WO1993018574A1 - A.c.-d.c. converter for independent phase alternator - Google Patents

A.c.-d.c. converter for independent phase alternator Download PDF

Info

Publication number
WO1993018574A1
WO1993018574A1 PCT/FR1993/000191 FR9300191W WO9318574A1 WO 1993018574 A1 WO1993018574 A1 WO 1993018574A1 FR 9300191 W FR9300191 W FR 9300191W WO 9318574 A1 WO9318574 A1 WO 9318574A1
Authority
WO
WIPO (PCT)
Prior art keywords
poles
armature
generator
current
phase
Prior art date
Application number
PCT/FR1993/000191
Other languages
French (fr)
Inventor
Thierry Rahban
Original Assignee
Thierry Rahban
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thierry Rahban filed Critical Thierry Rahban
Priority to AU36368/93A priority Critical patent/AU3636893A/en
Publication of WO1993018574A1 publication Critical patent/WO1993018574A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/10Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode arranged for operation in series, e.g. for multiplication of voltage

Definitions

  • the present invention relates to alternating current to direct current converters for alternators with independent armature phases.
  • the alternator must be coupled to an appropriate electronic assembly allowing with a minimum of components to regulate the energy transfer with a very good return while avoiding saturation or demagnetization linked to the armature reaction. This is why the invention relates to a converter for a alternator supplying energy at a DC voltage with an excellent return, using few components and allowing precise control of the armature current.
  • FIG. 2 shows a basic phase module, comprising at least one phase winding and four diodes.
  • the first measurement prevents the armature current from being discontinuous, as certain conversion principles imply.
  • the invention uses a so-called "BOOST" converter principle, characterized in that the current requested from the energy source is continuous, while the current in the load is chopped.
  • this converter is a voltage booster.
  • the switch 13 When the switch 13 is closed, the voltage across the inductor 11 is that supplied by the generator module 20 and the current in the inductor can increase.
  • the switch 13 is open, this current is recovered in the load, at the terminals C and D, by the diode 15 (it is of course possible to have this diode in the return branch).
  • the capacitor 14 provides local filtering, unless the load is sufficiently capacitive.
  • the value of the inductance 11 will if possible be large in front of the specific inductances of the armature phase windings.
  • the second measurement aims to take advantage of all the voltage available at the terminals of each winding of the armature. For this, it is not very advantageous to simply put the phase windings in series since one then obtains a vector sum of the voltages of each phase and not the sum of their absolute values. Also the invention proposes what will be called in next a phase rectifier module, associating with each independent phase coil of rank N a network of four diodes (N being a natural integer between 1 and P, P being the total number of rectified phases put in series). A specific configuration was preferred to that of the conventional GRAETZ bridge to reduce the number of diode thresholds in series.
  • Figure 2 shows the six connection poles of a row N rectifier module.
  • the four diodes respectively connect E (Nl) to E (N), F (Nl) to F (N), E (N) to F (N + 1) and F (N) to E (N + 1), and they are oriented in such a way that their direct current can only flow from the input poles to the central poles and from the central poles to the output poles.
  • rectifier modules are then juxtaposed to form the generator module 20, by systematically connecting their homonymous poles.
  • the input poles of the row 1 rectifier module are connected together and constitute the negative pole B of the module 20, while the output poles of the last module (of row P) are connected together to form the positive pole A .
  • Figure 3 gives the example of connection of these modules in a 5-phase configuration.
  • the breakdown voltage inverts end diodes, connected to points A and B, must exceed the maximum voltage induced in each winding.
  • the intermediate diodes must be able to support a voltage approximately twice as high. Indeed, in certain voltage configurations between two consecutive windings, these diodes can be found in parallel on two phase windings whose voltages increase. As those skilled in the art know, a large fraction of the voltage generated by each phase winding can be caused by the magnetic armature reaction. This excess voltage requires oversizing the diodes in reverse breakdown voltage, which is unfavorable to them in terms of cost and direct voltage drop.
  • FIG. 4 shows a concrete example of the embodiment of a converter according to the invention, taking care to reduce the switching losses of the chopper switch 13 associated with the recovery diode 15.
  • the assembly provides a circuit for helps with active switching at the opening and closing of this switch and with energy recovery, composed of elements 71 to 82 (without claiming in any way this circuit which has already been the subject of other publications).
  • the module 30, current control regulator superimposes two feedback loops, one (external) measuring the average current with the resistor 16, the other (internal) detecting the peak current at the terminals of the field effect transistor 13 . It is possible to add to the inductor 11 a galvanically isolated secondary 12 which allows the "prediction" of the decrease of the current without inserting an additional resistive sensor.
  • the invention is particularly applicable to converters for electrical generators supplying, or not, an electrical energy storage device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)
  • Dc-Dc Converters (AREA)

Abstract

A.C.-D.C. converter for independent rotor phase alternator characterized in that absolute values of the phase winding voltages are added by association of multiple phase rectifying modules, and in that control is of the voltage elevation BOOST type. Application: especially in electric generator converters fitted or not with a device for storage of the electrical energy produced.

Description

CONVERTISSEUR ALTERNATIF CONTINU POUR ALTERNATEUR A PHASES CONTINUOUS ALTERNATIVE CONVERTER FOR PHASE ALTERNATOR
INDEPENDANTESINDEPENDENT
La présente invention concerne les convertisseurs de courant al- ternatif en courant continu pour alternateurs à phases d'induit indépen¬ dantes.The present invention relates to alternating current to direct current converters for alternators with independent armature phases.
L'homme de l'art connaît de nombreux montages assurant la conversion de l'énergie -mécanique en énergie électrique, celle-ci le plus souvent sous forme alternative. Cependant, les convertisseurs alimentant une tension continue prennent une importance croissante, par exemple dans les alternateurs de véhicule classique ou dans les véhicules élec¬ triques dits "hybrides" embarquant un groupe électrogène. Quelques prospectives actuelles prévoient par ailleurs une extension des généra¬ teurs électriques domestiques qui permettra de diminuer les pertes et les nuisances dues au transport à grande distance de l'énergie électrique. Dans tous ces cas, il est primordial que la conversion d'énergie se fasse avec le meilleur rendement possible pour un poids minimal afin de dimi¬ nuer la consommation de carburant et les problèmes de dissipation de la chaleur produite par les pertes. Les procédés adéquats sont multiples: augmentation de la vitesse relative entre induit et inducteur (limitée par la force centrifuge), augmentation de l'induction dans l'entrefer (limitée par la saturation du circuit magnétique), amélioration du profil du champ inducteur (profils quasi-rectangulaires), augmentation du nombre de phases (bande passante supérieure), etc ... Pour exploiter au mieux ces améliorations l'alternateur doit être couplé à un montage électronique approprié permettant avec un minimum de composants de réguler le transfert d'énergie avec un très bon rende¬ ment tout en évitant les saturations ou démagnétisations liées à la réac¬ tion d'induit. C'est pourquoi l'invention a pour objet un convertisseur pour al¬ ternateur fournissant de l'énergie à une tension continue avec un rende¬ ment excellent, utilisant peu de composants et permettant un contrôle précis du courant d'induit.A person skilled in the art knows many arrangements ensuring the conversion of mechanical energy into electrical energy, the latter most often in alternative form. However, converters supplying a DC voltage are becoming increasingly important, for example in conventional vehicle alternators or in so-called "hybrid" electric vehicles carrying a generator. Some current forecasts also provide for an extension of domestic electric generators which will make it possible to reduce losses and nuisances due to the long-distance transport of electric energy. In all these cases, it is essential that the energy conversion takes place with the best possible efficiency for a minimum weight in order to reduce fuel consumption and the problems of dissipation of the heat produced by the losses. There are many suitable methods: increasing the relative speed between armature and inductor (limited by centrifugal force), increasing induction in the air gap (limited by saturation of the magnetic circuit), improving the profile of the inductive field (profiles quasi-rectangular), increase in the number of phases (higher bandwidth), etc ... To make the most of these improvements, the alternator must be coupled to an appropriate electronic assembly allowing with a minimum of components to regulate the energy transfer with a very good return while avoiding saturation or demagnetization linked to the armature reaction. This is why the invention relates to a converter for a alternator supplying energy at a DC voltage with an excellent return, using few components and allowing precise control of the armature current.
Ce problème est résolu en utilisant un unique circuit électronique pour contrôler simultanément le courant dans plusieurs phases indépen¬ dantes de l'induit, ces phases étant mises en série pour bénéficier à tout moment de toute la tension disponible à leurs bornes. La fiabilité de l'ensemble est renforcée par le faible nombre de composants utilisés. D'autres caractéristiques et avantages de l'invention apparaîtront avec la description qui va suivre de certains de ses modes de réalisation donnés à titre d'exemples non limi¬ tatifs, en référence aux dessins ci-annexés sur lesquels: - La figure 1 rappelle le principe du convertisseur dit "BOOST" utilisé dans l'invention.This problem is solved by using a single electronic circuit to simultaneously control the current in several independent phases of the armature, these phases being placed in series to benefit at all times from all the voltage available at their terminals. The reliability of the assembly is reinforced by the low number of components used. Other characteristics and advantages of the invention will appear with the following description of some of its embodiments given by way of nonlimiting examples, with reference to the attached drawings in which: - Figure 1 recalls the principle of the converter called "BOOST" used in the invention.
- La figure 2 représente un module de phase de base, comprenant au minimum un bobinage de phase et quatre diodes.- Figure 2 shows a basic phase module, comprising at least one phase winding and four diodes.
- La figure 3 montre la façon de juxtaposer les modules précédents, pour mettre par exemple cinq phases en série.- Figure 3 shows how to juxtapose the previous modules, for example to put five phases in series.
- La figure 4 donne un exemple concret de convertisseur à contrôle du courant avec circuit d'aide à la commutation.- Figure 4 gives a concrete example of a current control converter with switching assistance circuit.
Deux mesures se complètent dans l'invention pour élever le rendement global du convertisseur qui est fonction princi- paiement des pertes dans les bobinages d'induit et des pertes dans l'électronique de puissance.Two measures complement each other in the invention in order to increase the overall efficiency of the converter, which is mainly a function of losses in the armature windings and losses in power electronics.
Ainsi, la première mesure évite que le courant de l'induit soit discontinu, comme certains principes de conver¬ sion l'impliquent. L'invention utilise un principe de conver- tisseur dit "BOOST", caractérisé en ce que le courant demandé à la source d'énergie est continu, alors que le courant dans la charge est haché. Dans sa structure la plus simple, dé¬ taillée en figure 1, ce convertisseur est élévateur de ten¬ sion. Lorsque l'interrupteur 13 est fermé, la tension aux bornes de l'inductance 11 est celle fournie par le module gé¬ nérateur 20 et le courant dans l'inductance peut croître. Lorsque l'interrupteur 13 est ouvert, ce courant est récupéré dans la charge, aux bornes C et D, par la diode 15 (il est bien sûr possible de disposer cette diode dans la branche de retour). Le condensateur 14 assure un filtrage local, à moins que la charge soit suffisamment capacitive. La valeur de l'inductance 11 sera si possible grande devant les induc¬ tances propres des bobinages de phase d'induit.Thus, the first measurement prevents the armature current from being discontinuous, as certain conversion principles imply. The invention uses a so-called "BOOST" converter principle, characterized in that the current requested from the energy source is continuous, while the current in the load is chopped. In its simplest structure, detailed in FIG. 1, this converter is a voltage booster. When the switch 13 is closed, the voltage across the inductor 11 is that supplied by the generator module 20 and the current in the inductor can increase. When the switch 13 is open, this current is recovered in the load, at the terminals C and D, by the diode 15 (it is of course possible to have this diode in the return branch). The capacitor 14 provides local filtering, unless the load is sufficiently capacitive. The value of the inductance 11 will if possible be large in front of the specific inductances of the armature phase windings.
La deuxième mesure vise à profiter de toute la tension disponible aux bornes de chaque bobinage de l'induit. Pour cela, il est peu avantageux de mettre simplement en série les bobinages de phase car on obtient alors une somme vectorielle des tensions de chaque phase et non le cumul de leurs valeurs absolues. Aussi l'invention propose ce qui sera appelé dans la suite un module redresseur de phases, associant à chaque bobine de phase indépendante de rang N un réseau de quatre diodes (N étant un entier naturel compris entre 1 et P, P étant le nombre total de phases redressées mises en série). Une configuration spécifique a été préférée à celle du pont de GRAETZ classique pour diminuer le nombre de seuils de diodes en série.The second measurement aims to take advantage of all the voltage available at the terminals of each winding of the armature. For this, it is not very advantageous to simply put the phase windings in series since one then obtains a vector sum of the voltages of each phase and not the sum of their absolute values. Also the invention proposes what will be called in next a phase rectifier module, associating with each independent phase coil of rank N a network of four diodes (N being a natural integer between 1 and P, P being the total number of rectified phases put in series). A specific configuration was preferred to that of the conventional GRAETZ bridge to reduce the number of diode thresholds in series.
La figure 2 présente les six pôles de connexion d'un module redresseur de rang N. On distinguera les pôles dits d'entrée E(N-l) et F(N-l), les pôles centraux E(N) et F(N), connectés aux extrémités du bobinage de phase PN de rang N, et les pôles de sortie E(N+1) et F(N+1). Les quatre diodes relient respectivement E(N-l) à E(N), F(N-l) à F(N), E(N) à F(N+1) et F(N) à E(N+1), et elles sont orientées de telle fa- çon que leur courant direct ne puisse circuler que des pôles d'entrée vers les pôles centraux et des pôles centraux vers les pôles de sortie. Ces modules redresseurs sont ensuite juxtaposés pour former le module générateur 20, en reliant systématiquement leur pôles homonymes. Les pôles d'entrée du module redresseur de rang 1 sont reliés ensemble et consti¬ tuent le pôle négatif B du module 20, alors que les pôles de sortie du dernier module (de rang P) sont reliés ensemble pour en constituer le pôle positif A.Figure 2 shows the six connection poles of a row N rectifier module. We can distinguish the so-called input poles E (Nl) and F (Nl), the central poles E (N) and F (N), connected at the ends of the phase winding PN of rank N, and the output poles E (N + 1) and F (N + 1). The four diodes respectively connect E (Nl) to E (N), F (Nl) to F (N), E (N) to F (N + 1) and F (N) to E (N + 1), and they are oriented in such a way that their direct current can only flow from the input poles to the central poles and from the central poles to the output poles. These rectifier modules are then juxtaposed to form the generator module 20, by systematically connecting their homonymous poles. The input poles of the row 1 rectifier module are connected together and constitute the negative pole B of the module 20, while the output poles of the last module (of row P) are connected together to form the positive pole A .
La figure 3 donne l'exemple de connexion de ces modules dans une configuration à 5 phases. La tension de claquage in¬ verse des diodes d'extrémité, reliées aux points A et B, de¬ vra excéder la tension maximale induite dans chaque bobinage. Par contre, les diodes intermédiaires devront pouvoir suppor¬ ter une tension deux fois supérieure environ. En effet, dans certaines configurations de tension entre deux bobinages consécutifs, ces diodes peuvent se retrouver en parallèle sur deux bobinages de phase dont les tensions se renforcent. Comme l'homme de l'art le connaît, une fraction impor¬ tante de la tension générée par chaque bobinage de phase peut être causée par la réaction magnétique d'induit. Cette sur¬ tension nécessite un surdimensionnement des diodes en tension de claquage inverse, ce qui leur est défavorable en termes de coût et de chute de tension directe. Ce handicap peut être éliminé en insérant entre les pôles E(N) et F(N), en série avec chaque bobinage de phase PN, un réseau de compensation des inductances mutuelles de couplage entre phases de l'induit. La tension de claquage des diodes ne dépend plus alors strictement que de la tension induite par le déplace- ment des phases d'induit dans le champ inducteur.Figure 3 gives the example of connection of these modules in a 5-phase configuration. The breakdown voltage inverts end diodes, connected to points A and B, must exceed the maximum voltage induced in each winding. On the other hand, the intermediate diodes must be able to support a voltage approximately twice as high. Indeed, in certain voltage configurations between two consecutive windings, these diodes can be found in parallel on two phase windings whose voltages increase. As those skilled in the art know, a large fraction of the voltage generated by each phase winding can be caused by the magnetic armature reaction. This excess voltage requires oversizing the diodes in reverse breakdown voltage, which is unfavorable to them in terms of cost and direct voltage drop. This handicap can be eliminated by inserting between poles E (N) and F (N), in series with each PN phase winding, a compensation network for mutual inductances for coupling between armature phases. The breakdown voltage of the diodes then only strictly depends on the voltage induced by the displacement of the armature phases in the field.
Dans les machines simples un seul convertisseur "BOOST" suffit, régulant simultanément le courant de toutes les phases de l'induit de l'alternateur. Mais un montage à plu¬ sieurs convertisseurs, chacun associé à une partition des phases de l'induit, peut se révéler judicieux (par exemple lorsque l'on préférera pour des raisons de fiabilité la mise en parallèle de convertisseurs redondants, ou pour obtenir une tension de sortie plus faible). Il sera alors avantageux de répartir de façon équilibrée les phases d'une même parti- tion parmi l'ensemble des phases de l'induit.In simple machines a single "BOOST" converter is sufficient, simultaneously regulating the current of all the phases of the alternator armature. However, mounting with several converters, each associated with a partition of the armature phases, may prove to be judicious (for example when it is preferable for reasons of reliability to put redundant converters in parallel, or to obtain a lower output voltage). It will then be advantageous to distribute the phases of the same partition in a balanced manner among all of the phases of the armature.
Quand l'induit de l'alternateur est conçu pour minimi¬ ser les inductances propres des bobinages de phase, le décou¬ page peut s'effectuer à haute fréquence, ce qui favorise le rendement et la miniaturisation des composants inductîfs et capacitifs. La figure 4 présente un exemple concret de réali¬ sation d'un convertisseur selon l'invention, veillant à dimi¬ nuer les pertes de commutation de 1'interrupteur hacheur 13 associé à la diode de récupération 15. Le montage propose un circuit d'aide à la commutation actif à l'ouverture et à la fermeture de cet interrupteur et à récupération d'énergie, composé des éléments 71 à 82 (sans revendiquer aucunement ce circuit qui a déjà fait l'objet d'autres publications). Le module 30, régulateur à contrôle du courant, superpose deux boucles de réaction, l'une (externe) mesurant le courant moyen avec la résistance 16, l'autre (interne) détectant le courant crête aux bornes du transistor 13 à effet de champ. On peut rajouter sur l'inductance 11 un secondaire 12 isolé galvaniquement qui permette la "prédiction" de la décrois¬ sance du courant sans insérer un capteur résistif supplémen- taire.When the alternator armature is designed to minimize the natural inductances of the phase windings, the decou¬ page can be carried out at high frequency, which promotes the efficiency and miniaturization of inductive and capacitive components. FIG. 4 shows a concrete example of the embodiment of a converter according to the invention, taking care to reduce the switching losses of the chopper switch 13 associated with the recovery diode 15. The assembly provides a circuit for helps with active switching at the opening and closing of this switch and with energy recovery, composed of elements 71 to 82 (without claiming in any way this circuit which has already been the subject of other publications). The module 30, current control regulator, superimposes two feedback loops, one (external) measuring the average current with the resistor 16, the other (internal) detecting the peak current at the terminals of the field effect transistor 13 . It is possible to add to the inductor 11 a galvanically isolated secondary 12 which allows the "prediction" of the decrease of the current without inserting an additional resistive sensor.
L'invention s'applique particulièrement aux convertis¬ seurs pour générateurs électriques alimentant, ou non, un dispositif de stockage de l'énergie électrique. The invention is particularly applicable to converters for electrical generators supplying, or not, an electrical energy storage device.

Claims

REVENDICATIONS 1- Convertisseur de courant alternatif à courant continu pour alternateur à phases d'induit indépendantes ca¬ ractérisé par la combinaison des moyens suivants: - La conversion d'énergie utilise la configuration dite de "BOOST" à élévation de tension comprenant une première boucle série composée d'un générateur 20 de pôles positif A et négatif B, d'une inductance 11 et d'un interrupteur ha- cheur 13, lequel est en parallèle sur une seconde boucle com- posée d'une diode 15 récupérant le courant de l'inductance dans la charge parallélisée avec un éventuel condensateur 14. CLAIMS 1- Alternating current to direct current converter for alternator with independent armature phases characterized by the combination of the following means: - The energy conversion uses the so-called "BOOST" configuration with voltage rise comprising a first loop series composed of a generator 20 of positive A and negative poles B, an inductor 11 and a chopper switch 13, which is in parallel on a second loop composed of a diode 15 recovering the current of inductance in the load parallelized with a possible capacitor 14.
- Le générateur 20 est constitué de la juxtaposition de P modules de rang N à six pôles dits modules redresseurs de phase connectés les uns aux autres par leurs pôles homonymes, N étant un entier naturel variant de 1 à P, P étant le nombre total de bobinages de phase associés dans le générateur 20.- The generator 20 consists of the juxtaposition of P modules of rank N with six poles called phase rectifier modules connected to each other by their homonymous poles, N being a natural integer varying from 1 to P, P being the total number of associated phase windings in generator 20.
- Les six pôles d'un module redresseur de phase de rang N étant nommés les pôles d'entrée E(N-l) et F(N-l), les pôles centraux E(N) et F(N) connectés aux extrémités du bobinage de phase PN de rang N, et les pôles de sortie E(N+1) et F(N+1), quatre diodes relient respectivement E(N-l) à E(N), F(N-l) à F(N), E(N) à F(N+1) et F(N) à E(N+1) dans un sens tel que leur courant direct ne puisse circuler que des pôles d'entrée vers les pôles centraux et des pôles centraux vers les pôles de sortie.- The six poles of a phase rectifier module of rank N being named the input poles E (Nl) and F (Nl), the central poles E (N) and F (N) connected to the ends of the phase winding PN of rank N, and the output poles E (N + 1) and F (N + 1), four diodes connect E (Nl) to E (N), F (Nl) to F (N), E ( N) to F (N + 1) and F (N) to E (N + 1) in a direction such that their direct current can only flow from the input poles to the central poles and from the central poles to the poles of exit.
- Les pôles E(0) et F(0) sont reliés ensemble pour constituer le pôle négatif B du générateur 20 et les pôles E(P+1) et F(P+1) sont reliés ensemble pour constituer le pôle positif A du générateur 20. 2- Circuit selon la revendication précédente, un réseau de compensation des inductances mutuelles entre les bobinages de phase de l'induit étant inséré entre les pôles E(N) et F(N) en série avec chaque bobinage PN.- The poles E (0) and F (0) are connected together to constitute the negative pole B of the generator 20 and the poles E (P + 1) and F (P + 1) are connected together to constitute the positive pole A of generator 20. 2- Circuit according to the preceding claim, a network for compensating mutual inductances between the phase windings of the armature being inserted between the poles E (N) and F (N) in series with each PN winding.
3- Utilisation du circuit selon l'une quelconque des revendications précédentes, soit dans un montage unique qui n'utilise qu'un seul convertisseur BOOST régulant simultané¬ ment le courant de toutes les phases de l'induit de l'alternateur, soit dans un montage à plusieurs convertis¬ seurs, chacun associé à une partition des phases de l'induit. 3- Use of the circuit according to any one of the preceding claims, either in a single assembly which uses only a single BOOST converter regulating simultaneously the current of all the phases of the armature of the alternator, or in an assembly with several converters, each associated with a partition of the armature phases.
PCT/FR1993/000191 1992-03-04 1993-02-25 A.c.-d.c. converter for independent phase alternator WO1993018574A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU36368/93A AU3636893A (en) 1992-03-04 1993-02-25 A.c.-d.c. converter for independent phase alternator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9202582A FR2688358B1 (en) 1992-03-04 1992-03-04 CONTINUOUS-CONTINUOUS CONVERTER FOR INDEPENDENT PHASE ALTERNATOR.
FR92/02582 1992-03-04

Publications (1)

Publication Number Publication Date
WO1993018574A1 true WO1993018574A1 (en) 1993-09-16

Family

ID=9427337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1993/000191 WO1993018574A1 (en) 1992-03-04 1993-02-25 A.c.-d.c. converter for independent phase alternator

Country Status (2)

Country Link
FR (1) FR2688358B1 (en)
WO (1) WO1993018574A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2045012A (en) * 1979-03-14 1980-10-22 Westinghouse Brake & Signal High voltage transformer rectifier

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5875451A (en) * 1981-10-30 1983-05-07 Hitachi Ltd Armature of direct-current motor
JPS6177907A (en) * 1984-09-26 1986-04-21 Fuji Electric Co Ltd Power supply circuit
JP2862322B2 (en) * 1990-03-28 1999-03-03 株式会社日立製作所 Power supply

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2045012A (en) * 1979-03-14 1980-10-22 Westinghouse Brake & Signal High voltage transformer rectifier

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 10, no. 250 (P-491) 28 Août 1986 & JP-A-61 077 907 (FUJI) 21 Avril 1986 *
PATENT ABSTRACTS OF JAPAN vol. 16, no. 112 (E-1180) 19 Mars 1992 & JP-A-03 284 168 (HITACHI) 13 Décembre 1991 *
PATENT ABSTRACTS OF JAPAN vol. 7, no. 170 (E-189) 27 Juillet 1983 & JP-A-58 075 451 (HITACHI) 7 Mai 1983 *

Also Published As

Publication number Publication date
FR2688358B1 (en) 1995-12-22
FR2688358A1 (en) 1993-09-10

Similar Documents

Publication Publication Date Title
EP0654887B1 (en) Uninterruptible power supply with common neutral line comprising a double boost switching converter
EP2695279B1 (en) Charge transfer device and associated management method
EP0847338B1 (en) Mixed electric power supply system comprising an inverter and an alternating-direct converter
EP1750343B1 (en) Electronic trip device with a power supply circuit comprising voltage step-up means, and circuit breaker comprising such device
WO2007083046A2 (en) Electrical management device for vehicle power supply
FR3016096A1 (en) MULTI-OUTPUT POWER CONVERTER WITH DEPHASING CONTROL
EP1952525A2 (en) Alternator
US6043567A (en) Vehicle electrical system
EP3389175B1 (en) Conversion device, associated control method and vehicle
EP3607644A1 (en) Method for controlling a charging device on board an electric or hybrid vehicle
FR2782582A1 (en) POWER SUPPLY INSTALLATION, ESPECIALLY FOR THE ON-VEHICLE NETWORK OF A VEHICLE
FR2901431A1 (en) CURRENT CONVERTING CIRCUIT.
EP1385258B1 (en) Interface for supplying a load from a power distribution network
WO1987000991A1 (en) High power electronic voltage converter-reducer
FR2888392A1 (en) DEVICE FOR REDUCING POWER WHEN OPERATING AN INDUCTIVE LOAD.
EP1103019B1 (en) Logic input device for energy recovery in a process control
WO1993018574A1 (en) A.c.-d.c. converter for independent phase alternator
EP2683069B1 (en) Modular power conversion system based on an asymmetrical single phase bridge with two switches and two freewheeling diodes and isolation diodes.
FR2903248A1 (en) ELECTRIC CONVERSION DEVICE, CONVERTER AND ELECTRICAL SUPPLY WITHOUT INTERRUPTION COMPRISING SUCH A DEVICE
WO2017081386A1 (en) Reversible dc voltage energy conversion device
FR2973601A1 (en) Electrical circuit for use in motor vehicle, has direct current-to-direct current converter for enabling withdraw of electrical energy produced by alternator for supplying energy to one of electrical systems
FR2990310A1 (en) Electric conversion stage for electric converter of electric battery recharging terminal of car, has capacitor connected between output terminals, and electromagnetic coil connected between one of terminals and midpoint of switching branch
EP0601593A2 (en) Power supply device with current multiplication
FR3066866B1 (en) CONTINUOUS-CONTINUOUS CONVERTER FOR ELECTRIC OR HYBRID VEHICLE
EP3276810B1 (en) Insulated dc-dc converter and electric battery comprising an insulated dc-dc converter

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA