running direction, and these are independently provided in the metal band width direction. A metal strip cooling device having a movable structure.
( 5 8 ) 内部を冷却した 1以上のロールに金属帯を巻き付けて該金属帯を冷却 するロール冷却装置の入側に、 金属帯にガスを噴出するノズルの備えられた該—金 属帯の幅よりも狭い 1以上のノズルヘッダと、 該ノズルヘッダを金属帯表面に直 交する方向及び/又は該金属帯の幅方向に移動せしめる移動台とを有することを 特徴とする金属帯冷却装置。  (58) At the input side of a roll cooling device that cools the metal band by winding the metal band around one or more rolls whose inside is cooled, the metal band provided with a nozzle for ejecting gas to the metal band is provided. A metal strip cooling device comprising: one or more nozzle headers having a width smaller than a width; and a moving table for moving the nozzle header in a direction orthogonal to a surface of the metal strip and / or in a width direction of the metal strip.
( 5 9 ) 内部を冷却し广こ 1以上のロールに金属帯を巻き付けて該金属帯を冷却 するロール冷却装置の入側に、 金属帯にガスを噴出するノズルの備えられた該金 属帯の幅よりも狭い 2つ乃至 3つのノズルヘッダと、 該ノズルヘッダを金属帯表 面に直交する方向及び該金属帯の幅方向に移動せしめる移動台とを有することを 特徴とする金属帯冷却装置。  (59) Cooling the inside of the metal band The metal band provided with a nozzle for ejecting gas to the metal band on the inlet side of a roll cooling device that winds a metal band around one or more rolls to cool the metal band. A metal strip cooling device comprising: two or three nozzle headers having a width smaller than the width of the metal strip; and a moving table for moving the nozzle header in a direction perpendicular to the surface of the metal strip and in a width direction of the metal strip. .
( 6 0 ) 内部を冷却した 1以上のロールに金属帯を巻き付けて該金属帯を冷却 するロール冷却装置の入側に、 金属帯にガスを噴出するノズルの備えられた該金 属帯の幅よりも狭い 3つのノズルヘッダと、 中央部側のノズルヘッダを支持する ものは金属帯表面に直交する方向にのみ移動可能であり、 両端部側のノズルへッ ダを支持するものは金属帯表面に直交する方向及びその幅方向に移動可能なであ る移動台とを有することを特徴とする金属帯冷却装置。  (60) The width of the metal band provided with a nozzle for ejecting gas to the metal band on the inlet side of a roll cooling device that cools the metal band by winding the metal band around one or more rolls whose inside is cooled. The three nozzle headers that are narrower and the one that supports the nozzle header at the center can move only in the direction perpendicular to the surface of the metal band, and the one that supports the nozzle headers at both ends is the surface of the metal band A metal strip cooling device comprising: a movable table movable in a direction orthogonal to the width direction and in a width direction thereof.
( 6 1 ) 前記ノズルヘッダと移動台を、 金属帯片面側又はその表裏両面側に有 することを特徴とする請求の範囲第 5 8項乃至第 6 0項記載の金属帯冷却装置。 ( 6 2 ) 前記金属帯パスラインが水平又は垂直であることを特徴とする請求の 範囲第 5 8項乃至第 6 1項記載の金属帯冷却装置。 (61) The metal strip cooling device according to any one of claims 58 to 60, wherein the nozzle header and the moving table are provided on one side of the metal strip or on both sides thereof. (62) The metal strip cooling device according to any one of claims 58 to 61, wherein the metal strip pass line is horizontal or vertical.
( 6 3 ) 内部を冷却した 1以上のロールに金属帯を巻き付けて該金属帯を,冷却 するロール冷却装置の入側に、 金属帯パスラインの該金属帯表面に平行で且つそ のパスラインの流れに直交する方向に移動できる移動装置を設置し、 該移動装置 に取り付けられ且つ金属帯にガスを噴出するノズルの備えられた該金属帯の幅よ りも狭いノズルヘッダをそのパスライン方向に配し、 前記移動装置を動かす走行 機構を有すると共に、 前記ガス供給路の一部に可堯部又は伸縮継手部を設けたこ とを特徴とする金属帯冷却装置。  (63) A metal band is wound around one or more rolls whose inside has been cooled, and the metal band is placed on the entry side of a roll cooling device for cooling the metal band pass line parallel to the surface of the metal band and the pass line. A moving device capable of moving in a direction perpendicular to the flow of the gas is installed, and a nozzle header that is attached to the moving device and has a nozzle that ejects gas to the metal band is narrower than the width of the metal band in the pass line direction. And a moving mechanism for moving the moving device, and a flexible portion or an expansion joint portion is provided in a part of the gas supply passage.
( 6 4 ) 1以上の冷却ロールに金属帯を巻き付けて上記金属帯と各冷却ロール の接触長さを調整する金属帯冷却方法において、 上記冷却ロールに金属帯を介し て対向して配置され、 冷却ロールの移動方向及びロール胴長方向に移動可能な金 属帯の幅よりも狭い 1以上のノズルヘッダの設けられたガス冷却装置を用い、 該 ノズルヘッダから冷却ガスを吹き付けて金属帯を背面冷却すると共に、 その冷却 に当たり、 金属帯と冷却ロールの接触長を調整することで、 金属帯の目標板温と の偏差に基づく中央部板温の調整を行ない、 冷却ロールの位置とノズルヘッダの 位置とから金属帯と該ノズルヘッダの離間距離を調整させつつ、 該冷却ロールの 入側、 出側の少なくとも一方で金属帯幅方向の温度分布を常時監視しておき、 上 記目標板温芬布との温度偏差をなくす位置に該ノズルヘッダを移動することによ り、 目標板温分布との偏差に基づく板温分布制御を行うことを特徴とする金属帯 冷却方法。  (64) In a metal band cooling method in which a metal band is wound around one or more cooling rolls to adjust a contact length between the metal band and each cooling roll, the metal band is arranged to face the cooling roll via a metal band, Using a gas cooling device provided with at least one nozzle header that is narrower than the metal band that can move in the direction of movement of the cooling roll and the length of the roll body, cooling gas is blown from the nozzle header to back the metal band. In addition to cooling, the contact length between the metal strip and the cooling roll is adjusted to adjust the center sheet temperature based on the deviation from the target sheet temperature of the metal strip. While adjusting the distance between the metal strip and the nozzle header from the position, the temperature distribution in the metal strip width direction is constantly monitored on at least one of the inlet side and the outlet side of the cooling roll, and the target sheet temperature is measured. The Ri by the moving the nozzle header, the metal strip cooling method which is characterized in that the sheet temperature distribution control based on the deviation between the target plate temperature distribution in a position to eliminate the temperature deviation between.
( 6 5 ) 1以上の冷却ロールに金属帯を巻き付けて上記金属帯と各冷却ロール の接触長さを調整する金属帯冷却方法において、 上記冷却ロールに金属帯を介し て対向して配置され、 冷却ロールの移動方向及びロール胴長方向に移動可能な金 属帯の幅よりも狭い 1以上のノズルヘッダの設けられたガス冷却装置を用い、 該 ノズルヘッダから冷却ガスを吹き付けて金属帯 背面冷却すると共に、 その冷却 に当たり、 金属帯と冷却ロールの接触長を調整することで、 金属帯の目標板温と の偏差に基づく中央部板温の調整を行ない、 冷却ロールの位置とノズルヘッダの 位置とから金属帯と該ノズル.ヘッダの離間距離を調整させつつ、 該冷却ロールの 入側、 出側の少なく とも一方で金属帯幅方向の温度分布を常時監視しておき、 上 記目標板温分布との温度偏差をなくす位置に該ノズルヘッダを移動すると共に、 該温度偏差に基づくノズルヘッダ内部の冷却ガス圧力又はガス流量調整を行って、 金属帯に冷却ガスを吹き付けることにより、 目標板温分布との偏差に基づく板温 分布制御を行うことを特徴とする金属帯冷却方法。 (65) In a metal band cooling method in which a metal band is wound around one or more cooling rolls to adjust a contact length between the metal band and each cooling roll, the metal band is arranged to face the cooling roll via a metal band, Using a gas cooling device provided with one or more nozzle headers that is narrower than the metal band that is movable in the direction of movement of the cooling roll and the length of the roll body, cooling gas is blown from the nozzle headers to cool the rear surface of the metal band. In addition, in cooling, the contact length between the metal strip and the cooling roll is adjusted to adjust the center sheet temperature based on the deviation of the metal strip from the target sheet temperature.The position of the cooling roll and the position of the nozzle header While adjusting the distance between the metal strip and the nozzle and the header from the At least one of the inlet and outlet sides is constantly monitored for the temperature distribution in the metal band width direction, and the nozzle header is moved to a position where the temperature deviation from the target plate temperature distribution is eliminated, and the temperature deviation is reduced. A cooling gas pressure or a gas flow rate inside the nozzle header based on the above, and spraying a cooling gas to the metal strip to control a sheet temperature distribution based on a deviation from a target sheet temperature distribution. .
( 6 6 ) 請求の範囲第 6 4項乃至第 6 5項記載の金属帯冷却方法において、 前 記ガス冷却装置に備えられるノズルヘッダを 2つとし、 目標板温分布との偏差に 基づく板温分布制御に関して行われるこれらのノズルヘッダの移動は、 金属帯両 端部における目標板温分布との温度偏差を対象に、 これをなくす位置に該ノズル ヘッダの移動を行うことを特徴とする請求の範囲第 6 4項乃至第 6 5項記載の金 属帯冷却方法。  (66) In the metal strip cooling method according to claims 64 to 65, the gas cooling device has two nozzle headers, and a sheet temperature based on a deviation from a target sheet temperature distribution. The movement of these nozzle headers performed in relation to the distribution control is performed by moving the nozzle header to a position where the deviation from the target plate temperature distribution at both ends of the metal strip is eliminated. Item 64. The metal band cooling method according to any one of Items 64 to 65.
( 6 7 ) 請求の範囲第 6 6項記載の金属帯冷却方法の実施に当たり、 前記ガス 冷却装置に備えられた 2つのノズルヘッダの他に、 金属帯幅方向中央部に相当す る位置に、 冷却ロール移動方向でのみ動き、 ロール胴長方向には動かない中央部 ノズルヘッダを設け、 目標板温分布との偏差に基づく板温分布制御に関し、 該中 央部ノズルヘッダでは、 温度偏差に基づくへ ダ内部の冷却ガス圧力又はガス流 量調整のみを行って、 金属帯に対する冷却ガスの吹き付けを行うことを特徴とす る金属帯冷却方法。  (67) In carrying out the metal band cooling method according to claim 66, in addition to the two nozzle headers provided in the gas cooling device, at a position corresponding to a central portion in the metal band width direction, A central nozzle header that moves only in the direction of movement of the chill roll and does not move in the roll body length direction is provided, and controls the sheet temperature distribution based on the deviation from the target sheet temperature distribution. A metal band cooling method characterized in that cooling gas is blown onto a metal band only by adjusting a cooling gas pressure or a gas flow rate inside the header.
( 6 8 ) '移動により接触長調整可能な 1以上の冷却ロールに接触する金属帯に 対向して設置され、 前記冷却ロールの移動方向及びロール胴長方向に移動可能な 3つ以上のノズルヘッダの設けられたガス冷却装置を用いて、 これらの各ノズル ヘッダから冷却ガスを吹き付けることで金属帯を冷却するに当り、 金属帯の目標 板温との偏差に基づく平均板温制御に関しては、 金属帯と冷却ロールの接触長を 調整することで行ない、 目標板温分布との偏差に基づく板温分布制御に関しては、 冷却ロールの位置とノズルヘッダの位置とから金属帯と該ノズルヘッダの離間距 離を調整させつつ、 該冷却ロール入側、 出側の少なくとも一方で金属帯両端部位 置を常時監視しておき、 これらのノズルヘッダのうち両端部側のノズルヘッダの 位置を下記数 8及び数 9に示される冷却巾となるように金属帯両端部に移動させ ると共に、 中央^のノズルヘッダの中心位置を金属帯巾方向中心位置と一致する ように移動させて下記数 1 0に示される冷却巾とし、 冷却ロール出側で金属帯巾 方向の板温分布を常時監視しておき、 目標板温分布との偏差に基づいてこれらの ノズルヘッダ内部の冷却ガス圧力又はガス流量調整を行って、 金属帯に冷却ガス を吹き付けることを特徴とする金属帯冷却方法。 (68) 'Three or more nozzle headers that are installed to face the metal strip that contacts one or more cooling rolls whose contact length can be adjusted by movement, and that can move in the moving direction of the cooling rolls and the roll body length direction When cooling the metal strip by spraying cooling gas from each of these nozzle headers using the gas cooling device provided with, the average sheet temperature control based on the deviation from the target sheet temperature of the metal strip Adjusting the contact length between the strip and the cooling roll, and controlling the sheet temperature distribution based on the deviation from the target sheet temperature distribution, the distance between the metal strip and the nozzle header from the position of the cooling roll and the position of the nozzle header While adjusting the separation, always monitor both ends of the metal band on at least one of the inlet and outlet sides of the cooling roll, and determine the positions of the nozzle headers at both ends of these nozzle headers as follows. 8 and Rutotomoni moving the metal strip both ends so that the cooling width shown in equation 9, the center position of the nozzle header in the central ^ coincides with the metal strip width direction center position To the cooling width shown in the following equation (10), and constantly monitor the sheet temperature distribution in the metal band width direction on the cooling roll exit side, and based on the deviation from the target sheet temperature distribution, these nozzle headers A metal band cooling method, comprising: adjusting a pressure or a gas flow rate of an internal cooling gas and spraying a cooling gas onto the metal band.
【数 8】 [Equation 8]
6≤W£≤45 6≤W £ ≤45
但し t < 1. 3mm  However, t <1.3 mm
【数 9】 [Equation 9]
12 i -9.6≤W£≤22 i +16.4 12 i -9.6≤W £ ≤22 i +16.4
但し t≥ 1. 3mm  However, t≥1.3mm
W E :両端部ノズルヘッダ冷却幅(mm)  W E: Nozzle header cooling width at both ends (mm)
t :金属帯の板厚(mm)  t: Metal strip thickness (mm)
【数 1 0】[Equation 10]
Figure imgf000079_0001
Figure imgf000079_0001
W c : 中央部ノズルヘッダの冷却幅(mm) Wc : Cooling width of center nozzle header (mm)
B :金属帯の幅(mm)  B: Width of metal band (mm)
( 6 9 ) 移動により接触長調整可能な 1以上の冷却ロールに接触する金属帯に 対向して設置され、 前記冷却ロールの移動方向及びロール胴長方向に移動可能な 3つ以上のノズルヘッダの設けられたガス冷却装置と、 冷却ロールの出側に設置 され、 金属帯巾方向に移動可能な 3つ以上のノズルヘッダが該金属帯表裏面に夫 々設けられた補助ガス冷却装置とを用いて、 これらの各ノズルヘッダから冷却ガ スを吹き付けることで金属帯を冷却するに当り、 金属帯の目標板温との偏差に基 づく平均板温制御に関しては、 金属帯と冷却ロールの接触長を調整することで行 ない、 目標板温分布との偏差に基づく板温分布制御に関しては、 冷却ロールの位 置とガス冷却装韹のノズルヘッダの位置とから金属帯とこれらのノズルヘッダの 離間距離を調整させつつ、 該冷却ロール入側、 出側の少なく とも一方で金属帯両 端部位置を常時監視しておき、 ガス冷却装置及び補助ガス冷却装置のノズルへッ ダのうち両端部側のノズルヘッダの位置を下記数 8及び数 9に示される冷却巾と なるように金属帯両端部に移動させると共に、 中央部のノズルヘッダの中心位置 を金属帯巾方向中心位置と一致するように移動させて下記数 1 0に示される冷却 巾とし、 冷却ロール出側で金属帯巾方向の板温分布を常時監視しておき、 目標板 温分布との偏差に基づいてガス冷却装置及び補助ガス冷却装置の各ノズルヘッダ 内部の冷却ガス圧力又はガス流量調整を行って、 金属帯に冷却ガスを吹き付ける ことを特徴とする金属帯冷却方法。 (69) Three or more nozzle headers that are installed to face the metal strip that contacts one or more cooling rolls whose contact length can be adjusted by moving, and that can move in the moving direction of the cooling roll and the roll body length direction. A gas cooling device provided, and an auxiliary gas cooling device which is provided on the outlet side of the cooling roll and has three or more nozzle headers movable in the width direction of the metal band and provided on the front and back surfaces of the metal band, respectively. In cooling the metal strip by blowing cooling gas from each of these nozzle headers, the average sheet temperature control based on the deviation of the metal strip from the target sheet temperature is based on the contact length between the metal strip and the cooling roll. The plate temperature distribution control based on the deviation from the target plate temperature distribution is performed by adjusting the cooling roll position and the position of the nozzle header of the gas cooling device. While adjusting the separation distance, at least one of the ends of the metal strip is constantly monitored at least on the inlet and outlet sides of the cooling roll, and both ends of the nozzles of the gas cooling device and the auxiliary gas cooling device are monitored. The nozzles on the side are moved to both ends of the metal band so that the cooling widths shown in Equations 8 and 9 below are obtained, and the center position of the center nozzle header is aligned with the center position in the metal band width direction. To the cooling width shown in Equation 10 below, and constantly monitor the sheet temperature distribution in the width direction of the metal strip on the cooling roll exit side, and based on the deviation from the target sheet temperature distribution, the gas cooling device and auxiliary A metal band cooling method, comprising: adjusting a cooling gas pressure or a gas flow rate inside each nozzle header of a gas cooling device to blow a cooling gas onto a metal band.
【数 8】 [Equation 8]
6≤ £≤45 6≤ £ ≤45
但し t < 1. 3mm  However, t <1.3 mm
【数 9】 [Equation 9]
12 ί -9.6≤ £≤22 i +16.4 12 ί -9.6≤ £ ≤22 i +16.4
但し t≥ 1. 3mm  However, t≥1.3mm
W E :両端部ノズルヘッダ冷却幅(mm) W E : Nozzle header cooling width at both ends (mm)
t :金属帯の板厚(mm)  t: Metal strip thickness (mm)
【数 1 0】[Equation 10]
Figure imgf000080_0001
Figure imgf000080_0001
W c : 中央部ノズルヘッダの冷却幅(mm) Wc : Cooling width of center nozzle header (mm)
B :金属帯の幅(mm)  B: Width of metal band (mm)
( 7 0 ) 請求の範囲第 6 8項乃至第 6 9項記載の金属帯冷却方法において、 冷 却ロール出側で金属帯巾方向の板温分布を常時監視しておき、 目標板温に対し端 部及び中央部において温度偏差の生じている領域の板温偏差の重心位置を夫々求 め、 ガス冷却装置又は該ガス冷却装置と補助ガス冷却装置の端部側のノズルへッ ダにっき、 金属帯端部から該重心位置までの距離の 2倍の長さが端部側における 冷却巾となるようにこれを移動させ、 中央部のノズルヘッダにつき、 その中心位 置が金属帯中央部にある前記重心位置と一致するようにこれを移動させて、 これ らの各ノズルヘッダから金属帯に対し冷却ガスの吹き付けを行うことを特徴とす る請求の範囲第 6 8項乃至第 6 9項記載の金属帯冷却方法。 (70) In the metal strip cooling method according to claims 68 to 69, the sheet temperature distribution in the width direction of the metal strip is constantly monitored on the cooling roll exit side, and the target sheet temperature is monitored. Determine the barycentric position of the plate temperature deviation in the region where the temperature deviation occurs at the end and the center, respectively, and use the gas cooling device or the nozzle head on the end side of the gas cooling device and the auxiliary gas cooling device. The nozzle is moved so that the cooling width at the end is twice as long as the distance from the end of the metal strip to the position of the center of gravity. Claims 68 to 90 wherein the nozzles are moved so as to coincide with the position of the center of gravity at the center, and the cooling gas is blown from each of the nozzle headers to the metal strip. 69. The method for cooling a metal strip according to item 9.
PCT/JP1993/000843 1992-06-23 1993-06-22 Metal band cooling apparatus and cooling method therefor WO1994000605A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP93913561A EP0614992B1 (en) 1992-06-23 1993-06-22 Metal band cooling apparatus and cooling method therefor
KR1019940700085A KR0159121B1 (en) 1992-06-23 1993-06-22 Metal band cooling apparatus and cooling method thereof
DE69324566T DE69324566T2 (en) 1992-06-23 1993-06-22 COOLING DEVICE AND METHOD FOR METAL STRIP

Applications Claiming Priority (24)

Application Number Priority Date Filing Date Title
JP4/187441 1992-06-23
JP4/187440 1992-06-23
JP18744092 1992-06-23
JP18743992 1992-06-23
JP4/187439 1992-06-23
JP18744192 1992-06-23
JP5112488A JPH06306485A (en) 1993-04-16 1993-04-16 Heat treating device for metallic belt
JP5/112488 1993-04-16
JP5/152634 1993-06-01
JP5/152636 1993-06-01
JP5/152635 1993-06-01
JP5152634A JPH06340913A (en) 1993-06-01 1993-06-01 Gas-cooling device for metal strip
JP5152636A JPH06340928A (en) 1993-06-01 1993-06-01 Cooling roll and roll cooling apparatus using the same roll
JP15263593A JP3191495B2 (en) 1993-06-01 1993-06-01 Gas cooling system for metal strip
JP5/156361 1993-06-03
JP5/156362 1993-06-03
JP5156362A JP2979903B2 (en) 1992-06-23 1993-06-03 Metal strip cooling method
JP5156361A JP2979902B2 (en) 1992-06-23 1993-06-03 Metal strip cooling device
JP5173684A JPH0711346A (en) 1993-06-22 1993-06-22 Device for cooling of strip metal with gas
JP5/173682 1993-06-22
JP5173682A JP2979908B2 (en) 1992-06-23 1993-06-22 Metal strip cooling device
JP5/173684 1993-06-22
JP5173683A JP2906927B2 (en) 1993-06-22 1993-06-22 Metal strip cooling device
JP5/173683 1993-06-22

Publications (1)

Publication Number Publication Date
WO1994000605A1 true WO1994000605A1 (en) 1994-01-06

Family

ID=27583429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/000843 WO1994000605A1 (en) 1992-06-23 1993-06-22 Metal band cooling apparatus and cooling method therefor

Country Status (7)

Country Link
EP (1) EP0614992B1 (en)
KR (1) KR0159121B1 (en)
CN (1) CN1040130C (en)
CA (1) CA2116230A1 (en)
DE (1) DE69324566T2 (en)
RU (1) RU2120482C1 (en)
WO (1) WO1994000605A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109116891A (en) * 2018-08-01 2019-01-01 首钢智新迁安电磁材料有限公司 A kind of control method of heat-treatment furnace strip Slow cooling
CN110699522A (en) * 2019-11-23 2020-01-17 宁波蜗牛锻造有限公司 Cooling equipment structure for control arm
CN115889711A (en) * 2022-12-22 2023-04-04 常州创明磁性材料科技有限公司 Online cooling device and cooling method for nanocrystalline strip

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002081760A1 (en) * 2001-04-02 2002-10-17 Nippon Steel Corporation Rapid cooling device for steel band in continuous annealing equipment
SE524588C2 (en) * 2002-12-23 2004-08-31 Sandvik Ab Method and apparatus for cooling strip and wire material
FR2897620B1 (en) * 2006-02-21 2008-04-04 Stein Heurtey METHOD AND DEVICE FOR COOLING AND STABILIZING BAND IN A CONTINUOUS LINE
JP5197967B2 (en) * 2007-02-06 2013-05-15 三菱日立製鉄機械株式会社 Drainer
DE102007053523A1 (en) 2007-05-30 2008-12-04 Sms Demag Ag Device for influencing temperature distribution over width of slab or strip, particularly in one or multiple hot strip mill, has cooling device, which is provided with nozzles for applying cooling agent on slab or strip
CN101993994B (en) * 2010-11-29 2012-08-08 苏州中门子科技有限公司 Water cooling device arranged on strip thermal treatment equipment
JP2014091157A (en) * 2012-11-06 2014-05-19 Saco Llc Apparatus and method for producing amorphous alloy foil strip
FR3014447B1 (en) * 2013-12-05 2016-02-05 Fives Stein METHOD AND INSTALLATION FOR CONTINUOUS THERMAL TREATMENT OF A STEEL BAND
CN105648196B (en) * 2014-10-11 2017-12-15 江苏菲亚德印务有限公司 Steel band high-frequency hardening machine
TWI616537B (en) * 2015-11-19 2018-03-01 財團法人金屬工業研究發展中心 Method of heat treatment for metal
JP2019203186A (en) * 2018-05-25 2019-11-28 光洋サーモシステム株式会社 Heat treatment device, and manufacturing method of metal component
JP7139151B2 (en) * 2018-05-25 2022-09-20 株式会社ジェイテクトサーモシステム Heat treatment equipment and method for manufacturing metal parts
CN109333374A (en) * 2018-12-03 2019-02-15 山西太钢不锈钢股份有限公司 Surface of steel plate oxide removal method
CN109722526B (en) * 2019-01-15 2020-01-07 重庆市霆驰新材料科技有限公司 Cooling device for preventing bonding gold wire from generating adhesion phenomenon after annealing
CN111571235B (en) * 2020-05-12 2022-06-14 艾伯纳工业炉(太仓)有限公司 Metal plate's thermoforming production line
CN111593291B (en) * 2020-06-24 2022-05-27 合肥学院 Preparation method of high-temperature induced titanium-zirconium-based alloy surface corrosion-resistant oxide layer
EP4232616A1 (en) * 2020-10-21 2023-08-30 Applied Materials, Inc. Drum device for use in a web coating process, web coating apparatus and method for controlling the temperature of a web in a web coating process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59229422A (en) * 1983-06-11 1984-12-22 Nippon Steel Corp Cooling method of steel strip in continuous annealing
JPS6267125A (en) * 1985-09-20 1987-03-26 Kawasaki Steel Corp Method for cooling steel strip in continuous annealing furnace
JPS6248732B2 (en) * 1983-01-13 1987-10-15 Kawasaki Seitetsu Kk

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60128220A (en) * 1983-12-15 1985-07-09 Mitsubishi Heavy Ind Ltd Method for controlling temperature of strip in cooling zone of continuous annealing furnace
JPS62149820A (en) * 1985-12-24 1987-07-03 Kawasaki Steel Corp Method for cooling steel strip
US5182074A (en) * 1990-07-31 1993-01-26 Nkk Corporation Apparatus for continuously cooling metal strip

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6248732B2 (en) * 1983-01-13 1987-10-15 Kawasaki Seitetsu Kk
JPS59229422A (en) * 1983-06-11 1984-12-22 Nippon Steel Corp Cooling method of steel strip in continuous annealing
JPS6267125A (en) * 1985-09-20 1987-03-26 Kawasaki Steel Corp Method for cooling steel strip in continuous annealing furnace

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0614992A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109116891A (en) * 2018-08-01 2019-01-01 首钢智新迁安电磁材料有限公司 A kind of control method of heat-treatment furnace strip Slow cooling
CN109116891B (en) * 2018-08-01 2021-04-09 首钢智新迁安电磁材料有限公司 Control method for slow cooling of strip steel of heat treatment furnace
CN110699522A (en) * 2019-11-23 2020-01-17 宁波蜗牛锻造有限公司 Cooling equipment structure for control arm
CN115889711A (en) * 2022-12-22 2023-04-04 常州创明磁性材料科技有限公司 Online cooling device and cooling method for nanocrystalline strip
CN115889711B (en) * 2022-12-22 2024-01-23 常州创明磁性材料科技有限公司 On-line cooling device and method for nanocrystalline strip

Also Published As

Publication number Publication date
RU94016952A (en) 1997-02-27
KR0159121B1 (en) 1999-01-15
EP0614992A1 (en) 1994-09-14
RU2120482C1 (en) 1998-10-20
CA2116230A1 (en) 1994-01-06
EP0614992A4 (en) 1996-10-30
DE69324566T2 (en) 1999-10-28
CN1088621A (en) 1994-06-29
CN1040130C (en) 1998-10-07
EP0614992B1 (en) 1999-04-21
DE69324566D1 (en) 1999-05-27

Similar Documents

Publication Publication Date Title
WO1994000605A1 (en) Metal band cooling apparatus and cooling method therefor
KR101453129B1 (en) Method and equipment of flatness control in cooling a stainless steel strip
US8408035B2 (en) Method of and apparatus for hot rolling a thin silicon-steel workpiece into sheet steel
EP2025423B1 (en) Cooler and cooling method of hot rolled steel band
WO1996032507A1 (en) Equipment for manufacturing stainless steel strip
JP2010530807A (en) Hot rolling and heat treatment of steel strip
CN112139282A (en) Strip steel coiling system, high-strength steel coiling method and high-strength steel production line
JPS6314052B2 (en)
CA1174460A (en) Continuous gold rolling and annealing apparatus for steel strip
JP5146062B2 (en) Steel plate rolling method and equipment
CN213409875U (en) Strip steel coiling system and high-strength steel production line
CN207276675U (en) A kind of metal strap annealing furnace cooling device
JP3083247B2 (en) Method for producing stainless steel strip by continuous casting hot rolling and heat treatment furnace for continuous casting hot rolling of stainless steel strip
JP2979903B2 (en) Metal strip cooling method
JP3817153B2 (en) Hot-rolled steel sheet cooling equipment
JP3345776B2 (en) Method and apparatus for cooling U-shaped sheet pile
JP4564765B2 (en) Thermal crown control device
JPS5976615A (en) Method and device for descaling steel material in low pressure
KR20150003595A (en) Apparatus and method for manufacturing wire rod
JP3391303B2 (en) Plate heat treatment equipment
JP2979902B2 (en) Metal strip cooling device
JP2002143918A (en) Cooling method in water-cooling zone of hot rolling line
JP3301664B2 (en) Hearth roll crown control device in continuous heat treatment furnace
KR101504438B1 (en) Hot-rolling equipment having function of preventing surface defects
JP2006255763A (en) Thermal crown controller, rolling mill, and manufacturing method of metallic strip using rolling mill

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1993913561

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): CA KR RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

WWE Wipo information: entry into national phase

Ref document number: 1019940700085

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 1994 204132

Country of ref document: US

Date of ref document: 19940215

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2116230

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1993913561

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 1996 639349

Country of ref document: US

Date of ref document: 19960429

Kind code of ref document: A

WWG Wipo information: grant in national office

Ref document number: 1993913561

Country of ref document: EP