WO1993019619A1 - Method for the destruction of microorganisms and enzymes: mts process (mano-thermo-sonication) - Google Patents

Method for the destruction of microorganisms and enzymes: mts process (mano-thermo-sonication) Download PDF

Info

Publication number
WO1993019619A1
WO1993019619A1 PCT/ES1993/000021 ES9300021W WO9319619A1 WO 1993019619 A1 WO1993019619 A1 WO 1993019619A1 ES 9300021 W ES9300021 W ES 9300021W WO 9319619 A1 WO9319619 A1 WO 9319619A1
Authority
WO
WIPO (PCT)
Prior art keywords
sonication
microorganisms
enzymes
thermo
destruction
Prior art date
Application number
PCT/ES1993/000021
Other languages
Spanish (es)
French (fr)
Inventor
Justino Burgos Gonzalez
Santiago Condon Uson
Pascual Lopez Buesa
Juan Antonio ORDOÑEZ PEREDA
Javier Raso Pueyo
Francisco Sala Trepat
Original Assignee
Universidad De Zaragoza
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Zaragoza filed Critical Universidad De Zaragoza
Publication of WO1993019619A1 publication Critical patent/WO1993019619A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/025Ultrasonics
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C3/00Preservation of milk or milk preparations
    • A23C3/07Preservation of milk or milk preparations by irradiation, e.g. by microwaves ; by sonic or ultrasonic waves
    • A23C3/073Preservation of milk or milk preparations by irradiation, e.g. by microwaves ; by sonic or ultrasonic waves by sonic or ultrasonic waves
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/015Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with pressure variation, shock, acceleration or shear stress or cavitation
    • A23L3/0155Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with pressure variation, shock, acceleration or shear stress or cavitation using sub- or super-atmospheric pressures, or pressure variations transmitted by a liquid or gas
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/16Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by heating loose unpacked materials
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/26Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by irradiation without heating
    • A23L3/30Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by irradiation without heating by treatment with ultrasonic waves

Definitions

  • MTS Process Hand-Thermo-Sonication
  • the methods used for the preservation of food and other products are especially directed to prevent or hinder the action of various agents of alteration, being among them the main responsible for most of the cases of alteration, enzymes and microorganisms.
  • Sanitation treatments are aimed at the destruction of microorganisms, pathogens for humans, transported by food or other biological fluids.
  • the heat treatment is one of the most important methods for the preservation of food and other alterable products in the medium and long term, since, in addition to prolonging the life of the same, it is the only one capable of guaranteeing, 0 for its destructive effect , their health. Therefore, heat treatments are frequently used, as a previous step to their subsequent dehydration or freezing.
  • thermo-ultrasonic effect As with the rest of the methods of food preservation is different for each microorganism and enzyme and for the different microenvironmental conditions (pH, aw etc.), by this method it has been achieved, by
  • the procedure of this patent consists, in essence, of driving the product under pressure through a receptacle in which it is maintained at the treatment temperature and subjected to an ultrasonic field.
  • Fig 1 shows an instrument in which the effect of the method
  • the instrument is constituted by:
  • a main vessel (A) of 600 ml. capacity which serves as a stable heating element of the assembly, equipped with a heating element (resistance) (1), a temperature sensor (Pt 100) (2) and a stirring shaft (3).
  • This element also houses the inoculum injection connections, which is carried out by means of a syringe operated by a solenoid (6) and sampling (7) which is carried out by means of an electrically activated valve, connected to a timer.
  • the set of electrical and electronic elements of the installation is regulated by a main module.
  • the installation also has other accessory elements such as: a fiber optic detector for the detection of sampling tubes (9) and a fraction collector. (10)
  • Fig 2 shows the survival lines (in which the logarithm of the number of survivors is represented against the corresponding treatment times) of a population of Bacillus subtilis subjected to ultrasound (- ⁇ ), to an isothermal heating at 105 S C () already an MTS process to 105 S C with an ultrasonic frequency of 20 Hz, an amplitude of 117 microns and a pressure of 300 KPa. () •
  • Fig. 3 shows the thermodestruction lines (constructed representing the logarithms of the decimal reduction times versus the corresponding treatment temperatures) of a population of Bacillus subtilis subjected to different thermal treatments and the corresponding MTS treatments at different temperatures with a frequency of 20 kHz, an amplitude of 117 microns and a pressure of 300kPa.
  • Fig 4 shows the relationship between Hand-Thermosonication pressure and decimal reduction times at 105 9 C of Bacillus subtilis.
  • Fig 5 shows the relationship between ultrasonic amplitude during different MTS processes (at 20 kHz frequency and 102 e C) and the decimal reduction times of Bacillus subtilis.
  • the spore suspensions were obtained by dragging, with sterile distilled water, a superficial culture of B. subtilis in nutrient agar with 1 ppm of manganese after an incubation period of 5 days at 42 S C.
  • subtilis subjected to manothermosonication are destroyed following a first-order reaction kinetics (at same as those subjected to a heat treatment) and in our conditions about 10 times faster (fig 2).
  • the simultaneous application of pressure, together with that of heat and ultrasound, allows the effect to be maintained at temperatures above the boiling point of water (100 -C) (fig 3), which makes it possible to use them at high temperatures.
  • the effectiveness of the MTS process is determined, among other factors by temperature, treatment time, pressure and sonication amplitude (figs 4 and 5).
  • the kinetics of the effect follow a well-defined course, which allows the corresponding calculations to be carried out and the MTS processing parameters most precisely defined for each particular objective to be defined.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Nutrition Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Method for the destruction of microorganisms and enzymes by the combined application of heat and ultrasounds under pressure (MTS) in controlled conditions of pressure, time, temperature and sonication frequency and amplitude. The application of ultrasounds under pressure combined with the thermal processing potentiates synergically the destructing effect on microorganisms and enzymes, thus allowing to reduce the time and/or temperature of processing. The destruction rate of microorganisms and enzymes subjected to the Mano-Thermo-Sonication process follows a kinetics of reaction of first order, making it possible to calculate the sterilisation or hygienization treatments to be applied to obtain a predetermined effect. Once the Mano-Thermo-Sonication chamber has been set with the previously calculated conditions of flow velocity, temperature, pressure and sonication intensity, the product to be treated is impulsed through said chamber.

Description

Título Title
Procedimiento para la destrucción de microorganismos y enzimas: Proceso MTS (Mano-Termo-Sonicación).Procedure for the destruction of microorganisms and enzymes: MTS Process (Hand-Thermo-Sonication).
Sector de la técnica: „ Sector agroalimentario. Higienización y conservación de alimen¬ tos. Sector sanitario.Technical sector: „Agrifood sector. Hygiene and food preservation. Health sector
0 Estado de la Técnica0 State of the Art
Los métodos utilizados para la conservación de los alimentos y otros productos van especialmente dirigidos a impedir o dificultar la acción de diversos agentes de alteración, siendo entre ellos los principales responsables de la mayor parte de 5 los casos de alteración , los enzimas y microorganismos. Los tratamientos de higienización tienen por objeto la destrucción de microorganismos, patógenos para el hombre, vehiculados por los alimentos u otros fluidos biológicos.The methods used for the preservation of food and other products are especially directed to prevent or hinder the action of various agents of alteration, being among them the main responsible for most of the cases of alteration, enzymes and microorganisms. Sanitation treatments are aimed at the destruction of microorganisms, pathogens for humans, transported by food or other biological fluids.
0 En la actualidad, la inmensa mayor parte de los alimentos se conservan o bien controlando el crecimientos microbiano y la actividad enzimatica ( por almacenamiento a bajas temperaturas o por reducción de la actividad de agua ) o bien destruyendo microorganismos y enzimas mediante tratamientos térmicos. 50 At present, the vast majority of food is preserved either by controlling microbial growth and enzymatic activity (by storage at low temperatures or by reducing water activity) or by destroying microorganisms and enzymes through heat treatments. 5
~~
El tratamiento térmico constituye uno de los métodos mas importantes para la conservación de alimentos y otros productos alterables a medio y largo plazo, ya que, además de prolongar la vida útil de los mismos , es el único capaz de garantizar, 0 por su efecto destructor , la salubridad de los mismos .Por ello los tratamientos térmicos se utilizan con frecuencia , como paso previo a su posterior deshidratación o congelación.The heat treatment is one of the most important methods for the preservation of food and other alterable products in the medium and long term, since, in addition to prolonging the life of the same, it is the only one capable of guaranteeing, 0 for its destructive effect , their health. Therefore, heat treatments are frequently used, as a previous step to their subsequent dehydration or freezing.
* Sin embargo, la aplicación del calor a . productos biológicos 5 presenta algunos inconvenientes, como son los efectos secunda- * However, the application of heat a. Biological products 5 has some drawbacks, such as secondary effects.
* rios ( no deseados ) por los que pueden resultar afectados, en ocasiones de forma importante, las características físicas, químicas, organolépticas y el valor nutritivo y/o biológico del producto . * rivers (unwanted) by which the physical, chemical, organoleptic characteristics and nutritional and / or biological value of product
En la actualidad la Tecnología intenta diseñar nuevos procesos combinando el calor con diversos agentes físicos y/o químicos que permitan acortar los tratamientos hasta ahora empleados, manteniendo su letalidad. Estos intentos han resultado hasta el momento infructuosos, o de escasa eficacia.At present, the Technology tries to design new processes by combining heat with various physical and / or chemical agents that make it possible to shorten the treatments hitherto used, maintaining its lethality. These attempts have so far proved unsuccessful, or of little effectiveness.
DESCRIPCIÓN Es conocido el efecto destructor de los ultrasonidos sobre algunos microorganismos y enzimas. Sin embargo el aprovecha¬ miento de este efecto para la destrucción de los microrganis- mos y enzimas de los alimentos, sensibles a los ultrasonidos, ha resultado imposible ya que los tiempos de tratamiento requeridos encarecen notablemente el producto y afectan muy negativamente a su calidad.DESCRIPTION The destructive effect of ultrasound on some microorganisms and enzymes is known. However, the use of this effect for the destruction of microrganisms and enzymes of foods, sensitive to ultrasound, has proved impossible since the required treatment times significantly increase the product and affect its quality very negatively.
Se ha comprobado que la aplicación simultánea de calor y ultrasonidos aumenta sinérgicamente la eficacia del tratamiento térmico . Sin embargo este efecto disminuye progresivamente a medida que aumenta la temperatura de tratamiento, tendiendo a desaparecer a temperaturas de ebullición. Este fenómeno prácti¬ camente impide su posible aplicación industrial ya que exige tiempos de ultrasonicación excesivamente largos.It has been proven that the simultaneous application of heat and ultrasound synergistically increases the efficiency of the heat treatment. However, this effect decreases progressively as the treatment temperature increases, tending to disappear at boiling temperatures. This phenomenon practically prevents its possible industrial application since it demands excessively long ultrasonication times.
Nuestro proceso, objeto de la presente memoria, reivindica la aplicación simultánea de calor y ultrasonidos bajo presión en condiciones controladas de tiempo y temperatura de tratamiento, y de presión y amplitud y potencia de sonicación.Our process, object of the present report, claims the simultaneous application of heat and ultrasound under pressure under controlled conditions of treatment time and temperature, and of pressure and amplitude and sonication power.
El tratamiento simultáneo de calor-ultrasonidos bajo presión (Mano- Termo-Sonicación) permite manteneí su eficacia sinérgica a cualquier temperatura.Este efecto se obtiene , previsible- mente, por compensar los cambios de tensión de vapor del alimento manteniendo de esta forma la eficacia de los fenómenos de cavitación originada por los ultrasonidos. Con este método se ha hecho posible reducir considerablemente la intensidad de los tratamientos térmicos actualmente en uso con el consiguiente beneficio para el valor nutritivo y las carac¬ terísticas organolépticas y biológicas de los productos.The simultaneous treatment of heat-ultrasound under pressure (Hand-Thermo-Sonication) allows it to maintain its synergistic efficacy at any temperature. This effect is obtained, predictably, by compensating for changes in the vapor tension of the food, thus maintaining the efficiency of the cavitation phenomena caused by ultrasound. With this method it has become possible to significantly reduce the intensity of the heat treatments currently in use with the consequent benefit for the nutritional value and the organoleptic and biological characteristics of the products.
Al seguir el ritmo de destrucción, tanto de microorganismos 5 como de enzimas sometidos a Mano-Termo-Sonicación, una cinéti¬ ca de reacción de primer orden ( similar al presentado frente r al calor) pueden calcularse con precisión los parámetros de procesado para cada uno de los objetivos concretos.By following the rate of destruction, both of microorganisms 5 and enzymes subjected to Hand-Thermo-Sonication, a first-order reaction kinetics (similar to that presented against heat) can be precisely calculated processing parameters for each One of the specific objectives.
10 Si bien la intensidad del efecto de la termoultrasonicación, al igual que sucede con el resto de los métodos de conserva¬ ción de los alimentos es distinto para cada microorganismo y enzima y para las distintas condiciones microambientales (pH, aw etc.. ) , por este método se ha conseguido, por10 Although the intensity of the thermo-ultrasonic effect, as with the rest of the methods of food preservation is different for each microorganism and enzyme and for the different microenvironmental conditions (pH, aw etc.), by this method it has been achieved, by
15 ejemplo , reducir la termorresistencia de Bacillus subtilis por un factor de al menos 1/10 y la actividad del enzima lipooxigenasa por un factor de 1/100 , aproximadamente .For example, reduce the resistance of Bacillus subtilis by a factor of at least 1/10 and the activity of the enzyme lipoxygenase by a factor of approximately 1/100.
Existe, por consiguiente, la posibilidad de reducir, mediante 20 la MTS , la intensidad de los tratamientos térmicos actual¬ mente empleados, lo cual supone una mejora muy importante en la metodología de la conservación en general y en la de los alimentos y otros fluidos biológicos en particular. Especial¬ mente en aquellos cuya calidad resulta muy perjudicada por los 25 tratamientos térmicos convencionales.There is, therefore, the possibility of reducing, by 20 MTS, the intensity of the heat treatments currently used, which is a very important improvement in the conservation methodology in general and in that of food and other fluids Biological in particular. Especially in those whose quality is greatly affected by the 25 conventional heat treatments.
Si bien la aplicación de este nuevo método exigirá, como es lógico y ha sucedido con el resto de los métodos de conserva¬ ción, el desarrollo de maquinaria e instalaciones adecuadasAlthough the application of this new method will require, as is logical and has happened with the rest of the conservation methods, the development of adequate machinery and facilities
30 a cada alimento o producto en particular, el procedimiento de esta patente consiste , en esencia , en impulsar el producto a presión a través de un receptáculo en el que es mantenido i a la temperatura de tratamiento y sometido a un campo ultra¬ sónico.30 for each particular food or product, the procedure of this patent consists, in essence, of driving the product under pressure through a receptacle in which it is maintained at the treatment temperature and subjected to an ultrasonic field.
,35, 35
Figuras:Figures:
La Fig 1 muestra un instrumento en el que el efecto del métodoFig 1 shows an instrument in which the effect of the method
(MTS) ha podido ser observado, bien entendido que no constituye la única alternativa y que su inclusión en esta memoria no restringe las aplicaciones de la Mano-Termo-Sonicación. El instrumento esta constituido por:(MTS) has been able to be observed, well understood that it does not constitute the only alternative and that its inclusion in this memory does not restrict the applications of Hand-Thermo-Sonication. The instrument is constituted by:
1) Un vaso principal (A) de 600 mi. de capacidad , que sirve de elemento estable de calentamiento del conjunto , dotado de un elemento de calentamiento ( resistencia ) (1) , un sensor de temperatura (Pt 100) (2) y un eje de agitación (3).1) A main vessel (A) of 600 ml. capacity, which serves as a stable heating element of the assembly, equipped with a heating element (resistance) (1), a temperature sensor (Pt 100) (2) and a stirring shaft (3).
2) Una camarita de tratamiento de 23 mi. de capacidad montada sobre el fondo del vaso principal , que está dotada de un eje con hélice de agitación , conectado mediante un cojinete de fricción hermético al eje de agitación del vaso principal, dos válvulas (4) que permiten el relleno de la cámara de tratamiento al comenzar las experiencias y la reposición del menstruo extraído durante el muestreo , con menstruo del vaso principal y un elemento sensor (Pt 100) que permite medir la temperatura exacta durante el tratamiento (8) .2) A treatment box of 23 ml. of capacity mounted on the bottom of the main vessel, which is equipped with a shaft with stirring propeller, connected by a friction bearing sealed to the axis of agitation of the main vessel, two valves (4) that allow the filling of the treatment chamber at the beginning of the experiences and the replacement of the menstruum extracted during sampling, with menstruation of the main vessel and a sensor element (Pt 100) that allows to measure the exact temperature during the treatment (8).
3) Un elemento roscado al fondo del vaso principal y conectado al fondo de la camarita de tratamiento, que aloja el vastago de sonicación (5) . Este elemento aloja también las conexiones de inyección de inoculo, que se efectúa mediante una jerin¬ guilla accionada por una solenoide (6) y de toma de muestras (7) que se realiza mediante una válvula activada eléctrica¬ mente , conectada a un temporizador.3) A threaded element at the bottom of the main vessel and connected to the bottom of the treatment chamber, which houses the sonication rod (5). This element also houses the inoculum injection connections, which is carried out by means of a syringe operated by a solenoid (6) and sampling (7) which is carried out by means of an electrically activated valve, connected to a timer.
4) El conjunto de elementos eléctricos y electrónicos de la instalación está regulado por un módulo principal. La insta- lación cuenta también con otros elementos accesorios como: un detector de fibra óptica para la detección de los tubos de muestreo (9) y un colector de fracciones. (10) .4) The set of electrical and electronic elements of the installation is regulated by a main module. The installation also has other accessory elements such as: a fiber optic detector for the detection of sampling tubes (9) and a fraction collector. (10)
La Fig 2 muestra las líneas de supervivencia ( en las que se representa el logaritmo del numero de supervivientes frente a los correspondientes tiempos de tratamiento) de una población de Bacillus subtilis sometida a ultrasonidos ( -Φ ) , a un calentamiento isotérmico a 105 SC ( ) y a un proceso MTS a 105 SC con una frecuencia de ultrasonicación 20 Hz, una amplitud de 117 micrones y a una presión de 300 KPa. ( )•Fig 2 shows the survival lines (in which the logarithm of the number of survivors is represented against the corresponding treatment times) of a population of Bacillus subtilis subjected to ultrasound (-Φ), to an isothermal heating at 105 S C () already an MTS process to 105 S C with an ultrasonic frequency of 20 Hz, an amplitude of 117 microns and a pressure of 300 KPa. () •
La Fig 3 muestra las líneas de termodestrucción ( construidas representado los logaritmos de los tiempos de reducción decimal frente a las correspondientes temperaturas de tratamiento ) de una población de Bacillus subtilis sometida a diferentes tratamientos térmicos y los correspondientes tratamientos MTS a distintas temperaturas con una frecuencia de 20 kHz, una amplitud de 117 micrones y una presión de 300kPa.Fig. 3 shows the thermodestruction lines (constructed representing the logarithms of the decimal reduction times versus the corresponding treatment temperatures) of a population of Bacillus subtilis subjected to different thermal treatments and the corresponding MTS treatments at different temperatures with a frequency of 20 kHz, an amplitude of 117 microns and a pressure of 300kPa.
La Fig 4 muestra la relación existente entre presión de Mano- TermoSonicación y tiempos de reducción decimal a 105 9C de Bacillus subtilis.Fig 4 shows the relationship between Hand-Thermosonication pressure and decimal reduction times at 105 9 C of Bacillus subtilis.
La Fig 5 muestra la relación existente entre amplitud de ultrasonicación durante distintos procesos MTS ( a 20 kHz de frecuencia y 102 eC ) y los tiempos de reducción decimal de Bacillus subtilis.Fig 5 shows the relationship between ultrasonic amplitude during different MTS processes (at 20 kHz frequency and 102 e C) and the decimal reduction times of Bacillus subtilis.
Ejemplo:Example:
A continuación se describe una experiencia de inacti¬ vación de Bacillus subtilis variedad niger ( ATCC 9372 ) suspendido en tampón Me. Ilvaine de pH 7.An inactivation experience of Bacillus subtilis niger variety (ATCC 9372) suspended in Me buffer is described below. Ilvaine pH 7.
Las suspensiones de esporas se obtuvieron arrastrando, con agua destilada estéril, un cultivo superficial de B. subtilis en agar nutritivo con 1 p.p.m. de manganeso tras un período de incubación de 5 días a 42 SC.The spore suspensions were obtained by dragging, with sterile distilled water, a superficial culture of B. subtilis in nutrient agar with 1 ppm of manganese after an incubation period of 5 days at 42 S C.
Las determinaciones de termorresistencia y de resistencia a la sonicación y manotermosonicación se realizaron en el instrumen¬ to descrito en la fig 1 inyectando 0.2 mililitros de la suspen¬ sión en la camarita una vez estabilizadas las condiciones de tratamiento (de temperatura, presión, amplitud y frecuencia de sonicación) . A intervalos predeterminados de tiempo se extraían muestras en las que se evaluaba el número de supervivientes. El recuento de supervivientes se realizó en todos los casos sembrando un volumen conocido de muestra en placas de agar nutritivo tras su incubación a 35 SC durante 48 horas. Los resultados de estos ejemplos indican que el efecto de la aplicación simultánea de ultrasonidos y presión es sinérgico y no meramente aditivo (fig 2) y que los esporas de B. subtilis sometido a manotermosonicación se destruyen siguiendo uno cinética de reacción de primer orden (al igual que los someti¬ dos a un tratamiento térmico) y en nuestras condiciones unas 10 veces mas rápidamente (fig 2). La aplicación simultanea de presión, junto a la del calor y ultrasonidos permite mantener el efecto a temperaturas superiores a la de ebullición del agua (100 -C) (fig 3) lo que posibilita su utilización a elevadas temperaturas.The determinations of heat resistance and resistance to sonication and manothermosonication were performed in the instrument described in fig 1 by injecting 0.2 milliliters of the suspension into the cabin once the treatment conditions (temperature, pressure, amplitude and sonication frequency). At predetermined intervals of time samples were taken in which the number of survivors was evaluated. Survivors were counted in all cases by sowing a known volume of sample in nutrient agar plates after incubation at 35 S C for 48 hours. The results of these examples indicate that the effect of the simultaneous application of ultrasound and pressure is synergistic and not merely additive (fig 2) and that the spores of B. subtilis subjected to manothermosonication are destroyed following a first-order reaction kinetics (at same as those subjected to a heat treatment) and in our conditions about 10 times faster (fig 2). The simultaneous application of pressure, together with that of heat and ultrasound, allows the effect to be maintained at temperatures above the boiling point of water (100 -C) (fig 3), which makes it possible to use them at high temperatures.
La eficacia de los proceso MTS vienen determinados, entre otros factores por la temperatura, el tiempo de tratamiento, la presión y la amplitud de sonicación (figs 4 y 5) . La cinética del efecto sigue un curso bien definido lo que permite efec- tuar los correspondientes cálculos y definir con precisión los parámetro de procesado MTS mas adecuados para cada objetivo particular. The effectiveness of the MTS process is determined, among other factors by temperature, treatment time, pressure and sonication amplitude (figs 4 and 5). The kinetics of the effect follow a well-defined course, which allows the corresponding calculations to be carried out and the MTS processing parameters most precisely defined for each particular objective to be defined.

Claims

REIVINDICACIONES.CLAIMS.
1- Procedimiento para la destrucción de microorganismos y enzimas, caracterizado por el empleo combinado, bajo presión, del calor y los ultrasonidos (Proceso MTS: Mano-Termo-Sonica¬ ción) en el rango de: 10 a 104 KPa. 30 a 200SC y 18 a 105 KHz.1- Procedure for the destruction of microorganisms and enzymes, characterized by the combined use, under pressure, of heat and ultrasound (MTS Process: Hand-Thermo-Sonication) in the range of: 10 to 10 4 KPa. 30 to 200SC and 18 to 10 5 KHz.
2- Procedimiento para la destrucción de microorganismos y enzimas (Proceso MTS: Mano-Termo-Sonicación) según la reivindi- cación 1, caracterizado por su aplicación a la esterilización de medios biológicos.2- Procedure for the destruction of microorganisms and enzymes (MTS Process: Hand-Thermo-Sonication) according to claim 1, characterized by its application to the sterilization of biological media.
3- Procedimiento para la destrucción de microorganismos y enzimas (Proceso MTS: Mano-Termo-Sonicación) según la reivindi- cación 1, caracterizado por su aplicación a la higienización de medios biológicos.3- Procedure for the destruction of microorganisms and enzymes (MTS Process: Hand-Thermo-Sonication) according to claim 1, characterized by its application to the sanitation of biological means.
4- Procedimiento para la destrucción de microorganismos y enzimas (Proceso MTS: Mano-Termo-Sonicación) según las reivin- dicaciones 1 y 2, caracterizado por su aplicación a la esteri¬ lización de alimentos líquidos y semilíquidos.4- Procedure for the destruction of microorganisms and enzymes (MTS Process: Hand-Thermo-Sonication) according to claims 1 and 2, characterized by its application to the sterilization of liquid and semi-liquid foods.
5- Procedimiento para la destrucción de microorganismos y enzimas (Proceso MTS: Mano-Termo-Sonicación) según las reivin- dicaciones 1 y 3, caracterizado por su aplicación a la pasteu¬ rización de alimentos líquidos y semilíquidos. 5- Procedure for the destruction of microorganisms and enzymes (MTS Process: Hand-Thermo-Sonication) according to claims 1 and 3, characterized by its application to the pasteurization of liquid and semi-liquid foods.
PCT/ES1993/000021 1992-03-31 1993-03-31 Method for the destruction of microorganisms and enzymes: mts process (mano-thermo-sonication) WO1993019619A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES9200686A ES2046944B1 (en) 1992-03-31 1992-03-31 PROCEDURE FOR THE DESTRUCTION OF MICROORGANISMS AND ENZYMES THROUGH THE COMBINED APPLICATION OF HEAT AND ULTRASONICS UNDER PRESSURE: MTS PROCESS (HAND-THERMO-SONICATION).
ESP9200686 1992-03-31

Publications (1)

Publication Number Publication Date
WO1993019619A1 true WO1993019619A1 (en) 1993-10-14

Family

ID=8276574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES1993/000021 WO1993019619A1 (en) 1992-03-31 1993-03-31 Method for the destruction of microorganisms and enzymes: mts process (mano-thermo-sonication)

Country Status (3)

Country Link
EP (1) EP0587854A1 (en)
ES (1) ES2046944B1 (en)
WO (1) WO1993019619A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2516665C1 (en) * 2012-12-03 2014-05-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Челябинская государственная агроинженерная академия" Device for cleaning and disinfection of milk products

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2291051B1 (en) * 2001-12-14 2009-01-16 Universidad Zaragoza IMPROVEMENT OF YOGURT TEXTURE THROUGH MANOTERMOSONICATION (MTS) PRIOR TO MILK.
ES2231030B1 (en) * 2003-10-29 2006-07-16 Universidad Politecnica De Cartagena. THERMRESISTOMETER FOR MEASURING THE HEAT RESISTANCE OF MICROORGANISMS IN TEMPERATURE CONTROLLED CONDITIONS, ABLE TO SIMULATE ISOTHERMAL AND NON-ISOTHERMAL TREATMENT CONDITIONS.
ES2366066B1 (en) * 2009-11-26 2012-05-16 Carlos V�?Zquez Montufo FILTRATION EQUIPMENT FOR THE FILTERING OF FLUIDS USED OR CONTAMINATED AND FILTERING PROCEDURE FOR FLUIDS USED OR CONTAMINATED.
ES2526824B1 (en) 2012-08-09 2016-02-12 Universidad Miguel Hernández De Elche Instant vacuum and ultrasonic expansion equipment
US20190029292A1 (en) * 2016-01-15 2019-01-31 The Coca-Cola Company Continuous high pressure processing of food and beverage products
FR3114942B1 (en) * 2020-10-12 2024-03-22 Algama Process for obtaining a milk substitute drink based on microalgae by manothermosonication

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4211744A (en) * 1978-05-24 1980-07-08 Biophysics Research & Consulting Corporation Process for ultrasonic pasteurization
US5026564A (en) * 1990-07-02 1991-06-25 Hayden Steven M Apparatus and method for treatment of various liquid or slurry by ultrasonification in conjuction with heat and pressure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4211744A (en) * 1978-05-24 1980-07-08 Biophysics Research & Consulting Corporation Process for ultrasonic pasteurization
US5026564A (en) * 1990-07-02 1991-06-25 Hayden Steven M Apparatus and method for treatment of various liquid or slurry by ultrasonification in conjuction with heat and pressure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2516665C1 (en) * 2012-12-03 2014-05-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Челябинская государственная агроинженерная академия" Device for cleaning and disinfection of milk products

Also Published As

Publication number Publication date
ES2046944A1 (en) 1994-02-01
ES2046944B1 (en) 1994-08-16
EP0587854A1 (en) 1994-03-23

Similar Documents

Publication Publication Date Title
Spilimbergo et al. Inactivation of Bacillus subtilis spores by supercritical CO2 treatment
Han et al. Efficacy of chlorine dioxide gas as a sanitizer for tanks used for aseptic juice storage
Van Houdt et al. Biofilm formation and the food industry, a focus on the bacterial outer surface
Cebrián et al. Comparative resistance of bacterial foodborne pathogens to non-thermal technologies for food preservation
Piyasena et al. Inactivation of microbes using ultrasound: a review
Lado et al. Alternative food-preservation technologies: efficacy and mechanisms
Ross et al. Combining nonthermal technologies to control foodborne microorganisms
Lasagabaster et al. Pulsed light technology for surface decontamination of eggs: Impact on Salmonella inactivation and egg quality
Cserhalmi et al. Inactivation of Saccharomyces cerevisiae and Bacillus cereus by pulsed electric fields technology
US3697222A (en) Sterilization with glutaraldehyde
US20120034131A1 (en) apparatus, system and method for preventing biological contamination to materials during storage using pulsed electrical energy
CN105142685B (en) Bio-indicator for oxidisability bactericidal agent
Gao et al. Natural freezing as a wastewater treatment method: E. coli inactivation capacity
Şengül et al. Effect of photosonication treatment on inactivation of total and coliform bacteria in milk
WO1993019619A1 (en) Method for the destruction of microorganisms and enzymes: mts process (mano-thermo-sonication)
Delso et al. Microbial inactivation by pulsed electric fields
Cabeza et al. Effect of thermoultrasonication on Salmonella enterica serovar Enteritidis in distilled water and intact shell eggs
Seo et al. Potential of non-thermal N2 plasma-treated buffer (NPB) for inhibiting plant pathogenic bacteria and enhancing food storage
WO2016086299A1 (en) Method for establishing resistance characteristics of a biological indicator
EP1201252B1 (en) Method for inactivating microorganisms using high pressure processing
Kuldiloke et al. Application of non-thermal processing for preservation of orange juice
Węsierska et al. Evaluation of the use of pulsed electrical field as a factor with antimicrobial activity
Singer et al. The effects of low-frequency ultrasound on Staphylococcus epidermidis
Ibrahim Thermal and nonthermal food processing technologies for food preservation and their effects on food chemistry and nutritional values
Alkhafaji et al. Modelling the inactivation of Escherichia coli ATCC 25922 using pulsed electric field

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1993907871

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1993907871

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWR Wipo information: refused in national office

Ref document number: 1993907871

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1993907871

Country of ref document: EP